Novell
ldentity Manager

www.novell.com

3 ®
‘ POLICY BUILDER AND DRIVER

December 13, 2005 CUSTOMIZATION GUIDE

Novell

Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc. reserves the right to revise this publication and to make changes to its content, at any time,
without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims
any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to
notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the
trade laws of other countries. You agree to comply with all export control regulations and to obtain any required
licenses or classification to export, re-export, or import deliverables. You agree not to export or re-export to entities
on the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export
laws. You agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses.
Please refer to www.novell.com/info/exports/ for more information on exporting Novell software. Novell assumes no
responsibility for your failure to obtain any necessary export approvals.

Copyright © 2005 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied,
stored on a retrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc.

404 Wyman Street, Suite 500
Waltham, MA 02451

US.A

www.novell.com

Online Documentation: To access the online documentation for this and other Novell products, and to get
updates, see www.novell.com/documentation.

Novell Trademarks

DirXML is a registered trademark of Novell, Inc., in the United States and other countries.
eDirectory is a trademark of Novell, Inc.
Novell is a registered trademark of Novell, Inc., in the United States and other countries.

Nsure is a trademark of Novell, Inc.

Third-Party Materials

All third-party trademarks are the property of their respective owners.

Contents

About This Guide 11
1 Policies and Filters 13
1.1 What Are Policies and Filters?. e 13
111 Terminology Changes from Earlier Versions. 14

1.1.2 DIrXML SCript .« oo 15

1.2 Introduction to Policies. 15
1.21 Policies 16

1.22 Defining Policies 35

1.3 FIRers. o 36
2 Defining Policies By Using The Policy Builder With Designer 37
2.1 POlICIES ..t 37
211 Operation. 38

2.1.2 CurrentOperation 38

21.3 Current ObjeCt.o 38

2.2 Policy Builder Tasks in Designer 38
221 Opening Policy Builder 38

222 Creatinga PoliCy 40

223 CreatingaRule. 44

224 Creatingan Argument e 50

225 Modifying a Policy 58

226 Using Predefined Rules. 61

2.2.7 Testing Policies with the Policy Simulator. 90

228 Editing the DIrXML Script 97

2.3 Regular EXpressions 101
2.4 XPath 1.0 EXPressionsttt 101
25 CoNditions 102
251 IfASSOCIatioN 102

252 IfAttribute ... 103

253 fClass Name 104

254 If Destination Attribute. 105

255 If Destination DN 107

2.5.6 FENtitlement 108

257 If Global Configuration Value 109

258 If Local Variable. 110

259 If Named Password. 112
2510 HfOperation 112

2511 [IfOperation Attribute 113
2.5.12 IfOperation Property 115
2513 I PassWord 116
2514 If Source Attribute 116
2515 IfSource DN 117
2516 If XPath Expression. 118

2.6 ACHONS . . .o 119
2.6.1 Add Association. 120

2.6.2 Add Destination Attribute Value 120

2.6.3 AddDestination Object 122

2.6.4 Add Source Attribute Value 123

6

2.7

2.6.5 AddSource Object. e 124
2.6.6 Append XML Element e 125
2.6.7 Append XML Textt e e 125
26.8 Break e 126
2.6.9 Clear Destination Attribute Value. 126
2.6.10 Clear Operation Property« e e 127
2.6.11 Clear Source Attribute Value 127
2.6.12 Clone By XPath EXpressionst 128
2.6.13 Clone Operation Attribute. 128
2.6.14 Delete Destination Object 129
2.6.15 Delete Source Object. 130
2.6.16 Find Matching Object. 130
2.6.17 ForEach. 132
2.6.18 Generate Event 133
2.6.19 ImplementEntitlement. 135
2.6.20 Move Destination Object e 136
2.6.21 Move Source ObjJecCt.o e 137
2.6.22 Reformat Operation Attribute 138
2.6.23 Remove Association 139
2.6.24 Remove Destination Attribute Value 139
2.6.25 Remove Source Attribute Value. 140
2.6.26 Rename Destination Object. 141
2.6.27 Rename Operation Attribute 142
2.6.28 Rename Source Object i 142
2.6.29 SendEmalil. 143
26.30 SendEmailFromTemplate 144
2.6.31 SetDefault Attribute Value. 145
2.6.32 Set Destination Attribute Value 146
2.6.33 SetDestination Password e 148
2.6.34 SetlocalVariable e 148
2.6.35 Set Operation Association 149
2.6.36 SetOperationClassName i 150
2.6.37 Set Operation Destination DN i, 150
2.6.38 SetOperation Property 151
2.6.39 SetOperation Source DN 151
2.6.40 SetOperation Template DN. i 152
2.6.41 SetSource Attribute Value. 153
2.6.42 SetSource Password. e 154
2.6.43 Set XML Attribute. e 154
2.6.44 Status. 155
2.6.45 Strip Operation Attribute. 156
2.6.46 Strip XPath. 156
2.6.47 Trace MeESSAQeottt e 157
2.6.48 VetO ..o e 158
2.6.49 Veto If Operational Attribute Not Available. 159
NOUN TOKENS . . . e 159
271 Added Entitlement 160
2.7.2 ASSOCIatioN. e 160
2.7.3 Attribute . .. e 161
274 Class Name 162
275 Destination Attribute. 162
2.7.6 Destination DN 163
2.7.7 Destination Name. e 164
2.7.8 Entitlement e 164
2.7.9 Global Configuration Value i 165
2710 Local Variable 165
2711 Named Password.t 166
2712 Operation 166

Policy Builder and Driver Customization Guide

2.7.13 Operation Attribute 167

2.7.14 Operation Property 167
2715 PassWOrd.o 168
2.7.16 Removed Attribute. 168
2.7.17 Removed Entitlement 168
2.718 Source Attribute. 168
2719 Source DN. 169
2.7.20 Source Name i 169
2 7 N I - 170
2.7.22 Unique Name e 171
2.7.23 Unmatched Source DN 172
2.7.24 XPath. ... 173
2.8 Verb ToKens 173
2.8.1 Escape Destination DN 174
282 Escape Source DN 174
2.8.3 LOWEr Case . ..o ittt 174
284 Parse DN 175
2.85 Replace All e 177
2.8.6 Replace First. e 177
2.8.7 SUDSIING . . . o 178
2.8.8 UpPPEr Caseottt e 179
2.9 Valueso 180
2.9.1 Comparison Modes e 180
Defining Policies By Using The Policy Builder In iManager 183
3.1 POlICIES ..o 183
3.1.1 Operation. e 184
3.1.2 CurrentOperation e e 184
3.1.3 Current Object. o 184
3.2 Policy Builder Tasks iniManager. e 184
3.21 Opening The Policy Builder. e 184
3.22 Creatinga PoliCyo i 185
3.2.3 Defining Individual Rules withina Policy 185
3.24 Defining Individual Arguments withinaRule. 187
3.25 Modifying a Policy e 194
3.2.6 Removing @a PoliCy. 194
3.2.7 Renaming a PoliCy 195
3.2.8 Deletinga Policyo 195
3.29 Importing a Policy froman XML File 195
3.2.10 Exportinga Policytoan XML File 195
3.2.11 CreatingaPolicyReference 196
3.2.12 Using Predefined Rules. i e 196
3.3 Regular EXpressionso 216
3.4 XPath 1.0 EXPressions i e e 217
3.5 Conditionso 218
3.5.1 If ASSOCIatioN 218
3.5.2 IfAttribute 219
3.5.3 FClass Name 220
3.54 If Destination Attribute 221
3.55 If Destination DN 222
3.5.6 IfEntitlement 223
3.5.7 If Global Configuration Value i 225
3.5.8 If Local Variable. 226
3.5.9 IfNamed Password. 228
3.5.10 IfOperation 228

3.5.11 If Operation Attribute 229

3.5.12 If Operation Property 231

3.5.13 I PassWord e 232
3.5.14 If Source Attribute 232
3.5.15 IfSource DN. 234
3.5.16 If XPath EXpression 235
3.6 ACHONS 236
3.6.1 Add AssoCiation e 237
3.6.2 Add Destination Attribute Value 238
3.6.3 Add Destination Object e 239
3.6.4 Add Source Attribute Value 240
3.6.5 Add Source Object. e 241
3.6.6 Append XML Element 242
3.6.7 Append XML Text e 243
3.6.8 Break 244
3.6.9 Clear Destination Attribute Value 244
3.6.10 Clear Operation Property e 245
3.6.11 Clear Source Attribute Value 245
3.6.12 Clone By XPath EXpression. it 246
3.6.13 Clone Operation Attribute. 246
3.6.14 Delete Destination Object e 247
3.6.15 Delete Source Object. e 247
3.6.16 Find Matching Object. e 248
3.6.17 ForEach. 249
3.6.18 Generate Event 250
3.6.19 ImplementEntitlement 252
3.6.20 Move Destination Object 253
3.6.21 Move Source ObjJecCt. e 254
3.6.22 Reformat Operation Attribute 254
3.6.23 Remove Association 255
3.6.24 Remove Destination Attribute Value i L. 256
3.6.25 Remove Source Attribute Value. 257
3.6.26 Rename Destination Object. 258
3.6.27 Rename Operation Attribute 258
3.6.28 Rename Source Object 258
3.6.29 SendEmail. 259
3.6.30 SendEmailfromTemplate. e 260
3.6.31 Set Default Attribute Value. 261
3.6.32 Set Destination Attribute Value 262
3.6.33 Set Destination Password 263
3.6.34 Setlocal Variable 264
3.6.35 SetOperation Association 265
3.6.36 SetOperationClassName i 265
3.6.37 Set Operation Destination DN 266
3.6.38 SetOperation Property 266
3.6.39 SetOperation Source DN 267
3.6.40 SetOperation Template DN. et 267
3.6.41 Set Source Attribute Value. 268
3.6.42 SetSource Password. 269
3.6.43 Set XMLAttribute. 269
3.6.44 Status. 270
3.6.45 Strip Operation Attribute. 270
3.6.46 Strip XPath. 271
3.6.47 Trace MeSSagettt 271
3.6.48 Velo 272
3.6.49 Veto if Operation Attribute Not Available 273
3.7 NOUN TOKENS . .o e e 274
3.7.1 Added Entitlement 274
3.7.2 AsSSOCIatioN. e 275

8 Policy Builder and Driver Customization Guide

3.7.3 Attribute. 275

374 ClassName. 276
3.7.5 Destination Attribute 276
3.7.6 Destination DN e 277
3.7.7 Destination Name e 278
3.7.8 Entitlement 278
3.7.9 Global Configuration Value 279
3.7.10 Local Variable e 279
3.7.11 Named Password e 280
3.7.12 Operation. e 280
3.7.13 Operation Attribute 280
3.7.14 Operation Property 281
3.7.15 PassWOrd. e 281
3.7.16 Removed Attribute. 282
3.7.17 Removed Entitlements 282
3.7.18 Source Attribute. 282
3.7.19 Source DN. ... e 283
3.7.20 Source Name e 283
B 7. 21 TeXt . o 283
3.7.22 Uniqgue Name e 284
3.7.23 Unmatched Source DN 286
3.7.24 XPath. . ..o 286
3.8 Verb ToKeNs 287
3.8.1 Escape Destination DN e 287
3.8.2 Escape Source DN 288
3.8.3 LoWer Caseot 288
3.84 Parse DN 289
3.8.5 Replace All e 290
3.8.6 Replace First. e 291
3.8.7 SUDBSHNG . . . o 292
3.8.8 UPPer Caset t 293
3.9 Values . ..o 294
3.9.1 ComparisoN MOAESot 294
Defining Policies using XSLT Style Sheets 295
4.1 Managing XSLT Style Sheetsin Designer. i 295
411 Adding an XSLT Policy in Designer i 295
4.2 Managing XSLT Style SheetsiniManager i, 297
4.21 Adding an XSLT Policy iniManager i 297
4.3 Starting with an Identity Transformation 298
4.4 Using the Parameters that Identity Manager Passes. 298
4.5 Using Extension FUNCHiONS 301
4.6 Creating a Password Example: Creation Policy 302
4.7 Creating an eDirectory User Example: Creation Policy. 303
Managing Filters 309
5.1 Filter Tasks in Designer. 309
511 Accessing the Filter Editor. 309
5.1.2 Editingthe Filter 310
5.1.3 Testing Filters e 315
5.14 Viewingthe Filter XML Source i 319
5.2 Filter TasksiniManager i 321
521 Accessingthe Filter. 322

5.2.2 Editing the Filter e 322

6 Managing Schema Mapping Policies 327

6.1

6.2

Schema Mapping Policy Tasks in Designer. 327
6.1.1 Accessing the Schema Map Editor 327
6.1.2 Editing a Schema Mapping Policy 329
6.1.3 Testing Schema Mapping Policies. i 331
6.1.4 Viewing the Schema Mapping Policy XML Source 336
Schema Mapping Policy Tasks iniManager. 338
6.2.1 Accessing Schema Mapping Policies 339
6.2.2 Editing the Schema Mapping Policy. 339

10 Policy Builder and Driver Customization Guide

About This Guide

Novell® Identity Manager 3.0 ® is a data sharing and synchronization service that enables
applications, directories, and databases to share information. It links together scattered information
and enables you to establish policies that govern automatic updates to designated systems when
identity changes occur.

Identity Manager provides the foundation for account provisioning, security, single sign-on, user
self-service, authentication, authorization, automated workflows and Web services. It allows you to
integrate, manage and control your distributed identity information so you can securely deliver the
right resources to the right people.

This guide provides detailed reference on Policy Builder and Driver Configuration in Identity
Manager 3.0.

* Chapter 1, “Policies and Filters,” on page 13

* Chapter 2, “Defining Policies By Using The Policy Builder With Designer,” on page 37
* Chapter 3, “Defining Policies By Using The Policy Builder In iManager,” on page 183
 Chapter 4, “Defining Policies using XSLT Style Sheets,” on page 295

* Chapter 5, “Managing Filters,” on page 309

* Chapter 6, “Managing Schema Mapping Policies,” on page 327

Audience

This guide is intended for Identity Manager administrators.

Feedback

We want to hear your comments and suggestions about this manual and the other documentation
included with this product. Please use the User Comments feature at the bottom of each page of the
online documentation, or go to www.novell.com/documentation/feedback.html and enter your
comments there.

Documentation Updates

For the most recent version of this document, see the Identity Manager Documentation Web site
(http://www.novell.com/documentation/idm)

For documentation on Identity Manager 2.0, see the Identity Manager Documentation Web site
(http://www.novell.com/documentation/idm)

Additional Documentation

For documentation on using the Identity Manager drivers, see the Identity Manager Documentation
Web site (http://www.novell.com/documentation/idmdrivers/index.html)

1"

http://www.novell.com/documentation/idm
http://www.novell.com/documentation/idm
http://www.novell.com/documentation/idmdrivers/index.html
http://www.novell.com/documentation/idmdrivers/index.html

Documentation Conventions

In this documentation, a greater-than symbol (>) is used to separate actions within a step and items
within a cross-reference path.

A trademark symbol (¥, ™, etc.) denotes a Novell trademark. An asterisk (*) denotes a third-party
trademark.

12 Policy Builder and Driver Customization Guide

Policies and Filters

This section contains an overview of policies and filters, and their function in an Identity Manager
environment. The following topics are covered:

» Section 1.1, “What Are Policies and Filters?,” on page 13

* Section 1.2, “Introduction to Policies,” on page 15

1.1 What Are Policies and Filters?

At a high level, policies enable you to customize the way Identity Manager sends and receives
updates.

To understand policies, it helps to understand some level of detail regarding what a driver shim is
written to do.

When a driver shim is written, an attempt is made to include the ability to synchronize anything a
company deploying the driver might use. The developer writes the driver shim to detect any relevant
changes in the connected system, then pass this change to the Identity Vault.

This change is contained in an XML document, formatted according to the Identity Manager
specification. The following snippet contains one of these XML documents:

<nds dtdversion="2.0" ndsversion="8.7.3">
<source>
<product version="2.0">DirXML</product>
<contact>Novell, Inc.</contact>
</source>

<input>
<add class-name="User" event-id="0" src-dn="\ACME\Sales\Smith"
src-entry-id="33071">
<add-attr attr-name="Surname'">
<value timestamp="1040071990#3" type="string">Smith</value>
</add-attr>
<add-attr attr-name="Telephone Number">
<value timestamp="1040072034#1" type="teleNumber">111-1111</
value>
</add-attr>
</add>
</input>
</nds>

Drivers are designed to report any relevant changes, then enable you to filter the information. Filters
are designed to block information. You modify the filter to allow only the information you desire to
enter your environment. The logic of what changes are important and how to process these changes
is handled in the engine, not in the driver shim.

If one company isn’t very concerned with groups, they can implement a filter to block all operations
regarding groups in either the Identity Vault or the connected system. If the company cared about

Policies and Filters

13

users and groups, they can implement a filter to allow both types of objects to synchronize between
the Identity Vault and the connected system.

Defining filters to allow the synchronization of only objects that are interesting to you is the first
step in driver customization.

The next step defines what Identity Manager does with the objects that are allowed by your filter. As
an example, refer to the add operation in the XML document above. A user named Smith with a
telephone number of 111-1111 was added to your connected system. Assuming you allow this
operation, Identity Manager needs to decide what to do with this user.

To make this decision, Identity Manager applies a set of policies, in a specific order.

First, a Matching policy answers the question, “Is this object already in the data store?” To answer
this, you need to define the characteristics that are unique to an object. A common attribute to check
might be an e-mail address, because these are usually unique. You can define a policy that says “If
two objects have the same e-mail address, they are the same object.”

If a match is found, Identity Manager notes this in an attribute called an association. An association
is a unique value that enables Identity Manager to associate objects in connected systems.

In circumstances where a match is not found, a Creation policy is called on. The Creation policy
tells Identity Manager under what conditions you want objects to be created. You can make the
existence of certain attributes mandatory in the creation rule. If these attributes do not exist, Identity
Manager blocks the creation of the object until the required information is provided.

After the object is created, a Placement policy tells Identity Manager where to put it. You can
specify that objects should be created in a hierarchical structure identical to the system they came
from, or you can place them somewhere completely different based on an attribute value.

If you want to place users in a hierarchy according to a location attribute on the object, and name
them according to the Full Name, you can make these attributes required in the create policy. This
ensures that the attribute exists so your placement strategy works correctly.

There are many other things you can do with policies. Using the Policy Builder, you can easily
generate unique values, add and remove attributes, generate events and commands, send e-mail, and
more. Even more advanced transformations are available by using XSLT to transform the XML
document directly (remember that changes are sent to and from the Identity Vault in XML
documents).

The basic thing to keep in mind is that policies enable you to control how Identity Manager handles
updates.

Continue to Section 1.2, “Introduction to Policies,” on page 15 to learn more about the different
types of policies, then move on to Chapter 2, “Defining Policies By Using The Policy Builder With
Designer,” on page 37 or Chapter 3, “Defining Policies By Using The Policy Builder In iManager,”
on page 183 to learn how to use the Policy Builder.

1.1.1 Terminology Changes from Earlier Versions

If you have not used DirXML® 1.1a or Identity Manager 2.0, you do not need to review this section.

In DirXML 1.1a, the term “rule” was used to describe a set of rules, the individual rules in this set,
and the conditions and actions within the individual rules, depending on the context. This overlap
causes confusion in circumstances when the context is not clear.

14 Policy Builder and Driver Customization Guide

In Identity Manager 2, the term “policy” is now used to replace the previous usage of the term rule,
when describing the high-level transformation that is occurring. You now define a set of policies,
where each policy contains one or more rules. The term “rule” is now used to describe only an
individual set of conditions and actions.

The following table shows the terminology changes from DirXML 1.1a to Identity Manager 2.x.

Table 1-1 Terminology Changes from DirXML 1.1a to Identity Manager 2.x

Item being described DirXML 1.1a Terminology Identity Manager 2.x Terminology
Set of transformations Rule Set of policies

An individual Rule Policy

transformation within a

set

The conditions and Rule Rule

actions within an
individual transformation

The following table shows the terminology changes from Identity Manager 2.x to Identity Manager
3.0.

Table 1-2 Terminology Changes from Identity Manager 2.x to Identity Manager 3.0

Item being described Identity Manager 2.x Terminology Identity Manager 3 Terminology
The product DirXML Identity Manager

A server that has the product DirXML server Metadirectory server

installed

A server in the application or DirXML connected system Connected system server
database the data is server

synchronizing with
Where the objects are stored eDirectory™ Identity Vault

The processing component DirXML engine Metadirectory engine

1.1.2 DirXML Script

DirXML® Script is the primary method of implementing Identity Manager policies. It describes a
policy that is implemented by an ordered set of rules. A rule consists of a set of conditions to be
tested and an ordered set of actions to be performed when the conditions are met.

DirXML Script is created using the Policy Builder, which provides a GUI interface for easy of use.

1.2 Introduction to Policies

This section provides an introduction to the types of policies available, their roles in Identity
Manager, and how to define your own policies. The following topics are covered:

Policies and Filters

15

* Section 1.2.1, “Policies,” on page 16

» Section 1.2.2, “Defining Policies,” on page 35

1.2.1 Policies

There are several different types of policies you can define on both the Subscriber and Publisher
channels. Each policy is applied at a different step in the data transformation, and some policies are
only applied when a certain action occurs. For example, a Creation policy is applied only when a
new object is created.

The order of execution of the policies on the channel are:

» Event Transformation Policy

* Creation Policy

* Matching Policies

* Placement Policy

» Command Transformation Policy
* Schema Mapping Policy

* Output Transformation Policy

* Input Transformation Policy
Figure 1-1 Order of Execution of the Policies

LDAP Directory

Directory

Gt

Schema Mapping

Publisher

Everit

Command

"o i
7= Placement !
E Msich g Creation

Creation Matching

H H
H H
H i
i H
H H
H i
! Placement A we
H {9

H

" Command

@]

IDM ¥ault

Event Transformation Policy

Event Transformation policies alter the Metadirectory engine's view of the events that happen in the
Identity Vault or the connected application. The most common task performed in an Event
Transformation policy is custom filtering, such as scope filtering and event-type filtering.

16 Policy Builder and Driver Customization Guide

Scope filtering removes unwanted events based on event location or an attribute value. For example,
removing the event if the department attribute is not equal to a specific value or is not a member of a
specific group.

Event-type filtering removes unwanted events based on event type. For example, removing all
delete events.

Examples:

* Scope Filtering
» Type Filtering

Scope Filtering: This example DirXML Script policy allows events through only for users who are
contained within the Users subtree, are not disabled, and do not contain the word Consultant or
Manager in the Title attribute. It also generates a status document indicating when an operation has
been blocked.

<policy>
<rule>
<description>Scope Filtering</description>
<conditions>
<or>
<if-class-name op="equal">User</if-class-name>
</or>
<or>
<if-src-dn op="not-in-subtree">Users</if-
src—-dn>

<if-attr name="Login Disabled"
op="equal">True</if-attr>
<if-attr mode="regex" name="Title"
op="equal">.*Consultant.*</if-attr>
<if-attr mode="regex" name="Title"
op="equal">.*Manager.*</if-attr>
</or>
</conditions>
<actions>
<do-status level="error">
<arg-string>
<token-text>User doesn’t meet required
conditions</token-text>
</arg-string>
</do-status>
<do-veto/>
</actions>
</rule>
</policy>

This DirXML Script policy votes modify operations on User objects except for modifies of objects
that are already associated.

<policy>
<rule>
<description>Veto all operation on User except modifies
of already associated objects</description>
<conditions>

Policies and Filters

17

<or>
<if-class-name op="equal">User</if-class-name>

</or>
<or>
<if-operation op="not-equal">modify</if-
operation>
<if-association op="not-associated"/>
</or>
</conditions>
<actions>
<do-veto/>
</actions>
</rule>
</policy>

Type Filtering - The first rule of this example DirXML Script policy allows only objects in the
Employee and Contractor containers to be synchronized. The second rule blocks all Rename and
Move operations.

<policy>
<rule>
<description>Only synchronize the Employee and Contractor
subtrees</description>
<conditions>
<and>
<if-src-dn op="not-in-
container">Employees</if-src-dn>
<if-src-dn op="not-in-
container">Contractors</if-src-dn>
</and>
</conditions>
<actions>
<do-status level="warning">
<arg-string>
<token-text>Change ignored: Out of
scope.</token-text>
</arg-string>
</do-status>
<do-veto/>

</actions>
</rule>
<rule>
<description>Don’t synchronize moves or renames</
description>
<conditions>
<or>
<if-operation op="equal">move</if-
operation>
<if-operation op="equal">rename</if-
operation>
</or>
</conditions>
<actions>

<do-status level="warning">

18 Policy Builder and Driver Customization Guide

<arg-string>
<token-text>Change ignored:
We don’t like you to do that.</token-text>
</arg-string>
</do-status>
<do-veto/>
</actions>
</rule>
</policy>

This DirXML Script policy blocks all Add events.

<policy>
<rule>
<description>Type Filtering</description>
<conditions>
<and>
<if-operation op="equal">add</if-
operation>
</and>
</conditions>
<actions>

<do-status level="warning">
<arg-string>
<token-text>Change ignored:
Adds are not allowed.</token-text>
</arg-string>
</do-status>
<do-veto/>
</actions>
</rule>
</policy>

Creation Policy

Creation policies, such as a Subscriber Creation policy and a Publisher Creation policy, define the
conditions that must be met to create a new object. The absences of a Creation policy implies that
the object can be created.

For example, you create a new user in the Identity Vault, but you only give the new User object a
name and ID. This creation is mirrored in the eDirectory tree, but the addition is not immediately
reflected in applications connected to the Identity Vault because you have a Creation policy
specifying that only User objects with a more complete definition are allowed.

A Creation policy can be the same for both the Subscriber and the Publisher, or it can be different.

Template objects can be specified for use in the creation process when the object is to be created in
eDirectory.

Creation policies are commonly used to:

* Veto creation of objects that don’t qualify, possibly due to a missing attribute.
 Provide default attribute values.

* Provide a default password.

Policies and Filters

19

Examples:

* Required Attributes
e Default Attribute Values
» Default Password

* Specify Template

Required Attributes: The first rule of this example DirXML Script policy requires that a User
object contain a CN, Given Name, Surname, and Internet EMail Address attribute before the user
can be created. The second rule requires an OU attribute for all Organizational Unit objects. The
final rule vetoes all User objects with a name of Fred.

<policy>
<rule>
<description>Veto if required attributes CN, Given Name,
Surname and Internet EMail Address not available</description>
<conditions>
<or>
<if-class-name op="equal">User</if-class-
name>
</or>
</conditions>
<actions>
<do-veto-if-op-attr-not-available name="CN"/>
<do-veto-if-op-attr-not-available name="Given Name"/>
<do-veto-if-op-attr-not-available name="Surname"/>
<do-veto-if-op-attr-not-available name="Internet
EMail Address"/>
</actions>
</rule>
<rule>
<description>Organizational Unit Required Attributes</
description>
<conditions>
<or>
<if-class-name op="equal">Organizational
Unit</if-class-name>

</or>
</conditions>
<actions>
<do-veto-if-op-attr-not-available name="0OU"/>
</actions>
</rule>
</policy>

Default Attribute Values: This example DirXML Script policy adds a default value for a user’s
Description attribute.

<policy>
<rule>
<description>Default Description of New Employee</
description>
<conditions>
<or>

20 Policy Builder and Driver Customization Guide

<if-class-name op="equal">User</if-class-name>
</or>
</conditions>
<actions>
<do-set-default-attr-value name="Description">
<arg-value type="string">
<token-text>New Employee</token-text>
</arg-value>
</do-set-default-attr-value>
</actions>
</rule>
</policy>

Default Password: This example DirXML Script policy provides creates a password value
comprised of the first two characters of the first name and the first six characters of the last name, all
in lower case.

<policy>
<rule>
<description>Default Password of [2]FN+[6]LN</
description>
<conditions>
<and>
<if-class-name op="equal">User</if-class-name>
<if-password op="not-available"/>
</and>
</conditions>
<actions>
<do-set-dest-password>
<arg-string>
<token-lower-case>
<token-substring length="2">
<token-op-attr name="Given
Name" />

</token-substring>
<token-substring length="6">
<token-op-attr

name="Surname" />
</token-substring>
</token-lower-case>

</arg-string>
</do-set-dest-password>
</actions>
</rule>
</policy>

Specify Template: This example DirXML Script policy specifies a template object if a user’s Title
attribute indicates that the user is a Manager (contains "Manager").

<policy>
<rule>
<description>Assign Manager Template if Title
contains Manager</description>
<conditions>
<and>

Policies and Filters

21

<if-class-name op="equal">User</if-class-
name>
<if-op-attr name="Title" op="available"/
>
<if-op-attr mode="regex" name="Title"
op="equal">.*Manager.*</if-op-attr>

</and>
</conditions>
<actions>
<do-set-op-template-dn>
<arg-dn>
<token-text>Users\Manager
Template</token-text>
</arg-dn>
</do-set-op-template-dn>

</actions>

</rule>
</policy>

Matching Policies

Matching policies, such as Subscriber Matching and Publisher Matching, look for an object in the
destination data store that corresponds to an unassociated object in the source datastore. It is
important to note that Matching policies are not always needed or desired.

For example, a Matching policy might not be desired in the following situation:
* Performing an initial migration when there are not preexisting or corresponding objects

A Matching policy must be carefully crafted to ensure that the Matching policy doesn’t find false
matches.

Examples:

* Match by Internet Email Address
* Match by Common Name

Match by ID: This example DirXML Script policy matches users based on the Internet Email

Address.
<policy>
<rule>
<description>Match Users based on email address</
description>
<conditions>
<and>
<if-class-name op="equal">User</if-class-name>
</and>
</conditions>
<actions>
<do-find-matching-object>
<arg-dn>

<token-text>ou=people, o=novell</token-text>
</arg-dn>
<arg-match-attr name="Internet EMail Address"/>

22 Policy Builder and Driver Customization Guide

</do-find-matching-object>
</actions>
</rule>
</policy>

Match by Name: This example DirXML Script policy matches a Group object based on its
Common Name attribute.

<?xml version="1.0" encoding="UTF-8"7?>

<policy>
<rule>
<description>Match Group by Common Name</description>
<conditions>
<or>
<if-class-name op="equal">Group</
if-class-name>
</or>
</conditions>
<actions>

<do-find-matching-object scope="subtree">
<arg-match-attr name="CN"/>
</do-find-matching-object>
</actions>
</rule>
</policy>

Placement Policy

Placement policies determine where new objects are placed and what they are named in the Identity
Vault and the connected application.

A Placement policy is required on the Publisher channel if you want object creations to occur in the
Identity Vault. A Placement policy might not be necessary on the Subscriber channel even if you
want object creations to occur in the connected application, depending on the nature of the
destination datastore. For example, no Placement policy is needed when synchronizing to a
relational database because rows in a relational database do not have a location or a name.

Example:

+ Placement by Attribute Value

* Placement by Name

Placement By Attribute Value: This example DirXML Script policy creates the user in a specific
container based on the value of the Department attribute.

<policy>
<rule>
<description>Department Engineering</description>
<conditions>
<and>
<if-class-name op="equal">User</if-class-name>
<if-op-attr mode="regex" name="Department"
op="equal">.*Engineering.*</if-op-attr>
</and>
</conditions>

Policies and Filters

23

<actions>
<do-set-op-dest-dn>
<arg-dn>
<token-text>Eng</token-text>
<token-text>\</token-text>
<token-op-attr name="CN"/>
</arg-dn>
</do-set-op-dest-dn>
</actions>
</rule>
<rule>
<description>Department HR</description>
<conditions>
<and>
<if-class-name op="equal">User</if-class-
name>
<if-op-attr mode="regex" name="Department"
op="equal">.*HR.*</if-op-attr>
</and>
</conditions>
<actions>
<do-set-op-dest-dn>
<arg-dn>
<token-text>HR</token-text>
<token-text>\</token-text>
<token-op-attr name="CN"/>
</arg-dn>
</do-set-op-dest-dn>
</actions>
</rule>
</policy>

This DirXML Script policy determines placement of a User or Organization Unit by the src-dn in
the input document.

<policy>
<rule>
<description>PublisherPlacementRule</description>
<conditions>
<or>
<if-class-name op="equal">User</if-class-
name>

<if-class-name op="equal">Organizational
Unit</if-class-name>
</or>
<or>
<if-src-dn op="in-subtree">o=people,
o=novell</if-src-dn>
</or>
</conditions>
<actions>
<do-set-op-dest-dn>
<arg-dn>
<token-text>People</token-text>

24 Policy Builder and Driver Customization Guide

<token-text>\</token-text>
<token-unmatched-src-dn convert="true"/>

</arg-dn>
</do-set-op-dest-dn>
</actions>
</rule>
</policy>

Placement By Name: This example DirXML Script policy creates the user in a specific container
based on the first letter of the user’s last name. Users with a last name beginning with A-I are placed
in the container Users1, while J-R are placed in Users2, and S-Z in Users3.

<policy>
<rule>
<description>Surname - A to I in Usersl</description>
<conditions>
<and>

<if-class-name op="equal">User</if-
class-name>
<if-op-attr mode="regex" name="Surname"
op="equal">[A-I].*</if-op-attr>
</and>
</conditions>
<actions>
<do-set-op-dest-dn>
<arg-dn>
<token-text>Usersl</token-text>
<token-text>\</token-text>
<token-op-attr name="CN"/>
</arg-dn>
</do-set-op-dest-dn>
</actions>
</rule>
<rule>
<description>Surname - J to R in Users2</description>
<conditions>
<and>
<if-class-name op="equal">User</if-class-
name>
<if-op-attr mode="regex" name="Surname"
op="equal">[J-R].*</if-op-attr>
</and>
</conditions>
<actions>
<do-set-op-dest-dn>
<arg-dn>
<token-text>Users2</token-text>
<token-text>\</token-text>
<token-op-attr name="CN"/>
</arg-dn>
</do-set-op-dest-dn>
</actions>
</rule>
<rule>

Policies and Filters

25

<description>Surname - S to Z in Users3</description>
<conditions>
<and>
<if-class-name op="equal">User</if-class-
name>
<if-op-attr mode="regex" name="Surname"
op="equal">[S-Z].*</if-op-attr>
</and>
</conditions>
<actions>
<do-set-op-dest-dn>
<arg-dn>
<token-text>Users3</token-text>
<token-text>\</token-text>
<token-op-attr name="CN"/>
</arg-dn>
</do-set-op-dest-dn>
</actions>
</rule>
</policy>

Command Transformation Policy

Command Transformation policies alter the commands that Identity Manager is sending to the
destination datastore by either substituting or adding commands. Intercepting a Delete command
and replacing it with Modify, Move, or Disable command is an example of substituting commands
in a Command Transformation policy. Creating a Modify command based on the attribute value of
an Add command is a common example of adding commands in a Command Transformation policy.

In the most general terms, Command Transformation policies are used to alter the commands that
Identity Manager executes as a result of the default processing of events that were submitted to the
Metadirectory engine.

It is also common practice to include policies here that do not fit neatly into the descriptions of any
other policy.

Examples:

» Convert Delete to Modify and Move
* Create Additional Operation
+ Set Password Expiration Time

Convert Delete to Modify: This DirXML Script policy converts a Delete operation to a Modify
operation of the Login Disabled attribute.

<policy>
<rule>
<description>Convert User Delete to Modify</description>
<conditions>
<and>
<if-operation op="equal">delete</if-
operation>

<if-class-name op="equal">User</if-class-name>
</and>

26 Policy Builder and Driver Customization Guide

</conditions>
<actions>
<do-set-dest-attr-value name="Login Disabled">
<arg-value type="state">
<token-text>true</token-text>
</arg-value>
</do-set-dest-attr-value>
<do-veto/>
</actions>
</rule>
</policy>

Create Additional Operation: This DirXML Script policy determines if the destination container
for the user already exists. If the container doesn’t exist, the policy creates an Add operation to
create the Container object.

<policy>
<rule>
<description>Check if destination container already
exists</description>
<conditions>
<and>
<if-operation op="equal">add</if-operation>
</and>
</conditions>
<actions>
<do-set-local-variable name="target-container">
<arg-string>
<token-dest-dn length="-2"/>
</arg-string>
</do-set-local-variable>
<do-set-local-variable name="does-target-exist">
<arg-string>
<token-dest-attr class-
name="0OrganizationalUnit" name="objectclass">
<arg-dn>
<token-local-variable
name="target-container"/>
</arg-dn>
</token-dest-attr>
</arg-string>
</do-set-local-variable>
</actions>
</rule>
<rule>
<description>Create the target container if necessary</
description>
<conditions>
<and>
<if-local-variable name="does-target-exist"
op="available"/>
<if-local-variable name="does-target-exist"
op="equal"/>
</and>

Policies and Filters

27

</conditions>
<actions>
<do-add-dest-object class-name="organizationalUnit"
direct="true">
<arg-dn>
<token-local-variable name="target-
container"/>
</arg-dn>
</do-add-dest-object>
<do-add-dest-attr-value direct="true" name="ou">
<arg-dn>
<token-local-variable name="target-
container"/>
</arg-dn>
<arg-value type="string">
<token-parse-dn dest-dn-format="dot"
length="1" src-dn-format="dest-dn" start="-1">
<token-local-variable
name="target-container"/>
</token-parse-dn>
</arg-value>
</do-add-dest-attr-value>
</actions>
</rule>
</policy>

Setting Password Expiration Time: This DirXML Script policy modifies an eDirectory user’s
Password Expiration Time attribute.

<?xml version="1.0" encoding="UTF-8"7?>
<policy xmlns:jsystem="http://www.novell.com/nxsl/java/
java.lang.System">
<rule>
<description>Set password expiration time for a given
interval from current day</description>

<conditions>
<and>
<if-operation op="equal">modify-password</if-
operation>
</and>
</conditions>
<actions>

<do-set-local-variable name="interval">
<arg-string>
<token-text>30</token-text>
</arg-string>
</do-set-local-variable>
<do-set-dest-attr-value class-name="User"
name="Password Expiration Time" when="after">
<arg-association>
<token-association/>
</arg-association>
<arg-value type="string">
<token-

28 Policy Builder and Driver Customization Guide

xpath expression="round (jsystem:currentTimeMillis () div 1000 +
(86400*Sinterval))" />
</arg-value>
</do-set-dest-attr-value>
</actions>
</rule>
</policy>

Schema Mapping Policy

Schema Mapping policies hold the definition of the schema mappings between the Identity Vault
and the connected system.

The Identity Vault schema is read from eDirectory. The Identity Manager driver for the connected
system supplies the connected application’s schema. After the two schemas have been identified, a
simple mapping is created between the Identity Vault and the target application.

After a Schema Mapping policy is defined in the Identity Manager driver configuration, the
corresponding data can be mapped.

It is important to note the following:

» The same policies are applied in both directions.

* All documents that are passed in either direction on either channel between the Metadirectory
engine and the application shim are passed through the Schema Mapping policies.

See Chapter 6, “Managing Schema Mapping Policies,” on page 327 for administrative information.
Examples:

* Basic Schema Mapping policy
* Custom Schema Mapping policy

Basic Schema Mapping Policy: This example DirXML Script policy shows the raw XML source
of a basic Schema Mapping policy. However when you edit the policy through Designer for Identity
Manager, the default Schema Mapping editor allows the policy to be displayed and edited
graphically.

<?xml version="1.0" encoding="UTF-8"?><attr-name-map>
<class-name>
<app-name>WorkOrder</app-name>
<nds-name>DirXML-nwoWorkOrder</nds-name>
</class-name>
<class—-name>
<app-name>PbxSite</app-name>
<nds-name>DirXML-pbxSite</nds-name>
</class-name>
<attr-name class-name="DirXML-pbxSite">
<app-name>PBXName</app-name>
<nds-name>DirXML-pbxName</nds-name>
</attr-name>
<attr-name class-name="DirXML-pbxSite">
<app-name>TelephoneNumber</app-name>
<nds-name>Telephone Number</nds-name>
</attr-name>

Policies and Filters

29

<attr-name class-name="DirXML-pbxSite">
<app-name>LoginName</app-name>
<nds-name>DirXML-pbxLoginName</nds-name>
</attr-name>
<attr-name class-name="DirXML-pbxSite">
<app-name>Password</app-name>
<nds-name>DirXML-pbxPassword</nds-name>
</attr-name>
<attr-name class-name="DirXML-pbxSite">
<app-name>Nodes</app-name>
<nds-name>DirXML-pbxNodesNew</nds-name>
</attr-name>
</attr-name-map>

Custom Schema Mapping Policy: This example DirXML Script policy uses DirXML Script to
perform custom Schema Mapping.

<?xml version="1.0" encoding="UTF-8"?><policy>

<rule>
<!--
The Schema Mapping Policy can only handle one-to-one
mappings.
That Mapping Policy maps StudentPersonal addresses.
This rule maps StaffPersonal addresses.
-—>
<description>Publisher Staff Address Mappings</
description>
<conditions>
<and>

<if-local-variable name="fromNds"
op="equal">false</if-local-variable>
<if-xpath op="true">@original-class-name =
"StaffPersonal’</if-xpath>
</and>
</conditions>
<actions>
<do-rename-op-attr dest-name="SA" src-name="Address/
Street/Linel"/>
<do-rename-op-attr dest-name="Postal Office Box"
src-name="Address/Street/Line2"/>
<do-rename-op-attr dest-name="Physical Delivery
Office Name" src-name="Address/City"/>
<do-rename-op-attr dest-name="S" src-name="Address/
StatePr"/>
<do-rename-op-attr dest-name="Postal Code" src-
name="Address/PostalCode" />
</actions>
</rule>
<rule>
<description>Subscriber Staff Address Mappings</
description>
<!--
The Schema Mapping Policy has already mapped addresses to
StudentPersonal.

30 Policy Builder and Driver Customization Guide

This rule maps StudentPersonal to StaffPersonal.

<conditions>
<and>
<if-local-variable name="fromNds"
op="equal">true</if-local-variable>
<if-op-attr name="DirXML-sifIsStaff"
op="equal">true</if-op-attr>
</and>
</conditions>
<actions>
<do-rename-op-attr dest-name="Address/Street/Linel"
src-name="StudentAddress/Address/Street/Linel"/>
<do-rename-op-attr dest-name="Address/Street/Line2"
src-name="StudentAddress/Address/Street/Line2"/>
<do-rename-op-attr dest-name="Address/City" src-
name="StudentAddress/Address/City"/>
<do-rename-op-attr dest-name="Address/StatePr" src-
name="StudentAddress/Address/StatePr"/>
<do-rename-op-attr dest-name="Address/PostalCode"
src-name="StudentAddress/Address/PostalCode" />
</actions>
</rule>
</policy>

Output Transformation Policy

Output Transformation policies primarily handle the conversion of data formats from data that the
Metadirectory engine provides to data that the application shim expects. Examples of these
conversions include:

* Attribute value format conversion
* XML vocabulary conversion
* Output Transformation policies can also provide custom handling of status messages returned

from the Metadirectory engine to the application shim

All documents that the Metadirectory engine supplies to the application shim on either channel pass
through the Output Transformation policies. Since the Output Transformation happens after schema
mapping, all schema names are in the application namespace.

Examples:

« Attribute Value Format Conversion

+ Custom Handling of Status Messages

Attribute Value Conversion: This example DirXML Script policy reformats the telephone
number from the (nnn) nnn-nnnn format to the nnn.nnn.nnnn format. The reverse transformation can
be found in the Input Transformation policy examples.

<policy>
<rule>
<description>Reformat all telephone numbers from (nnn)
nnn-nnnn to nnn.nnn.nnnn</description>
<conditions/>

Policies and Filters

31

<actions>
<do-reformat-op-attr name="telephoneNumber">
<arg-value type="string">
<token-replace-first
regex=""\ ((\d\d\d)\) =*(\d\d\d)-(\d\d\d\d) $" replace-with="$1.$2.$3">
<token-local-
variable name="current-value"/>
</token-replace-first>
</arg-value>
</do-reformat-op-attr>
</actions>
</rule>
</policy>

Custom Handling of Status Messages: This example DirXML Script policy detects status
documents with a level not equal to success that also contain a child password-publish-status
element within the operation data and then generate an e-mail message using the
DoSendEmailFromTemplate action.

<?xml version="1.0" encoding="UTF-8"7?>
<policy>
<description>Email notifications for failed password
publications</description>
<rule>
<description>Send e-mail for a failed publish
password operation</description>
<conditions>
<and>
<if-global-variable
mode="nocase" name="notify-user-on-password-dist-failure"
op="equal">true</if-global-variable>
<if-operation
op="equal">status</if-operation>

<if-xpath
op="true">self::status[@level != ’success’]/operation-data/password-
publish-status</if-xpath>
</and>
</conditions>
<actions>
<!-- generate email notification -->

<do-send-email-from-template notification-
dn="\cn=security\cn=Default Notification Collection" template-
dn="\cn=security\cn=Default Notification Collection\cn=Password Sync
Fail">
<arg-string name="UserFullName">
<token-src-attr name="Full Name">
<arg-association>
<token-xpath
expression="self::status/operation-data/password-publish-status/
association"/>
</arg-association>
</token-src-attr>
</arg-string>
<arg-string name="UserGivenName">

32 Policy Builder and Driver Customization Guide

expression="self::
association"/>

expression="self::
association"/>

<token-src-attr name="Given Name">
<arg-association>
<token-xpath
status/operation-data/password-publish-status/

</arg-association>
</token-src-attr>
</arg-string>
<arg-string name="UserLastName">
<token-src-attr name="Surname">
<arg-association>
<token-xpath
status/operation-data/password-publish-status/

</arg-association>
</token-src-attr>
</arg-string>
<arg-string name="ConnectedSystemName">
<token-global-variable

name="ConnectedSystemName" />

Address">

expression="self::
association"/>

expression="self::

</arg-string>
<arg-string name="to">
<token-src-attr name="Internet Email

<arg-association>
<token-xpath
status/operation-data/password-publish-status/

</arg-association>
</token-src-attr>
</arg-string>
<arg-string name="FailureReason">
<token-text/>
<token-xpath
status/child::text ()"/>
</arg-string>
</do-send-email-from-template>

</actions>

</rule>
</policy>

Input Transformation

Policy

Input Transformation policies primarily handle the conversion of data formats from data that the
application shim provides to data that the Metadirectory engine expects. Examples of these

conversions include:

 Attribute value format conversion

* XML vocabulary conversion

e Driver Heartbeat

* Input Transformation policies can also provide custom handling of status messages returned
from the application shim to the Metadirectory engine.

Policies and Filters

33

All documents supplied to the Metadirectory engine by the application shim on either channel pass
through the Input Transformation policies.

Examples:

« Attribute Value Format Conversion

e Driver Heartbeat

Attribute Value Format Conversion: This example DirXML Script policy reformats the
telephone number from the nnn.nnn.nnnn format to the (nnn) nnn-nnnn format. The reverse
transformation can be found in the Output Transformation policy examples.

<policy>
<rule>

<description>Reformat all telephone numbers from
nnn.nnn.nnnn to (nnn) nnn-nnnn</description>

<conditions/>

<actions>

<do-reformat-op-attr name="telephoneNumber">
<arg-value type="string">
<token-replace-first

regex="" (\d\d\d) \. (\d\d\d) \. (\d\d\d\d) $" replace-with="($1) $2-$3">

<token-local-variable name="current-value"/>
</token-replace-first>
</arg-value>
</do-reformat-op-attr>
</actions>
</rule>
</policy>

Driver Heartbeat: This DirXML Script policy creates a status heartbeat event. The driver’s
heartbeat functionality is used to send a success message (HEARTBEAT: $driver) at each heartbeat
interval. The message can be monitored by Novell Audit. The Identity Manager driver must support
heartbeat, and heartbeat must be enabled at the driver configuration page.

<?xml version="1.0" encoding="UTF-8" 2>

<policy>
<rule>
<description>Heartbeat Rule, v1.01, 040126, by Holger Dopp</
description>
<conditions>
<and>
<if-operation op="equal">status</if-operation>
<if-xpath op="true">@type="heartbeat"</if-
xpath>
</and>
</conditions>
<actions>
<do-set-xml-attr expression="." name="textl">

<arg-string>
<token-global-variable
name="dirxml.auto.driverdn" />
</arg-string>
</do-set-xml-attr>

34 Policy Builder and Driver Customization Guide

<do-set-xml-attr expression="." name="text2">
<arg-string>
<token-text>HEARTBEAT</token-text>
</arg-string>
</do-set-xml-attr>
</actions>
</rule>
</policy>

1.2.2 Defining Policies

All policies are defined in one of two ways:

» Using the Policy Builder interface to generate DirXML Script. Existing, non-XSLT rules are
converted to DirXML Script automatically upon import.

» Using XSLT style sheets.

Schema Mapping policies can also be defined (and usually are) using a schema mapping table.

Policy Builder and DirXML Script

The Policy Builder interface is used to define the majority of policies you might implement. The
Policy Builder interface uses a graphical environment to enable you to easily define and manage
policies.

The underlying functionality of rule creation within Policy Builder is provided by a custom scripting
language, called DirXML Script.

DirXML Script contains a wide variety of conditions you can test, actions to perform, and dynamic
values to add to your policies. Each of these options are presented using intelligent drop-down lists,
providing only valid selections at each point, and quick links to common values.

Policy Builder makes working directly with DirXML Script unnecessary.

See Chapter 2, “Defining Policies By Using The Policy Builder With Designer,” on page 37 and
Chapter 3, “Defining Policies By Using The Policy Builder In iManager,” on page 183, for more
information on Policy Builder. See Section 1.1.2, “DirXML Script,” on page 15 for more
information on DirXML Script.

TIP: Although it is not necessary for using Policy Builder, a complete DirXML Script reference is
available at the DirXML Driver Developer Kit Documentation (http://developer.novell.com/ndk/
doc/dirxml/dirxmlbk/ref/index.html) Web site.

XSLT Style Sheets

To define more complex policies, XSLT style sheets are used to directly transform one XML
document into another XML document containing the required changes.

Style sheets provide you a large amount of flexibility, and are used when the transformation doesn’t
fit into the predefined conditions and actions available using rule creation in Policy Builder.

To create an XSLT style sheet, you need a through understanding of XSLT, the nds.dtd, and the
commands and events transferred to and from the Metadirectory engine. For detailed nds.dtd

Policies and Filters

35

http://developer.novell.com/ndk/doc/dirxml/dirxmlbk/ref/index.html

reference, see the NDS DTD reference (http://developer.novell.com/ndk/doc/dirxml/dirxmlbk/ref/
ndsdtd/index.html).

See Chapter 4, “Defining Policies using XSLT Style Sheets,” on page 295 for more information on
XSLT style sheets.

Downloadable Identity Manager Policies

Novell has provided sample policies you can download and use in your environment. The policies
are available at Novell’s support Web site (http://support.novell.com/filefinder/20607/index.html).
Download the files and extract them. The How_To_Install.rtf files contain the installation
instructions.

To import the files using Designer, see “Importing a Policy From an XML File” on page 50. To
import the files using iManager, see Section 3.2.9, “Importing a Policy from an XML File,” on
page 195.

1.3 Filters

Filters specify the object classes and the attributes for which the Metadirectory engine processes
events and how changes to those classes and attributes are handled.

Filters only pass events occurring on objects whose base class matches one of those classes specified
by the filter. Filters do not pass events occurring on objects that are a subordinate class of a class
specified in the filter unless the subordinate class is also specified. There a separate filter settings for
each channel, which allows the control of the synchronization direction and the authoritative data
source for each class and attribute.

NOTE: In eDirectory, a base class is the object class that is used to create an entry. You must specify
that class in the filter, rather than a super class from which the base class inherits or the auxiliary
classes from which additional attributes may come.

For example, if the User class with the Surname and Given Name attributes are set to synchronize in
the filter, the Metadirectory engine passes on any changes to these attributes. However, if the entry’s
Telephone Number attribute is modified, the Metadirectory engine drops this event because the
Telephone Number attribute is not in the filter.

Filters must be configured to include the following:

* Attributes that are to be synchronized

* Attributes that are not synchronized, but are used to trigger policies to do something

See Chapter 5, “Managing Filters,” on page 309 for information on defining filters.

36 Policy Builder and Driver Customization Guide

http://developer.novell.com/ndk/doc/dirxml/dirxmlbk/ref/ndsdtd/index.html
http://support.novell.com/filefinder/20607/index.html

Defining Policies By Using The
Policy Builder With Designer

The Policy Builder is a complete, graphical interface for creating and managing the policies that
define the exchange of data between connected systems.

These section gives the following information on policies and how to use the Policy Builder:

» Section 2.1, “Policies,” on page 37

» Section 2.2, “Policy Builder Tasks in Designer,” on page 38
These section also contains the following detailed reference sections:

» Section 2.3, “Regular Expressions,” on page 101

» Section 2.4, “XPath 1.0 Expressions,” on page 101
» Section 2.5, “Conditions,” on page 102

» Section 2.6, “Actions,” on page 119

» Section 2.7, “Noun Tokens,” on page 159

» Section 2.8, “Verb Tokens,” on page 173

2.1 Policies

As part of understanding how policies work, it is important to understand the components of
policies.
* Policies are made up of rules.

» Arule is a set of conditions (see “Conditions” on page 102) that must be met before a defined
action (see “Actions” on page 119) occurs.

» Actions can have dynamic arguments that derive from tokens that are expanded at run time.

» Tokens are broken up into two classifications: nouns (see “Noun Tokens” on page 159) and
verbs (see “Verb Tokens” on page 173).

» Noun tokens expand to values that are derived from the current operation, the source or
destination data stores, or some external source.

» Verb tokens modify the concatenated results of other tokens that are subordinate to them.

» Regular expressions (see “Regular Expressions” on page 101) and XPath 1.0 expressions (see
“XPath 1.0 Expressions” on page 101) are commonly used in the rules to create the desired
results for the policies.

A policy operates on an XDS document and its primary purpose is to examine and modify that
document. A policy can also get additional context from outside of the document and cause side
effects that are not reflected in the result document.

The following outline describes the different elements of a policy:

» Section 2.1.1, “Operation,” on page 38

Defining Policies By Using The Policy Builder With Designer

37

» Section 2.1.2, “Current Operation,” on page 38
» Section 2.1.3, “Current Object,” on page 38

2.1.1 Operation

An operation is any element that is a child of the input element and the output element. The elements
are part of Novell’s nds . dtd, for more information, see NDS DTD (http://developer.novell.com/
ndk/doc/dirxml/dirxmlbk/ref/ndsdtd/index.html). An operation usually represents an event, a
command, or a status.

2.1.2 Current Operation

The policy is applied separately to each operation. As the policy is applied to each operation in turn,
that operation becomes the current operation. Each rule is applied sequentially to the current
operation. All of the rules are applied to the current operation unless an action is executed by a prior
rule that causes subsequent rules to no longer be applied.

2.1.3 Current Object

The object that is described by the src-dn, src-entry-id, dest-dn, dest-entry-id and association
becomes the current object. For more information about the different elements, see the NDS DTD
(http://developer.novell.com/ndk/doc/dirxml/dirxmlbk/ref/ndsdtd/index.html).

2.2 Policy Builder Tasks in Designer

This section contains instructions on performing common tasks in the Policy Builder:

* Section 2.2.1, “Opening Policy Builder,” on page 38

* Section 2.2.2, “Creating a Policy,” on page 40

» Section 2.2.3, “Creating a Rule,” on page 44

» Section 2.2.4, “Creating an Argument,” on page 50

» Section 2.2.5, “Modifying a Policy,” on page 58

* Section 2.2.6, “Using Predefined Rules,” on page 61

+ Section 2.2.7, “Testing Policies with the Policy Simulator,” on page 90
» Section 2.2.8, “Editing the DirXML Script,” on page 97

2.2.1 Opening Policy Builder

There are two different ways the Policy Builder can be opened. It can be opened from the Model
Outline view or from the Policy Flow view.

Model Outline View
1 Open a project in Designer.

2 Select the Outline Tab > select the Show Model Outline icon.

38 Policy Builder and Driver Customization Guide

http://developer.novell.com/ndk/doc/dirxml/dirxmlbk/ref/ndsdtd/index.html
http://developer.novell.com/ndk/doc/dirxml/dirxmlbk/ref/ndsdtd/index.html

-
Prajeck = B8

i Y
(GEw ecs

EIM Project 1
= 4 10M vault
@ Ertitlernents Service Driver (#£1)
=

% Default Matification Collection

3 Double-click a policy listed in the Model Outline view.

Policy Flow View
1 Open a project in Designer.

2 Select the Outline Tab > select the Policy Flow icon.

Project | o= Outline 532 = El
E(W) + -

o
~

LDAP Directory

3 Click on a policy (for example, the Command policy) in the Policy Flow view.

Project | BF Outine 53 =8
W+ - B
LDAP Directory ~
=
Command | - L
=
e
Placament i
Creztion |
Matching |
: P 4
Drata Flow =g
LDAP Driver Palicy Sets
R IR
- ZH Matching

The policy is listed in the Policy Set in the lower-left corner.

Use any of the following methods to launch the Policy Builder:

Defining Policies By Using The Policy Builder With Designer

39

* Double click the Command Policy object in the Policy Flow, select the policy, then click Edit.

M Edit Policy X

Select the Palicy ko edit:

Password{Sub)-Transform Distribution Password
Password{Sub)-Defaulk Password Policy
Password{sub)-Check Password GCY
Password{Sub)-Add Password Payload

Edit | Add Palicy ‘ Cancel |

* Double-click a policy in the Policy Set.

Drata Flow = B8

LDAP Publisher Policy Sets

Event Transformation
+- (B Matching

+-(B Creation

+-(Placemenkt

+ @ Command Transformation

» Right-click the policy in the Policy Set, then Edit.
*» Select the policy in the Policy Set, then click the Edit the Policy icon.

To see all of the information in the Policy Builder window, without scrolling double-click the policy
tab so the Policy Builder fills the entire window. To minimize the window, double-click the policy
tab.

2.2.2 Creating a Policy

Policies are created in through the following two tools:
» “Policy Set” on page 40
* “Add Policy Wizard” on page 42

Policy Set

The Policy Set contains a toolbar and a list of policies.

The policy list displays all the policies contained in the selected policy set. During a transformation,
the policies within the list are executed from top to bottom. The toolbar contains buttons and a drop-
down menu that you can use to manage policies displayed in the list. Managing of policies includes
editing, adding, deleting, renaming, and changing the processing order of the policies.

40 Policy Builder and Driver Customization Guide

Draka Flaw

LDAP Publisher Palicy Sets

[E, Event Transformation
+-(E Matching
+-(H Creation
(& Placement
+ [E; Command Transformation

Policy Set Toolbar

The Policy Set displays a copy of the policy. The buttons on the toolbar are enabled or disabled
depending upon what item you have selected. The different icons are described below.

Table 2-1 Policy Set Toolbar

Operation Description
Edit a policy & Launches Policy Builder.
Add a policy Launches the Add Policy Wizard.

Delete a policy #

Remove a policy =

Move up’l}

Move down **

Deletes the policy from the project.

Removes the policy from the selected Policy Set
object but doesn’t delete the policy.

Moves the policy up in the processing order.

Moves the policy down in the processing order.

Keyboard Support

You can move through the Policy Set with keystrokes as well as use the mouse. Below is listed the

supported keystrokes.

Table 2-2 Keyboard Support

Keystroke Description

Up-Arrow Moves the selected policy up in the processing
order.

Down-Arrow Moves the selected policy down in the processing

order.

Defining Policies By Using The Policy Builder With Designer

4

Keystroke Description

Delete Deletes the policy from the project.

Minus Removes the policy from the selected policy set,
but does not delete it.

Plus Launches the Add Policy Wizard.
Ctri+Z Undoes the last operation.
Ctrl+Y Redoes the last operation.

