
Novell

m

 Novell Confidential Manual (99a) 13 November 2003
w w w . n o v e l l . c o

DirXML® Driver for Manual Task
Service

1 . 0 . 2
A u g u s t 3 , 2 0 0 4

I M P L E M E N T A T I O N GU I D E

 Novell Confidential Manual (99a) 13 November 2003
Legal Notices
Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and specifically disclaims any express
or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to revise this publication and to
make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims any express or implied warranties
of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to make changes to any and all parts of Novell software,
at any time, without any obligation to notify any person or entity of such changes.

You may not export or re-export this product in violation of any applicable laws or regulations including, without limitation, U.S. export regulations
or the laws of the country in which you reside.

Copyright © 2002-2004 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied, stored on a retrieval system, or
transmitted without the express written consent of the publisher.

U.S. Patent Nos. 5,349,642; 5,608,903; 5,671,414; 5,677,851; 5,758,344; 5,784,560; 5,818,936; 5,828,882; 5,832,275; 5,832,483; 5,832,487;
5,870,561; 5,870,739; 5,873,079; 5,878,415; 5,884,304; 5,919,257; 5,933,503; 5,933,826; 5,946,467; 5,956,718; 6,016,499; 6,065,017; 6,105,062;
6,105,132; 6,108,649; 6,167,393; 6,286,010; 6,308,181; 6,345,266; 6,424,976; 6,516,325; 6,519,610; 6,539,381; 6,578,035; 6,615,350; 6,629,132.
Patents Pending.
Novell, Inc.
404 Wyman Street, Suite 404
Waltham, MA 02451
U.S.A.

www.novell.com
DirXML Driver for Manual Task Service Implementation Guide
August 3, 2004
Online Documentation: To access the online documentation for this and other Novell products, and to get updates, see
www.novell.com/documentation.

 Novell Confidential Manual (99a) 13 November 2003
Novell Trademarks
DirXML is a registered trademark of Novell, Inc. in the United States and other countries.
eDirectory is a trademark of Novell, Inc.
NDS is a registered trademark of Novell, Inc., in the United States and other countries.
NetWare is a registered trademark of Novell, Inc., in the United States and other countries.
Novell is a registered trademark of Novell, Inc. in the United States and other countries.
Nsure is a trademark of Novell, Inc.

Third-Party Trademarks
All third-party trademarks are the property of their respective owners.

 Novell Confidential Manual (99a) 13 November 2003

 Novell Confidential Manual (99a) 13 November 2003
Contents

About This Guide 7

1 Overview 9
New Features. 9

Driver Features . 9
Identity Manager Features . 10

Modes of Operation. 10
How E-Mail Messages and Web Pages Are Created by the Manual Task Service Driver 11
Templates . 12
Replacement Tokens . 14
Replacement Data . 14
Template Action Elements . 15
Subscriber Channel E-Mail . 15
Publisher Channel Web Server . 16

2 Upgrading 17
Upgrading from the Workflow Driver to the Manual Task Service Driver . 17
Upgrading from the Manual Task Service Driver 1.0.1 to the Manual Task Service Driver 1.0.2 18

3 Installing 19

4 Configuring 21
Driver Parameters . 21

Driver Settings . 21
Subscriber Settings . 23
Publisher Settings. 24

Subscriber Channel Policies . 24
Blocking Commands from Reaching the Subscriber . 24
Generating E-Mail Messages . 25

Subscriber Channel E-Mail Templates . 25
Publisher Channel Policies . 26
Publisher Channel Web Page Templates . 26
Publisher Channel XDS Templates. 27
Trace Settings . 28

A Replacement Data 29
Data Security . 29
XML Elements . 30

<replacement-data>. 30
<item>. 31
<url-data> . 32
<url-query> . 33

B Automatic Replacement Data Items 35
Subscriber Channel Automatic Replacement Data. 35
Publisher Channel Automatic Replacement Data . 35
Contents 5

 Novell Confidential Manual (99a) 13 November 2003
C Template Action Elements Reference 37
<form:input> . 37
<form:if-item-exists>. 37
<form:if-multiple-items> . 38
<form:if-single-item>. 38
<form:menu> . 39

D <mail> Element Reference 41
<mail> . 41
<to> . 41
<cc> . 41
<bcc> . 41
<from> . 41
<reply-to> . 42
<subject> . 42
<message> . 42
<stylesheet> . 42
<template> . 42
<filename>. 42
<replacement-data> . 43
<resource> . 43
<attachment> . 43

E Data Flow Scenario for New Employee 45
Subscriber Channel Configuration. 45
Publisher Channel Configuration . 45
Description of Data Flow . 45

F Custom Element Handlers for the Subscriber Channel 55
Constructing URLs for Use with the Publisher Channel Web Server . 55
Constructing Message Documents using Stylesheets and Template Documents . 55
SampleCommandHandler.java . 56

Compiling the SampleCommandHandler Class . 56
Trying the SampleCommandHandler Class . 56

G Custom Servlets for the Publisher Channel 57
Using the Publisher Channel . 57
Authentication . 57
SampleServlet.java . 57

Compiling the SampleServlet Class . 57
Trying the SampleServlet Class . 58

H Updates 59
January 2004 . 59
May 27, 2004 . 59
August 3, 2004 . 59
6 DirXML Driver for Manual Task Service Implementation Guide

 Novell Confidential Manual (ENU) 13 November 2003
About This Guide

This guide explains how to install and configure the DirXML® Driver for Manual Task Service,
formerly the Workflow Task driver.

The guide contains the following sections:

Chapter 1, “Overview,” on page 9

Chapter 2, “Upgrading,” on page 17

Chapter 3, “Installing,” on page 19

Chapter 4, “Configuring,” on page 21

Appendix A, “Replacement Data,” on page 29

Appendix B, “Automatic Replacement Data Items,” on page 35

Appendix C, “Template Action Elements Reference,” on page 37

Appendix D, “<mail> Element Reference,” on page 41

Appendix E, “Data Flow Scenario for New Employee,” on page 45

Appendix F, “Custom Element Handlers for the Subscriber Channel,” on page 55

Appendix G, “Custom Servlets for the Publisher Channel,” on page 57

Appendix H, “Updates,” on page 59

Additional Documentation

For documentation on using NsureTM Identity Manager and the other DirXML drivers, see the
Identity Manager Documentation Web site (http://www.novell.com/documentation/lg/dirxml20).

Documentation Updates

For the most recent version of this document, see the Drivers Documentation Web site (http://
www.novell.com/documentation/lg/dirxmldrivers).

Documentation Conventions

In this documentation, a greater-than symbol (>) is used to separate actions within a step and items
within a cross-reference path.

A trademark symbol (®, TM, etc.) denotes a Novell® trademark. An asterisk (*) denotes a third-party
trademark.

User Comments

We want to hear your comments and suggestions about this manual and the other documentation
included with Identity Manager. To contact us, send e-mail to proddoc@novell.com.
About This Guide 7

http://www.novell.com/documentation/lg/dirxml20
http://www.novell.com/documentation/lg/dirxml20
http://www.novell.com/documentation/lg/dirxmldrivers

 Novell Confidential Manual (ENU) 13 November 2003
8 DirXML Driver for Manual Task Service Implementation Guide

 Novell Confidential Manual (ENU) 13 November 2003
1 Overview

This section provides an overview of the DirXML® Manual Task Service Driver, including some
of the information necessary to successfully configure the driver.

The Manual Task Service Driver is designed to notify one or more users that a data event has
occurred and whether action is required from the user. In an employee provisioning scenario, the
data event might be the creation of a new User object and the user action might include assigning
a room number by entering data into Novell® eDirectoryTM or by entering data in an application.
Other scenarios include notifying an administrator that a new user object has been created, or
notifying an administrator that a user has changed data on an object.

Configuring the Manual Task Service Driver usually consists of configuring two separate but
related subsystems: the Subscriber channel policies and e-mail templates, and the Publisher
channel Web server templates (and possibly policies).

In addition, driver parameters must be configured, such as SMTP server name and Web server port
number.

In this section:

“New Features” on page 9

“Modes of Operation” on page 10

“How E-Mail Messages and Web Pages Are Created by the Manual Task Service Driver” on
page 11

“Templates” on page 12

“Replacement Tokens” on page 14

“Replacement Data” on page 14

“Template Action Elements” on page 15

“Subscriber Channel E-Mail” on page 15

“Publisher Channel Web Server” on page 16

New Features
“Driver Features” on page 9

“Identity Manager Features” on page 10

Driver Features
 To provide better language capabilities for e-mail messages, such as for Asian characters,

a new XML attribute named charset can be specified on the following elements:
Overview 9

 Novell Confidential Manual (ENU) 13 November 2003
<mail>

This attribute causes the header of Subject to be encoded using the specified charset (for
example, "ISO-2022-JP").

<message>

<attachment>

If the charset attribute is specified on <message> or <attachment> elements, it overrides a
value specified for the charset attribute on the <mail> element.

As in previous versions of the driver, the encoding can be specified in style sheets used to
construct the message parts, and such a specification overrides any charset attribute on
<mail>, <message>, or <attachment>.

When upgrading, existing files are preserved.

Identity Manager Features
For information about the new features in NsureTM Identity Manager, see “What's New in Identity
Manager 2?” in the Novell Nsure Identity Manager 2 Administration Guide.

Modes of Operation
Two primary modes of operation are supported:

Direct Request for Data: An e-mail message is sent requesting that a user enter data into
eDirectory (possibly for consumption by another application). The e-mail recipient responds
to the message by clicking a URL in the message. The URL points to the Web server running
in the Publisher channel of the Manual Task Service Driver. The user then interacts with
dynamic Web pages generated by the Web server to authenticate to eDirectoryTM and to enter
the requested data.

Event Notification: An e-mail message is sent to a user without involving the Publisher
channel. The e-mail message might simply be notification that something occurred in
eDirectory, or it might be a request for data through a method other than the Publisher
channel’s Web server, such as Novell iManager, another application, or a custom interface.

Example: Subscriber Channel E-Mail, Publisher Channel Web Server Response

The following is an employee provisioning example scenario in which a new employee’s manager
assigns the employee a room number:

1. A new User object is created in eDirectory (for example, by the DirXML driver for the
company’s HR system).

2. The Manual Task Service Driver Subscriber sends an SMTP message to the user’s manager
and to the manager’s assistant. The SMTP message contains a URL that refers to the Publisher
channel Web server. The URL also contains data items identifying the user and identifying
those authorized to submit the requested data.

3. The manager or the manager’s assistant clicks the URL in the e-mail message to display an
HTML form in a Web browser. The manager or assistant then does the following:

Selects the DN for his or her eDirectory User object as a means of identifying who is
responding to the e-mail message.

Enters his or her eDirectory password.
10 DirXML Driver for Manual Task Service Implementation Guide

 Novell Confidential Manual (ENU) 13 November 2003
Enters the room number for the new employee.

Clicks the Submit button.

4. The room number for the new employee is submitted to eDirectory via the Manual Task
Service Driver Publisher channel.

Example: Subscriber Channel E-Mail, No Publisher Channel Response

The following is an example scenario in which a new employee’s manager assigns the employee
a computer in an asset management system:

1. A new User object is created in eDirectory (for example, by the DirXML driver for the
company’s HR system).

2. The Manual Task Service Driver Subscriber sends an SMTP message to the user’s manager
and to the manager’s assistant. The SMTP message contains instructions for entering data into
the asset management system.

3. The manager or assistant enters data into the asset management system.

4. (Optional) The computer identification data is brought into eDirectory via a DirXML driver
for the asset management system.

How E-Mail Messages and Web Pages Are Created by the Manual
Task Service Driver

E-mail messages, HTML Web pages, and XDS documents can all be considered documents. The
Manual Task Service Driver creates documents dynamically, based on information supplied to the
driver.

Templates are XML documents that contain the boilerplate or fixed portions of a document
together with replacement tokens that indicate where the dynamic, or replacement, portions of the
final, constructed document appear.

Both the Subscriber channel and the Publisher channel of the Manual Task Service Driver use
templates to create documents. The Subscriber channel creates e-mail messages and the Publisher
channel creates Web pages and XDS documents.

The dynamic portion of a document is supplied via replacement data. Replacement data on the
Subscriber channel is supplied by the Subscriber channel policies (such as the Command
Transformation policy). Replacement data on the Publisher channel is supplied by HTTP data to
the Web server (both URL data and HTTP POST data). The Manual Task Service Driver can
automatically supply certain data known to the Manual Task Service Driver (such as the Web
server address).

The templates are processed by XSLT style sheets. These template-processing style sheets are
separate from style sheets used as DirXML policies in the Subscriber or Publisher channels.

The replacement data is supplied as a parameter to the XSLT style sheet. The output of the style
sheet processing is an XML, HTML, or text document that is used as the body of an e-mail
message, as a Web page, or as a submission to DirXML on the Publisher channel.

Replacement data is passed from the Subscriber channel to the Publisher channel via a URL in the
e-mail message. The URL contains a query portion that contains the replacement data items.
Overview 11

 Novell Confidential Manual (ENU) 13 November 2003
The Manual Task Service Driver ships with predefined style sheets sufficient to process templates
in order to create e-mail documents, HTML documents, and XDS documents. Other custom style
sheets can be written to provide additional processing options if desired.

