
Novell exteNd Composer™

3270 Connect

USER’S GUIDE

www.novell.com5.0

Legal Notices
Copyright © 2000, 2001, 2002, 2003, 2004 SilverStream Software, LLC. All rights reserved.

Title to the Software and its documentation, and patents, copyrights and all other property rights applicable thereto,
shall at all times remain solely and exclusively with SilverStream and its licensors, and you shall not take any action
inconsistent with such title. The Software is protected by copyright laws and international treaty provisions. You
shall not remove any copyright notices or other proprietary notices from the Software or its documentation, and you
must reproduce such notices on all copies or extracts of the Software or its documentation. You do not acquire any
rights of ownership in the Software.

Novell, Inc.

1800 South Novell Place

Provo, UT 85606

www.novell.com

exteNd Composer 3270 Connect User’s Guide

January 2004

Online Documentation: To access the online documentation for this and other Novell products, and to
get updates, see www.novell.com/documentation.

Novell Trademarks
eDirectory is a trademark of Novell, Inc.
exteNd is a trademark of Novell, Inc.
exteNd Composer is a trademark of Novell, Inc.
exteNd Director is a trademark of Novell, Inc.
jBroker is a trademark of Novell, Inc.
NetWare is a registered trademark of Novell, Inc.
Novell is a registered trademark of Novell, Inc.

SilverStream Trademarks
SilverStream is a registered trademark of SilverStream Software, LLC.

Third-Party Trademarks
All third-party trademarks are the property of their respective owners.

Third-Party Software Legal Notices
Jakarta-Regexp Copyright ©1999 The Apache Software Foundation. All rights reserved. Xalan Copyright ©1999
The Apache Software Foundation. All rights reserved. Xerces Copyright ©1999-2000 The Apache Software
Foundation. All rights reserved. Jakarta-Regexp , Xalan and Xerces software is licensed by The Apache Software
Foundation and redistribution and use of Jakarta-Regexp, Xalan and Xerces in source and binary forms, with or
without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code
must retain the above copyright notices, this list of conditions and the following disclaimer. 2. Redistributions in
binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution. 3. The end-user documentation included with
the redistribution, if any, must include the following acknowledgment: "This product includes software developed
by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear in the
software itself, if and wherever such third-party acknowledgments normally appear. 4. The names "The Jakarta
Project", "Jakarta-Regexp", "Xerces", "Xalan" and "Apache Software Foundation" must not be used to endorse or
promote products derived from this software without prior written permission. For written permission, please contact
apache@apache.org. 5. Products derived from this software may not be called "Apache" nor may "Apache" appear
in their name, without prior written permission of The Apache Software Foundation. THIS SOFTWARE IS
PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright ©1996-2000 Autonomy, Inc.

Copyright ©2000 Brett McLaughlin & Jason Hunter. All rights reserved. Redistribution and use in source and binary
forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions
of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2.
Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the disclaimer
that follows these conditions in the documentation and/or other materials provided with the distribution. 3. The name
"JDOM" must not be used to endorse or promote products derived from this software without prior written
permission. For written permission, please contact license@jdom.org. 4. Products derived from this software may

not be called "JDOM", nor may "JDOM" appear in their name, without prior written permission from the JDOM
Project Management (pm@jdom.org). THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This Software is derived in part from the SSLava™ Toolkit, which is Copyright ©1996-1998 by Phaos Technology
Corporation. All Rights Reserved. Customer is prohibited from accessing the functionality of the Phaos software.

The code of this project is released under a BSD-like license [license.txt]: Copyright 2000-2002 (C) Intalio Inc. All
Rights Reserved. Redistribution and use of this software and associated documentation ("Software"), with or without
modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must
retain copyright statements and notices. Redistributions must also contain a copy of this document. 2. Redistributions
in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the
documentation and/or other materials provided with the distribution. 3. The name "ExoLab" must not be used to
endorse or promote products derived from this Software without prior written permission of Intalio Inc. For written
permission, please contact info@exolab.org. 4. Products derived from this Software may not be called "Castor" nor
may "Castor" appear in their names without prior written permission of Intalio Inc. Exolab, Castor, and Intalio are
trademarks of Intalio Inc. 5. Due credit should be given to the ExoLab Project (http://www.exolab.org/). THIS
SOFTWARE IS PROVIDED BY INTALIO AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT
SHALL INTALIO OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