Add Policy Wizard

The Add Policy Wizard enables you to do the following tasks:
* “Creating a Policy” on page 42
* “Copying a Policy” on page 43
» “Linking to a Policy” on page 43

To launch the Add Policy Wizard:

1 Select a driver in the Outline view.

2 Select a Set item in the Policy Set, then click the Add icon in the toolbar.

Data Flow = O

LDAP Publisher Palicy Sets @

[E Event Transformation
+-(F Matching
+-(Creation
+-(B Placement
+ @ Carrnand Transformation

Creating a Policy
1 Inthe Add Policy Wizard, select Create a new policy, then click Next.
2 Provide a policy name.

3 Accept the default container, or browse to and select the Driver, Publisher, or Subscriber object
where you want the policy to be created.

This decision depends on how you want to organize the policies. By default, policies are placed
under the container object that is selected in the Outline view when the Add Policy Wizard is
launched.

For example, if you move to a Publisher object in the Outline view and then add a policy to a
policy set, the policy defaults to the Publisher container.

You can change this setting if you want to create policies in a different container. For example,
you can set up a policy library under a dummy driver, put all of the common policies under this
driver, and then simply reference the policies from the other drivers. That way, the policy is
common. If you need to change a policy, you need to do it only once.

42 Policy Builder and Driver Customization Guide

If a policy is not reused by multiple drivers, you typically create that policy under the driver or
channel that is using it.

4 Select the type of policy you want to implement. The policy type defaults to DirXML Script.
You can select XSLT or Schema Mapping, if you don’t want to use DirXML Script.

5 Click Finish.
If the Schema Mapping policy set is selected, then an additional option is available for Schema
Mapping. The new policy appears in the expanded Set item.
You can also add a policy by right-clicking a Set item in the Policy Set.

1 Right-click a Set item (for example, Input Transformation Set).

2 Select Add Policy.

3 Select how to implement the policy.

4 Name the policy.

5 Select Open Editor after creating policy.

6 Click OK.

Copying a Policy
1 Inthe Add Policy Wizard, select Copy a policy, then click Next.
2 Name the policy.

3 Accept the default container, or browse to and select the Driver, Publisher or Subscriber object
where you want the policy to be created.

4 Browse to and select the policy you want to copy, then click OK.
5 Click Finish to make a copy of the selected policy.

Linking to a Policy
1 Inthe Add Policy Wizard, select Link in a policy, then click Next.
2 Launch the Modeler browser by selecting the Browse button.

3 Browse to and select the Policy object you want to link into the policy set, then click OK.

Linking a policy into a policy set doesn’t create a new Policy object. Instead, it adds a reference
to an existing policy. This reference can be to any existing policy within the current Identity
Vault. It doesn’t need to be contained within the current Driver object, but the policy type must
be valid for the policy set that it is being linked to. For example, you can’t link a Schema
Mapping policy into an Input Policy Set.

NOTE: Linking a policy into a policy set is not permitted when viewing all policies.

4 Click Finish to link to the selected policy.

Renaming a Policy
1 In the Outline View, select the policy you want to rename.
2 Right-click and select Properties.
3 Change the name of the policy in the Policy Name field.
4 Click OK.

Defining Policies By Using The Policy Builder With Designer

2.2.3 Creating a Rule

Rules are created from condition groups, conditions, and actions. A rule is defined as a set of
conditions that must be met before a defined action occurs.

Rules can be created in three different ways:

* “Creating a New Rule” on page 44
» “Using Predefined Rules” on page 48
* “Including a Rule” on page 48

Creating a New Rule

When you create a rule, you create condition groups, conditions, and actions.
* “Creating a Rule” on page 44
» “Creating Condition Groups” on page 47
* “Creating a Condition” on page 47

» “Creating an Action” on page 48

Creating a Rule

1 From the Policy Builder toolbar, select Add a new rule.

B Project 1 - Developer Mode b =B
Policy Builder’ L F BT | %z‘- Ex = o @

ZH Match.Publisher,LDAR, ds,IDM Yaulk

Rules

There are no rules defined in this policy. Select the Add Rule icon in
the Policy Builder toolbar to begin the wizard or right-click and

select New from the context menu.

You can also right-click and click New > Rule.

2l Project 1 - Developer Mode atch X =8

Policy Builder @ - R | P ed B =] o1 @
Match,Publisher LDGP . ds, IDM vault

Rules

There are no rules defined in this policy. Select Add a New Rule from the

toolbar to launch the Create Rule Wizard or right-click and click New > Rule.

ey
I =T

£*g Import Palicy, Predefined Rule

£ Edt & Include

Either option launches the Create Rule Wizard.
2 Specify the name of the rule, then click Next.

44 Policy Builder and Driver Customization Guide

Mame and Describe Rule

The rule and description display on the rule in the Rule Builder editor,
Baoth can be edited by double-clicking the rule name in Rule Builder.

WEME=Enter Mame:=

<Enter Description and Comments =
Descripkion

3 Select the Condition Structure, then click Next.

Select the Condition Structure

Caondition structures define the logic of condition groups.

Condition Struckure
" QR Conditions, AMD Groups

{* AND Conditions, OR Groups

4 Select the condition you want, specify the appropriate information, then click Next.

Define the Condition

Select the values to complete the syntax of the condition, Yalues with an * are required For a valid condition.
The first condition is automatically inserted into a new condition group.

Condition 1 of Group 1

Condition |attri|:|ute ﬂ

Mame * | Given Name Q,

Operator * [iylsse=re =

5 (Optional) You can define an additional condition or condition group at this point. For this
example, there is only one condition.

Continue Defining Conditions?

Select whether ko continue defining your condition or proceed ko defining actions For wour rule,

Select one:
{* Continue {Define actions For the rule)
(" Define another condition in the same condition group

" Define a new condition in a new condition group

6 When you are finished defining conditions, select Continue, then click Next.

Defining Policies By Using The Policy Builder With Designer

45

7 Select the action that you want, then click Next.

Define the Action

Select the walues for the synkax of your action, Yalues witn an * are required,

Ackion 1

8 (Optional) You can define additional actions at this point. For this example, there is only one
action.

Continue Defining Actions?

Select whether to define a new action or select Finish to complete the rule,

Select one;
(% Continue (5o bo Summary Page)

™ Define another ackion

9 When you are finished defining actions, select Continue, then click Next.

10 The summary screen displays the rule that you are creating. Click Finish to complete the
creation of the rule.

Summary

The Following is a summary of the new rule to be created,

Rule Summary

—I- Given MName
- Conditions
—|- Group 1
if attribute 'Given Mame' not available
—|- Actions
wetol)

You can expand or collapse the view of the rule by clicking on the plus/minus sign.

46 Policy Builder and Driver Customization Guide

‘gfjmstl

2l *Project 1

Policy Builder

*Matching

Matching. Publisher . LDWAP . ds. DM Yaulk

Rules

./ Require users to have a Given Name

Creating Condition Groups

Right-click the Conditions tab or right-click the name of the Conditional group, then click New >

Append Condition Group.

e
1wl *Project 1 - Developer Mode

ZE Matching, Publisber LDAP, ds, IDM Yault

Rules

= " Require users to have Given Name

PulichuiIder|'x|l\;||£|%=-| E||{? &| &3 @

= B8

ndikion Group

Expand All Conditions
Caollapse All Conditions

Preferences. ..
W wetol)

ot available

Creating a Condition

Right-click the condition, then click Insert Condition Before or Insert Condition After.

5| *Project 1 - Developer Mode

=8

1B Help 32

Policy Builder | - X | B3 e h* |
Matching. Publisher LDAP. ds, IDM Yault

2|+ &

Rules

E + Require users to have Given Name

|w B @

Relate
+ About

Palicy Build
B Palicy 1

Conditions

Bl action

/" Condition Group 1

= Dynam

Search res

=N W] Pt PTOIRRE W P gy Spparyy] oy oy Py
22 Edit...

Ackions

Insert Condition Before. ..
Insert Condition After...

44 Move the selected item up

44 Move the selected item down

B Design
B Design

|

[nesinn

Defining Policies By Using The Policy Builder With Designer

47

Creating an Action

Right-click the action, then click Insert Action Before or Insert Action After.

\LZ‘J *Project 1 - Developer Mode =B @ Help ¢
Policy Builder - R | P ed ®e = o @

Matching. Publisher, LDAP . ds. IDM Yaulk Relat
Rules + Abou
Palicy Bui
[" Require users to have Given Name B Polic
Conditions B Actic
+~ Condition Group 1 ~ Dyna
" if attribuke 'Given Name' not available Search re
B Desi
B Desir
1 [

v I ’ Insert Action Before. .

2 Ed... Insert Action After. ..

¥ =T TIFSI

Using Predefined Rules

Designer includes some predefined rules. You can import and use these rules as well as create your
own rules. Right-click in the Policy Builder, then select New > Predefined Rules > Insert Predefined
Rule Before or Insert Predefined Rule After see Using Predefined Rules (page 61) for more

information.
\iq *Praject 1 - Developer Made BF] #mMatching X =0 @ Help &2 Prablems
Policy Builder - % | pu g N = 6] @ &
Matching. Publisher LOAF , ds, I0M Yaulk Related Topics
Rules ~ About
Policy Builder Help
g Import Policy. ., Predefined Rule Insert Predefined Rule Befaore. ..
Include ¥ Insert Predefined Rule After. .,
& Edi... Append Candition Group [WFTEITIC T

SEarch results:

i

41 [E Designer for Identity Manager

2 Fumsimmey Bme TAdambik g B nmsmey Uele

[E Designer for Identity Manager

Including a Rule

Designer allows you to include the rules from another policy.

48 Policy Builder and Driver Customization Guide

E *Project 1 - Developer Mode BE| *Matching > =0 @ Help &3 Problems

Policy Builder - % | e ed N = YENO] ;
2@ Matching.Publisher LDAP . ds, IDM Yault Related TDDiCS
Rules * About

Policy Builder Help
v

14 » ,_ Policy Builder
gy Import Palicy... Predefined Rule » | Action Builder
& Insert Include Befare. .,
&2 Edi... Append Condition Group

= % Insert Include After. ..

1 Right-click, then click New > Include.

BN Include a Policy D_—q

Palicy to Include: | %

QK | Cancel |

2 Select the browse icon, browse to the policy you want to include, then click OK.

=gl I0M Vault
- ds

+ G) Entitlements Service Driver (#1)

|- ig) LDAP
I Password{Pubi-Sub Email Motifications
Passward(sub)-Pub Email Motifications
+ t?:;, Publisher
=g Subscriber

Entitlements
H Password{Sub)-add Password Payload
Password{Sub)-Check Password GCY
Password{Sub)-Default Passwaord Policy
Password{Sub)-Transform Distribution Password
SubscriberCreateRule
& P subscriberMatchingRule
T subscriberPlacementRule

+-[£Z) Defaul Notification Collection

===

3 The field is now populated with the path to the policy. Click OK.

F’! Include a Policy f5_<|

Palicy to Include: | . 1Subscriber|SubscriberMatchingRule %

Ok | Cancel |

Defining Policies By Using The Policy Builder With Designer

49

There is now a link to the original policy. You cannot edit the policy in this location. Access the
original policy to make changes.

1] *Project 1 - Developer Mode *Matching X =04

Policy Builder |$i=’| - ® | faeh %‘} + = &+ o 0 @

Matching. Publisher, LDAR . ds, IDM Yault

Rules

W equire users bo have Given Name

v Include .., Subscriber,SubscriberMatchingRule

Importing a Policy From an XML File

1 In the Policy Builder, right-click and select Import Policy or select the Import Policy icon from
the toolbar.

2 Select one of the two options:

* Append the rules from the imported policy
* Replace the rules from the imported policy

3 Click the browse icon and select the file that contains the DirXML® Script, then click Open.
4 Click OK.

2.2.4 Creating an Argument

The Argument Builder provides a dynamic graphical interface that enables you to construct complex
argument expressions for use within the Policy Builder. To access the Argument Builder, see
“Argument Builder” on page 52.

Arguments are dynamically used by actions and are derived from tokens that are expanded at run
time.

Tokens are broken up into two classifications: nouns and verbs. Noun tokens expand to values that
are derived from the current operation, the source or destination data stores, or some external source.
Verb tokens modify the concatenated results of other tokens that are subordinate to them.

To define an expression, select one or more nouns tokens (values, objects, variables, etc.), and
combine then with verb tokens (substring, escape, uppercase, and lowercase) to construct
arguments. Multiple tokens are combined to construct complex arguments.

For example, if you want the argument set to an attribute value, you select the attribute token, then
select the attribute name:

50 Policy Builder and Driver Customization Guide

Figure 2-1 Argument Builder

™ Argument Builder E|

Create and edit argumants
Sdd or remonee your companents bo bhe scpression sres ba consbruck your srgumert. Enker componant valiss under Edior. ﬁz

= EMpression | o B m (%) & Mouns FS

28 Attribubed"Surmame™) Tect -
Added Entitlsmart
Associskion
Class ame
Destinstion Attrbuts
Drestinskion Dbl
Drestination Mame
Entifemant
habal Configurskion Yalus
Locsl Varishils »

Verbs

Escape Sourcs D8
Escape Destinsbon DN
Lower Case

Parse DH

Replacs Al

Replacs Fret
Substrira

Upper Case

* Ranu - "
& Editor Required 7 Description 7

Thes wahse of an stbribute in the currerk
pperation or orrent object inthe
source datastare,

-~

Mame; ~ [T

CKICmDell

If you only want a portion of an attribute, you can combine the attribute token with the substring
token:

Figure 2-2 Expression

= Expression
/ Substring{length="1"}
|JE| dttrbutel"Given Mame")

+
£ AttHbutel"Surname”)

After you add a token, you can edit its fields in the editor.

See Noun Tokens (page 159) and Verb Tokens (page 173) for a detailed reference on tokens
available in the Argument Builder.

Although you define most arguments using the Argument Builder, there are several more builders
that are used by the Condition Editor and Action Editor in the Policy Builder. Each builder can
recursively call anyone of the builders in the following list:

* “Argument Actions Builder” on page 52

* “Argument Builder” on page 52

» “Match Attribute Builder” on page 53

Defining Policies By Using The Policy Builder With Designer

51

* “Action Argument Component Builder” on page 54

» “Argument Value List Builder” on page 55

» “Named String Builder” on page 56

* “Condition Argument Component Builder” on page 56

» “Pattern String Builder” on page 57

The information below describes how to access each Builder.

Argument Actions Builder

The Argument Actions Builder enables you to set or edit the actions subordinate to a For Each
(page 132) action or an Implement Entitlement (page 135) action.

In the following example the add destination attribute value action is performed for each Group
entitlement that is being added in the current operation.

Figure 2-3 For Each Action

Do |for each j 7
Enter niode sek: * | Added Entitlement{"GEroup™
Enter action: * | do-add-dest-attr-value

To define the action of the add destination attribute value, click the icon that launches the Argument
Actions Builder. In the Argument Actions Builder, you define the desired action. In the following
example, the member attribute is added to the destination object for each added Group entitlement.

Figure 2-4 Argument Action Builder

Action List + % | 40| @

v Do |add destination attribute value j @

Enter attribute name: * | Member

Enter class name: | Group

Select mode: |add to current operation

Select object: |DN

Enter DM: * | Local Yariable("current-node")

Enter value bype: | string

mldgldld o o

Enter string: * | Destination DM{)

* Required

Argument Builder

Launch the Argument Builder from the following actions by clicking the Edit Arguments icon.=

» “Add Association” on page 120
* “Add Destination Attribute Value” on page 120

52 Policy Builder and Driver Customization Guide

* “Add Destination Object” on page 122
* “Add Source Attribute Value” on page 123
» “Append XML Text” on page 125

* “Clear Destination Attribute Value” on page 126 When the selected object is DN or
Association.

* “Clear Source Attribute Value” on page 127 When the selected object is DN or Association.
» “Delete Destination Object” on page 129 When the selected object is DN or Association.
» “Delete Source Object” on page 130 When the select object is DN or Association.

* “Find Matching Object” on page 130

* “For Each” on page 132

* “Move Destination Object” on page 136

* “Move Source Object” on page 137

» “Reformat Operation Attribute” on page 138

* “Remove Association” on page 139

* “Remove Destination Attribute Value” on page 139

+ “Remove Source Attribute Value” on page 140

» “Rename Destination Object” on page 141 When the selected object is DN or Association and
Enter String.

» “Rename Source Object” on page 142 When the selected object is DN or Association and Enter
String.

» “Set Destination Attribute Value” on page 146 When the selected object is DN or Association
and Enter Value Type is not structured.

» “Set Destination Password” on page 148

* “Set Local Variable” on page 148

» “Set Operation Association” on page 149

» “Set Operation Class Name” on page 150

» “Set Operation Destination DN’ on page 150
» “Set Operation Property” on page 151

» “Set Operation Source DN’ on page 151

» “Set Operation Template DN on page 152
» “Set Source Attribute Value” on page 153
* “Set Source Password” on page 154

» “Set XML Attribute” on page 154

» “Status” on page 155

* “Trace Message” on page 157

Match Attribute Builder

The Match Attribute Builder enables you to select attributes and values used by the “Find Matching
Object” on page 130 action to determine if a matching object exists in a data store.

Defining Policies By Using The Policy Builder With Designer 53

For example, if you wanted to match users based on a common name and a location, you would
select the following condition:

Figure 2-5 Find Matching Object Action

Do |Finu:| matching objeck j i#

Select scope: |subordinates

=~
Enter DM: | "Users"+attribukel"oU")

Enker match attributes: | M, L

You then click the Edit Arguments icon E2 next to the Enter Match Attributes field to launch the
Match Attribute Builder interface:

Figure 2-6 Match Attribute Builder

P Match Attribute Builder X
Match Attributes [-
The match attributes specify the attributes that are ta be used to find a match For the action. & =

Match Atributes + 8|4+ 0@
‘ L Q _hoose from current Chject j
| surname Q, |Choose From current Object j |

Select the Browse attributes icon to browse to and select the attributes you want to match. In this
example they are L and Surname.

The second column allows you to match the current value stored in the attribute by selecting Use
value(s) from current Object. You can match against another value by selecting Other Value. You
can create any value you want to match. Select the value type, and the appropriate builder is
available through the Enter State field.

Action Argument Component Builder

Launch the Action Argument Component Builder by selecting the following actions when the Enter
Value Type selection is the Structured selection.

* “Add Destination Attribute Value” on page 120

* “Add Source Attribute Value” on page 123

» “Reformat Operation Attribute” on page 138

* “Remove Destination Attribute Value” on page 139

* “Remove Source Attribute Value” on page 140

» “Set Destination Attribute Value” on page 146

» “Set Source Attribute Value” on page 153

54 Policy Builder and Driver Customization Guide

Figure 2-7 Add Destination Attribute Value Action

Do |add destination attribute value j iG]

Enter attribute name: * | Given Mame

Enter class name: | Iser

Select mode: |write directly to destination datastore

Select object: |DN

Enter DM * | "Novellilsers"

Enter value bype;) structured

Enker components: * |LISEI’

mldg Wl o o

Figure 2-8 Action Argument Component Builder

m Action Argument Component Builder

Argument Components

The argument components are structured argument vales,

Name Yalues

Argument Value List Builder

The Argument Value List Builder enables you to construct default argument values for the Set
Default Attribute Value (page 145) action.

For example, if you want to set a default location of Unknown, you select the following action:

Figure 2-9 Set Default Attribute Value Action

Do |set defaul attribute value ﬂ @
Enker attribute name: * ||:Dm|:uany C%
Write back: |true j

Enter argument values: * | B[l R dy=r0 gl

You then click the icon next to the Enter Values field to launch the Argument Value List Builder
interface, and construct an argument similar to the following:

Figure 2-10 Argument Value List Builder

Type Argument Yalues

ﬂ | "Digital Airlines Inc."

Defining Policies By Using The Policy Builder With Designer

55

Named String Builder

The Named String Builder enables you to construct name/value pairs for use in certain actions, such
as Generate Event (page 133), Send Email (page 143), and Send Email From Template (page 144).

For a Generate Event action, the named strings correspond to the custom value fields you can
provide with an event:

Figure 2-11 Named String Builder

Mame String ¥alue

ﬂ | Local Yariable("LYsers1")

For a Send Mail action, the named strings correspond to the elements of the e-mail:

Figure 2-12 E-mail Elements in the Send Mail Action

Name String ¥alue + 8|4 @
|t0 j |"to_userl@company.com"
|cc j |"cc_user@company.com"
|bcc j |"bcc_user@company.com"
|From j |"From_user@cnmpany.com"
|sub]’ect j |"This is the e-mail subject”
|message j Hl'his is the e-mail body |

A complete list of possible values is contained in the help file corresponding to the action that
launches the Named String Builder.

Condition Argument Component Builder

Launch the Condition Argument Component Builder by clicking the Edit Arguments Icon.

In order to see the icon, you must select the Structured selection for Mode with the following
conditions:

» “If Attribute” on page 103

» “If Destination Attribute” on page 105

» “If Source Attribute” on page 116

» “If Operation Attribute” on page 113

56 Policy Builder and Driver Customization Guide

Figure 2-13 Structured Mode for the Condition

Condition ’m
Marne * |Given Narme Q
Cperator * |euua| j
< Mode TN
alue |
* Required

Figure 2-14 Condition Argument Component Builder

A Condition Argument Component Builder

Argument Components

The condition argument components are namevalue pairs,

Name Yalues

Pattern String Builder

Launch the Pattern String Builder from the Argument Builder Editor when the Unique Name token
is selected. The Argument Builder Editor pane shows a Pattern field that launches the Pattern String
Builder.

» “Unique Name” on page 171

Defining Policies By Using The Policy Builder With Designer

57

Figure 2-15 Unique Name Token in the Argument Builder

Add or remave your companents ta the expression area to construck your argument, Enter companent values under Editor,

B Expression ® &5 Nouns
1 Unique Harne(™) Operation Attribute e
Cperation Property B
Cperation
Password

Removed Attribube
Remaved Entitlement
Source Attribute
Source DN

Source Mame

Unmatched Source DN
YPATH

£

/ Yerbs

Escape Source DN
Escape Destination DN
Lower Case

Parse DM

Replace all

Replace First
Substring

Upper Case

2 Editor #Required ¥ Description @

Attribute name: | Q A generated unigue name.

Scope: |Subtree -

Start search: |Root of datastore
Pattern: * |
Counter stark: |1 digits: |1 I™ pad counter with leading 0's

Figure 2-16 Pattern String Builder

i Pattern Builder

Pattern Builder

Define alisk of patterns

Pattern ¥alues

Patkern: | |

2.2.5 Modifying a Policy
The Policy Builder allows you to create and edit policies. You can drag and drop rules, conditions

and actions. For additional operations, access the Policy Builder toolbar. To display a context menu,
right-click an item.

58 Policy Builder and Driver Customization Guide

Figure 2-17 Policy Builder Context Menu and Toolbar

B2l *Project 1 - Developer Mode

E *atching ™

Policy Builder L

Rules

E |

£y Impart Palicy ..

2 Edt...

i
&

o Cut
Copy
@B

¥ Delete

=] Collapse Al
Expand all

Undo

& Launch Simulakor

Freferences. ..

B e & =
ZE Matching. Publisher LDAP, ds. IDM Yault

Chrl-x
Chr-C

Delete

Chr2

s E
o [&] @

R

-

Pr

Rule »
Predefined Rule »
Include »

Append Condition Group

Actions and Menu Items in the Policy Builder

The table contains a list of the different actions and menu items that are possible in the Policy

Builder.

The table contains a list of the different actions and menu items that are possible in the Policy

Builder.

Table 2-3 Policy Builder Actions and Menu Items

Operation Description
Collapse All Collapses all expanded rules.
Copy Copies the selected item to the Clipboard.

Copy and drop
Cut

Delete

Disable

Select the item, press Ctrl, then drag the item.

Cuts the selected item and copies it to the
Clipboard.

Deletes the selected item.

Disables a rule, condition, or action. Click the v
icon.

Defining Policies By Using The Policy Builder With Designer 59

Operation

Description

Drag and drop

Edit

Enable

Expand All

Import Policy

Launch Simulator

Move and drop

Move the selected item down
Move the selected item up

New > Condition Group

New > Include
New > Predefined Rule
New > Rule

Paste

Preferences

Select

Enables you to select an item, then relocate it.
Select the item, then drag it to the new location.

Enables you to edit the selected item. To open the
Rule Builder, select a rule, then click Edit.

Enables a rule, condition, or action. Click the =
icon.

Expands all the rules so that you can view the
conditions and actions of each rule.

Imports a policy from the file system and appends it
to the policy, or replaces all the rules of the policy.

Launches the Policy Simulator.

Enables you to select and move an item. Select the
item, then drag the item.

Moves the item down in the list of policies.
Moves the item up in the list of policies.

Creates a new condition group after a selected
item.

Creates a new Include after a selected item.
Inserts a predefined rule.
Creates a new rule after a selected item.

Pastes the contents of the Clipboard after the
selected item.

Enables you to change how the information is
displayed.

Click any item to select it.

Policy Description

The Policy Description field provides a place to add notes about the functionality of the policy.

KeyBoard Support

You can move through the Policy Builder with keystrokes as well as use the mouse. Below is listed

the supported keystrokes.

Table 2-4 Keyboard Support in the Policy Builder

Keystroke Description
Ctrl+C Copies the selected item into the Clipboard.
Ctrl+X Cuts the selected item and adds it to the Clipboard.

60 Policy Builder and Driver Customization Guide

Keystroke Description

Ctrl+Vv Pastes the contents of the Clipboard after the
selected item.

Delete Deletes the selected Item.

Left-Arrow Collapses a rule node.

Right-Arrow Expands a rule node.

Up-Arrow Navigates up.

Down-Arrow Navigates down.

Undo Ctrl+Z

Redo Ctrl+Y

Saving Your Work

Do one of the following:

From the Main menu, click File > Save (or Save All).
Close the editor by clicking the X in the editor’s tab.

Select Close from the Main Menu’s file menu.

2.2.6 Using Predefined Rules

Designer includes twenty predefined rules. You can import and use these rules as well as create your
own rules. These rules include common tasks that administrators use. You need to provide
information specific to your environment to customize the rules.

“Command Transformation - Create Departmental Container - Part 1 and Part 2 on page 62
“Command Transformation - Publisher Delete to Disable” on page 64

“Creation - Require Attributes” on page 65

“Creation - Publisher - Use Template™ on page 67

“Creation - Set Default Attribute Value” on page 68

“Creation - Set Default Password” on page 70

“Event Transformation - Scope Filtering - Include Subtrees” on page 71

“Event Transformation - Scope Filtering - Exclude Subtrees” on page 72

“Input or Output Transformation - Reformat Telephone Number from (nnn) nnn-nnnn to nnn-
nnn-nnnn” on page 74

“Input or Output Transformation - Reformat Telephone Number from nnn-nnn-nnnn to (hnn)
nnn-nnnn” on page 75

“Matching - Publisher Mirrored” on page 76
“Matching - Subscriber Mirrored - LDAP Format” on page 78
“Matching - By Attribute Value” on page 79

“Placement - Publisher Mirrored” on page 81

Defining Policies By Using The Policy Builder With Designer

61

* “Placement - Subscriber Mirrored - LDAP Format” on page 82
* “Placement - Publisher Flat” on page 84

* “Placement - Subscriber Flat - LDAP Format” on page 85

* “Placement - Publisher By Dept” on page 87

* “Placement - Subscriber By Dept - LDAP Format™” on page 88

To access the predefined rules: right-click in the Policy Builder, then click New > Predefined Rules.

Figure 2-18 Predefined Rules

\L@ *Praject 1 - Developer Made BF] #mMatching X =0 Help &2 Prablems
Policy Builder - XK | g A de = 6 @ &
Matching.Publisher LDARP, ds, IDM Yault Related Topics
Rules ~ About
Policy Builder Help
+ |

Rule y | Policy Builder

E2g Import Policy. . Predefined Rule Insert Predefined Rule Before,..
Inchude ¥ Insert Predefined Rule After. .,
& Edit... Append Condition Group [DFTERTRC TSR
SEarch results:
1 [2 Designer for Identity Manager
Rl [E Designer for Identity Manager

[BT SRS RV SRR S VRIS ¥ TRV

Command Transformation - Create Departmental Container - Part 1 and Part 2

Creates a department container in the destination data store, if one does not exist. Implement the rule
on the Subscriber Command Transformation policy or Publisher Command Transformation policy
in the driver.

There are two steps involved in using the predefined rules: creating a policy in the Command
Transformation policy set, and importing the predefined rule. If you already have a Command
Transformation policy that you want to add this rule to, skip to “Importing the Predefined Rule” on
page 63.
Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher or Subscriber channel.

2 Select the Command Transformation policy set in the Policy Set, then click Create or add a

new policy to the Policy Set ¥ to create a new policy.
3 Click Create a new policy, then click Next.
4 Name the policy.

5 Use the location that is populated to place the policy in the driver.

62 Policy Builder and Driver Customization Guide

Create Policy

Specify the name and parent container For the new policy.

Enter the name that will be used For the new palicy,

| Create Container
Select the container where the policy will be created,

| Publisher LDA&P. ds.1DM Yault by

Iv $pen Editor after creating policy,

6 Select Open Editor after creating policy, then click Next.

7 Select DirXML Script for the type of policy, then click Finish.

8 A file conflict window appears with the message “Before editing this item you need to save. Do
you wish to save the editor s changes and continue?” Click Yes. The Policy Builder is launched
and the new Command Transformation policy is saved.

Importing the Predefined Rule

1 Right-click in the Policy Builder, then click New > Predefined Rule.

2 Select Command Transformation - Create Department Container - Part 1, then click OK.

3 Right-click in Policy Builder and click New > Predefined Rule.

4 Select Command Transformation - Create Department Container - Part 2, then click OK.

5 Save the rule by clicking File > Save.

There is no information to change in the rules that are specific to your environment.

El " Command Transformation - Create Departmental Container - Part 1

Conditions

./ Condition Group 1

" if operation equal "add"

" setlocal variablel"target-containgt”, Destination DH{length="-2"1)

" set local variable"does-target-exist”, Destination Attribute{"objectdass", class name="0rganizationalUnit", drflocal Yariable("target-container" i)

= " Command Transformation - Create Departmental Container - Part 2

Conditions

" Condition Group 1

And o iflocal variable 'does-target-exist' equal ™

" add destination object({dass name="organizationalUnit", direct="true", dn{Local Variable{"target-container"}1

" add destination attribute walue("ou”, direct="true", dn(Local Yariable("target-container™)), Parse DM dest-dn”, "dat”, length="1", start="-1", Local Yariable("target-container" 1))

IMPORTANT: Make sure that the rules are listed in order. Part 1 must be executed before Part 2.

Defining Policies By Using The Policy Builder With Designer

63

How the Logic in the Rule Works

The rule is used when the destination location for an object does not exist. Instead of getting a veto
because the object cannot be placed, this rule creates the container and places the object in the
container.

Part 1 looks for any Add operation. When the Add operation occurs, two local variables are set. The
first local variable is named target-container. The value of target-container is set to the destination
DN. The second local variable is named does-target-exist. The value of does-target-exist is set to the
destination attribute value of objectclass. The class is set to OrganizationalUnit. The DN of the
OrganizationalUnit is set to the local variable of target-container.

22 Editor
Name: * | objectclass Q,
Class name: |Organizatiu:unaIUnit C{,
Select object: |DM -
Enker DM: * | Local Yariablef"target-container")

Part 2 checks to see if the local variable does-target-exist is available. It also checks to see if the
value of the local variable does-target-exist is set to a blank value. If the value is blank, then an
Organizational Unit object is created. The DN of the organizational unit is set to the value of the
local variable target-container. It also adds the value for the OU attribute. The value of the OU
attribute is set to the name of the new organizational unit, which is obtained by parsing the value of
the local variable target-container.

Command Transformation - Publisher Delete to Disable

Transforms a Delete operation for a User object into a Modify operation that disables the target User
object in eDirectory. Implement the rule on the Publisher Command Transformation policy in the
driver.

There are two steps involved in using the predefined rules: creating a policy in the Command
Transformation policy set, and importing the predefined rule. If you already have a Command
Transformation policy that you want to add this rule to, skip to Importing the Predefined Rule

(page 65).
Creating a Policy
1 From the Outline view or the Policy Flow view, select the Publisher channel.
2 Select the Command Transformation policy set in the Policy Set, then click Create or add a
new policy to the Policy Set ¥ to create a new policy.
3 Click Create a new policy, then click Next.
4 Name the policy.
5 Use the location that is populated to place the policy in the driver.

64 Policy Builder and Driver Customization Guide

Create Policy

Specify the name and parent container For the new palicy,

Enter the name that will be used for the new palicy.

| Dielete to Disable

Select the container where the policy will be created,

| Publisher, LDWP. ds.I0M Vaulk &3

v ¥pen Editor after creating policy.,

6 Select Open Editor after creating policy, then click Next.

7 Select DirXML Script for the type of policy, then click Finish.

8 A file conflict window appears with the message “Before editing this item you need to save. Do
you wish to save the editor s changes and continue?” Click Yes. The Policy Builder is launched
and the new Command Transformation policy is saved.

Importing the Predefined Rule

1 Right-click in the Policy Builder, then click New > Predefined Rule.

2 Select Command Transformation - Publisher Delete to Disable, then click OK.

3 Save the rule by clicking File > Save.

There is no information to change in the rule that is specific to your environment.

=+ Command Transformation - Publisher Delete to Disable

/" Condition Group 1

" if operation equal "delete"

Qr o if class name equal "User"

" set destination attribute value"Login Disabled”, "true™

" remove association{associakion(Association()

How the Logic in the Rule Works

The rule is used when a Delete command is going to be sent to the Identity Vault, usually in response
to a Delete event that occurred in the connected system. Instead of the User object being deleted in
the Identity Vault, the User object is disabled. When a Delete command is processed for a User
object, the destination attribute value of Login Disabled is set to true, the association is removed
from the User object, and the Delete command is vetoed. The User object can no longer log in into

the Novell® eDirectory™ tree, but the User object was not deleted.

Creation - Require Attributes

Prevents User objects from being created unless the required attributes are populated. Implement the
rule on the Subscriber Creation policy or the Publisher Creation policy in the driver.

Defining Policies By Using The Policy Builder With Designer 65

There are two steps involved in using the predefined rules: creating a policy in the Creation policy
set, and importing the predefined rule. If you already have a Creation policy that you want to add
this rule to, skip to Importing the Predefined Rule (page 66).
Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher or Subscriber channel.

2 Select the Creation policy set in the Policy Set, then click Create or add a new policy to the
Policy Set * to create a new policy.

3 Click Create a new policy, then click Next.
4 Name the policy.
5 Use the location that is populated to place the policy in the driver.

Create Policy

Specify the name and parent container for the new policy,

Enter the name that will be used For the new palicy,

| Creation Policy
Select the container where the policy will be created,
| Subscriber LDAP.ds IDM Vault g

v ©Dpen Editor after creating policy,

6 Select DirXML Script for the type of policy, then click Finish.

7 A file conflict window appears with the message “Before editing this item you need to save. Do
you wish to save the editor s changes and continue?” Click Yes. The Policy Builder is launched
and the new Creation policy is saved.

Importing the Predefined Rule
1 Right-click in the Policy Builder and click New > Predefined Rule.
Select Creation - Require attributes, then click OK.
Edit the action by double-clicking the Actions tab.
Delete [Enter name of required attribute] from the Enter Name field.
Browse to the attributes you require for a User object to be created, then click OK.
Click OK.

Save the rule by selecting File > Save.

N o o A WODN

[E " Creation - Require attribute(s)

Condikions

" Condition Group 1

W if class name equal "User"

| " weto if operation attribute not available!"[Enter name of required attribute]")

66 Policy Builder and Driver Customization Guide

How the Logic in the Rule Works

The rule is used when your business processes require that a user has specific attributes populated in
the source User object before the destination the User object can be created. When a User object is
created in the source data store, the rule vetoes the creation of the object in the destination data store
unless the required attributes are provided when the User object is created. You can have one or
more required attributes.

Creation - Publisher - Use Template

Allows for the use of a Novell eDirectory template object during the creation of a User object.
Implement the rule on the Publisher Creation policy in the driver.

There are two steps involved in using the predefined rules: creating a policy in the Creation policy
set, and importing the predefined rule. If you already have a Creation policy that you want to add
this rule to, skip to Importing the Predefined Rule (page 67).

Creating a Policy
1 From the Outline view or the Policy Flow view, select the Publisher channel.

2 Select the Creation policy set in the Policy Set, then click Create or add a new policy to the

Policy Set * to create a new policy.
3 Click Create a new policy, then click Next.
4 Name the policy.
5 Use the location that is populated to place the policy in the driver.

Create Policy

Specify the name and parent container for the new palicy,

Enter the name that will be used for the new palicy,

| Creation Policy
Select the container where the policy will be created.

| Subscriber LDAP.ds.IDM Wault &z

[+ Open Editor after creating policy, |

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.

8 A file conflict window appears with the message “Before editing this item you need to save. Do
you wish to save the editor s changes and continue?” Click Yes. The Policy Builder is launched
and the new Creation policy is saved.

Importing the Predefined Rule
1 Right-click in the Policy Builder, then click New > Predefined Rule.
2 Select Creation - Publisher - Use Template, then click OK.

3 Edit the action by double-clicking the Actions tab.
4 Delete [Enter DN of Template object] from the Enter DN field.

5 Click the Edit Arguments icon = to launch the Argument Builder.

Defining Policies By Using The Policy Builder With Designer

67

6 Select 7ext in the Noun list.
7 Double-click 7ext to add it to the argument.

8 In the Editor, click the browse icon, browse to and select the template object, then click OK.
9 Click OK.
10 Save the rule by clicking File > Save.

=l Creation - Publisher - Use Template

Conditions

" Condition Group 1

i class name equal "User"

| " set operation template DNEdR("Enter DM of Template object]"))

How the Logic in the Rule Works

The rule is used when you want to create a user in the Identity Vault based on a template object. If
you have attributes that are the same for users, using the template saves time. You fill in the
information in the template object and when the User object is created, Identity Manager uses the
attribute values from the template to create the User object.

During the creation of User objects, the rule does the action of the set operation template DN, which
instructs the Identity Manager to use the referenced template when creating the object.

Creation - Set Default Attribute Value

Allows you to set default values for attributes that are assigned during the creation of User objects.
Implement the rule on the Subscriber Creation policy or Publisher Creation policy in the driver.

There are two steps involved in using the predefined rules: creating a policy in the Creation policy
set, and importing the predefined rule. If you already have a Creation policy that you want to add
this rule to, skip to Importing the Predefined Rule (page 69).

Creating a Policy
1 From the Outline view or the Policy Flow view, select the Publisher or Subscriber channel.
2 Select the Creation policy set in the Policy Set, then click the Create or add a new policy to the
Policy Set icon ¥ to create a new policy.
3 Click Create a new policy, then click Next.
4 Name the policy.
5 Use the location that is populated to place the policy in the driver.

68 Policy Builder and Driver Customization Guide

Create Policy

Specify the name and parent container for the new palicy,

Enter the name that will be used for the new palicy,

| Creation Policy

Select the container where the policy will be created.

| Subscriber LDAP.ds.IDM Wault &3

v ¥pen Editor after creating policy,

6
7
8

Select Open Editor after creating policy, then click Next.
Select DirXML Script for the type of policy, then click Finish.

A file conflict window appears with the message “Before editing this item you need to save. Do

you wish to save the editor s changes and continue?” Click Yes. The Policy Builder is launched

and the new Creation policy is saved.

Importing the Predefined Rule

© ©W 00N OO A~ WODN -~

- -
-

12

Right-click in the Policy Builder, then click New > Predefined Rule.

Select Creation - Set Default Attribute Value, then click OK.

Edit the action by double-clicking the Actions tab.

Delete [Enter attribute name] from the Enter attribute name field.

Click the browse icon, then browse to and select the attribute you want to have created.

Delete [Enter default attribute value] from the Enter arguments values field.

Click the Edit Arguments icon = to launch the Argument Values List Builder.

Select the type of data you want the value to be.

Click the Edit Arguments icon = to launch the Argument Builder.

Create the value you want the attribute to be through the Argument Builder, then click OK.
Click OK.

Save the rule by clicking File > Save.

[l " Creation - Set Default Attribute Yalue

Conditions

/" Condition Group 1

" i class name equal "User"

o set default attribute valus("[Enter attribube name]", write-back="true", "[Enter defaulk attribuke value]"

How the Logic in the Rule Works

The rule is used when you want to populate default attribute values when creating a User object.
When a User object is created, the rule adds the specified attribute values if and only if the attribute
has no values supplied by the source object.

Defining Policies By Using The Policy Builder With Designer 69

If you want more than one attribute value defined, right-click the action and click New > Action.
Select the action, set the default attribute value, and follow the steps above to assign the value to the
attribute.

Creation - Set Default Password

During the creation of User objects, it sets a default password for User objects. Implement the rule
on the Subscriber Creation policy or Publisher Creation policy in the driver.

There are two steps involved in using the predefined rules: creating a policy in the Creation policy
set, and importing the predefined rule. If you already have a Creation policy that you want to add
this rule to, skip to Importing the Predefined Rule (page 70).

Creating a Policy
1 From the Outline view or the Policy Flow view, select the Publisher or Subscriber channel.

2 Select the Creation policy set in Policy Set, then click Create or add a new policy to the Policy
Set * to create a new policy.

3 Click Create a new policy, then click Next.
4 Name the policy.
5 Use the location that is populated to place the policy in the driver.

Create Policy

Specify the name and parent container for the new palicy,

Enter the name that will be used for the new palicy,

| Creation Policy
Select the container where the policy will be created,
| Subscriber LDAR,ds. IDM Vault g

[+ ©Dpen Editor after creating policy,

6 Select Open Editor after creating policy, then click Next.

7 Select DirXML Script for the type of policy, then click Finish.

8 A file conflict window appears with the message “Before editing this item you need to save. Do
you wish to save the editor s changes and continue?” Click Yes. The Policy Builder is launched
and the new Creation policy is saved.

Importing the Predefined Rule

1 Right-click in the Policy Builder, then click New > Predefined Rule.

2 Select Creation - Set Default Password, then click OK.

3 Save the rule by clicking File > Save.

There is no information to change in the rule that is specific to your environment.

70 Policy Builder and Driver Customization Guide

= " Creation - Set Default Password

Condikions

/ Condition Group 1

+ if class name equal "User"

" set destination password{&ttribute("Given Mame"+atkribute("Surname")

How the Logic in the Rule Works

The rule is used when you want User objects to be created with a default password. During the
creation of a User object, the password that is set for the User object is the Given Name attribute
plus the Surname attribute of the User object.

You can change the value of the default password by editing the argument. You can set the password
to any other value you want through the Argument Builder.

Event Transformation - Scope Filtering - Include Subtrees

Excludes all events that occur outside of the specific subtrees. Implement the rule on the Subscriber
Event Transformation policy or the Publisher Event Transformation policy in the driver.

There are two steps involved in using the predefined rules: creating a policy in the Event
Transformation policy set, and importing the predefined rule. If you already have an Event
Transformation policy that you want to add this rule to, skip to Importing the Predefined Rule
(page 72).
Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher or Subscriber channel.

2 Select the Event Transformation policy set in the Policy Set, then click Create or add a new

policy to the Policy Set ¥ to create a new policy.
3 Click Create a new policy, then click Next.
4 Name the policy.

5 Use the location that is populated to place the policy in the driver.

Create Policy

Specify the name and parent container For the new policy,

Enter the name that will be used for the new palicy.

| Ewent Transformation
Select the container where the policy will be created.

| Publisher LDAP, s, I0M Yault g

v pen Editar after creating palicy,

6 Select Open Editor after creating policy, then click Next.

Defining Policies By Using The Policy Builder With Designer

7

7 Select DirXML Script for the type of policy, then click Finish.

8 A file conflict window appears with the message “Before editing this item you need to save. Do
you wish to save the editor s changes and continue?” Click Yes. The Policy Builder is launched
and the new Event Transformation policy is saved.

Importing the Predefined Rule

Right-click in the Policy Builder, then select New > Predefined Rule.

Select Event Transformation - Scope Filtering - Include subtrees, then click OK.
Edit the condition by double-clicking the Conditions tab.

Delete [Enter a subtree to include] in the Value field.

a o ON =

Click the browse button to browse the Identity Vault for the part of the tree you were you want
events to synchronize, then click OK.

6 Click OK.
7 Save the rule by click File > Save.

E " Event Transformation - Scope Filtering - Include subtree(s)

Conditions

" Condition Group 1

o iF source DM mot in subkree "[Enter a subtree ko indude]"

| o wetal)

How the Logic in the Rule Works

The rule is used when you only want to synchronize specific subtrees between the Identity vault and
the connected system.When an event occurs anywhere but in that specific part of the Identity Vault,
it is vetoed. You can add additional subtrees to be synchronized by copying and pasting the “If
Source DN on page 117 condition.

Event Transformation - Scope Filtering - Exclude Subtrees

Excludes all events that occur in a specific subtree. Implement the rule on the Subscriber Event
Transformation or the Publisher Event Transformation policy in the driver.

There are two steps involved in using the predefined rules: creating a policy in the Event
Transformation policy set, and importing the predefined rule. If you already have an Event
Transformation policy that you want to add this rule to, skip to Importing the Predefined Rule

(page 73).
Creating a Policy
1 From the Outline view or the Policy Flow view, select the Publisher or Subscriber channel.
2 Select the Event Transformation policy set in Policy Set, then click Create or add a new policy
to the Policy Set ¥ to create a new policy.
3 Click Create a new policy, then click Next.
4 Name the policy.

72 Policy Builder and Driver Customization Guide

5 Use the location that is populated to place the policy in the driver.

Create Policy

Specify the name and parent container For the new policy.

Enter the name that will be used for the new palicy.

| Event Transformation
Select the container where the policy will be created,

| Publisher, LDWP, ds.I0M Yaulk &3

v ¥pen Editor after creating policy.,

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.

8 A file conflict window appears with the message “Before editing this item you need to save. Do
you wish to save the editor s changes and continue?” Click Yes. The Policy Builder is launched
and the new Event Transformation policy is saved.

Importing the Predefined Rule
1 Right-click in the Policy Builder, then click New > Predefined Rule.
Select Event Transformation - Scope Filtering - Exclude subtrees, then click OK.

Edit the condition by double-clicking the Conditions tab.
Delete [Enter a subtree to exclude] in the Value field.

a b ODN

Click the browse button to browse the Identity Vault for the part of the tree you want to exclude
events from synchronizing, then click OK.

6 Click OK.
7 Save the rule by clicking File > Save.

= " Event Transformation - Scope Filtering - Exclude subtree{s)

Condikions

" Condition Group 1

" if source DM in subtree "[Enter a subtres ko exclude]”

How the Logic in the Rule Works

The rule is used when you want to exclude part of the Identity Vault or connected system from
synchronizing. When an event occurs in that specific part of the Identity Vault, it is vetoed. You can
add additional subtrees to be excluded by copying and pasting the if source DN condition.

Defining Policies By Using The Policy Builder With Designer

73

Input or Output Transformation - Reformat Telephone Number from (nnn) nnn-nnnn
to nnn-nnn-nnnn

Converts the format of the telephone number. Implement the rule on the Input or Output
Transformation policy in the driver. Typically, if this rule is used on an Input Transformation, you
would you then use the rule Reformat Telephone Number from nnn-nnn-nnnn to (nnn) nnn-nnnn on
the Output Transformation and vice versa to convert the format back and forth.

There are two steps involved in using the predefined rules: creating a policy in the Input or Output
Transformation policy set, and importing the predefined rule. If you already have an Input or Output
Transformation policy that you want to add this rule to, skip to Importing the Predefined Rule
(page 74).
Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher or Subscriber channel.

2 Select the Input or Output Transformation policy set in the Policy Set, then click Create or add
a new policy to the Policy Set ¥ to create a new policy.

3 Click Create a new policy, then click Next.

4 Name the policy.

5 Use the location that is populated to place the policy in the driver.

Create Policy

Specify the name and parent container For the new policy.

Enter the name that will be used for the new palicy.

| Input Transformnation
Select the container where the policy will be created,

| LDAP . ds. IDM Vault &

v ¥pen Editor after creating policy.

6 Select Open Editor after creating policy, then click Next.

7 Select DirXML Script for the type of policy, then click Finish.

8 A file conflict window appears with the message “Before editing this item you need to save. Do
you wish to save the editors changes and continue?” Click Yes. Policy Builder is launched and
the new Input or Output Transformation policy is saved.

Importing the Predefined Rule
1 Right-click in the Policy Builder, then click New > Predefined Rule.

2 Select Input or Output Transformation - Reformat Telephone Number from (nnn) nnn-nnnn to
nnn-nnn-nnnn, then click OK.

Edit the condition by double-clicking the Conditions tab.

Define the condition you want to have occur when the telephone number is reformatted.
Click OK.

Save the rule by clicking File > Save.

o O A~ W

74 Policy Builder and Driver Customization Guide

=+ Input or Output Transformation - Reformat Telephone Number from {nnn) nnn-nnnn b0 non-nnn-nnnn

./ Condition Group 1

Define new condition here
W reformat operation attribute!'phone”, Replace First™ W Oddidnns*Odvd\ -0 ddidvdds”, "$1-$2-$3", Local Yariable"current-value"1n)

How the Logic in the Rule Works

The rule is used when you want to reformat the telephone number. It finds all the values for the
attribute phone in the current operation that match the pattern (nnn) nnn-nnnn and replaces each
with nnn-nnn-nnnn.

Input or Output Transformation - Reformat Telephone Number from nnn-nnn-nnnn to
(nnn) nnn-nnnn

Transforms the format of the telephone number. Implement the rule on the Input or Output
Transformation policy. Typically, if you use this rule on an Output Transformation, you would use
the rule Reformat Telephone Number from (nnn) nnn-nnnn to nnn-nnn-nnnn on the Input
Transformation and vice versa to convert the format back and forth.

There are two steps involved in using the predefined rules; creating a policy in the Input or Output
Transformation policy set, and importing the predefined rule. If you already have an Input or Output
Transformation policy that you want to add this rule to, skip to Importing the Predefined Rule
(page 76).
Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher or Subscriber channel.

2 Select the Input or Output Transformation policy set in the Policy Set, then click Create or add
a new policy to the Policy Set ¥ to create a new policy.

3 Click Create a new policy, then click Next.

4 Name the policy.

5 Use the location that is populated to place the policy in the driver.

Create Policy

Specify the name and parent container For the new policy.

Enter the name that will be used for the new palicy.

| Input Transformnation
Select the container where the policy will be created,

| LDAP . ds. IDM Vault &

v ¥pen Editor after creating policy.

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.

Defining Policies By Using The Policy Builder With Designer

75

8 A file conflict window appears with the message “Before editing this item you need to save. Do
you wish to save the editors changes and continue?” Click Yes. Policy Builder is launched and
the new Input or Output Transformation policy is saved.

Importing the Predefined Rule
1 Right-click in the Policy Builder and click New > Predefined Rule.

2 Click Input or Output Transformation - Reformat Telephone Number from nnn-nnn-nnnn to
(nnn) nnn-nnnn, then click OK.

3 Edit the condition by double-clicking the Conditions tab.

4 Define the condition you want to have occur when the telephone number is reformatted.
5 Click OK.

6 Save the rule by clicking File > Save.

E + Input or Output Transformation - Reformat Telephone Mumber from nnn-nnn-nnnn to {nnn) non-nnnn

Conditions

+/ Condition Group 1

Define new condition here

" reformat operation attribuked"phone”, Replace First("~dydidi-Odydydi-O i dhdidig”, "($1) $2-43", Local Yariable"current-value")3)

How the Logic in the Rule Works

The rule is used when you want to reformat the telephone number. It finds all the values for the
attribute phone in the current operation that match the pattern (nnn) nnn-nnnn and replaces each
with nnn-nnn-nnnn.

Matching - Publisher Mirrored

Finds matches in the Identity Vault for objects in the connected system based on their name and
location. Implement the rule on the Publisher Matching policy in the driver.

There are two steps involved in using the predefined rules: creating a policy in the Matching policy
set, and importing the predefined rule. If you already have a Matching policy that you want to add
this rule to, skip to Importing the Predefined Rule (page 77).

Creating a Policy
1 From the Outline view or the Policy Flow view, select the Publisher channel.
2 Select the Matching policy set in the Policy Set, then click Create or add a new policy to the
Policy Set ¥ to create a new policy.
3 Click Create a new policy, then click Next.
4 Name the policy.
5 Use the location that is populated to place the policy in the driver.

76 Policy Builder and Driver Customization Guide

Create Policy

Specify the name and parent container for the new palicy,

Enter the name that will be used for the new palicy,

| Matching

Select the container where the policy will be created.

| Publisher, LDAP, ds. IDM Yault By

v {Open Editor after creating policy,

6
7
8

Select Open Editor after creating policy, then click Next.
Select DirXML Script for the type of policy, then click Finish.

A file conflict window appears with the message “Before editing this item you need to save. Do

you wish to save the editor s changes and continue?” Click Yes. The Policy Builder is launched

and the new Matching policy is saved.

Importing the Predefined Rule
1 Right-click in the Policy Builder, then click New > Predefined Rule.

a b ODN

0 N o

9
10
1
12

13
14

Select Matching - Publisher Mirrored, then click OK.
Edit the condition by double-clicking the Conditions tab.
Delete [Enter base of source hierarchy] from the Value field.

Browse to and select the container in the source hierarchy where you want the matching to
start, then click OK.

Click OK.
Edit the action by double-clicking the Actions tab.
Delete [Enter base of destination hierarchy] from the Enter string field.

Click on the Edit Arguments icon = to launch the Argument Builder.
Select Text in the Noun list.
Double-click 7ext to add it to the argument.

In the Editor, click the browse icon and browse to the container in the destination hierarchy
where you want the source structure to be matched, then click OK.

Click OK.
Save the rule by clicking File > Save.

=l " Matching - Publisher Mirrored

Conditions

/ Condition Group 1

o if source DM in subtree "[Enter base of source hierarchy]"

" setlocal variabled"dest-base”, "[Enker base of destination hisrarchy]")

" Find matching object{scope="enkry", drilocal Yariablel"dest-base")+""+HUnmatched Source DN{convert="true"11)

Defining Policies By Using The Policy Builder With Designer

77

How the Logic in the Rule Works

When an Add event occurs on an object in the connected system that is located within the specified
source subtree, the rule constructs a DN that represents the same object name and location within the
Identity Vault relative to the specified destination subtree. If the destination objects exists and is of
the desired object class then it is considered a match. You must supply the DN's of the source
(connected system) and destination (Identity Vault) subtrees.

Matching - Subscriber Mirrored - LDAP Format

Finds matches in a connected system that uses LDAP format DN's for objects in the Identity Vault
based on their name and location. Implement the rule on the Subscriber Matching policy in the
driver.

There are two steps involved in using the predefined rules: creating a policy in the Matching policy
set, and importing the predefined rule. If you already have a Matching policy that you want to add
this rule to, skip to Importing the Predefined Rule (page 78).

Creating a Policy
1 From the Outline view or the Policy Flow view, select the Publisher channel.
2 Select the Matching policy set in the Policy Set, then click Create or add a new policy to the
Policy Set * to create a new policy.
3 Click Create a new policy, then click Next.
4 Name the policy.
5 Use the location that is populated to place the policy in the driver.

Create Policy

Specify the name and parent container for the new palicy,

Enter the name that will be used for the new palicy,
| Matching

Select the container where the policy will be created.

| Publisher LOAP, ds, 1DM Yault &z

[+ ©Open Editor after creating policy, |

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.

8 A file conflict window appears with the message “Before editing this item you need to save. Do
you wish to save the editor s changes and continue?” Click Yes. The Policy Builder is launched
and the new Matching policy is saved.

Importing the Predefined Rule
1 Right-click in the Policy Builder, then click New > Predefined Rule.
2 Select Matching - Subscriber Mirrored - LDAP format, then click OK.
3 Edit the condition by double-clicking the Conditions tab.
4 Delete [Enter base of source hierarchy] from the Value field.

78 Policy Builder and Driver Customization Guide

5 Browse to and select the container in the source hierarchy where you want the matching to
start, then click OK.

6 Click OK.

7 Edit the action by double-clicking the Actions tab.

8 Delete [Enter base of destination hierarchy] from the Enter String field.
9 Click the Edit Arguments icon = to launch the Argument Builder.

0 Select Text in the Noun list.

11 Double-click 7ext to add it to the argument.

12 1In the Editor, click the browse icon, browse to and select the container in the destination
hierarchy where you want the source structure to be matched, then click OK.

13 Click OK.
14 Save the rule by clicking File > Save.

= " Matching - Subscriber Mirrored - LDAP format

Conditions

+/ Condition Group 1

" i source DN in subtres "[Enter base of source higrarchy]"

" set local variable("dest-base", "[Enter base of destination hierarchy]"

" find matching object{scope="entry", dn{Unmatched Source DM{convert="true"}+","+Local Yariable{'dest-base"y))

How the Logic in the Rule Works

When an Add event occurs on an object in the Identity Vault that is located within the specified
source subtree, the rule constructs a DN that represents the same object name and location within the
connected system relative to the specified destination subtree. If the destination objects exists and is
of the desired object class then it is considered a match. You must supply the DN's of the source
(Identity Vault) and destination (connected system) subtrees. The connected system must use an
LDAP formatted DN.

Matching - By Attribute Value

Finds matches for objects by specific attribute values. Implement the rule on the Subscriber
Matching policy or the Publisher Matching policy in the driver.

There are two steps involved in using the predefined rules; creating a policy in the Matching policy
set, and importing the predefined rule. If you already have a Matching policy that you would like to
add this rule to, skip to Importing the Predefined Rule (page 80).

Creating a Policy
1 From the Outline view or the Policy Flow view, select the Publisher channel.
2 Select the Matching policy set in the Policy Set, then click Create or add a new policy to the
Policy Set * to create a new policy.
3 Click Create a new policy, then click Next.
4 Name the policy.

Defining Policies By Using The Policy Builder With Designer

79

5 Use the location that is populated to place the policy in the driver.

Create Policy

Specify the name and parent container for the new palicy.

Enter the name that will be used for the new palicy,

| Makching

Select the container where the policy will be created.

| Publisher, LDAP, ds, IDM Yaul: &3

v ¥pen Editor after creating policy,

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.

8 A file conflict window appears with the message “Before editing this item you need to save. Do
you wish to save the editor s changes and continue?” Click Yes. The Policy Builder is launched
and the new Matching policy is saved.

Importing the Predefined Rule
1 Right-click in the Policy Builder, then click New > Predefined Rule.
Select Matching - by attribute value, then click OK.
Edit the action by double-clicking the Actions tab.
Delete [Enter base DN to start search] from the Enter DN field.

Click the Edit Arguments icon = to launch the Argument Builder.
Select Text in the Noun list.
Double-click 7ext to add it to the argument.

0o N oo g A WODN

In the Editor, click the browse icon, then browse to and select the container where you want the
search to start, then click OK.

9 Delete [Enter name of attribute to match on] from the Enter Match Attributes field.

10 Click the Edit Arguments icon = to launch the Match Attributes Builder.

11 Click the browse icon and select the attributes you want to match. You can select one or more
attributes to match against, then click OK.

12 Click OK.
13 Save the rule by clicking File > Save.

=l " Matching - by attribute value

Conditions

/. Condition Group 1

W if class name equal "User"

" find makching objeck{dn"[Enter base DM ba stark search]™, match("[Enter name of attribuke o makch an]"T

80 Policy Builder and Driver Customization Guide

How the Logic in the Rule Works

When an Add event occurs on an object in the source data store, rule searches for an object in the
destination data store that has the same values for the specified attribute. You must supply the DN of
the base of the subtree to search in the connected system and the name of the attribute to match on.

Placement - Publisher Mirrored

Places objects in the Identity Vault by based on the name and location from the connected system.
Implement the rule on the Publisher Placement policy in the driver.

There are two steps involved in using the predefined rules: creating a policy in the Placement policy
set, and importing the predefined rule. If you already have a Placement policy that you would like to
add this rule to, skip to Importing the Predefined Rule (page 81).