An advanced method of creating documents is also available, which uses only an XSLT style sheet
and replacement data. No template is involved. However, this guide assumes the template method
is used because the template method is easier to configure and maintain without XSLT
programming knowledge.

Templates
This section describes document creation templates as used in the Manual Task Service Driver.

Templates are XML documents that are processed by a style sheet in order to generate an output
document. The output document can be XML, HTML, or plain text (or anything else that can be
generated using XSLT).

Templates are used to generate e-mail message text on the Subscriber channel, and to generate
dynamic Web pages and XDS documents on the Publisher channel.

Templates contain text, elements, and replacement tokens. Replacement tokens are replaced in the
output document by data supplied to the style sheet processing the template.

Several examples of templates for various purposes follow. In the examples, the replacement
tokens are the character strings that are between two $ characters and appear in bold.

Templates can also contain action elements. Action elements are control elements interpreted by
the template-processing style sheet. Action elements are described in Appendix C, “Template
Action Elements Reference,” on page 37. In the following examples action elements also appear
in bold.

The following example template is used to generate an HTML e-mail message body:

<html xmlns:form="http://www.novell.com/dirxml/manualtask/form">
<head></head>
<body>
Dear $manager$,<p/>
<p>
This message is to inform you that your new employee $given-name$
$surname$ has been hired.
<p>
You need to assign a room number for this individual. Click Here to do this.
</p>
<p>
Thank you,

HR Department
</p>
</body>
</html>

The following example template is used to generate a plain text e-mail message body:

<form:text xmlns:form="http://www.novell.com/dirxml/manualtask/form">
Dear $manager$,

This message is to inform you that your new employee $given-name$ $surname$
has been hired.
12 DirXML Driver for Manual Task Service Implementation Guide

 Novell Confidential Manual (ENU) 13 November 2003
You need to assign a room number for this individual. Use the following link
to do this:

url

Thank you,

The HR Department

</form:text>

The <form:text> element is required because templates must be XML documents. The
<form:text> element is stripped as part of the template processing.

The following template is used to generate an HTML form used as a Web page for entering data:

<html xmlns:form="http://www.novell.com/dirxml/manualtask/form">
<head>
<title>Enter room number for $subject-name$</title>
</head>
<body>
 <link href="novdocmain.css" rel="style sheet" type="text/css"/>

 <form class="myform" METHOD="POST" ACTION="$url-base$/
process_template.xsl">
 <table cellpadding="5" cellspacing="10" border="1" align="center">
 <tr><td>
 <input TYPE="hidden" name="template" value="post_form.xml"/>
 <input TYPE="hidden" name="subject-name" value="$subject-name$"/>
 <input TYPE="hidden" name="association" value="$association$"/>
 <input TYPE="hidden" name="response-style sheet"
value="process_template.xsl"/>
 <input TYPE="hidden" name="response-template"
value="post_response.xml"/>
 <input TYPE="hidden" name="auth-style sheet"
value="process_template.xsl"/>
 <input TYPE="hidden" name="auth-template" value="auth_response.xml"/
>
 <input TYPE="hidden" name="protected-data" value="$protected-data$"/>
 You are:

 <form:if-single-item name="responder-dn">
 <input TYPE="hidden" name="responder-dn" value="$responder-dn$"/>
 $responder-dn$
 </form:if-single-item>
 <form:if-multiple-items name="responder-dn">
 <form:menu name="responder-dn"/>
 </form:if-multiple-items>
 </td></tr>
 <tr><td>
 Enter your password:

<input name="password" TYPE="password" SIZE="20" MAXLENGTH="40"/>
 </td></tr>
 <tr><td>
 Enter room number for $subject-name$:

 <input TYPE="text" NAME="room-number" SIZE="20" MAXLENGTH="20"
value="$query:roomNumber$"/>
 </td></tr>
 <tr><td>
 <input TYPE="submit" value="Submit"/> <input TYPE="reset"
value="Clear"/>
 </td></tr>
Overview 13

 Novell Confidential Manual (ENU) 13 November 2003
 </table>
 </form>
 </body>
</html>

The following template is used to generate an XDS document:

<nds>
 <input>
 <modify class-name="User" src-dn="not-applicable">
 <association>$association$</association>
 <modify-attr attr-name="roomNumber">
 <remove-all-values/>
 <add-value>
 <value>$room-number$</value>
 </add-value>
 </modify-attr>
 </modify>
 </input>
</nds>s

Replacement Tokens
The items delimited by $ in the above example templates are replacement tokens. For example,
$manager$ is replaced by the manager’s actual name.

Replacement tokens can appear either in text or in XML attribute values (note the href value on
the <a> element in the first example above).

Replacement Data
Replacement data consists of strings that take the place of replacement tokens in the output
document generated from a template. Replacement data is either supplied by Subscriber channel
data, Publisher channel HTTP data, or it is supplied automatically by the driver. An additional type
of replacement data is data retrieved from eDirectory via Identity Manager (query data).
Replacement data is more fully described in Appendix A, “Replacement Data,” on page 29.

Subscriber channel data: Subscriber channel replacement data is of two types. The first type is
used as replacement values for replacement tokens in templates for creating e-mail messages. The
second type is placed in the query portion of a URL so that the data is available for use on the
Publisher channel when the URL is submitted to the Publisher’s Web server.

HTTP data: Replacement data is supplied to the Publisher channel Web server as URL query
string data, HTTP POST data, or both.

Automatic data: The Manual Task Service Driver supplies automatic data. Automatic data items
are described in Appendix B, “Automatic Replacement Data Items,” on page 35.

Query data: Replacement tokens that start with query: are considered requests to obtain current
data from eDirectory. The portion of the token that follows query: is the name of an eDirectory
object attribute. The object to query is specified by one of the replacement data items
association, src-dn, or src-entry-id. The items are considered in the order presented in
the preceding sentence.
14 DirXML Driver for Manual Task Service Implementation Guide

 Novell Confidential Manual (ENU) 13 November 2003
Template Action Elements
Action elements are namespace-qualified elements in the template that are used for simple logic
control or that are used to create HTML elements for HTML forms. The namespace used to qualify
the elements is http://www.novell.com/dirxml/manualtask/form. In this document and in the
sample templates supplied with the Manual Task Service driver, the prefix used is form.

The elements appearing in bold in the above examples are action elements.

Action elements are described in detail in Appendix C, “Template Action Elements Reference,”
on page 37.

Subscriber Channel E-Mail
The Subscriber channel of the Manual Task Service Driver is designed to send e-mail messages.
To accomplish this, the driver supports a custom XML element named <mail>. Policies on the
Subscriber channel construct a <mail> element in response to some eDirectory event (such as the
creation of a user). An example <mail> element appears below:

<mail src-dn="\PERIN-TAO\novell\Provo\Joe">
 <to>JStanley@novell.com</to>
 <cc>carol@novell.com</cc>
 <reply-to>HR@novell.com</reply-to>
 <subject>Room Assignment Needed for: Joe the Intern</subject>
 <message mime-type="text/html">
 <stylesheet>process_template.xsl</stylesheet>
 <template>html_msg_template.xml</template>
 <replacement-data>
 <item name="manager">JStanley</item>
 <item name="given-name">Joe</item>
 <item name="surname">The Intern</item>
 <url-data>
 <item name="file">process_template.xsl</item>
 <url-query>
 <item name="template">form_template.xml</item>
 <item name="responder-dn" protect="yes">\PERIN-TAO\big-org\phb</item>
 <item name="responder-dn" protect="yes">\PERIN-TAO\big-org\carol</item>
 <item name="subject-name">Joe The Intern</item>
 </url-query>
 </url-data>
 </replacement-data>
 <resource cid="css-1">novdocmain.css</resource>
 </message>
 <message mime-type="text/plain">
 <stylesheet>process_text_template.xsl</stylesheet>
 <template>txt_msg_template.xml</template>
 <replacement-data>
 <item name="manager">JStanley</item>
 <item name="given-name">Joe</item>
 <item name="surname">The Intern</item>
 <url-data>
 <item name="file">process_template.xsl</item>
 <url-query>
 <item name="template">form_template.xml</item>
 <item name="responder-dn" protect="yes">\PERIN-TAO\big-org\phb</item>
 <item name="responder-dn" protect="yes">\PERIN-TAO\big-org\carol</item>
 <item name="subject-name">Joe The Intern</item>
 </url-query>
Overview 15

 Novell Confidential Manual (ENU) 13 November 2003
 </url-data>
 </replacement-data>
 </message>
 <attachment>HR.gif</attachment>
</mail>

The Subscriber of the Manual Task Service Driver uses the information contained in the <mail>
element to construct an SMTP e-mail message. A URL can be constructed and inserted into the e-
mail message through which the e-mail recipient can respond to the e-mail message. The URL can
point to the Publisher channel Web server or it can point to some other Web server.

The <mail> element and its content are described in detail in Appendix D, “<mail> Element
Reference,” on page 41.

Publisher Channel Web Server
The Publisher channel of the Manual Task Service Driver runs a Web server configured so that
users can enter data into eDirectory through a Web browser. The Web server is designed to work
in conjunction with e-mail messages sent from the Subscriber channel of the Manual Task Service
Driver.

The Publisher channel Web server can serve static files and dynamic content. Examples of static
files are .css style sheets, images, etc. Examples of dynamic content are Web pages that change
based on the replacement data contained in the URL or HTTP POST data.

The Publisher channel Web server is normally configured to allow a user to enter data into
eDirectory in response to an e-mail that was sent by the Subscriber channel. A typical user
interaction with the Web server is as follows:

1. The user submits the URL from the e-mail message to the Web server using a Web browser.
The URL specifies the style sheet, template, and replacement data used to create a dynamic
Web page (typically containing an HTML form).

2. The Web server creates an HTML page by processing the template with the style sheet and
replacement data. The HTML page is returned to the user's Web browser as the resource
referred to by the URL.

3. The browser displays the HTML page and the user enters the requested information.

4. The browser sends an HTTP POST request containing the entered information as well as other
information that originated from the e-mail URL. The DN of the user responding to the e-mail
and the user's password must be in the POST data.

5. The Web server authenticates the user using the user's DN and password. If the authentication
fails, then a Web page containing a failure message is returned as the result of the POST
request. The failure message can be constructed using a style sheet and template specified in
the POST data. If authentication succeeds, then processing continues.

6. The Web server constructs an XDS document using a style sheet and template specified in the
POST data. The XDS document is submitted to Identity Manager on the Publisher channel.

7. The result of the XDS document submission, together with a style sheet and template
specified in the POST data, is used to construct a Web page indicating to the user the result of
the data submission. This Web page is sent to the browser as the result of the POST request.
16 DirXML Driver for Manual Task Service Implementation Guide

 Novell Confidential Manual (ENU) 13 November 2003
2 Upgrading

In this section:

“Upgrading from the Workflow Driver to the Manual Task Service Driver” on page 17

“Upgrading from the Manual Task Service Driver 1.0.1 to the Manual Task Service Driver
1.0.2” on page 18

Upgrading from the Workflow Driver to the Manual Task Service
Driver

You can install the new driver shim without affecting the existing Workflow Driver shim and
configuration.

1 Use the NsureTM Identity Manager 2 installation to install the Manual Task Service Driver.

You now have two sets of jar files, with the old names and new names.

At this point, your existing driver configuration continues to work as it did before, using the
Workflow Driver, because it points to the old version of the .jar files and the workflow_files
directory.

If you want to use the new Manual Task Service Driver with your existing driver
configuration, continue with the remaining steps in this procedure.

2 Change the driver module name in the existing driver configuration:

Previous name: com.novell.nds.dirxml.driver.workflow.driver.WorkflowDriver

New name: com.novell.nds.dirxml.driver.manualtask.driver.ManualTaskDriver

The following figure shows where to change the name. This item is the first driver parameter
on the DirXML tab under Driver Configuration.

3 (Optional) Change the value of the driver parameter named Document Directory to use the
new Manual Task directory.

3a Change the directory the driver configuration is pointing to.
Upgrading 17

 Novell Confidential Manual (ENU) 13 November 2003
The location of this directory is platform-specific.

For example:

Previous value: C:\Novell\NDS\workflow_files

New value: C:\Novell\NDS\mt_files

3b Make sure that any driver customization that you previously made to the workflow_files
directory is also made to the new mt_files directory.

For example, if you have customized a template such as the e-mail template in that
directory, make sure the same change is in the new mt_files directory as well.

Upgrading from the Manual Task Service Driver 1.0.1 to the Manual
Task Service Driver 1.0.2

Installing the new driver shim automatically upgrades your existing driver, because the 1.0.1
version of the driver refers to the same .jar file as the 1.0.2 version of the driver. Similarly, your
changes to the mt_files directory, such as customizing templates, are preserved, and the 1.0.2
version of the driver points to the same directory as the 1.0.1 version did.

If you are using the driver to send e-mail in languages other than English, consider using the new
charset attribute, described in “New Features” on page 9.
18 DirXML Driver for Manual Task Service Implementation Guide

 Novell Confidential Manual (ENU) 13 November 2003
3 Installing

Installation: The DirXML® Driver for Manual Task Service is automatically installed when
you install the DirXML Server using the NsureTM Identity Manager installation program. See
“Installation” in the Novell Nsure Identity Manager 2 Administration Guide.