7777

Contents

About This Guide 9

1111 Welcome to exteNd Composer and 3270 User Interface 11
Before You Begin .11
About exteNd Composer Connectors .12
What is the 3270 (TDS) Connect? .13
About exteNd Composer’s 3270 Component .14
What Applications Can You Build Using the 3270 User Interface Component Editor?.16
Where to Go for More Help .16

2222 Getting Started with the 3270 Component Editor 17
The Sample Transactions .17

Steps Commonly Used to Create a 3270 Component . 17
Creating a 3270 Connection Resource .18

About Connection Resources . 18
About Constant and Expression Driven Connections . 18
About Code Page Support . 25

Handling System Messages .26
Creating a Style Sheet Resource .29
Creating XML Templates for Your Component .31

3333 Creating a 3270 Component 33
Before Creating a 3270 Component .33
About the 3270 Component Editor Window .37

About the 3270 Native Environment Pane . 39
About 3270 Keyboard Support . 39
About the ScreenDoc DOM . 40

About 3270-Specific Menu Bar Items .43
About 3270-Specific Context Menu Items. 44

About 3270-Specific Buttons .45

4444 Performing 3270 Actions 47
About Actions .47
About 3270-Specific Actions .48

3270 Specific Expression Builder Extensions. 50
Login. 50
Screen Methods . 51

Recording a 3270 Session .53
Editing a Previously Recorded Action Model . 58
Changing an Existing Action. 59
Adding a New Action . 62
About Adding Alias Actions. 65
Deleting an Action . 67

About the 3270 Multi Row Wizard .67

3270 Connect User’s Guide8888

About the Multi Row Samples in this Document . 68
Executing your 3270 Component . 86

Using the Animation Tools . 88
Component with Connection Action. 93
Using Style Sheets in the Native Environment Pane. 97
Using Other Actions in the 3270 Component Editor . 98
Handling Errors and Messages . 98

5555 Logon Components, Connections, and Connection Pools 101
About 3270 Terminal Session Performance . 101

When Will I Need Logon Components? . 101
Connection Pool Architecture . 102

The Logon Connection’s Role in Pooling . 105
How Many Pools Do I Need? . 106
Pieces Required for Pooling . 106

How Do I Implement Pooling? . 107
The 3270 Logon Component . 107

Logon, Keep Alive, and Logoff Actions . 108
Logon Actions . 109
Keep Alive Actions . 111
Logoff Actions . 113
Logon Component Life Cycle . 114

About the 3270 Logon Connection . 114
Connection Pooling with a Single Sign-On . 116

Creating a Connection Pool. 117
Overview . 117

Creating a Connection . 117
Creating a Logon Component . 117
Creating a Logon Connection using a Pool Connection . 119
Creating a Logon Connection using a Session Connection. 124
Creating a 3270 Terminal Component That Uses Pooled Connections 127
Managing Pools . 128
Connection Pool Management and Deployed Services. 131

Connection Discard Behavior . 131
Screen Synchronization . 132

AAAA Testing 135
Environmental Differences between Animation Testing and Deployment Testing 135

BBBB Java Code Pages 137
About Encodings . 137

CCCC 3270 Glossary 139

DDDD Reserved Words 141

9999

About This Guide

Purpose

The guide describes how to use exteNd Composer 3270 Connect, referred to as the
3270 Component Editor. The 3270 Component Editor is a separately-installed
component editor in exteNd Composer.

Audience

The audience for the guide is developers and system integrators using exteNd
Composer to create services and components which integrate 3270 applications.

Prerequisites

The guide assumes the reader is familiar with and has used exteNd Composer’s
development environment and deployment options. You must also have an
understanding of the 3270 environment.

Additional documentation

For the complete set of Novell exteNd Composer documentation, see the Novell
Documentation Web Site (http://www.novell.com/documentation-
index/index.jsp).

Organization

The guide is organized as follows:

Chapter 1, Welcome to exteNd Composer and 3270, gives a definition and
overview of the 3270 Component Editor.

Chapter 2, Getting Started with the 3270 Component Editor, describes the
necessary preparations for creating a 3270 component.

http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp

10101010 3270 Connect User’s Guide

Chapter 3, Creating a 3270 Component, describes the parts of the component
editor.

Chapter 4, Performing 3270 Actions, describes how to use the basic 3270 actions,
as well as the 3270 Multi Row Wizard.

Chapter 5, Logon Components, Connections and Connection Pools, describes
how to create logon components, connections and connection pools.

Appendix A, Testing, describes environmental differences between animation
testing and deployment testing.