Creating a Policy
1 From the Outline view or the Policy Flow view, select the Publisher channel.

2 Select the Placement policy set in the Policy Set, then click Create or add a new policy to the

Policy Set * to create a new policy.
3 Click Create a new policy, then click Next.
4 Name the policy.
5 Use the location that is populated to place the policy in the driver.

Create Policy

Specify the name and parent container For the new policy.,

Enter the name that will be used for the new palicy.

| Placement Policy
Select the container where the policy will be created.
| Subscriber LDAF.ds. IDM Vault &3

|v Dpen Editor after creating policy, |

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.

8 A file conflict window appears with the message “Before editing this item you need to save. Do
you wish to save the editor s changes and continue?” Click Yes. The Policy Builder is launched
and the new Placement policy is saved.

Importing the Predefined Rule
1 Right-click in the Policy Builder, then click New > Predefined Rule.
Select Placement - Publisher Mirrored, then click OK.
Edit the condition by double-clicking the Conditions tab.
Delete [Enter base of source hierarchy] from the Value field.

a b ODN

Browse to and select the container in the source hierarchy where you want the object to be
acted upon, then click OK.

Defining Policies By Using The Policy Builder With Designer

81

Edit the action by double-clicking the Actions tab.
Delete [Enter base of destination hierarchy] from the Enter String field.

Click the Edit Arguments icon = to launch the Argument Builder.

© 0 N O

Select Text in the Noun list.
10 Double-click Text to add it to the argument.

11 In the Editor, click the browse icon, browse to and select the container in the destination
hierarchy where you want the object to be placed, then click OK.

12 Click OK.
13 Save the rule by clicking File > Save.

E + Placement - Publisher Mirrored

Conditions

" Condition Group 1

W if source DM in subtree "[Enter base of source hierarchy]"

" set local variable{"dest-base", "[Enter base of destination hierarchy]

" set operation destination DN{dnfLocal Yariable"dest-base+""+Unmatched Source DM{convert="true"1)

How the Logic in the Rule Works

If the User object resides in the specified source subtree in the connected system, then the object is
placed at the same relative name and location within the Identity Vault. You must supply the DN's of
the source (connected system) and destination (Identity Vault) subtrees.

Placement - Subscriber Mirrored - LDAP Format

Places objects in the data store by using the mirrored structure in the Identity Vault from a specified
point. Implement the rule on the Placement policy in the driver. You can implement the rule only on
the Subscriber channel.

There are two steps involved in using the predefined rules: creating a policy in the Placement policy
set, and importing the predefined rule. If you already have a Placement policy that you want to add
this rule to, skip to Importing the Predefined Rule (page 83).

Creating a Policy
1 From the Outline view or the Policy Flow view, select the Publisher channel.
2 Select the Placement policy set in the Policy Set, then click Create or add a new policy to the
Policy Set ¥ to create a new policy.
3 Click Create a new policy, then click Next.
4 Name the policy.
5 Use the location that is populated to place the policy in the driver.

82 Policy Builder and Driver Customization Guide

Create Policy

Specify the name and parent container For the new policy.

Enter the name that will be used for the new palicy.

| Placement Policy

Select the container where the policy will be created,

6
7
8

| Subscriber LDAF.ds. IDM Vaulk &3

Iw $pen Editor after creating policy,

Select Open Editor after creating policy, then click Next.
Select DirXML Script for the type of policy, then click Finish.

A file conflict window appears with the message “Before editing this item you need to save. Do
you wish to save the editor s changes and continue?” Click Yes. The Policy Builder is launched
and the new Placement policy is saved.

Importing the Predefined Rule
1 Right-click in the Policy Builder, then click New > Predefined Rule.

a b ODN

- O O 0 N o

- -

12
13

Select Placement - Subscriber Mirrored - LDAP format, then click OK.
Edit the condition by double-clicking the Conditions tab.
Delete [Enter base of source hierarchy] from the Value field.

Browse to the container in the source hierarchy where you want the object to be acted upon,
then click OK.

Edit the action by double-clicking the Actions tab.
Delete [Enter base of destination hierarchy] from the Enter String field.

Click the Edit Arguments icon = to launch the Argument Builder.
Select Zext in the Noun list.
Double-click 7ext to add it to the argument.

In the Editor, click the browse icon and browse to the container in the destination hierarchy
where you want the object to be placed, then click OK.

Click OK.
Save the rule by clicking File > Save.

E " Placement - Subscriber Mirrored - LDAP Format

Conditions

" Condition Group 1

W IF source DM in subtree "[Enter base of source hierarchey]"

o setlocal variable("dest-base”, "[Enter base of destination hisrarchy]")

" set operation destination DH{dr{Unmatched Source DM(comwert="trus")+","+Local Yariable!"dest-base"1)

Defining Policies By Using The Policy Builder With Designer

83

How the Logic in the Rule Works

If the User object resides in the specified source subtree, then the object is placed at the same
relative name and location within the Identity Vault. You must supply the DN's of the source

(Identity Vault) and destination (connected system) subtrees. The connected system must use an
LDAP formatted DN.

Placement - Publisher Flat

Places objects from the data store into one container in the Identity Vault. Implement the rule on the
Publisher Placement policy in the driver.

There are two steps involved in using the predefined rules: creating a policy in the Placement policy
set, and importing the predefined rule. If you already have a Placement policy that you want to add
this rule to, skip to Importing the Predefined Rule (page 84).
Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher channel.

2 Select the Placement policy set in the Policy Set, then click Create or add a new policy to the

Policy Set * to create a new policy.
3 Click Create a new policy, then click Next.
4 Name the policy.
5 Use the location that is populated to place the policy in the driver.

Create Policy

Specify the name and parent container For the new policy.

Enter the name that will be used for the new palicy.

| Placement Policy
Select the container where the policy will be created,

| Subscriber LDAF.ds. IDM Vaulk &3

Iw $pen Editor after creating policy,

6 Select Open Editor after creating policy, then click Next.

7 Select DirXML Script for the type of policy, then click Finish.

8 A file conflict window appears with the message “Before editing this item you need to save. Do
you wish to save the editor s changes and continue?” Click Yes. The Policy Builder is launched
and the new Placement policy is saved.

Importing the Predefined Rule

1 Right-click in the Policy Builder, then click New > Predefined Rule.

2 Select Placement - Publisher Flat, then click OK.

3 Edit the action by double-clicking the Actions tab.

4 Delete [Enter DN of destination container] from the Enter String field.

5 Click the Edit Arguments icon i to launch the Argument Builder.

84 Policy Builder and Driver Customization Guide

6 Select Text in the Noun list.
7 Double-click 7Text to add it to the argument.

8 In the Editor, click the browse icon, then browse to and select the destination container were
you want all of the User objects to be placed, then click OK.

9 Click OK.
10 Save the rule by clicking File > Save.

=l + Placement - Publisher Flat

" Condition Group 1

W if class name equal "User"

" set local variable("dest-base", "[Enter DN of destination container]")

v sef operation destination DM{dniLocal Yariable("dest-base" 4"\ "+Escape Destination DM(Unique Mame("C", scope="subtree", Lower Case(Substringilength="1", Operation
Attribukef"Given Mame")+Cperation Attribute"Surname")), Lower Case{Substring{length="2", Operation Attribute("Given Mame"}+Operation Attributel"Surname") iy

How the Logic in the Rule Works

The rule places all User objects in the destination DN. The rule sets the DN of the destination
container as the local variable dest-base. The rule then sets the destination DN to be dest-base\CN
attribute. The CN attribute of the User object is the first two letters of the Given Name attribute plus
the Surname attribute as lowercase. The rule uses slash format.

Placement - Subscriber Flat - LDAP Format

Places objects from the Identity Vault into one container in the data store. Implement the rule on the
Subscriber Placement policy in the driver.

There are two steps involved in using the predefined rules: creating a policy in the Placement policy
set, and importing the predefined rule. If you already have a Placement policy that you want to add
this rule to, skip to Importing the Predefined Rule (page 86).

Creating a Policy
1 From the Outline view or the Policy Flow view, select the Publisher channel.
2 Select the Placement policy set in Policy Set, then click Create or add a new policy to the
Policy Set * to create a new policy.
3 Click Create a new policy, then click Next.
4 Name the policy.
5 Use the location that is populated to place the policy in the driver.

Defining Policies By Using The Policy Builder With Designer 85

Create Policy

Specify the name and parent container For the new policy.

Enter the name that will be used for the new palicy.

| Placement Policy

Select the container where the policy will be created,

6
7
8

| Subscriber LDAF.ds. IDM Vaulk &3

Iw $pen Editor after creating policy,

Select Open Editor after creating policy, then click Next.
Select DirXML Script for the type of policy, then click Finish.

A file conflict window appears with the message “Before editing this item you need to save. Do
you wish to save the editor s changes and continue?” Click Yes. The Policy Builder is launched
and the new Placement policy is saved.

Importing the Predefined Rule

1

0 N o g A~ ODN

9
10

Right-click in the Policy Builder, then click New > Predefined Rule.
Select Placement - Subscriber Flat - LDAP format, then click OK.
Edit the action by double-clicking the Actions tab.

Delete [Enter DN of destination container] from the Enter String field.

Click the Edit Arguments icon i to launch the Argument Builder.
Select 7ext in the Noun list.
Double-click 7ext to add it to the argument.

In the Editor, add the destination container were you want all of the User objects to be placed.
Make sure the container is specified in LDAP format, then click OK.

Click OK.
Save the rule by clicking File > Save.

= " Placement - Subscriber Flat - LDAP format

/" Condition Group 1

I class name equal "User"

W set local variable("dest-base", "[Enter DN of destination container]")
set operation destination DN(dn{"uid="+Escape Destination DR{Unique Mame("uid", scope="subtree", Lower Case{Substring(length="1", Operation Attribute"Given
" MName"))+0Operation Attribute("Surname")), Lower Case{Substring{length="2", Operation Attribute"Given Mame"))+Operation Attributed"Surname"y+","+Lacal
‘ariable"dest-base")

How the Logic in the Rule Works

The rule places all User objects in the destination DN. The rule sets the DN of the destination
container as the local variable dest-base. The rule then sets the destination DN to be uid=unique
name,dest-base. The uid attribute of the User object is the first two letters of the Given Name
attribute plus the Surname attribute as lowercase. The rule uses LDAP format.

86 Policy Builder and Driver Customization Guide

Placement - Publisher By Dept

Places objects from one container in the data store into multiple containers in the Identity Vault
based on the value of the OU attribute. Implement the rule on the Publisher Placement policy in the
driver.

There are two steps involved in using the predefined rules: creating a policy in the Placement policy
set, and importing the predefined rule. If you already have a Placement policy that you want to add
this rule to, skip to Importing the Predefined Rule (page 87).

Creating a Policy
1 From the Outline view or the Policy Flow view, select the Publisher channel.

2 Select the Placement policy set in the Policy Set, then click Create or add a new policy to the
Policy Set * to create a new policy.

3 Click Create a new policy, then click Next.
4 Name the policy.
5 Use the location that is populated to place the policy in the driver.

Create Policy

Specify the name and parent container for the new policy.,

Enter the name that will be used for the new policy.

| Placement Policy
Select the container where the policy will be created.
| Subscriber LDAP.ds.IDM Vault Bz

Iv Open Editor after creating policy,

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.

8 A file conflict window appears with the message “Before editing this item you need to save. Do
you wish to save the editor s changes and continue?” Click Yes. The Policy Builder is launched
and the new Placement policy is saved.

Importing the Predefined Rule
1 Right-click in Policy Builder, then click New > Predefined Rule.
Select Placement - Publisher By Dept, then click OK.
Edit the action by double-clicking the Actions tab.
Delete [Enter DN of destination Organization] from the Enter String field.

Click the Edit Arguments icon = to launch the Argument Builder.
Select Text in the Noun list.

Double-click 7ext to add it to the argument.

0 N o g A~ WODN

In the Editor, click the browse icon, then browse to and select the parent container in the
Identity Vault. Make sure all of the department containers are child containers of this DN, then
click OK.

Defining Policies By Using The Policy Builder With Designer

87

9 Click OK.
10 Save the rule by clicking File > Save.

= " Placement - Publisher By Dept

/" Condition Group 1
W iF class name equal "User”

And i attribute 'OU" available

o set local variablef"dest-base”, "[Enter DM of destination Organization]")

set operation destination DM{dn{Local Yariable"dest-base™)+" "+Aaktribute"OU")+""+Escape Destination DM{Unique Mame("CN", scope="subtree", Lower
" Case(Substring(length="1", Operation Attribute("Given Name"))+Operation Attributel"Surname"y), Lawer Case(Substringflength="2", Operation Attribute("Given
Mame"Y)+Operation Attributel"Surname" i

How the Logic in the Rule Works

The rule places User objects in proper department containers depending upon what value is stored in
the OU attribute. If a User object needs to be placed and has the OU attribute available, then the
User object is placed in the dest-base\value of OU attribute\CN attribute.

The dest-base is a local variable. The DN must be the relative root path of the department containers.
It can be an organization or an organizational unit. The value stored in the OU attribute must be the
name of a child container of the dest-base local variable.

The value of the OU attribute must be the name of the child container. If the OU attribute is not
present, this rule is not executed.

The CN attribute of the User object is the first two letters of the Given Name attribute plus the
Surname attribute as lowercase. The rule uses slash format.

Placement - Subscriber By Dept - LDAP Format

Places objects from one container in the Identity Vault into multiple containers in the data store base
on the OU attribute. Implement the rule on the Placement policy in the driver. You can implement
the rule only on the Subscriber channel.

There are two steps involved in using the predefined rules: creating a policy in the Placement policy
set, and importing the predefined rule. If you already have a Placement policy that you want to add
this rule to, skip to Importing the Predefined Rule (page 89).

Creating a Policy
1 From the Outline view or the Policy Flow view, select the Publisher channel.
2 Select the Placement policy set in the Policy Set, then click Create or add a new policy to the
Policy Set * to create a new policy.
3 Click Create a new policy, then click Next.
4 Name the policy.
5 Use the location that is populated to place the policy in the driver.

88 Policy Builder and Driver Customization Guide

Create Policy

Specify the name and parent container For the new policy.

Enter the name that will be used for the new palicy.

| Placement Policy
Select the container where the policy will be created,

| Subscriber LDAF.ds. IDM Vaulk &3

Iw $pen Editor after creating policy,

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.

8 A file conflict window appears with the message “Before editing this item you need to save. Do
you wish to save the editor s changes and continue?” Click Yes. The Policy Builder is launched
and the new Placement policy is saved.

Importing the Predefined Rule

Right-click in the Policy Builder, then click New > Predefined Rule.
Select Placement - Subscriber By Dept - LDAP format, then click OK.
Edit the action by double-clicking the Actions tab.

Delete [Enter DN of destination Organization] from the Enter string field.

Click the Edit Arguments icon =i to launch the Argument Builder.
Select 7ext in the Noun list.
Double-click 7ext to add it to the argument.

0 N O g A~ ODN -

In the Editor, add the parent container in the data store. The parent container must be specified
in LDAP format. Make sure all of the department containers are child containers of this DN,
then click OK.

9 Click OK.
10 Save the rule by clicking File > Save.

= " Placement - Subscriber By Dept - LDAP format

./ Condition Group 1

if class name equal "User"

And i attribute 'OU" available

W set local variable("dest-base”, "[Enter DM of destination Organization]")

set operation destination DN(dn{"uid="+Escape Destination DN{Unique Mame:"uid", scope="subtree", Lower Case{Substring(length="1", Operation Attributel"Given
" Name"Y)+Operation Attributel"Surname"), Lower Case(Substringflength="2", Operation Atttibute"Given MName"Y)+Operation
Attributed"Surname" +", ou="+attribute"OL"+", "+ Local Yariabled"dest-base")))

How the Logic in the Rule Works

The rule places User objects in proper department containers depending upon what value is stored in
the OU attribute. If a User object needs to be placed and has the OU attribute available, then the
User object is place in the uid=unique name,ou=value of OU attribute,dest-base.

Defining Policies By Using The Policy Builder With Designer

89

The dest-base is a local variable. The DN must be the relative root path of the department containers.
It can be an organization or an organizational unit. The value stored in the OU attribute must be the
name of a child container of the dest-base local variable.

The value of the OU attribute must be the name of the child container. If the OU attribute is not
present, then this rule is not executed.

The uid attribute of the User object is the first two letters of the Given Name attribute plus the
Surname attribute as lowercase. The rule uses LDAP format.

2.2.7 Testing Policies with the Policy Simulator

Designer includes a new tool called the Policy Simulator. It allows you to test policies before
deploying them.You can thoroughly test the policies and the drivers without using your existing data
in the Identity Vault or the connected system.

For more information about common tasks with the Policy Simulator, see the following sections:

* “Accessing the Policy Simulator” on page 90

» “Using the Policy Simulator” on page 92
The Policy Simulator requires you to provide input well-formed XML documents for the policy to
operate on. Typically the documents that policies operate on use an XML vocabulary called XDS
that represents events and commands as they flow through the Metadirectory engine. To learn more

about XDS, see eDirectory DTD Commands and Events (http://developer.novell.com/ndk/doc/
dirxml/index.html?page=/ndk/doc/dirxml/dirxmlbk/data/a36pjzu.html).

All policies that are implemented in Policy Builder expect an XDS document as input. Most policies
implemented in XSLT also expect an XDS document as input, however some policies (such as the
initial Input Transformations for the Delimited Text and SOAP drivers) may expect a different XML
vocabulary as input.

Accessing the Policy Simulator

The Policy Simulator can be accessed in three different ways:
* “Outline View” on page 90
* “Policy Flow” on page 91
» “Editors” on page 92

Outline View

1 Click the Model Outline icon. E

2 Right-click the driver, publisher, subscriber, mapping rule, filter, or any policy you want to
simulate, then click Simulate.

90 Policy Builder and Driver Customization Guide

http://developer.novell.com/ndk/doc/dirxml/index.html?page=/ndk/doc/dirxml/dirxmlbk/data/a36pjzu.html

= B8

EEEIEEE

=-T2] Projert 1
=-{@] DM vault
EIE ds

G:l Active Directary

G:l Eroupihise
- LDAP
M= MappingRule

B LDAP Filter

G:l Entitlements Service Driver (#1)

IH Password{Pub)-5ub Email Notifications
I Password{Sub)-Pub Email Notifications

.
gl *Project 1-

5

A& Subs &dd Policy
% LDAP

-2 Default Notii

Export Channel to Configuration File, .,

Live Operations

Simulate. ..

Propetties

Policy Flow

1 Click the Policy Flow icon. !

2 Right-click the input, output, schemaMapping, filter, and any policy set icons you want to

simulate, then click Simulate.

Project | B Outine 52 =0
— +,
B+ - b
LDAP Directory =)
PR
A
=
o
:.:— _
b
Data Flow =0
LDAP Driver Palicy Sets
FARE R SRR
- Zd| Matching

Defining Policies By Using The Policy Builder With Designer

91

Editors

You can access the Policy Simulator through the Policy Builder, the Schema Mapping Editor, or the
Filter Editor by selecting the Policy Simulator icon “% in the toolbar of each editor.

Using the Policy Simulator

The Policy Simulator allows you to select a point in the driver flow to test the policy with a specific
operation. It allows you to edit the input and output documents, while you are testing. If you want to
keep the changes, select the Save As icon to save the document as an XML file.

The Policy Simulator gives you a powerful tool to test and edit policies before implementing them in
lab or production environments.

To use the Policy Simulator, please follow the steps listed below:

1 From the Policy Set drop-down list, select the place in the driver flow that you want to test the
policy. You can select the any of the following items: Publisher Channel, Subscriber Channel,
Input, Schema Mapping, Event, Sycn Filter, Matching, Creation, Placement, Command and
Notify Filter. If you select a specific policy or rule to test, this option does not appear.

B

E’! Simulate Policy Transformation - LDAP

Provide Input Parameters
Select & Pobcy Sat b transform and enter o import & ¥0S input dooument inko the aditor befow,

Policy SetjChannel:
Irput Documerk

Publisher Channe|

|

Publsher Channe!
Inpuk

ay

<Mxml versiolshems Mapping
E | Publisher Evant
Publisher Synic Filter

TTF-8% 7> cnd=>
= Input ; R —
“input

Quesies </ nd=

Publiher Craation
Publisher Placement
Fublsher Command
Publisher hotFy Fiter

Oukput

Subseriber Chanred

Cukput

Schiama Mapping
Subscriber Notity Fiker
Subscriber Command
Subscriber Placement b

Start | Close

2 Select Import to display the list of operations you can test the policy with. The operation are
Add, Association, Delete Instance, Modify, Move, Query, Rename, and Status.

92 Policy Builder and Driver Customization Guide

Open E]

Loak jr |[hsimulatiu:un j . 5 B~

=) Association
My Recent [CDelete
Documents) Instance

E
0

'L‘ [Modify
. [CMave
Dezktop [Guery
[hRename

___/ [y 5katus

y Metwaork File name: | ﬂ Open |
Places
= uml j Cancel

Files of twpe:

3 Double-click the folder to display the available events. Each event has different files you can
select. For example, if you select Add you have three options: Organization.xml,
OrganizationalUnit.xml and User.xml. The file indicates the object class for the operation. If
you select User.xml, it will be an Add operation for a User object.

Lookin: | £ Add v e e E

_2 Organization. zml
» Crganizationaldnit, xmil
by Feceant il

Documents

by Metwork File name: |Llser.:-:ml ﬂ Open |
Places
j Cancel

Files of type: |

4 Sclect a file, then click Open.

Defining Policies By Using The Policy Builder With Designer

93

5 The input document is now displayed in the window. Click Start.

A simulate Policy Transformation - LDAP

Provide Input Parameters @
Select 2 Polcy Set bo transform and enber o import & 205 input dooument: inko the editor below.

Palcy SatjChannel: |Publsher Chennel =
Input Document
< 7¥ml version="1.0% encoding="UTr=8"7><nds dtdversion="1.0" ndsveraion="%.5" xml: &

= Input

LLinpuc>
Cutput <add class-name="l=ec® gualified-=src-dn=" 1ic XML T 1=
<pasociation>o=dicXil Teat)ou=Users)cn=Userl</asaociations>
Commends <add-attr atLE-name="cn">
svalus>Ussrl</valuss>
<fadd-attr>
<add-attr aTCE-name="3E nams ">
valus>-Surnam=1l< valuss
<fadd-attr>
<add-attr AttE-name="Given Name">
valus>-Givenl</valus:
<fadd-attr>
<add-attr atcr-name="Iniciala™>
svalus:>Tl</valu=:
</ add-actr>
<add-attr Attr-name="Full Nam=">
<valus>-Ful lnamsl</values
</ add-attr>
<Add-actr ALCE-Rame="Genserarn nal Qualifier™>

Save ...

6 If you select View Transformation Log, you see a trace log of the policy execution. The
information in this window is the same information that you see in DSTRACE.

94 Policy Builder and Driver Customization Guide

i simulate Policy Transformation - Matching

Wiew Transform Results
Select "Output”™ to viesy the transformed dooument ar “Log” bo viesy the details of the document transformation.

e Transformation © Output ™+ Log|

Output:
Input ¢[10/19/05 12:21:41.109]: Active Directory : Applying policy: %+4C%14C°'Find & watching
[10/19/05 12:21:41.109] : Acrive Dirsctory : Applying to add #1.

Quenes [10/19/08 12:21:41.109] : Active Directory
[10/19/05 12:21:41.109] : Accive Directory (1f-=2rc-dn in-subcree "7) = FALJE.
S Output |[10/19/05 12:21:41.109] ¢ Active Directory Rule rejected.

[10/19/05 12:21:41.109] : Active Directory : Evaluating selection criteria for rcule
Commands |[10/19/05 12:21:41.109] : Active Directory (if=op=-property 'unmatched-arc-dn' @
[10/19/05 12:21:41.109] : Accive Directory Rule selected.

[10/19/05 12:21:41.109] 1 Active Directory Lpplying rule 'veto out-of-=cope svent
[10/19/05 12:21:41.109] : Active Directory Action: do=-vetol(].

[10/19/05 12:21:41.109]: Accive Direccory : Policy recurned:

[10/19/05 12:21:41.109] : Acrive Directory :

Evaluating selection criteria for rcule

<nds dtdversion="1.0" npdaveraion=“2.5" xml:apace="default™>
cinpuaty >
</ ndas
£ >
Cear Log I Compare. .,

Contrwe | Cose |

7 If you select Output, you see the output document that was generated.

Defining Policies By Using The Policy Builder With Designer 95

i simulate Policy Transformation - Matching

Wiew Transform Results @
Select "Output”™ to viesy the transformed dooument ar “Log” bo viess the details of the document transformation.
Wiew Trarsformation % Output] © Log
Output
Input < 7¥ml version="1,0" encoding="UTF-3"7?+<nds drodverzion="1.0" ndaveraion=" " oMbl ApacE
Queries
= Qutput cinpue/>
< ndas
Comimands
£ >
Save As... | Compare..,
Conbirue Close

8 When you are finished looking at the results, click Continue to test another event against the
policy.

9 Select Compare to compare the output document to the input document. The comparison is
displayed in a dialog using the Eclipse text compare editor.

96 Policy Builder and Driver Customization Guide

miinmpnrrz Ir|||||rﬂ:I||r|u|I Smulalion Documents

d—_: Text Compare |
Input Document Cukput Document |
Input docwrent o &add a User, <?x¥ml wersion="1.0" encoding="UTF-5| &
€ 1
Input dosuweent o &dd a Tae:
_______________________________J -
=/ nda>
=
< »
_ Gow |

10 When you are finished testing, click Close and to close the Policy Simulator.

2.2.8 Editing the DirXML Script

Designer enables you to view and edit the source DirXML Script by using an XML editor or text
editor. Designer has a built in XML editor. The Source view also allows you to validate against the
document type definition file (DTD). For more information about the DTD see DirXML Driver
Developer Kit Documentation (http://developer.novell.com/ndk/doc/dirxml/dirxmlbk/ref/
index.html).

Edit XML

1 To open the Source view, select Source at the bottom of the Policy Builder.

Defining Policies By Using The Policy Builder With Designer

97

http://developer.novell.com/ndk/doc/dirxml/dirxmlbk/ref/index.html
http://developer.novell.com/ndk/doc/dirxml/dirxmlbk/ref/index.html

Match (Sub}-Tra... X 1 =08

Policy Builder % | p23 £y 3% =] L o e (@
Password(Sub)-Transform Distribution Password, Subscriber, LGP, ds

Rules

/ Convert adds of the nspmDistributionPassword
attribute to password elements

v Block modifies for Failed password publish
operations if reset password if false

[+

v Convert modifies of a nspmbDistributionPassword
attribute to a modify password operation

" Block empty modify operations

+ Policy Description

TransForm MMAS attribute to password elements

Policy Builder@

The DirXML Script is displayed in an XML editor. You can edit the DirXML Script. To see the
information without scrolling, double-click the active tab and the current panel expands to fill the
entire window. To minimize the view, double-click the active tab.

98 Policy Builder and Driver Customization Guide

Makch

rd{Sub)-Tra.., X }1 = B8

= -
<?xml wersion="1.0" encoding="UTF-S72:><pol A
<description>Transform NMLS attribute
<rulex
<descriptionrConvert adds of the n
<conditions:
<ahdx>
<if-operation op="equal>a
<if-op-attr hamwe="nspmbist
</ and>
</oonditionss
<actionss
< !== Change all add-attr eleme
<do-set-dest-password:=-
<arg-string>
<token-xpath expressio_
</arg-string>
</do-get-dest-pazavord:>
< !=—— Remove all add-attr eleme
<do-strip-op-attr hname="nspmbi
</actions>
<frulex
<rulex
<description>Block modifies for fa
<conditions:
<ahdx>
<if-glohal-variakble mode="
<if-operation op="Tecqual>m
<if-xpath op="truse">mwodify
</ ands>
</conditions:
<actions>
<!== Block a password reset -
< | >
T Policy Builder @ Source

To select a different XML editor for your Source view:
From the Main menu, select Window > Preferences.
Select General > Editors > File Associations.

Select *.xml from the list under File Types.

A OWON -

From the list in Associated Editors, select the editor that you want. If the editor you want isn’t
in the list, you might need to click Add, then add it to the list.

Click OK.
6 Close and reopen the Policy Builder.

(3,

Validate DTD

You can validate any DTD file with Designer. The following examples uses Novell’s DTD. If you
validate a policy created with the Policy Builder, use Novell’s DTD file. The DTD file is shipped
with Designer. The file is located
software\designer\eclipse\plugins\com.novell.soa.xml\resolver x.x.

Defining Policies By Using The Policy Builder With Designer 99

x\xmlcatalog\dtdcatalog\dirxmlscript.dtd where software is where you have
Designer installed.

For the DTD validation to work, the policy must be saved. If you have been working on a policy,
make sure it is saved before validating.

1 Select the policy you want to validate the DTD against in the Policy Builder.

2 Click the Source tab, then right-click in the Source View > Attach DTD or XML Schema.

2| *Project 1 - Developer Mode SubscriberCreateRule X

=
<7?¥il version="1.0" encoding="UTF-S" ! ><policy>
Sl et
= ititlewent</descrip
op="equal "rUser</ 1
[hame="ldaplccount
Paste Chrl+Y
shift Right .
[— t-
Shift Left netmeal & nam
r-not-avallakble nato
Attach DTD or #ML Schema. ..
Validate
<Y
Preferences. ..

3 Browse to the DTD file, then click Open. In this example the file is located at C: \Program
Files\Novell\designer\eclipse\plugins\com.novell.soa.xml.resolv
er 1.0.0\XmlCatalog\DTDCatalog\dirxmlscript.dtd.

4 Right-click in the Source View again, then click Validate.

¢ *Project 1 - Developer Mode SubscriberCreateRule &8 =08 Help B problems X
= = 0 errars, 1 warning, O infos
] ipki R,
<Pl wersion="1.0" encoding="UTF-8"2><policy> | aErIpten | £s
& The element =do-veto-if-op-attr-=i... 160

<rule:
<descriptionrlocount Entitlement</descrip
woconditionss
<and>
<if-wlass-name op="Tequal "xU=ser«/1
<if-entitlement name="ldsplocount
</ and>
<foonditions>
<actions:
<do-veto-if-op-attr-not—-available nam
<do—veto—if-op-attr—- name="Iurname"/s >
<factionss
</rulex
</policy>

The Problems window opens. If there is no error, nothing is listed in the Problems window. If
there is an error, information about the error is listed in the window. It explains why, in what
project, and on what line the error occurred. Click the error and Designer high lights the line of
code where the problem is. You can fix the problem in the XML editor and save the policy.

100 Policy Builder and Driver Customization Guide

2.3 Regular Expressions

A regular expression is a formula for matching text strings that follow some pattern. Regular
expressions are made up of normal characters and metacharacters. Normal characters include
uppercase and lowercase letters and digits. Metacharacters have special meanings. The following
table contains some of the most common metacharacters and their meanings.

Metacharacter Description

Matches any single character.

$ Matches the end of the line.
A Matches the beginning of a line.
* Matches zero or more occurrences of the character

immediately preceding.

\ Literal escape character. It allows you to search for
any of the metacharacters. For example \$ finds
$1000 instead of matching at the end of the line.

[1 Matches any one of the characters between the
brackets.
[0-9] Matches a range of characters with the hyphen.

The example matches any digit.

[A-Za-z] Matches multiple ranges as well. The example
matches all uppercase and lowercase letters.

The Argument Builder is designed to use regular expressions as defined in Java. The Java Web site
(http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html) contains further information.

2.4 XPath 1.0 Expressions

Arguments to some conditions, actions, and tokens use XPath 1.0 expressions. XPath is a language
created to provide a common syntax and semantics for functionality shared between XSLT and
XPointer. It is used primarily for addressing parts of an XML document, but also provides basic
facilities for manipulation of strings, numbers and Booleans.

The XPath specification requires that the embedding application provide a context with several
application-defined pieces of information. In DirXML Script (see Section 1.1.2, “DirXML Script,”
on page 15), XPath is evaluated with the following context:

» The context node is the current operation.

» The context position and size are 1.

* There are several available variables:

* Those available as parameters to style sheets within Identity Manager (currently
fromNDS, srcQueryProcessor, destQueryProcessor, srcCommandProcessor,
destCommandProcessor, and dnConverter).

* Global configuration variables.

* Local policy variables.

Defining Policies By Using The Policy Builder With Designer

101

http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html

 Ifthere is a name conflict between the different variable sources, then the order of
precedence is local variable, style sheet parameters, global variables.

* Namespaces are declared on the policy element.
 There are several available functions:

* All built-in XPath 1.0 functions.

+ Java extension functions as provided by NXSL.

Namespaces declarations to associate a prefix with a Java class must be declared on the policy
element.

The W3 Web site (http://www.w3.0rg/TR/1999/REC-xpath-19991116) contains further information.

2.5 Conditions

This section contains detailed information on all conditions available using the Policy Builder
interface.

» Section 2.5.1, “If Association,” on page 102

» Section 2.5.2, “If Attribute,” on page 103

» Section 2.5.3, “If Class Name,” on page 104

 Section 2.5.4, “If Destination Attribute,” on page 105

» Section 2.5.5, “If Destination DN,” on page 107

» Section 2.5.6, “If Entitlement,” on page 108

 Section 2.5.7, “If Global Configuration Value,” on page 109

+ Section 2.5.8, “If Local Variable,” on page 110

* Section 2.5.9, “If Named Password,” on page 112

» Section 2.5.10, “If Operation,” on page 112

* Section 2.5.11, “If Operation Attribute,” on page 113

* Section 2.5.12, “If Operation Property,” on page 115

+ Section 2.5.13, “If Password,” on page 116

* Section 2.5.14, “If Source Attribute,” on page 116

* Section 2.5.15, “If Source DN,” on page 117

 Section 2.5.16, “If XPath Expression,” on page 118

2.5.1 If Association

Performs a test on the association value of the current operation or the current object.

Fields

Operator Condition is Met When...

Operator Condition is met when...

associated There is an established association for the current object.

102 Policy Builder and Driver Customization Guide

http://www.w3.org/TR/1999/REC-xpath-19991116

Operator Condition is met when...

available There is a non-empty association value specified by the current
operation.
equal The association value specified by the current operation is exactly equal

to the content of the if association.

not-associated There is not an established association for the current object.
not available The association is not available for the current object.
not-equal The association value specified by the current operation is not equal to

the content of the if association.

Example

This example tests to see if the association is available. When this condition is met, the actions that
are defined are executed.

" Condition Group 1

" iF association available

Condition [EEzee={aly]

Cperator * |available j

2.5.2 If Attribute

Performs a test on attribute values of the current object in either the current operation or the source
data store. It can be logically thought of as If Operation Attribute or If Source Attribute, because the
test is satisfied if the condition is met in the source data store or in the operation.

Fields

Name

Specify the name of the attribute to test.

Operator
Select the condition test type.

Compare Mode

Select the comparison mode. See “Comparison Modes” on page 180.

Operator Condition is Met When...

Defining Policies By Using The Policy Builder With Designer 103

Operator Condition is met when...

available There is a value available in either the current operation or the source
data store for the specified attribute.

equal There is a value available in either the current operation or the source
data store for the specified attribute, which equals the specified value
when compared using the specified comparison mode.

not available Available would return False.
not-equal Equal would return False.
Example

The example uses the condition If Attribute when filtering for User objects that are disabled or have
a certain title. The policy is Policy to Filter Events, and it is available for download from Novell’s
support Web site. For more information, see “Downloadable Identity Manager Policies” on page 36.

= + Filter events: From Users sub-tree, Users not disabled, no consultants or sales people

Condikions

" Condition Group 1

W if source DM nat in subtree "Users”
Or o if attribute 'Login Disabled' equal "Trus"

[a N [=ittribte 'Title' match " *consulbant |sales, "

| W wekol)

Condition x|l @
Mame * | Title Q,
Cperator * |equa| j
Mode |regular expression ﬂ
walue | *consultant|sales,* Y,

The condition is looking for any User object that has an attribute of Title with a value of consultant
or sales.

2.5.3 If Class Name
Performs a test on the object class name in the current operation.

Fields

Operator
Select the condition test type.

104 Policy Builder and Driver Customization Guide

Compare Mode

Select the comparison mode. See “Comparison Modes” on page 180.

Operator Condition is Met When...

Operator Condition is met when...
available There is an object class name available in the current operation.
equal There is an object class name available in the current operation, and it

equals the specified value when compared using the specified
comparison mode.

not available Available would return False.
not-equal Equal would return False.
Example

The example uses the condition If Class Name to govern group membership for a User object based
on their title. The policy is Govern Groups for User Based on Title Attribute, and it is available for
download from Novell’s support Web site. For more information, see “Downloadable Identity
Manager Policies” on page 36.

W Uscr changing from Manager to Employee

Condikions

" Condition Group 1
W if class name equal "User"
and o iF destination attribuke 'Title' makch " *manager, "

&and o if operation attribute 'Title' not-match ", *manager,*"

" set destination attribute value("Group Membership”, "UserstEmploveesGraup")

" clone operation attributel"Group Membership”, "Security Equals™)

v User changing from Employee to Manager

Condition |class name ﬂ i
Operator *
Mode |case insensitive j
Yalue | User Q,

Checks to see if the class name of the current object is User.

2.5.4 If Destination Attribute

Performs a test on attribute values of the current object in the destination data store.

Defining Policies By Using The Policy Builder With Designer 105

Fields

Name

Specify the name of the attribute to test.

Operator

Select the condition test type.

Compare Mode

Select the comparison mode. See “Comparison Modes” on page 180.

Operator Condition is Met When...

Operator Condition is met when...

available There is a value available in the destination data store for the specified
attribute.

equal There is a value available for the specified attribute in the destination data

store that equals the specified value when compared using the specified
comparison mode.

not available Available would return False.
not-equal Equal would return False.
Example

The example uses the condition If Attribute to govern group membership for a User object based on
the title. The policy is Govern Groups for User Based on Title Attribute, and it is available for
download from Novell’s support Web site. For more information, see “Downloadable Identity
Manager Policies” on page 36.

User changing from Manager to Employee

Condition Group 1
if class name equal "User"
And if destination attribute 'Title' match . *manager . *"

And if operation attribute 'Title' not-match ", *manager, *"

set destination attribute walue!"Group Membership”, "UserstEmployeesGroup™)

clone operation atkribuke"Group Membership”, "Security Equals™)

User changing from Employee to Manager

106 Policy Builder and Driver Customization Guide

Condikion |destination attribute

Cperator * |equal

= e

Mame * | Title

Mode |regular expression

plld o

value | *manager *

The policy checks to see if the value of the title attribute contains manager.

2.5.5 If Destination DN

Performs a test on the destination DN in the current operation.

Fields

Operator

Select the condition test type.

Operator Condition is Met When...

Operator Condition is met when...

available There is a destination DN available.

equal There is a destination DN available, and it equals the specified value
when compared using semantics appropriate to the DN format of the
destination data store.

in-container There is a destination DN available, and it represents an object in the
container, specified by value, when compared using semantics
appropriate to the DN format of the destination data store.

in-subtree There is a destination DN available, and it represents an object in the
subtree, specified by value, when compared using semantics appropriate
to the DN format of the destination data store.

not available Available would return False.

not-equal Equal would return False.

not-in-container

not-in-subtree

In-container would return False.

In-subtree would return False.

Defining Policies By Using The Policy Builder With Designer

107

Example

Condition |destinati0n DM j @

Cperator * [yl

Yalue | Users Q,

2.5.6 If Entitlement

Performs a test on entitlements of the current object, in either the current operation or the Identity
Vault.

Fields

Name

Specify the name of the entitlement to test for the selected condition.

Operator
Select the condition test type.

Compare Mode

Select the comparison mode. See “Comparison Modes” on page 180.

Operator Condition is Met When...

Operator Condition is met when...

available The named entitlement is available in either the current operation or the
Identity Vault.

changing The current operation contains a change (modify attribute or add attribute)

of the named entitlement.

changing-from The current operation contains a change that removes a value (remove
value) of the named entitlement, which has a value that equals the
specified value, when compared using the specified comparison mode.

changing-to The current operation contains a change that adds a value (add value or
add attribute) to the named entitlement. It has a value that equals the
specified value, when compared using the specified comparison mode.

equal There is a value available for the specified attribute in the destination data
store that equals the specified value when compared using the specified
comparison mode.

not available Available would return False.
not-changing Changing would return False.
not-changing-from Changing-from would return False.
not-changing-to Changing-to would return False.

108 Policy Builder and Driver Customization Guide

Operator Condition is met when...

not-equal Equal would return False.
Example
Condition |entitlement = @
Mame * | nobes-group 2,

(ol T T - hanging From

Mode |case insensitive hd

Walue | Users O,

2.5.7 If Global Configuration Value

Performs a test on a global configuration variable.

Fields

Name

Specify the name of the global variable to test for the selected condition.

Operator
Select the condition test type.

Compare Mode

Select the comparison mode. See “Comparison Modes” on page 180.

Operator Condition is Met When...

Operator Condition is met when...
available There is a global configuration variable with the specified name.
equal There is a global configuration variable with the specified name and its

value equals the specified value when compared using the specified
comparison mode.

not available Available would return False.

not-equal Equal would return False.

Defining Policies By Using The Policy Builder With Designer 109

Example

Condition |global configuration valueﬂ @

Mame * | myGlobalyariable Q,

Cperator * [EREEE =

2.5.8 If Local Variable

Performs a test on a local variable.

Fields

Name

Specify the name of the local variable to test for the selected condition.

Operator
Select the condition test type.

Compare Mode

Select the comparison mode. See “Comparison Modes” on page 180.

Operator Condition is Met When...

Operator Condition is met when...

available There is a local variable with the specified name that has been defined by
an action of a earlier rule within the policy.

equal There is a local variable with the specified name, and its value equals the
specified value when compared using the specified comparison mode.

not available Available would return False.
not-equal Equal would return False.
Example

The example adds a User object to the appropriate group, Employee or Manager, based on Title. It
also creates the group, if needed, and sets up security equal to that group. The policy is Govern
Groups for User Based on Title Attribute, and it is available for download from Novell’s support
Web site. For more information, see “Downloadable Identity Manager Policies” on page 36.

110 Policy Builder and Driver Customization Guide

Wl Set local variables to test existence of groups and for placement

E " Create ManagersGroup, if needed

Conditions

" Condition Group 1

o IF local wariable 'manager-group-info’ availabls

and o if local variable 'manager-group-info’ not equal "group®

o add destination obiect(class name="Group", when="before", dniLocal Yariable!"manager-group-dn'y)

" Create EmployeesGroup, if needed
" IF Title indicates Manager, add to ManagerGroup and set rights

+ IF Title does not indicate Manager, add to EmployeeGroup and set rights

The policy contains five rules that are dependent on each other.

ISl Set local variables to test existence of groups and for placement

Condikions

++ Condition Group 1
I class name equal "User"
And
" Condition Group 2
" if operation equal "add"
or o if operation equal "modify"

set local variabled"manager-group-dn', "UsersiManagersGroup™)
set local variabled"manager-group-infa”, Destination Attribute"Object Class", dniLocal Yariable! "manager-group-dn™iiy)

set local wariable! " emplovee-group-dn®, "Users\Emploveescroup™)

v
v
v
v

For the If Locate Variable condition to work, the first rule sets four different local variables to test
for groups and where to place the groups.

set local wariable! emplovee-group-info”, Destination Attribute"Object Class", dniLocal YWariable! emploves-group-dn™iin

Condition |{fe= R e

Marme * | manager-group-info

%
Cperakor * |n|:|t equal j
=l

Mode ||:ase insensitive

value | group A,

The condition the rule is looking for is to see if the local variable of manager-group-info is available
and if manager-group-info is not equal to group. If these conditions are met, then the destination
object of group is added.

Defining Policies By Using The Policy Builder With Designer 111

2.5.9 If Named Password

Performs a test on a password in the current operation with the specified name.

Fields

Name

Specify the name of the named password to test for the selected condition.

Operator
Select the condition test type.

Operator Condition is Met When...

Operator Condition is met when...
available There is password with the specified name available.
not available Available would return False.
Example
Condition |named password j @
Mame * | password Y,
COperatar *

2.5.10 If Operation

Performs a test on the name of the current operation.

Fields

Operator
Select the condition test type.

Operator Condition is Met When...

Operator Condition is met when...

equal The name of the current operation is exactly equal to content of If
Operation.

not-equal Equal would return False.

112 Policy Builder and Driver Customization Guide

Example

The example adds a User object to the appropriate group, Employee or Manager, based on Title. It
also creates the group, if needed, and sets up security equal to that group. The policy name is Govern
Groups for User Based on Title Attribute, and it is available for download from Novell’s support
Web site. For more information, see “Downloadable Identity Manager Policies” on page 36.

[=I¥ S =t local variables to test existence of groups and for placement

Conditions

.~ Condition Group 1

I class name equal "User"
And
./ Condition Group 2

" iF operation equal "add"

or " if operation equal "modify"

" setlocal variable("manager-group-dn”, "UsersiManagersGroup”)
" set local variablel"manager-group-info", Destination Attributed"Cbject Class", dniLocal Variable!"manager-group-dnin)
" set local variablel"employee-group-dn”, "Users\EmployeesGroup™)
" set local variable"employee-group-infa", Destination Attribute"ohbject Class", dnfLocal Yariable("employes-aroup-dn®i)))
Condition ||:|perati|:|n j i
Cperakor * |equa| j
Value | add Q

The condition is checking to see if an add or modify operation has occurred. When one of these
occurs, it sets the local variables.

2.5.11 If Operation Attribute

Performs a test on attribute values in the current operation.

Fields

Name

Specify the name of the attribute to test.

Operator
Select the condition test type.

Compare Mode

Select the comparison mode. See “Comparison Modes” on page 180.

Operator Condition is Met When...

Defining Policies By Using The Policy Builder With Designer

113

Operator Condition is met when...

available There is a value available in the current operation (add attribute, add
value, attribute) for the specified attribute.

changing The current operation contains a change (modify attribute or add attribute)
of the specified attribute.

changing-from The current operation contains a change that removes a value (remove
value) of the specified attribute. It equals the specified value when
compared using the specified comparison mode.

changing-to The current operation contains a change that adds a value (add value or
add attribute) to the specified attribute. It equals the specified value when
compared using the specified comparison mode.

equal There is a value available in the current operation (other than a remove
value) for the specified attribute. It equals the specified value when
compared using the specified comparison mode.

not available Available would return False.

not-changing Changing would return False.

not-changing-from Changing-from would return False.

not-changing-to Changing-to would return False.

not-equal Equal would return False.
Example

The example adds a User object to the appropriate group, Employee or Manager, based on Title. It
also creates the group, if needed, and sets up security equal to that group. The policy name is Govern
Groups for User Based on Title Attribute, and it is available for download from Novell’s support
Web site. For more information, see “Downloadable Identity Manager Policies” on page 36.

Set local variables to test existence of groups and for placement

Create ManagersGroup, if needed
Create EmployeesGroup, if needed
=]

IF Title indicates Manager, add to ManagerGroup and set rights

Condition Group 1

if class name equal "User”

And if operation attribute 'Tite' match . *manager, *"

set destination attribute value("Group Membership”, Local Mariable!"'manager-group-dn™i)

clone operation attribute("Group Membership”, "Security Equals™

If Title does not indicate Manager, add to EmployeeGroup and set rights

114 Policy Builder and Driver Customization Guide

Condition |destination attribute ﬂ 6]

Mame * | Title

C%
Cperator * |equal ﬂ
=l

Mode |regular expression

value | *manager * Y

The condition is checking to see if the attribute of Title is equal to .*manager®, which is a regular
expression. It is looking for a title that has zero or more characters before manager and a single
character after manager. It finds a match if the User object’s title was sales managers.

2.5.12 If Operation Property

Performs a test on an operation property on the current operation.

Fields

Name

Specify the name of the operation property to test for the selected condition.

Operator

Select the condition test type.

Compare Mode

Select the comparison mode. See “Comparison Modes” on page 180.

Operator Condition is Met When...

Operator Condition is met when...

available There is an operation property with the specified name on the current
operation.

equal There is a an operation property with the specified name on the current

operation and its value equals the provided content when compared using
the specified comparison mode.

not available Available would return False.
not-equal Equal would return False.
Example
Condition |D|:|eration property ﬂ @

Marme * | iy Shoredy ariable

Cperatar *

Defining Policies By Using The Policy Builder With Designer

115

2.5.13 If Password

Performs a test on a password in the current operation.

Fields

Operator
Select the condition test type.

Operator Condition is Met When...

Operator Condition is met when...
available There is password available in the current operation.
not available Available would return False.
Example
Condition |password ~ @

Cperakor *

2.5.14 If Source Attribute

Performs a test on attribute values of the current object in the source data store.

Fields

Name

Specify the name of the source attribute to test for the selected condition.

Operator

Select the condition test type.

Compare Mode

Select the comparison mode. See “Comparison Modes” on page 180.

Operator Condition is Met When...

Operator Condition is met when...

available There is a value available in the source data store for the specified
attribute.

equal There is a value available in the source data store for the specified

attribute. It equals the specified value when compared using the specified
comparison mode.

116 Policy Builder and Driver Customization Guide

Operator Condition is met when...

not available Available would return False.
not-equal Equal would return False.
Example
Condition |password = @

2.5.15 If Source DN

Performs a test on the source DN in the current operation.

Fields

Operator
Select the condition test type.

Operator Condition is Met When...

Operator Condition is met when...
available
DN available.
equal There is a source DN available, and it equals the content of the specified

value in-container There is a source DN available, and it represents an
object in the container identified by the specified value.

in-subtree There is a source DN available, and it represents an object in the subtree
identified by the spcified value.

not available Available would return False.

not-equal Equal would return False.

not-in-container In-container would return False.

not-in-subtree In-subtree would return False.
Example

The example uses the condition If Source DN to check if the User object is in the source DN. The
rule is from the predefined rules that come with Identity Manager 3.0. For more information, see
“Event Transformation - Scope Filtering - Exclude Subtrees” on page 72.

Defining Policies By Using The Policy Builder With Designer 117

= " Event Transformation - Scope Filtering - Exclude subtree{s)

Conditions

.~ Condition Group 1

" if source DM in subtree "[Enter a subtree bo exclude]"

Condition |source DN ﬂ @

Cperator * [Nyl

value | Users Q,

The condition is checking to see if the source DN is in the Users container. If the object is coming
from that container, it is vetoed.

2.5.16 If XPath Expression

Performs a test on the results of evaluating an XPath 1.0 expression.

Fields

Operator
Select the condition test type.

Operator Condition is Met When...

Operator Condition is met when...
true The XPath expression evaluates to True.
false True would return False.
Example
Condition |XP.¢\TH EXpression j IEJ‘:I
Qperator * |I:rue j
Yalue |add—attr[@attr—name='OLI],l'\-'alue[string(.}="Sales"]|

118 Policy Builder and Driver Customization Guide

2.6 Actions

This section contains detailed reference to all actions available using the Policy Builder interface.

Section 2.6.1, “Add Association,” on page 120

Section 2.6.2, “Add Destination Attribute Value,” on page 120
Section 2.6.3, “Add Destination Object,” on page 122

Section 2.6.4, “Add Source Attribute Value,” on page 123
Section 2.6.5, “Add Source Object,” on page 124

Section 2.6.6, “Append XML Element,” on page 125

Section 2.6.7, “Append XML Text,” on page 125

Section 2.6.8, “Break,” on page 126

Section 2.6.9, “Clear Destination Attribute Value,” on page 126
Section 2.6.10, “Clear Operation Property,” on page 127
Section 2.6.11, “Clear Source Attribute Value,” on page 127
Section 2.6.12, “Clone By XPath Expressions,” on page 128
Section 2.6.13, “Clone Operation Attribute,” on page 128
Section 2.6.14, “Delete Destination Object,” on page 129
Section 2.6.15, “Delete Source Object,” on page 130

Section 2.6.16, “Find Matching Object,” on page 130

Section 2.6.17, “For Each,” on page 132

Section 2.6.18, “Generate Event,” on page 133

Section 2.6.19, “Implement Entitlement,” on page 135

Section 2.6.20, “Move Destination Object,” on page 136
Section 2.6.21, “Move Source Object,” on page 137

Section 2.6.22, “Reformat Operation Attribute,” on page 138
Section 2.6.23, “Remove Association,” on page 139

Section 2.6.24, “Remove Destination Attribute Value,” on page 139
Section 2.6.25, “Remove Source Attribute Value,” on page 140
Section 2.6.26, “Rename Destination Object,” on page 141
Section 2.6.27, “Rename Operation Attribute,” on page 142
Section 2.6.28, “Rename Source Object,” on page 142

Section 2.6.29, “Send Email,” on page 143

Section 2.6.30, “Send Email From Template,” on page 144
Section 2.6.31, “Set Default Attribute Value,” on page 145
Section 2.6.32, “Set Destination Attribute Value,” on page 146
Section 2.6.33, “Set Destination Password,” on page 148
Section 2.6.34, “Set Local Variable,” on page 148

Section 2.6.35, “Set Operation Association,” on page 149

Defining Policies By Using The Policy Builder With Designer

119

* Section 2.6.36, “Set Operation Class Name,” on page 150

* Section 2.6.37, “Set Operation Destination DN,” on page 150
 Section 2.6.38, “Set Operation Property,” on page 151

» Section 2.6.39, “Set Operation Source DN,” on page 151

*» Section 2.6.40, “Set Operation Template DN,” on page 152

» Section 2.6.41, “Set Source Attribute Value,” on page 153

* Section 2.6.42, “Set Source Password,” on page 154

» Section 2.6.43, “Set XML Attribute,” on page 154

» Section 2.6.44, “Status,” on page 155

 Section 2.6.45, “Strip Operation Attribute,” on page 156

» Section 2.6.46, “Strip XPath,” on page 156

» Section 2.6.47, “Trace Message,” on page 157

» Section 2.6.48, “Veto,” on page 158

* Section 2.6.49, “Veto If Operational Attribute Not Available,” on page 159

2.6.1 Add Association

Sends an add association command to the Identity Vault, with the specified association.

Fields

Mode

Select whether this actions should be added to the current operation, or written directly to the
Identity Vault.

DN
Specify the DN of the target object or leave blank to use the current object.

Association

Specify the value of the association to be added.

Example
] |au:|u:| association ﬂ @
Select mode: |3
Enter CiK: | Source DME)
Enter association: * |Saurce Mamei)

2.6.2 Add Destination Attribute Value

Adds a value to an attribute on an object in the destination data store.

120 Policy Builder and Driver Customization Guide

Fields

Attribute Name
Specify the name of the attribute.

Class Name

(Optional) Specify the class name of the target object. Leave blank to use the class name from
the current object.

Mode

Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Object

Select the target object. This object can be the current object, or be specified by a DN or an
association.

Value Type

Select the syntax of the attribute value to be added.

Value
Specify the attribute value to be added.

Example

The example adds the destination attribute value to the OU attribute. It creates the value from the
local variables that are created. The rule is from the predefined rules that come with Identity
Manager 3.0. For more information, see “Command Transformation - Create Departmental
Container - Part 1 and Part 2” on page 62.

El " Command Transformation - Create Departmental Container - Part 1

Conditions

./ Condition Group 1

" if operation equal "add"

" setlocal variablel"target-containgt”, Destination DH{length="-2"1)

" set local variable"does-target-exist”, Destination Attribute{"objectdass", class name="0rganizationalUnit", drflocal Yariable("target-container" i)

= " Command Transformation - Create Departmental Container - Part 2

Conditions

" Condition Group 1

PN if |ocal variable 'does-target-exist’ available

And o iflocal variable 'does-target-exist' equal ™

" add destination object({dass name="organizationalUnit", direct="true", dn{Local Variable{"target-container"}1

" add destination attribute walue("ou”, direct="true", dn(Local Yariable("target-container™)), Parse DM dest-dn”, "dat”, length="1", start="-1", Local Yariable("target-container" 1))

Defining Policies By Using The Policy Builder With Designer

121

alal{=dd destination atbribute value

Enter atkribuke name: * |n:|u

Enter class name: |

Select mode: |write directly to destination datastore

Select object: |DN

Enter DM * |Lou:a| Wariabled"target-container")

Enter walue type:

Enter string: * |F‘arse DM("dest-dn", "dot”, length="1", start="-1", Local ¥ariat =

mldgldld o o

2.6.3 Add Destination Object

Creates a new object in the destination data store.

Fields

Class Name

Specify the class name of the object to be created.

Mode

Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

DN
Specify the DN of the object to be created.

Remarks

Any attribute values to be added as part of the object creation must be done in subsequent Section
2.6.2, “Add Destination Attribute Value,” on page 120 actions using the same DN.

Example

The example creates the department container that is needed. The rule is from the predefined rules
that come with Identity Manager 3.0. For more information, see “Command Transformation - Create
Departmental Container - Part 1 and Part 2 on page 62.

El " Command Transformation - Create Departmental Container - Part 1

Conditions

/" Condition Group 1

" iF operation equal "add"

" setlocal variablel"target-containet”, Destination DHlength="-2"4)

" set local variabled"does-target-exist”, Destination Attributei"objectdass”, class name="0rganizationalUnit", drfLocal Yariable("target-container" i)

122 Policy Builder and Driver Customization Guide

= + Command Transformation - Create Departmental Container - Part 2

Conditions

./ Condition Group 1

PPN if |0l variable 'does-target-exist’ available

and o if local variable 'does-target-exist' equal ™

" add destination ohject{dass name="organizationallnit", direct="true", dn{Local Variable("target-container"}i
" add destination attribute value("ou”, direct="true", dn{Local ¥ariable("target-container"y), Parse DNC"dest-dn”, "dot", length="1", start="-1", Local Yariable("target-container")

sl 5dd destination abject i
Enter class name: * | organizationallnit Q,
Select mode: |write directly to destination datastore j
Enker DM: * | Local Yariable("target-container™)

The Organizational Unit object is created. The value for the OU attribute is created from the
destination attribute value action that occurs after this action.

2.6.4 Add Source Attribute Value

Adds a value to an attribute on an object in the source data store.

Fields

Attribute Name
Specify the name of the attribute.

Class Name

(Optional) Specify the class name of the target object. Leave blank to use the class name from
the current object.

Object

Select the target object. This object can be the current object, or be specified by a DN or an
association.

Value Type
Select the syntax of the attribute value to be added.

Value

Specify the attribute value to be added.

Defining Policies By Using The Policy Builder With Designer 123

Example

Lo |ad|:| source attribuke value ﬂ i

Enter attribute name: * | Title

Enter class name: | User

Select object: |Current object

Enter value bype: | skring

Enter string: * | Manager

mldll o o

2.6.5 Add Source Object

Creates an object of the specified type to be created in the source data store. Any attribute values to
be added as part of the object creation must be done in subsequent Add Source Attribute Value
(page 123) actions using the same DN.

Fields

Class Name

Specify the class name of the object to be added.

DN
Specify the DN of the object to be added.
Example
Do |add source object = @
Enter class name: * | User Q,
Enter DN: * | UsersiJohn Smith|
W add source attribute walue("Title", class name="User", "Manager")
Do |al:|l:| source attribute value j 7
Enter attribute narme: * | Tide Q,
Enter dlass name: | User Q,
Select object: |Current object j
Enter value type: j
Enker string: * |"Manager"

124 Policy Builder and Driver Customization Guide

2.6.6 Append XML Element

Appends an element to a set of elements selected by an XPath expression.

Fields

Name

Specify the tag name of the XML element. This name can contain a namespace prefix if the
prefix has been previously defined in this policy.

XPATH Expression

Specify an XPath 1.0 expression that returns a node set containing the elements to which the
new elements should be appended.

Example

Do |append XML element ~ @

Enter name: * |jdbc:sql

Enter ¥PATH expression: * | ../ fjdbc:statement{last()]

Define new action below

Do |a|:||:|enl:| #ML bext ﬂ 6]

Enter ¥PATH expression: * | .. [fjdbc:staternentflast()])fjdbe:sql

Enter string: * | [UPDWATE dizzrnl.emp SET Friame"+Operation attribuke("Member

2.6.7 Append XML Text

Appends text to a set of elements selected by an XPath expression.