Platforms: The driver runs on the platforms supported by Identity Manager and the Remote
Loader. See “Identity Manager Components and System Requirements” in the Novell Nsure
Identity Manager 2 Administration Guide.

Activation: The driver does not require separate activation; when you activate the DirXML
engine, this driver is also activated. See “Activating Identity Manager Products” in the Novell
Nsure Identity Manager 2 Administration Guide.
Installing 19

 Novell Confidential Manual (ENU) 13 November 2003
20 DirXML Driver for Manual Task Service Implementation Guide

 Novell Confidential Manual (ENU) 13 November 2003
4 Configuring

This section describes configuring Manual Task Service Driver parameters and templates.

Driver Parameters

Driver Settings
This section describes parameters that appear in the “Driver Settings” section in the driver object
user interface.

Many of these parameters are actually for the Publisher channel Web server. They appear under
the Driver Settings area because the Manual Task Service Driver Subscriber also needs access to
them.

DN of the Document Base

This parameter is an eDirectory DN of a container object. The Manual Task Service Driver can
load XML documents (including XSLT style sheets) from eDirectory as well as from disk. If XML
documents should be loaded from eDirectory, this parameter identifies the root container from
which documents are loaded.

Documents loaded from eDirectory reside in the attribute value of an eDirectory object. If
unspecified, the attribute is XmlData. The attribute can be specified by appending a # character
followed by the attribute name to the name of the object containing the document.

For example, suppose that the document base DN is specified to be “novell\Manual Task
Documents” and that there is a container under “Manual Task Documents” named “templates.”

If a DirXML-Style Sheet object named “e-mail _template” resides under the “templates” directory,
then the following resource identifiers can be used to refer to the XML document: “templates/e-
mail _template” or “templates/e-mail _template#XmlData”.

The resource identifiers can be supplied as replacement data, URL data, or HTTP POST data. For
example, the following element might appear under a <message> element on the Subscriber
channel:

<template>templates/e-mail _template#XmlData</template>

Document Directory

This parameter identifies a file system directory that is used as the base directory for locating
resources such as templates, XSLT style sheets, and other file resources served by the Publisher
channel Web server. Example values are:

Windows c:\Novell\Nds\mt_files
Configuring 21

 Novell Confidential Manual (ENU) 13 November 2003
Use HTTP Server (true|false)

This parameter indicates whether the Publisher channel should run a Web server or not. Set the
parameter to true if the Web server should be run or false if the Web server should not be run.

If the Manual Task Service Driver is only to be used for sending e-mail with no response URL, or
with a URL that points to another application, then the HTTP server should not be run, to save
system resources.

HTTP IP Address or Host Name

This parameter allows you to specify on which of multiple, local IP addresses the Publisher
channel Web server will listen for HTTP requests.

Leaving the HTTP IP address or host name parameter value blank causes the Publisher channel
Web server to listen on the default IP address. For servers with a single IP address, this is sufficient.
Placing a dot-notation IP address as the parameter value causes the Publisher channel Web server
to listen for HTTP requests on the address specified.

Note that the value specified for HTTP IP address or host name is used by the Subscriber channel
mail handler to construct URLs if the host name or address is not specified in the mail command
element. If the parameter Use HTTP server (true|false) is set to false, then HTTP IP address or host
name can be used to specify the address or name of a Web server to use in constructing URLs for
mail messages.

HTTP Port

This parameter is an integer value indicating which TCP port the Publisher channel Web server
should listen on for incoming requests. If this value is not specified, the port number defaults to 80
or 443, depending on whether or not SSL is being used for the Web server connections.

If the Manual Task Service Driver is running on the NsureTM Identity Manager server (that is, it is
not being run under the Remote Loader on a remote machine) then the HTTP port should be set to
something other than 80 or 443. This is because iMonitor or another process is typically using ports
80 and 443.

Name of KMO

If it is not blank, this parameter is the name of an eDirectory Key Material Object that contains the
server certificate and key used for SSL by the Publisher channel Web server.

Setting this parameter causes the Publisher channel Web server to use SSL for servicing HTTP
requests.

This parameter takes precedence over any Java* keystore parameters (see below).

Using SSL is recommended for security reasons because eDirectory passwords are passed in
HTTP POST data when using the Publisher channel Web serve

NetWare SYS:\SYSTEM\mt_files

UNIX /usr/lib/dirxml/rules/manualtask/mt_files
22 DirXML Driver for Manual Task Service Implementation Guide

 Novell Confidential Manual (ENU) 13 November 2003
Name of Keystore File

This parameter, together with Keystore password, Name of certificate(key alias), and Certificate
password (key password), is used to specify a Java keystore file that contains a certificate and key
used for SSL by the Publisher channel Web server.

Setting this parameter causes the Publisher channel Web server to use SSL for servicing HTTP
requests.

If the Name of KMO parameter is set, then this parameter and its associated parameters are
ignored.

Using SSL is recommended for security reasons because eDirectory passwords are passed in
HTTP POST data when using the Publisher channel Web server.

Keystore Password

This parameter specifies the password for the Java keystore file specified with the Name of
keystore file parameter.

Name of Certificate (key alias)

This parameter specifies the name of the certificate to use in the Java keystore file specified with
the Name of keystore file parameter.

Certificate Password (key password)

This parameter specifies the password for the certificate specified using the Name of certificate
(key alias) parameter.

Subscriber Settings

SMTP Server

This parameter specifies the name of the SMTP server that the Subscriber channel will use to send
e-mail messages.

SMTP Account Name

If the SMTP server specified using the SMTP server parameter requires authentication then this
parameter specifies the account name to use for authentication. The password used is the
Application password associated with the driver Authentication parameters.

Default “From” Address

If specified, this is an e-mail address used in the SMTP from field for e-mail messages sent by the
Subscriber channel. If this is not specified, then the <mail> elements sent to the Subscriber must
contain a <from> element.

A <from> element under <mail> elements sent to the Subscriber overrides this parameter.

Additional Handlers

If specified, then this is a whitespace-separated list of Java class names. Each class name is a
custom class that implements the com.novell.nds.dirxml.driver.manualtask.CommandHandler
interface and handles a custom XDS element. (The handler for <mail> is a built-in handler).
Configuring 23

 Novell Confidential Manual (ENU) 13 November 2003
Additional information about custom handlers is available in Appendix F, “Custom Element
Handlers for the Subscriber Channel,” on page 55.

Publisher Settings

Additional Servlets

If non-blank, this is a whitespace-separated list of Java class names. Each class name is a custom
class that extends javax.servlet.http.HttpServer. Custom servlets can be used to extend the
functionality of the Publisher channel Web server.

Additional information about custom servlets is available in Appendix G, “Custom Servlets for the
Publisher Channel,” on page 57.

Subscriber Channel Policies
The configuration of the Subscriber channel policies depends on what a particular installation
wants to accomplish with the Manual Task Service Driver. However, there are certain guidelines
that might be helpful.

In general, the best place to construct a <mail> element to send to the Subscriber is in the
Command Transformation policy. The reason for this is that most DirXML engine processing has
been completed by the time commands reach the Command Transformation policy. This means
that Create Policies have been processed for add events (allowing vetoing of add events for objects
that don’t have all the attributes necessary for constructing the e-mail, for example). This also
means that modify events for objects without associations have already been converted to add
events.

The XSLT style sheet that constructs the e-mail message might or might not need to query
eDirectory for additional information.

For example, if the e-mail message is simply a welcome message to a new employee, then the add
command can contain all the information necessary: Given Name, Surname, and Internet E-mail
Address. This is accomplished by specifying in the Create policy that Given Name, Surname, and
Internet E-mail Address are required attributes. This ensures that only add commands that contain
the necessary information can reach the Command Transformation.

However, if the e-mail message is a message to the manager of an employee, then the style sheet
needs to query eDirectory. The manager DN can be obtained from the add event for the employee’s
User object, but a query must be made to obtain the manager’s e-mail address because that
information is an attribute of the manager’s User object.

In addition, if e-mail notifications are being generated as the result of modify commands for
objects that are associated with the driver, then queries must be made to obtain information not
contained in the modify command.

Blocking Commands from Reaching the Subscriber
If e-mail messages are to be generated from events other than add events, then add events must be
allowed to reach the Subscriber for those objects that are to be monitored. Allowing add events to
reach the Subscriber results in a generated association value being returned to Identity Manager
from the Subscriber.
24 DirXML Driver for Manual Task Service Implementation Guide

 Novell Confidential Manual (ENU) 13 November 2003
It is important that eDirectory objects to be monitored by the Manual Task Service Driver policies
have an association for the Manual Task Service Driver. Only objects that have an association will
have delete, rename, and move events reported to the driver. In addition, modify events on objects
that do not have an association are converted to add events after the Subscriber channel event
transformation.

All other commands (modify, move, rename, and delete) should be blocked by the Command
Transformation policy and prevented from reaching the Subscriber. The Subscriber handles only
<add> commands and <mail> commands. Other commands result in the Subscriber returning an
error.

Generating E-Mail Messages
E-mail messages are sent by the Subscriber in response to receiving a <mail> element that
describes the e-mail message to be sent. See Appendix D, “<mail> Element Reference,” on
page 41 for a description of the <mail> element and its content.

E-mail messages can be generated in response to any Identity Manager event (add, modify,
rename, move, delete).

The replacement data that is supplied with the <message> element children of a <mail> element
depends on two primary factors:

The template used to generate the message body. Replacement items to be used by the e-mail
template appear as children of the <replacement-data> element.

The information needed by the Web page templates on the Publisher channel if the e-mail is
to result in a response on the Publisher channel. Replacement items to be used by the Web
page templates appear as children of the <url-query> element, which is a child of <url-data>,
which in turn is a child of <replacement-data>.

If the e-mail message should contain a URL that points to the Publisher channel Web server and
is used to solicit information from a user, then the replacement data must contain at least one
responder-dn item. The values of the responder-dn items must be the DNs of the User objects of
the users to which the message is being sent.

If a query replacement token (see “Replacement Data” on page 14) is used in the template, then
the replacement data for the <message> element must contain an item named src-dn, src-entry-id,
or association with the appropriate value. An association item can only be used if the eDirectory
object to be queried already has an association for the Manual Task Service Driver. The association
generated by the Subscriber for unassociated objects cannot be used because it hasn’t been written
to the eDirectory object when the query takes place.

The <message> element can specify the MIME type of the message body. If the MIME type is
specified but a style sheet is not specified (that is, there is no <stylesheet> element child of
<message>) then one of two default style sheet names is used. If the MIME type is text/plain, the
default style sheet name is process_text_template.xsl. If the MIME type is anything other than text/
plain, the default style sheet name is process_template.xsl.

Subscriber Channel E-Mail Templates
E-mail templates are XML documents containing boilerplate and replacement tokens. E-mail
templates are used to generate e-mail message body text. See “Templates” on page 12 for general
information about templates.
Configuring 25

 Novell Confidential Manual (ENU) 13 November 2003
The replacement tokens used in an e-mail template dictate the <item> elements that must be
supplied as children of the <replacement-data> element that is constructed by the Subscriber
channel policy that constructs the <mail> element. For example, if the e-mail template has the
replacement token $employee-name$ then there must be an <item name=“employee-name”>
element in the replacement data for the <message> element. If the employee name item is not
present, the resulting e-mail message body has no text in the location occupied by the replacement
token in the template.

E-mail templates can be used to generate message bodies that are plain text, HTML, or XML.

If an e-mail template generates a plain text message, it must be processed by a style sheet that
specifies plain text as its output type. If the style sheet does not specify plain text as its output type,
then undesirable XML escaping will occur. The default Manual Task Service Driver style sheet,
process_text_template.xsl, is normally used for processing templates that result in plain text.

Publisher Channel Policies
In most implementations of the Manual Task Service Driver, no Publisher channel policies are
needed. This is because is it possible to construct the Web page and XDS templates so they result
in exactly the XDS required and the XDS need not be further processed by policies.

If policies are required they will be very specific to an installation.

Publisher Channel Web Page Templates
Web page templates are XML documents containing boilerplate and replacement tokens. Web
page templates are used to generate Web page documents (typically HTML documents). See
“Templates” on page 12 for general information about templates.

Replacement tokens in Web page templates dictate what replacement data is supplied as URL
query data on the Subscriber channel. Replacement data on the Publisher channel is obtained from
the URL query string for HTTP GET requests and from the URL query string and the POST data
for HTTP POST requests.

As an example of the flow of replacement data from the Subscriber channel to the e-mail message
and then to the Publisher channel Web server, consider the following scenario.

The Manual Task Service Driver is configured so that a new employee’s manager is asked to assign
a room number to the new employee. The trigger for the e-mail to the manager is the <add>
command for a new User object that is processed by the Subscriber channel Command
Transformation policy.

When the manager clicks a URL in the e-mail message, a Web page is displayed in the manager’s
Web browser. The Web page must indicate for whom the manager is entering a room number.

To accomplish this, the <url-query> element on the Subscriber channel contains a replacement
data item that identifies the new user by name:

<item name=”subject-name”>Joe the Intern</item>

This causes the URL query string to contain (among other things) “subject-
name=Joe%20the%20Intern”. (The “%20” is a URL-encoded space).