Appendix B, Java Code Pages, provides reference information on character
encoding conversions.

Appendix C, is a glossary.

Appendix D, Reserved Words, is a section of those words used only for the 3270
Connect.

Conventions Used in the Guide

The guide uses the following typographical conventions.

Bold typeface within instructions indicate action items, including:

Menu selections

Form selections

Dialog box items

Sans-serif bold typeface is used for:

Uniform Resource Identifiers

File names

Directories and partial pathnames

Italic typeface indicates:

Variable information that you supply

Technical terms used for the first time

Title of other Novell publications

Monospaced typeface indicates:

Method names

Code examples

System input

Operating system objects

11111111

1

Welcome to exteNd Composer and 3270 User Interface

Welcome to exteNd Composer and
3270 User Interface Chapter 1

Before You Begin
Welcome to the 3270 Connect Guide. This Guide is a companion to the exteNd
Composer User’s Guide, which details how to use all the features of Composer, except
the Connect Component Editors. So, if you haven’t looked at the User’s Guide yet,
please familiarize yourself with it before using this Guide.

exteNd Composer provides separate Component Editors for each Connector, like
3270. The special features of each component editor are described in separate Guides
like this one.

If you have been using exteNd Composer, and are familiar with the core component
editor, the XML Map Component Editor, then this Guide should get you started with
the 3270 Component Editor.

Before you can begin working with the 3270 Connect, you must have installed it into
your existing exteNd Composer. Likewise, before you can run any Services built with
this Connector in the exteNd Composer Enterprise Server environment, you must have
already installed the Server side software for this Connector into exteNd Composer
Enterprise Server.

NOTE: NOTE: NOTE: NOTE: To be successful with this Component Editor, you must be familiar with the IBM
3270 environment and the applications that you want to XML-enable.

12121212 3270 Connect User’s Guide

About exteNd Composer Connectors
exteNd Composer is built upon a simple hub and spoke architecture. The hub is a
robust XML transformation engine that accepts requests via XML documents,
performs transformation processes on those documents and interfaces with XML-
enabled applications, and returns an XML response document. The spokes, or
Connectors, are plug-in modules that "XML-enable" sources of data that are not XML
aware, bringing their data into the hub for processing as XML. These data sources can
be anything from legacy COBOL/applications to Message Queues to HTML pages.

exteNd Composer Connectors can be categorized by the integration strategy each one
employs to XML enable an information source. The integration strategies are a
reflection of the major divisions used in modern systems designs for Internet- based
computing architectures. Depending on your B2B needs and the architecture of your
legacy applications, exteNd Composer can integrate your business systems at the User
Interface, Program Logic, or Data levels.

Figure 1-1

Welcome to exteNd Composer and 3270 User Interface 13131313

What is the 3270 (TDS) Connect?

The 3270 Connect XML-enables IBM compatible mainframe legacy system data using
the User Interface integration strategy by hooking into the Terminal Data Stream
(TDS). The term 3270 is commonly used to refer to the generic "dumb terminal" types
used to connect to IBM mainframe systems. When connecting to an IBM Mainframe,
the 3270 TDS uses IBM’s EBCDIC character-encoding scheme. The 3270 TDS, which
was developed in the 1960s, emerged as that generation’s standard, and persists today.
The 3270 TDS allows users to interact with legacy applications through the use of
attention keys (e.g., Enter and PF Keys) that are interpreted by the application running
on the mainframe to perform the appropriate actions. This interaction, through a dumb
terminal, means that all the data is processed information from the mainframe
computer. 3270 terminal emulation software can be used to make a microcomputer or
PC act as if it were a 3270-type terminal while it is communicating with a mainframe.

Using the 3270 Connect, you can make legacy applications and their business logic
available to the internet, extranet, or intranet processes. You can navigate through an
application as if you were at a terminal session, use XML request documents to drive
the inquiries and updates into the screens rather than keying, use the messages returned
from applications screens to make the same decisions as if you were at a terminal, and
move the data and responses into XML documents that can be returned to the requestor
or continue to be processed. The 3270 screens appear in the Native Environment pane
of the 3270 Component Editor.

3270 Screens appear in the Native Environment pane

14141414 3270 Connect User’s Guide

About exteNd Composer’s 3270 Component
Much like the XML Map component, the 3270 component is designed to map,
transform, and transfer data between two different XML templates (i.e., request and
response XML documents). However, it is specialized to make a connection (either
TN3270 or EPI) to a mainframe application, process the data using elements from a
DOM, and then map the results to an output DOM. You can then act upon the output
DOM in any way that makes sense for your integration application. In essence, you’re
able to capture data from, or push data to, a legacy system without ever having to alter
the legacy system itself.