Fields

XPATH Expression

XPath 1.0 expression that returns a node set containing the elements to which the text should be
appended.

String
Specify the text to be appended.

Defining Policies By Using The Policy Builder With Designer 125

Example

Do |append XML element ~ @

Enter name: * |jdbc:sql

Enter ¥PATH expression: * | ../ fjdbc:statement{last()]

Define new action below

Do |a|:||:|enl:| #ML bext ﬂ 6]

Enter ¥PATH expression: * | .. [fjdbc:staternentflast()])fjdbe:sql

Enter string: * | [UPDWATE dizzrnl.emp SET Friame"+Operation attribuke("Member

2.6.8 Break

Ends processing of the current operation by the current policy.

Example

2.6.9 Clear Destination Attribute Value

Removes the all values of an attribute from an object in the destination data store.

Fields

Attribute Name
Specify the name of the attribute.

Class Name

(Optional) Specify the class name of the target object. Leave blank to use the class name from
the current object.

Mode

Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Object

126 Policy Builder and Driver Customization Guide

Select the target object. This object can be the current object, or be specified by a DN or an
association.

Example

Do |clear destination attribute value j i

Enter atkribute name: * |Memher

Cy
Enter class name: | 3,
il

Select mode: |al:|l:| ko current operation

Select object: |Current object j

2.6.10 Clear Operation Property

Clears any operation property the current operation.

Fields

Property Name

Specify the name of the operation property to clear.

Example

Do |c|ear operation properby j @

Enter property name; * |mvStDredPerterv

2.6.11 Clear Source Attribute Value

Removes the all values of an attribute from an object in the source data store.

Fields

Attribute Name
Specify the name of the attribute.

Class Name

(Optional) Specify the class name of the target object. Leave blank to use the class name from
the current object.

Object

Defining Policies By Using The Policy Builder With Designer 127

Select the target object. This object can be the current object, or be specified by a DN or an
association.

Example

Do |c|ear source attribuke value ﬂ @

Enter atkribuke name: * | Member

Enter class name: |

o p

Select object: |Current ohject

2.6.12 Clone By XPath Expressions

Appends deep copies of a set of XML nodes selected by an XPath expression to a set of elements
selected by another XPath expression.

Fields

Source XPath Expression

Specify the XPath 1.0 expression that returns the node set containing the nodes to be copied.

Destination XPath Expression

Specify the XPath 1.0 expression that returns a node set containing the elements to which the
copied nodes are to be appended.

Example

Do |c|0ne by XPATH expressions j @

Enter source ¥PATH expression: * | @

FARPY

Enter destination ¥PATH expression: * | Ldmodify[last)]

2.6.13 Clone Operation Attribute

Copies all occurrences of an attribute within the current operation to a different attribute within the
current operation.

Fields

Source Name

Specify the name of the attribute to be copied from.

128 Policy Builder and Driver Customization Guide

Destination Name

Specify the name of the attribute to be copied to.

Example

The example adds a User object to the appropriate group, Employee or Manager, based on Title. It
also creates the group, if needed, and sets up security equal to that group. The policy is Govern
Groups for User Based on Title Attribute, and it is available for download from Novell’s support
Web site. For more information, see “Downloadable Identity Manager Policies” on page 36.

Wl Sct local variables to test existence of groups and for placement

" Create ManagersGroup, if needed
v Create EmployeesGroup, if needed

=l o IF Title indicates Manager, add to ManagerGroup and set rights

Condikions

" Condition Group 1
W if class name equal "User"

and o if operation atbribute 'TiHe' match " *manager, *"

W set destination attribute value!"Group Membership”, Local Yariable! " manager-group-dn")

" clone operation attributel"Group Membership”, "Security Equals™)

+ IF Title does not indicate Manager, add to EmployeeGroup and set rights

(Wl clone operation attribute IEJ:I
Enter source narne: * | Group Membership C%
Enter destination name: | Security Equals Q

The Clone Operation Attribute is taking the information from the Group Membership attribute and
adding that to the Security Equals attribute so the values are the same.

2.6.14 Delete Destination Object

Deletes an object in the destination data store.

Fields
Mode

Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Object

Select the target object. This object can be the current object, or be specified by a DN or an
association.

Defining Policies By Using The Policy Builder With Designer 129

Example

(Wl idelete destination object

Select mode: |adu:| ko current operation

Led L]

Select object: |Current object

2.6.15 Delete Source Object

Deletes an object in the source data store.

Fields

Mode

Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Object

Select the target object to delete in the source data store. This object can be the current object,
or be specified by a DN or an association.

Example

s |l:|e|ete source object j i

Select object: |DN

Enter DN: * | UsersJohn Smith|

m L

2.6.16 Find Matching Object

Finds a match for the current object in the destination data store.

Fields

Scope

Select the scope of the search. The scope might be an entry, a subordinates, or a subtree.

DN
Specify the DN that is the base of the search.

Match Attributes

Specify the attribute values to search for.

130 Policy Builder and Driver Customization Guide

Remarks
Find Matching Object is only valid when the current operation is an add.

The DN argument is required when scope is “entry”, and is optional otherwise. At least one match
attribute is required when scope is “subtree” or “subordinates”.

The results are undefined if scope is entry and there are match attributes specified. If the destination
data store is the connected application, then an association is added to the current operation for each
successful match that is returned. No query is performed if the current operation already has a non-
empty association, thus allowing multiple find matching object actions to be strung together in the
same rule.

If the destination data store is the Identity Vault, then the destination DN attribute for the current
operation is set. No query is performed if the current operation already has a non-empty destination
DN attribute, thus allowing multiple find matching object actions to be strung together in the same
rule. If only a single result is returned and it is not already associated, then the destination DN of the
current operation is set to the source DN of the matching object. If only a single result is returned
and it is already associated, then the destination DN of the current operation is set to the single
character ￼. If multiple results are returned, then the destination DN of the current
operation is set to the single character �.

Example

The example matches on Users objects using the attributes CN and L. The location where the rule is
searching starts at the Users container and adds the information stored in the OU attribute to the DN.
The rule is from the predefined rules that come with Identity Manager 3.0. For more information,
see “Matching - By Attribute Value” on page 79.

="l Matching - by attribute value

Conditions

/" Condition Group 1

" if class name equal "User"

" find makching object{scope="subtree", dn("Users"+attribute"OU")), makchi"CN"), match{"L"))

(i} |Finu:| matching object ﬂ @

Select scope: |sub0rdinates

=l
Enter DM: | "Users"+attribubel"OL")

Enker match attributes: |CNJ L

When you click the Argument Builder icon, the Match Attribute Builder comes up. You specify the
attribute you want to match in the builder. This examples uses the CN and L attributes.

Defining Policies By Using The Policy Builder With Designer 131

+ 8|4 1@

Match Atributes

| cn (o} |Choose from current Object ﬂ
[1] (o} |Other Walue ﬂ
Select Yalue Type: |string ﬂ

Enter String: | "Prova”

2.6.17 For Each

Repeats a set of actions for each node in a node set.

Fields

Node Set
Specify the node set.

Action

Specify the actions to perform on each node in the node set.

Remarks
The current node is a different value for each iteration of the actions, if a local variable is used.

If a node in the node set is an entitlement, then the for each implicitly performs an “Implement
Entitlement” on page 135 action.

Example
Cio |F|:|r each j 7
Enter niode sek: * | Added Entitlement{"GEroup™
Enter action: * | do-add-dest-attr-value

The following is an example of the Argument Actions Builder being used to provide the action
argument:

132 Policy Builder and Driver Customization Guide

Action List

+ 8|43 @

v Do |add destination attribute value j @

Enter attribute name: * | Member

Enter class name: | Group

Select mode: |add to current operation

Select object: |DN

Enter DN: * |L0cal ‘ariable{"current-node™)

Enter value bype: | string

mldg 5 o

Enter string: * | Destination DM{)

* Required
2.6.18 Generate Event
Sends a user-defined event to Novell Audit.
Fields
ID
Specify the ID of the event. The ID must be an integer in the range of 1000-1999.
Level
Select the level of the event.
Level Description
log-emergency Events that cause the Metadirectory engine or driver to shut down.
log-alert Events that require immediate attention.
log-critical Events that can cause parts of the Metadirectory engine or driver to
malfunction.
log-error Events describing errors that can be handled by the Metadirectory
engine or driver.
log-warning Negative events not representing a problem.
log-notice Events (positive or negative) an administrator can use to understand or
improve use and operation.
log-info Positive events of any importance.
log-debug Events of relevance for support or engineers to debug the operation of

the Metadirectory engine or driver.

Strings

Specify User-defined string, integer, and binary values to include with the event. These values

are provided using the Named String Builder.

String Name Description

target The object being acted upon.

Defining Policies By Using The Policy Builder With Designer

133

String Name

Description

target-type

subTarget
text1
text2
text3
value
value3

data

Integer specifying a predefined format for the target. Predefined values
for target-type are currently:

* 0=None

* 1 = Slash Notation
» 2 = Dot Notation

» 3 = LDAP Notation

The subcomponent of the target being acted upon.

Text entered here is stored in the text1 event field.

Text entered here is stored in the text2 event field.

Text entered here is stored in the text3 event field.

Any number entered here is stored in the value event field.
Any number entered here is stored in the value3 event field.

Data entered here is stored in the blob event field.

Remarks

The Novell Audit event structure contains a target, a subTarget, three strings (textl, text2, text3),
two integers (value, value3), and a generic field (data). The text fields are limited to 256 bytes, and
the data field can contain up to 3 KB of information, unless a larger data field is enabled in your

environment.

Example

The example has four rules that implement a placement policy for User objects based on the first
character of the Surname attribute. It generates both a trace message and a custom Novell Audit
event. The Generate Event action is used to send an event Novell Audit. The policy name is Policy
to Place by Surname, and it is available for download from Novell’s support Web site. For more
information “Downloadable Identity Manager Policies” on page 36.

134 Policy Builder and Driver Customization Guide

Pl Setup Local Yariables

El " Surname A-I: place in Users1

Conditions

+/ Condition Group 1
" if class name equal "User"

and o if operation attribute 'Surname’ match "[a-i].*"

" set operation destination DM{dn("TraininglUsers! Activel Users1"+""+Operation Attribuked"CN"))

o ftrace message{color="vellow", Local Variable("LYUsers1"1)

" generate event(id="1000", textl=Local Yariable("LyvUsers1"))

v Surname J-R: place in Users2

" Surname S-2: place in Users3

Do [eEEE: rik 7
Enter ID: * | 1000
Select level: |informational ﬂ
Enter strings: |text1

The following is an example of the Named String Builder being used to provide the strings
argument.

Mame String ¥alue

j | Local Wariablel"LyUsers1")

Generate Event is creating an event with the ID 1000 and displaying the text that is generated by the
local variable of LVUserl. The local variable LVUserl is the string of User:Operation Attribute “cn”
+” added to the “+”Training\Users\Active\Users1”+” container”. The event reads User:jsmith added
to the Training\Users\Active\Users1 container.

2.6.19 Implement Entitlement

Designates actions that implement an entitlement so that the status of those entitlements might be
reported to the agent that granted or revoked the entitlement.

Fields
Node Set

Node set containing the entitlements being implemented by the specified actions.

Action

Actions that implement the specified entitlements.

Defining Policies By Using The Policy Builder With Designer 135

Example

Lo |implement entitlernent j i
Enter node set: * | Removed Entitlement(®Account™)|
Enter action: * |d0-add-dest-attr-value

The following is an example of the Argument Actions Builder, used to provide the action argument:

Action List + % |4 3@

v Do |add destination attribute value j Q)]

Enter attribute name: * | Login Disabled

Enter class name: | User

Select mode: |add ko current operation

Select object: |DN

Enter DN: * | Local Yariable("current-node")

Enter walue bype: | string

Enter string: * | Destination D)

mldgldld s o

* Required

2.6.20 Move Destination Object

Moves an object in the destination data store.

Fields
Mode

Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Class Name

(Optional) Specify the class name of the object to be moved. Leave blank to use the class name
from the current object.

Object to Move

Select the object to be moved. This object can be the current object, or can be specified by a
DN or an association.

Container to Move to

Select the target container. This container is specified by a DN or an association.

Example

The example contains a single rule that disables a user’s account and moves it to a disabled
container when the Description attribute indicates the user is terminated. The policy is named

136 Policy Builder and Driver Customization Guide

Disable User Account and Move When Terminated, and it is available for download from Novell’s
support Web site. For more information, see “Downloadable Identity Manager Policies” on page 36.

="l On Termination, disable user and move to Disabled container

Conditions

" Condition Group 1
if operation equal "modify"
and 7 if class name equal "User”

and o if operation atkribute 'Description’ match "~terminated, "

o set destination atkribute valuel"Login Disabled”, direct="trus", "True")

" move destination objectiwhen="after", dni"UsersiDisabled"))

Irove destination abject @

Select mode: |al:||:| after current operation

Select object to move: |Current object

Lol L] Le

Select container to move to; |DN

Enter DM: * | "UsersiDisabled”

The policy checks to see if it is a modify event on a User object and if the attribute Description
contains the value of terminated. If that is the case, then it sets the attribute of Login Disabled to true
and moves the object to the User\Disabled container.

2.6.21 Move Source Object

Moves an object in the source data store.

Fields

Object to Move

Select the object to be moved. This object can be the current object, or can be specified by a
DN or an association.

Container to Move to

Select the target container. This container is specified by a DN or an association.

Defining Policies By Using The Policy Builder With Designer

137

Example

Do |n'u:uve source object j @I

Select object ko move: |Current ohject

Select container ko move to: |DN

m L L

Enter DM: * | Users{InActive|

2.6.22 Reformat Operation Attribute

Reformats all values of an attribute within the current operation using a pattern.

Fields

Name

Specify the name of the attribute.

Value Type

Specify the syntax of the new attribute values.

Value

Specify a value to use as a pattern for the new format of the attribute values. If the original
value is needed to constructed the new value, it must be obtained by referencing the local
variable current-value.

Example

The example reformats the telephone number. It changes it from (nnn)-nnn-nnnn to nnn-nnn-nnnn.
The rule is from the predefined rules that come with Identity Manager 3.0. For more information,
see “Input or Output Transformation - Reformat Telephone Number from (nnn) nnn-nnnn to nnn-
nnn-nnnn” on page 74.

=+ Input or Qutput Transformation - Reformat Telephone Number from {nnn) nnn-nnnn bo non-nnn-nnnn

Conditions

/" Condition Group 1

Define new condition here

| " reformat operation attribute'phone”, Replace Fiest(" 300 a0 ns* Ot A -0 ddig”, "$1-$2-43", Local Yariable"current-value")

Do |reF|:|rmat operation attribute j @
Enter name: * | phone Q,
Enter value type: ﬂ

Enter string: * | Replace First({"~y((\dhdidis*(idid\d)-Cichiidddg”, "$1-42-42

138 Policy Builder and Driver Customization Guide

The action reformat operation attribute changes the format of the telephone number. The rule uses
the Argument Builder and regular expressions to change how the information is displayed.

2.6.23 Remove Association

Sends a remove association command to the Identity Vault.

Fields

Mode

Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Association
Specify the value of the association to be removed.
Example

The example takes a delete operation and disables the User object instead. It transforms the event.
The rule is from the predefined rules that come with Identity Manager 3.0. For more information,
see “Command Transformation - Publisher Delete to Disable” on page 64.

El " Command Transformation - Publisher Delete to Disable

Conditions

ondition Group
./ Condition G 1
" if operation equal "delete"

gr o if class name equal "User"

" set destination attribute valuei"Login Disablzd”, "true")

W remove assocation{association(Associakion] 1))

Do |remwe association j @
Select mode: |ad|:| ko current operation j
Enter association: * | Association()

When a delete operation occurs for a User object, the value of the attribute Login Disabled is set to
true and the association is removed from the object. The association is removed because the
associated object in the connected application no longer exists.

2.6.24 Remove Destination Attribute Value

Removes an attribute value from an object in the destination data store.

Fields

Attribute Name

Defining Policies By Using The Policy Builder With Designer 139

Specify the name of the attribute.

Class Name

(Optional) Specify the class name of the target object. Leave blank to use the class name from
the current object.

Mode

Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Object

Select the target object. This object can be the current object, or can be specified by a DN or an
association.

Value Type

Specify the syntax of the attribute value to be removed.

Value

Specify the value of the new attribute.

Example

Do |remu:uve destination attribute walue j 6]

Enter atkribute name: * | Title:

Enter class name: | Lser

Select mode: |au:|u:| to current operation

Select object: |Current object

Enter walue type: | skring

m e o o

Enter string: * | Destination DM

2.6.25 Remove Source Attribute Value

Removes the specified value from the named attribute on an object in the source data store.

Fields

Attribute Name
Specify the name of the attribute.

Class Name

(Optional) Specify the class name of the target object. Leave blank to use the class name from
the current object.

Object

140 Policy Builder and Driver Customization Guide

Select the target object. This object can be the current object, or can be specified by a DN or an

association.

Value Type

Specify the syntax of the attribute value to be removed

Value

Specify the attribute value to be removed.

Example

Do |remu:w'e source atkribute value - @

Enter attribute name: * | Title

Enker class name: | Lser

Select ohject: |Current ohject

Enter value type: | skring

Enter string: * |Destination D)

2.6.26 Rename Destination Object

Renames an object in the destination data store

Fields

Mode

Select whether this action should be added to, before, or after the current operation, or written

directly to the destination data store.

Object

Select the target object. This object can be the current object, or can be specified by a DN or an

association.

String

Specify the new name of the object.

Defining Policies By Using The Policy Builder With Designer

m 5 o

141

Example

Do |rename destination objeck j 6l

Select mode: |au:|d ko current operation

Select object: |DN

Enker DN; * |Users'gJohn Smith

m @ L

Enker string: * | Johriny

2.6.27 Rename Operation Attribute

Renames all occurrences of an attribute within the current operation.

Fields

Source Name

Specify the original attribute name.

Destination Name

Specify the new attribute name.

Example

Do |rename operakion attribute ﬂ @

Enter source name: * |Surname

Jogye

Enter destination name: | =N

2.6.28 Rename Source Object

Renames an object in the source data store.

Fields

Object

Select the target object. This object can be the current object, or specified by a DN or an
association.

String

Specify the new name of the object.

142 Policy Builder and Driver Customization Guide

Example

rename source objeck 6]

Select object: |DN

Enter DM: * | “UsersiJohn Smith”

mm

Erter string: * | “Johrny"

2.6.29 Send Email

Sends an e-mail notification.

Fields

ID
(Optional) Specify the User ID in the SMTP system sending the message.

Server

Specify the SMTP server name.

Password

(Optional) Specify the SMTP server account password.

IMPORTANT: The value of the password attribute is stored in clear text.

Type
Select the e-mail message type.
Strings

Specify the values containing the various e-mail addresses, subject, and message. The
following table lists valid named string arguments:

String Name Description

to Adds the address to the list of e-mail recipients; multiple instances are
allowed.

cc Adds the address to the list of CC e-mail recipients; multiple instances
are allowed.

bcc Adds the address to the list of BCC e-mail recipients; multiple instances
are allowed.

from Specifies the address to be used as the originating e-mail address.

reply-to Specifies the address to be used as the e-mail message reply address.

subject Specifies the e-mail subject.

Defining Policies By Using The Policy Builder With Designer 143

String Name Description

message Specifies the content of the e-mail message.
encoding Specifies the character encoding to use for the e-mail message.
Example
Do |send email = @

Enter IC: | Lser

Enter server: * | smkp.company.cam

Enter password; | #stss]

Select message type: |te><t

Enker skrings: | to, cc, bee, From, subject, message

The following is an example of the Named String Builder being used to provide the strings

arguments:
Name String Yalue + 8|4 & @
|to j |"to_userl@company.com"
|cc j |"cc_user@c0mpany.com"
|bcc j |"bcc_user@company.com"
|From j |"From_user@cnmpany.com"
|subject j |"This is the e-mail subject”
|message j Hl'his is the e-mail body

2.6.30 Send Email From Template

Generates an e-mail notification using a template.

Fields

Notification DN
Specify the slash form DN of the SMTP notification configuration object.

Template DN
Specify the slash form DN of the e-mail template object.

Password

(Optional) Specify the SMTP server account password.

IMPORTANT: The value of the password attribute is stored in clear text.

144 Policy Builder and Driver Customization Guide

Strings
Specify additional fields for the e-mail message. The following table contains reserved field
names, which specify the various e-mail addresses:

String Name Description

to Adds the address to the list of e-mail recipients; multiple instances are
allowed.

cc Adds the address to the list of CC e-mail recipients; multiple instances
are allowed.

bcc Adds the address to the list of BCC e-mail recipients; multiple instances
are allowed.

reply-to Specifies the address to be used as the e-mail message reply address.

encoding Specifies the character encoding to use for the e-mail message.

Each template might also define fields that can be replaced in the subject and body of the email

message.
Example
Do |send email from template j i
Enter notification DM: * | Securityt Defaul: Motification Collection Q
Enter kermplake DR; * | SecuritytDefault Motification CollectioniPassword Set Fail Q

Enker password: |

Enter strings: | ko, cc, manager, surname, given-narme

The following is an example of the Named String Builder being used to provide the strings
argument:

Name String Yalue + %@ 5@
|t0 j | "to_user@companty .com”
|cc j | "ec_user@company.com”
= | [l ones”
| surname | [smith

| [

2.6.31 Set Default Attribute Value

Adds default values to the current operation (and optionally to the current object in the source data
storedata store) if no values for that attribute already exist. It is only valid when the current
operation is add.

Defining Policies By Using The Policy Builder With Designer 145

Fields

Attribute Name
Specify the name of the default attribute.

Write Back

Select whether or not to also write back the default values to source data store.

Values

Specify the default values of the attribute.

Example

The example sets the default value for the attribute company. You can set the value for an attribute
of your choice. The rule is from the predefined rules that come with Identity Manager 3.0. For more
information, see “Creation - Set Default Attribute Value” on page 68.

ER¥l Creation - Set Default Attribute ¥alue

Conditions

/. Condition Group 1

W if class name equal "User"

o set default atkribute valued"company”, write-back="trus", "Digital &irlines Inc,")

Do |set default attribute walue j 6]
Enker attribute name: * |campany Q
Write back: |true ﬂ

Enter argument values: * | B[R ETyT=E0 5T

Type Argument ¥alues

j | "Digital Airlines Inc."

To build the value, the Argument Value List Builder is launched. See “Argument Value List Builder”
on page 55 for more information on the builder. You can set the value to what is needed. In this case,
the Argument Builder is used and the text is set to be the name of the company.

2.6.32 Set Destination Attribute Value

Adds a value to an attribute on an object in the destination data store, and removes all other values
for that attribute.

Fields

Attribute Name
Specify the name of the attribute.

146 Policy Builder and Driver Customization Guide

Class Name

(Optional) Specify the class name of the target object in the destination data store. Leave blank
to use the class name from the current object.

Mode

Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Object

Select the target object. This object can be the current object, or be specified by a DN or an
association.

Value Type

Select the syntax of the attribute value to set.

Value

Specify the attribute values to set.

Example

The example takes a delete operation and disables the User object instead. The rule is from the
predefined rules that come with Identity Manager 3.0. For more information, see “Command
Transformation - Publisher Delete to Disable” on page 64.

El " Command Transformation - Publisher Delete to Disable

Conditions

ondition Group
./ Condition G 1
" if operation equal "delete"

gr o if class name equal "User"

" set destination attribute valuei"Login Disablzd”, "true")

W remove assocation{association(Associakion] 1))

Do |set destination attribute value j 7

Enter atkribute name: * | Login Disabled

Enter class name: |

Select mode: |add ko current operation

Select object: |Current object

Enter value bype:

Enter string: * | true

m Wl o p

The rule sets the value for the attribute of Login Disabled to true. The rule uses the Argument
Builder to add the text of true for the value of the attribute. See “Argument Builder” on page 52 for
more information about the builder.

Defining Policies By Using The Policy Builder With Designer 147

2.6.33 Set Destination Password

Sets the password for the current object in the destination data store.

Fields
Mode

Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Object

Select the target object. This object can be the current object, or be specified by a DN or an
association.

String
Specify the password to be set.

Example

The example sets a default password for a User object that is created. The rule is from the predefined
rules that come with Identity Manager 3.0. For more information, see “Creation - Set Default
Password” on page 70.

E + Creation - Set Default Password

Conditions

" Condition Group 1

W if class name equal "User"

" set destination password{Attribute("Given Mame")+attribute" Surname"))

Do |set destination password j 7
Select mode: |add ko current operation j
Erter string: * | Aktribute"Given Nams"i+Aktributel"Surnams")|

When a User object is created, the password is set to the Given Name attribute plus the Surname
attribute.

2.6.34 Set Local Variable

Sets a local variable.

148 Policy Builder and Driver Customization Guide

Fields

Variable Name

Specify the name of the local variable.

Variable Type
Select the type of local variable. This can be a string, an XPath 1.0 Node Set, or a Java object.

Value

Specify the value of the local variable.

Example

The example adds a User object to the appropriate group, Employee or Manager, based on Title. It
also creates the group, if needed, and sets up security equal to that group. The policy name is Govern
Groups for User Based on Title, and it is available for download from Novell’s support Web site. For
more information, see “Downloadable Identity Manager Policies” on page 36.

SR St local variables to test existence of groups and for placement

Conditions

+ Condition Group 1
o if class name equal "User"
And
" Condition Group 2
" if operation equal "add"
Or " if operation equal "modify"

set local variable"manager-group-dn', "UsersiManagersGroup™)

set local variabled"emploves-group-dn”, "Users\EmploveesGroup™)

v
v set local variabled" manager-group-infa", Destination Attribute("Cbject Class", dniLocal Yariable{"manager-group-dn™)l)
v
v

set local variabled"employee-group-info”, Destination Attribute!"Object Class", dniLocal Yariable!"employvee-group-dn™)ii)

Enter wariable name: * | manager-group-info C%
Select wariable bype: |String j

Enter string: * |Destination artribute"Object Class", dnilocal Yariabled " manag

The local variable is set to the value that is in the User object’s destination attribute of Object Class
plus the Local Variable of manager-group-info. The Argument Builder is used to construct the local
variable. See “Argument Builder” on page 52 for more information.

2.6.35 Set Operation Association

Sets the association value for the current operation.

Defining Policies By Using The Policy Builder With Designer 149

Fields

Association

Provide the new association value.

Example

(]} |set operation association j @

Enter association: * | Source Mamef |

2.6.36 Set Operation Class Name

Sets the object class name for the current operation.

Fields

String

Provide the new class name.

Example

Do |set operation class name | @

Enter string: * |User

2.6.37 Set Operation Destination DN

Sets the destination DN for the current operation.

Fields
DN

Specify the new destination DN.
Example

The example places the objects in the Identity Vault using the structure that is mirrored from the
connected system. You need to define at what point the mirroring begins in the source and
destination data stores. The rule is from the predefined rules that come with Identity Manager 3.0.
For more information, see “Creation - Set Default Attribute Value” on page 68.

150 Policy Builder and Driver Customization Guide

E + Placement - Publisher Mirrored

Conditions

" Condition Group 1

W if source DM in subtree "[Enter base of source hierarchy]"

" set local variable{"dest-base", "[Enter base of destination hierarchy]

" set operation destination DN{dnfLocal Yariable"dest-base+""+Unmatched Source DM{convert="true"1)

Do |set operation deskination Db j @

Enter DM * | Local Warisblel"dest-base")+""+Unmatched Source DMN{conwver

The rule sets the operation destination DN to be the local variable of the destination base location
plus the source DN.

2.6.38 Set Operation Property

Sets an operation property. An operation property is a named value that is stored within an
operation. It is typically used to supply additional context that might be needed by the policy that
handles the results of an operation.

Fields

Property Name
Specify the name of the operation property.

String
Specify the name of the operation property.

Example

Do |set operation property j @I

Enter property name: * |mv5tu:uredPro|:uerty

Enker string: * |tDkEl'l'5tril'l'§(:'|

2.6.39 Set Operation Source DN

Sets the source DN for the current operation.

Fields
DN

Defining Policies By Using The Policy Builder With Designer 151

Specify the new source DN.

Example

D |set operation source DM ﬂ @

Enter DN * | "MoveliUsers"+attributel"CH")

2.6.40 Set Operation Template DN

Sets the template DN for the current operation to the specified value. This action is only valid when
the current operation is add.

Fields

DN
Specify the template DN.

Example

The example applies the Manager template if the Title attribute contains the word Manager. The
name of the policy is Policy: Assign Template to User Based on Title, and it is available for
download from Novell’s support Web site. For more information, see “Downloadable Identity
Manager Policies” on page 36.

IS £\ssign Manager template if Title contains "Manager™

Conditions

" Condition Group 1

W if class name equal "User"
and o if operation attribute 'Tite' available

and o if operation attribute 'Title' match " *manager, *"

" set operation template DM{dn{"Users\Manager Templake'"y)

" Assign Employee template if Title does not contain "Manager”

Do |set operation template DM j @

Enker DM: * | "UsersiManager Templake"

The template Manager Template is applied to any User object that has the attribute of Title available
and it contains the word manager somewhere in the title. The policy uses regular expressions to find
all possible matches.

152 Policy Builder and Driver Customization Guide

2.6.41 Set Source Attribute Value

Adds a value to an attribute on an object in the source data store, and removes all other values for
that attribute.

Fields
Attribute Name
Specify the name of the attribute.

Class Name

(Optional) Specify the class name of the target object in the source data store. Leave blank to
use the class name from the current object.

Object

Select the target object. This object can be the current object, or be specified by a DN or an
association.

Value Type

Select the syntax of the attribute value.

Value
Specify the attribute value to be set.

Example

The example detects when an e-mail address is changed and sets it back to what it was. The policy
name is Policy: Reset Value of the E-mail Attribute, and it is available for download from Novell’s

support Web site. For more information, see “Downloadable Identity Manager Policies” on page 36.

=¥l Push back on email changing

Conditions

/" Condition Group 1
i class name equal "User"

&nd o i operation attribute 'Email' changing

st source attribube value("Email", Destination Attribuke"Tnternet EMail Address"))

" shrip operation aktribubed"Ernaily

] |set source attribute value j 7

Enter atkribuke value: * | Email

Enter class name: |

Select object: |Current ohject

Enter value bype:

Enter string: * | Destination Attribube! ' Internet EMal Address")

mldld o o

Defining Policies By Using The Policy Builder With Designer

153

The action takes the value of the destination attribute Internet EMail Address and sets the source
attribute of Email to this same value.

2.6.42 Set Source Password

Sets the password for the current object in the source data store.

Fields

String
Specify the password to be set.

Example

Do |set sOUrCE password j @

Enter string: * | Attribute("Given Mame")+Attribute"Surname")

2.6.43 Set XML Attribute

Sets an XML attribute on a set of elements selected by an XPath expression.

Fields

Name

Specify the name of the XML attribute. This name can contain a namespace prefix if the prefix
has been previously defined in this policy.

XPATH Expression

XPath 1.0 expression that returns a node set containing the elements on which the XML
attribute should be set.

String
Specify the value of the XML attribute.

154 Policy Builder and Driver Customization Guide

Example

Do [set %ML attribute - @
Enter name: * |cert-il:|
Enter XPATH expression: * | .
Enter string; * |"l::'I,Intus'l,duminu'l,data'l,eng.id"
Define new action below
Do [set %ML attribute - @
Enter name: * |cet-pwd
Enter XPATH expression: * | .
Enter string; * |certify2eng

2.6.44 Status

Generates a status notification.

Fields

Level

Specify the status level of the notification.

Message

Provide the status message by using the Argument Builder.

Remarks

If level is retry, then the policy immediately halts processing of the input document and schedules a

retry of the event currently being processed.

If level is fatal, then the policy immediately halts processing of the input document and initiates a

shutdown of the driver.

If the current operation has an event-id, then that event-id is used for the status notification,

otherwise there is no event-id reported.

Defining Policies By Using The Policy Builder With Designer

155

Example

(]} |status ﬂ @

Enker level: * | Warning

Message: * | Source DM{)+"operation vetoed on out-of-scope object|

m L

2.6.45 Strip Operation Attribute

Strips all occurrences of an attribute from the current operation.

Fields

Name

Specify the name of the attribute to be stripped.

Example

The example detects when an e-mail address is changed and sets it back to what it was. The policy
name is Policy: Reset Value of the E-mail Attribute, and it is available for download from Novell’s
support Web site. For more information, see “Downloadable Identity Manager Policies” on page 36.

="l Push back on email changing

Conditions

/" Condition Group 1

W i class name equal "User"

and o~ i operation atkribute 'Ermail' changing

W set source attribute value"Email", Destination Attribuke"Internet EMail Address"))

" strip operation attribubed Emnail"y

Do |stri|:u operation attribute j @

Enter name: * | Email Q,

The action strips the attribute of Email. The value that is kept is what was in the destination Email
attribute.

2.6.46 Strip XPath

Strips nodes selected by an XPath expression.

156 Policy Builder and Driver Customization Guide

Fields

XPATH Expression
Specify the XPath 1.0 expression that returns the node set containing the nodes to be stripped.

Example

Da |stri|:| ¥PATH expression j IE:I

Enter ¥PATH expression: * | *[i@attr-name="0L1"]

2.6.47 Trace Message

Sends a message to DSTRACE.

Fields

Level

Specify the trace level of the message. The default level is 0. The message only appears if the
specified trace level is less than or equal to the trace level configured in the driver.

For information on how to set the trace level on the driver, see “Viewing Identity Manager
Processes” in the Novell Identity Manager 3.0 Administration Guide.
Color

Select the color of the trace message.

String

Specify the value of the trace message.

Example

The example has four rules that implement a Placement policy for User objects based on the first
character of the Surname attribute. It generates both a trace message and a custom Novell Audit
event. The Trace Message action is used to send a trace message into DSTRACE. The policy name
is Policy to Place by Surname, and it is available for download from Novell’s support Web site. For
more information “Downloadable Identity Manager Policies” on page 36.

Defining Policies By Using The Policy Builder With Designer 157

Pl Setup Local Yariables

El " Surname A-I: place in Users1

Conditions

+/ Condition Group 1
" if class name equal "User"

and o if operation attribute 'Surname’ match "[a-i].*"

" set operation destination DM{dn("TraininglUsers! Activel Users1"+""+Operation Attribuked"CN"))

o ftrace message{color="vellow", Local Variable("LYUsers1"1)

" generate event(id="1000", textl=Local Yariable("LyvUsers1"))

v Surname J-R: place in Users2

" Surname S-2: place in Users3

Do |trace message ﬂ 6]
Enter level: |
Select color: | wellow j
Enter string: * |LDcaI Wariabled"LYLIsers1")

The action sends a trace message to DSTRACE. The contents of the local variable is LVUsers1 and
it shows up in yellow in DSTRACE.

2.6.48 Veto

Vetoes the current operation.

Example

The example excludes all events that come from the specified subtree. The rule is from the
predefined rules that come with Identity Manager 3.0. For more information, see “Event
Transformation - Scope Filtering - Exclude Subtrees” on page 72.

= " Event Transformation - Scope Filtering - Exclude subtree{s)

Condikions

" Condition Group 1

" if source DM in subtree "[Enter a subtres ko exclude]”

158 Policy Builder and Driver Customization Guide

oo [EEIN -

The action vetoes all events that come from the specified subtree.

2.6.49 Veto If Operational Attribute Not Available

Conditionally cancels the current operation and ends processing of the current policy, based on the
availability of an attribute in the current operation.

Fields

Name

Specify the name of the attribute.

Example

The example does not allow all User objects to be created unless the attributes Given Name,
Surname, Title, Description, and Internet EMail Address are available. The policy name is Policy to
Enforce the Presences of Attributes and it is available for download from Novell’s support Web site.
For more information, see “Downloadable Identity Manager Policies” on page 36.

STl User required attributes: First/Last Name, Title, Description, Email

Conditions

/. Condition Group 1

W if class name equal "User"

(actons

weto if operation attribuke not availabled"Given Mame")
weto if operation atkribuke not availabled"Surname")
weto if operation atkribuke not availabled"Title")

weto iF operation attribute not availabled"Description™)

ANENENENEN

weko iF operation attribute not availabled"Internet EMail Address")

Do |veto if operation attribute nok available j @

Enker name: * | Given Mame| C%

The actions vetoes the operation if the attributes of Given Name, Surname, Title, Description, and
Internet Email Address are not available.

2.7 Noun Tokens

This section contains detailed reference to all noun tokens available using the Argument Builder
interface.

Defining Policies By Using The Policy Builder With Designer

159

» Section 2.7.1, “Added Entitlement,” on page 160

» Section 2.7.2, “Association,” on page 160

 Section 2.7.3, “Attribute,” on page 161

* Section 2.7.4, “Class Name,” on page 162

» Section 2.7.5, “Destination Attribute,” on page 162

» Section 2.7.6, “Destination DN,” on page 163

» Section 2.7.7, “Destination Name,” on page 164

» Section 2.7.8, “Entitlement,” on page 164

 Section 2.7.9, “Global Configuration Value,” on page 165
 Section 2.7.10, “Local Variable,” on page 165

» Section 2.7.11, “Named Password,” on page 166

» Section 2.7.12, “Operation,” on page 166

» Section 2.7.13, “Operation Attribute,” on page 167

» Section 2.7.14, “Operation Property,” on page 167

» Section 2.7.15, “Password,” on page 168

* Section 2.7.16, “Removed Attribute,” on page 168

» Section 2.7.17, “Removed Entitlement,” on page 168
» Section 2.7.18, “Source Attribute,” on page 168

» Section 2.7.19, “Source DN,” on page 169

* Section 2.7.20, “Source Name,” on page 169

* Section 2.7.21, “Text,” on page 170

* Section 2.7.22, “Unique Name,” on page 171

» Section 2.7.23, “Unmatched Source DN,” on page 172
» Section 2.7.24, “XPath,” on page 173

2.7.1 Added Entitlement
Expands to the values of an entitlement granted in the current operation.

Fields

Name

Name of the entitlement.

Example

48 hdded Entitlement("managzer")

2.7.2 Association

Expands to the association value from the current operation.

160 Policy Builder and Driver Customization Guide

Example

The example is from the predefined rules that come with Identity Manager 3.0. For more
information on the predefined rule, see “Command Transformation - Publisher Delete to Disable”
on page 64.

The action of Remove Association uses the Association token to retrieve the value from the current
operation. The rule removes the association from the User object so that any new events coming
through do not affect the User object.

=l " Command Transformation - Publisher Delete to Disable

Conditions

+/ Condition Group 1
" if operation equal "delete”

ar " if class name equal "User"

" set destination attribute valuei"Login Disabled”, "true"

W remove association{association(Association)))

o] tzzociation()

2.7.3 Attribute

Expands to the value of an attribute from the current object in current operation and in the source
data store. It can be logically thought of as the union of the operation attribute token and the source
attribute token. It does not include the removed values from a modify operation.

Fields

Name

Specify the name of the attribute.

Example

The example is from the predefined rules that come with Identity Manager 3.0. For more
information, see “Creation - Set Default Password” on page 70.

The action of Set Destination Password uses the attribute token to create the password. The
password is made up of the Given Name attribute and the Surname attribute. When you are in the
Argument Builder Editor, you browse and select the attribute you want to use.

Defining Policies By Using The Policy Builder With Designer

161

= " Creation - Set Default Password

Condikions

/ Condition Group 1

+ if class name equal "User"

" set destination password{&ttribute("Given Mame"+atkribute("Surname")

& Attribuke"Given Mame")
&b attribuke"Surname")

22 Editor

Marne: * | Given Marme A,

2.7.4 Class Name

Expands to the object class name from the current operation.

Example

4 Class hamel)

2.7.5 Destination Attribute

Expands to the specified attribute value of the current object, a DN, or association, in the destination
data store.

Fields

Class Name

(Optional) Specify the class name of the target object. Leave blank to use the class name from
the current object.

Name

Name of the attribute.

Example

The example is from the Govern Groups for User Based on Title policy which is available for
download from Novell’s support Web site. For more information, see “Downloadable Identity
Manager Policies” on page 36.

The policy creates the Destination Attribute with the Argument Builder. The action of Set Local
Variable contains the Destination Attribute token.

162 Policy Builder and Driver Customization Guide

= Set local variables to test existence of groups and for placement

Condition Group 1
if class name equal "User"
And
Condition Group 2
i operation equal "add"

or i operation equal "modify"

set local variabled"manager-group-dn', "UsersiManagersGroup™)
set local variabled"manager-group-infa”, Destination Attribute"Object Class", dniLocal Yariable! "manager-group-dn™iiy)
set local wariable! " emplovee-group-dn®, "Users\Emploveescroup™)

set local wariable! emplovee-group-info”, Destination Attribute"Object Class", dniLocal YWariable! emploves-group-dn™iin

&4 Destination Attributel"Object Class”, dni))

22 Editor
Mame: * | Object Class Y
Class name: | Y
Select object: Im
Enter DN: * |Lcu:a| Yariable{"manager-group-dn'™

You build the Destination Attribute through the Editor. In this example, the attribute of Object Class
is set. DN is used to select the target object. The value of DN is the Local Variable of manager-
group-dn.

2.7.6 Destination DN

Expands to the destination DN from the current operation.

Fields
Convert

Select whether or not to convert the DN to the format used by the source data store.
Start

Specify the RDN index to start with:

* Index 0 is the root-most RDN
» Positive indexes are an offset from the root-most RDN
¢ Index -1 is the leaf-most segment

* Negative indexes are an offset from the leaf-most RDN towards the root-most RDN

Length

Defining Policies By Using The Policy Builder With Designer 163

Specify the number of RDN to include. Negative numbers are interpreted as (total # of
segments + length) + 1. For example, for a DN with 5 segments a length of -1 =(5+(-1))+ 1 =
5,-2=(5+(-2)) + 1 =4, etc.

Remarks

If start and length are set to the default values {0,-1}, the entire DN is used; otherwise only the
portion of the DN specified by start and length is used.

Example

The example uses the Destination DN token to set the value for the local variable of target-container.
The policy creates a department container for the User object if it does not exist. The policy is from
the predefined rules that come with Identity Manager 3.0. For more information, see “Command
Transformation - Create Departmental Container - Part 1 and Part 2 on page 62.

El " Command Transformation - Create Departmental Container - Part 1

Conditions

./ Condition Group 1

" if operation equal "add"

" setlocal variablel"target-containgt”, Destination DH{length="-2"1)

" set local variable"does-target-exist”, Destination Attribute{"objectdass", class name="0rganizationalUnit", drflocal Yariable("target-container" i)

b Destination DM{length="-2"}

2.7.7 Destination Name

Expands to the unqualified Relative Distinguished Name (RDN) of the destination DN specified
from the current operation.

Example

£ Destination Mamel)

2.7.8 Entitlement

Expands to the values of a granted entitlement from the current object.

Fields

Name

Specify the name of the entitlement.

Example

ol Entitlement("manager")

164 Policy Builder and Driver Customization Guide

2.7.9 Global Configuration Value

Expands to the value of a global configuration value.

Fields

Name

Name of the global configuration value.

Example

&8 Global Configuration Walue("Fred")

2.7.10 Local Variable

Expands to the value of a local variable.

Fields

Name

Specify the name of the local variable.

Example

The example is from the Govern Groups for User Based on Title policy which is available for
download from Novell’s support Web site. For more information, see “Downloadable Identity
Manager Policies” on page 36.

The action Add Destination Object uses the Local Variable token.

[+

Set local variables to test existence of groups and for placement

=] Create ManagersGroup, if needed

Condition Group 1
if local wariable 'manager-group-info’ available

And if local wariable 'manager-group-info’ not equal "group”

add destination object{class name="Group", when="before", dniLocal Yariable{"manager-group-dn')})

[+

Create EmployeesGroup, if needed

[+

IF Title indicates Manager, add to ManagerGroup and set rights

IF Title does not indicate Manager, add to EmployeeGroup and set rights

i Local Yariable("manager-group-dn™)

Defining Policies By Using The Policy Builder With Designer

165

22 Editor

‘ariable name: * |manager-graup-dn C&,

m LCY Selector

(X

Local Configuration ¥ariable Selector

Select a local configuration variable from the lisk,

current-node
current-valus
employee-group-dn
employee-group-info
FromMds
rnanager-graup-dn
ranager-group-info

QK | Cancel

The Local Variable can only be used if the action Set Local Variable has been used previously in the
policy. It sets the value that is stored in the Local Variable. In the Editor, you click the browse icon
and all of the local variables that have been defined are listed. Select the correct local variable.

The value of the local variable is group-manager-dn. In the rule before this one, the Set Local
Variable action defined group-manager-dn as DN of the manager’s group Users\ManagersGroup.

2.7.11 Named Password

Expands to the named password from the driver.

Fields

Name

Specify the name of the password.

Example

1 Hamed Paszword("pazsword”)
2.7.12 Operation
Expands to the name of the current operation.

Example

i Cperation()

166 Policy Builder and Driver Customization Guide

2.7.13 Operation Attribute

Expands to the value of an attribute from the current operation. It does not include the removed
values from a modify operation.

Fields

Name

Specify the name of the attribute.

Example

The example has four rules that implement a Placement policy for User objects based on the first
character of the Surname attribute. It generates both a trace message and a custom Novell Audit
event. The policy name is Policy to Place by Surname, and it is available for download from
Novell’s support Web site. For more information “Downloadable Identity Manager Policies” on
page 36.

Setup Local ¥ariables

= Surname A-I: place in Users1

Condition Group 1
if class name equal "User”

And if operation attribute "Surname’ match "[a-i]*"

set operation destination DR(dn(" TrainingiUsers| ActivelUsers1"+" "+ Operation Attributed"CN"T))
trace message(color="velow", Local Yariable("LyUsers1"))

genetate event(id="1000", textl=Local Yariable{"LYUsers1"))
Surname J-R: place in Users2

Surname 5-Z: place in Users3

&L "TrainingiUsers) AckiveUsers1"
& lllllll
&L Operation Attributed"CN")

&* Editor

Name: * | M 3,

The action Set Operation Destination DN contains the Operation Attribute token. The Operation
Attribute token sets the Destination DN to the CN attribute. The rule takes the context of
Training\Users\Active\Users and adds a \ plus the value of the CN attribute.

2.7.14 Operation Property

Expands to the value of an operation property from the current operation.

Defining Policies By Using The Policy Builder With Designer 167

Fields

Name

Specify the name of the operation property

Example

& Qperation Propertyl"myStoredProperty”)

2.7.15 Password

Expands to the password from the current operation.

Example

i Passwo rd()

2.7.16 Removed Attribute

Expands to the values of an attribute being removed in the current operation. It only applies to
modify operations.

Fields

Name

Specify the name of the attribute

Example

& Removed sttHbute"OU")

2.7.17 Removed Entitlement

Expands to the values of an entitlement revoked in the current operation.

Fields

Name

Specify the name of the entitlement.
Example

& Removed Entitlement("'manager")

2.7.18 Source Attribute

Expands to the values of an attribute from an object in the source data store.

168 Policy Builder and Driver Customization Guide

Fields

Class Name

(Optional) Specify the class name of the target object. Leave blank to use the class name from
the current object.

Name

Name of the attribute.

Example

fh Source Attribute("OU")

2.7.19 Source DN

Expands to the source DN from the current operation.

Fields

Convert

Select whether or not to convert the DN to the format used by the destination data store.

Start
Specify the RDN index to start with:

¢ Index 0 is the root-most RDN
« Positive indexes are an offset from the root-most RDN
¢ Index -1 is the leaf-most segment

* Negative indexes are an offset from the leaf-most RDN towards the root-most RDN

Length

Number of RDN’s segments to include. Negative numbers are interpreted as (total # of
segments + length) + 1. For example, for a DN with 5 segments a length of -1 =(5+(-1))+ 1=
5,-2=(5+(-2))+1=4,etc.

Remarks

If start and length are set to the default values {0,-1}, then the entire DN is used, otherwise only the
portion of the DN specified by start and length is used.

Example

& Source DIkIL)

2.7.20 Source Name

Expands to the unqualified Relative Distinguished Name (RDN) of the source DN from the current
operation.

Defining Policies By Using The Policy Builder With Designer

169

Example

& Source Mamel)

2.7.21 Text

Expands to the text.

Fields

Text
Specify the text.

Example

The example is from the Govern Groups for User Based on Title policy which is available for
download from Novell’s support Web site. For more information, see “Downloadable Identity
Manager Policies” on page 36.

The Text token is used in the action Set Location Variable to define the DN of the manager’s group.
The Text token can contain objects or plain text.

= Set local variables to test existence of groups and for placement

Condition Group 1
if class name egual "User”
And
Condition Group 2
if operation equal "add”

or i operation equal "modify"

set local wariable! " manager-group-dn”, "UsersiManagersGroup™)
set local wariable{"manager-group-info®, Destination Atkribuked"Object Class", dni{Local Variable"manager-group-dn™)in

set local wariable! emploves-group-dn”, "Users\EmploveesGroup™)

set local variable ' employee-group-info”, Destination Attribute"Object Class", dniLocal YWariable("employes-group-dn")i)
&L "UsersiManagersGroup”

£# Editor

Text: | UsersiManagersGroup Q

The Text noun contains the DN for the manager’s group. You can browse to the object you want to
use, or type the information into the editor.

170 Policy Builder and Driver Customization Guide

2.7.22 Unique Name

Expands to a pattern-based name that is unique in the destination data store according to the criteria
specified.

Fields

Name

Specify the name of attribute to check for uniqueness.

Scope

Specify the scope in which to check uniqueness.

Start Search
Select a starting point for the search. The starting point can be the root of the data store, or
specified by a DN or association.

Pattern

Specify patterns to use to generate unique values by using the Argument Builder.

Counter Start
Specify the a number to start counter used when needed to find a unique name.
Digits
Specify the width in digits of counter, the default is 1. The Pad counter with leading 0’s

checkbox prepends 0 to match the digit length. For example, with a digit width of 3, the initial
unique value is be appended with 001, then 002, and so on.

Remarks

For each specified pattern, a query is performed against the destination data store, using the supplied
attribute name, scope, and search start. Each specified pattern is tried in order until a value is found
that does not return any found objects.

If all of the specified patterns are exhausted, the final pattern has a counter appended to it and the
pattern is tried repeatedly (increasing the counter each time) until the query does not return any
instances.

The counter can be set to start at a different number using the counter start field. The counter uses
the number of digits specified by the digits field. If the number of digits is less than those specified,
then the counter is right padded with zeros. When the number of digits exceeds those specified, then
no unique name is generated and the enclosing rule returns an error status.

If the destination data store is the Identity Vault and name field is left blank, then a search is
performed against the pseudo-attribute “[Entry].rdn”, which represents the RDN of an object
without respect to what the naming attribute might be. If the destination data store is the connected
application, then the name field is required.

Example

T Unique Mame("CH",zcope="subtres",Lower Cazel))

Defining Policies By Using The Policy Builder With Designer

171

The following is an example of the Editor pane when constructing the unique name argument:

Attribute name: | h C&,

Scope:; |Subkree -

Start search: |R|:u:ut of datastaore j
Pattern: * |

Counker stark: | 1 digits: | 1 [Pad counter with lzading 0's

The following pattern was constructed to provide unique names:

Lower Casel)
Substring()
| el tttHbutel"Given Mame")
+
& sttHbutel"Surname”)

If this pattern does not generate a unique name, a digit is appended, incrementing up to the specified
number of digits. In this example, nine additional unique names would be generated by the
appended digit before an error occurs (patternl - pattern9).

2.7.23 Unmatched Source DN

Expands to the part of the source DN in the current operation that corresponds to the part of the DN
that was not matched by the most recent match of an If Source DN condition.

Fields
Convert

Select whether or not to convert the DN to the format used by the destination data store.
Remarks

If there were no matches, the entire DN is used.

Example

The example is from the predefined rules that come with Identity Manager 3.0. For more
information, see “Matching - Subscriber Mirrored - LDAP Format™ on page 78.

The action of Finding Matching Object uses the Unmatched Source DN token to build the matching
information in LDAP format. It takes the unmatched portion of the source DN to make a match.

172 Policy Builder and Driver Customization Guide

= " Matching - Subscriber Mirrored - LDAP format

Conditions

+ Condition Group 1

" If saurce DM in subtree "[Enter base of source hisrarchy]"

" set local variable("dest-base", "[Enter base of destination hierarchy]")

" find matching objeck{scope="entry"', dn{Unmatched Source DM{convert="true")+","+Local Yariabled"dest-base"1)

& Unmnatched Source DM(convert="trus")
& "J"
& Local variablel"dest-bass")

22 Editor

Convert to destination DM Format: [true

2.7.24 XPath

Expands to results of evaluating an XPath 1.0 expression.
Example
4 HPATH™[@attr-name="0U" fvalue[startz-with(stringl. 1, 1]

Fields

Expression

Specify the XPath 1.0 expression to evaluate.

2.8 Verb Tokens

This section contains detailed reference to all verbs tokens available using the Argument Builder

interface.

» Section 2.8.1, “Escape Destination DN,” on page 174
» Section 2.8.2, “Escape Source DN,” on page 174

+ Section 2.8.3, “Lower Case,” on page 174

 Section 2.8.4, “Parse DN,” on page 175

» Section 2.8.5, “Replace All,” on page 177

+ Section 2.8.6, “Replace First,” on page 177

» Section 2.8.7, “Substring,” on page 178

» Section 2.8.8, “Upper Case,” on page 179

Defining Policies By Using The Policy Builder With Designer

173

2.8.1 Escape Destination DN

Escapes a string according to the rules of the DN format of the destination data store.

Example

The example is from the predefined rules that come with Identity Manager 3.0. For more
information, see ‘“Placement - Publisher Flat” on page 84.

The action of Set Operation Destination DN uses the Escape Destination DN token to build the
destination DN of the User object.

= " Placement - Publisher Flat

" Condition Group 1

" if class name equal "User"

" set local variable("dest-base", "[Enter DN of destination container]")

v set operation destination DM{dni{Local Yariable{"dest-base"}+"\"+Escape Destination DM{Unique Mame("CH", scope="subtree", Lower Case{Substringilength="1", Operation
Attribukef"Given Mame")+Cperation Attribute"Surname")), Lower Case{Substring{length="2", Operation Attribute("Given Mame"}+Operation Attributel"Surname") iy

Local Yariable!"dest-base")
o
- Escape Deskination DM

B B

i Unique Mame("CN", scope="subtree", Lawer Case(), Lawer Casel))

The Escape Destination DN token takes the value in Unique Name and sets it to the format for the
destination DN.

2.8.2 Escape Source DN
Escapes a string according to the rules of the DN format of the source data store.
Example

Ezcape Source DM()
| & Attrbute"Surname")

2.8.3 Lower Case

Converts the characters in a string to lowercase.

Example

This example sets the e-mail address to be name(@slartybartfast.com where the name equals the first
character of the Given Name plus the Surname. The policy name is Policy: Create E-mail from
Given Name and Surname, and it is available for download at Novell’s support Web site. For more
information, see “Downloadable Identity Manager Policies” on page 36.

174 Policy Builder and Driver Customization Guide

[SR¥El St email address: name@slartybartfast.com; name = {1 char of Given Mame + Surname) <= 8 chars

Conditions

./ Condition Group 1

" if class name

and o if operation attribute 'Given Name' available

equal "User"

and o if operation attribute ‘Surname’ available

" strip operation attribube("Inkernet Email Address™)

set destination attribute value("Internet Email Address”, Lower Case(Substring(length="8", Substringilength="1", Operation Attributel"Firsthame'"))+Operation
AktributelLastName")j+"@slartybartfast, com"))

v

= Lower Casel)

=/ Substring(length="8")

=/ Substringllength="1")
&b Operation AttribubedFirstharme")
&b Operation AktributedLaskManme")

&b “@slartybartFast, com”

The Lower Case token sets all of the information in the action Set Destination attribute value to

lowercase.

2.8.4 Parse DN

Converts a DN to an alternate format.

Example

The example uses the Parse DN token to build the value for the Add Destination Attribute Value
action. The example is from the predefined rules that come with Identity Manager 3.0. For more
information, see “Command Transformation - Create Departmental Container - Part 1 and Part 2” on

page 62.

= " Command Transformation - Create Departmental Container - Part 2

and o if local variable 'does-target-exist' equal ™

" add destination objecticlass name="organizationalUnit", dirsct="trus", dn{Local Yariable("target-container"y

" add destination attribute valus("ou", direct="true", dn{Local Yariablel"target-container"y), Parse DN"dest-dn", "dot", length="1", start="-1", Local Yariable("target-container")

= .~/ Parse DM{"dest-dn", "dat", length="1", start="-1")

& Local Variabled"target-containes™)

22 Editor

Stark:

Length:

i |destination DM

Source DM Format

Destination DM Format:

—
—

dok

-

Defining Policies By Using The Policy Builder With Designer

175

The Parse DN token takes the information from the source DN and converts it to the dot notation.
The information from the Parse DN is stored in the attribute value of OU.

Fields

Start
Specify the RDN index to start with:

¢ Index 0 is the root-most RDN
« Positive indexes are an offset from the root-most RDN
* Index -1 is the leaf-most segment

* Negative indexes are an offset from the leaf-most RDN towards the root-most RDN

Length

Number of RDN’s to include. Negative numbers are interpreted as (total # of segments +
length) + 1. For example, for a DN with 5 segments a length of -1 =(5+(-1))+1=5,-2=(5+
(-2)) +1=4, etc.

Source DN Format

Specifies the format used to parse the source DN.

Destination DN Format

Specify the format used to output the parsed DN.

Source DN Delimiter

Specify the custom source DN delimiter set if Source DN Format is set to custom.

Destination DN Delimiter

Specify the custom destination DN delimiter set if Destination DN Format is set to custom.

Remarks

If start and length are set to the default values {0,-1}, then the entire DN is used; otherwise only the
portion of the DN specified by start and length is used.

When specifying custom DN formats, the eight characters that make up the delimiter set are defined
as follows:

1. Typed Name Boolean Flag: 0 means names are not typed, and 1 means names are typed

2. Unicode No-Map Character Boolean Flag: 0 means don’t output or interpret unmappable Unicode
characters as escaped hex digit strings, such as \FEFF. The following Unicode characters are not
accepted by eDirectory: Oxfeff, Oxftfe, Oxfffd, and Oxffff.

3. Relative RDN Delimiter
4. RDN Delimiter

5. Name Divider

6. Name Value Delimiter

7. Wildcard Character

176 Policy Builder and Driver Customization Guide

8. Escape Character

If RDN Delimiter and Relative RDN Delimiter are the same character, the orientation of the name is
root right, otherwise the orientation is root left.

If there are more than eight characters in the delimiter set, the extra characters are considered as
characters that need to be escaped, but they have no other special meaning.

2.8.5 Replace All

Replaces all occurrences of a regular expression in a string.

Fields

Regular Expression

Specify the regular expression that matches the substrings to be replaced.
Replace With

Specify the replacement string.
Remarks
For details on creating regular expressions, see:

» Sun’s Java Web site (http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html)

* Sun’s Java Web site (http://java.sun.com/j2se/1.4/docs/api/java/util/regex/
Matcher.html#replaceAll (java.lang.String))

The pattern options CASE_INSENSITIVE, DOTALL, and UNICODE CASE are used but can be
reversed by using the appropriate embedded escapes.

Example

Replace AUMLY, ST
Destination DKL)

2.8.6 Replace First

Replaces the first occurrence of a regular expression in a string.

Fields

Regular Expression

Specify the regular expression that matches the substring to replace.

Replace With

Specify the replacement string.

Defining Policies By Using The Policy Builder With Designer 177

http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Matcher.html#replaceAll (java.lang.String)

Remarks

The matching instance is replaced the string specified by the value specified in the Replace with
field.