The manager’s Web browser submits the URL to the Publisher channel Web server when the
manager clicks the URL in the e-mail message. The Web server constructs a replacement data item
named subject-name with the value Joe the Intern.
26 DirXML Driver for Manual Task Service Implementation Guide

 Novell Confidential Manual (ENU) 13 November 2003
The Web page template also specified by the URL contains a replacement token $subject-name$.
When the Web page template is processed by the style sheet to construct the Web page, the
replacement token is replaced by Joe the Intern, which customizes the Web page for the employee
whose User object creation caused the e-mail to be sent.

For additional information on a complete Subscriber-channel-to-Publisher-channel transaction,
see Appendix E, “Data Flow Scenario for New Employee,” on page 45.

Publisher Channel XDS Templates
XDS templates are XML documents containing boilerplate and replacement tokens. XDS
templates are used to generate XDS documents that are submitted to Identity Manager on the
Manual Task Service Driver’s Publisher channel. See Templates under the Overview section for
general information about templates.

Replacement tokens in XDS templates dictate some of the replacement data that is supplied to the
Web server as data in an HTTP POST request.

For example, consider the following XDS template:

<nds>
 <input>
 <modify class-name="User" src-dn="not-applicable">
 <association>$association$</association>
 <modify-attr attr-name="roomNumber">
 <remove-all-values/>
 <add-value>
 <value>$room-number$</value>
 </add-value>
 </modify-attr>
 </modify>
 </input>
</nds>

The replacement tokens in the template dictate that the HTTP POST data must supply an
association value and a room-number value.

Normally the association value would originate in the Subscriber channel. The Subscriber channel
e-mail would place association=some value in the query string of the URL that is placed in the e-
mail message. The Web page template used to generate the Web page when the URL is submitted
to the Web server would typically place the association value in a hidden INPUT element:

<INPUT TYPE="hidden" NAME="association" VALUE="$association$"/>

Placing the association value as a hidden INPUT element causes the “association=some value”
pair to be submitted as part of the HTTP POST data.

The room-number value is entered in the Web page using an INPUT element similar to the
following:

<input TYPE="text" NAME="room-number" SIZE="20" MAXLENGTH="20"/>

If the manager enters 1234 and clicks Submit, the Web browser sends “room-number=1234” as
part of the HTTP POST data.

The Web server then generates an <item name=“association”> replacement data item and an <item
name=“room-number”> replacement data item which are used when processing the XDS
template.
Configuring 27

 Novell Confidential Manual (ENU) 13 November 2003
The XDS document is generated by processing the XDS template with the style sheet specified in
the POST data. Then the XDS document is submitted to Identity Manager on the Manual Task
Service Driver’s Publisher channel.

Trace Settings
The Manual Task Service Driver outputs messages with various trace levels:

Level Trace Message Description

0 No trace messages

1 Single-line messages tracing basic operation

2 No additional messages (DirXML Engine traces XML documents at this level and above)

3 No additional messages

4 Messages relating to document construction from templates and style sheets

5 Replacement data documents traced
28 DirXML Driver for Manual Task Service Implementation Guide

 Novell Confidential Manual (ENU) 13 November 2003
A Replacement Data

Replacement data is used with XML documents used as templates to construct e-mail messages,
Web pages, and XDS documents. The actual replacement is accomplished by processing the
template document with an XSLT style sheet that performs the replacement as part of constructing
the output document.

Replacement data is supplied to the Manual Task Service Driver through different mechanisms on
the Subscriber and Publisher channels.

Subscriber Channel

Replacement data is supplied as part of the <mail> element.

Part of the supplied replacement data can be URL data. If URL data is supplied, it is processed
and completed and replaced by automatic data items (see Appendix B, “Automatic
Replacement Data Items,” on page 35).

If the <mail> element specifies that an association value should be constructed (that is the
<mail> element has a src-dn attribute) then an automatic data item named “association” is
added to the replacement data.

Publisher Channel

Replacement data is supplied in the HTTP URL data and HTTP POST data.

Automatic URL replacement data items are added to the replacement data before it is used in
template processing.

Replacement data is presented during template processing as an XML document. The replacement
data document is passed to the style sheet processing the template as a parameter named
replacement-data. If no template is used, the XML document is processed directly by the style
sheet.

Data Security
Data items are passed from the Subscriber channel to the Publisher channel via a URL contained
in the e-mail sent by the Subscriber channel. Changing certain data items in the URL represents a
security threat. For example, if the responder-dn values in the URL supplied by the Subscriber
channel in the URL are replaced by another user’s DN in the URL submitted to the Publisher
channel Web server, it would allow an unauthorized user to change data in eDirectory.

To ensure that the data in the submitted URL is the same as the data originally supplied by the
Subscriber channel, protected data is provided. Protected data is data that cannot be changed for
security reasons. This data varies by configuration but always includes the responder-dn data
items, and data items corresponding to any eDirectory objects whose values are to be changed.

Data items are protected by encrypting the original values and placing the encrypted values into a
URL query string. When the Publisher Web server receives the encrypted values, the Publisher
Replacement Data 29

 Novell Confidential Manual (ENU) 13 November 2003
decrypts the values and uses them to compare the unencrypted data items that are supplied by an
HTTP GET or POST request.

If an instance of a data item appears in the encrypted data, then an unencrypted data item value
must match one of the encrypted data item values. If the unencrypted data item value does not
match one of the encrypted data item values, then the HTTP request is rejected by the Publisher
channel Web server.

In addition, any HTTP POST request that does not contain protected data is rejected.

Example

In an HTTP POST request, the Publisher channel Web server uses the unencrypted POST data
named responder-dn to check the password supplied by the POST data. This is done to authenticate
the responding user against the user’s eDirectory object.

Suppose the Subscriber channel <url-query> element content specifies two data items as follows:

<item name="responder-dn" protect="yes">\PERIN-TAO\novell\phb</item>

<item name="responder-dn" protect="yes">\PERIN-TAO\novell\carol</item>

The URL generated by the Subscriber channel will contain both responder-dn values in the
protected data.

Suppose a malicious user obtains the URL that is generated and sent in an e-mail message. The
malicious user uses the URL to obtain the HTML form that allows users to change data for an
eDirectory object.

In the HTTP POST request that is submitted to the Web server, the malicious user uses his
eDirectory DN (responder-dn=\PERIN-TAO\novell\wally) as the unencrypted responder-dn
value. The malicious user also submits his own password in the POST data so that the
authentication that the Web server performs will succeed.

However, when the Publisher channel Web server receives the HTTP POST data, it fails to find
“\PERIN-TAO\novell\wally” in the encrypted protected data and rejects the POST request.

XML Elements
The elements that make up a replacement data document are described below. If no XML attributes
are described for an element, then none are allowed.

<replacement-data>
The <replacement-data> element can appear in the following locations:

1. As a child of the <message> element under a Subscriber channel <mail> element.

The Manual Task Service Driver processes the supplied <replacement-data> element into a
standalone <replacement-data> element for use in template processing. The following
processing occurs:

a. If an association value is created for the enclosing <mail> element, an <item
name=“association”> element is added to the replacement data. The value of the created
element is the association value that is returned to NsureTM Identity Manager.
30 DirXML Driver for Manual Task Service Implementation Guide

 Novell Confidential Manual (ENU) 13 November 2003
b. If the <replacement-data> element has a <url-data> element child, then the <url-data>
element is replaced by several <item> elements that contain constructed URL data. See
<url-data> and <url-query>.

2. As the standalone top-level element of a replacement data document used when constructing
a document using a style sheet on either the Subscriber or the Publisher channels.

<item>
The <item> element can be a child of the <replacement-data> element, the <url-data> element, or
the <url-query> element. The content of the <item> element is the text used in the substitution of
replacement tokens in templates. <item> elements are always named using the name attribute.

<item> attributes

name: The value of the name attribute specifies the name by which this data item is referenced by
replacement tokens. For example, if the value of the name attribute is manager, then the
replacement token $manager$ is replaced by the value contained by <item name=“manager”>
element. The name attribute is required.

protect: For <item> elements that are children of <url-query> elements, the protect attribute
specifies whether the item is added to the protected data section of the URL query string (see <url-
query>. If the protect attribute is present, it must have the value yes.

Predefined <item> names

Certain <item> elements have predefined meanings to either the Subscriber channel, the Publisher
channel, or both channels.

template: The Publisher channel treats the value of the template item as the name of the template
document to use in generating the response to an HTTP GET request.

When <item name=“template”> appears as a child of the <url-query> element on the Subscriber
channel, the value is placed into the URL query data to specify to the Publisher channel Web server
the name of the template document to use when responding to the HTTP GET request.

responder-dn: The Publisher channel uses the value of the responder-dn item in HTTP POST data
as the DN of the eDirectory object against which the password supplied in the HTTP POST data
is validated.

The Web server rejects any HTTP POST request that does not contain a responder-dn value and a
password value. In addition, if the HTTP POST data does not contain a protected-data item, then
the request is rejected.

The Subscriber channel supplies one or more <item name=“responder-dn” protect=“yes”>
elements under the <url-query> element. Because the responder-dn items are used for user
authentication, the items must be protected.

password: Supplied to the Publisher channel Web server via HTTP POST data. The item content
is the password, which is validated against the eDirectory object specified by the responder-dn
item in the POST data. The password item is normally entered in the HTML form used to generate
the HTTP POST request.

Example:

<INPUT TYPE= "password" NAME="password" SIZE="20" MAXLENGTH="40"/>
Replacement Data 31

 Novell Confidential Manual (ENU) 13 November 2003
response-template: Supplied to the Web server via HTTP POST data. Used to generate the Web
page used as the response to the POST. The response-template item is normally specified using a
hidden INPUT element in the HTML form used to generate the HTTP POST request.

Example:

<INPUT TYPE="hidden" NAME="response-template" VALUE="post_form.xml"/>

response-stylesheet: Supplied to the Web server via HTTP POST data. Used to generate the Web
page used as the response to the POST. The response-stylesheet item is normally specified using
a hidden INPUT element in the HTML form used to generate the HTTP POST request.

Example:

<INPUT TYPE="hidden" NAME="response-stylesheet"
VALUE="process_template.xsl"/>

auth-template: Supplied to the Web server via HTTP POST data. Used to generate the Web page
that is used as the response to the POST if authentication of the user fails. The auth-template item
is normally specified using a hidden INPUT element in the HTML form used to generate the HTTP
POST request.

Example:

<INPUT TYPE="hidden" NAME="auth-template" VALUE="auth_response.xml"/>

auth-stylesheet: Supplied to the Web server via HTTP POST data. Used to generate the Web page
that is used as the response to the POST if authentication of the user fails. The auth-template item
is normally specified using a hidden INPUT element in the HTML form used to generate the HTTP
POST request.

Example:

<INPUT TYPE="hidden" NAME="auth-stylesheet" VALUE="process_template.xsl"/>

protected-data: The protected-data item contains the encrypted data constructed by the
Subscriber channel. On the Subscriber channel, the protected data item is an automatically
supplied item.

On the Publisher channel, the protected-data item is obtained from the URL query string for an
HTTP GET request and is obtained from the POST data for an HTTP POST request.

The protected data item is typically passed from the HTTP GET request into the Web page used
to generate the HTTP POST via a replacement token in the template used to construct the response
to the HTTP GET.

Example:

<INPUT TYPE="hidden" NAME="protected-data" VALUE="$protected-data$"/>

<url-data>
The <url-data> element is a child of the <replacement-data> element found under the <message>
element on the Subscriber channel. It contains <item> elements used to construct the URL and
related data items that are supplied to the template used in constructing the e-mail message. It also
contains the <url-query> element.

For the purposes of the Manual Task Service driver, URLs consist of five parts:

1. A scheme such as http, https, or ftp.
32 DirXML Driver for Manual Task Service Implementation Guide

 Novell Confidential Manual (ENU) 13 November 2003
2. A host such as www.novell.com or 192.168.0.1.

3. A port number. This is a colon followed by a decimal integer. For example, :80 or :8180.

4. A file or resource specifier. This is typically a filename and can include path information. For
example, stylesheets/process_template.xsl.

5. A query string. This is a collection of name-value pairs, separated by & characters. For
example, template=form_template.xml&protected-data=AabABJKEL=

Predefined <item> Names Under <url-data>

<item> elements under the <url-data> element are ignored unless they are one of the following.
All of them are optional.

file: Specifies the file portion of the URL. If used with the Publisher channel Web server, the file
item specifies the style sheet to use to construct the initial HTML page returned in response to the
URL. If used with a server other than the Publisher channel Web server, the file item specifies the
name of the resource that the URL will refer to.

If the file item does not appear, the URL file portion defaults to process_template.xsl.

scheme: Optional item found under the <url-data> element. If present, it specifies the scheme
portion of the URL (such as http or ftp). The scheme item is typically used only if the URL points
at a server other than the Publisher’s Web server.

If the scheme item does not appear, the URL scheme defaults to either http or https, depending on
the configuration of the Publisher channel Web server.

host: Optional item found under the <url-data> element. If present, specifies the host portion of
the URL. The host item is typically used only if the URL were to point at a server other than the
Publisher’s Web server.

If the host item does not appear, the URL host defaults to the IP address of the server on which the
Manual Task Service Driver is running (that is, the IP address of the Publisher channel Web
server).

port: Optional item found under the <url-data> element. If present, specifies the port portion of
the URL. The port item is typically used only if the URL points at a server other than the
Publisher’s Web server.