A 3270 component can perform simple data manipulations, such as mapping and
transferring data from an XML document into a mainframe transaction, or perform
“screen scraping” of a 3270 transaction, putting the data into an XML document. It can
also perform sophisticated operations, such as mapping and manipulating multi-row
and multi-screen transactions. The 3270 component has all the functionality of the
XML Map component and can process XSL, send mail, and post and receive XML
documents using the HTTP protocol.

Welcome to exteNd Composer and 3270 User Interface 15151515

The following illustration shows how a 3270 component uses a TN3270 or EPI
connection to interact with data on the mainframe.

Figure 1-2

16161616 3270 Connect User’s Guide

What Applications Can You Build Using the 3270 User
Interface Component Editor?

The 3270 User Interface Component Editor allows you to extend any XML integration
you are building to include any of your business applications that support 3270-based
terminal interactions (See exteNd Composer User’s Guide for more information.) For
example, you may have an application that retrieve a product’s description, picture,
price, and inventory from regularly updated databases and displays it on a Web
browser. By using the 3270 Component Editor, you can now get the current product
information from the operational systems and the static information (e.g., the picture)
from the database and merge the information from these separate information sources
before displaying it to a user. This provides the same current information to both your
internal and external users.

Where to Go for More Help
Perhaps the best way to understand the 3270 Connect in Composer is to see it in action.
If you would like to take a Tutorial for the 3270 Connect that provides access to legacy
transactions in a test environment, please contact Novell Technical Support for the
connection information, tutorial instructions and any other supporting materials.

Additionally, you will find information on the Novell website: www.Novell.com.

17

2

Getting Started with the 3270 Component Editor

Getting Started with the 3270
Component Editor Chapter 2

The Sample Transactions
For demonstration purposes, three transactions are used throughout this document
in the samples presented: PART, GORD, and MENU. These transactions represent
typical transactions used by operators. The PART transaction represents a scenario
in which an operator uses a SKU number to drive an inquiry to a database. The
GORD transaction represents a scenario in which an order for an item or several
items is placed. And the MENU transaction represents a scenario in which an
operator navigates through a menu-driven application to get to a particular screen.
The PART, GORD, and MENU transactions are used to show you how to build
Composer serviceComposer services that do the same things as the real life
scenarios.

Steps Commonly Used to Create a 3270 Component

There are many ways to go about creating 3270 components; however, the most
commonly used steps in creating a simple 3270 component are as follows:

1 Create XML Template(s) for the transaction.

2 Create a Connection Resource.

3 Create a component.

4 Enter Record mode and navigate to transaction.

5 Drag and drop input document data into screen.

6 Process the transaction from the keyboard action.

7 Drag and drop screen results into output document.

8 Stop recording.

3270 Connect User’s Guide18

Creating a 3270 Connection Resource
Before you can create a 3270 Component, you need to create a Connection
Resource to access the mainframe transaction.

About Connection Resources

When you create a Connection Resource for the 3270 Component, you have two
choices: a TN3270 Connection or an EPI 3270 Connection. You can use the
TN3270 Connection when you want to connect to an IBM mainframe
environment, regardless of the application or Transaction Processing Monitor you
are using. The EPI 3270 Connection is available when you want to connect
directly to a CICS application region, that supports the External Presentation
Interface (EPI) API. This connection allows you to utilize TCP/IP to access the
EPI gateway on a CICS host.

About Constant and Expression Driven Connections

You can specify Connection parameter values in one of two ways: as Constants or
as Expressions. A constant based parameter uses the value you type in the
Connection dialog every time the Connection is used. An expression-based
parameter allows you to set the value using a programmatic expression, which can
result in a different value each time the connection is used at runtime. This allows
the Connection’s behavior to be flexible and vary based on runtime conditions
each time it is used.

For instance, one very simple use of an expression driven parameter in a EPI 3270
Connection would be to define the User ID and Password as PROJECT Variables
(e.g. PROJECT.XPATH(“USERCONFIG/MyDeployUser”). This way when you
deploy the project, you can update the PROJECT Variables in the Deployment
Wizard to values appropriate for the final deployment environment. At the other
extreme, you could have a custom script that queries a Java business object in the
Application Server to determine what User ID and Password to use.