For details on creating regular expressions, see:

* http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html (http://java.sun.com/j2se/1.4/
docs/api/java/util/regex/Pattern.html)

* http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Matcher.html#replaceAll
(java.lang.String) (http://java.sun.com/j2se/1.4/docs/api/java/util/regex/
Matcher.html#replaceAll (java.lang.String))

The pattern option CASE_INSENSITIVE, DOTALL, and UNICODE CASE are used but can be
reversed using the appropriate embedded escapes.

Example

The example reformats the telephone number (nnn)-nnn-nnnn to nnn-nnn-nnnn. The rule is from the
predefined rules that come with Identity Manager 3.0. For more information, see “Input or Output
Transformation - Reformat Telephone Number from (nnn) nnn-nnnn to nnn-nnn-nnnn” on page 74.

The Replace First token is used in the Reformat Operation Attribute action.

=+ Input or Qutput Transformation - Reformat Telephone Number from {nnn) nnn-nnnn bo non-nnn-nnnn

Conditions

/" Condition Group 1

Define new condition here

| " reformat operation attribute'phone”, Replace Fiest(" 300 a0 ns* Ot A -0 ddig”, "$1-$2-43", Local Yariable"current-value")

=~/ Replace Fiest{" A ((\ddid) s Oddid)-Odididid)g”, "$1-¢2-43")
& Local Yariable"current-value™)

Z2 Editor

Regular expression: * | AU didtd s O d - dh
Replace with: | $1-42-43

The regular expression of "\((\d\d\d)\)\s*(\d\d\d)-(\d\d\d\d)$ represents (nnn) nnn-nnnn and the
regular expression of $1-$2-$3 represents nnn. This rule transforms the format of the telephone
number from (nnn) nnn-nnnn to nnn-nnn-nnnn.

2.8.7 Substring

Extracts a portion of a string.

Fields

Start
Specify the starting character index:

178 Policy Builder and Driver Customization Guide

http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Matcher.html#replaceAll (java.lang.String)
http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Matcher.html#replaceAll (java.lang.String)

¢ Index 0 is the first character.
» Positive indexes are an offset from the start of the string
* Index -1 is the last character

* Negative indexes are an offset from the last character toward the start of the string

Length

Number of characters from the start to include in the substring. Negative numbers are
interpreted as (total # of characters + length) + 1. For example, for a string with 5 characters a
length of -1=(5+(-1))+1=5,-2=(5+(-2)) + 1 =4, etc.

Example

This example sets the e-mail address to be name@slartybartfast.com where the name equals the first
character of the Given Name plus the Surname. The policy name is Policy: Create E-mail from
Given Name and Surname and it is available at Novell’s support Web site for download. For more
information, see “Downloadable Identity Manager Policies” on page 36.

[SR¥l Sct email address: name@slartybartfast.com; name = {1 char of Given Name + Surname) <= 8 chars

/" Condition Group 1
" if class name equal "Lser”
and o if operation attribube 'Given Name' available

and o if operation attribute 'Surname’ available

" strip operation attribute"Internet Email Address")

v set destination attribute value"Internet Email Address", Lower Case{Substring(length="8", Substring{length="1", Operation Attributef"FirstMame"))+Operation
Attributel"LastMame"))+"@slarkybartfast, com"))

= Lower Casel)
- Substring(length="5")
- Substring(length="1")
&b Operation Attribubed FirstName")
&L Operation Attribubed"LastMarme")
&L “@slartybartFast, com"

The Substring token is used twice in the action Set Destination Attribute Value. It takes the first
character of the First Name attribute and adds eight characters of the Last Name attribute together to
form one substring.

2.8.8 Upper Case

Converts the characters in a string to uppercase.

Example

The example converts the first and last name attributes of the User object to uppercase. The policy
name is Policy: Convert First/Last Name to Upper Case, and it is available for download at Novell’s
support Web site. For more information, see “Downloadable Identity Manager Policies” on page 36.

Defining Policies By Using The Policy Builder With Designer 179

= Convert First,/Last name to uppercase

Condition Group 1

if class name equal "User"
And
Condition Group 2

if operation attribute 'Given Mame' changing

Cr if operation attribute 'Surname’ changing

reformat operation attribute!"Given Mame", Upper Case{Cperation Attribute("Given Mame")))

reformat operation attribute!"surnams", Upper Case(Cperation Atkribute™Surname")))

- Upper Casel)
i Operation Attribute"Given Mame")

2.9 Values

This section contains a list of common policy builder values.

2.9.1 Comparison Modes

Table 2-5 Comparison Modes

Mode Description

case Character-by-character case sensitive comparison.

nocase Character-by-character case insensitive comparison.

regex Regular expression match of entire string. Case insensitive by default, but can be changed

by an escape in the expression.

See Sun’s Java Web site (http://java.sun.com/j2se/1.4/docs/api/javalutil/regex/
Pattern.html) and Sun’s Java Web site (http://java.sun.com/j2se/1.4/docs/api/javalutil/
regex/Matcher.html#matches()).

The pattern options CASE_INSENSITIVE, DOTALL, and UNICODE_CASE are used but
can be reversed using the appropriate embedded escapes.

src-dn Compare using semantics appropriate to the DN format for the source data store.
dest-dn Compare using semantics appropriate to the DN format for the destination data store.
numeric Compare numerically.

octet Compare octet (Base64 encoded) values.

180 Policy Builder and Driver Customization Guide

http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Matcher.html#matches()

Mode Description

structured Compare the structured attribute according to the comparison rules for the structured
syntax of the attribute.

Defining Policies By Using The Policy Builder With Designer 181

182 Policy Builder and Driver Customization Guide

Defining Policies By Using The
Policy Builder In iManager

The Policy Builder is a complete, graphical interface for creating and managing the policies that
define the exchange of data between connected systems.

These section gives the following information on policies and how to use the Policy Builder:

» Section 2.1, “Policies,” on page 37

* Section 3.2, “Policy Builder Tasks in iManager,” on page 184
This section also contains the following detailed reference sections:

» Section 3.5, “Conditions,” on page 218

» Section 3.6, “Actions,” on page 236

» Section 3.7, “Noun Tokens,” on page 274
» Section 3.8, “Verb Tokens,” on page 287

3.1 Policies

As part of understanding how policies work, it is important to understand the components of
policies.
* Policies are made up of rules.

» A rule is a set of conditions (see “Conditions” on page 218) that must be met before a defined
action (see “Actions” on page 236) occurs.

» Actions can have dynamic arguments that derive from tokens that are expanded at run time.

» Tokens are broken up into two classifications: nouns (see “Noun Tokens” on page 274) and
verbs (see “Verb Tokens” on page 287).

* Noun tokens expand to values that are derived from the current operation, the source or
destination data stores, or some external source.

» Verb tokens modify the concatenated results of other tokens that are subordinate to them.

* Regular expressions (see “Regular Expressions” on page 216) and XPath 1.0 expressions (see
“XPath 1.0 Expressions” on page 217) are commonly used in the rules to create the desired
results for the policies.

A policy operates on an XDS document and its primary purpose is to examine and modify that
document. A policy can also get additional context from outside of the document and cause side
effects that are not reflected in the result document.

The following outline describes the different elements of a policy:

e Section 3.1.1, “Operation,” on page 184
* Section 3.1.2, “Current Operation,” on page 184
* Section 3.1.3, “Current Object,” on page 184

Defining Policies By Using The Policy Builder In iManager 183

3.1.1 Operation

An operation is any element that is a child of the input element and the output element. The elements

are part of Novell®’s nds . dtd, for more information, see NDS DTD (http://developer.novell.com/
ndk/doc/dirxml/dirxmlbk/ref/ndsdtd/index.html). An operation usually represents an event, a
command, or a status.

3.1.2 Current Operation

The policy is applied separately to each operation. As the policy is applied to each operation in turn,
that operation becomes the current operation. Each rule is applied sequentially to the current
operation. All of the rules are applied to the current operation unless an action is executed by a prior
rule that causes subsequent rules to no longer be applied.

3.1.3 Current Object

The object that is described by the src-dn, src-entry-id, dest-dn, dest-entry-id and association
becomes the current object. For more information about the different elements, see the NDS DTD
(http://developer.novell.com/ndk/doc/dirxml/dirxmlbk/ref/ndsdtd/index.html).

3.2 Policy Builder Tasks in iManager

This section contains instructions on performing common tasks in the Policy Builder:

» Section 3.2.1, “Opening The Policy Builder,” on page 184

* Section 3.2.2, “Creating a Policy,” on page 185

» Section 3.2.5, “Modifying a Policy,” on page 194

 Section 3.2.3, “Defining Individual Rules within a Policy,” on page 185

* Section 3.2.4, “Defining Individual Arguments within a Rule,” on page 187
» Section 3.2.12, “Using Predefined Rules,” on page 196

3.2.1 Opening The Policy Builder

1 In iManager, expand the Identity Manager Role, then click Identity Manager Overview.
2 Specify a driver set.

3 Click the driver for which you want to manage policies. The Identity Manager Driver Overview
opens:

184 Policy Builder and Driver Customization Guide

http://developer.novell.com/ndk/doc/dirxml/dirxmlbk/ref/ndsdtd/index.html
http://developer.novell.com/ndk/doc/dirxml/dirxmlbk/ref/ndsdtd/index.html

Figure 3-1 Identity Manager Driver Overview

(€L L0

pooh

Policies are managed from the Identity Manager Driver Overview.

3.2.2 Creating a Policy

1 Open the Identity Manager Driver Overview for the driver you want to manage.

2 Click the icon representing the policy you want to define.

" represents an undefined policy.

'@' represents a defined policy.
3 Click Insert.
4 Enter a name for the new policy, then select the Policy Builder.

5 The policy is displayed. To define one or more rules for this policy, click Append New Rule,
then follow the instructions in Section 3.2.3, “Defining Individual Rules within a Policy,” on
page 185.

3.2.3 Defining Individual Rules within a Policy

Rules are defined in the Rule Builder window of the Policy Builder:

Defining Policies By Using The Policy Builder In iManager 185

Figure 3-2 Rule Builder Window of Policy Builder

/3 Policy Builder - Rule Builder FrameSet - Microsoft Internet Explore| 10l =|
Rule Builder
Description:

Conditions
Select condition structure:

 OR Conditions, AND Groups
* AND Conditions, OR Groups

Append Condition Group * Required
(X}
If|<SeIect a condition= j EE
Actions
Do |<Se|ect an action: ;I IE‘E
oK | cancel |

The Rule Builder interface enables you to quickly create and modify rules using intelligent drop-
down menus.

In the Rule Builder, you define a set of conditions that must be met before a defined action occurs.

For example, if you needed to create a rule that disallowed any new objects from being added to
your environment, you might define this rule similar to the following: When an add operation
occurs, veto the operation.

To implement this logic in the Rule Builder, you could select the following condition:

Figure 3-3 Move User Condition in the Rule Builder Interface

Ifloperation j
Select operator:™ | equal j
Walue: |move
And If |class name j

Select operator™ | equal

Ll

Compare mode: | case insensitive

Walue: |User

And the following action:

Figure 3-4 Veto Action in the Rule Builder Interface

Do |vet0 LI

See Section 3.5, “Conditions,” on page 218 and Section 3.6, “Actions,” on page 236 or a detailed
reference on the conditions and actions available in the Rule Builder.

186 Policy Builder and Driver Customization Guide

Tips

To create more complex conditions, you can join conditions and groups of conditions together with
and/or statements. You can modify the way these are joined by selecting the condition structure:

Figure 3-5 Condition Structure Radio Buttons

Select condition structure;
0 OR Conditionz, AND Groups

' AND Conditions, OR Groups

* Click the = icon to see a list of values for a field. In the example above, this icon opens a list
of valid class names.

* Click the & icon to use the Argument Builder interface to construct an argument.

* Click the icon to disable a policy, rule, condition, or action. Click the ¥ icon to re-enable
it.

« Click the @ icon to add a comment to a policy or rule. Comments are stored directly on the
policy or rule, and can be as long as necessary.

» Use the Cut/Copy/Paste icons, [to use the Policy Builder clipboard. The Paste icon is
disabled if the current content on the clipboard is invalid at that location.

« Use the EIEHE icons to add, remove, and position conditions.

« Use the _Append Condition Group | 1,101 to add condition groups.

« Use the X icons to remove and position condition groups.

3.2.4 Defining Individual Arguments within a Rule

The Argument Builder provides a dynamic graphical interface that enables you to construct complex
argument expressions for use within the Rule Builder. To access the Argument Builder, see
“Argument Builder” on page 190.

Arguments are dynamically used by actions and are derived from tokens that are expanded at run
time.

Tokens are broken up into two classifications: nouns and verbs. Noun tokens expand to values that
are derived from the current operation, the source or destination data stores, or some external source.
Verb tokens modify the concatenated results of other tokens that are subordinate to them.

Defining Policies By Using The Policy Builder In iManager

187

Figure 3-6 Default Argument Builder Interface

3 policy Builder - ArgBuilder FrameSet - Microsoft Internet Exi 10l =|

Argument Builder

Add or remove your components to the expression area to construct your argument, Enter
component values under Editor,

== Expression EIEHE‘ it Nouns
Select noun and verb tokens from the right to add to the oxt] ’
Expression area, Use the buttons in the Expression caption Added Entitlement

Association
Attribute
Class Name x|

< Add

to re-arrange or remowve them,

Verbs

Escape Source DN i’
Escape Destination DN

Lower Case x|
< Add
Z# Editor * Required % Description
This is where information about the selected token is Constant text,
viewed and edited.
0K Cancel

To define an expression, select one or more nouns tokens (values, objects, variables, etc.), and
combine then with verb tokens (substring, escape, uppercase, and lowercase) to construct
arguments. Multiple tokens are combined to construct complex arguments.

For example, if you want the argument set to an attribute value, you select the attribute token, then
select the attribute name:

Figure 3-7 Editor Displaying ds.novell as a Text Argument

4 Editor
Text: |ds.n0ve|l

If you only want a portion of this attribute, you can combine the attribute token with the substring
token:

Figure 3-8 Expression Displaying a Substring of Length 1 on the Give Name Attribute, Combined with the Surname
Attribute.

= Expression
/ Substringilength="1"}

£ dttrbutel"Given Mame")
+

£ AttHbutel"Surname”)

After you add a token, you can edit its fields in the editor.

188 Policy Builder and Driver Customization Guide

See Section 3.7, “Noun Tokens,” on page 274 and Section 3.8, “Verb Tokens,” on page 287 for a
detailed reference on the nouns and verbs available in the Argument Builder.

Tips

* To create more complex conditions, you can join conditions or groups of conditions together
with and/or statements.

e Use the [1&][=] icons to move and delete noun tokens and verb tokens.

e Click the icon to see a list of values for a field.

* After you add a noun token or a verb token, you can provide values in the editor, then
immediately add another noun token or verb token. You do not need to refresh the Expression
pane to apply your changes; they appear when the next operation is performed.

Although you define most arguments using the Argument Builder, there are several more builders
that are used by the Condition Editor and Action Editor in the Policy Builder. Each builder can
recursively call anyone of the builders in the following list:

» “Argument Actions Builder” on page 189

* “Argument Builder” on page 190

* “Match Attribute Builder” on page 191

» “Action Argument Component Builder” on page 192

* “Argument Value List Builder” on page 192

» “Named String Builder” on page 193

+ “Condition Argument Component Builder” on page 193

Argument Actions Builder

The Argument Actions Builder enables you to set the action that is required by the For Each
(page 249) action and the Implement Entitlement (page 252) action.

In the following example, the add destination attribute value action is performed for each Group
entitlement that is being added in the current operation.

Figure 3-9 Argument Actions Builder

Oo | for each " El
Enter node set™ | Added Entitlement! Graup™)
Enter action™ |do-add-dest-attrvalue

To define the action of add destination attribute value, click the icon that launches the Argument
Actions Builder. In the Argument Actions Builder, you define the desired action. In the following
example, the member attribute is added to the destination object for each added Group entitlement.

Defining Policies By Using The Policy Builder In iManager 189

Figure 3-10 Argument Actions Builder

Actions
Do |add destination attribute value ;I EE
Enter attribute name:*lMember
Enter class name: IGrDLIp
Select mode: |add to current operation j
Select object: |DN j
Enter DM:* |Loca| “ariablel"current-node™)
Enter walue type: Istring
Enter tokens:* |Destinatinn DM
Figure 3-11 Argument Actions Builder
Argument Actions Builder
Actions
DD|<SeIect an action= "| B =&l [El[=]H

Argument Builder
Launch the Argument Builder from the following actions by clicking the Edit Arguments icon.

* Add Association (page 237)

* Add Destination Attribute Value (page 238)

* Add Destination Object (page 239)

¢ Add Source Attribute Value (page 240)

* Append XML Text (page 243)

* Clear Destination Attribute Value (page 244) When the selected object is DN or Association.
* Clear Source Attribute Value (page 245) When the selected object is DN or Association.
* Delete Destination Object (page 247) When the selected object is DN or Association.

* Delete Source Object (page 247) When the selected object is DN or Association.

¢ Find Matching Object (page 248)

» For Each (page 249)

* Move Destination Object (page 253)

* Move Source Object (page 254)

* Reformat Operation Attribute (page 254)

* Remove Association (page 255)

¢ Remove Destination Attribute Value (page 256)

¢ Remove Source Attribute Value (page 257)

190 Policy Builder and Driver Customization Guide

* Rename Destination Object (page 258) When the selected object is DN or Association and
Enter String.

* Rename Source Object (page 258) When the selected object is DN or Association and Enter
String.

* Set Destination Attribute Value (page 262)When the selected object is DN or Association and
Enter Value type is not structured.

» Set Destination Password (page 263)
 Set Local Variable (page 264)

» Set Operation Association (page 265)

» Set Operation Class Name (page 265)

» Set Operation Destination DN (page 266)
» Set Operation Property (page 266)

» Set Operation Source DN (page 267)
 Set Operation Template DN (page 267)
» Set Source Attribute Value (page 268)
» Set Source Password (page 269)

» Set XML Attribute (page 269)

» Status (page 270)

» Trace Message (page 271)

Match Attribute Builder

The Match Attribute Builder enables you to select attributes and values used by the Section 3.6.16,

“Find Matching Object,” on page 248 action to determine if a matching object exists in a data store.

For example, if you want to match users based on a common name and a location, you would select
the following condition:

Figure 3-12 Find Matching Object

Do |ﬁnd ratching object v| el E= (2]

Select scope: | subtree »
Enter DM | "Users"+Attribute" 0"

Enter match attHbutes; |CN,L

You then click the Edit Arguments icon next to the Enter Match Attributes field to launch the Match
Attribute Builder interface:

Figure 3-13 Match Attribute Builder

Match Attributes

[IMName:™ [&] |“value from current object

[IName:™ | |. |Va|ue fram current object

Select the Browse attributes icon to browse to and select the attributes you want to match. In this
example they are L and CN.

Defining Policies By Using The Policy Builder In iManager

191

The second column allows you to match the current value stored in the attribute by selecting Use
value(s) from current Object. You can match against another value by selecting Other Value. You
can create any value you want to match. Select the value type, and the appropriate builder is
available through the Enter State field.

Action Argument Component Builder

Launch the Action Argument Component Builder by selecting the following actions when the Enter
Value Type selection is the Structured selection.

* Add Destination Attribute Value (page 238)

* Add Source Attribute Value (page 240)

» Reformat Operation Attribute (page 254)

* Remove Destination Attribute Value (page 256)
* Remove Source Attribute Value (page 257)

* Set Default Attribute Value (page 261)

» Set Source Attribute Value (page 268)

Figure 3-14 Action Argument Component Builder

Dg|add destination attribute value V| [Bl [E]

Enter attribute name:*|Gi\fen Name |
Enter class name: [Usar
Select mode: | write directly to destination datastore V
Select object: | Current object i

@tructured |

Enter components™® |user

Figure 3-15 Action Argument Component Builder

Argument Component Builder

The argument cormponents provide values for components of the enclosing <arg-value when the type attribute of <arg-value> iz
‘structured’. Each of the enclosed tokens is evaluated and the resulting string walues are concatenated to form the value of the
cormponent. The name of the component is specified by the name attribute,
*Required
FelEE[B] | append New Component | Remove |

Argument Components

[IMame:™ Tokens:™

Argument Value List Builder

The Argument Value List Builder enables you to construct default argument values for the Set
Default Attribute Value (page 261) action.

For example, if you want to set a default location of Unknown, you select the following action:

192 Policy Builder and Driver Customization Guide

Figure 3-16 Argument Value List Builder

Argument Values

[Twpe™ Enter string:™ |"Digital Airlines Inc"

You then click the icon next to the Enter Values field to launch the Argument Value List Builder
interface, and construct an argument similar to the following:

Figure 3-17 Argument Value List Builder

Argument Values

[~ Type:™ Istring Enter tokens:™ I"Unknown"

Named String Builder

The Named String Builder enables you to construct name/value pairs for use in certain actions such
as Generate Event (page 250), Send Email (page 259) and Send Email from Template (page 260).

For a Generate Event action, the named strings correspond to the custom value fields you can
provide with an event:

Figure 3-18 Named String Builder

[Mame:™ lto— String tokens:™ IW
[Mame:™ |t0 String tokens:™ |"to_user2@company.com" [=]+]
™ Mame:™ Ic:c: String tokens:™ I"c:c:_user@c:ompany_com" IEIE‘
[Mame:™ |hcc String tokens:™ |"hcc_user@company.com" [=]+]
[Mame:™ |from String tokens:™ |"from_user@company.com" [=I+]
[Mame:™ |Suhject String tokens:™ |"This is the e-mail subject” =]+
[Mame:™ |message String tokens:™ |"This is the e-mail body"

For a Send Mail action, the named strings correspond to the elements of the e-mail:

Figure 3-19 Send Mail Action

™ Mame:™ lrnamager— Strng tokens:™ W [+][]
™ Mame:™ Isurname String tokens:™ I"Smith" BE‘
[Hame:* [given-name String tokens:® ["Joe" [=]+]
[~ Mame:™ |to String tokens:™ |"tn_user@company.com" [=I+]
[~ Mame:™ |cc String tokens:™ |"cc_user@company.com"

A complete list of possible values is contained in the help file corresponding to the action that
launches the Named String Builder.

Condition Argument Component Builder
Launch the Condition Argument Component Builder by clicking the Edit Arguments Icon.

In order to see the icon, you must select the Structured selection for Mode with the following
conditions:

Defining Policies By Using The Policy Builder In iManager 193

 If Attribute (page 219)
 If Destination Attribute (page 221)
* If Source Attribute (page 232)

Figure 3-20 Structured Option

[elFa[E
If| attribute V| [Exd [E]

Enter name:” | Given Mame

Select operator™ | equal

Compare mode: | structured

Structured components:™

Figure 3-21 Condition Argument Component Builder

4 2:Condition Argument Component Builder - ... |Z||E|fz|

Component Builder

* Required

Component name:*| |

Component data: | |

oK | cancel |

3.2.5 Modifying a Policy

1 Open the Identity Manager Driver Overview for the driver you want to manage.
2 Click the icon representing the policy you want to modify.

3 Select the policy you want to modify, then click Edit.

3.2.6 Removing a Policy

Removes the policy from the selected Policy Set but doesn’t delete the policy.
1 Open the Identity Manager Driver Overview for the driver you want to manage.

2 Click the icon representing the policy you want to remove.

To view a policy that is not associated with a policy set:

1 Open the Identity Manager Driver Overview for the driver you want to manage.

2 Click the View All Policies icon .

194 Policy Builder and Driver Customization Guide

To add the removed policy back to the policy set:

Open the Identity Manager Driver Overview for the driver you want to manage.
Click the policy set where you want to add the policy.

Click Insert.

Select Use an existing policy, then click the browse button.

a o ON =

Browse to the policy you want to add.

TIP: Make sure you are in the proper container to see the policy.

6 Click OK.
7 Click Close.

3.2.7 Renaming a Policy

1 Open the Identity Manager Driver Overview for the driver you want to manage.
2 Click the icon representing the policy you want to rename.

3 Click Rename and rename the policy.

4 Click OK.

5 Click Close.

3.2.8 Deleting a Policy

1 Open the Identity Manager Driver Overview for the driver you want to manage.
2 Click the icon representing the policy you want to delete.

3 Select the policy you want to delete, then click Delete.

3.2.9 Importing a Policy from an XML File

1 Open the Identity Manager Driver Overview for the driver you want to manage.
2 Click the icon representing the policy you want to import.
3 Select the policy, then click Edit.

4 Click the Insert button, then select Import an XML file containing DirXML® Script.
5 Browse to and select the policy file to import, then click OK.

3.2.10 Exporting a Policy to an XML File

1 Open the Identity Manager Driver Overview for the driver you want to manage.

2 Click the icon representing the policy you want to export.

3 Select the policy, then click Edit.

4 Click the Save As button, then select a location to save the DirXML Script XML file.
5 Click Save.

Defining Policies By Using The Policy Builder In iManager

195

3.2.11 Creating a Policy Reference

A policy reference enables you to create a single policy, and reference it in multiple locations. If you
have a policy that is used by more than one driver or policy, creating a reference simplifies
management of this policy.

1 Open the Identity Manager Driver Overview for the driver you want to manage.

2 Click the icon representing the policy you want to add as a reference.

3 Select the policy, then click Edit.

4 Click the Insert button, and select Append a reference to a policy containing DirXML Script.

5 Browse to and select the policy object to reference, then click OK.

3.2.12 Using Predefined Rules

iManager includes twenty predefined rules. You can import and use these rules as well as create
your own rules. These rules include common tasks that administrators use. You need to provide
information specific to your environment to customize the rules.

» “Command Transformation - Create Departmental Container - Part 1 and Part 2” on page 197

* “Command Transformation - Publisher Delete to Disable” on page 199

+ “Creation - Require Attributes” on page 199

* “Creation - Publisher - Use Template” on page 200

» “Creation - Set Default Attribute Value” on page 201

* “Creation - Set Default Password” on page 202

» “Event Transformation - Scope Filtering - Include Subtrees” on page 203

» “Event Transformation - Scope Filtering - Exclude Subtrees” on page 204

* “Input or Output Transformation - Reformat Telephone Number from (nnn) nnn-nnnn to nnn-
nnn-nnnn” on page 205

* “Input or Output Transformation - Reformat Telephone Number from nnn-nnn-nnnn to (nnn)
nnn-nnnn” on page 206

* “Matching - Publisher Mirrored” on page 207

* “Matching - Subscriber Mirrored - LDAP Format” on page 208
» “Matching - By Attribute Value” on page 209

* “Placement - Publisher Mirrored” on page 210

* “Placement - Subscriber Mirrored - LDAP Format” on page 211
» “Placement - Publisher Flat” on page 212

* “Placement - Subscriber Flat - LDAP Format” on page 213

* “Placement - Publisher By Dept” on page 214

* “Placement - Subscriber By Dept - LDAP Format” on page 215

To access the predefined rules:
1 Open the Identity Manager Driver Overview for the driver you want to manage.

2 Click the icon representing the policy where you want to add the predefined rule.

196 Policy Builder and Driver Customization Guide

3 Select a policy, then click Edit.

4 Click Insert and select the predefined rule you want to use.

Identity Manager

Identity Manager Policy |

Policy rules describe a policy that is implemented by an ordered set of rules. A rule consists of a set of
conditions to be tested and an ordered set of actions to be performed when the conditions are met.

; ey Bule | Remoye | Saye fs | lnsert | FdirMamespaces |
f Policy Rules Import an X440 file containing DirkkAL Script ”~
&ppend a reference to a policy containing DirkkAL Script

There are no policy rules define

Predefined Rules:

Command Transformation - Create Departmental Container - Part 1
Command Transformation - Create Departmental Container - Part2 —
Cormmand Transforration - Publisher Delete to Dizable

Creation - Reguire attribute(s)

Creation - Publisher - Use Template

Creation - Set Default Attribute Value

Creation - Set Default Password

Fuont Trancfrrrmatinn - Srnno Filtoring - Inclida cohtraoicl —

< |

Close

|

Command Transformation - Create Departmental Container - Part 1 and Part 2

Creates a department container in the destination data store, if one does not exist. Implement the rule
on the Subscriber Command Transformation policy or Publisher Command Transformation policy
in the driver.

There are two steps involved in using the predefined rules: creating a policy in the Command
Transformation policy set, and importing the predefined rule. If you already have a Command
Transformation policy that you want to add this rule to, skip to “Importing the Predefined Rule” on
page 197.

Creating a Policy
1 Open the Identity Manager Driver Overview for the driver you want to manage.
2 Click the Command Transformation Policy object on the Publisher or Subscriber channel.
3 Click Insert.
4 Name the policy, make sure to implement the policy with the Policy Builder, then click OK.

The Rule Builder is launched.

Importing the Predefined Rule
1 In the Rule Builder, click Insert.
2 Select Command Transformation - Create Department Container - Part 1.
3 Click Insert.

4 Select Command Transformation - Create Department Container - Part 2.

Defining Policies By Using The Policy Builder In iManager 197

5 Click OK.

There is no information to change in the rules that is specific to your environment.

Command Transformation - Create Departmental Container - Part 1

¢ if operation equal "add"

. zet local vardable("target-container”,Destination DM{length="-2"]]
. zet local vardable("does-target-exist",Destination Atthbute("objectclazs",class
name="0rganizationalldnit",dnilocal Yadable("target-container”)1))

Command Transformation - Create Departmental Container - Part 2

. if local variable 'does-target-exizt’ available
And & if local variable 'does-target-exist' equal ™

Actions |
¢ add destination object(class name="organizationalUnit",direct="true",dn(Local Varable"target-
cantainer"]])

& add destination attribute valuel"ou",direct="true",dniLocal Warable("target-container”)),Parse
DK dest-dn","dot", length="1",start="-1",Local Warable("target-container"]))

IMPORTANT: Make sure that the rules are listed in order. Part 1 must be executed before Part 2.

How the Logic in the Rule Works

The rule is used when the destination location for an object does not exist. Instead of getting a veto

because the object cannot be placed, this rule creates the container and places the object in the
container.

Part 1 looks for any Add operation. When the Add operation occurs, two local variables are set. The
first local variable is named target-container. The value of target-container is set to the destination
DN. The second local variable is named does-target-exist. The value of does-target-exist is set to the
destination attribute value of objectclass. The class is set to OrganizationalUnit. The DN of the
OrganizationalUnit is set to the local variable of target-container.

Figure 3-22 Create Container

& Editor
Mame:* |nhjectclass |
Class name: |DrganizationaIUni1 |
Select gbject:” |DN V||Luca|Variable("target-cuntainer")

Part 2 checks to see if the local variable does-target-exist is available. It also checks to see if the
value of the local variable does-target-exist is set to a blank value. If the value is blank, then an
Organizational Unit object is created. The DN of the organizational unit is set to the value of the
local variable target-container. It also adds the value for the OU attribute. The value of the OU

attribute is set to the name of the new organizational unit, which is obtained by parsing the value of
the local variable target-container.

198 Policy Builder and Driver Customization Guide

Command Transformation - Publisher Delete to Disable

Transforms a Delete operation for a User object into a Modify operation that disables the target User
object in eDirectory™. Implement the rule on the Publisher Command Transformation policy in the
driver.

There are two steps involved in using the predefined rules: creating a policy in the Command
Transformation policy set, and importing the predefined rule. If you already have a Command
Transformation policy that you want to add this rule to, skip to Importing the Predefined Rule

(page 199).
Creating a Policy
1 Open the Identity Manager Driver Overview for the driver you want to manage.
2 Click the Command Transformation Policy object on the Publisher channel.
3 Click Insert.
4 Name the policy, make sure to implement the policy with the Policy Builder, then click OK.

The Rule Builder is launched.
Importing the Predefined Rule
1 In the Rule Builder, click Insert.

2 Select Command Transformation - Publisher Delete to Disable.
3 Click OK.

There is no information to change in the rule that is specific to your environment.

Command Transformation - Publisher Delete to Disable

¢, if operation equal "delete"
Or . if class name egual "User”

* set destination attribute value("Login Dizabled","true")
¢ remove association(association]dssociation]])

How the Logic in the Rule Works

The rule is used when a Delete command is going to be sent to the Identity Vault, usually in response
to a Delete event that occurred in the connected system. Instead of the User object being deleted in
the Identity Vault, the User object is disabled. When a Delete command is processed for a User
object, the destination attribute value of Login Disabled is set to true, the association is removed
from the User object, and the Delete command is vetoed. The User object can no longer log in into
the Novell eDirectory tree, but the User object was not deleted.

Creation - Require Attributes

Prevents User objects from being created unless the required attributes are populated. Implement the
rule on the Subscriber Creation policy or the Publisher Creation policy in the driver.

Defining Policies By Using The Policy Builder In iManager 199

There are two steps involved in using the predefined rules: creating a policy in the Creation policy
set, and importing the predefined rule. If you already have a Creation policy that you want to add
this rule to, skip to “Importing the Predefined Rule” on page 200.

Creating a Policy
1 Open the Identity Manager Driver Overview for the driver you want to manage.
2 Click the Creation Policy object on the Publisher or Subscriber channel.

3 Click Insert.
4 Name the policy, make sure to implement the policy with the Policy Builder, then click OK.

The Rule Builder is launched.

Importing the Predefined Rule

In the Rule Builder, click Insert.

Select Creation - Required Attributes.

Click Creation - Required Attributes in the Rule Builder, to edit the rule.
Delete [Enter name of required attribute] from the Enter Name field.

a o ON =

Click the browse icon, then browse to and select the attribute you require for a User object to be
created.

6 (Optional) If you want more than one required attribute, click the plus icon to add a new action.
7 Select Veto if operation attribute not available and browse to the additional required attribute.
8 Click OK.

Creation - Require attribute(s)

*,if class name equal "User”

¢ veto if operation attribute not available("[Enter name of required attribute]")

How the Logic in the Rule Works

The rule is used when your business processes require that a user has specific attributes populated in
the source User object before the destination the User object can be created. When a User object is
created in the source data store, the rule vetoes the creation of the object in the destination data store
unless the required attributes are provided when the User object is created. You can have one or
more required attributes.

Creation - Publisher - Use Template

Allows for the use of a Novell eDirectory template object during the creation of a User object.
Implement the rule on the Publisher Creation policy in the driver.

There are two steps involved in using the predefined rules: creating a policy in the Creation policy
set, and importing the predefined rule. If you already have a Creation policy that you want to add
this rule to, skip to “Importing the Predefined Rule” on page 201.

200 Policy Builder and Driver Customization Guide

Creating a Policy
1 Open the Identity Manager Driver Overview for the driver you want to manage.
2 Click the Creation Policy object on the Publisher or Subscriber channel.
3 Click Insert.
4 Name the policy, make sure to implement the policy with the Policy Builder, then click OK.

The Rule Builder is launched.

Importing the Predefined Rule
1 In the Rule Builder, click Insert.
Select Creation - Publisher - Use Template.
Click Creation - Publisher - Use Template in the Rule Builder, to edit the rule.
Delete [Enter DN of Template object] from the Enter DN field.
Click the Edit Arguments icon to launch the Argument Builder.
Select Text in the Noun list, then click Add.
In the Editor, click the browse icon and browse to and select the template object, then click OK.

Click OK.

0 N o g b~ ODN

Creation - Publisher - Uze Template

™ if class name egual "User"

" set operation template DM{dn("[Enter DM of Template object]"])

How the Logic in the Rule Works

The rule is used when you want to create a user in the Identity Vault based on a template object. If
you have attributes that are the same for users, using the template saves time. You fill in the
information in the template object and when the User object is created, Identity Manager uses the
attribute values from the template to create the User object.

During the creation of User objects, the rule does the action of the set operation template DN, which
instructs the Identity Manager to use the referenced template when creating the object.

Creation - Set Default Attribute Value

Allows you to set default values for attributes that are assigned during the creation of User objects.
Implement the rule on the Subscriber Creation policy or Publisher Creation policy in the driver.

There are two steps involved in using the predefined rules: creating a policy in the Creation policy
set, and importing the predefined rule. If you already have a Creation policy that you want to add
this rule to, skip to “Importing the Predefined Rule” on page 202.

Creating a Policy
1 Open the Identity Manager Driver Overview for the driver you want to manage.

2 Click the Creation Policy object on the Publisher or Subscriber channel.

Defining Policies By Using The Policy Builder In iManager 201

3 Click Insert.
4 Name the policy, make sure to implement the policy with the Policy Builder, then click OK.

The Rule Builder is launched.

Importing the Predefined Rule
1 In the Rule Builder, click Insert.
Select Creation - Set Default Attribute Value.
Click Set Default Attribute Value in the Rule Builder, to edit the rule.
Delete [Enter attribute name] from the Enter attribute name field.
Click the browse icon, then browse to and select the attribute you want to have created.
Delete [Enter default attribute value] from the Enter arguments values field.
Click the Edit Arguments icon to launch the Argument Values List Builder.
Select the type of data you want the value to be.

© 0 N O b~ WODN

Click the Edit Arguments icon to launch the Argument Builder.

-
o

Create the value you want the attribute to be through the Argument Builder, then click OK.
11 Click OK.

Creation - Set Default Attribute VWalue

*if class name equal "User”

. set default attrbute value"[Enter attribute name]',write-back="true","[Enter default attribute
value]")

How the Logic in the Rule Works

The rule is used when you want to populate default attribute values when creating a User object.
When a User object is created, the rule adds the specified attribute values if and only if the attribute
has no values supplied by the source object.

If you want more than one attribute value defined, right-click the action and click New > Action.
Select the action, set the default attribute value, and follow the steps above to assign the value to the
attribute.

Creation - Set Default Password

During the creation of User objects, it sets a default password for User objects. Implement the rule
on the Subscriber Creation policy or Publisher Creation policy in the driver.

There are two steps involved in using the predefined rules: creating a policy in the Creation policy
set, and importing the predefined rule. If you already have a Creation policy that you want to add
this rule to, skip to “Importing the Predefined Rule” on page 203.

Creating a Policy
1 Open the Identity Manager Driver Overview for the driver you want to manage.

2 Click the Creation Policy object on the Publisher or Subscriber channel.

202 Policy Builder and Driver Customization Guide

3 Click Insert.
4 Name the policy, make sure to implement the policy with the Policy Builder, then click OK.

The Rule Builder is launched.
Importing the Predefined Rule
1 In the Rule Builder, click Insert.

2 Select Creation - Set Default Password.
3 Click OK.

There is no information to change in the rule that is specific to your environment.

Creation - Set Default Passwiord

*if class name equal "User"

. set destination password(&ttAbute"Given Mame"+AttHbute"Surname"])

How the Logic in the Rule Works

The rule is used when you want User objects to be created with a default password. During the
creation of a User object, the password that is set for the User object is the Given Name attribute
plus the Surname attribute of the User object.

You can change the value of the default password by editing the argument. You can set the password
to any other value you want through the Argument Builder.

Event Transformation - Scope Filtering - Include Subtrees

Excludes all events that occur outside of the specific subtrees. Implement the rule on the Subscriber
Event Transformation policy or the Publisher Event Transformation policy in the driver.

There are two steps involved in using the predefined rules: creating a policy in the Event
Transformation policy set, and importing the predefined rule. If you already have an Event
Transformation policy that you want to add this rule to, skip to “Importing the Predefined Rule” on
page 203.
Creating a Policy

1 Open the Identity Manager Driver Overview for the driver you want to manage.

2 Click the Event Transformation Policy object on the Publisher or Subscriber channel.

3 Click Insert.
4 Name the policy, make sure to implement the policy with the Policy Builder, then click OK.

The Rule Builder is launched.

Importing the Predefined Rule
1 In the Rule Builder, click Insert.

2 Select Event Transformation - Scope Filtering - Include subtrees.

Defining Policies By Using The Policy Builder In iManager 203

3 Click Event Transformation - Scope Filtering - Include subtrees in the Rule Builder, to edit the
rule.

4 Delete [Enter a subtree to include] in the Value field.

5 Click the browse button to browse the Identity Vault for the part of the tree you were you want
events to synchronize, then click OK.

6 Click OK.

Event Transformation - Scope Filtering - Include subtree(s)

¢ if source DM not in subtree "[Enter a subtree to include]"

vetaol)

How the Logic in the Rule Works

The rule is used when you only want to synchronize specific subtrees between the Identity vault and
the connected system.When an event occurs anywhere but in that specific part of the Identity Vault,
it is vetoed. You can add additional subtrees to be synchronized by copying and pasting the Section
3.5.15, “If Source DN,” on page 234 condition.

Event Transformation - Scope Filtering - Exclude Subtrees

Excludes all events that occur in a specific subtree. Implement the rule on the Subscriber Event
Transformation or the Publisher Event Transformation policy in the driver.

There are two steps involved in using the predefined rules: creating a policy in the Event
Transformation policy set, and importing the predefined rule. If you already have an Event
Transformation policy that you want to add this rule to, skip to “Importing the Predefined Rule” on
page 204.

Creating a Policy
1 Open the Identity Manager Driver Overview for the driver you want to manage.
2 Click the Event Transformation Policy object on the Publisher or Subscriber channel.
3 Click Insert.
4 Name the policy, make sure to implement the policy with the Policy Builder, then click OK.

The Rule Builder is launched.

Importing the Predefined Rule
1 In the Rule Builder, click Insert.
2 Select Event Transformation - Scope Filtering - Excluding subtrees.

3 Click Event Transformation - Scope Filtering - Excluding subtrees in the Rule Builder, to edit
the rule.

4 Delete [Enter a subtree to exclude] in the Value field.

5 Click the browse button to browse the Identity Vault for the part of the tree you want to exclude
events from synchronizing, then click OK.

6 Click OK.

204 Policy Builder and Driver Customization Guide

Event Transformation - Scope Filtering - Exclude subtree(s)

& if zource DM in subtree "[Enter 2 subtree to exclude]”

*wetal)

How the Logic in the Rule Works

The rule is used when you want to exclude part of the Identity Vault or connected system from
synchronizing. When an event occurs in that specific part of the Identity Vault, it is vetoed. You can
add additional subtrees to be excluded by copying and pasting the if source DN condition.

Input or Output Transformation - Reformat Telephone Number from (nnn) nnn-nnnn
to nnn-nnn-nnnn

Converts the format of the telephone number. Implement the rule on the Input or Output
Transformation policy in the driver. Typically, if this rule is used on an Input Transformation, you
would you then use the rule Reformat Telephone Number from nnn-nnn-nnnn to (nnn) nnn-nnnn on
the Output Transformation and vice versa to convert the format back and forth.

There are two steps involved in using the predefined rules: creating a policy in the Input or Output
Transformation policy set, and importing the predefined rule. If you already have an Input or Output
Transformation policy that you want to add this rule to, skip to “Importing the Predefined Rule” on
page 205.

Creating a Policy

1 Open the Identity Manager Driver Overview for the driver you want to manage.

2 Click the Input or Output Transformation Policy object on the Publisher or Subscriber channel.

3 Click Insert.
4 Name the policy, make sure to implement the policy with the Policy Builder, then click OK.

The Rule Builder is launched.

Importing the Predefined Rule
1 In the Rule Builder, click Insert.

2 Select Input or Output Transformation - Reformat Telephone Number from (nnn) nnn-nnnn to
ANN-NAR-NARN.

3 Click Input or Output Transformation - Reformat Telephone Number from (nnn) nnn-nnnn to
nnn-nnn-nnnn in the Rule Builder, to edit the rule.

4 Define the condition you want to have occur when the telephone number is reformatted.
5 Click OK.

Defining Policies By Using The Policy Builder In iManager

205

lnput or Dutput Transformation - Beformat Telephone Mumber from [nnn) nan-nnnn
Lo nnn-nnn-nnnn

* This condition will evaluate to true,

¢ reformat operation attribute"phone",Replace First("A(hdbdbd s (dvdvd -l vdbd 15" 5 1-52-
53" Local Warable["current-valus"]])

How the Logic in the Rule Works

The rule is used when you want to reformat the telephone number. It finds all the values for the
attribute phone in the current operation that match the pattern (nnn) nnn-nnnn and replaces each
with nnn-nnn-nnnn.

Input or Output Transformation - Reformat Telephone Number from nnn-nnn-nnnn to
(nnn) nnn-nnnn

Transforms the format of the telephone number. Implement the rule on the Input or Output
Transformation policy. Typically, if you use this rule on an Output Transformation, you would use
the rule Reformat Telephone Number from (nnn) nnn-nnnn to nnn-nnn-nnnn on the Input
Transformation and vice versa to convert the format back and forth.

There are two steps involved in using the predefined rules; creating a policy in the Input or Output
Transformation policy set, and importing the predefined rule. If you already have an Input or Output
Transformation policy that you want to add this rule to, skip to “Importing the Predefined Rule” on
page 206.

Creating a Policy
1 Open the Identity Manager Driver Overview for the driver you want to manage.
2 Click the Input or Output Transformation Policy object on the Publisher or Subscriber channel.
3 Click Insert.
4 Name the policy, make sure to implement the policy with the Policy Builder, then click OK.

The Rule Builder is launched.

Importing the Predefined Rule
1 In the Rule Builder, click Insert.

2 Select Input or Output Transformation - Reformat Telephone Number from nnn-nnn-nnnn to
(nnn) nnn-nnnn.

3 Click Input or Output Transformation - Reformat Telephone Number from nnn-nnn-nnnn to
(nnn) nnn-nnnn in the Rule Builder, to edit the rule.

4 Define the condition you want to have occur when the telephone number is reformatted.

5 Click OK.

206 Policy Builder and Driver Customization Guide

lnput or Dutput Transformation - Reformat Telephone Mumber from nnn-nnn-nnnn to

nnnl nnn-nnnn

¢ This condition will evaluate to true.

¢ reformat operation attAbutel"phone",Replace First("“Mdbdbd)-(hdbdid - (hdbdbdbd s, 15 1) 52-
53" Local Warable("current-value"])

How the Logic in the Rule Works

The rule is used when you want to reformat the telephone number. It finds all the values for the
attribute phone in the current operation that match the pattern (nnn) nnn-nnnn and replaces each
with nnn-nnn-nnnn.

Matching - Publisher Mirrored

Finds matches in the Identity Vault for objects in the connected system based on their name and
location. Implement the rule on the Publisher Matching policy in the driver.

There are two steps involved in using the predefined rules: creating a policy in the Matching policy
set, and importing the predefined rule. If you already have a Matching policy that you want to add
this rule to, skip to “Importing the Predefined Rule” on page 207.

Creating a Policy
1 Open the Identity Manager Driver Overview for the driver you want to manage.
2 Click the Matching Policy object on the Publisher channel.
3 Click Insert.
4 Name the policy, make sure to implement the policy with the Policy Builder, then click OK.

The Rule Builder is launched.

Importing the Predefined Rule
1 In the Rule Builder, click Insert.
Select Matching - Publisher Mirrored.
Click Matching - Publisher Mirrored in the Rule Builder, to edit the rule.
Delete [Enter base of source hierarchy] from the Value field.

a A~ WODN

Browse to the container in the source hierarchy where you want the matching to start, then
click OK.

Click OK.

Delete [Enter base of destination hierarchy] from the Enter string field.
Click on the Edit Arguments icon to launch the Argument Builder.
Select Text in the Noun list, then click Add.

10 In the Editor, click the browse icon and browse to and select the container in the destination
hierarchy where you want the source structure to be matched, then click OK.

11 Click OK.

© 0 N o

Defining Policies By Using The Policy Builder In iManager 207

Matching - Publisher Mirrored

*if source DM in subtree "[Enter base of source hierarchy]”

" zet local varable("dest-basze","[Enter base of destination hierarchy]")
¢ find matching objectizcope="entry",dniLocal Warable("dest-baze"}+"V'+Unmatched Source DM
[comert="true"]]]

How the Logic in the Rule Works

When an Add event occurs on an object in the connected system that is located within the specified
source subtree, the rule constructs a DN that represents the same object name and location within the
Identity Vault relative to the specified destination subtree. If the destination objects exists and is of
the desired object class then it is considered a match. You must supply the DN's of the source
(connected system) and destination (Identity Vault) subtrees.

Matching - Subscriber Mirrored - LDAP Format

Finds matches in a connected system that uses LDAP format DN's for objects in the Identity Vault
based on their name and location. Implement the rule on the Subscriber Matching policy in the
driver.

There are two steps involved in using the predefined rules: creating a policy in the Matching policy
set, and importing the predefined rule. If you already have a Matching policy that you want to add
this rule to, skip to “Importing the Predefined Rule” on page 208.

Creating a Policy
1 Open the Identity Manager Driver Overview for the driver you want to manage.
2 Click the Matching Policy object on the Subscriber channel.
3 Click Insert.
4 Name the policy, make sure to implement the policy with the Policy Builder, then click OK.

The Rule Builder is launched.

Importing the Predefined Rule

1 In the Rule Builder, click Insert.
2 Select Matching - Subscriber Mirrored - LDAP format.
3 Click Matching - Subscriber Mirrored - LDAP format in the Rule Builder, to edit the rule.
4 Delete [Enter base of source hierarchy] from the Value field.
5 Browse to the container in the source hierarchy where you want the matching to start, then
click OK.
Click OK.

Delete [Enter base of destination hierarchy] from the Enter String field.
Click on the Edit Arguments icon to launch the Argument Builder.
Select Text in the Noun list, then click Add.

© 0 N O

208 Policy Builder and Driver Customization Guide

10 In the Editor, click the browse icon and browse to and select the container in the destination
hierarchy where you want the source structure to be matched, then click OK.

11 Click OK.

Matching - Subscriber Mirrored - LDAP format

*if source DM in subtree "[Enter base of source hierarchy]"

. zet local varable["dest-baze","[Enter baze of destination hierarchy]")
¢ find matching objectizcope="entry",dn{Unmatched Source DM{convert="true"]+","+Local
YWariablel"dest-baze"]])

How the Logic in the Rule Works

When an Add event occurs on an object in the Identity Vault that is located within the specified
source subtree, the rule constructs a DN that represents the same object name and location within the
connected system relative to the specified destination subtree. If the destination objects exists and is
of the desired object class then it is considered a match. You must supply the DN's of the source
(Identity Vault) and destination (connected system) subtrees. The connected system must use an
LDAP formatted DN.

Matching - By Attribute Value

Finds matches for objects by specific attribute values. Implement the rule on the Subscriber
Matching policy or the Publisher Matching policy in the driver.

There are two steps involved in using the predefined rules; creating a policy in the Matching policy
set, and importing the predefined rule. If you already have a Matching policy that you would like to
add this rule to, skip to “Importing the Predefined Rule” on page 209.

Creating a Policy
1 Open the Identity Manager Driver Overview for the driver you want to manage.
2 Click the Matching Policy object on the Publisher channel.
3 Click Insert.
4 Name the policy, make sure to implement the policy with the Policy Builder, then click OK.

The Rule Builder is launched.

Importing the Predefined Rule
1 In the Rule Builder, click Insert.
Select Matching - By Attribute Value.
Click Matching - By Attribute Value in the Rule Builder, to edit the rule.
Delete [Enter base DN to start search] from the Enter DN field.
Click the Edit Arguments icon to launch the Argument Builder.
Select Text in the Noun list, then click Add.

In the Editor, click the browse icon and browse to and select the container where you want the
search to start, then click OK.

N oo g ODN

Defining Policies By Using The Policy Builder In iManager 209

8 Delete [Enter name of attribute to match on] from the Enter Match Attributes field.
9 Click the Edit Arguments icon to launch the Match Attributes Builder.

10 Click the browse icon and select the attributes you want to match. You can select one or more
attributes to match against, then click OK.

11 Click OK.

Matching - by attribute value

*if clazz name equal "User"

¢ find matching object(dn("[Enter base DM tao start search]"l,match{"[Enter name of attHbute to
match on]"l)

How the Logic in the Rule Works

When an Add event occurs on an object in the source data store, rule searches for an object in the
destination data store that has the same values for the specified attribute. You must supply the DN of
the base of the subtree to search in the connected system and the name of the attribute to match on.

Placement - Publisher Mirrored

Places objects in the Identity Vault by based on the name and location from the connected system.
Implement the rule on the Publisher Placement policy in the driver.

There are two steps involved in using the predefined rules: creating a policy in the Placement policy
set, and importing the predefined rule. If you already have a Placement policy that you would like to
add this rule to, skip to “Importing the Predefined Rule” on page 210.

Creating a Policy
1 Open the Identity Manager Driver Overview for the driver you want to manage.
2 Click the Placement Policy object on the Publisher channel.
3 Click Insert.
4 Name the policy, make sure to implement the policy with the Policy Builder, then click OK.

The Rule Builder is launched.

Importing the Predefined Rule
1 In the Rule Builder, click Insert.
Select Placement - Publisher Mirrored.
Click Placement - Publisher Mirrored in the Rule Builder, to edit the rule.
Delete [Enter base of source hierarchy] from the Value field.

a b~ ODN

Browse to and select the container in the source hierarchy where you want the object to be
acted upon, then click OK.

6 Delete [Enter base of destination hierarchy] from the Enter String field.
7 Click the Edit Arguments icon to launch the Argument Builder.
8 Select Text in the Noun list, then click Add.

210 Policy Builder and Driver Customization Guide

9 In the Editor, click the browse icon and browse to and select the container in the destination
hierarchy where you want the object to be placed, then click OK.

10 Click OK.

Placement - Publisher Mirrored

*if source DM in subtree "[Enter baze of source hierarchy]"

. zet local varable("dest-base","[Enter base of destination hierarchy]")
. zet operation destination DM{dnilocal Warable["dest-base" +"Y'+Unmatched Source DM

[comert="true"]]]

How the Logic in the Rule Works

If the User object resides in the specified source subtree in the connected system, then the object is
placed at the same relative name and location within the Identity Vault. You must supply the DN's of
the source (connected system) and destination (Identity Vault) subtrees.

Placement - Subscriber Mirrored - LDAP Format

Places objects in the data store by using the mirrored structure in the Identity Vault from a specified
point. Implement the rule on the Placement policy in the driver. You can implement the rule only on
the Subscriber channel.

There are two steps involved in using the predefined rules: creating a policy in the Placement policy
set, and importing the predefined rule. If you already have a Placement policy that you want to add
this rule to, skip to “Importing the Predefined Rule” on page 211.

Creating a Policy
1 Open the Identity Manager Driver Overview for the driver you want to manage.
2 Click the Placement Policy object on the Subscriber channel.

3 Click Insert.
4 Name the policy, make sure to implement the policy with the Policy Builder, then click OK.

The Rule Builder is launched.

Importing the Predefined Rule
1 In the Rule Builder, click Insert.
Select Placement - Subscriber Mirrored - LDAP Format.
Click Placement - Subscriber Mirrored - LDAP Format in the Rule Builder, to edit the rule.

Delete [Enter base of source hierarchy] from the Value field.

a b WODN

Browse to and select the container in the source hierarchy where you want the object to be
acted upon, then click OK.

Delete [Enter base of destination hierarchy] from the Enter String field.

=]

7 Click the Edit Arguments icon to launch the Argument Builder.
8 Select Text in the Noun list, then click Add.

Defining Policies By Using The Policy Builder In iManager 211

9 In the Editor, click the browse icon and browse to and select the container in the destination
hierarchy where you want the object to be placed, then click OK.

10 Click OK.

Placement - Subscriber Mirrored - LDAP format

*if source DM in subtree "[Enter base of source hierarchy]"

. zet local varable["dest-baze","[Enter baze of destination hierarchy]")
. set operation destination DMidn{Unmatched Source DM{convert="true"}+

["dest-baze"]])

s +Llocal Wadahble

How the Logic in the Rule Works

If the User object resides in the specified source subtree, then the object is placed at the same
relative name and location within the Identity Vault. You must supply the DN's of the source
(Identity Vault) and destination (connected system) subtrees. The connected system must use an
LDAP formatted DN.

Placement - Publisher Flat

Places objects from the data store into one container in the Identity Vault. Implement the rule on the
Publisher Placement policy in the driver.

There are two steps involved in using the predefined rules: creating a policy in the Placement policy
set, and importing the predefined rule. If you already have a Placement policy that you want to add
this rule to, skip to “Importing the Predefined Rule” on page 212.

Creating a Policy
1 Open the Identity Manager Driver Overview for the driver you want to manage.
2 Click the Placement Policy object on the Publisher channel.
3 Click Insert.
4 Name the policy, make sure to implement the policy with the Policy Builder, then click OK.

The Rule Builder is launched.

Importing the Predefined Rule

1 In the Rule Builder, click Insert.
Select Placement - Publisher Flat.
Click Placement - Publisher Flat in the Rule Builder, to edit the rule.
Delete [Enter DN of destination container] from the Enter String field.
Click the Edit Arguments icon to launch the Argument Builder.
Select Text in the Noun list, then click Add.

In the Editor, click the browse icon and browse to and select the destination container were you
want all of the user objects to be placed, then click OK.

8 Click OK.

N o g~ ODN

212 Policy Builder and Driver Customization Guide

Placement - Publisher Flat

¢ if class name egual "User”

Actions
¢ zet local vadable("dest-base","[Enter DM of destination container]")

% set operation destination DM{dn(Local Wardable"dest-base"+"V+Escape Destination DM{Unique
Mamel"CH",zcope="subtree",Lower Case(5Substring(length="1",0peration &ttHbutel"Given Mame"])
+Qperation &tthbuteSurname")),Lower Caze(Substring(length="2",Operation &ttrHbute"Given
Mame")+Operation &ttrbutel"Surname"11111]

How the Logic in the Rule Works

The rule places all User objects in the destination DN. The rule sets the DN of the destination
container as the local variable dest-base. The rule then sets the destination DN to be dest-base\CN
attribute. The CN attribute of the User object is the first two letters of the Given Name attribute plus
the Surname attribute as lowercase. The rule uses slash format.

Placement - Subscriber Flat - LDAP Format

Places objects from the Identity Vault into one container in the data store. Implement the rule on the
Subscriber Placement policy in the driver.

There are two steps involved in using the predefined rules: creating a policy in the Placement policy
set, and importing the predefined rule. If you already have a Placement policy that you want to add
this rule to, skip to “Importing the Predefined Rule” on page 213.

Creating a Policy
1 Open the Identity Manager Driver Overview for the driver you want to manage.
2 Click the Placement Policy object on the Subscriber channel.
3 Click Insert.
4 Name the policy, make sure to implement the policy with the Policy Builder, then click OK.

The Rule Builder is launched.

Importing the Predefined Rule
1 In the Rule Builder, click Insert.
Select Placement - Subscriber Flat - LDAP Format.
Click Placement - Subscriber Flat - LDAP Format in the Rule Builder, to edit the rule.
Delete [Enter DN of destination container] from the Enter String field.
Click the Edit Arguments icon to launch the Argument Builder.
Select Text in the Noun list, then click Add.

N o g b~ ODN

In the Editor, add the destination container were you want all of the User objects to be placed.
Make sure the container is specified in LDAP format, then click OK.

8 Click OK.

Defining Policies By Using The Policy Builder In iManager 213

FPlacement - Subscriber Flat - LDAP format

if class name equal "User”

Actions |
¢ set local varable("dest-base","[Enter DM of destination container]")

¢ set operation destination DM{dn"uid="+Escape Destination DM{Unigque Mame

["uid" scope="subtree",Lower Caze(5ubstring(length="1",0peration Attnbute("Given Mame"))
+0peration Attrbutel"Surname")),Lower CazelSubstring(length="2",0peration Attributel"Given
Mame"|)+Operation AttAbute("Surname"]))+","+Local Wardable"dest-baze")))

How the Logic in the Rule Works

The rule places all User objects in the destination DN. The rule sets the DN of the destination
container as the local variable dest-base. The rule then sets the destination DN to be uid=unique
name, dest-base. The uid attribute of the User object is the first two letters of the Given Name
attribute plus the Surname attribute as lowercase. The rule uses LDAP format.

Placement - Publisher By Dept

Places objects from one container in the data store into multiple containers in the Identity Vault
based on the value of the OU attribute. Implement the rule on the Publisher Placement policy in the
driver.

There are two steps involved in using the predefined rules: creating a policy in the Placement policy
set, and importing the predefined rule. If you already have a Placement policy that you want to add
this rule to, skip to “Importing the Predefined Rule” on page 214.