If the port item does not appear, the URL port defaults to the port on which the Publisher channel
Web server is running.

<url-query>
The <url-query> element is a child of the <url-data> element. It contains <item> elements that are
used to construct the query portion of the URL used in the e-mail message.

Each item that appears as a child of the <url-query> element is placed in the query string in the
form name=“value” where name is the value of the <item> element’s name attribute and value is
the string content of the <item> element.

Item elements that appear under <url-query> can have a protect attribute with the value “yes.” If
this is the case, then the item names and values are encrypted and placed within a generated name-
value pair in the URL query string. The name of the generated value is protected-data. The value
is the Base64 encoded and encrypted name-value pair or pairs for multivalued attributes.
Replacement Data 33

 Novell Confidential Manual (ENU) 13 November 2003
Protecting data ensures that the data cannot be changed when the URL is submitted to the
Publisher channel Web server. For example, the responder-dn data items need to be protected to
ensure that only those users authorized to respond to the e-mail message are able to change
eDirectory data.

If the URL generated is to be used with the Publisher channel Web server, the <url-query> element
must contain at least one <item name=“responder-dn” protect=“yes”> element or the Web server
rejects the eventual HTTP POST request.
34 DirXML Driver for Manual Task Service Implementation Guide

 Novell Confidential Manual (ENU) 13 November 2003
B Automatic Replacement Data Items

The Manual Task Service Driver automatically supplies certain replacement data item elements.
This section describes those data items.

Subscriber Channel Automatic Replacement Data
The following data items are added automatically to replacement-data documents during
processing by the Subscriber channel:

association: An <item name=”association”> element is added to the replacement-data document
if the <mail> element has an <association> element child, or if the Subscriber returns an <add-
association> element. The content of the <item> element is the association value for the eDirectory
object that is associated with the e-mail message being processed. The association value might not
yet be written to the eDirectory object; therefore, the association value cannot be used in queries.

url: The content of the <item> element is the complete URL to be used in the e-mail message. On
the Subscriber channel, the url item is created from the following items found under the <url-data>
element: scheme, host, port, file, and the items underneath the <url-query> element. If scheme,
host, or port are not found, then default values are used. The default values are determined from
the configuration of the Publisher channel Web server.

url-base: The content of the <item> element is the portion of the generated URL not including the
resource identifier (file) and not including the query string.

url-query: The content of the <item> element is a URL query string generated from <item>
elements underneath the <url-query> element.

url-file: The content of the <item> element is the resource identifier for the URL.

protected-data: The content of the <item> element is an encrypted form of name-value pairs
obtained from <item> elements under the <url-query> element. Only <item> elements whose
protect attribute is set to “yes” are added to the protected data value. See Data Security in
Appendix A, “Replacement Data,” on page 29 for more information about protected data.

Publisher Channel Automatic Replacement Data
The following data items are automatically added to replacement-data documents during
processing by the Publisher channel Web server:

post-status: An <item name=“post-status”> element is created and added to the replacement-data
document by the Publisher channel Web server during the processing of an HTTP POST request.
An HTTP POST request to the Web server is a request to submit an XDS document to NsureTM
Identity Manager. Identity Manager returns a status document as the result of the XDS submission.
The content of the <item name=“post-status”> element is the value of the level attribute of the
Automatic Replacement Data Items 35

 Novell Confidential Manual (ENU) 13 November 2003
<status> element that is returned by Identity Manager as the result of the submission to Identity
Manager.

The post-status item is typically used in the construction of the Web page that is returned as the
result of the HTTP POST request.

post-status-message: An <item name=“post-status-message”> element is created and added to
the replacement-data document by the Publisher channel Web server during the processing of an
HTTP POST request. An HTTP POST request to the Web server is a request to submit an XDS
document to Identity Manager. Identity Manager returns a status document as the result of the XDS
submission. The content of the <item name=“post-status-message”> element is the content of the
<status> element that is returned by Identity Manager as the result of the submission to Identity
Manager. The post-status-message item is created only if the <status> element returned by Identity
Manager has content.

The post-status-message item is typically used in the construction of the Web page that is returned
as the result of the HTTP POST request.

url: An <item name=“url”> element is created and added to the replacement-data document by the
Publisher channel Web server during processing of HTTP GET and HTTP POST requests . The
<item> element is added before using the replacement-data document to construct any documents.
The URL scheme, host, and port are determined by the Web server configuration.

url-base: An <item name=“url-base”> is created and added to the replacement data document by
the Publisher channel Web server during processing of HTTP GET and HTTP POST request. The
<item> element is added before using the replacement-data document to construct any documents.
The content of the url-base <item> element on the Publisher channel is the same as the url <item>
element.
36 DirXML Driver for Manual Task Service Implementation Guide

 Novell Confidential Manual (ENU) 13 November 2003
C Template Action Elements Reference

Action elements are namespace-qualified elements in a template document that are used for simple
logic control or are used to create HTML elements for HTML forms. The namespace used to
qualify the elements is http://www.novell.com/dirxml/manualtask/form. In this document and in
the sample templates supplied with the Manual Task Service driver the prefix used is form.

Any action element not specifically covered in this section is stripped from the output document
by the template-processing style sheet (unless the style sheet is customized). This behavior allows,
for example, the use of a form:text element to enclose the data for a plain text e-mail message,
thereby making the template valid XML.

<form:input>
The <form:input> element is used to generate one or more HTML INPUT elements based on the
presence of one or more replacement data items. The number of INPUT elements created
corresponds with the number of replacement data items with the name specified by the
<form:input> element’s name attribute.

Attributes

Name: Specifies the name of the replacement data items that are used to create the INPUT
elements. The attribute value is used as the value of the name attribute of the created INPUT
elements.

type or TYPE: Specifies the value of the type attribute of the created INPUT elements.

value: If the value attribute’s value is equal to “yes,” then a value attribute is added to the created
INPUT elements whose value is the string value of the replacement data item. If the value
attribute’s value is other than “yes,” then the content of the created INPUT elements is set to the
string value of the replacement data item.

Example

<form:input name=“responder-dn” TYPE=“hidden” value=“yes”/>

creates one or more INPUT elements similar to

<INPUT name=“responder-dn” TYPE=“hidden” value=“\PERIN-TAO\novell\phb”/>

<form:if-item-exists>
The <form:if-item-exists> element is used to conditionally insert data into the output document.
The content of <form:if-item-exists> is processed only if the specified item appears in the
replacement data.
Template Action Elements Reference 37

 Novell Confidential Manual (ENU) 13 November 2003
Attributes

Name: Specifies the name of the replacement data item. If one or more examples of the
replacement data item exist, then the contents of the <form:if-item-exists> element are processed.

Example

<form:if-item-exists name="post-status-message">
 <tr>
 <td>
 Status message was: $post-status-message$
 </td>
 </tr>
</form:if-item-exists>

This example inserts a row into an HTML table only if there is a replacement data item named
post-status-message.

<form:if-multiple-items>
The form:if-multiple-items element is used to conditionally insert data into the output document.
The content of form:if-multiple-items is processed only if the specified item appears more than
once in the replacement data.

Attributes

name: Specifies the name of the replacement data item. If more than one example of the
replacement data item exists, then the content of the form:if-multiple-items is processed.

Example

<form:if-multiple-items name="responder-dn">
 <form:menu name="responder-dn"/>
</form:if-multiple-items>

This example builds an HTML SELECT element (see <form:menu>) if there is more than one
replacement data item with the name responder-dn.

<form:if-single-item>
The form:if-single-item element is used to conditionally insert data into the output document. The
content of form:if- single -item is processed only if the specified item appears exactly once in the
replacement data.

Attributes

name: Specifies the name of the replacement data item. If the named item appears exactly once in
the replacement data, then the content of the form:if-single-item is processed.

Example

<form:if-single-item name="responder-dn">
 <input TYPE="hidden" name="responder-dn" value="$responder-dn$"/>
 $responder-dn$
</form:if-single-item>
38 DirXML Driver for Manual Task Service Implementation Guide

 Novell Confidential Manual (ENU) 13 November 2003
This example inserts an HTML INPUT element and some replacement text into the output
document if there is exactly one replacement data item named “responder-dn” in the replacement
data.

<form:menu>
The form:menu element is used to generate an HTML SELECT element with one or more
OPTION element children. The first OPTION element child is marked as selected.

Attributes

name: Specifies the name of the replacement data item. If the named item appears in the
replacement data, then an HTML SELECT element is created in the output document. An HTML
OPTION element is created as a child of the SELECT element for each instance of the replacement
data item in the replacement data.

Example

<form:menu name="responder-dn"/>

This example results in HTML elements similar to the following:

<SELECT name="responder-dn">
 <OPTION selected>\PERIN-TAO\big-org\php</OPTION>
 <OPTION>\PERIN-TAO\big-org\carol</OPTION>
</SELECT>
Template Action Elements Reference 39

 Novell Confidential Manual (ENU) 13 November 2003
40 DirXML Driver for Manual Task Service Implementation Guide

 Novell Confidential Manual (ENU) 13 November 2003
D <mail> Element Reference

The <mail> element and its content are described in detail in this section. If no attributes are listed
for an element, then that element has no attributes defined.

<mail>
The <mail> element and its content describe the data necessary to construct an SMTP message.

<mail> attributes

src-dn: Contains the DN value of the eDirectory object that is triggering the e-mail. Required if
the object’s data is to be modified via the Publisher channel’s Web server in response to the e-mail.

<to>
The <to> element is a child of the <mail> element. One or more <to> elements contain the e-mail
addresses of the primary recipients of the SMTP message. At least one <to> element is required.
Each <to> element must contain only a single e-mail address.

<cc>
The <cc> element is a child of the <mail> element. Zero or more <cc> elements contain the e-mail
addresses of the CC recipients of the SMTP message. No <cc> element is required. Each <cc>
element must contain only a single e-mail address.

<bcc>
The <bcc> element is a child of the <mail> element. Zero or more <bcc> elements contain the e-
mail addresses of BCC recipients of the SMTP message. No <bcc> element is required. Each
<bcc> element must contain only a single e-mail address.

<from>
The <from> element is a child of the <mail> element. The <from> element contains the e-mail
address of the sender of the e-mail . The <from> element is not required. If the <from> element is
not present, then the default from address supplied as part of the Manual Task Service Driver
parameters is used.
<mail> Element Reference 41

 Novell Confidential Manual (ENU) 13 November 2003
<reply-to>
The <reply-to> element is a child of the <mail> element. The <reply-to> element contains the e-
mail address of the entity to which replies to the SMTP message will be addressed. The <reply-
to> element is not required.

<subject>
The <subject> element is a child of the <mail> element. Its string content is used to set the SMTP
subject field. The <subject> element is not required but is recommended, for obvious reasons.

<message>
The <message> element is a child of the <mail> element. Its content is used to construct a message
body for the SMTP message. At least one <message> element is required. Multiple <message>
elements can be supplied when constructing an SMTP message with alternative representations of
the message body (such as plain text and HTML, or English and another language).

<message> attributes

mime-type: Optionally specifies the MIME type of the message body constructed by the
<message> element (such as text/plain or text/html). If the mime-type attribute is not present, the
driver attempts to automatically discover the MIME type.

E-mail clients can use the MIME type when an SMTP message has alternative representations in
order to choose the best representation to display.

language: Optionally specifies the language of the message body constructed by the <message>
element. The value should follow the SMTP specification. If the language attribute is not present,
no default is supplied.

E-mail clients can use the language specification when an SMTP message has alternative
representations in order to choose the best representation to display.

<stylesheet>
The <stylesheet> element is a child of the <message> element. The content of the <stylesheet>
element is the name of an XSLT style sheet used to construct the message body. If the <stylesheet>
element is not present, then process_template.xsl is used as the style sheet.

<template>
The <template> element is a child of the <message> element. The content of the <template>
element is the name of an XML document used to construct the message body. If the <template>
element is not present, then the replacement data document is processed by the message style sheet
to construct the message body.

<filename>
The <filename> element is a child of the <attachment> element. The content of the <filename>
element is a filename. The filename value is used to assign a filename to a constructed attachment.
42 DirXML Driver for Manual Task Service Implementation Guide

 Novell Confidential Manual (ENU) 13 November 2003
<replacement-data>
The <replacement-data> element is a child of the <message> element. Its content is used either as
a parameter to the style sheet processing the message template, or in the absence of a template, it
is processed directly by the message style sheet. The contents of the <replacement-data> element
are described in Appendix A, “Replacement Data,” on page 29 and Appendix B, “Automatic
Replacement Data Items,” on page 35.

<resource>
The <resource> element is a child of the <message> element. Its content is treated as the name of
a file to be incorporated into the SMTP message a resource for the message body. For example, a
.css style sheet for an HTML message body could be supplied as a resource.

<resource> attributes

cid: Specifies the content ID used to refer to the resource in URLs in the message body. For
example, if a .css style sheet is the resource, then the cid value might be css-1. In the HTML
message body the following element can be used to refer to the .css style sheet:

<link href="cid:css-1" rel="style sheet" type="text/css">

<attachment>
The <attachment> element is a child of the <mail> element. It can have the same content as
<message>, or it can have a filename as content. Zero or more <attachment> elements can appear
as children of the <mail> element.

<attachment> attributes

mime-type: Optionally specifies the MIME type of the attachment. If the mime-type attribute is
not present, the driver will attempt to automatically discover the MIME type.

language: Optionally specifies the language of the attachment. If the language attribute is not
present, no default is supplied.
<mail> Element Reference 43

 Novell Confidential Manual (ENU) 13 November 2003
44 DirXML Driver for Manual Task Service Implementation Guide

 Novell Confidential Manual (ENU) 13 November 2003
E Data Flow Scenario for New Employee

This section gives a step-by-step examination of the data flow in an example situation when hiring
a new employee causes an e-mail message to be sent to the employee’s manager. The e-mail
message requests that the manager use a URL in the message to enter a room number value for the
employee.

The configuration of the Manual Task Service Driver is as follows for the example scenario.

Subscriber Channel Configuration
Filter

Class: User

Attributes: Given Name, manager, Surname

Policies

Create policy: Requires Given Name, manager, and Surname attributes.

Command Transformation policy: Converts the <add> into the <mail> element.

Publisher Channel Configuration
Filter

Class: User

Attributes: roomNumber

Policies

None.

Description of Data Flow
In the following list, the most important data items that flow through the process are responder-dn
and association. The responder-dn item is used to authenticate the user entering data through the
Web server. The association item identifies the eDirectory object whose data is to be changed.

1. The company hires a new employee. The new employee’s data is entered into the company’s
Human Resource (HR) system.

2. The DirXML driver for the HR system creates a new User object in eDirectory. User attributes
include Given Name, Surname, and manager.
Data Flow Scenario for New Employee 45

 Novell Confidential Manual (ENU) 13 November 2003
3. The following <add> event for the new User object is submitted to the Manual Task Service
Driver Subscriber channel:

<nds dtdversion="1.1" ndsversion="8.6">
 <input>
 <add class-name="User" src-dn="\PERIN-TAO\novell\Provo\Joe" src-
entry-id="281002" timestamp="1023314433#2">
 <add-attr attr-name="Surname">
 <value type="string">the Intern</value>
 <add-attr>
 <add-attr attr-name="Given Name">
 <value type="string">Joe</value>
 <add-attr>
 <add-attr attr-name="manager">
 <value type="dn">\PERIN-TAO\novell\Provo\phb</value>
 <add-attr>
 </add>
 </input>
</nds>

a. The Subscriber Command Transformation policy uses the manager DN value to issue a
query to eDirectory for the manager’s e-mail address and the manager’s assistant’s DN.

b. If the manager has an assistant, the Subscriber Command Transformation issues a query
to eDirectory for the assistant’s e-mail address.

c. The Subscriber Command Transformation constructs a <mail> element and replaces the
<add> command element with the <mail> element. In the example below, replacement
data items are in bold.

<nds dtdversion="1.1" ndsversion="8.6">
 <input>
 <mail src-dn="\PERIN-TAO\novell\Provo\Joe">
 <to>phb@company.com</to>
 <cc>carol@company.com</cc>
 <bcc>HR@company.com</bcc>
 <reply-to>HR@company.com</reply-to>
 <subject>Room Assignment Needed for: Joe the Intern</subject>
 <message mime-type="text/html">
 <stylesheet>process_template.xsl</stylesheet>
 <template>html_msg_template.xml</template>
 <replacement-data>
 <item name="manager">JStanley</item>
 <item name="given-name">Joe</item>
 <item name="surname">the Intern</item>
 <url-data>
 <item name="file">process_template.xsl</item>
 <url-query>
 <item name="template">form_template.xml</item>
 <item name="responder-dn" protect="yes">\PERIN-
TAO\novell\Provo\phb</item>
 <item name="responder-dn" protect="yes">\PERIN-
TAO\novell\Provo\carol</item>
 <item name="subject-name">Joe the Intern</item>
 </url-query>
 </url-data>
 </replacement-data>
 <resource cid="css-1">novdocmain.css</resource>
 </message>
 </mail>
46 DirXML Driver for Manual Task Service Implementation Guide

 Novell Confidential Manual (ENU) 13 November 2003
 </input>
</nds>

d. The Manual Task Service Driver Subscriber receives the <mail> element from NsureTM
Identity Manager.

e. The Subscriber generates an association value because the <mail> element has a src-dn
attribute.

f. The Subscriber constructs a replacement data document from the data in the <mail>
element for use in constructing the e-mail message. The URL has various data items in
the query portion (that portion of the URL that follows the ‘?’ character and is in bold).
The Publisher channel Web server uses these data items when the URL is submitted to
the Web server as an HTTP GET request.

<replacement-data>
 <item name="manager">JStanley</item>
 <item name="given-name">Joe</item>
 <item name="surname">the Intern</item>
 <item name="template">form_template.xml</item>
 <item name="responder-dn">\PERIN-TAO\novell\Provo\phb</item>
 <item name="responder-dn">\PERIN-TAO\novell\Provo\carol</item>
 <item name="subject-name">Joe the Intern</item>
 <item name="association">1671b2:ee4246a561:-7fff:192.168.0.1</item>
 <item name="url-base">https://192.168.0.1:8180</item>
 <item name="url-file">process_template.xsl</item>
 <item name="protected-data">
rO0ABXNyABlqYXZheC5jcnlwdG8uU2VhbGVkT2JqZWN0PjY9psO3VHACAARbAA
1lbmNvZGVkUGFyYW1zdAACW0JbABBlbmNyeXB0ZWRDb250ZW50cQB+AAFMAAlw
YXJhbXNBbGd0ABJMamF2YS9sYW5nL1N0cmluZztMAAdzZWFsQWxncQB+AAJ4cH
VyAAJbQqzzF/gGCFTgAgAAeHAAAAAPMA0ECEIBRohGPjxEAgEKdXEAfgAEAAAA
uMSFqzHXwtMx8DkRCzkK1O46sEz1u51o3MDvHn+3+fE6SphHr3Hgjli4Jp3rUk
H7y6dXvcu7iq21Vs+9o6iZVzljTIJX/jjRrVZlR5JOuRNhk8JHFZ8FhgsmiIAH
/Fs61k4WmyEcmYfWmfqfBVeThr3Avwcim6ranS5Mm2U5i9Z/DBR13pIAobMpWY
kMaz4+G9e6oovBsiPdp6jSPzbFxcgALI2AMBh4hf9jnx7zOU9Uvd9qXtaE2rR0
AANQQkV0ABBQQkVXaXRoTUQ1QW5kREVT</item>
 <item name="url-query">template=form_template.xml&responder-
dn=%5CPERIN-TAO%5Cnovell%5Cprovo%5Cphb&responder-dn=%5CPERIN-
TAO%5Cnovell%5Cprovo%5Ccarol&subject-
name=Joe+the+Intern&association=1671b2%3Aee4246a561%3A-
7fff%3A192.168.0.1&protected-
data=rO0ABXNyABlqYXZheC5jcnlwdG8uU2VhbGVkT2JqZWN0PjY9psO3VHACAARbAA1
lbmNvZGVkUGFyYW1zdAACW0JbABBlbmNyeXB0ZWRDb250ZW50cQB%2BAAFMAAlwYXJhb
XNBbGd0ABJMamF2YS9sYW5nL1N0cmluZztMAAdzZWFsQWxncQB%2BAAJ4cHVyAAJbQqz
zF%2FgGCFTgAgAAeHAAAAAPMA0ECEIBRohGPjxEAgEKdXEAfgAEAAAAuMSFqzHXwtMx8
DkRCzkK1O46sEz1u51o3MDvHn%2B3%2BfE6SphHr3Hgjli4Jp3rUkH7y6dXvcu7iq21V
s%2B9o6iZVzljTIJX%2FjjRrVZlR5JouRNhk8JHFZ8FhgsmiIAH%2FFs61k4WmyEcmYf
WmfqfBVeThr3Avwcim6ranS5Mm2U5i9Z%2FDBR13pIAobMpWYkMaz4%2BG9e6oovBsiP
dp6jSPzbFxcgALI2AMBh4hf9jnx7zOU9Uvd9qXtaE2rR0AANQQkV0ABBQQkVXaXRoTUQ
1QW5kREVT</item>
 <item name="url">
https://192.168.0.1:8180/
process_template.xsl?template=form_template.xml&responder-
dn=%5CPERIN-TAO%5Cnovell%5CProvo%5Cphb&responder-dn=%5CPERIN-
TAO%5Cnovell%5Cprovo%5Ccarol&subject-
name=Joe+the+Intern&association=1671b2%3Aee4246a561%3A-
7fff%3A192.168.0.1&protected-
data=rO0ABXNyABlqYXZheC5jcnlwdG8uU2VhbGVkT2JqZWN0PjY9psO3VHACAARbAA1
lbmNvZGVkUGFyYW1zdAACW0JbABBlbmNyeXB0ZWRDb250ZW50cQB%2BAAFMAAlwYXJhb
XNBbGd0ABJMamF2YS9sYW5nL1N0cmluZztMAAdzZWFsQWxncQB%2BAAJ4cHVyAAJbQqz
zF%2FgGCFTgAgAAeHAAAAAPMA0ECEIBRohGPjxEAgEKdXEAfgAEAAAAuMSFqzHXwtMx8
Data Flow Scenario for New Employee 47

 Novell Confidential Manual (ENU) 13 November 2003
DkRCzkK1O46sEz1u51o3MDvHn%2B3%2BfE6SphHr3Hgjli4Jp3rUkH7y6dXvcu7iq21V
s%2B9o6iZVzljTIJX%2FjjRrVZlR5JouRNhk8JHFZ8FhgsmiIAH%2FFs61k4WmyEcmYf
WmfqfBVeThr3Avwcim6ranS5Mm2U5i9Z%2FDBR13pIAobMpWYkMaz4%2BG9e6oovBsiP
dp6jSPzbFxcgALI2AMBh4hf9jnx7zOU9Uvd9qXtaE2rR0AANQQkV0ABBQQkVXaXRoTUQ
1QW5kREV
</item>
</replacement-data>

g. The Subscriber processes html_msg_template.xml with process_template.xsl. The
replacement data document is passed as a parameter to the style sheet. The
html_msg_template.xml document follows. Note the replacement tokens in bold. The
replacement tokens are replaced by the value of the corresponding <item> elements in
the replacement data document.

<html xmlns:form="http://www.novell.com/dirxml/manualtask/form">
 <head>
 </head>
 <body>
 <link href="cid:css-1" rel="style sheet" type="text/css"/>
 <p>
 Dear $manager$,
 </p>
 <p>
 This message is to inform you that your new employee $given-
name$ $surname$ has been hired.
 </p>
 <p>
 Please assign a room number for this individual. Click Here to do this.
 </p>
 <p>
 Thank you,

 HR

 HR Department
 </p>
 </body>
</html>

The generated e-mail document follows. The replacement tokens have been replaced
with the values of the corresponding <item> elements from the replacement data
document.

<html>
 <head>
<META http-equiv="Content-Type" content="text/html; charset=UTF-8">
 </head>
 <body>
 <link href="cid:css-1" rel="style sheet" type="text/css">
 <p>
 Dear J Stanley,
 </p>
 <p>
 This message is to inform you that your new employee Joe the
Intern has been hired.
 </p>
 <p>
 Please assign a room number for this individual. Click <a
href="https://192.168.0.1:8180/
process_template.xsl?template=form_template.xml&responder-
dn=%5CPERIN-TAO%5Cnovell%5CProvo%5Cphb&responder-dn=%5CPERIN-
TAO%5Cnovell%5CProvo%5Ccarol&subject-
48 DirXML Driver for Manual Task Service Implementation Guide

 Novell Confidential Manual (ENU) 13 November 2003
name=Joe+the+Intern&association=45f0e3%3Aee45e07709%3A-
7fff%3A192.168.0.1&protected-
data=rO0ABXNyABlqYXZheC5jcnlwdG8uU2VhbGVkT2JqZWN0PjY9psO3VHACAARbAA1
lbmNvZGVkUGFyYW1zdAACW0JbABBlbmNyeXB0ZWRDb250ZW50cQB%2BAAFMAAlwYXJhb
XNBbGd0ABJMamF2YS9sYW5nL1N0cmluZztMAAdzZWFsQWxncQB%2BAAJ4cHVyAAJbQqz
zF%2FgGCFTgAgAAeHAAAAAPMA0ECIr9Z1iG%2BO3BAgEKdXEAfgAEAAAAuMU%2FSoFRk
ebvh2d5SqalF91ttjRY5lyyW5%2B%2FFIfOuDdYikYiDbOJb6607S0dPHjQzeVgu6ptI
vGqaEQOEjBjDkY%2Bi4VoVjUSXS3a8fiXB8moMdPtLJ%2FGyE8QiwbT4xbkQy48i02k9
9F2vGmlenRpSP6dD31kZl3dpJ0mGgq2yL%2FeFaynKyqnjkHLMexcqD8WlVooaRl1k2R
Pk5vDYvC8o2bn22OKKbOnSRM5YlPS0iWzxo0JVcnVVyt0AANQQkV0ABBQQkVXaXRoTUQ
1QW5kREVT">Here to do this.
 </p>
 <p>
 Thank you,

 HR

 HR Department
 </p>
 </body>
</html>

h. The SMTP e-mail message is sent to the manager and to the manager’s assistant.

i. The Subscriber returns an XML document containing a <status> element and an <add-
association> element to Identity Manager.