Creating a Policy
1 Open the Identity Manager Driver Overview for the driver you want to manage.
2 Click the Placement Policy object on the Publisher channel.
3 Click Insert.
4 Name the policy, make sure to implement the policy with the Policy Builder, then click OK.

The Rule Builder is launched.

Importing the Predefined Rule

In the Rule Builder, click Insert.

Select Placement - Publisher By Dept.

Click Placement - Publisher By Dept to edit the rule.

Delete [Enter DN of destination Organization] from the Enter String field.
Click the Edit Arguments icon to launch the Argument Builder.

Select Text in the Noun list, then click Add.

In the Editor, click the browse icon and browse to and select the parent container in the Identity
Vault. Make sure all of the department containers are child containers of this DN, then click
OK.

8 Click OK.

N OO g A WODN -

214 Policy Builder and Driver Customization Guide

Flacement - Publisher By Dept

% if class name equal "User”
And if attrbute 'OU available

¢ set local vardable("dest-basze","[Enter DM of destination Organization]")

. zet operation destination DM{dniLocal Yarable"dest-baze"+" '+ Attibute("OU" |+ V'+Escape
Deztination DMiUnique Mame["CH",scope="zubtree",Lower Caze(Substring(length="1",0peration
tttHbutel"Given Mame"ll+Operation &ttHbutel"Surname”)),Lower Caze(SubstHng
[length="2",0peration Attrbutel"Given Mame"))+Operation Attnbute("Surname"]1)1])

How the Logic in the Rule Works

The rule places User objects in proper department containers depending upon what value is stored in
the OU attribute. If a User object needs to be placed and has the OU attribute available, then the
User object is placed in the dest-base\value of OU attribute\CN attribute.

The dest-base is a local variable. The DN must be the relative root path of the department containers.
It can be an organization or an organizational unit. The value stored in the OU attribute must be the
name of a child container of the dest-base local variable.

The value of the OU attribute must be the name of the child container. If the OU attribute is not
present, this rule is not executed.

The CN attribute of the User object is the first two letters of the Given Name attribute plus the
Surname attribute as lowercase. The rule uses slash format.

Placement - Subscriber By Dept - LDAP Format

Places objects from one container in the Identity Vault into multiple containers in the data store base
on the OU attribute. Implement the rule on the Placement policy in the driver. You can implement
the rule only on the Subscriber channel.

There are two steps involved in using the predefined rules: creating a policy in the Placement policy
set, and importing the predefined rule. If you already have a Placement policy that you want to add
this rule to, skip to “Importing the Predefined Rule” on page 215.

Creating a Policy
1 Open the Identity Manager Driver Overview for the driver you want to manage.
2 Click the Placement Policy object on the Subscriber channel.
3 Click Insert.
4 Name the policy, make sure to implement the policy with the Policy Builder, then click OK.

The Rule Builder is launched.

Importing the Predefined Rule
1 In the Rule Builder, click Insert.
2 Select Placement - Subscriber By Dept - LDAP format.
3 Click Placement - Subscriber By Dept - LDAP format in the Rule Builder, to edit the rule.
4 Delete [Enter DN of destination Organization] from the Enter string field.

Defining Policies By Using The Policy Builder In iManager

215

5 Click the Edit Arguments icon to launch the Argument Builder.
6 Select Text in the Noun list, then click Add.

7 In the Editor, add the parent container in the data store. The parent container must be specified
in LDAP format. Make sure all of the department containers are child containers of this DN,
then click OK.

8 Click OK.

Placement - Subscriber By Dept - LDAP format

if class name equal "User”
And . if attribute 'OL' available

Actions
¢*zet local vadable("dest-base","Enter DM of destination Organization])

" zet operation destination DMidn("uid="+Escape Destination DM{Unique Mame
["uid",scope="subtree",Lower Case(5ubstring(length="1",0peration Attrdbutel"Given Mame"))
+Qperation AttrbutelSurname")),Lower Caze(Substring(length="2",Operation &ttrHbute"Given

Mame"))+Operation Attnbute"Surname"])))+", ou="+&ttibute("OU"+","+Local YWariablel"dest-baze"]))

How the Logic in the Rule Works

The rule places User objects in proper department containers depending upon what value is stored in
the OU attribute. If a User object needs to be placed and has the OU attribute available, then the
User object is place in the uid=unique name,ou=value of OU attribute,dest-base.

The dest-base is a local variable. The DN must be the relative root path of the department containers.
It can be an organization or an organizational unit. The value stored in the OU attribute must be the
name of a child container of the dest-base local variable.

The value of the OU attribute must be the name of the child container. If the OU attribute is not
present, then this rule is not executed.

The uid attribute of the User object is the first two letters of the Given Name attribute plus the
Surname attribute as lowercase. The rule uses LDAP format.

3.3 Regular Expressions

A regular expression is a formula for matching text strings that follow some pattern. Regular
expressions are made up of normal characters and metacharacters. Normal characters include
uppercase and lowercase letters and digits. Metacharacters have special meanings. The following
table contains some of the most common metacharacters and their meanings.

Metacharacter Description

Matches any single character.

$ Matches the end of the line.
A Matches the beginning of a line.
* Matches zero or more occurrences of the character

immediately preceding.

216 Policy Builder and Driver Customization Guide

Metacharacter Description

\ Literal escape character. It allows you to search for
any of the metacharacters. For example \$ finds
$1000 instead of matching at the end of the line.

[1 Matches any one of the characters between the
brackets.
[0-9] Matches a range of characters with the hyphen.

The example matches any digit.

[A-Za-z] Matches multiple ranges as well. The example
matches all uppercase and lowercase letters.

The Argument Builder is designed to use regular expressions as defined in Java*. The Java Web site
(http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html) contains further information.

3.4 XPath 1.0 Expressions

Arguments to some conditions, actions, and tokens use XPath 1.0 expressions. XPath is a language
created to provide a common syntax and semantics for functionality shared between XSLT and
XPointer. It is used primarily for addressing parts of an XML document, but also provides basic
facilities for manipulation of strings, numbers and booleans.

The XPath specification requires that the embedding application provide a context with several
application defined pieces of information. In DirXML Script (see Section 1.1.2, “DirXML Script,”
on page 15), XPath is evaluated with the following context:

» The context node is the current operation.

* The context position and size are 1.

* Available variables

» Those available as parameters to style sheets within Identity Manager (currently
fromNDS, srcQueryProcessor, destQueryProcessor, srcCommandProcessor,
destCommandProcessor, and dnConverter).

* Global configuration variables.
* Local policy variables.

« If'there is a name conflict between the different variable sources then the order of
precedence is local variable, style sheet parameters, global variables.

» Namespaces that are declared on the policy element.
* Available functions

 All built-in XPath 1.0 functions

* Java extension functions as provided by NXSL

» Namespaces declarations to associate a prefix with a Java class must be declared on
the policy element.

The W3 Web site (http://www.w3.0rg/TR/1999/REC-xpath-19991116) contains further information.

Defining Policies By Using The Policy Builder In iManager

217

http://java.sun.com/j2se/1.4.2/docs/api/java/util/regex/Pattern.html
http://www.w3.org/TR/1999/REC-xpath-19991116

3.5 Conditions

This section contains detailed reference to all conditions available using the Policy Builder interface.

* Section 3.5.1, “If Association,” on page 218

» Section 3.5.2, “If Attribute,” on page 219

» Section 3.5.3, “If Class Name,” on page 220
 Section 3.5.4, “If Destination Attribute,” on page 221
» Section 3.5.5, “If Destination DN,” on page 222

» Section 3.5.6, “If Entitlement,” on page 223
 Section 3.5.7, “If Global Configuration Value,” on page 225
» Section 3.5.8, “If Local Variable,” on page 226
 Section 3.5.9, “If Named Password,” on page 228

» Section 3.5.10, “If Operation,” on page 228

* Section 3.5.11, “If Operation Attribute,” on page 229
* Section 3.5.12, “If Operation Property,” on page 231
 Section 3.5.13, “If Password,” on page 232

» Section 3.5.14, “If Source Attribute,” on page 232

» Section 3.5.15, “If Source DN,” on page 234
 Section 3.5.16, “If XPath Expression,” on page 235

3.5.1 If Association

Performs a test on the association value of current operation or the current object.

Fields

Operator Condition is Met When...

Operator Condition is met when...

associated There is an established association for the current object.

available There is a non-empty association value specified by the current
operation.

equal The association value specified by the current operation is exactly equal

to the content of the if association.

not-associated There is not an established association for the current object.
not available The association is not available for the current object.
not-equal The association value specified by the current operation is not equal to

the content of the if association.

218 Policy Builder and Driver Customization Guide

Example

This example tests to see if the association is available. When this condition is met, the actions that
are defined are executed.

If | association V E
Select operator® | available ~
If | association V E
Select operator™ | equal 4
Value: 10741 4fa5-1b38-40ec-8b7 c-c20252 1 ddafb!

3.5.2 If Attribute

Performs a test on attribute values of the current object in either the current operation or the source
data store. It can be logically thought of as If Operation Attribute or If Source Attribute, because the
test is satisfied if the condition is met in the source data store or n in the operation.

Fields

Name

Specify the name of the attribute to test.

Operator
Select the condition test type.

Compare Mode

Select the comparison mode. See “Comparison Modes” on page 294.

Operator Condition is Met When...

Operator Condition is met when...

available There is a value available in either the current operation or the source
data store for the specified attribute.

equal There is a value available in either the current operation or the source
data store for the specified attribute, which equals the specified value
when compared using the specified comparison mode.

not available Available would return False.
not-equal Equal would return False.
Example

The example uses the condition If Attribute when filtering for User objects that are disabled or have
a certain title. The policy is Policy to Filter Events, and it is available for download from Novell’s
support Web site. For more information, see “Downloadable Identity Manager Policies” on page 36.

Defining Policies By Using The Policy Builder In iManager 219

[J= Filter events: From Users sub-tree, Users not disabled, no consultants or sales people

*if source DM not in subtree "Users”
Or % if attrdbute 'Login Dizabled' equal "True"
Or *if attdbute 'Title' match " Fconsultant [sales™

¢ uetal]
Or If|attrihute V| el = (]
Enter name™ Title
Select operator™ | equal 4
Compare mode: | regular expression -
Walue: | *consultant|sales.™

The condition is looking for any User object that has an attribute of Title with a value of consultant
or sales.

3.5.3 If Class Name

Performs a test on the object class name in the current operation.

Fields

Operator
Select the condition test type.

Compare Mode

Select the comparison mode. See Section 3.9.1, “Comparison Modes,” on page 294.

Operator Condition is Met When...

Operator Condition is met when...
available There is an object class name available in the current operation.
equal There is an object class name available in the current operation, and it

equals the specified value when compared using the specified
comparison mode.

not available Available would return False.
not-equal Equal would return False.
Example

The example uses the condition If Class Name to govern group membership for a User object based
on their title. The policy is Govern Groups for User Based on Title Attribute and it is available for
download from Novell’s support Web site. For more information, see “Downloadable Identity
Manager Policies” on page 36.

220 Policy Builder and Driver Customization Guide

[1E8 User changing from Manager to Employes

*if class name equal "User"
And & if destination attHbute 'Title' match " *manager.™
And & if operation attdbute 'Title' not-match " *manager™

* zet destination attrbute value"Group Membership","Users'EmplovessGroup")

& clone operation attAbute("Group Membership","Securty Equals")
[J® User changing from Employee to Manager

If | class name v @ FEHEE
Select operator™ | eqgual e
Compare mode: | case insengitive '
Walue: |Llzer

Checks to see if the class name of the current object is User.

3.5.4 If Destination Attribute

Performs a test on attribute values of the current object in the destination data store.

Fields

Name

Specify the name of the attribute to test.

Operator
Select the condition test type.

Compare Mode

Select the comparison mode. See “Comparison Modes” on page 294.

Operator Condition is Met When...

Operator Condition is met when...

available There is a value available in the destination data store for the specified
attribute.

equal There is a value available for the specified attribute in the destination data

store that equals the specified value when compared using the specified
comparison mode.

not available Available would return False.

not-equal Equal would return False.

Defining Policies By Using The Policy Builder In iManager

221

Example

The example uses the condition If Attribute to govern group membership for a User object based on
the title. The policy is Govern Groups for User Based on Title Attribute and it is available for
download from Novell’s support Web site. For more information, see “Downloadable Identity
Manager Policies” on page 36.

18 User changing from Manager ta Employes

. if clazss name equal "User"
And & if destination attHbute "Title' match " manager,™
And & if operation attrbute 'Title' not-match " *manager™

* set destination attrbute value"Group Membership","Users'Emplovess Group")

& clone operation attAbute("Group Membership","Security Equals")
[J® User changing from Employes to Manager

And If| destination attribute V| EEEE|E
Enter attribute name:* |Title
Select operator™ | equal b
Compare mode: | regular expression i
Value: | *manager.”®

The policy checks to see if the value of the title attribute contains manager.

3.5.5 If Destination DN

Performs a test on the destination DN in the current operation. The test performed depends on the
specified operator.

Fields

Operator
Select the condition test type.

Operator Condition is Met When...

Operator Condition is met when...
available There is a destination DN available.
equal There is a destination DN available, and it equals the specified value

when compared using semantics appropriate to the DN format of the
destination data store.

in-container There is a destination DN available, and it represents an object in the
container, specified by value, when compared using semantics
appropriate to the DN format of the destination data store.

222 Policy Builder and Driver Customization Guide

Operator

Condition is met when...

in-subtree

not available
not-equal
not-in-container

not-in-subtree

There is a destination DN available, and it represents an object in the
subtree, specified by value, when compared using semantics appropriate
to the DN format of the destination data store.

Available would return False.
Equal would return False.
In-container would return False.

In-subtree would return False.

Example

If | destination DM

If | destination DM

If | destination DM

If | destination DM

vE

Select operator® | available b

v

Select operator™ | equal b

Walue: |Movelllsers\Fred

v &

Select operator® | in container i
Walue: |Movell\sers
v
Select operator®™ | in subtree b
Walue: |Movell

3.5.6 If Entitlement

Performs a test on entitlements of the current object, in either the current operation or the Identity

Vault.

Fields

Name

Specify the name of the entitlement to test for the selected condition.

Operator

Select the condition test type.

Compare Mode

Select the comparison mode. See “Comparison Modes” on page 294.

Operator Condition is Met When...

Defining Policies By Using The Policy Builder In iManager

223

Operator

Condition is met when...

available

changing

changing-from

changing-to

equal

not available
not-changing
not-changing-from
not-changing-to

not-equal

The named entitlement is available in either the current operation or the
Identity Vault.

The current operation contains a change (modify attribute or add attribute)
of the named entitlement.

The current operation contains a change that removes a value (remove
value) of the named entitlement, which has a value that equals the
specified value, when compared using the specified comparison mode.

The current operation contains a change that adds a value (add value or
add attribute) to the named entitlement. It has a value that equals the
specified value, when compared using the specified comparison mode.

There is a value available for the specified attribute in the destination data
store that equals the specified value when compared using the specified
comparison mode.

Available would return False.
Changing would return False.
Changing-from would return False.
Changing-to would return False.

Equal would return False.

224 Policy Builder and Driver Customization Guide

Example

If | entitlernent

If | entitlement

If | entitlerment

If | entitlerment

If | entitlerment

v
Enter name:™ | notes-group

Select operator®™ | available

4
Enter name:™ |notes-group

Select operators™ | changing

v

Enter name:™ |notes-group
Select operator™ | changing from
Compare mode: | case insensitive

YWalue: | Sales

v
Enter name:™ | notes-group
Select operator™ | changing to
Compare mode: | case insensitive

YWalue: | Sales

v
Enter name:™ |notes-group
Select operator™ | equal
Compare mode: | case insensitive

YWalue: | Sales

3.5.7 If Global Configuration Value

Performs a test on a global configuration variable.

Fields

Name

Specify the name of the global variable to test for the selected condition.

Operator

Select the condition test type.

Compare Mode

Select the comparison mode. See “Comparison Modes” on page 294.

Operator Condition is Met When...

Defining Policies By Using The Policy Builder In iManager

225

Operator Condition is met when...

available There is a global configuration variable with the specified name.

equal There is a global configuration variable with the specified name and its
value equals the specified value when compared using the specified
comparison mode.

not available Available would return False.
not-equal Equal would return False.
Example
If | global configuration value A
Enter name:™ | myGlobalvariable
Select operator™ | available V
If | global configuration walue hd
Enter name:* iy Globalvariable
Select operator™| equal i
Compare mode: | case insensitive b
Walue! enahbled

3.5.8 If Local Variable

Performs a test on a local variable.

Fields

Name

Specify the name of the local variable to test for the selected condition.

Operator

Select the condition test type.

Compare Mode

Select the comparison mode. See “Comparison Modes” on page 294.

Operator Condition is Met When...

Operator Condition is met when...

available There is a local variable with the specified name that has been defined by
an action of a earlier rule within the policy.

equal There is a local variable with the specified name, and its value equals the
specified value when compared using the specified comparison mode.

not available Available would return False.

226 Policy Builder and Driver Customization Guide

Operator Condition is met when...

not-equal Equal would return False.

Example

The example adds a User object to the appropriate group, Employee or Manager, based on Title. It
also creates the group, if needed, and sets up security equal to that group. The policy is Govern
Groups for User Based on Title Attribute and it is available for download from Novell’s support
Web site. For more information, see “Downloadable Identity Manager Policies™ on page 36.

[J® Set local variables to test existence of groups and for placement
[JE Create ManagersGroup, if needed

o if local varable 'manager-group-info’ available
And & if local vardable 'manager-group-info' not equal "group”

¢ add destination object(class name="Group" when="before",dn(Local Varable("manager-group-
dn"J]]

[J® Create EmployveesiGroup, if needed
[J® If Title indicates Manager, add to ManagerGroup and set rights
[J® |If Title does not indicate Managzer, add to EmployeeGroup and set rights

The policy contains five rules that are dependent on each other.

12 set local variables to test existence of oroups and for placement

%, if clasz name equal "User"
And
*,if operation equal "add"
Or *if operation equal "modify"

Actons
* set local variable"manager-group-dn”,"Users\itanagers Group”)

* set local variable["manager-group-info",Destination AttAbute("Object Class",dnilocal Yarable
["manager-group-dn"])])

. set local varable["employee-group-dn","Users\Emplovees Group")

. set local varable["employee-group-infa",Destination Attdbutel"Object Clas=",dn(Local Warable
["emplovee-group-dn"i}])

For the If Locate Variable condition to work, the first rule sets four different local variables to test
for groups and where to place the groups.

And If | local variable W | [l Bl [E]
Enter name:™ |manager-group-info
Select operator™ | not equal -
Compare mode: | case insensitive b
Yalue: |group

Defining Policies By Using The Policy Builder In iManager 227

The condition the rule is looking for is to see if the local variable of manager-group-info is available
and if manger-group-info is not equal to group. If these conditions are met, then the destination
object of group is added.

3.5.9 If Named Password

Performs a test on a password in the current operation with the specified name.

Fields

Name

Specify the name of the named password to test for the selected condition.

Operator
Select the condition test type.

Operator Condition is Met When...

Operator Condition is met when...
available There is password with the specified name available.
not available Available would return False.
Example
If| named password b
Enter name:™ password
Select operator™ | available b

3.5.10 If Operation

Performs a test on the name of the current operation.

Fields

Operator
Select the condition test type.

Operator Condition is Met When...

Operator Condition is met when...

equal The name of the current operation is exactly equal to content of If
Operation.

not-equal Equal would return False.

228 Policy Builder and Driver Customization Guide

Example

The example adds a User object to the appropriate group, Employee or Manager, based on Title. It
also creates the group, if needed, and sets up security equal to that group. The policy name is Govern
Groups for User Based on Title Attribute and it is available for download from Novell’s support
Web site. For more information, see “Downloadable Identity Manager Policies” on page 36.

= S5et local variables to test existence of groups and for placement

if clasz name equal "User"
And
*if operation equal "add"
Or *if operation equal "modify”

¢ cet local vardablel"manager-group-dn”," Users\itanagers Group")

¢ cet local vardablel"manager-group-info",Destination Attdbute("Object Class",dn(local Warable
["manager-group-dn"ili]

¢ set local vadablel"emploves-group-dn","Users\Emplovees Group")

¢ cet local vardablel"emplovee-group-info",Destination &ttnbute"Object Class",dn(local Wardable

["emploves-group-dn"])])

If| operation "’ Bl =l [E)

Select operator™ | equal i

Walue: |add

The condition is checking to see if an add or modify operation has occurred. Once one of these
occurs, then it sets the local variables.

3.5.11 If Operation Attribute

Performs a test on attribute values in the current operation. The test performed depends on the
specified operator.

Fields

Name

Specify the name of the attribute to test.

Operator
Select the condition test type.

Compare Mode

Select the comparison mode. See “Comparison Modes™ on page 294.

Operator Condition is Met When...

Defining Policies By Using The Policy Builder In iManager 229

Operator Condition is met when...

available There is a value available in the current operation (add attribute, add
value, attribute) for the specified attribute.

changing The current operation contains a change (modify attribute or add attribute)
of the specified attribute.

changing-from The current operation contains a change that removes a value (remove
value) of the specified attribute. It equals the specified value when
compared using the specified comparison mode.

changing-to The current operation contains a change that adds a value (add value or
add attribute) to the specified attribute. It equals the specified value when
compared using the specified comparison mode.

equal There is a value available in the current operation (other than a remove
value) for the specified attribute. It equals the specified value when
compared using the specified comparison mode.

not available Available would return False.

not-changing Changing would return False.

not-changing-from Changing-from would return False.

not-changing-to Changing-to would return False.

not-equal Equal would return False.
Example

The example adds a User object to the appropriate group, Employee or Manager, based on Title. It
also creates the group, if needed, and sets up security equal to that group. The policy name is Govern
Groups for User Based on Title Attribute and it is available for download from Novell’s support
Web site. For more information, see “Downloadable Identity Manager Policies” on page 36.

[1® Setlocal variables to test existence of groups and for placement
[1® Create ManagersiGroup, if needed

[1® Create EmployeesiGroup, if needed

(18 If Title indicates Manager, add to ManagerGroup and set rights

*if class name equal "User”
And & if operation attHbute ‘Title' match " *manager.™

% et destination attribute walue("Group Membership",Local Warable"manager-group-dn"))

¢ clone operation attrbute"Group Membership","Securty Equals")
[]® If Title does not indicate Manager, add to EmployeeGroup and set rights

230 Policy Builder and Driver Customization Guide

[&] And If| operation attribute v Bl Eel[El

Enter name:™ | Title
Select operator™ | equal b
Compare mode: | regular expressian v
Value: | *manager.® [@lf

The condition is checking to see if the attribute of Title is equal to .*manager®, which is a regular
expression. It means it is looking for a title that has zero or more characters before manager and a
single character after manager. It would find a match if the User object’s tile was sales managers.

3.5.12 If Operation Property

Performs a test on an operation property on the current operation.

Fields

Name

Specify the name of the operation property to test for the selected condition.

Operator
Select the condition test type.

Compare Mode

Select the comparison mode. See “Comparison Modes” on page 294.

Operator Condition is Met When...

Operator Condition is met when...

available There is an operation property with the specified name on the current
operation.

equal There is a an operation property with the specified name on the current

operation and its value equals the provided content when compared using
the specified comparison mode.

not available Available would return False.

not-equal Equal would return False.

Defining Policies By Using The Policy Builder In iManager

231

Example

If | operation propery V
Enter name:™ |myStored'/ariable

Selzct operator™ | available i

If | operation property “
Enter name:™ | rmyStoredvariable
Select operators™ | equal b

Compare mode: | case insensitive b

Walue:! |true

3.5.13 If Password

Performs a test on a password in the current operation.

Fields

Operator
Select the condition test type.

Operator Condition is Met When...

Operator Condition is met when...
available There is password available in the current operation.
not available Available would return False.
Example
If| passward ~
Select operator™ | availahle e

3.5.14 If Source Attribute

Performs a test on attribute values of the current object in the source data store.

Fields
Name
Specify the name of the source attribute to test for the selected condition.

Operator

Select the condition test type.

Compare Mode

Select the comparison mode. See Section 3.9.1, “Comparison Modes,” on page 294.

232 Policy Builder and Driver Customization Guide

Operator Condition is Met When...

Operator Condition is met when...
available There is a value available in the source data store for the specified
attribute.
equal There is a value available in the source data store for the specified
attribute. It equals the specified value when compared using the specified
comparison mode.
not available Available would return False.
not-equal Equal would return False.
Fields
Name

Specify the name of the source attribute to test for the selected condition.

Operator

Select the condition test type.

Compare Mode

Select the comparison mode. See “Comparison Modes” on page 294.

Operator Condition is Met When...

Operator Condition is met when...

available There is a value available in the source data store for the specified
attribute.

equal There is a value available in the source data store for the specified
attribute. It equals the specified value when compared using the specified
comparison mode.

not available Available would return False.

not-equal Equal would return False.

Defining Policies By Using The Policy Builder In iManager

233

Example

If | source attribute

M ENEE]E

Enter attribute name:™ 1)

If | source attribute

Select operator™ | availahle b

v [[l Ea[E]

Enter attribute name:™ QL
Select operator™ | aqual i
Compare mode: | case insensitive W
Walue: [Sales
If | source attribute 4 EI
Enter attHbute name: |Language
Select operator™ | aqual
Compare mode: | structured M
Structured components:™
string(JP) [=]

3.5.15 If Source DN

Performs a test on the source DN in the current operation.

Fields

Operator

Select the condition test type.

Operator Condition is Met When...

Operator

Condition is met when...

available

equal

in-subtree

not available
not-equal
not-in-container

not-in-subtree

There is a source DN available.

There is a source DN available, and it equals the content of the specified
value in-container There is a source DN available, and it represents an
object in the container identified by the specified value.

There is a source DN available, and it represents an object in the subtree
identified by the spcified value.

Available would return False.
Equal would return False.
In-container would return False.

In-subtree would return False.

234 Policy Builder and Driver Customization Guide

Fields

Operator
Select the condition test type.

Operator Condition is Met When...

Operator Condition is met when...
available There is a source DN available.
equal There is a source DN available, and it equals the content of the specified

value in-container There is a source DN available, and it represents an
object in the container identified by the specified value.

in-subtree There is a source DN available, and it represents an object in the subtree
identified by the spcified value.

not available Available would return False.

not-equal Equal would return False.

not-in-container In-container would return False.

not-in-subtree In-subtree would return False.
Example

The example uses the condition If Source DN to check if the User object is in the source DN. The
rule is from the predefined rules that come with Identity Manager 3.0. For more information, see
“Event Transformation - Scope Filtering - Exclude Subtrees” on page 204.

Event Transformation - Scope Filtering - Exclude subtres|s)

*if zource DM in subtree "[Enter a subtree to exclude]"

¢ wetol]
If|snurce DM V| Ceel = [E]
Select operator™ | in container hd
Walue: | Llsers

The condition is checking to see if the source DN is in the Users container. If the object is coming
from that container, it is vetoed.

3.5.16 If XPath Expression
Performs a test on the results of evaluating an XPath 1.0 expression.

Fields

Operator

Defining Policies By Using The Policy Builder In iManager

235

Select the condition test type.

Operator Condition is Met When...

Operator Condition is met when...
true The XPath expression evaluates to True.
false True would return False.
Example
If|}{F'ATH expression V [l Bl [E]
Select operaton™ | true b
Yaluer™ | add-attrigattr-name="0U)Aalue[string () = "Sales")

3.6 Actions

This section contains detailed reference to all actions available using the Policy Builder interface.

* Section 3.6.1, “Add Association,” on page 237

» Section 3.6.2, “Add Destination Attribute Value,” on page 238
 Section 3.6.3, “Add Destination Object,” on page 239

* Section 3.6.4, “Add Source Attribute Value,” on page 240

» Section 3.6.5, “Add Source Object,” on page 241

» Section 3.6.6, “Append XML Element,” on page 242

» Section 3.6.7, “Append XML Text,” on page 243

» Section 3.6.8, “Break,” on page 244

* Section 3.6.9, “Clear Destination Attribute Value,” on page 244
* Section 3.6.10, “Clear Operation Property,” on page 245

» Section 3.6.11, “Clear Source Attribute Value,” on page 245
» Section 3.6.12, “Clone By XPath Expression,” on page 246

* Section 3.6.13, “Clone Operation Attribute,” on page 246

» Section 3.6.14, “Delete Destination Object,” on page 247

» Section 3.6.15, “Delete Source Object,” on page 247
 Section 3.6.16, “Find Matching Object,” on page 248

* Section 3.6.17, “For Each,” on page 249

» Section 3.6.18, “Generate Event,” on page 250

+ Section 3.6.19, “Implement Entitlement,” on page 252

* Section 3.6.20, “Move Destination Object,” on page 253

» Section 3.6.21, “Move Source Object,” on page 254
 Section 3.6.22, “Reformat Operation Attribute,” on page 254

» Section 3.6.23, “Remove Association,” on page 255

236 Policy Builder and Driver Customization Guide

Section 3.6.24, “Remove Destination Attribute Value,” on page 256
Section 3.6.25, “Remove Source Attribute Value,” on page 257
Section 3.6.26, “Rename Destination Object,” on page 258
Section 3.6.27, “Rename Operation Attribute,” on page 258
Section 3.6.28, “Rename Source Object,” on page 258

Section 3.6.29, “Send Email,” on page 259

Section 3.6.30, “Send Email from Template,” on page 260
Section 3.6.31, “Set Default Attribute Value,” on page 261
Section 3.6.32, “Set Destination Attribute Value,” on page 262
Section 3.6.33, “Set Destination Password,” on page 263
Section 3.6.34, “Set Local Variable,” on page 264

Section 3.6.35, “Set Operation Association,” on page 265
Section 3.6.36, “Set Operation Class Name,” on page 265
Section 3.6.37, “Set Operation Destination DN,” on page 266
Section 3.6.38, “Set Operation Property,” on page 266

Section 3.6.39, “Set Operation Source DN,” on page 267
Section 3.6.40, “Set Operation Template DN,” on page 267
Section 3.6.41, “Set Source Attribute Value,” on page 268
Section 3.6.42, “Set Source Password,” on page 269

Section 3.6.43, “Set XML Attribute,” on page 269

Section 3.6.44, “Status,” on page 270

Section 3.6.45, “Strip Operation Attribute,” on page 270
Section 3.6.46, “Strip XPath,” on page 271

Section 3.6.47, “Trace Message,” on page 271

Section 3.6.48, “Veto,” on page 272

Section 3.6.49, “Veto if Operation Attribute Not Available,” on page 273

3.6.1 Add Association

Sends an add association command to the Identity Vault, with the specified association.

Fields

Mode

DN

Select whenter this action should be added to the current operation, or written directly to the

Identity Vault.

Specify the DN of the target object or leave blank to use the current object.

Association

Specify the value of the assocation to be added.

Defining Policies By Using The Policy Builder In iManager

237

Example

Do | add association v & B = B

Select mode: | add to current operation b
Enter DM: | Source DR

Eil [

Enter association:® | Source Mame()

3.6.2 Add Destination Attribute Value

Adds a value to an attribute on an object in the destination data store.

Fields

Attribute Name
Specify the name of the attribute.

Class Name

(Optional) Specify the class name of the target object. Leave blank to use the class name from
the current object.

Mode

Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Object

Select the target object. This object can be the current object, or be specified by a DN or an
association.

Value Type
Select the syntax of the attribute value to be added.

Value
Specify the attribute value to be added.

Example

The example adds the destination attribute value to the OU attribute. It creates the value from the
local variables that are created. The rule is from the predefined rules that come with Identity
Manager 3.0. For more information, see “Command Transformation - Create Departmental
Container - Part 1 and Part 2” on page 197.

238 Policy Builder and Driver Customization Guide

Command Transformation - Create Departmental Container - Part 1

¢ if operation egual "add"

. set local vardable("target-container",Destination DM(length="-2"1)
* zet local vardable("does-target-exist",Destination &ttribute("objectclass",class

name="Orzanizationallnit",dnllocal Wadable("target-container"1]1]

Comrmand Transformation - Create Departmental Container - Part 2
. if local variable 'does-target-exizt' available
And *if local varable 'does-target-exist' equal ™

Actons |
* add destination objecticlass name="organizationallnit",direct="true",dr(Local Yarable"target-
container"]]]

* add destination attribute value("ou",direct="true",dn(Local Warable("target-containet")),Parze
OM["dest-dn","dot", length="1"start="-1",Local Warable["target-containar”])

[@] 0 | add destination attribute value b | [Bl (2]

Enter attribute name:® ||:|u |
Enter class name:
Select mode: | write directly to destination datastare hd
Select object: | DM b
Enter DH:* |Luca| “ariable("target-container”) =
Enter value type: |string |

Enter string™ |F'arse OM"dest-dn","dot” length="1" start="-1" Local “ariz

3.6.3 Add Destination Object

Creates a new object of the specified type in the destination data store.

Fields

Class Name
Specify the class name of the object to be created.

Mode

Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

DN
Specify the DN of the object to be created.

Defining Policies By Using The Policy Builder In iManager 239

Remarks

Any attribute values to be added as part of the object creation must be done in subsequent “Add
Destination Attribute Value” on page 238 actions using the same DN.

Example

The example creates the department container that is needed. The rule is from the predefined rules
that come with Identity Manager 3.0. For more information, see “Command Transformation - Create
Departmental Container - Part 1 and Part 2”” on page 197 from the predefined rules.

Command Transformation - Create Departmental Container - Part 1

* if operation egual “add"

* set local vardable("target-container”,Destination DM(length="-2"1)
* set local vardable("does-target-exist",Destination &ttribute("objectclass",class
name="Crzanizationallnit",dnilocal Yadable!"target-container"1]1]

Commmand Transformation - Create Departmental Container - Part 2

. if local wvardable 'does-target-exizt' available
And & if local vardable 'does-target-exizt’ equal ™

Actins
¢ add destination objecticlass name="organizationallnit",direct="true",dn(Local Yarable"target-
container])

* add destination attrbute value("ou",direct="true",dn(Local Yardable("target-container)),Parse
DM["dest-dn","dot", length="1",start="-1",Local Warable("target-container"]])

|§| Dia | add destination object v| E
Enter class name™ |organizationalnit
Select mode: | write directly to destination datastore b
Enter DH:* |ana| “ariahlel"target-cantainer") |

The OU object is created. The value for the OU attribute is created from the destination attribute
value action that occurs after this action.

3.6.4 Add Source Attribute Value

Adds the specified value the specified attribute on an object in the source data store. The target
object is the current object, a DN, or an association.

Fields

Attribute Name
Specify the name of the attribute.

240 Policy Builder and Driver Customization Guide

Class Name

(Optional) Specify the class name of the target object. Leave blank to use the class name from

the current obejct.

Object

Select the target object. This object can be the current object, or be specified by a DN or an

association.

Value Type
Select the syntax of the attribute value to be added.

Value
Specify the attribute value to be added.

Example

Do | add source attribute value hd [

Enter attribute name™ [Member

Enter clazz name:
Select object: | DM b

Enter ON* | " sers/ManagerGroup”

Enter value type: |string

Enter string™ | Destination DR

3.6.5 Add Source Object

Creates an object of the specified type to be created in the source data store. Any attribute values to

be added as part of the object creation must be done in subsequent Add Source Attribute Value
(page 240) actions using the same DN.

Fields
Class Name
Specify the class name of the object to be added.

DN
Specify the DN of the object to be added.

Defining Policies By Using The Policy Builder In iManager

241

Example

Do | add source object V Bl el [E)]

Enter class name:*|USEf

][5

Enter DR:i* |"UsersfFred Flintgtone"

Do | add source attribute value w M

Enter attribute name:* |Surnar‘ne

Enter clazz name:

[#] [#]

Select object: | DN

<

Enter DR:* |"UsersfFred Flintstong"

Enter value type: |string

Enter string:® |"F|intstnne"

E] [#] &

Fields

Class Name

Specify the class name of the object to add to the source data store.

DN
Specify the DN of the new object to add to the source data store.

3.6.6 Append XML Element

Appends an element to a set of elements selected by the XPath expression.

Fields

Name

Specify the tag name of the XML element. This name can contain a namespace prefix if the
prefix has been previously defined in this policy.

XPATH Expression

Specify an XPath 1.0 expression that returns a node set containing the elements to which the
new elements should be appended.

242 Policy Builder and Driver Customization Guide

Example

D.;.|appen|:| #ML element V IEIE
Enter name:™® |jdb|::statement |
Enter XPATH expression:™ |
Do | append XML element V ES|EE|E
Enter name:® |jdb|::5[:|| |
Enter XPATH expressiun:*|__fjdhc:statemem[lastlj]
Do | append XL text ‘V [l =l (]
Enter XPATH expressinn:*|._fjdhc:statemem[last[)]fjdhc:sql

Enter string® | LUPDATE dirgml.ermp SET fname = "+Operation Attrihute

D | append XML text V Bl Eed [E)
Enter XPATH expressiun:*|__fjdbc:statemem[lastﬂ]fjdhc:sql
Enter string™ | LPDATE dirgml.emp SET fname = "+Operation AttrihutE

3.6.7 Append XML Text

Appends text to a set of elements selected by the XPath expression.

Fields

XPATH Expression

XPath 1.0 expression that returns a node set containing the elements to which the new elements
should be appended.

String
Specify the text to be appended.

Defining Policies By Using The Policy Builder In iManager 243

Example

Do | append ML element hd [l
Enter name™ | jdbc:staternent
Enter ¥*PATH expression:™ |,
Do | append XML element h [
Enter name:™ | jdbc:sgl
Enter XPATH expression:™ | fjdhc statement[lasti)]
Do | append XL text 4 [l
Enter ¥PATH expression™ | fjdbo: statement[last())fjdbe: sl

Enter string™ |" UPDATE dirkml ermp SET fname = "+Operation Attrihute

D | append XML text M el
Enter XPATH expression:™ | fjdbe: statement[last())fjdbe: sgl
Enter string® | " UPDATE dircml.emp SET fname = "+Operation Attribute[§)

3.6.8 Break

Ends processing of the current operation by the current policy.
Example

Oo | break V E

3.6.9 Clear Destination Attribute Value

Removes the all values for the named attribute from an object in the destination data store.

Fields

Attribute Name
Specify the name of the attribute.

Class Name

(Optional) Specify the class name of the target object. Leave blank to use the class name from
the current object.

Mode

Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Object

Select the target object. This object can be the current object, or be specified by a DN or an
association.

244 Policy Builder and Driver Customization Guide

Example

Do | clear destination attribute value v [Bl B [2]

Enter attrbute name:™ [Member
Enter class name:
Select mode: | add to current operation 4
Select object: w
Enter DM&* | "Users/ManagerGroup”

3.6.10 Clear Operation Property

Clears any operation property current operation.

Fields

Property Name

Specify the name of the operation property to clear.

Example

Do | clear operation property bl E

Enter property name™ |myStoredProperty

3.6.11 Clear Source Attribute Value

Removes the all values of an attribute from an object in the source data store.

Fields

Attribute Name
Specify the name of the attribute.

Class Name

(Optional) Specify the class name of the target object. Leave blank to use the class name from

the current object.

Object

Select the target object. This object can be the current object, or be specified by a DN or an

association.

Defining Policies By Using The Policy Builder In iManager

245

Example

Do | clear source attribute value w EI

Enter attribute name:* |Member

Enter clasz name:
Select object: | DM M

Enter DN:* | "Users/ManagerGroup”

3.6.12 Clone By XPath Expression

Appends deep copies of a set of XML nodes selected by an XPath expression to a set of elements
selected by another XPath expression.

Fields

Source XPATH Expression

Specify the XPath 1.0 expression that returns a node set containing the nodes to be copied.

Destination XPATH Expression

Specify the XPath 1.0 expression that returns a node set containing the elements to which the
copied nodes are to be appended.

Example

Do | clone by XPATH expressions e EI

Enter source XPATH expression:™ (@&~

(] [&]

Enter destination XPATH expression:™ | /modify[last()]

3.6.13 Clone Operation Attribute

Copies all occurrences of an attribute within the current operation to a different attribute within the
current operation.

Fields

Source Name

Specify the name of the attribute to be copied from.

Destination Name

Specify the name of the attribute to be copied to.

Example

The example adds a User object to the appropriate group, Employee or Manager, based on Title. It
also creates the group, if needed, and setup security equal to that group. The policy is Govern
Groups for User Based on Title Attribute, and it is available for download from Novell’s support
Web site. For more information, see “Downloadable Identity Manager Policies” on page 36.

246 Policy Builder and Driver Customization Guide

[]® Setlocal variables ta test existence of groups and for placement
[1® Create ManagersiGroup, if needed

[1® Create EmployeesGroup, if needed

(12 If Title indicates Manager, add to ManagerGroup and set rights

% if class name equal "User”
And & if operation attHbute ‘Title' match " *manager.™

¢ et destination attrbute walue("Group Membership”,Local Varable"manager-group-dn")

¢ clone operation attAbute("Group Membership”,"Securty Equals")
[]J® If Title does not indicate Manager, add to EmployveeGroup and set rights

D | clone operation attribute V| E &
Enter source name:*|l3ruup Membership |
Enter destination name: |Security Equals |

The Clone Operation Attribute is taking the information from the Group Membership attribute and
adding that to the Security Equals attribute so the values are the same.

3.6.14 Delete Destination Object

Deletes an object in the destination data store.

Fields

Mode

Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Object

Select the target object to delete in the destination data store. This object can be the current
object, or be specified by a DN or an association.

Example

D | delete destination object b [Exl

Select mode: | add to current operation
Select object: | DN
Enter DN:*|"UsersfFred Flintstone"

3.6.15 Delete Source Object

Deletes the object in the source data store.

Defining Policies By Using The Policy Builder In iManager

247

Fields
Mode

Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Object

Select the target object to delete in the source data store. This object can be the current object,
or be specified by a DN or an association.

Example
Do | delete source ohject hd EI
Select object: | DM w
Enter DN |"Lizers/Fred Flintstone"

3.6.16 Find Matching Object

Finds a match for the current object in the destination data store.

Fields

Scope

Select the scope of the search. The scope might be an entry, a subordinates, or a subtree.

DN
Specify the DN that is the base of the search.

Match Attributes

Specify the attribute values to search for.

Remarks
Find Matching Object is only valid when the current operation is an add.

The DN argument is required when scope is “entry”, and is optional otherwise. At least one match
attribute is required when scope is “subtree” or “subordinates”.

The results are undefined if scope is entry and there are match attributes specified. If the destination
data store is the connected application, then an association is added to the current operation for each
successful match that is returned. No query is performed if the current operation already has a non-
empty association, thus allowing multiple find matching object actions to be strung together in the
same rule.

If the destination data store is the Identity Vault, then the destination DN attribute for the current
operation is set. No query is performed if the current operation already has a non-empty destination
DN attribute, thus allowing multiple find matching object actions to be strung together in the same
rule. If only a single result is returned and it is not already associated, then the destination DN of the
current operation is set to the source DN of the matching object. If only a single result is returned
and it is already associated, then the destination DN of the current operation is set to the single

248 Policy Builder and Driver Customization Guide

character ￼. If multiple results are returned, then the destination DN of the current
operation is set to the single character �.

Example

The example matches on Users objects with the attributes CN and L. The location where the rule is
searching starts at the Users container and adds the information stored in the OU attribute to the DN.
The rule is from the predefined rules that come with Identity Manager 3.0. For more information,
see “Matching - By Attribute Value” on page 79.

Matching - by attribute value |

& if class name equal "User"

¢ find matching object{dn("[Enter baze DM tao start zearch]'l,match("[Enter name of attAbute to
match on]*))

Do | find matching object v & EHEE
Select scope! | subtres 4
Enter DM: | "Lsers"+attribute"OL"]
Enter match attributes: |CN,L |

When you click on the Argument Builder icon, the Match Attribute Builder comes up. You specify
the attribute you want to match on in the builder. This examples uses the CN and L attributes.

Match Attributes

[[IMame:™ [&] | “alue from cuorrent ohject

[IMame:™ |L |. |'\:‘a|ue fram current object |

3.6.17 For Each

Repeats a set of actions for each node in a node set.

Fields

Node Set
Specify the node set.

Action
Specify the actions to perform on each node in the node set.
Remarks
The current node is a different value for each iteration of the actions, if a local variable is used.

If a node in the node set is an entitlement, then the for each implicitly performs an “Implement
Entitlement” on page 252 action.

Defining Policies By Using The Policy Builder In iManager 249

Example

D.;.|fnreach V E
Enter node set:® |Added Entitlernent(" Group™)
Enter actiu:-n:*|do-add-dest—aﬂr—value

The following is an example of the Argument Actions Builder, used to provide the action argument:

Actions
Do |add destination attribute value ;I EE
Enter attribute name:*lMember
Enter class name: IGrDLIp
Select mode: |add to current operation j
Select object: |DN j
Enter DN:*lLocaI “ariablel"current-node™)
Enter walue type: Istring
Entertokens:*lDestinatiUn DM

3.6.18 Generate Event

Sends a user-defined event to Novell Audit.

Fields
ID

ID of the event. The provided value must result in an integer in the range of 1000-1999 when
parsed using the parselnt method of java.lang.Integer.

Level

Level of the event.

Level Description

log-emergency Events that cause the Metadirectory engine or driver to shut down.

log-alert Events that require immediate attention.

log-critical Events that can cause parts of the Metadirectory engine or driver to
malfunction.

log-error Events describing errors that can be handled by the Metadirectory
engine or driver.

log-warning Negative events not representing a problem.

log-notice Events (positive or negative) an administrator can use to understand or

improve use and operation.

log-info Positive events of any importance.

250 Policy Builder and Driver Customization Guide

Level Description

log-debug Events of relevance for support or engineers to debug the operation of
the Metadirectory engine or driver.

Strings

Specify User-defined string, integer, and binary values to include with the event. These values
are provided using the Named String Builder.

Tag Description
target The object being acted upon.
target-type Integer specifying a predefined format for the target. Predefined values

for target-type are currently:

» 0 =None

» 1 = Slash Notation
» 2 = Dot Notation

» 3 = LDAP Notation

subTarget The subcomponent of the target being acted upon.

text1 Text entered here is stored in the text1 event field.

text2 Text entered here is stored in the text2 event field.

text3 Text entered here is stored in the text3 field.

value Any number entered here is stored in the value event field.

value3 Any number entered here is stored in the value3 event field.

data Data entered here is stored in the blob event field.
Remarks

The Novell Audit event structure contains a target, a subTarget, three strings (textl, text2, text3),
two integers (value, value3), and a generic field (data). The text fields are limited to 256 bytes, and
the data field can contain up to 3 KB of information, unless a larger data field is enabled in your
environment.

Example

The example has four rules that implements a placement policy for User objects based on the first
character of the Surname attribute and generates both a trace message and a custom Novell Audit
event. The Generate Event action is used to send Novell Audit an event. The policy name is Policy
to Place by Surname and is available for download from Novell’s support Web site. For more
information “Downloadable Identity Manager Policies” on page 36.

Defining Policies By Using The Policy Builder In iManager 251

[1® Setup Local Wariables
=2 surname A-1: place in Users?

if clazs name equal "User”
And ¢ if operation attrbute 'Surname’ match "[a-i]*"

* zet operation destination DN{dn("TraimingiUs erstbctivelsers 1"+ '+ Operation Attnbute"CN"))
* trace message(color="vellow",Local Warable("Lylsers1"))

*2enerate event(id="1000"text1=Local Wadable("LUsers1"))
[1® Surname J-F: place in Users?
(& Surname 5-7: place in Users3

Do | generate event v| FEEE
Ernter 1L | 1000

Select level | informational b
Enter strngs: |text]

The following is an example of the Named String Builder, used to provide the strings argument.

CMame:™ |text] String value:™ |Local Yariable{"LvUsers1")

Generate Event is creating and event with the ID 1000 and displaying the text that is generated by
the local variable of LVUserl. The local variable LVUserl is the string of User:Operation Attribute
“cn” +” added to the “+”Training\Users\Active\Users1”+” container”. The event will read
User:jsmith added to the Trainging\Users\Active\Users1 container.

3.6.19 Implement Entitlement

Designates actions that implement an entitlement so that the status of those entitlements might be
reported to the agent that granted or revoked the entitlement.

Fields
Node Set

Node set containing the entitlement being implemented by the specified actions.

Action

Actions that implement the specified entitlements.

252 Policy Builder and Driver Customization Guide

Example

Do | implement entitlement hd | FelE= [E]

Enter node set™ |Remnved Entitlernent("*Account™

Enter action:™® |dn-add-dest-attr—ualue

The following is an example of the Argument Actions Builder, used to provide the action argument:

Do | add destination attribute value Vl RRIEEIE] [=[=]E
Enter attribute name:*|Login Disabled |
Enter class name: |Llser
Select mode: | add to current operation b
Select object: | DN M
Enter DN:*|L0caI “ariablel("current-node”)
Enter value twpe: |string |
Enter stn‘ng:*|DestinatiUn T4

3.6.20 Move Destination Object

Moves an object in the destination data store.

Fields
Mode

Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Class Name
(Optional) Specify the class name of the object to be moved. Leave blank to use the class name
from the current object.

Object to Move
Select the object to be moved. This object can be the current object, or can be specified by a
DN or an association.

Container

Select the container to receive the object. This container is specified by a DN or an association.

Example

The example contains a single rule which disables a user’s account and moves them to a disabled
container when the Description attribute indicates they are terminated. The policy is named Disable
User Account and Move When Terminated, and it is available for download from Novell’s support
Web site. For more information, see “Downloadable Identity Manager Policies” on page 36.

Defining Policies By Using The Policy Builder In iManager 253

[1EB On Termination, disable user and move to Disabled container

*if operation equal "modify”
And & if class name equal "User”
And % if operation attrbute 'DescAption’ mateh "“terminated.™

¢ zet destination attribute walue("Login Cizabled”, direct="true","True"]
¢ move destination objectiwhen="after",dn("Users\Dizabled"))

Do | move destination object V| EI &
Select mode: | add after current operation b
Select object to move: | Current ohject i
Select container to move to: | DN A

Enter DK™ |"UsersKDisah|ed"

The policy checks to see if it is a modify event on a User object and if the attribute Description
contains the value of terminated. If that is the case, then it sets the attribute of Login Disabled to true
and moves the object in to the User\Disabled container.

3.6.21 Move Source Object

Moves an object in the source data store.

Fields

Object to Move

Select the object to be moved. This object can be the current object, or can be specified by a
DN or an association.

Select Container

Select the container to receive the object. This container is specified by a DN or an association.

Example
Do | move source object ,V; E
Select object to mowe: | (n]] v|
Enter DMN:* | "LzersfActivedFredFlintstone"
Select container to move to! | DN w
Enter DN* | "Lzers/Inbctive”

3.6.22 Reformat Operation Attribute

Reformats all values of an attribute within the current operation using a pattern.

254 Policy Builder and Driver Customization Guide

Fields

Name

Specify the name of the attribute.

Value Type
Specify the syntax of the new attribute value.

Value

Specify a value to use as a pattern for the new format of the attribute values. If the original
value is needed to constructed the new value, it must be obtained by referencing the local
variable current-value.

Example

The example reformats the telephone number. It changes it from (nnn)-nnn-nnnn to nnn-nnn-nnnn.
The rule is from the predefined rules that come with Identity Manager 3.0. For more information,
see “Input or Output Transformation - Reformat Telephone Number from (nnn) nnn-nnnn to nnn-
nnn-nnnn” on page 205.

lnput or Dutput Transformation - Reformat Telephone Number from [hnnl nnn-nnnn
to nnn-nnn-nnnn

*, Thiz condition will evaluzte to true,

¢ reformat operation attrbote("phone",Replace Rrst(" W Ndbdbd D0 hdbd - (d b dbdbd)50 5 1-52-

53" Local Yardablel"current-value"1])

D | refarmat operation attribute V| E
Enter name:*|ph|:|ne ‘
Enter value tvpe: |string ‘
Enter string:* |Rep|ace First{"[Pdvdsd s ™D -) 5 5 1-52-53°

The action reformat operation attribute changes the format of the telephone number. The rule uses
the Argument Builder and regular expressions to change how the information is displayed.

3.6.23 Remove Association

Sends a remove association command to the Identity Vault.

Fields

Mode
Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Association

Specify the value of the association to be removed.

Defining Policies By Using The Policy Builder In iManager

255

Example

The example takes a delete operation and disables the User object instead. The transforms an event.
The rule is from the predefined rules that come with Identity Manager 3.0. For more information,
see “Command Transformation - Publisher Delete to Disable” on page 199.

Command Transformation - Publisher Delete to Disable

*,if operation equal "delete"
Or (%if class name equal "User"

& zet destination attAbute valuel"Login Disabled","true")
& remove azzociationlazsociation(dzzaciation(]))

Do | remove association v E EEE

Select mode: |a|:|d to current operation V|

Enter association:® |Ass|:u:iation|:|

When a delete operation occurs for a User object, value of the attribute Login Disabled is set to true
and the association is removed from the object. The association is removed because the associated
object in the connected application no longer exists.

3.6.24 Remove Destination Attribute Value

Removes an attribute value from an object in the destination data store.

Fields

Attribute Name
Specify the name of the attribute.

Class Name

(Optional) Specify the class name of the target object. Leave blank to use the class name from
the current object.

Mode

Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Select Object

Select the target object. This object can be the current object, or can be specified by a DN or an
association.

Value Type

Specify the syntax of the new attribute value.

Value

Specify the value of the new attribute.

256 Policy Builder and Driver Customization Guide

Example

Do | remove destination attribute value v [Z] [&]

Enter attrbute name:*|Member
Enter clazs name:
Select mode: | add to current operation b
Select object: | DN i

Enter DN* |"User5fManagerGrnup"
Enter value type: |string

Enter str-ing:*|DestinatiDn O

3.6.25 Remove Source Attribute Value

Removes the specified value from the named attribute on an object in the source data store.

Fields

Attribute Name
Specify the name of the attribute.

Class Name

(Optional) Specify the class name of the target object. Leave blank to use the class name from
the current object.

Object

Select the target object. This object can be the current object, or can be specified by a DN or an
association.

Value Type

Specify the syntax of the attribute value to be removed.

Value

Specify the attribute value to be removed.

Example

Do | remove source attribute value A Pl

Emter attribute name:*|h-'1&mber

Enter clasz name:

[#] [

Select object: | DN

<

Enter OM:* |"User5IManagerGrnup"

Enter value twpe: |s‘[ring

B [#1 Bl

Enter string® |Snurce DM

Defining Policies By Using The Policy Builder In iManager 257

3.6.26 Rename Destination Object

Renames an object in the destination data store.

Fields
Mode

Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Object

Select the target object. This object can be the current object, or can be specified by a DN or an
association.

String

Specify the new name of the object.

Example

Do | rename destination object hd el B [E]

Select mode: | add to current operation v

Select object: | DN w
Enter DN | "Users/Active/Fred Flintstone”
Enter string™ | "Freddy"

3.6.27 Rename Operation Attribute

Renames all occurrences of an attribute within the current operation.

Fields

Source Name

Specify the original attribute name.

Destination Name

Specify the new attribute name.
Example

Do | renarne operation attribute hd [Bl [E)]

Enter zource name™ | Surname

[#] [£]

Enter destination name: |sn

3.6.28 Rename Source Object

Renames an object in the source data store.

258 Policy Builder and Driver Customization Guide

Fields

Select Object

Select the target object. This object can be the current object, or specified by a DN or an
association.

String

Specify the new name of the object.

Example
Do | rename source ohject hd EI
Select object: | DM w
Enter DN™* | "Users/Active’Fred Flintstone"
Enter string® | "Fraddy”

3.6.29 Send Email

Sends an e-mail notification.

Fields

ID
(Optional) Specify the User ID in the SMTP system sending the message.

Server

Specify the SMTP server name.

Password

(Optional) Specify SMTP server account password.

IMPORTANT: The value of the password attribute is stored in clear text.

Type
Select the e-mail message type.
Strings

Specify the values containing the various e-mail addresses, subject, and message. The
following table lists valid named string arguments:

String Name Description

to Adds the address to the list of e-mail recipients; multiple instances are
allowed.

cc Adds the address to the list of CC e-mail recipients; multiple instances
are allowed.

bcc Adds the address to the list of BCC e-mail recipients; multiple instances
are allowed.

Defining Policies By Using The Policy Builder In iManager 259

String Name Description

from Specifies the address to be used as the originating e-mail address.
reply-to Specifies the address to be used as the e-mail message reply address.
subject Specifies the e-mail subject.
message Specifies the content of the e-mail message.
encoding Specifies the character encoding to use for the e-mail message.
Example
D.;.|send email " E|EIE

Enter IC: |user |

Enter senrer:*|smtp_company.cnm |

Enter pazzword: |eeesesses

Select meszage tvpe: [fext w

Enter strings: |to to,co bec from subject message

The following is an example of the Named String Builder being used to provide the strings
argument:

[Mame:™ lto— String tokens:™ W
[Mame:™ |t0 String tokens:™ |"tu_user2@company.com"
[~ Mame:™ |cc String tokens:™ |"c:c:_user@company.com"
[T Name:™ |bcc String tokens:™ |"hcc_user@company.com"
[T Name:™ |from String tokens:™ |"fmm_user@company.com"
[Mame:™ |suhject String tokens:™ |"This is the e-mail subject"
[~ Mame:™ Imessage String tokens:™ I"ThiS is the e-mail body"

3.6.30 Send Email from Template

Generates an e-mail notification using a template.

Fields

Notification DN
Specify the slash form DN of the SMTP notification configuration object.

Template DN
Specify the slash form DN of the e-mail template object.

Password

(Optional) Specify SMTP server account password.

alofalslalol

IMPORTANT: The value of the password attribute is stored in clear text.

260 Policy Builder and Driver Customization Guide

Strings

Specify additional fields for the e-mail message. The following table contains reserved field
names, which specify the various e-mail addresses:

String Name Description

to Adds the address to the list of e-mail recipients; multiple instances are
allowed.

cc Adds the address to the list of CC e-mail recipients; multiple instances
are allowed.

bcc Adds the address to the list of BCC e-mail recipients; multiple instances
are allowed.

reply-to Specifies the address to be used as the e-mail message reply address.

encoding Specifies the character encoding to use for the e-mail message.

Each template might also define fields that can be replaced in the subject and body of the email
message.

Example

Do | send email fram template hd [
Enter notification DN:*|fcn=securi1yfcn=[ﬁlefault Motification Caollection |
Enter template DN:*|fcn=security!u:n=Default Matification Cnllectionfcn=F'S-83fr|

Enter password: | |

Enter strings: |manager,surname,given-name,tn,cc

The following is an example of the Named String Builder, used to provide the strings argument:

™ Mame:™ lmanager— Strng tokens:™ IW DE‘
™ Mame:™ Isurname Strng tokens:™ I"Smith" EE‘
[Hame:™ [given-name String tokens:™ ["Joe" [2]=]
[~ Mame:™ |to String tokens:™ |"tn_user@company.com" [=]+]
[~ Mame:™ |cc String tokens:™ |"cc_user@company.com" [=]+]

3.6.31 Set Default Attribute Value

Adds default values to the current operation (and optionally to the current object in the source data
store) if no values for that attribute already exist. It is only valid when the current operation is add.

Fields

Attribute Name
Specify the name of the default attribute.

Write Back

Defining Policies By Using The Policy Builder In iManager 261

Select whether or not to also write back the default values to the source data store.

Values
Specify the default values of the attribute.
Example

The example sets the default value for the attribute company. You can set the value for an attribute
of your choice. The rule is from the predefined rules that come with Identity Manager 3.0. For more
information, see “Creation - Set Default Attribute Value” on page 201.

Creation - Set Default Attribute YWalue

¢ if class name equal "User"

* set default attdbute value"[Enter atthbute name]" wiite-back="true","[Enter default attrbute

value]")
Do | get default attribute value V| EI
Enter attribute name:™ |company
ifrite back: | true W

Enter argument values:™ |"Digita| Airlines”

Argument Values

OTvpe:™ Enter string:™ |"Digital Airlines Inc"

To build the value, the Argument Value List Builder is launched. See “Argument Value List Builder”
on page 192 for more information on the builder. You can set the value to what is needed. In this
case, we used the Argument Builder and set the text to be the name of the company.

3.6.32 Set Destination Attribute Value

Adds a value to an attribute on an object in the destination data store, and removes all other values
for that attribute.

Fields
Attribute Name

Specify the name of the attribute.
Class Name

(Optional) Specify the class name of the target object in the destination data store. Leave blank
to use the class name from the current object.

Mode

Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

262 Policy Builder and Driver Customization Guide

Object

Select the target object. This object can be the current object, or be specified by a DN or an
association.

Value Type

Select the syntax of the attribute value to set.
Value

Specify the attribute values to set.
Example

The example takes a delete operation and disables the User object instead. The rule is from the
predefined rules that come with Identity Manager 3.0. For more information, see “Command
Transformation - Publisher Delete to Disable” on page 199.

Command Transformation - Publisher Delete to Disable

*if operation equal "delete"
Or o if class name equal "User"

¢ set destination attdbute walue("Login Cisabled","true")
¢ remove azsociationlazsociationffszociation(]))

Do | set destination attribute value hd | EI

Enter attribute name:*|LDgin Disabled |
Enter class name:
Select mode: | add to current operation M
Select object: | Current object b
Enter value type: |string |

Enter string:® |"true"

The rule sets the value for the attribute of Login Disabled to true. The rule uses the Argument
Builder to add the text of true for the value of the attribute. See “Argument Builder” on page 190 for
more information about the builder.

3.6.33 Set Destination Password

Sets the password for the current object in the destination data store.

Fields

Mode

Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Object

Defining Policies By Using The Policy Builder In iManager

263

Select the target object. This object can be the current object, or be specified by an DN or an
association.

String
Specify the password to be set.

Example

The example sets a default password for the User object that is created. The rule is from the
predefined rules that come with Identity Manager 3.0. For more information, see “Creation - Set
Default Password” on page 202.

Creation - 5et Default Password

. if clazz name equal "Lser"

& set destination pazzword(dttHbute" Given Mame"+AttHbute" Surname"])

Do | set destination password V [Bl [E)]

Select mode: | add to current operation V|
Enter string:® |Aﬂrihute("Given Mame")+Attribute("Surmamea")

When a User object is created, the password is set to the Given Name attribute plus the Surname
attribute.

3.6.34 Set Local Variable

Sets a local variable.

Fields

Variable Name

Specify the name of the new local variable.

Variable Type
Select the type of local variable. This can be a string, an XPath 1.0 Node Set, or a Java object.

Example

The example adds a User object to the appropriate group, Employee or Manager, based on Title. It
also creates the group, if needed, and setup security equal to that group. The policy name is Govern
Groups for User Based on Title and it is available for download from Novell’s support Web site. For
more information, see “Downloadable Identity Manager Policies” on page 36.

264 Policy Builder and Driver Customization Guide

[]8 Set local variables to test existence of groups and for placement

*if class name equal "Use”
And
*if operation equal "add"
Or *if operation equal "modify”

Actons
¢ zet local vadable"manager-group-dn”," Users\itanagers Group")

¢ zet local vadable("manager-group-info",Destination Attdbute("Object Class",dnilocal Warable
["manager-group-dn"ili]

& zet local vadable("emploves-group-dn","Users\Emplove ez Group")

¢ zet local vadable("emplovee-group-info",Destination Attdbute"Object Class",dn(local Wadable

["emplovees-group-dn"])])

Do | set local variable V& EEE

Enter variable name:* \managergroup-info

Select variable type: | String ~

Enter string:™ |Destinatinn Attributel"Object Class" dn{Local YWariable"ms:

The local variable is set to the value that is in the User object’s destination attribute of Object Class
plus the Local Variable of manager-group-info. The Argument Builder is used to construct the local
variable. See “Argument Builder” on page 190 for more information.

3.6.35 Set Operation Association

Sets the association value for the current operation.

Fields

Association

Provide the new association value.

Example

Do | set operation association ,v' [
Enter association:™ |S|:|ur|:E MNamef)

3.6.36 Set Operation Class Name

Sets the object class name for the current operation.

Fields

String

Specify the new class name.

Defining Policies By Using The Policy Builder In iManager

265

Example

Do | set operation class name V [B (2]
Enter str‘ing:*|"User"

3.6.37 Set Operation Destination DN

Sets the destination DN for the current operation.

Fields

DN
Specify the new destination DN.

Example

The example places the objects in the Identity Vault using the structure that is mirrored from the
connected system. You need to define at what point the mirroring begins in the source and
destination data stores. The rule is from the predefined rules that come with Identity Manager 3.0.
For more information, see “Creation - Set Default Attribute Value” on page 68.

FPlacement - Publisher Mirrored

& if source DM in subtree "[Enter base of source hierarchy]"

& set local vardable("dest-bazse","[Enter base of destination hisrarchy]"]
& set operation destination DM{dnilocal Yanable"dest-baze" "Y'+ Unmatched Source DM

[convert="trus"]]]

Do | set operation destination DN A ‘ Bl Eel [E]

Enter DN:*|L1:u:aI Yariablel"dest-base™)+""+Unmatched Source DMNice

The rule sets the operation destination DN to be the local variable of the destination base location
plus the source DN.

3.6.38 Set Operation Property

Sets an operation property. An operation property is a named value that is stored within an
operation. It is typically used to supply additional context that might be needed by the policy that
handles the results of an operation.

Fields

Property Name
Specify the name of the operation property.

String

266 Policy Builder and Driver Customization Guide

Specify the name of the operation property.

Example
Do | set operation property i @
Enter property name!™ | myStoredFropery
Enter sting™ |token-string()

3.6.39 Set Operation Source DN

Sets the source DN for the current operation.

Fields

DN
Specify the new source DN.

Example

Do | set operation source DN hd EI
Enter DN | "Movel I sersh" +Attribute " CH™)

3.6.40 Set Operation Template DN

Sets the template DN for the current operation to the specified value. This action is only valid when
the current operation is add.

Fields

DN
Specify the template DN.

Example

The example applies the Manager template if the Title attribute contains the word Manager. The
name of the policy is Policy: Assign Template to User Based on Tile, and it is available for
download from Novell’s support Web site. For more information, see “Downloadable Identity
Manager Policies” on page 36.

Defining Policies By Using The Policy Builder In iManager 267

[1E Assign Manager template if Title contains "Manager"

*if class name equal "User"
And % if operation attrbute 'Title' available
And % if operation attrbute 'Title' match " *manager.™

* set operation template DM{dn("Users\itanagerTemplate"])
[1® Assion Employee template if Title does not contain "Wanager"

Do | set operation template DM V| [Bl [E]

Enter Dh:* |"Users\ManagerTemplate"

The template Manager Template is applied to any User object the has the attribute of Title available
and it contains the word manager somewhere in the title. The policy uses regular expressions to find
all possible matches.

3.6.41 Set Source Attribute Value

Adds a value to an attribute on an object in the source data store, and removes all other values for
that attribute.

Fields
Attribute Name
Specify the name of the attribute.

Class Name

(Optional) Specify the class name of the target object in the source data store. Leave blank to
use the class name from the current object.

Object

Select the target object. This object can be the current object, or be specified by a DN or an
association.

Value Type

Select the syntax of the attribute value.

Value
Specify the attribute value to be set.

Example

The example detects when an e-mail address is changed and sets it back to what it was. The policy
name is Policy: Reset Value of the E-mail Attribute, and it is available for download from Novell’s
support Web site. For more information, see “Downloadable Identity Manager Policies” on page 36.

268 Policy Builder and Driver Customization Guide

& Push back on email changing

%, if clasz name equal "User"
And (*if operation attribute Email' changing

* zet source attrHbute wvalue("Email",Destination &ttAbute"Internet Eftail Address"))
& strip operation attHbute"Email")

Do | set source attribute value V| [=[]

Enter attribute walue:* |Emai| |

Enter class name:
Select object: | Current object i

Enter walue type: |string |

Enter string:* |Destinatinn Attribute("Internet EMail Address")

The action takes the value of the destination attribute Internet EMail Address and set the source
attribute of Email to this same value.

3.6.42 Set Source Password
Sets the password for the current object in the source data store.

Fields

String
Specify the password to be set.

Example

Do | set source password e E
Enter string® |Attrihute("Given Marme"+Attnbute"Surmame")

3.6.43 Set XML Attribute

Sets an XML on a set of elements selected by an XPath expression.

Fields

Name

Specify the name of the XML attribute. This name can contain a namespace prefix if the prefix
has been previously defined in this policy.

XPATH Expression

XPath 1.0 expression that returns a node set containing the elements on which the XML
attribute should be set.

Defining Policies By Using The Policy Builder In iManager

269

String
Specify the value of the XML attribute.

Example
bo | set XML attribute b El
Enter name™ |cert-id
Enter XPATH expression:™ |,
Enter sting™ | "chlotustdominoidatateny. id”
Do | set XML attribute hd Fl (= [E]
Enter name:™ | cort-puwd
Enter XPATH expression:™ |
Enter strhing:™ | “cerify2eng”

3.6.44 Status

Generates a status notification.

Fields

Level

Specify the status level of the notification.

Message

Provide the status message using the Argument Builder.

Remarks

If level is retry then the policy immediately halt processing of the input document and schedules a
retry of the event currently being processed.

If level is fatal then the policy immediately halt processing of the input document and initiates a
shutdown of the driver.

If a the current operation has an event-id, then that event-id is used for the status notification,
otherwise there is no event-id reported.

Example

Do | status v [[l i [E]
Enter level™ warning
fhessage:™ | Source DM{+" operation vetoed on out-of-scope object”

3.6.45 Strip Operation Attribute

Strips all occurrences of an attribute from the current operation.

270 Policy Builder and Driver Customization Guide

Fields

Name

Specify the name of the attribute to be stripped.

Example

The example detects when an e-mail address is changed and sets it back to what it was. The policy
name is Policy: Reset Value of the E-mail Attribute and it is available for download from Novell’s
support Web site. For more information, see “Downloadable Identity Manager Policies” on page 36.

& Push back on email changing

% if clasz name equal "User"
And (¢ if operation attribute Email' changing

* zet zource attHbute walue("Email",Destination &ttAbute"Internet Eitail Address"))
* strip operation attrbute("Email")

Do ‘ strip operation attribute W | WIEIE
Enter name:*‘EmaiI |

The action strips the attribute of Email. The value that is kept is what was in the destination Email
attribute.

3.6.46 Strip XPath

Strips nodes selected by an XPath 1.0 expression.

Fields

XPATH Expression
Specify the XPath 1.0 expression that returns a node set containing the nodes to be stripped.

Example

Dio | strip *PATH expression A EI
Enter XPATH expressiu:un:*|*[@attr—name='OU']

3.6.47 Trace Message
Sends a message to DSTRACE.

Fields

Level

Specify the trace level of the message. The default level is 0. The message only appears if the
specified the trace level is less than or equal to the trace level configured in the driver.

Defining Policies By Using The Policy Builder In iManager

271

For information on how to set the trace level on the driver, see “Viewing Identity Manager
Processes” in the Novell Identity Manager 3.0 Administration Guide.
Color

Select the color of the trace message.

String

Specify the value of the trace message.

Example

The example has four rules that implements a Placement policy for User objects based on the first
character of the Surname attribute. It generates both a trace message and a custom Novell Audit
event. The Trace Message action is used to send a trace message into DSTRACE. The policy name
is Policy to Place by Surname and it is available for download from Novell’s support Web site. For
more information “Downloadable Identity Manager Policies” on page 36.

[1® Setup Local Wariables
= Surname A-1: place in Users1

if clazs name equal "User”
And & if operation attrbute "Surname’ match "[a-i]*"

pctions |
* zet aperation destination DN{dn("TrainingiUserstbotivetlsers 1"+"'+ Operation Attrbute"CH"))
* trace messagelcolor="yellow",Local Varable("LVsers1"))
* 2enerate event(id="1000",text1=Local Wardable("L\Users1"))

[J® Surname J-R: place in Users?

= Surname 5-7: place in Users3

D.;.|tra|:e friessage v| P8

Enter level:

Select color | yellow b

Enter string™ |anal Wariable("LvUsers1")

The action sends a trace message to DSTRACE. The contents of the local variable is LVUsers1 and
it shows up in yellow in DSTRACE.

3.6.48 Veto
Vetoes the current operation.

Example

The example excludes all events that come from the specified subtree. The rule is from the
predefined rules that come with Identity Manager 3.0. For more information, see “Event
Transformation - Scope Filtering - Exclude Subtrees” on page 204 from the predefined rules.

272 Policy Builder and Driver Customization Guide

Event Transformation - Scope Filtering - Exclude subtres|s)

*if zource DM in subtree "[Enter a subtree to exclude]"

¢ wetol]

Do | veto v [@ [E [E]

The action vetoes all events that come from the specified subtree.

3.6.49 Veto if Operation Attribute Not Available

Conditionally cancels the current operation and ends processing of the current policy, based on the
availability of an attribute in the current operation.

Fields

Name

Specify the name of the attribute.

Example

The example does not all User objects to be created unless the attributes Given Name, Surname,
Title, Description, and Internet EMail Address are available. The policy name is Policy to Enforce
the Presences of Attributes and it is available for download from Novell’s support Web site. For
more information, see “Downloadable Identity Manager Policies” on page 36.

@ [J& User required attributes: First/Last Mame, Title, Description, Email

& if class name equal "User"

Actions
¢ weto if operation attrbute not available"Given Name")

¢ weto if operation attrbute not available"Surname")

& weto if operation attdbute not available"Title")

¢ weto if operation attrbute not available("Descrption")

¢ weto if operation attrbute not available"Internet EMail &ddress")

[@] Do |vetn if operation attribute not avail: V| Fie] el [E]
Enter name:*‘Given Marme |

The actions vetoes the operation if the attributes of Given Name, Surname, Title, Description, and
Internet Email Address are not available.

Defining Policies By Using The Policy Builder In iManager 273

3.7 Noun Tokens

This section contains detailed reference to all noun tokens available using the Policy Builder
interface.

» Section 3.7.1, “Added Entitlement,” on page 274

» Section 3.7.2, “Association,” on page 275

» Section 3.7.3, “Attribute,” on page 275

» Section 3.7.4, “Class Name,” on page 276

» Section 3.7.5, “Destination Attribute,” on page 276

» Section 3.7.6, “Destination DN,” on page 277

» Section 3.7.7, “Destination Name,” on page 278

» Section 3.7.8, “Entitlement,” on page 278

» Section 3.7.9, “Global Configuration Value,” on page 279

 Section 3.7.10, “Local Variable,” on page 279

» Section 3.7.11, “Named Password,” on page 280

» Section 3.7.12, “Operation,” on page 280

* Section 3.7.13, “Operation Attribute,” on page 280

* Section 3.7.14, “Operation Property,” on page 281

» Section 3.7.15, “Password,” on page 281

* Section 3.7.16, “Removed Attribute,” on page 282

» Section 3.7.17, “Removed Entitlements,” on page 282

» Section 3.7.18, “Source Attribute,” on page 282

» Section 3.7.19, “Source DN,” on page 283

* Section 3.7.20, “Source Name,” on page 283

» Section 3.7.21, “Text,” on page 283

» Section 3.7.22, “Unique Name,” on page 284

* Section 3.7.23, “Unmatched Source DN,” on page 286

» Section 3.7.24, “XPath,” on page 286

3.7.1 Added Entitlement
Expands to the values of an entitlement granted in the current operation.

Fields

Name

Name of the entitlement.

Example

£ added Entitlement("manager")

274 Policy Builder and Driver Customization Guide

3.7.2 Association

Expands to the association value from the current operation.

Example

The example is from the predefined rules that come with Identity Manager 3.0. For more
information on the predefined rule, see “Command Transformation - Publisher Delete to Disable”
on page 199.

The action of Remove Association uses the Association token to retrieve the value from the current
operation. The rule removes the association from the User object so that any new events coming
through do not affect the User object.

Command Transformation - Publisher Delete to Disable

,if operation equal "delete"
Or if class name equal "User"

¢, set destination attribute walue("Login Cisabled","true")
&, remove associationlassociation(dszociation(]))

sl fzsociation()

3.7.3 Attribute

Expands to the value of an attribute from the current object in the current operation and in the source
data store. It can be logically thought of as the union of the operation attribute token and the source
attribute token. It does not include the removed values from a modify operation.

Fields

Name

Specify the name of the attribute.

Example

The example is from the predefined rules that come with Identity Manager 3.0. For more
information, see “Creation - Set Default Password” on page 202.

The action of Set Destination Password uses the attribute token to create the password. The
password is made up of the Given Name attribute and the Surname attribute. When you are in the
Argument Builder Editor, you browse and select the attribute you want to use.

Defining Policies By Using The Policy Builder In iManager 275

Creation - 5et Default Password

.if clazz name equal "User"

¢ et destination passwordidttrbute(" Given Mame"+AttHibute"Surname"])

& Akkribute(" Given Marme")
& Akkributed"Surnane")

22 Editor

Name: * | Given Mame oy

3.7.4 Class Name

Expands to the object class name from the current operation.

Example

A5 Class Mame()

3.7.5 Destination Attribute

Expands to the specified attribute value of the current object, a DN, or association, in the destination
data store.

Fields

Class Name

(Optional) Specify the class name of the target object. Leave blank to use the class name from
the current object.

Name

Name of the attribute.

Example

The example is from the Govern Groups for User Based on Title policy and it is available for
download from Novell’s support Web site. For more information, see “Downloadable Identity
Manager Policies” on page 36.

The policy creates the Destination Attribute with the Argument Builder. The action of Set Local
Variable contains the Destination Attribute token.

276 Policy Builder and Driver Customization Guide

[]8 Set local variables to test existence of groups and for placement

*if class name equal "Use”
And
*if operation equal "add"
Or *if operation equal "modify”

Actons
¢ zet local vadable"manager-group-dn”," Users\itanagers Group")

¢ zet local vadable("manager-group-info",Destination Attdbute("Object Class",dnilocal Warable
["manager-group-dn"ili]

& zet local vadable("emploves-group-dn","Users\Emplove ez Group")

¢ zet local vadable("emplovee-group-info",Destination Attdbute"Object Class",dn(local Wadable

["emplovees-group-dn"])])

&5 Destination Attributed™Object Class", dni))

22 Editor
Mame: * | Object Class Q,
Class name: | Q,
Select object: |DN ﬂ
Enter DN; * |Ln:n:a| Wariablel"manager-group-dn™)

You build the Destination Attribute through the Editor. In this example, the attribute of Object Class
is set. DN is used to select the object. The value of DN is the Local Variable of manager-group-dn.

3.7.6 Destination DN

Expands to the destination DN specified in the current operation.

Fields
Convert

Select whether or not to convert the DN to the format used by the source data store.
Start

Specify the RDN index to start with:

¢ Index 0 is the root-most RDN
« Positive indexes are an offset from the root-most RDN
* Index -1 is the leaf-most segment

* Negative indexes are an offset from the leaf-most RDN towards the root-most RDN

Length

Defining Policies By Using The Policy Builder In iManager 277

Specify the number of RDN to include. Negative numbers are interpreted as (total # of
segments + length) + 1. For example, for a DN with 5 segments a length of -1 =(5+(-1))+ 1 =
5,-2=(5+(2))+1=4,etc.

Remarks

If start and length are set to the default values {0,-1}, the entire DN is used; otherwise only the
portion of the DN specified by start and length is used.

Example

The example uses the Destination DN token to set the value for the local variable of target-container.
The policy creates a department container for the User object if it does not exist. The policy is from
the predefined rules that come with Identity Manager 3.0. For more information, see “Command
Transformation - Create Departmental Container - Part 1 and Part 2”” on page 197.

Command Transformation - Create Departmental Container - Part 1

¢ if operation egual "add"

. zet local vardable("target-container",Destination DM(length="-2"1)
* zet local vardable("does-target-exist",Destination &ttribute("objectclass",class

name="Orzanizationallnit",dnllocal Wadable("target-container"1]1]

& Destination DM{length="-2")

3.7.7 Destination Name

Expands to the unqualified Relative Distinguished Name (RDN) of the destination DN specified in
the current operation.

Example

A Destination Mamel)

3.7.8 Entitlement

Expands to the values of a granted entitlement from the current object.

Fields

Name

Name of the entitlement.

Example

£ Entitlement("manazer")

278 Policy Builder and Driver Customization Guide

3.7.9 Global Configuration Value

Expands to the value of a global configuration variable.

Fields

Name

Name of the global configuration value.

Example

£ Global Configuration Walue("Fred")

3.7.10 Local Variable

Expands to the value of a local variable.

Fields

Name

Specify the name of the local variable.

Example

The example is from the Govern Groups for User Based on Title policy which is available for
download from Novell’s support Web site. For more information, see “Downloadable Identity

Manager Policies” on page 36.

The action Add Destination Object uses the Local Variable token.

[J® Set local variables to test existence of groups and for placement

[JE Create ManagersGroup, if needed

*if local vardable 'manager-group-info’ available
And & if local vardable 'manager-group-info' not equal "group”

¢, add destination object(class name="Group",when="before",dn(Local Varable("manager-group-

dn" 1]
[]® Create EmployeesGroup, if needed

[J® |f Title indicates Manager, add to ManagerGroup and set rights

[J® |fTitle does not indicate Manager, add to EmployeeGroup and set rights

& Local Yariable!"manager-group-dn™)

22 Editor

Yariable name: * | manager-group-dn

Defining Policies By Using The Policy Builder In iManager

279

Local Variables

Search:

employee-group-dn -

emploves-group-info

frormMds

tnanager-group-dn

rnanager-oroup-info w
Close

The Local Variable can only be used if the action Set Local Variable has been used previously in the
policy. It sets the value that is stored in the Local Variable. In the Editor, you click the browse icon
and all of the local variables that have been defined are listed. Select the correct local variable.

The value of the local variable is group-manager-dn. It the rule before this one, the Set Local
Variable action defined group-manager-dn as DN of the manager’s group Users\ManagersGroup.

3.7.11 Named Password

Expands to the named password from the driver.

Fields

Name

Name of the password.

Example

M Mamed Passwo rd("passwaord”)

3.7.12 Operation

Expands to the name of the current operation.

Example

fh Operation()

3.7.13 Operation Attribute

Expands to the value of an attribute from the current operation. It does not include the removed
values from a modify operation.

Fields

Name

Specify the name of the attribute.

280 Policy Builder and Driver Customization Guide

Example

The example has four rules that implements a Placement policy for User objects based on the first
character of the Surname attribute. It generates both a trace message and a custom Novell Audit
event. The policy name is Policy to Place by Surname, and it is available for download from
Novell’s support Web site. For more information “Downloadable Identity Manager Policies” on
page 36.

[1® setup Local Wariables
=2 Surname A-1: place in Users?

,if clazs name equal "User”
And & if operation attrbute 'Surname' match "[a-i]*"

*zet operation destination DN{dn("Traimingils erstbctivetsers 1"+ '+ Operation AttAbute"CN"))
* trace message(color="vellow",Local Warable("Lylsers1"))
* cenerate event(id="1000",text1=Local Wadable("LiUsers1"))

I8 Surname J-R: place in Users?
= Surname 5-7: place in Users3

&b "Training)Users\Ackive|\Users1”
& lllllll
&b Operation Attribute"CH"

2# Editor

MName: * | CM A,

The action Set Operation Destination DN contains the Operation Attribute token. The Operation
Attribute token sets the Destination DN to the CN attribute. The rule takes the context of
Training\Users\Active\Users and adds a \ plus the value of the CN attribute.

3.7.14 Operation Property
Expands to the value of the specified operation property on the current operation.

Fields

Name

Specify the name of the operation property.

Example

o Qperation Propertyl"myStoredProperty”)

3.7.15 Password

Expands to the password specified in the current operation.

Defining Policies By Using The Policy Builder In iManager 281

Example

f Passwo rd()

3.7.16 Removed Attribute

Expands to the specified attribute value being removed in the current operation. It only applies to
modify operation.

Fields

Name

Specify the name of the attribute.

Example

it Remaoved dttrHbute" 0"

3.7.17 Removed Entitlements
Expands to the values of the an entitlement revoked in the current operation.

Fields

Name

Specify the name of the entitlement.

Example

fh Removed Entitlement("manager")

3.7.18 Source Attribute

Expands to the values of an attribute from an object in the source data store.

Fields

Class Name

(Optional) Specify the class name of the target object. Leave blank to use the class name from
the current object.

Name

Name of the attribute.

Example

i Source Attribute["0U")

282 Policy Builder and Driver Customization Guide

3.7.19 Source DN

Expands to the source DN from the current operation.

Fields

Convert

Select whether or not to convert the DN to the format used by the destination data store.

Start
Specify the RDN index to start with:

¢ Index 0 is the root-most RDN
¢ Positive indexes are an offset from the root-most RDN
* Index -1 is the leaf-most segment

* Negative indexes are an offset from the leaf-most RDN towards the root-most RDN

Length

Number of RDN’s segments to include. Negative numbers are interpreted as (total # of
segments + length) + 1. For example, for a DN with 5 segments a length of -1 =(5+(-1))+ 1=
5,-2=(5+(-2))+1=4,etc.

Remarks

If start and length are set to the default values {0,-1}, the entire DN is used; otherwise only the
portion of the DN specified by start and length is used.

Example

& Source DMIY

3.7.20 Source Name

Expands to the unqualified Relative Distinguished Name (RDN) of the source DN specified in the
current operation.

Example

i Source Mame()

3.7.21 Text

Expands to the text.

Fields

Text
Specify the text.

Defining Policies By Using The Policy Builder In iManager

283

Example

The example is from the Govern Groups for User Based on Title policy which is available for
download from Novell’s support Web site. For more information, see “Downloadable Identity
Manager Policies” on page 36.

The Text token is used in the action Set Location Variable to define the DN of the manager’s group.
The Text token can contain objects or plain text.

[]8 Set local variables to test existence of sroups and for placement

,if class name equal "User”
And
% if operation equal "add"
Or (% if operation equal "modify"

Actons
% zet local vardable("manager-group-dn”," Users\ihanagersGroup")

% zet local vardable("manager-group-info",Destination Attdbute("Object Class",dn(Local Wariable
["manager-group-dn*ili)

¢ zet local vardable("emplovee-group-dn","Users\Emplovees Group")

¢ set local variable["emplovee-group-info",Destination Attdbute("Object Class",dniLocal Warable

i"emploves-group-dn®)j))

5 "Users\ManagersGroup”

22 Editor

Texk: | IUsersiManagersaroup Q§

The Text token contains the DN for the manager’s group. You can browse to the object you would
like to use, or type in the information into the editor.

3.7.22 Unique Name

Expands to a pattern-based name that is unique in the destination data store according to the criteria
specified.

Fields

Name

Specify the name of attribute to check for uniqueness.
Scope

Specify the scope in which to check uniqueness.

Start Search

Select a starting point for the search. The starting point can be the root of the data store, or
specified by a DN, or association.

284 Policy Builder and Driver Customization Guide

Pattern

Specify patterns to use to generate unique values by using the Argument Builder.

Counter Start
Specify the a number to start counter used when needed to find a unique name.
Digits
Specify the width in digits of counter; the default is 1. The Pad counter with leading 0’s

checkbox prepends 0 to match the digit length. For example, with a digit width of 3, the initial
unique value would be appended with 001, then 002, and so on.

Remarks

For each provided pattern, a query is performed against the destination data store, using the supplied
attribute name, scope, and search start. Each specified pattern is tried in order until a value is found
that does not return any found objects.

If all of the specified patterns are exhausted, the final pattern has a counter appended to it and the
pattern is tried repeatedly (increasing the counter each time) until the query does not return any
instances.

The counter can be set to start at a different number using the counter start field. The counter uses
the number of digits specified by the digits field. If the number of digits is less than those specified,
then the counter is right padded with zeros. When the number of digits exceeds those specified, then
no unique name is generated and the enclosing rule returns an error status.

If the destination data store is the Identity Vault and name field is left blank, then a search is
performed against the pseudo-attribute “[Entry].rdn”, which represents the RDN of an object
without respect to what the naming attribute might be. If the destination data store is the connected
application, then the name field is required.

Example
& Unigue Name("CH",scope="subtree",Lower Caze())

The following is an example of the Editor pane when constructing the unique name argument:

fttHbute name: (TN
bcoper | Subtree b
Start zearch:™ | Root of datastore v
Pattern:™
[+I[=]
Counter start: |1 digits: |1 Pad counter with leading 0's

The following pattern was constructed to provide unique names:

Lower Cazef)
Substrngf()
| el AttHbutel"Given Mame")
+
& AttHbutel"Surname”)

Defining Policies By Using The Policy Builder In iManager 285

If this pattern does not generate a unique name, a digit is appended, incrementing up to the specified
number of digits. In this example, nine additional unique names would be generated by the
appended digit before an error occurs (patternl - pattern9).

3.7.23 Unmatched Source DN

Expands to the part of the source DN in the current operation that corresponds to the part of the DN
that was not matched by the most recent match of an If Source DN condition.

Fields
Convert

Select whether or not to convert the DN format used by the destination data store.
Remarks

If there were no matches, the entire DN is used.

Example

The example is from the predefined rules that come with Identity Manager 3.0. For more
information, see “Matching - Subscriber Mirrored - LDAP Format” on page 208.

The action of Finding Matching Object uses the Unmatched Source DN token to build the matching
information in LDAP format. It takes the unmatched portion of the source DN to make a match.

Matching - Subscriber Mirrared - LDAP farmat |

& if source DM in subtres "[Enter baze of source hierarchy]"

*set local varable("dest-baze","[Enter baze of destination hierarchy]")
& find matching objectscope="entr",dn{Unmatched Source DMiconvert="true"}+","+Lacal
YWariable("dest-baze"1])

fh Unmatched Source DR convert="true")

‘5 "_|"
i Local Yariable("dest-base™)

22 Editor

Convert bo deskination DM Format: |I:rue vl

3.7.24 XPath

Expands to results of evaluating an XPath 1.0 expression.

286 Policy Builder and Driver Customization Guide

Fields

Expression

XPath 1.0 expression to evaluate.
Example

A5 XPATH™[@attr-name="0U"/ fvalue[starts-with{stringl.], 500)"

3.8 Verb Tokens

This section contains detailed reference to all verbs available using the Policy Builder interface.

 Section 3.8.1, “Escape Destination DN,” on page 287
» Section 3.8.2, “Escape Source DN,” on page 288

» Section 3.8.3, “Lower Case,” on page 288

» Section 3.8.4, “Parse DN,” on page 289

» Section 3.8.5, “Replace All,” on page 290

» Section 3.8.6, “Replace First,” on page 291
 Section 3.8.7, “Substring,” on page 292

» Section 3.8.8, “Upper Case,” on page 293

3.8.1 Escape Destination DN

Escapes a string according to the rules of the DN format of the destination data store.

Example

The example is from the predefined rules that come with Identity Manager 3.0. For more
information, see “Placement - Publisher Flat” on page 84.

The action of Set Operation Destination DN uses the Escape Destination DN token to build the
destination DN of the User object.

Placement - Publisher Flat

if class name equal "User"

Actions |
*set local vardable"dest-bazse","[Enter DM of destination container]")

* set operation destination DM{dniLlocal WYarable("dest-bazse"+"V'+Escape Destination DM{Unique
Mame("Ch" zcope="subtree",Lower Caze(Substring(length="1",Operation AttHbute"Given Mame"])
+0peration AttHbuteSurname"]l,Lower Caze(Subztring(length="2",0Operation AttHbutel"Given
Fame"|+Operation Attnbutesurname"1]1]1)

Defining Policies By Using The Policy Builder In iManager 287

¢ Local Yariable!"dest-base")
a
= ./ Escape Deskination DM
4 Unique Mame("CN", scope="subtree", Lower Casel), Lower Casel))

The Escape Destination DN token takes the value in Unique Name and sets it to the format for the
destination DN.

3.8.2 Escape Source DN

Escapes a string according to the rules of the DN format of the source data store.

Example

A Ezcape Source DM()
|JE| Attrbute"Surname")

3.8.3 Lower Case

Converts the characters in a string to lowercase.

Example

This example sets the e-mail address to be name(@slartybartfast.com where the name equals the first
character of the Given Name plus the Surname. The policy name is Policy: Create E-mail from
Given Name and Surname and it is available for download at Novell’s support Web site. For more
information, see “Downloadable Identity Manager Policies” on page 36.

Set email address: name@slartybartfast.com; name = [1 char of Given Name +
=
O Surname] <= & chars

*if clazsz name equal "User"
And (% if operation attribute 'Given Mame' available
And & if operation attdbute 'Surname’ available

Actions |
& strip operation attAbute"Internet Email 4ddress")

¢ set destination attribute valuel"Internet Email Address",Lower Caze(Substring
[length="8",5ubztrng(length="1",0peration &ttrbute"Frzthame"))+Operation AttHbute
["LaztMame"l+"@:zlartvbartfazt. com”]]

= o Lower Casel)
=~/ Substring{length="3"}
=~/ Substring{length="1")
& Cperation Atkribukel"FirstMame")
5 Operation Attributed"Lasthame")
& "@slarkybartfast,com”

288 Policy Builder and Driver Customization Guide

The Lower Case token sets all of the information in the action Set Destination attribute value to
lowercase.

3.8.4 Parse DN

Converts a DN to an alternate format.

Example

The example uses the Parse DN token to build the value the Add Destination Attribute Value action.
The example is from the predefined rules that come with Identity Manager 3.0. For more
information, see “Command Transformation - Create Departmental Container - Part 1 and Part 2” on
page 197.

Commmand Transformation - Create Departmental Container - Part 2 |

. if local wvardable 'does-target-exizt' available
And & if local vardable 'does-target-exizt’ equal ™

¢ add destination objecticlass name="organizationallnit",direct="true",dn(Local Yarable"target-
container])

* add destination attrbute value("ou",direct="true",dn(Local Yardable("target-container)),Parse
DM["dest-dn","dot", length="1",start="-1",Local Warable("target-container"]])

= ./ Parse DN{"dest-dn", "dat", length="1", start="-1")
& Local Yariabled"target-conkainet")

27 Editor

Skark: | -1
1

Length:

Source DM Format: |destination DN -

Destination DN Farmat: |dok -

The Parse DN token is taking the information from the source DN and converting it to the dot
notation. The information from the Parse DN is stored in the attribute value of OU.

Fields
Start
Specify the RDN index to start with:

e Index 0 is the root-most RDN
« Positive indexes are an offset from the root-most RDN
* Index -1 is the leaf-most segment

» Negative indexes are an offset from the leaf-most RDN towards the root-most RDN

Defining Policies By Using The Policy Builder In iManager 289

Length

Number of RDN’s to include. Negative numbers are interpreted as (total # of segments +
length) + 1. For example, for a DN with 5 segments a length of -1 =(5+(-1))+1=5,-2=(5 +
(-2)) + 1 =4, etc.

Source DN Format

Specifies the format used to parse the source DN.

Destination DN Format

Specify the format used to output the parsed DN.

Source DN Delimiter

Specify the custom source DN delimiter set if Source DN Format is set to custom.

Destination DN Delimiter

Specify the custom destination DN delimiter set if Destination DN Format is set to custom.

Remarks

If start and length are set to the default values {0,-1}, then the entire DN is used; otherwise only the
portion of the DN specified by start and length is used.

When specifying custom DN formats, the eight characters that make up the delimiter set are defined
as follows:

1. Typed Name Boolean Flag: 0 means names are not typed, and 1 means names are typed

2. Unicode No-Map Character Boolean Flag: 0 means don’t output or interpret unmappable Unicode
characters as escaped hex digit strings, such as \FEFF. The following Unicode characters are not
accepted by eDirectory: Oxfeff, Oxfffe, Oxfffd, and Oxfftf.

3. Relative RDN Delimiter
4. RDN Delimiter

5. Name Divider

6. Name Value Delimiter
7. Wildcard Character

8. Escape Character

If RDN Delimiter and Relative RDN Delimiter are the same character, the orientation of the name is
root right, otherwise the orientation is root left.

If there are more than eight characters in the delimiter set, the extra characters are considered as
characters that need to be escaped, but they have no other special meaning.

3.8.5 Replace All

Replaces all occurrences of a regular expression in a string.

290 Policy Builder and Driver Customization Guide

Fields

Regular Expression

Specify the regular expression that matches the substring to be replaced.

Replace With

Specify the replacement string.

Remarks
For details on creating regular expressions, see:

» Sun’s Java Web site (http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html)

* Sun’s Java Web site (http://java.sun.com/j2se/1.4/docs/api/java/util/regex/
Matcher.html#replaceAll (java.lang.String))

The pattern options CASE_INSENSITIVE, DOTALL, and UNICODE_CASE are used but can be
reversed by using the appropriate embedded escapes.

Example

Ralilace AL
| 4 Destination DNI)

3.8.6 Replace First

Replaces the first occurrence of a regular expression in a string.

Fields

Regular Expression

Specify the regular expression that matches the substring to replace.

Replace With

Specify the replacement string.

Remarks

The matching instance is replaced the string specified by the value specified in the Replace with
field.

For details on creating regular expressions, see:

* Sun’s Web site (http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html)

» Sun’s Web site (java.lang.String) (http://java.sun.com/j2se/1.4/docs/api/java/util/regex/
Matcher.html#replaceAll (java.lang.String))

The pattern option CASE_INSENSITIVE, DOTALL, and UNICODE CASE are used but can be
reversed using the appropriate embedded escapes.

Defining Policies By Using The Policy Builder In iManager

291

http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Matcher.html#replaceAll (java.lang.String)
http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Matcher.html#replaceAll (java.lang.String)

Example

The example reformats the telephone number (nnn)-nnn-nnnn to nnn-nnn-nnnn. The rule is from the
predefined rules that come with Identity Manager 3.0. For more information, see “Input or Output
Transformation - Reformat Telephone Number from (nnn) nnn-nnnn to nnn-nnn-nnnn’” on page 205.

The Replace First token is used in the Reformat Operation Attribute action.

lnput or Output Transformation - Beformat Telephone Mumber from [nnn] nnn-nnnn
to nnn-nnn-nnnn

¢, Thiz condition will evaluate to true,

¢ reformat operation attribute("phone",Replace First(" % vdbdbd i Ddhdvd - (vdvdvdhd)50 5 1-52-
53" Local Yadablel"current-valus"]])

=/ Replace First" (A d s A dd)-Odididid)g”, "$1-$2-$37)
i Local variabled"current-value"

2# Editor

Regular expression; * | A dn s+ O dd-0Odd dy g
Replace with: |$1-$2-$3

The regular expression of "\((\d\d\d)\)\s*(\d\d\d)-(\d\d\d\d)$ represents (nnn) nnn-nnnn and the
regular expression of $1-$2-$3 represents nnn. This rule transforms the format of the telephone
number from (nnn) nnn-nnnn to nnn-nnn-nnnn.

3.8.7 Substring

Extracts a portion of a string.

Fields

Start
Specify the starting character index:

* Index 0 is the first character.
* Positive indexes are an offset from the start of the string.
* Index -1 is the last character.

* Negative indexes are an offset from the last character towards the start of the string.
Length

Number of characters from the start to include in the substring. Negative numbers are
interpreted as (total # of characters + length) + 1. For example, for a string with 5 characters a
lengthof -1=(5+(-1))+1=5,-2=(5+(-2)) + 1 =4, etc.

292 Policy Builder and Driver Customization Guide

Example

This example sets the e-mail address to be name@slartybartfast.com where the name equals the first
character of the Given Name plus the Surname. The policy name is Policy: Create E-mail from
Given Name and Surname and it is available for download at Novell’s support Web site. For more
information, see “Downloadable Identity Manager Policies” on page 36.

(18 Push back on email changing

% if class name egual "User"
And & if operation atthibute Email' changing

et zource attrbute value("Email",Destination AttHbute("Internet EMail Address"]
¢ ztrip operation attribute"Email")

= -/ Lower Casel)
=~/ Substring{length="3"}
=~/ Substring{length="1")
& Cperation Atkribukel"FirstMame")
5 Operation Attributed"Lasthame")
& "@slarkybartfast,com”

The Substring token is used twice in the action Set Destination Attribute Value. It takes the first
character of the First Name attribute and adds eight characters of the Last Name attribute together to
form one substring.

3.8.8 Upper Case

Converts the characters in a string to uppercase.

Example

The example converts the first and last name attributes of the User object to uppercase. The policy
name is Policy: Convert First/Last Name to Upper Case and it is available for download at Novell’s
support Web site. For more information, see “Downloadable Identity Manager Policies” on page 36.

[[]& Convert First/Last name to uppercase

. if class mame equal "User"
And
. if operation attribute 'Given Mame' changing
Or (*if operation attribute 'Surname' changing

¢ reformat operation attdbute("Given Mame",Upper Case(Qperation Attrbutel"Given Mame"]))
¢ reformat operation attrbute"Surname”,Upper Caze[Operation Atthbute("Surname")])

Defining Policies By Using The Policy Builder In iManager

293

= Upper Casel)
it Operation Attributed"Given Mame™)

3.9 Values

This section contains a list of common Policy Builder values.

3.9.1 Comparison Modes

Mode

Description

case
nocase

regex

src-dn
dest-dn
numeric
octet

structured

Character-by-character case sensitive comparison.
Character-by-character case insensitive comparison.

Regular expression match of entire string. Case insensitive by default, but may be changed
by an escape in the expression.

See Sun’s Java Web site (http://java.sun.com/j2se/1.4/docs/api/javalutil/regex/
Pattern.html) and Sun’s Java Web site (http://java.sun.com/j2se/1.4/docs/api/java/util/
regex/Matcher.html#matches()).

Note that pattern option CASE_INSENSITIVE, DOTALL, and UNICODE_CASE are used
but can be reversed using the appropriate embedded escapes.

Compare using semantics appropriate to the DN format for the source data store.
Compare using semantics appropriate to the DN format for the destination data store.
Compare numerically.

Compare octet (Base64 encoded) values.

Compare structured attribute according to the comparison rules for the structured syntax of
the attribute.

294 Policy Builder and Driver Customization Guide

http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Matcher.html#matches()

Defining Policies using XSLT Style
Sheets

Policies can be implemented as XSLT style sheets. XSLT is a standard language for transforming
XML documents. The XSLT processor in the Metadirectory engine is compliant with the 16
November 1999 W3C recommendation. For the relevant specifications, see the following:

* XSL Transformations (XSLT) (http://www.w3.org/TR/1999/REC-xslt-19991116)
+ XML Path Language (XPath) (http://www.w3.0rg/TR/1999/REC-xpath-19991116)

The following sections describe the implementation specifics of using style sheets with Identity
Manager.

Section 4.1, “Managing XSLT Style Sheets in Designer,” on page 295

Section 4.2, “Managing XSLT Style Sheets in iManager,” on page 297

Section 4.3, “Starting with an Identity Transformation,” on page 298

Section 4.4, “Using the Parameters that Identity Manager Passes,” on page 298
Section 4.5, “Using Extension Functions,” on page 301

Section 4.6, “Creating a Password Example: Creation Policy,” on page 302

Section 4.7, “Creating an eDirectory User Example: Creation Policy,” on page 303

4.1 Managing XSLT Style Sheets in Designer

XSLT policy style sheets are added, modified, and deleted using Designer. The following sections
provide details on using XSLT style sheets in Designer:

Section 4.1.1, “Adding an XSLT Policy in Designer,” on page 295

4.1.1 Adding an XSLT Policy in Designer

1
2

Open a project in Designer and select the Outline tab.

Select the driver and location where you want the style sheet.

3 Right-click and select Add Policy >XSLT.

Defining Policies using XSLT Style Sheets 295

http://www.w3.org/TR/1999/REC-xslt-19991116
http://www.w3.org/TR/1999/REC-xpath-19991116

=& LDAP
M= MappingRule

d Password{Pub)-Sub Email Motification
d Password{Sub)-Pub Email Motification
LDAP Filker

Add Paolic W

Expart Channel to Configuration File. ..

Live Operations ¥

Copy Existing. ..

. Sirmnilake
4 Specify the name of the style sheet.
5 Select Open Editor after creating policy, then click OK.

PN Set Policy Mame

Mame | Skwleshest

¥ Open Editor after creating policy.
Ok I Cancel

6 Select Yes to save the project before editing the new policy.

EM File Conflict

9P Before editing this item vou need to save, Do you wish to save this editor's
_V changes and conkinue?

7 Add the style sheet information below the line add your custom templates here.

296 Policy Builder and Driver Customization Guide

E Project 1 - Developer Mode Q Styleshest X
-] -

<?xml wersion="1.0" encoding="UTF-S"2?r<xsl:stvlesheet e
<xal:param heme="srcouervyProcessor S

<xsl:param hname="destousryProcessor s

<xzal:param name="srcCommandProcessor S >

<xal:param name="destComandProcessor S >

<x3l:param name="dnConvertcer />

<xS1l:param hname="fronllds";>

< l—— identity transformation template —-->
< !—-— in the absence of any other tewplates this will cs
< !—-— the stylesheet to copy the input through unchanged

<xsl:template match="node (] |57
<xzl:copy>
<xsl:apply-templates select="[%|nodes () "/>
<fusl:icopys
</xsl:templates

T add your custom templates here ——=

</uzliztylesheets>

8 Save the style sheet by selecting File > Save.

4.2 Managing XSLT Style Sheets in iManager

XSLT policy style sheets are added, modified, and deleted using iManager. The following sections
provide details on using XSLT style sheets in iManager:

» Section 4.2.1, “Adding an XSLT Policy in iManager,” on page 297

4.2.1 Adding an XSLT Policy in iManager

1 Open the Identity Manager Driver Overview for the driver you want to manage.
2 Click the icon representing the policy you want to define.

3 Click Insert.

4 Provide a name for the new policy, select XSLT, then click Enter.

5 Define your XSLT policy, then click OK:

Defining Policies using XSLT Style Sheets 297

DirXML Policy: &= xslt policy

b%

XML Editor: W Enable XML editing

<?dml wversion="1.0" encoding="UTF-&"?> ;J

<xsl:stvlesheet exclude-result-prefixes="gquervy cmd dncv®™ version="1.0" xml
<!=— parawmeters passed in from the DirX¥ML engine -->

<¥al:param name="srcoueryProcessor™/ >
<xzl:parsm name="destQueryProcessor™/ >
<xsl:param name="srcCommandProcessor”/ >
<x¥3l:paraim name="destCommandProcessor™s >
<x¥zl:parsm name="dnConverter™ />
<xsl:param name="fromwids"/ >

<!=— identity transformation template —-->
<!=— in the shsence of any other templates this will cause —-->
<!—— the stylesheet to copy the input through unchanged to the out

<¥sl:template match="node () |E+">
<Esl:copyr
<¥sl:apply-templates select="A%|node() "/ >
</ualicopys
<fxsl:templates>
<!'—— add your custom templates here —->
</xsl:styleshest>

w
4| | »

oK | Cancel | Apply |

4.3 Starting with an Identity Transformation

When you create a new stylesheet in iManager or Designer, it is pre-populated with a stylesheet that
implements the identity transformation. In the absence of additional templates, the identity
transformation allows the input XML document to pass through the stylesheet unchanged. You
usually implement policy by adding additional templates to act on just the XML that you want to be
changed. If your stylesheet is being used to translate a document to or from an XML vocabulary that
is different then XDS (such as the Input and Output Transformations for the SOAP and Delimited
Text drivers) you may need to remove the identity template.

4.4 Using the Parameters that Identity Manager
Passes

The Metadirectory engine passes the policy style sheets the following parameters that the style sheet
can use.

» srcQueryProcessor—A Java object that implements the XdsQueryProcessor interface. This
allows the style sheet to query the source datastore for more information.

298 Policy Builder and Driver Customization Guide

* destQueryProcessor—A Java object that implements the XdsQueryProcessor interface. This
allows the style sheet to query the destination datastore for more information.

» srcCommandProcessor—A java object that implements the XdsCommandProcessor interface.
This allows the style sheet to write-back a command to the event source. Not available in
DirXML 1.0.

» destCommandProcessor-A java object that implements the XdsCommandProcessor interface.
This allows the style sheet to issue a command directly to send a command to the destination
datastore.

* dnConverter—This is a java object that implements the XdsCommandProcessor interface.This
allows the style sheet to convert Identity Vault object DNs from one format to another. For
more information see Interface DNCoverter (http://developer.novell.com/ndk/doc/dirxml/
dirxmlbk/api/com/novell/nds/dirxml/driver/DNConverter.html).

» fromNds—This is a boolean value that is true if the source datastore is the Identity Vault and
false if it is the connected application.

When you create a new stylesheet in iManager or Designer, it is pre-populated with a stylesheet that
contains the declarations for these parameters.

When using the query and command parameters with the schema mapping policies, input
transformation policies, and output transformation policies. The following limitations apply:

* Queries issued to the application shim must be in the form expected by the application shim. In
other words, schema names must be in the application namespace and the query must conform
to whatever XML vocabulary is used natively by the shim. No association references are added
to the query.

» Responses from the application shim are in the form returned by the shim with no modification
or schema mapping performed and no resolution of association references.

* Queries issued to eDirectory™ must be in the form expected by eDirectory. In other words
schema names must be in the eDirectory namespace and the query must be XDS. Association
references are not resolved.

» Responses from the application shim are in the form returned by the shim with no modification
or schema mapping performed.

Query Processors

Use of the query processors depends on the Novell® XSLT implementation of extension functions.
To make a query, you need to declare a namespace for the XdsQueryProcessor interface. This is
done by adding the following to the <xsl:stylesheet> or <xsl:transform> element of the style sheet.

xmlns:query="http://www.novell.com/nxsl/java/
com.novell.nds.dirxml.driver.XdsQueryProcessor"

When you create a new stylesheet in iManager or Designer, it is pre-populated with the namespace
declaration. For more information about query processors see Class XdsQueryProcessor (http://
developer.novell.com/ndk/doc/dirxml/dirxmlbk/api/com/novell/nds/dirxml/driver/
XdsQueryProcessor.html)

The following example uses one of the query processors (the extra long lines are wrapped and do not
begin with a <):

Defining Policies using XSLT Style Sheets

299

http://developer.novell.com/ndk/doc/dirxml/dirxmlbk/api/com/novell/nds/dirxml/driver/DNConverter.html
http://developer.novell.com/ndk/doc/dirxml/dirxmlbk/api/com/novell/nds/dirxml/driver/XdsQueryProcessor.html

<!-- Query object name queries NDS for the passed object name -->

<xsl:template name="query-object-name">
<xsl:param name="object-name"/>

<!-- build an xds query as a result tree fragment -->
<xsl:variable name="query">
<query>

<search-class class-name="{ancestor-or-self:
:add/@class-name}"/>

<!-- NOTE: depends on CN being the naming attribute -->
<search-attr attr-name="CN">
<value><xsl:value-of select="S$Sobject-name"/

></value>
</search-attr>
<!-- put an empty read attribute in so that we don’t get -->
<!-- the whole object back -—>
<read-attr/>

</query>
</xsl:variable>

<!-- query NDS -->
<xsl:variable name="result" select="query:query($destQuery
Processor, Squery) " />

<!-- return an empty or non-empty result tree fragment -->
<!-- depending on result of query -=>

<xsl:value-of select="$result//instance"/>
</xsl:template>

Here is another example.

<?xml version="1.0"?>
<xsl:transform
version="1.0"

xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:cmd="http://www.novell.com/nxsl/java
com.novell.nds.dirxml.driver.XdsCommandProcessor"

>

<xsl:param name="srcCommandProcessor"/>

<xsl:template match="node () |@*">
<xsl:copy>
<xsl:apply-templates select="@*|node()"/>
</xsl:copy>
</xsl:template>

<xsl:template match="add">
<xsl:copy>
<xsl:apply-templates select="@*|node()"/>
</xsl:copy>

<!-- on a user add, add Engineering department to the source

300 Policy Builder and Driver Customization Guide

object -->
<xsl:variable name="dummy">
<modify class-name="{@class-name} "dest-dn="{@src-dn}">
<xsl-copy-of select="association"/>
<modify-attr attr-name="0OU">
<add-value>
<value type="string">Engineering</value>
</add-value>
</modify-attr>
</modify>
</xsl:variable>
<xsl:variable name="dummy2"
select="cmd:execute ($srcCommandProcessor, S$dummy)"/>
</xsl:template>

</xsl:transform>

4.5 Using Extension Functions

XSLT is an excellent tool for performing some kinds of transformations and a rather poor tool for
other types of transformations such as non-trivial string manipulation and iterative processes.
Fortunately the Novell XSLT processor implements extension functions that allow the style sheet to
call a function implemented in Java, and by extension, any other language that can be accessed
through JNI.

For specific examples, see the above example using the query processor, and the following example
that illustrates using Java for string manipulation (the extra long lines are wrapped and do not begin
with a <).

<!-- get-dn-prefix places the part of the passed dn that -->
<!-- precedes the last occurrence of '\’ in the passed dn -->
<!--in a result tree fragment meaning that it can be -—>
<!-- used to assign a variable value -——>

<xsl:template name="get-dn-prefix" xmlns:jstring="http://
www.novell.com/nxsl/java/java.lang.String">

<xsl:param name="src-dn"/>
<!-- use java string stuff to make this much easier -->

<xsl:variable name="dn" select="jstring:new($src-dn)"/>
<xsl:variable name="index" select="jstring:lastIndexOf

($dn, "\")"/>
<xsl:1f test="$index != -1">
<xsl:value-of select="jstring:substring($dn, 0, $index)
H/>

</xsl:if>
</xsl:template>

Defining Policies using XSLT Style Sheets

301

4.6 Creating a Password Example: Creation
Policy

The following style sheet can be used for a Creation policy. It creates a user, generates a password
for the user from the user’s Surname and CN attributes, and performs an identity transformation
(which passes through everything in the document except the events you are trying to intercept and
transform).

<?xml version="1.0" encoding="ISO-8859-1"7?>

<!-- This stylesheet has an example of how to replace a create rule
with

an XSLT stylesheet and supply an initial password for "User"
objects. —-->

<xsl:transform xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform
"version="1.0">

<!-- ensure we have required NDS attributes -->
<xsl:template match="add">
<xsl:if test="add-attr[@attr-name=’'Surname’] and
add-attr[@attr-name=’'CN’]">
<!-- copy the add through -->
<xsl:copy>
<xsl:apply-templates select="@*|node()"/>
<!-- add a <password> element -->
<xsl:call-template name="create-password"/>
</xsl:copy>
</xsl:if>

<!-- 1if the xsl:if fails, we don’t have all the required attributes
so we won’t copy the add through, and the create rule will veto
the add -->

</xsl:template>

<xsl:template name="create-password">
<password>
<xsl:value-of select="concat (add-attr[Rattr-name=’Surname’]/
value,
-7 ,add-attr[QRattr-name='CN’]/value)"/>
</password>
</xsl:template>

<!-- identity transform for everything we don’t want to change -->
<xsl:template match="@*|node()">
<xsl:copy>
<xsl:apply-templates select="@*|node()"/>
</xsl:copy>

</xsl:template>

</xsl:transform>

302 Policy Builder and Driver Customization Guide

4.7 Creating an eDirectory User Example:
Creation Policy

This style sheet can be used for a Creation policy. It shows how to create an eDirectory user from an
entry created in an external application. This example is based on the idea that a newly hired person
is first created in the Human Resources database and then on the network. It takes the user’s first
name and last name and generates a unique CN in the eDirectory tree. Although eDirectory requires
the CN to be unique in only the container, this style sheet ensures that it is unique across all
containers in the eDirectory tree.

<?xml version="1.0" encoding="IS0O-8859-1"7?>

<!-- This stylesheet is an example of how to replace a create rule
with an

XSLT stylesheet and that creates the User name from the Surname
and

given Name attributes -->

<xsl:transform
xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform”" version="1.0"
xmlns:query="http://www.novell.com/nxsl/java/
com.novell.nds.dirxml.driver.
XdsQueryProcessor"
>

<!-- This is for testing the stylesheet outside of Identity Manager so
things
are pretty to look at -->
<xsl:strip-space elements="*"/>
<xsl:preserve-space elements="value, component"/>
<xsl:output method="xml" indent="yes"/>

<!-- TIdentity Manager always passes two stylesheet parameters to an
XSLT rule:
an inbound and outbound query processor -->
<xsl:param name="srcQueryProcessor"/>
<xsl:param name="destQueryProcessor"/>

<!-- match <add> elements -->
<xsl:template match="add">

<!-- ensure we have required NDS attributes we need for the name -->
<xsl:1f test="add-attr[@attr-name=’Surname’] and
add-attr[@attr-name=’Given Name’]">

<!-- copy the add through -->
<xsl:copy>
<!-- copy any attributes through except for the src-dn -->
<!-- we’ll construct the src-dn below so that the placement
rule will work -->
<xsl:apply-templates select="@*[string(.) != ’src-dn’]1"/>
<!-- call a template to construct the object name and place the

Defining Policies using XSLT Style Sheets

303

result in a variable -->
<xsl:variable name="object-name">
<xsl:call-template name="create-object-name"/>
</xsl:variable>

<!-- now create the src-dn attribute with the created name -->
<xsl:attribute name="src-dn">
<xsl:variable name="prefix">
<xsl:call-template name="get-dn-prefix">
<xsl:with-param name="src-dn" select="string(@src-

dn)"/>
</xsl:call-template>
</xsl:variable>
<xsl:value-of select="concat ($prefix,’\’, $Sobject-name)"/>
</xsl:attribute>
<!-- if we have a "CN" attribute, set it to the constructed
name -->

<xsl:if test="./add-attr[@attr-name='CN’]">
<add-attr attr-name="CN">
<value type="string"><xsl:value-of select="$object-
name"/></value>
</add-attr>
</xsl:if>

<!-- copy the rest of the stuff through, except for what we
have already copied -->
<xsl:apply-templates select="*[name() != 'add-attr’ or Qattr-
name != 'CN’] |
comment () |
processing-instruction () |
text ()"/>
<!-- add a <password> element -->

<xsl:call-template name="create-password"/>

</xsl:copy>
</xsl:if>
<!-- 1if the xsl:if fails, it means we don’t have all the required
attributes
so we won’t copy the add through, and the create rule will veto
the add -->
</xsl:template>

<!-- get-dn-prefix places the part of the passed dn that precedes the
-—>

<!-- last occurrance of "\’ in the passed dn in a result tree fragment
-—>

<!-- meaning that it can be used to assign a variable value

-——>

<xsl:template name="get-dn-prefix" xmlns:jstring="http://
www.novell.com/nxsl/java/java.lang.String">
<xsl:param name="src-dn"/>

304 Policy Builder and Driver Customization Guide

<!-- use java string stuff to make this much easier -->
<xsl:variable name="dn" select="jstring:new($src-dn)"/>
<xsl:variable name="index" select="jstring:lastIndexOf ($dn,’\’")"/>
<xsl:if test="S$index != -1">
<xsl:value-of select="jstring:substring($dn,0,$index)"/>
</xsl:if>
</xsl:template>

<!-- create-object-name creates a name for the user object and places
the —-=>

<!-- result in a result tree fragment

-——>

<xsl:template name="create-object-name">

<!-- first try is first initial followed by surname -->

<xsl:variable name="given-name" select="add-attr[Q@attr-name=’'Given
Name’]/value"/>

<xsl:variable name="surname" select="add-attr[@attr-
name='Surname’]/value"/>

<xsl:variable name="prefix" select="substring($given-name,1,1)"/>

<xsl:variable name="object-name" select="concat ($prefix, $surname)"/

<!-- then see if name already exists in NDS -->
<xsl:variable name="exists">
<xsl:call-template name="query-object-name">
<xsl:with-param name="object-name" select="S$object-name"/>
</xsl:call-template>
</xsl:variable>

<!-- 1if exists, then try 1lst fallback, else return result -->
<xsl:choose>
<xsl:when test="S$exists != """>

<xsl:call-template name="create-object-name-2"/>
</x%sl:when>
<xsl:otherwise>
<xsl:value-of select="S$object-name"/>
</xsl:otherwise>
</xsl:choose>

</xsl:template>

<!-- create-object-name-2 is the first fallback if the name created by
-——>

<!-- create-object-name already exists

-—>

<xsl:template name="create-object-name-2">

<!-- first try is first name followed by surname -->

<xsl:variable name="given-name" select="add-attr[@attr-name=’Given
Name’]/value"/>

<xsl:variable name="surname" select="add-attr[@attr-
name=' Surname’]/value"/>

<xsl:variable name="object-name" select="concat ($given-

Defining Policies using XSLT Style Sheets

305

name, $Ssurname) " />

<!-- then see if name already exists in NDS -->
<xsl:variable name="exists">
<xsl:call-template name="query-object-name">
<xsl:with-param name="object-name" select="$object-name"/>
</xsl:call-template>
</xsl:variable>

<!-- if exists, then try last fallback, else return result -->
<xsl:choose>
<xsl:when test="S$exists != """>

<xsl:call-template name="create-object-name-fallback"/>
</xsl:when>
<xsl:otherwise>
<xsl:value-of select="S$object-name"/>
</xsl:otherwise>
</xsl:choose>

</xsl:template>

<!-- create-object-name-fallback recursively tries a name created by
-——>

<!-- concatenating the surname and a count until NDS doesn’t find
-——>

<!-- the name. There is a danger of infinite recursion, but only if
-——>

<!-- there is a bug in NDS

->

<xsl:template name="create-object-name-fallback">
<xsl:param name="count" select="1"/>

<!-- construct the a name based on the surname and a count -->
<xsl:variable name="surname" select="add-attr[@attr-

name=' Surname’]/value"/>
<xsl:variable name="object-name" select="concat ($surname,’ -

", Scount)"/>

<!-- see if it exists in NDS -->
<xsl:variable name="exists">
<xsl:call-template name="query-object-name">
<xsl:with-param name="object-name" select="S$object-name"/>
</xsl:call-template>
</xsl:variable>

<!-- 1if exists, then try again recursively, else return result -->
<xsl:choose>
<xsl:when test="S$exists != """>

<xsl:call-template name="create-object-name-fallback">
<xsl:with-param name="count" select="S$count + 1"/>
</xsl:call-template>
</x%sl:when>
<xsl:otherwise>
<xsl:value-of select="S$object-name"/>

306 Policy Builder and Driver Customization Guide

</xsl:otherwise>
</xsl:choose>

</xsl:template>

<!-- query object name queries NDS for the passed object-name. Ideally,
this would —-=>

<!-- not depend on "CN": to do this, add another parameter that is the
name of the -—>

<!-- naming attribute.