4. The manager opens the e-mail message and clicks the “Click here” link.

5. The manager’s Web browser submits the URL to the Publisher channel Web server as an
HTTP GET request.

a. The Web server constructs the following replacement data document. Most of the data
items come from the query portion of the URL. The exceptions are the automatically
generated items url and url-base.

<replacement-data>
 <item name="association">45f0e3:ee45e07709:-7fff:192.168.0.1</item>
 <item name="protected-
data">rO0ABXNyABlqYXZheC5jcnlwdG8uU2VhbGVkT2JqZWN0PjY9psO3VHACAARbAA
1lbmNvZGVkUGFyYW1zdAACW0JbABBlbmNyeXB0ZWRDb250ZW50cQB+AAFMAAlwYXJhbX
NBbGd0ABJMamF2YS9sYW5nL1N0cmluZztMAAdzZWFsQWxncQB+AAJ4cHVyAAJbQqzzF/
gGCFTgAgAAeHAAAAAPMA0ECIr9Z1iG+O3BAgEKdXEAfgAEAAAAuMU/
SoFRkebvh2d5SqalF91ttjRY5lyyW5+/
FifOuDdYikYiDbOJb6607S0dPHjQzeVgu6ptIvGqaEQOEjBjDkY+i4VoVjUSXS3a8fiX
B8moMdPtLJ/GyE8QiwbT4xbkQy48i02k99F2vGmlenRpSP6dD31kZl3dpJ0mGgq2yL/
eFaynKyqnjkHLMexcqD8WlVooaRl1k2RPk5vDYvC8o2bn22OKKbOnSRM5YlPS0iWzxo0
JVcnVVyt0AANQQkV0ABBQQkVXaXRoTUQ1QW5kREVT</item>
 <item name="template">form_template.xml</item>
 <item name="responder-dn">\PERIN-TAO\novell\Provo\phb</item>
 <item name="responder-dn">\PERIN-TAO\novell\Provo\carol</item>
 <item name="subject-name">Joe the Intern</item>
 <item name="url-base">https://192.168.0.1:8180</item>
 <item name="url">https://192.168.0.1:8180</item>
</replacement-data>

The Web server processes the form_templates.xml document with the
process_template.xsl style sheet. Replacement tokens and action elements are in bold.
Note that various data items are placed in hidden INPUT elements so that the data items
are passed to the Web server as part of the HTML POST data.

In addition, there is a $query:roomNumber$ replacement token, which retrieves the
current value of the employee’s roomNumber attribute (if any).
Data Flow Scenario for New Employee 49

 Novell Confidential Manual (ENU) 13 November 2003
<html xmlns:form="http://www.novell.com/dirxml/manualtask/form">
 <head>
 <title>Enter room number for $subject-name$</title>
 </head>
 <body>
 <link href="novdocmain.css" rel="style sheet" type="text/css"/>

 <form class="myform" METHOD="POST" ACTION="$url-base$/process_template.xsl">
 <table cellpadding="5" cellspacing="10" border="1" align="center">
 <tr><td>
 <input TYPE="hidden" name="template" value="post_form.xml"/>
 <input TYPE="hidden" name="subject-name" value="$subject-name$"/>
 <input TYPE="hidden" name="association" value="$association$"/>
 <input TYPE="hidden" name="response-style sheet" value="process_template.xsl"/>
 <input TYPE="hidden" name="response-template" value="post_response.xml"/>
 <input TYPE="hidden" name="auth-style sheet" value="process_template.xsl"/>
 <input TYPE="hidden" name="auth-template" value="auth_response.xml"/>
 <input TYPE="hidden" name="protected-data" value="$protected-data$"/>
 <form:if-single-item name="responder-dn">
 You are:

 <input TYPE="hidden" name="responder-dn" value="$responder-dn$"/>
 $responder-dn$
 </form:if-single-item>
 <form:if-multiple-items name="responder-dn">
 Indicate your identity:

 <form:menu name="responder-dn"/>
 </form:if-multiple-items>
 </td></tr>
 <tr><td>
 Enter your password:
<input name="password" TYPE="password" SIZE="20"
MAXLENGTH="40"/>
 </td></tr>
 <tr><td>
 Enter room number for $subject-name$:

 <input TYPE="text" NAME="room-number" SIZE="20" MAXLENGTH="20"
value="$query:roomNumber$"/>
 </td></tr>
 <tr><td>
 <input TYPE="submit" value="Submit"/> <input TYPE="reset" value="Clear"/>
 </td></tr>
 </table>
 </form>
 </body>
</html>

The following HTML page is the result:

<html>
 <head>
<META http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>Enter room number for Joe the Intern</title>
 </head>
 <body>
 <link href="novdocmain.css" rel="style sheet" type="text/css">

<form class="myform" METHOD="POST" ACTION="https://192.168.0.1:8180/
process_template.xsl">
<table cellpadding="5" cellspacing="10" border="1" align="center">
<tr>
<td>
 <input TYPE="hidden" name="template" value="post_form.xml">
50 DirXML Driver for Manual Task Service Implementation Guide

 Novell Confidential Manual (ENU) 13 November 2003
 <input TYPE="hidden" name="subject-name" value="Joe the Intern">
 <input TYPE="hidden" name="association" value="45f0e3:ee45e07709:-
7fff:192.168.0.1">
 <input TYPE="hidden" name="response-style sheet"
value="process_template.xsl">
 <input TYPE="hidden" name="response-template"
value="post_response.xml">
 <input TYPE="hidden" name="auth-style sheet"
value="process_template.xsl">
 <input TYPE="hidden" name="auth-template"
value="auth_response.xml">
 <input TYPE="hidden" name="protected-data"
value="rO0ABXNyABlqYXZheC5jcnlwdG8uU2VhbGVkT2JqZWN0PjY9psO3VHACAARbA
A1lbmNvZGVkUGFyYW1zdAACW0JbABBlbmNyeXB0ZWRDb250ZW50cQB+AAFMAAlwYXJhb
XNBbGd0ABJMamF2YS9sYW5nL1N0cmluZztMAAdzZWFsQWxncQB+AAJ4cHVyAAJbQqzzF
/gGCFTgAgAAeHAAAAAPMA0ECIr9Z1iG+O3BAgEKdXEAfgAEAAAAuMU/
SoFRkebvh2d5SqalF91ttjRY5lyyW5+/
FIfOuDdYikYiDbOJb6607S0dPHjQzeVgu6ptIvGqaEQOEjBjDkY+i4VoVjUSXS3a8fiX
B8moMdPtLJ/GyE8QiwbT4xbkQy48i02k99F2vGmlenRpSP6dD31kZl3dpJ0mGgq2yL/
eFaynKyqnjkHLMexcqD8WlVooaRl1k2RPk5vDYvC8o2bn22OKKbOnSRM5YlPS0iWzxo0
JVcnVVyt0AANQQkV0ABBQQkVXaXRoTUQ1QW5kREVT">
 Indicate your identity:

 <SELECT name="responder-dn">
 <OPTION selected>\PERIN-TAO\novell\Provo\phb</OPTION>
 <OPTION>\PERIN-TAO\novell\Provo\carol</OPTION>
 </SELECT>
</td>
</tr>
<tr>
<td>
 Enter your password:

 <input name="password" TYPE="password" SIZE="20" MAXLENGTH="40">
</td>
</tr>
<tr>
<td>
 Enter room number for Joe the Intern:

 <input TYPE="text" NAME="room-number" SIZE="20" MAXLENGTH="20"
value="">
</td>
</tr>
<tr>
<td>
 <input TYPE="submit" value="Submit"> <input TYPE="reset"
value="Clear">
</td>
</tr>
</table>
</form>
</body>
</html>

b. The manager selects his or her eDirectory DN from the Web page menu, enters the
password, enters the room number for the new employee, and clicks Submit.

c. The Web browser submits an HTTP POST request to the Web server.

d. The Web server constructs the following replacement data document from the POST
data. Note the data that was in the various hidden <INPUT> elements. The data entered
by the manager in the form is in bold.
Data Flow Scenario for New Employee 51

 Novell Confidential Manual (ENU) 13 November 2003
<replacement-data>
 <item name="room-number">cubicle 1234</item>
 <item name="template">post_form.xml</item>
 <item name="response-template">post_response.xml</item>
 <item name="auth-template">auth_response.xml</item>
 <item name="association">45f0e3:ee45e07709:-7fff:192.168.0.1</item>
 <item name="password" is-sensitive="true"><!—content suppressed ?</
item>
 <item name="protected-
data">rO0ABXNyABlqYXZheC5jcnlwdG8uU2VhbGVkT2JqZWN0PjY9psO3VHACAARbAA
1lbmNvZGVkUGFyYW1zdAACW0JbABBlbmNyeXB0ZWRDb250ZW50cQB+AAFMAAlwYXJhbX
NBbGd0ABJMamF2YS9sYW5nL1N0cmluZztMAAdzZWFsQWxncQB+AAJ4cHVyAAJbQqzzF/
gGCFTgAgAAeHAAAAAPMA0ECIr9Z1iG+O3BAgEKdXEAfgAEAAAAuMU/
SoFRkebvh2d5SqalF91ttjRY5lyyW5+/
FifOuDdYikYiDbOJb6607S0dPHjQzeVgu6ptIvGqaEQOEjBjDkY+i4VoVjUSXS3a8fiX
B8moMdPtLJ/GyE8QiwbT4xbkQy48i02k99F2vGmlenRpSP6dD31kZl3dpJ0mGgq2yL/
eFaynKyqnjkHLMexcqD8WlVooaRl1k2RPk5vDYvC8o2bn22OKKbOnSRM5YlPS0iWzxo0
JVcnVVyt0AANQQkV0ABBQQkVXaXRoTUQ1QW5kREVT</item>
 <item name="responder-dn">\PERIN-TAO\novell\Provo\phb</item>
 <item name="auth-style sheet">process_template.xsl</item>
 <item name="response-style sheet">process_template.xsl</item>
 <item name="subject-name">Joe the Intern</item>
 <item name="url-base">https://192.168.0.1:8180</item>
 <item name="url">https://192.168.0.1:8180</item>
</replacement-data>

e. The Web server verifies that the value of item responder-dn matches a responder-dn value
contained in the protected data. If the value does not match, the Web server aborts the
request. If the value does match, processing continues.

f. The Web server submits a <check-object-password> XDS request to Identity Manager on
the Publisher channel to authenticate the user submitting the HTTP POST request.

<nds dtdversion="1.0" ndsversion="8.6">
 <source>
 <product build="20020606_0824" instance="Manual Task Service
Driver" version="1.1a">DirXML Manual Task Service Driver</product>
 <contact>Novell, Inc.</contact>
 </source>
 <input>
 <check-object-password dest-dn="\PERIN-TAO\novell\Provo\phb"
event-id="chkpwd">
 <password><!-- content suppressed --></password>
 </check-object-password>
 </input>
</nds>

g. Identity Manager returns <status level=”success”>. If Identity Manager returns other
than success, then the templates specified by the data item auth_template and the style
sheet specified by the data item auth_stylesheet are used to construct a Web page that is
returned as the result of the POST.

h. The Web server processes the post_form.xml template with the process_template.xsl
style sheet to generate an XDS document. Replacement tokens are in bold.

<nds>
 <input>
 <modify class-name="User" src-dn="not-applicable" event-
id=”wfmod”>
 <association>$association$</association>
 <modify-attr attr-name="roomNumber">
52 DirXML Driver for Manual Task Service Implementation Guide

 Novell Confidential Manual (ENU) 13 November 2003
 <remove-all-values/>
 <add-value>
 <value>$room-number$</value>
 </add-value>
 </modify-attr>
 </modify>
 </input>
</nds>

i. The Publisher submits the created XDS document to Identity Manager.