-——>

<xsl:template name="query-object-name">
<xsl:param name="object-name"/>

<!-- build an xds query as a result tree fragment -->
<xsl:variable name="query">
<nds ndsversion="8.5" dtdversion="1.0">
<input>
<query>
<search-class class-name="{ancestor-or-self::add/@class-
name}"/>
<!-- NOTE: depends on CN being the naming attribute -->
<search-attr attr-name="CN">
<value><xsl:value-of select="S$object-name"/></value>
</search-attr>
<!-- put an empty read attribute in so that we don’t get
the whole object back -->
<read-attr/>
</query>
</input>
</nds>
</xsl:variable>

<!-- query NDS -->
<xsl:variable name="result"
select="query:query ($SdestQueryProcessor, Squery) " />

<!-- return an empty or non-empty result tree fragment depending on
result of query -->

<xsl:value-of select="S$result//instance"/>
</xsl:template>

<!-- create an initial password -->
<xsl:template name="create-password">
<password>

<xsl:value-of select="concat (add-attr[@attr-name=’Surname’]/
value,’-’,add-attr[@attr-name='CN’]/value)"/>
</password>
</xsl:template>

<!-- identity transform for everything we don’t want to mess with -->
<xsl:template match="@*|node()">
<xsl:copy>
<xsl:apply-templates select="@*|node()"/>

Defining Policies using XSLT Style Sheets

307

</x%sl:copy>
</xsl:template>

</xsl:transform>

308 Policy Builder and Driver Customization Guide

Managing Filters

The Filter Editor allows you to manage the filter. In the Filter Editor, you define how each class and
attribute is to be handled by the Publisher and Subscriber channels.

This section covers the following filter-related topics:

» Section 5.1, “Filter Tasks in Designer,” on page 309
* Section 5.2, “Filter Tasks in iManager,” on page 321

5.1 Filter Tasks in Designer

This section contains instructions on performing common filter-related tasks in Designer:

* Section 5.1.1, “Accessing the Filter Editor,” on page 309

* Section 5.1.2, “Editing the Filter,” on page 310

» Section 5.1.3, “Testing Filters,” on page 315

» Section 5.1.4, “Viewing the Filter XML Source,” on page 319

5.1.1 Accessing the Filter Editor

The Filter Editor allows you to edit the filter. There are two different ways to access the filter. To
access the Filter Editor from within a project:

1 In an open project, click the Outline tab.

2 Click the Model Outline icon.

3 Select the driver you want to manage the filter for, then click the plus sign to the right.
4 Double-click the Filter icon and to launch the Filter Editor.

Figure 5-1 OQutline Access

i - osive % g =
BE W BB
= tas| Project 1
—-[&l] 1M vaul
[l 17ENsEN
- u] ds
+-fg Active Directory
+ g Driver

+ g/ EDIR-Driver

+ ﬁv Entitlernents Service Driver (#1)

&g LDAF
ME MappingRule
Passward{Pub)-5ub Email Motifications
Passward({sub)-Pub Email Motifications

b JLOAF Fiter

To access the Filter Editor through the Policy Flow:

1 In Designer, open a project, then click the Outline tab.

Managing Filters 309

2 Select the Policy Flow icon. !
3 Select the filter, which is represented by the Sync or Notify icons.

4 Double-click the filter as it appears in the Policy Set Manager below the Policy Flow to launch
the Filter Editor.

Or
Double-click the Sync or Notify icons to launch the Filter Editor.
Figure 5-2 Policy Flow Access

Project EE Qutline &3 = B
= W
LDAP Directory

Loap&p

Directory

Input Output -

Scharma Mapping

Publisher

e LA
Command __
wo i
yeT Placement &
E Matching Creation B
i Creation Matching
i Placement @ m
"' Command
Evert

IDM Yault

Draka Flow = B

LDAP Driver Paolicy Sets

B LDAP Filker

5.1.2 Editing the Filter

The Filter Editor allows you to create and edit the filter. To display a context menu, right-click an
item.

310 Policy Builder and Driver Customization Guide

Removing or Adding Classes and Attributes

By removing or adding classes and attributes, you determine what objects synchronize between the
connected data store and the Identity Vault.

Removing a Class or Attribute

If you do not want a class or an attribute to synchronize, the best practice is to remove the class or
the attribute completely from the filter. There are two different ways to add or remove attributes and
classes from the filter:

+ Right-click the class or attribute you want to remove, then select Delete.

* Select the class or attribute you want to remove, then click the Delete icon in the upper-right
corner.

Adding a Class
1 Right-click in the Filter Editor, then click Add class.
Or

Click the class icon & in the upper-right corner
2 Browse and select the class you want to add, then click OK.
3 Change the options to synchronize the information.

4 To save the changes, click File > Save.

Adding an Attribute
1 Right-click in the Filter Editor, then click Add attribute.
Or

Click the attribute icon @ in the upper-right corner.
2 Browse and select the attribute you want to add, then click OK.
3 Change the options to synchronize the information.

4 To save the changes, click File > Save.

Copying an Existing Filter

You can copy an existing filter from another driver and use it in the driver you are currently working
with.

1 Click the Copy an existing filter icon 42
Or

Right-click in the Filter Editor, then click Copy an existing filter.
2 Browse to and select the filter object you want to copy, then click OK.

If you have more than one Identity Vault in your project, you can copy filters from the other Identity
Vaults. When you are browsing to select the other object, you can browse to the other Identity Vault
and use a filter stored there.

Managing Filters 311

Figure 5-3 Multiple Identity Vaults

m Model Browser

Select an object:

+-{ @ 10M Wault
+-{@| Identity vault 1

Refreshing the Application Schema

If you have modified the schema in the connected application, these changes need to be reflected in

the Filter. To make the new schema available, click the Refresh application schema icon “% in the
toolbar.

When you create a new class or attribute mapping, you can see the new schema in the drop-down list
for the connected application.

Setting Default Values for Attributes

You can define the default values for new attributes when they are added to the Filter.
1 Click the Set default values for new attributes icon ¥ in the upper-right corner.
2 Select the options you want new attributes to have, then click OK.

Modifying the Filter

The Filter Editor gives you the option of modifying how information is synchronized between the
Identity Vault and the connected system. The Filter has different options for classes and attributes.

Class Options

Options Definitions

Publisher » Synchronize - Allows the class to synchronize
from the connected system into the Identity
Vault.

* Ignore - Does not synchronize the class from
the connected system into the Identity Vault.

Subscriber * Synchronize - Allows the class to synchronize
from the Identity Vault into the connected
system.

* Ignore - Does not synchronize the class from
the Identity Vault into the connected system.

Create Home Directory * Yes - Automatically creates home directories.

* No - Does not create home directories.

312 Policy Builder and Driver Customization Guide

Options

Definitions

Track Member of Template

* Yes - Determines whether or not the Publisher

channel maintains the Member of Template
attribute when it creates objects from a
template.

* No - Does not track the Member of Template

attribute.

Attribute Options

Options

Definitions

Publisher

Subscriber

» Synchronize - Changes to this object are
reported and automatically synchronized.

* Ignore - Changes to this object are not
reported nor automatically synchronized.

* Notify - Changes to this object are reported,
but not automatically synchronized.

» Reset - Resets the object value to the value
specified by the opposite channel. (You can
set this value on either the Publisher or
Subscriber channel, not both.)

» Synchronize - Changes to this object are
reported and automatically synchronized.

* Ignore - Changes to this object are not
reported nor automatically synchronized.

* Notify - Changes to this object are reported,
but not automatically synchronized.

* Reset - Resets the object value to the value
specified by the opposite channel. (You can
set this value on either the Publisher or
Subscriber channel, not both.)

Managing Filters 313

Options

Definitions

Merge Authority

Optimize Modification to Identity Manager

+ Default Behavior - If an attribute is not being

synchronized in either channel, no merging
occurs.

If an attribute is being synchronized in one
channel and not the other, then all existing
values on the destination for that channel are
removed and replaced with the values from
the source for that channel. If the source has
multiple values and the destination can only
accommodate a single value, then only one of
the values is used on the destination side.

If an attribute is being synchronized in both
channels and both sides can accommodate
only a single value, the connected application
acquires the Identity Vault values unless there
is no value in the Identity Vault. If this is the
case, the Identity Vault acquires the values
from the connected application (if any).

If an attribute is being synchronized in both
channels and only one side can
accommodate multiple values, the single-
valued side’s value is added to the multi-
valued side if it is not already there. If there is
no value on the single side, you can choose
the value to add to the single side.

This is always valid behavior.

Identity Vault - Behaves the same way as the
default behavior if the attribute is being
synchronized on the Subscriber channel and
not on the Publisher channel.

This is valid behavior when synchronizing on
the Subscriber channel.

Application - Behaves the same as the default
behavior if the attribute is being synchronized
on the Publisher channel and not on the
Subscriber channel.

This is valid behavior when synchronizing on
the Publisher channel.

None - No merging occurs regardless of
synchronization.

Yes - Changes to this attribute are examined
on the Publisher channel to determine the
minimal change made in the Identity Vault.

No - Changes are not examined.

314 Policy Builder and Driver Customization Guide

5.1.3 Testing Filters

Designer comes with a new tool called the Policy Simulator. It allows you to test your policies and
filters before deploying them. You can launch the Policy Simulator through the Filter Editor to test
your Filter after you have modified it. Follow the steps listed below to access the Policy Simulator
and to test the Filter:

1 To access the Policy Simulator, click the Launch Policy Simulator icon “& in the toolbar.

& Simulate Policy Transformation - Subscriber,

Provide Input Parameters
Select a Policy Set to transform and enter or import a XD3 input document inko the editor below. SN ‘

Input Document

< ?xml wversion="1.0" encoding="UTF-5"2?><nds>

<!—— Enter or import an D3 input document here —->
> Input <input/>
</ nds>
Queries
Cukput
Commands

Start | Close |

2 Select Import to browse to a file that simulates an event, then click Open. This example uses
the \simulation\add\User.xml file, which simulates an Add event for a user object.

Managing Filters 315

Look in: [(59 Add =l cF E-

. N Crganization, zml

- CrganizationalUnit. xml
My Recent SEr, X

Docurnerts

My Mebwork. File name: |Llser. | ﬂ Open |
Places
= uml j Cancel

The Policy Simulator displays the input document of the user Add event.
3 Click Start to begin the simulation.

Files of twpe:

316 Policy Builder and Driver Customization Guide

& Simulate Policy Transformation - Subscriber

Provide Input Parameters

Select a Palicy Set to transfarm and enter or import a X035 input document inko the editar belaw., Pt

Input Docurnent

<?xml version="1.0" encoding="UTF-2"?><nds dtdversion="1.0" ndsversion="5.5" xml: &
= Input Input docuwent to add a User.

Queries <inputx
<add class-name="TUser"” gualified-src-dn="o=dirZML Test'ou=Users’cn=Userl”
output <associationro=diriML Test)ou=Users)cn=Userl</association:
<add-attr attr-name="cn">
Commands <value>Userl</value:>
</ add-attr>
<add-attr attr-name="Zurnsme":>
<valuesFurnamel</valuss>
</add-sttr:>
<add-attr attr-name="Given Names">
<valuerGivenl</values
</ add-attr>
<add-attr attr-name="Initials">
wwaluerIl<fvaluss
</add-attr:>
<add-attr attr-name="Full Name'":>
<valuerFullnamel</values
</ add-attr>
<add-attr attr-name="Generational Cualifier™>
<wvalue>Ql</values

| £

|l

Save As

Start | Close |

The Policy Simulator displays the log of the Add event as well as the output document. With
the radio button set to Log, you see the results of the Add event as you would through
DSTRACE. With the radio button set to Output, the Policy Simulator displays the output
document.

Managing Filters 317

& Simulate Policy Transformation - Subscriber

Input
Queries
= Dutput

Commands

View Transform Results

Select "Output” to view the transformed document or "Log" to view the details of the document transformation.

Wiew Transformation Qutput ©* Log

Oukput

<

Clear Log

[07/08/05 07:40:12.5812]: LDAF

W[07/08/05 07:40:12.812]: LDAF : Filtered out <add-attr attr-nsme='Full Name':>.
Filtered out <add-attr attr-name='Generationsl Oual:

I Contine

Close

318 Policy Builder and Driver Customization Guide

& Simulate Policy Transformation - Subscriber

Input

Queries

= Dutput

Commands

View Transform Results

Select "Output” to view the transformed document or "Log" to view the details of the document transformation. / S ‘

Wiew Transformation (s " Log

Oukput

<?¥ml wersion="1.0" encoding="UTF-8"2><nds dodversion="1.0" ndsver=sion="5.5" xml:spaces

<input:>
<add class-name="Tzer” gqualified-sro-dn="o=dirXML Test'ou=Userzshcn=Userl"” src-
<associationro=dirXML Testhou=Users)cn=Userl</association>
<add-attr attr-name="cn':>
<wvalue>Userl</values>
</add-sttr:>
<add-attr attr-name="Iurname">
<valuer3urnamel</values
</ add-attr>
<add-attr attr-name="Given Name">
“waluerGivenl<sfvalues
</add-attr:> —
<add-attr attr-name="Inicials">
<valuexIl</values
</ add-attr>
<add-attr attr-namwe="Facsiwile Telephons MNuader ">
<walue tcypesTstructured s
<oomponent name="faxluber"»333-333-3333</component> w
< | >

Save As

Conkinue Close

4 Click Continue to select a different input document and see the results of that event.

5 When you have finished testing the filter, click Close to close the Policy Simulator.

NOTE: You can edit the input and output documents. If you want to keep the changes, click
the Save As icon.

5.1.4 Viewing the Filter XML Source

The Source view enables you to view and edit the XML by using an XML editor or text editor. The
default editor that is loaded is associated to .xml file types. If a default editor can’t be found, the
system text editor is loaded. The functionality and operations of the Source view are based on the
editor that loads.

For more information about the XML source see “Editing the DirXML Script” on page 97.

To open the Source view, select Source, at the bottom of the Filter Editor’s workspace.

Managing Filters 319

M Project 1 - Developer. .. w MappingRule | =08
GoB[BELR BB Q@
B LDAP Filker
—Publish
" synchronize
o Igrare
@ M :
- @ Description — Subscribe
@ DirsML-SPERtitlements &+ Synchronize
-~ @ Facsimile Telephone Mumber | Ignore
@ Given Name
P —Create home directory
-~ (@ Internet EMail Address
o Yeg
@ nspmbistributionPassword " Mo
@ Surname —Track member of template
@ T,alephu:nne Murmbey £ Yes
- @ Tite
@ uniquell * ho
-~ (@ userCertificate
< e
—
Filter editoﬂﬁ Su:nur_cEJ)

You can edit the XML through the XML editor. You can make changes here as well as through the
GUI interface.

320 Policy Builder and Driver Customization Guide

‘7| *Project 1 - Developer Made

DAF Filker X

HEH -

<5
Filter editor

<filter-attr
<filter-attr
<filter-attr

<ffilter-class:
<filter-class class-name="User” publisher="ignore"" =

<filter-attr
<filter-attr
<filter-attr
<filter-attr
<filter-attr
<filter-attr
<filter-attr
<filter-attr
<filter-attr
<filter-attr
<filter-attr
<filter-attr
<filter-attr
<filter-attr
<filter-attr

<ffilter-classsr
</filter>

fmi SOUrCE

<?xml version="1.0" encoding="UTF-S"*><filter>
<filter-class class-name="Organizational Tnit™ publi

attr-name="Description”™ publisher="
attr-name="L" publisher="=sync™ subs
attr-name="00" publisher="sync™ suk

attr-name="CHN" publisher="svnc™ suk
attr-name="lescription” publisher="
attr-name="Facsimile Telephone NNumk
attr-name="CGiven Name" publisher=":
attr-name="Initials" publisher="=vr
attr-name="Internet EMail Address"™
atcr-name="L" publisher="=vync™ subs
attr-name="0U" publisher="sync" =suk
attr-name="Surnsme" publisher="svync
attr-name="Telephone Number™ publis
attr-name="Title” publisher="=svync"
attr-name="unicgqueID™ publisher="svr
attr-name="userCertificate™ publislt
attr-name="DirZML-3PEntitlements™ n
attr-name="nspmbistribucionPassworc

|

To choose a different XML editor for your source view:

A OWON -

(=2 IS)|

From the Main menu, click Window > Preferences.
Click General > Editor > File Associations.

Select *xml from the list of file types.

5.2 Filter Tasks in iManager

This section contains instructions on performing common filter-related tasks in iManager:

» Section 5.2.1, “Accessing the Filter,” on page 322

+ Section 5.2.2, “Editing the Filter,” on page 322

Select the editor you want (for example, Novell XML Editor) in the Associated editors pane. (If
the editor you want isn’t in the list, you can click Add, then add it to the list.)

Click OK.

Close and reopen the Filter Editor. The default editor should be loaded in the Source view.

Managing Filters 321

5.2.1 Accessing the Filter

1
2
3

4

In iManager, expand the Identity Manager Role, then click Identity Manager Overview.
Select Search entire tree or Search in container, then click Search.

Click the driver for which you want to access the filter. The Identity Manager Driver Overview
opens:

Figure 5-4 Driver Overview

Click the Filter icon on the Publisher or Subscriber channel. It is the same object.

5.2.2 Editing the Filter

The Filter Editor gives you the options of editing how information is synchronized between the
Identity Vault and the connected system. Here is a list of most common tasks when editing the filter:

“Removing a Class or an Attribute from the Filter” on page 322
“Adding a Class” on page 322

“Adding an Attribute” on page 322

“Copying a Filter” on page 323

“Setting a Template” on page 323

Removing a Class or an Attribute from the Filter

1

Select the class or attribute, then click Delete.

Adding a Class

1
2
3

Click 4dd Class.
Change the options to synchronize the information.
Click Apply.

Adding an Attribute

1
2
3

Click Add Attribute.
Change the option to synchronize the information.
Click Apply.

322 Policy Builder and Driver Customization Guide

Copying a Filter

Allows you to copy the filter from an existing driver into the driver you are currently working on.
1 Click Copy Filter From.
2 Browse to the driver you want to copy the filter from, then click OK.

Setting a Template

Allows you to set the default values for an attribute you add to the filter.
1 Click Set Template.

2 Select options you would like new attributes to have, then click OK.

You can change the values of the attributes after they have been created.

Class Options

Options Definitions

Publisher » Synchronize - Allows the class to synchronize
from the connected system into Identity Vault.

 Ignore - Does not synchronize the class from

the connected system into the Identity Vault.
Subscriber » Synchronize - Allows the class to synchronize
from Identity Vault into the connected system.

* Ignore - Does not synchronize the class from
the Identity Vault into the connected system.

Create Home Directory * Yes - Automatically creates home directories.
* No - Does not allow for the creation of home
directories.
Track Member of Template * Yes - Determines whether or not the Publisher

channel maintains the Member of Template
attribute when it creates objects from a
template.

* No - Does not track the Member of Template
attribute.

Managing Filters 323

Attribute Options

Options

Definitions

Publisher

Subscriber

Synchronize - Changes to this object are
reported and automatically synchronized.

Ignore - Changes to this object are not
reported and they are not automatically
synchronized.

Notify - Changes to this object are reported,
but not automatically synchronized.

Reset - Resets the object value to the value
specified by the opposite channel. (You can
set this value on either the Publisher or
Subscriber channel, not both.)

Synchronize - Changes to this object are
reported and automatically synchronized.

Ignore - Changes to this object are not
reported and are not automatically
synchronized.

Notify - Changes to this object are reported,
but not automatically synchronized.

Reset - Resets the object value to the value
specified by the opposite channel. (You can
set this value on either the Publisher or
Subscriber channel, not both.)

324 Policy Builder and Driver Customization Guide

Options

Definitions

Merge Authority

Optimize Modification to Identity Manager

» Default Behavior - If an attribute is not being

synchronized in either channel, no merging
occurs.

If an attribute is being synchronized in one
channel and not the other, then all existing
values on the destination for that channel are
removed and replaced with the values from
the source for that channel. If the source has
multiple values and the destination can only
accommodate a single value, then only one of
the values is used on the destination side.

If an attribute is being synchronized in both
channels and both sides can accommodate
only a single value, the connected application
acquires the Identity Vault values unless there
is no value in the Identity Vault. If this is the
case, the Identity Vault acquires the values
from the connected application (if any).

If an attribute is being synchronized in both
channels and only one side can
accommodate multiple values, the single-
valued side’s value is added to the multi-
valued side if it is not already there. If there is
no value on the single side, you can choose
the value to add to the single side.

This is always valid behavior.

Identity Vault - Behaves the same way as the
default behavior if the attribute is being
synchronized on the Subscriber channel and
not on the Publisher channel.

This is valid behavior when synchronizing on
the Subscriber channel.

Application - Behaves the same as the default
behavior if the attribute is being synchronized
on the Publisher channel and not on the
Subscriber channel.

This is valid behavior when synchronizing on
the Publisher channel.

None - No merging occurs regardless of
synchronization.

Yes - Changes to this attribute are examined
on the Publisher channel to determine the
minimal change made in the Identity Vault.

No - Changes are not examined.

Managing Filters

325

326 Policy Builder and Driver Customization Guide

Managing Schema Mapping
Policies

Schema Mapping policies map class names and attribute names between the Identity Vault
namespace and the application namespace. The same schema mapping policy is applied in both
directions. All documents that are passed in either direction on either channel between the
Metadirectory engine and the application shim are passed through the Schema Mapping policy.

There is one Schema Mapping policy per driver.
This section covers the following filter-related topics:

 Section 6.1, “Schema Mapping Policy Tasks in Designer,” on page 327
* Section 6.2, “Schema Mapping Policy Tasks in iManager,” on page 338

6.1 Schema Mapping Policy Tasks in Designer

This section contains instructions on performing common tasks related to Schema Mapping policies
in Designer:

» Section 6.1.1, “Accessing the Schema Map Editor,” on page 327
» Section 6.1.2, “Editing a Schema Mapping Policy,” on page 329
» Section 6.1.3, “Testing Schema Mapping Policies,” on page 331
* Section 6.1.4, “Viewing the Schema Mapping Policy XML Source,” on page 336

6.1.1 Accessing the Schema Map Editor

The Schema Map Editor allows you to edit the schema mapping policies. There are two different
ways to access the Schema Map Editor in Designer.

To access the Schema Map Editor through the Model Outline:
1 In an open project, click the Outline tab.

2 Click the Model Outline icon. &

3 Select the driver you want to manage the schema mapping policy on, and click the plus sign to
the right.

4 Double-click the Schema Map icon to launch the Schema Map Editor.

Managing Schema Mapping Policies 327

- iy2| Project 1
={&] oM wault
Bl 13Ensen
—|-faid) Driver Set
-l §g) Artive Directory
InputTransfarm
OukputTransform
Password{Pub}-5ub Email Motificatio
il Password{Sub)-Pub Ernail MatiFication
-al"-'1-3-|fl-|:lir_!|;1h
Z Active Directory Filker
+-'%) Publisher

+- iy : Subscriber
% Active Directary
+ ‘IJ Entitlerments Service Driver (#1)
- LDAF

Password{Pub}-5ub Email Motificatio
Password{Sub)-Pub Email Motification
B LoAP Filer

o

To access the Schema Map Editor through the Policy Flow:
1 In an open project, click the Outline tab.

2 Click the Policy Flow icon.

3 Double-click the Schema Mapping policy as it appears in the Policy Set Manager below the
Policy Flow to launch the Schema Map Editor.

Or
Double-click the Schema Mapping icon to launch the Schema Map Editor.

328 Policy Builder and Driver Customization Guide

Project | Mavigator | o= Outine 52 =g
- =B
= W

wapP —

Directory

< Input | Output -

| Scherna Mapping |

Publisher

- i
e Placement |
/ i

B Matching Creation
i Creation Matching
' |
i Placement g o |
i
Command il

#E! Palicy 5 =0

LDAP Driver Palicy Sets

ME| MappingRule

6.1.2 Editing a Schema Mapping Policy

The Schema Map Editor allows you to create and edit schema mapping policies. To display a
context menu, right-click an item.

+ “Removing Classes and Attributes” on page 329

* “Adding a Class” on page 330

* “Adding a Attribute” on page 330

» “Refreshing the Application Schema” on page 330

» “Editing Items” on page 331

» “Sorting Items” on page 331

Removing Classes and Attributes

If you do not want a class or an attribute to be mapped to a class or attribute in the connected system,
the best practice is to completely remove the class or the attribute from the schema mapping policy.
There are two different ways to add or remove attributes and classes from the schema mapping
policy:

* Select the class or attribute you want to remove, then right-click in the pane and click Delete.

« Select the class or attribute you want to remove, then click the Delete icon # in the upper-right
corner.

» Select the class or attribute you want to remove, then press the Delete key.

Managing Schema Mapping Policies 329

You can select multiple classes or attributes to delete at the same time.
1 Press ctrl and select each item with the mouse.

2 Press the Delete key and the items are deleted.

schema Map Editor G X S5 F | @
M= mapping rule, AvayaPBy User,ds, IDM Waulk

Mappings

aPEx User
WorkOrder
PbxSite

Extension
Extension

Identity Yaulk

Description Descripkion
Dir wML-nwoobjectId ObjectID
Dit=ML-nwoPhoneType PhoneType
DireML-rwoskatus Skatus

DirwML-nwaRestrickionClass RestrickionClass
Di N

Adding a Class
1 Right-click in the Schema Map Editor, then click Add class mapping.
Or
Select the Add class mapping icon & in the upper-right corner.
2 From the drop-down list for the Identity Vault, select the class you want to add.
3 From the drop-down list for the connected system, select the class you want to add.

4 To save the changes, click File > Save.

Adding a Attribute
1 Right click in the Schema Map Editor, then click Add attribute mapping.
2 Or select the Add attribute mapping icon @ in the upper-right corner.
3 From the drop-down list for the Identity Vault, select the attribute you want to add.
4 From the drop-down list for the connected system, select the attribute you want to add.

5 To save the changes, click File > Save.

Refreshing the Application Schema

If you have modified the schema in the connected application, these changes need to be reflected in
the Schema Mapping policy. To make the new schema available, click the Refresh application

schema icon <% in the toolbar.

330 Policy Builder and Driver Customization Guide

When you create a new class or attribute mapping, you can see the new schema in the drop-down list

for the connected application.

Editing Items

To edit a mapping, double-click the selected row. An in-place editor appears allowing you to edit the

mapping.
Schema Map Editor G @ K % = o @
M= MappingRule.LDAP, ds,1DM Yault
Mappings
Identity Yault LDAP
+ Alias alias
+| GQroup groupCFniqueMames
+ Qrganizak i organizakionalUnit
__Ej inetCrgPerson
cn
Descripkion description
Facsimile Telephone Mumber facsimiletelephonenumbe
Given Mame givenname
Initials initials
Internet EMail Address rnail
L I

Sorting Items

The Schema editor allows you to sort the items in ascending order based on either Identity Manager
or the connected system. To sort, click the header of either column.

achema Map Editor

Mappings

Description

M= mapping rule, AvayaPEY, User, ds, IDM Yaulk

G & X 5| @B

Descripbion

6.1.3 Testing Schema Mapping Policies

ChvayalBr Lse

o @

Designer comes with a new tool called the Policy Simulator. It allows you to test your policies
before deploying them. You can launch the Policy Simulator through the Schema Mapping Editor to

test your policy after you have modified it.

To access the Policy Simulator and test the Schema Mapping policy:

1 To access the Policy Simulator, click the Launch Policy Simulator icon “© in the toolbar.

Managing Schema Mapping Policies 331

& Simulate Policy Transformation - Subscriber

Provide Input Parameters

Select a Palicy Set to transfarm and enter or import a X035 input document inko the editar belaw., P

Input Docurnent
< ?xml wversion="1.0" encoding="UTF-8"2?><nds>

< !—— Enter or import an EDS input docuwesnt here —->
= Input <input/ >
</ nds>
Queries
Oukput
Commands

Save As

Start Close

2 Seclect Import to browse to a file that simulates an event, then click Open.

This example uses the \simulation\add\user.xml file, which simulates an Add event
of a user object.

332 Policy Builder and Driver Customization Guide

Look . | () Add ~ & Bk E-

. N Crganization, zml

- CrganizationalUnit. xml
My Recent E
Docurnerts

tly Computer

=

My Mebwork. File name: |Llser. | ﬂ Open |
Places
= uml j Cancel

The Policy Simulator displays the input document of the user Add event.

Files of twpe:

3 Click Start to begin the simulation.

Managing Schema Mapping Policies 333

& Simulate Policy Transformation - Subscriber

= Input

Queries

Oukput

Commands

Provide Input Parameters

Select a Palicy Set to transfarm and enter or import a X035 input document inko the editar belaw., Pt

Input Docurnent

<?xml version="1.0" encoding="UTF-2"?><nds dtdversion="1.0" ndsversion="5.5" xml: &

<input:
<add class-name="TUser"” gualified-src-dn="o=dirZML Test'ou=Users’cn=Userl”
<agsociationro=dirXNL Test)ou=lzers)cn=Userl</aszsociation:
<add-attr attr-name="cn">
<valuexTUserl</valus>
</ add-attr>
<add-attr attr-name="Zurnsme":>
<valuesFurnamel</valuss>
</add-sttr:>
<add-attr attr-name="Given Names">
<valuerGivenl</values
</ add-attr>
<add-attr attr-name="Initials">
wwaluerIl<fvaluss
</add-attr:>
<add-attr attr-name="Full Name'":>
<valuerFullnamel</values
</ add-attr>
<add-attr attr-name="Generational Cualifier™>
<wvalue>Ql</values

| £

|l

Save As

Start | Close |

The Policy Simulator displays the log of the Add event as well as the output document. With
the radio button set to Log, you see the results of the Add event as you would through
DSTRACE. With the radio button set to Output, the Policy Simulator displays the output

document.

334 Policy Builder and Driver Customization Guide

& Simulate Policy Transformation, - Subscriber

View Transform Results

Select "Output” to view the transformed document or "Log" to view the details of the document transformation. / = ‘

Wiew Transformation Qutput ©* Log

Oukput

Input W[07/07/05 08:29:28.062]: LDAP : Mapping attr-nsme 'cn' to 'cn'.
[07/07/05 05:29:28.062] : LDAP : Mapping attr-nswme ''S3urnasme' to 'sno'.

Queries [07/07/05 08:29:28.062]: LDAP : Mapping attr-nsme 'Given Namwe' to 'givennsme'.
[07/07/05 03:29:25.078] : LDAF : Mapping attr-nste 'Initisls' to 'initials'.

= Dutput |[107/07/05 08:29:28.078]: LDAP : Mapping attr-name 'Facsimile Telephone Number' to '1

[07/07/05 03:29:253.078] : LDAF : Mapping class-name 'User' to 'inetcOrgPerson'.

Commands
< >

Save As

Conkinue Close

Managing Schema Mapping Policies 335

& Simulate Policy Transformation - Subscriber g@@

View Transform Results

Select "Output” to view the transformed document or "Log" to view the details of the document transformation. / S ‘

Wiew Transformation (s " Log

Oukput
Input <?xml wersion="1.0" encoding="UTF-5"?><nds dtdversion="1.0" ndsversion="5.5" xXml:space

{!__ B e e i e e e
Queries Input document to add a User.
= Dutput <input:>
<add class-name="inetQOrgPerson” qualified-sroc-dn="o=dirXML Testhou=Users)cn=1:

Cannrnands <associationro=dirXML Testhou=Usershcn=Userl</association>

<add-attr attr-name="cn':>
<wvalue>Userl</values>
</add-sttr:>
<add-attr attr-name="sn">
<valuer3urnamel</values
</ add-attr>
wadd-attr attr-namwe="givennsme">
“waluerGivenl<sfvalues
</add-attr:>
<add-attr attr-name="inicials">
<valuexIl</values
</ add-attr>
<add-attr attr-name="Full Name'">
“waluerFul lhawe 1</ value>
</add-attr> »
< >

Save As

Conkinue Close

4 Click Continue to select a different input document and see the results of that event.

5 When you have finished testing the Schema Mapping Policy, click Close to close the Policy
Simulator.

You can edit the input and output documents. If you want to keep the changes, click the Save As

icon.

6.1.4 Viewing the Schema Mapping Policy XML Source

The Source view enables you to view and edit the XML by using an XML editor or text editor. The
default editor that is loaded is associated to .xml file types. If a default editor can’t be found, the
system text editor is loaded. The functionality and operations of the Source view are based on the
editor that loads.

For more information about the XML source see “Editing the DirXML Script” on page 97.

To open the Source view, select Source at the bottom of the Schema Map Editor’s workspace.

336 Policy Builder and Driver Customization Guide

M Project 1 - Developer Mode M8 *MappingRule X =B

Schema Map Editor G a % E| + - | e (@

M=| MappingRule, LDwP, ds, IDM Yaulk

Class Specific | Mon-Class Specific
Im
I

I Alias v| I alias

I Group ;I IgroupOFUnic
| Organizational Unit LI ||:urganization
| ser LI |inet0rgPers-
i 11l] l

Mapping edit@

You can edit the XML through the XML editor. You can make changes here as well as through the
GUI interface.

Managing Schema Mapping Policies 337

‘2| *Project 1 - Developer Mode m =

+| ||—| ™

<2l wversion="1.0" encoding="UTF-S"?><attr-name-—in:

<o lass-natne-
<nda-namwe>User</ nda-name>
<app-namerinetOrgPerson</app-name:>

<folass-name>

<attr-natme class—name="TUser ">
<ndz-name > CH<,/ nds—-name>
<app-namwerchd/ app-names

</ attr-name>

<attr-natme class—name="TUser ">
<nda-naweraccessCardiunber </ nds-name >
<app-namerdescription</app-name:>

</attr-name>

<attr-natme class—name="TUser ">
<nds-namerFacsimile Telephone Nwnber</nds-:
<app-hnawerfacsimiletelephonenunber </ app—nar

</ actr-name:>

<attr-name class—name="User ">
<nds-nawe>Given Name</nds-name>
<app-namwe>givennames/ app-names

</attr-name>

<attr-namme class—name="User ">
<nda-namwe>Initials</nds-name:>
<app-hawerinitials</app-name:>

</actr-namex

<attr-name class—name="User ">
<nds-nawe>Internet EMail Address</nds-name:
<app-hamwermail</app-name:

</attr-name>

<attr-namme class—name="User ">
<ndz-name>L</ nds-name >
<app-hawer 1</ app-name > w

< >
Mapping editor @ Source

To choose a different XML editor for your source view:
1 From the Main menu, click Window > Preferences.
2 Click General > Editor > File Associations.

3 Select *.xml from the list of file types.

4

Select the editor you want (for example, Novell XML Editor) in the Associated Editors pane.
(If the editor you want isn’t in the list, you can click Add, then add it to the list.)

5 Click OK.

6 Close and reopen the Schema Map Editor. The default editor should be loaded in the Source
view.

6.2 Schema Mapping Policy Tasks in iManager

This section contains instructions on performing common tasks related to Schema Mapping policies
in iManager:

338 Policy Builder and Driver Customization Guide

» Accessing Schema Mapping Policies

+ Editing Schema Mapping Policies

6.2.1 Accessing Schema Mapping Policies

1 In iManager, expand the Identity Management Role, then click Identity Manager Overview.
2 Select Search entire tree or Search in container for a Driver set, then click Search.

3 Click the driver you want to manage the Schema Mapping Policy. The Identity Manager Driver
Overview page opens.

Schema Ahapping Policies

9
3

| —

4 Click the Schema Mapping Policy.
5 Click Edit.

6.2.2 Editing the Schema Mapping Policy

There are two different parts to editing a Schema Mapping policy. First, you edit the placement of
the policies in the policy set. Second, you edit the policy itself through the Schema Map Editor.

Placement of the Policies

When you click on the Schema Mapping Policy, it brings up a window with options.

Schema Mapping Policies

[=]

MappingRule. Delimited Text. DriverSet. novell

Insert | Remove | Edit | Rename | Delete |

Close

=

These options allow you to position the policy you are currently working with. The following table
explains each of the options.

Managing Schema Mapping Policies 339

Option Description

Move Policy Up Moves the selected policy up if there is more than
one policy.
Move Policy Down Moves the selected policy down if there is more

than one policy.

Insert Inserts a new or an existing policy into the policies
listed.
Remove Removes the selected policy without deleting the

policy from the policy set.

Edit Launches the Schema Map Editor.
Rename Renames the selected policy.
Delete Deletes the selected policy.

Schema Map Editor

The Schema Map Editor is a complete graphical interface for creating and managing the schema
mapping policies. The Schema Map Editor creates a policy by using XML.

340 Policy Builder and Driver Customization Guide

‘2 Novell iManager - Microsoft Internet Explorer |Z||E||E|

Identity Manager Policy: := MappingRule.Delimited Text.DriverSet.novell

Identity Manager

Identity Manager Policy | Edit XML | Usage

Driver DN: Delimited Text,DriverSet.novell

eDirectory Classes Application Classes
Attributes
| [Anything] b | | =MNo Unmapped Classes:=
Mon Class Specific Attributes... |
Refresh Application Schema | ¢ cerver: | v

eDirectory Schema Tools + |

0K | Cancel | Apply |

The Schema Map Editor has three tabs:

* “Identity Manager Policy” on page 341
» “Edit XML” on page 342
» “Usage” on page 342

Identity Manager Policy

Contains the most information and is where you edit the policy through the GUI interface. You can
do the following tasks in the Schema Map Editor:

Removing Classes and Attributes Select the class or attribute you would like to
remove, then click Remove.

Adding Classes Select the eDirectory class from the drop-down list
and then select the Application class from the
drop-down list. With the items selected, click Add,
then click Apply to save the change.

Managing Schema Mapping Policies 341

Adding Attributes

Listing Non Specific Class Attributes

Refreshing Application Schema

Using eDirectory Schema Tools

Select the class of the attribute you want to add,
then click Attribute. Select the eDirectory attribute
from the drop-down list and then select the
Application attribute from the drop-down list. With
the items selected, click Add, then click OK to
save the changes.

If there are attributes that are not associated with
a class, click the Non-specific Class Attributes
icon and all of these attributes are listed.

If the schema has changed for the application,
click the Refresh Application Schema icon. The
wizard contacts the Connected System server to
retrieve the new schema. After the schema has
been updated, the schema is listed in the drop-
down lists.

» Add Attribute - Adds an existing attribute to
the selected class.

» Create Attribute - Creates a new attribute.

* Create Class - Creates a new class.

» Delete Attribute - Deletes the selected
attribute.

» Delete Class - Deletes the selected class.

» Refresh eDirectory Schema - After making
changes to the eDirectory schema, click
Refresh eDirectory Schema and the drop-
down lists are updated with the new
information.

WARNING: Do not delete any classes or attributes that are being used in the Identity Vault. It can
cause objects to become unknown.

Edit XML

Clicking Enable XML editing allows you to edit the DirXML Script policy. Make the changes you
desire to the DirXML Script, then click Apply to save the changes.

Usage

Shows you a list of the drivers that are currently referencing this policy. The list only refers to
policies in this policy’s driver set. If this policy is referenced from a different driver set, those

references do not appear here.

342 Policy Builder and Driver Customization Guide

	Policy Builder and Driver Customization Guide
	1 Policies and Filters
	1.1 What Are Policies and Filters?
	1.1.1 Terminology Changes from Earlier Versions
	1.1.2 DirXML Script

	1.2 Introduction to Policies
	1.2.1 Policies
	Event Transformation Policy
	Creation Policy
	Matching Policies
	Placement Policy
	Command Transformation Policy
	Schema Mapping Policy
	Output Transformation Policy
	Input Transformation Policy

	1.2.2 Defining Policies
	Policy Builder and DirXML Script
	XSLT Style Sheets
	Downloadable Identity Manager Policies

	1.3 Filters

	2 Defining Policies By Using The Policy Builder With Designer
	2.1 Policies
	2.1.1 Operation
	2.1.2 Current Operation
	2.1.3 Current Object

	2.2 Policy Builder Tasks in Designer
	2.2.1 Opening Policy Builder
	Model Outline View
	Policy Flow View

	2.2.2 Creating a Policy
	Policy Set
	Add Policy Wizard

	2.2.3 Creating a Rule
	Creating a New Rule
	Using Predefined Rules
	Including a Rule
	Importing a Policy From an XML File

	2.2.4 Creating an Argument
	Argument Actions Builder
	Argument Builder
	Match Attribute Builder
	Action Argument Component Builder
	Argument Value List Builder
	Named String Builder
	Condition Argument Component Builder
	Pattern String Builder

	2.2.5 Modifying a Policy
	Actions and Menu Items in the Policy Builder
	Policy Description
	KeyBoard Support
	Saving Your Work

	2.2.6 Using Predefined Rules
	Command Transformation - Create Departmental Container - Part 1 and Part 2
	Command Transformation - Publisher Delete to Disable
	Creation - Require Attributes
	Creation - Publisher - Use Template
	Creation - Set Default Attribute Value
	Creation - Set Default Password
	Event Transformation - Scope Filtering - Include Subtrees
	Event Transformation - Scope Filtering - Exclude Subtrees
	Input or Output Transformation - Reformat Telephone Number from (nnn) nnn-nnnn to nnn-nnn-nnnn
	Input or Output Transformation - Reformat Telephone Number from nnn-nnn-nnnn to (nnn) nnn-nnnn
	Matching - Publisher Mirrored
	Matching - Subscriber Mirrored - LDAP Format
	Matching - By Attribute Value
	Placement - Publisher Mirrored
	Placement - Subscriber Mirrored - LDAP Format
	Placement - Publisher Flat
	Placement - Subscriber Flat - LDAP Format
	Placement - Publisher By Dept
	Placement - Subscriber By Dept - LDAP Format

	2.2.7 Testing Policies with the Policy Simulator
	Accessing the Policy Simulator
	Using the Policy Simulator

	2.2.8 Editing the DirXML Script
	Edit XML
	Validate DTD

	2.3 Regular Expressions
	2.4 XPath 1.0 Expressions
	2.5 Conditions
	2.5.1 If Association
	Fields
	Example

	2.5.2 If Attribute
	Fields
	Example

	2.5.3 If Class Name
	Fields
	Example

	2.5.4 If Destination Attribute
	Fields
	Example

	2.5.5 If Destination DN
	Fields
	Example

	2.5.6 If Entitlement
	Fields
	Example

	2.5.7 If Global Configuration Value
	Fields
	Example

	2.5.8 If Local Variable
	Fields
	Example

	2.5.9 If Named Password
	Fields
	Example

	2.5.10 If Operation
	Fields
	Example

	2.5.11 If Operation Attribute
	Fields
	Example

	2.5.12 If Operation Property
	Fields
	Example

	2.5.13 If Password
	Fields
	Example

	2.5.14 If Source Attribute
	Fields
	Example

	2.5.15 If Source DN
	Fields
	Example

	2.5.16 If XPath Expression
	Fields
	Example

	2.6 Actions
	2.6.1 Add Association
	Fields
	Example

	2.6.2 Add Destination Attribute Value
	Fields
	Example

	2.6.3 Add Destination Object
	Fields
	Remarks
	Example

	2.6.4 Add Source Attribute Value
	Fields
	Example

	2.6.5 Add Source Object
	Fields
	Example

	2.6.6 Append XML Element
	Fields
	Example

	2.6.7 Append XML Text
	Fields
	Example

	2.6.8 Break
	Example

	2.6.9 Clear Destination Attribute Value
	Fields
	Example

	2.6.10 Clear Operation Property
	Fields
	Example

	2.6.11 Clear Source Attribute Value
	Fields
	Example

	2.6.12 Clone By XPath Expressions
	Fields
	Example

	2.6.13 Clone Operation Attribute
	Fields
	Example

	2.6.14 Delete Destination Object
	Fields
	Example

	2.6.15 Delete Source Object
	Fields
	Example

	2.6.16 Find Matching Object
	Fields
	Remarks
	Example

	2.6.17 For Each
	Fields
	Remarks
	Example

	2.6.18 Generate Event
	Fields
	Remarks
	Example

	2.6.19 Implement Entitlement
	Fields
	Example

	2.6.20 Move Destination Object
	Fields
	Example

	2.6.21 Move Source Object
	Fields
	Example

	2.6.22 Reformat Operation Attribute
	Fields
	Example

	2.6.23 Remove Association
	Fields
	Example

	2.6.24 Remove Destination Attribute Value
	Fields
	Example

	2.6.25 Remove Source Attribute Value
	Fields
	Example

	2.6.26 Rename Destination Object
	Fields
	Example

	2.6.27 Rename Operation Attribute
	Fields
	Example

	2.6.28 Rename Source Object
	Fields
	Example

	2.6.29 Send Email
	Fields
	Example

	2.6.30 Send Email From Template
	Fields
	Example

	2.6.31 Set Default Attribute Value
	Fields
	Example

	2.6.32 Set Destination Attribute Value
	Fields
	Example

	2.6.33 Set Destination Password
	Fields
	Example

	2.6.34 Set Local Variable
	Fields
	Example

	2.6.35 Set Operation Association
	Fields
	Example

	2.6.36 Set Operation Class Name
	Fields
	Example

	2.6.37 Set Operation Destination DN
	Fields
	Example

	2.6.38 Set Operation Property
	Fields
	Example

	2.6.39 Set Operation Source DN
	Fields
	Example

	2.6.40 Set Operation Template DN
	Fields
	Example

	2.6.41 Set Source Attribute Value
	Fields
	Example

	2.6.42 Set Source Password
	Fields
	Example

	2.6.43 Set XML Attribute
	Fields
	Example

	2.6.44 Status
	Fields
	Remarks
	Example

	2.6.45 Strip Operation Attribute
	Fields
	Example

	2.6.46 Strip XPath
	Fields
	Example

	2.6.47 Trace Message
	Fields
	Example

	2.6.48 Veto
	Example

	2.6.49 Veto If Operational Attribute Not Available
	Fields
	Example

	2.7 Noun Tokens
	2.7.1 Added Entitlement
	Fields
	Example

	2.7.2 Association
	Example

	2.7.3 Attribute
	Fields
	Example

	2.7.4 Class Name
	Example

	2.7.5 Destination Attribute
	Fields
	Example

	2.7.6 Destination DN
	Fields
	Remarks
	Example

	2.7.7 Destination Name
	Example

	2.7.8 Entitlement
	Fields
	Example

	2.7.9 Global Configuration Value
	Fields
	Example

	2.7.10 Local Variable
	Fields
	Example

	2.7.11 Named Password
	Fields
	Example

	2.7.12 Operation
	Example

	2.7.13 Operation Attribute
	Fields
	Example

	2.7.14 Operation Property
	Fields
	Example

	2.7.15 Password
	Example

	2.7.16 Removed Attribute
	Fields
	Example

	2.7.17 Removed Entitlement
	Fields
	Example

	2.7.18 Source Attribute
	Fields
	Example

	2.7.19 Source DN
	Fields
	Remarks
	Example

	2.7.20 Source Name
	Example

	2.7.21 Text
	Fields
	Example

	2.7.22 Unique Name
	Fields
	Remarks
	Example

	2.7.23 Unmatched Source DN
	Fields
	Remarks
	Example

	2.7.24 XPath
	Example
	Fields

	2.8 Verb Tokens
	2.8.1 Escape Destination DN
	Example

	2.8.2 Escape Source DN
	Example

	2.8.3 Lower Case
	Example

	2.8.4 Parse DN
	Example
	Fields
	Remarks

	2.8.5 Replace All
	Fields
	Remarks
	Example

	2.8.6 Replace First
	Fields
	Remarks
	Example

	2.8.7 Substring
	Fields
	Example

	2.8.8 Upper Case
	Example

	2.9 Values
	2.9.1 Comparison Modes

	3 Defining Policies By Using The Policy Builder In iManager
	3.1 Policies
	3.1.1 Operation
	3.1.2 Current Operation
	3.1.3 Current Object

	3.2 Policy Builder Tasks in iManager
	3.2.1 Opening The Policy Builder
	3.2.2 Creating a Policy
	3.2.3 Defining Individual Rules within a Policy
	3.2.4 Defining Individual Arguments within a Rule
	Argument Actions Builder
	Argument Builder
	Match Attribute Builder
	Action Argument Component Builder
	Argument Value List Builder
	Named String Builder
	Condition Argument Component Builder

	3.2.5 Modifying a Policy
	3.2.6 Removing a Policy
	3.2.7 Renaming a Policy
	3.2.8 Deleting a Policy
	3.2.9 Importing a Policy from an XML File
	3.2.10 Exporting a Policy to an XML File
	3.2.11 Creating a Policy Reference
	3.2.12 Using Predefined Rules
	Command Transformation - Create Departmental Container - Part 1 and Part 2
	Command Transformation - Publisher Delete to Disable
	Creation - Require Attributes
	Creation - Publisher - Use Template
	Creation - Set Default Attribute Value
	Creation - Set Default Password
	Event Transformation - Scope Filtering - Include Subtrees
	Event Transformation - Scope Filtering - Exclude Subtrees
	Input or Output Transformation - Reformat Telephone Number from (nnn) nnn-nnnn to nnn-nnn-nnnn
	Input or Output Transformation - Reformat Telephone Number from nnn-nnn-nnnn to (nnn) nnn-nnnn
	Matching - Publisher Mirrored
	Matching - Subscriber Mirrored - LDAP Format
	Matching - By Attribute Value
	Placement - Publisher Mirrored
	Placement - Subscriber Mirrored - LDAP Format
	Placement - Publisher Flat
	Placement - Subscriber Flat - LDAP Format
	Placement - Publisher By Dept
	Placement - Subscriber By Dept - LDAP Format

	3.3 Regular Expressions
	3.4 XPath 1.0 Expressions
	3.5 Conditions
	3.5.1 If Association
	Fields
	Example

	3.5.2 If Attribute
	Fields
	Example

	3.5.3 If Class Name
	Fields
	Example

	3.5.4 If Destination Attribute
	Fields
	Example

	3.5.5 If Destination DN
	Fields
	Example

	3.5.6 If Entitlement
	Fields
	Example

	3.5.7 If Global Configuration Value
	Fields
	Example

	3.5.8 If Local Variable
	Fields
	Example

	3.5.9 If Named Password
	Fields
	Example

	3.5.10 If Operation
	Fields
	Example

	3.5.11 If Operation Attribute
	Fields
	Example

	3.5.12 If Operation Property
	Fields
	Example

	3.5.13 If Password
	Fields
	Example

	3.5.14 If Source Attribute
	Fields
	Fields
	Example

	3.5.15 If Source DN
	Fields
	Fields
	Example

	3.5.16 If XPath Expression
	Fields
	Example

	3.6 Actions
	3.6.1 Add Association
	Fields
	Example

	3.6.2 Add Destination Attribute Value
	Fields
	Example

	3.6.3 Add Destination Object
	Fields
	Remarks
	Example

	3.6.4 Add Source Attribute Value
	Fields
	Example

	3.6.5 Add Source Object
	Fields
	Example
	Fields

	3.6.6 Append XML Element
	Fields
	Example

	3.6.7 Append XML Text
	Fields
	Example

	3.6.8 Break
	Example

	3.6.9 Clear Destination Attribute Value
	Fields
	Example

	3.6.10 Clear Operation Property
	Fields
	Example

	3.6.11 Clear Source Attribute Value
	Fields
	Example

	3.6.12 Clone By XPath Expression
	Fields
	Example

	3.6.13 Clone Operation Attribute
	Fields
	Example

	3.6.14 Delete Destination Object
	Fields
	Example

	3.6.15 Delete Source Object
	Fields
	Example

	3.6.16 Find Matching Object
	Fields
	Remarks
	Example

	3.6.17 For Each
	Fields
	Remarks
	Example

	3.6.18 Generate Event
	Fields
	Remarks
	Example

	3.6.19 Implement Entitlement
	Fields
	Example

	3.6.20 Move Destination Object
	Fields
	Example

	3.6.21 Move Source Object
	Fields
	Example

	3.6.22 Reformat Operation Attribute
	Fields
	Example

	3.6.23 Remove Association
	Fields
	Example

	3.6.24 Remove Destination Attribute Value
	Fields
	Example

	3.6.25 Remove Source Attribute Value
	Fields
	Example

	3.6.26 Rename Destination Object
	Fields
	Example

	3.6.27 Rename Operation Attribute
	Fields
	Example

	3.6.28 Rename Source Object
	Fields
	Example

	3.6.29 Send Email
	Fields
	Example

	3.6.30 Send Email from Template
	Fields
	Example

	3.6.31 Set Default Attribute Value
	Fields
	Example

	3.6.32 Set Destination Attribute Value
	Fields
	Example

	3.6.33 Set Destination Password
	Fields
	Example

	3.6.34 Set Local Variable
	Fields
	Example

	3.6.35 Set Operation Association
	Fields
	Example

	3.6.36 Set Operation Class Name
	Fields
	Example

	3.6.37 Set Operation Destination DN
	Fields
	Example

	3.6.38 Set Operation Property
	Fields
	Example

	3.6.39 Set Operation Source DN
	Fields
	Example

	3.6.40 Set Operation Template DN
	Fields
	Example

	3.6.41 Set Source Attribute Value
	Fields
	Example

	3.6.42 Set Source Password
	Fields
	Example

	3.6.43 Set XML Attribute
	Fields
	Example

	3.6.44 Status
	Fields
	Remarks
	Example

	3.6.45 Strip Operation Attribute
	Fields
	Example

	3.6.46 Strip XPath
	Fields
	Example

	3.6.47 Trace Message
	Fields
	Example

	3.6.48 Veto
	Example

	3.6.49 Veto if Operation Attribute Not Available
	Fields
	Example

	3.7 Noun Tokens
	3.7.1 Added Entitlement
	Fields
	Example

	3.7.2 Association
	Example

	3.7.3 Attribute
	Fields
	Example

	3.7.4 Class Name
	Example

	3.7.5 Destination Attribute
	Fields
	Example

	3.7.6 Destination DN
	Fields
	Remarks
	Example

	3.7.7 Destination Name
	Example

	3.7.8 Entitlement
	Fields
	Example

	3.7.9 Global Configuration Value
	Fields
	Example

	3.7.10 Local Variable
	Fields
	Example

	3.7.11 Named Password
	Fields
	Example

	3.7.12 Operation
	Example

	3.7.13 Operation Attribute
	Fields
	Example

	3.7.14 Operation Property
	Fields
	Example

	3.7.15 Password
	Example

	3.7.16 Removed Attribute
	Fields
	Example

	3.7.17 Removed Entitlements
	Fields
	Example

	3.7.18 Source Attribute
	Fields
	Example

	3.7.19 Source DN
	Fields
	Remarks
	Example

	3.7.20 Source Name
	Example

	3.7.21 Text
	Fields
	Example

	3.7.22 Unique Name
	Fields
	Remarks
	Example

	3.7.23 Unmatched Source DN
	Fields
	Remarks
	Example

	3.7.24 XPath
	Fields
	Example

	3.8 Verb Tokens
	3.8.1 Escape Destination DN
	Example

	3.8.2 Escape Source DN
	Example

	3.8.3 Lower Case
	Example

	3.8.4 Parse DN
	Example
	Fields
	Remarks

	3.8.5 Replace All
	Fields
	Remarks
	Example

	3.8.6 Replace First
	Fields
	Remarks
	Example

	3.8.7 Substring
	Fields
	Example

	3.8.8 Upper Case
	Example

	3.9 Values
	3.9.1 Comparison Modes

	4 Defining Policies using XSLT Style Sheets
	4.1 Managing XSLT Style Sheets in Designer
	4.1.1 Adding an XSLT Policy in Designer

	4.2 Managing XSLT Style Sheets in iManager
	4.2.1 Adding an XSLT Policy in iManager

	4.3 Starting with an Identity Transformation
	4.4 Using the Parameters that Identity Manager Passes
	4.5 Using Extension Functions
	4.6 Creating a Password Example: Creation Policy
	4.7 Creating an eDirectory User Example: Creation Policy

	5 Managing Filters
	5.1 Filter Tasks in Designer
	5.1.1 Accessing the Filter Editor
	5.1.2 Editing the Filter
	Removing or Adding Classes and Attributes
	Copying an Existing Filter
	Refreshing the Application Schema
	Setting Default Values for Attributes
	Modifying the Filter

	5.1.3 Testing Filters
	5.1.4 Viewing the Filter XML Source

	5.2 Filter Tasks in iManager
	5.2.1 Accessing the Filter
	5.2.2 Editing the Filter
	Removing a Class or an Attribute from the Filter
	Adding a Class
	Adding an Attribute
	Copying a Filter
	Setting a Template
	Class Options
	Attribute Options

	6 Managing Schema Mapping Policies
	6.1 Schema Mapping Policy Tasks in Designer
	6.1.1 Accessing the Schema Map Editor
	6.1.2 Editing a Schema Mapping Policy
	Removing Classes and Attributes
	Adding a Class
	Adding a Attribute
	Refreshing the Application Schema
	Editing Items
	Sorting Items

	6.1.3 Testing Schema Mapping Policies
	6.1.4 Viewing the Schema Mapping Policy XML Source

	6.2 Schema Mapping Policy Tasks in iManager
	6.2.1 Accessing Schema Mapping Policies
	6.2.2 Editing the Schema Mapping Policy
	Placement of the Policies
	Schema Map Editor

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