<nds>
 <input>
 <modify class-name="User" src-dn="not-applicable" event-
id=”wfmod”>
 <association>45f0e3:ee45e07709:-7fff:192.168.0.1</association>
 <modify-attr attr-name="roomNumber">
 <remove-all-values/>
 <add-value>
 <value>cubicle 1234</value>
 </add-value>
 </modify-attr>
 </modify>
 </input>
</nds>

j. Identity Manager returns a result document

<nds dtdversion="1.1" ndsversion="8.6">
 <source>
 <product version="2.0">Identity Manager</product>
 <contact>Novell, Inc.</contact>
 </source>
 <output>
 <status event-id="wfmod" level="success"></status>
 </output>
</nds>

k. The Web server adds the replacement data item post-status (and possibly the replacement
data item post-status-message) to the replacement data document. The added data item is
in bold:

<replacement-data>
 <item name="room-number">cubicle 1234</item>
 <item name="template">post_form.xml</item>
 <item name="response-template">post_response.xml</item>
 <item name="auth-template">auth_response.xml</item>
 <item name="association">45f0e3:ee45e07709:-7fff:192.168.0.1</item>
 <item name="password" is-sensitive=”true”><!—content suppressed ?</
item>
 <item name="protected-
data">rO0ABXNyABlqYXZheC5jcnlwdG8uU2VhbGVkT2JqZWN0PjY9psO3VHACAARbAA
1lbmNvZGVkUGFyYW1zdAACW0JbABBlbmNyeXB0ZWRDb250ZW50cQB+AAFMAAlwYXJhbX
NBbGd0ABJMamF2YS9sYW5nL1N0cmluZztMAAdzZWFsQWxncQB+AAJ4cHVyAAJbQqzzF/
gGCFTgAgAAeHAAAAAPMA0ECIr9Z1iG+O3BAgEKdXEAfgAEAAAAuMU/
SoFRkebvh2d5SqalF91ttjRY5lyyW5+/
FifOuDdYikYiDbOJb6607S0dPHjQzeVgu6ptIvGqaEQOEjBjDkY+i4VoVjUSXS3a8fiX
B8moMdPtLJ/GyE8QiwbT4xbkQy48i02k99F2vGmlenRpSP6dD31kZl3dpJ0mGgq2yL/
eFaynKyqnjkHLMexcqD8WlVooaRl1k2RPk5vDYvC8o2bn22OKKbOnSRM5YlPS0iWzxo0
JVcnVVyt0AANQQkV0ABBQQkVXaXRoTUQ1QW5kREVT</item>
 <item name="responder-dn">\PERIN-TAO\novell\Provo\phb</item>
 <item name="auth-style sheet">process_template.xsl</item>
Data Flow Scenario for New Employee 53

 Novell Confidential Manual (ENU) 13 November 2003
 <item name="response-style sheet">process_template.xsl</item>
 <item name="subject-name">Joe the Intern</item>
 <item name="url-base">https://192.168.0.1:8180</item>
 <item name="url">https://192.168.0.1:8180</item>
 <status event-id="" level="success"></status>
 <item name="post-status">success</item>
</replacement-data>

l. The Web server processes the post_response.xml template with the process_template.xsl
style sheet. Replacement tokens and action elements are in bold.

<htm xmlns:form="http://www.novell.com/dirxml/manualtask/form">
 <head>
 <title>Result of post for $subject-name$</title>
 </head>
 <body>
 <link href="novdocmain.css" rel="style sheet" type="text/css"/>

 <table class="formtable" cellpadding="5" cellspacing="20"
border="1" align="center">
 <tr>
 <td>
 DirXML reported status = $post-status$
 </td>
 </tr>
<form:if-item-exists name="post-status-message">
 <tr>
 <td>
 Status message was: $post-status-message$
 </td>
 </tr>
</form:if-item-exists>
 </table>
 </body>
</html>

m. The resulting Web page is returned as the result of the HTTP POST. The second row of
the table is not present because the post-status-message referred to by the <form:if-item-
exists> element is not present in the replacement data document.

<html>
 <head>
<META http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title>Result of post for Joe the Intern</title>
 </head>
 <body>
 <link href="novdocmain.css" rel="style sheet" type="text/css">

 <table class="formtable" cellpadding="5" cellspacing="20"
border="1" align="center">
 <tr>
 <td>
 DirXML reported status = success
 </td>
 </tr>
 </table>
 </body>
</html>
54 DirXML Driver for Manual Task Service Implementation Guide

 Novell Confidential Manual (ENU) 13 November 2003
F Custom Element Handlers for the Subscriber
Channel

The driver provides an extension mechanism for sending user notifications using methods other
than the Simplified Mail Transport Protocol (SMTP). For example, a customer might have a need
to send notifications using the Messaging Application Programming Interface (MAPI) rather than
using SMTP.

To use a mechanism other than SMTP for sending notifications, you must write a Java class to
handle a custom XML element that is submitted on the driver’s Subscriber channel.

The Java custom element handler must implement the
com.novell.nds.dirxml.driver.manualtask.CommandHandler Java interface. The name of the
custom element class is specified in the Additional Handlers item found in the Subscriber
configuration parameters.

When the Subscriber channel encounters a command element, it looks in its table of handlers.
When it finds a handler that reports that it handles the command element, the command element
is passed to the handler. The handler then performs any processing required.

There are two built-in command element handlers in the driver: a handler for <mail> elements and
a handler for <add> elements.

The custom command element definition is up to the author of the custom handler. A reasonable
place to start in designing the custom command element is the design of the <mail> element.

The custom elements are created by policies on the Subscriber channel in the same fashion that the
<mail> element is created.

The documentation for com.novell.nds.dirxml.driver.manualtask.CommandHandler and the
documentation for many utility and support classes are found in the javadocs that ship with the
driver. The javadocs are found in the file named manual_task_docs.zip in the distribution image.

Constructing URLs for Use with the Publisher Channel Web Server
To securely use the driver’s Publisher channel web server, it is necessary to use utility classes to
construct the URL that is to be included with a notification message. The
com.novell.nds.dirxml.driver.manualtask.URLData is designed for this task.

The sample code found in SampleCommandHandler.java illustrates this process.

Constructing Message Documents using Stylesheets and Template
Documents

It is convenient to use the same method to construct documents that the SMTP handler uses, which
is a combination of style sheets, template documents, and replacement data. To do this, you must
Custom Element Handlers for the Subscriber Channel 55

 Novell Confidential Manual (ENU) 13 November 2003
obtain the stylesheets and template documents, and invoke the style sheet processor
programmatically.

The sample code found in SampleCommandHandler.java illustrates this process.

SampleCommandHandler.java
Source code for a sample custom command handler is included with the driver distribution. The
source code is found in the manual_task_docs.zip file in the distribution image.

The handler is implemented in the
com.novell.nds.dirxml.driver.manualtask.samples.SampleCommandHandler class.

The sample handler simply generates a document using style sheets and templates and writes the
resulting document to a file.

Compiling the SampleCommandHandler Class
You can use any Java 2 compiler to compile the SampleCommandHandler class. You must place
nxsl.jar, dirxml.jar, collections.jar, and ManualTaskServiceBase.jar in the Java compiler classpath.

Trying the SampleCommandHandler Class
Start by importing the Room Number sample configuration for the driver.

Compile the SampleCommandHandler class and place the resulting class file in a .jar file. Place
the .jar file in the DirXML .jar file directory appropriate to the platform on which you are running
the driver.

Add the following XML element under the <subscriber-options> element found in the Driver
Parameters XML section of the driver properties:

<output-path display-name="Sample Output Path"></output-path>

Edit the Driver Parameters. In the item labeled Sample Output Path, place a path to a directory in
which the SampleCommandHandler will write its created documents. In the item labeled
Additional Handlers, add the string
com.novell.nds.dirxml.driver.manualtask.samples.SampleCommandHandler.

Replace the Subscriber channel command transformation policy with CommandXform.xsl which
is found in the same directory as the SampleCommandHandler.java file.

Create a User object and add a manager reference to the User object. If the manager has an e-mail
address value, then a <sample> command element is sent to the Subscriber and the
SampleCommandHandler writes a file in the location you specified above.
56 DirXML Driver for Manual Task Service Implementation Guide

 Novell Confidential Manual (ENU) 13 November 2003
G Custom Servlets for the Publisher Channel

The driver provides an extension mechanism through which additional functionality can be added
to the Publisher channel Web server. Custom servlets can be loaded by the Publisher by specifying
the name of the servlet classes in the Driver configuration item labeled Additional Servlets.

Using the Publisher Channel
If a custom servlet needs to submit data to NsureTM Identity Manager, the servlet must use the
driver’s Publisher channel. The com.novell.nds.dirxml.driver.manualtask.ServletRegistrar and
com.novell.nds.dirxml.driver.manualtask.PublisherData classes are supplied to facilitate this. The
sample code found in SampleServlet.java illustrates this process.

Authentication
A custom servlet must authenticate users that are submitting information. The sample code found
in SampleServlet.java illustrates this process. However, the type of authentication performed using
the <check-object-password> element does not check eDirectoryTM rights. Changes submitted on
the Publisher channel are allowed if the Driver object has rights to perform the changes, regardless
of whether the user submitting the changes has rights or not.

If you are using a URL generated by a command handler on the Subscriber channel, you must use
the com.novell.nds.dirxml.driver.manualtask.URLData class to validate the URL to ensure that
the responder-dn data item has not been tampered with. See the javadocs for information on
accomplishing this.

SampleServlet.java
Source code for a sample servlet is included with the driver distribution. The source code is found
in the file manualtask_driver_docs.zip in the distribution image.

The servlet is implemented in the
com.novell.nds.dirxml.driver.manualtask.samples.SampleServlet class.

The sample servlet accepts an HTTP GET request for any resource ending in .sample. The query
string of the HTTP URL must contain a dest-dn item, an attr-name item, and a value item.

The servlet authenticates the user, then submits a modify request to Identity Manager via the
driver’s Publisher channel.

Compiling the SampleServlet Class
You can use any Java 2 compiler to compile the SampleServlet class. You must place nxsl.jar,
dirxml.jar, collections.jar, and ManualTaskServiceBase.jar in the Java compiler classpath.
Custom Servlets for the Publisher Channel 57

 Novell Confidential Manual (ENU) 13 November 2003
Trying the SampleServlet Class
Start by importing the Room Number sample configuration for the driver.

Compile the SampleServlet class and place the resulting class file in a .jar file. Place the .jar file
in the DirXML .jar file directory appropriate to the platform on which you are running the driver.

Edit the Driver Parameters. In the item labeled Additional Servlets, add the string
com.novell.nds.dirxml.driver.manualtask.samples.SampleServlet.

Add Telephone Number to the Publisher channel filter.

Submit the following URL in a browser (assuming the browser is running on the same machine as
the driver):

https:localhost:8180/1.sample?dest-dn=username.container&attr-
name=Telephone%20Number&value=555-1212

Replace username.container with the DN of a user in your tree.
58 DirXML Driver for Manual Task Service Implementation Guide

 Novell Confidential Manual (ENU) 13 November 2003
H Updates

This section contains information about documentation content changes that have been made in
this guide.

The information is grouped according to the date the documentation updates were published.

The documentation is provided on the Web in two formats: HTML and PDF. The HTML and PDF
documentation are both kept up-to-date with the documentation changes listed in this section.

If you need to know whether a copy of the PDF documentation you are using is the most recent,
the PDF document contains the date it was published in the Legal Notices section immediately
following the title page.

The documentation was updated on the following dates:

“January 2004” on page 59

“May 27, 2004” on page 59

“August 3, 2004” on page 59

January 2004
As part of the release of the 1.0.1 version of the driver, the name was changed from DirXML
Driver for Workflow to DirXML Driver for Manual Task Service.

May 27, 2004
Information was added in Chapter 1, “Overview,” on page 9 about upgrading the driver while
preserving your existing files.

August 3, 2004
The following changes were made for the 1.0.2 version of the driver.

The driver implementation guide was converted to the same format as the other driver guides,
with both HTML and PDF provided.

“New Features” on page 9 was added.

Upgrade information changed in Chapter 2, “Upgrading,” on page 17 to reflect improvements
in the upgrade process.

Chapter 3, “Installing,” on page 19 was added.
Updates 59

 Novell Confidential Manual (ENU) 13 November 2003
60 DirXML Driver for Manual Task Service Implementation Guide

	About This Guide
	1 Overview
	New Features
	Driver Features
	Identity Manager Features

	Modes of Operation
	How E-Mail Messages and Web Pages Are Created by the Manual Task Service Driver
	Templates
	Replacement Tokens
	Replacement Data
	Template Action Elements
	Subscriber Channel E-Mail
	Publisher Channel Web Server

	2 Upgrading
	Upgrading from the Workflow Driver to the Manual Task Service Driver
	Upgrading from the Manual Task Service Driver 1.0.1 to the Manual Task Service Driver 1.0.2

	3 Installing
	4 Configuring
	Driver Parameters
	Driver Settings
	Subscriber Settings
	Publisher Settings

	Subscriber Channel Policies
	Blocking Commands from Reaching the Subscriber
	Generating E-Mail Messages

	Subscriber Channel E-Mail Templates
	Publisher Channel Policies
	Publisher Channel Web Page Templates
	Publisher Channel XDS Templates
	Trace Settings

	A Replacement Data
	Data Security
	XML Elements
	<replacement-data>
	<item>
	<url-data>
	<url-query>

	B Automatic Replacement Data Items
	Subscriber Channel Automatic Replacement Data
	Publisher Channel Automatic Replacement Data

	C Template Action Elements Reference
	<form:input>
	<form:if-item-exists>
	<form:if-multiple-items>
	<form:if-single-item>
	<form:menu>

	D <mail> Element Reference
	<mail>
	<to>
	<cc>
	<bcc>
	<from>
	<reply-to>
	<subject>
	<message>
	<stylesheet>
	<template>
	<filename>
	<replacement-data>
	<resource>
	<attachment>

	E Data Flow Scenario for New Employee
	Subscriber Channel Configuration
	Publisher Channel Configuration
	Description of Data Flow

	F Custom Element Handlers for the Subscriber Channel
	Constructing URLs for Use with the Publisher Channel Web Server
	Constructing Message Documents using Stylesheets and Template Documents
	SampleCommandHandler.java
	Compiling the SampleCommandHandler Class
	Trying the SampleCommandHandler Class

	G Custom Servlets for the Publisher Channel
	Using the Publisher Channel
	Authentication
	SampleServlet.java
	Compiling the SampleServlet Class
	Trying the SampleServlet Class

	H Updates
	January 2004
	May 27, 2004
	August 3, 2004