To switch a parameter from Constant driven to Expression driven:

1 Click the RMB in the parameter field you are interested in changing.

2 Select Expression from the context menu and the editor button will appear
or become enabled.

3 Click on the button and then create an expression that evaluates to a valid
parameter value at runtime.

Getting Started with the 3270 Component Editor 19

To create a 3270 Connection Resource:

1 From the Composer File menu, select New, then xObject, then open the
Resource tab and select Connection.

NOTE: Alternatively, you can highlight Connection in the Composer
window category pane, right click your mouse button, then select New.

The Create a New Connection Resource Wizard appears.

2 Type a Name for the connection object.

3270 Connect User’s Guide20

3 Optionally, type Description text.

4 Click Next.

To select an EPI 3270 Connection:

1 Select EPI 3270 Connection if you are connecting to a CICS application
through the CICS Java Gateway.

2 In the Gateway URI field, enter the physical address of the machine to
which you are connecting. In the example above, tcp://localhost.2006 is an
alias for a physical machine where tcp:// is the protocol, localhost is the
name of the machine, and 2006 is the default gateway to CICS.

NOTE: The Gateway URI field is case sensitive.

3 In the Server field, enter the region alias or server name. Your system
administrator will provide you with this name, which is defined in a separate
client initialization file.

4 The Screen wait (seconds) field, displays the amount of time in seconds that
a 3270 Terminal component will wait for the arrival of the next screen in the
Map Screen Action pane.

5 Enter a UserID and Password. They are simply defined here (password is
encrypted). The user will have access to UserID and Password from
ECMAScript, allowing them to map UserID and Password as a variable into
the screen. This way, no one ever sees the passwords.

6 Select the Default check box if you’d like the settings you’ve entered to
become the default settings for subsequent 3270 Connections.

Getting Started with the 3270 Component Editor 21

7 Click on Advanced to display the System Handling dialog.

For more details on adding screens and AID keys to handle them, refer to the
Screen Handling procedures mentioned in “Handling System Messages”
below.

8 Click Finish. The newly created resource connection object appears in the
Composer Connection Resource detail pane.

To select a TN3270 Connection:

1 Select a TN3270 Connection type if you are using an application other than
CICS.

3270 Connect User’s Guide22

2 In the Host or IP Address field, enter the physical address or alias for the
machine to which you are connecting. Your system administrator will
provide you with this information, which is defined in a separate host file.

3 In the Telnet Port field, enter the number of the port. The default port
number is 23.

4 In the Code Page field, specify a code page (See “About Code Page
Support” on page 25).

5 The Screen wait (seconds) field, displays the amount of time in seconds that
a 3270 Terminal component will wait for the arrival of the next screen in the
Map Screen Action pane.

6 In the Delay (ms)/Small Size (bytes) field, enter an appropriate setting. This
setting helps solve network performance issues by waiting extra time (ms)
for a complete packet to arrive when the packet received is smaller than
(bytes). In the above example, the network is instructed to wait an additional
1600 ms for a complete packet to arrive when the packet received is smaller
than 24 bytes. An additional parameter, -waitEOR, allows a ‘screen
complete’ state to be determined by waiting for a packet containing EOR
(End of Record).

7 Enter a UserID and Password. These are not actually submitted to the host
during the establishment of a connection. They are simply defined here
(password is encrypted). The user will have access to UserID and Password
from ECMAScript, allowing them to map UserID and Password as a
variable into the screen. This way, no one ever sees the passwords.

8 In the Terminal Type field, lists the various types of terminals supported by
3270 components, including different screen sizes (i.e. 24x80 and 27x32).
Select from the drop down list box the type of terminal you are using.

9 Select the Terminal Type from the dropdown list.

Getting Started with the 3270 Component Editor 23

10 Click in the checkbox to enable Version 2.7 Compatability.

11 Click on Advanced to display the System Handling dialog.

For more details on adding screens and AID keys to handle them, refer to the
Screen Handling procedures mentioned in “Handling System Messages”
below.

12 Select the Default check box if you’d like the settings you’ve entered to
become the default settings for subsequent TN3270 Connections.

13 Click on the Test Button to see if your connection works.

14 Click Finish. The newly created resource connection object appears in the
Composer Connection Resource detail pane.

3270 Connect User’s Guide24

Newly created
resource

Getting Started with the 3270 Component Editor 25

About Code Page Support

Code Page support in exteNd Composer Connection Resources allows you to
specify which Character Encoding scheme to use when translating characters sent
between exteNd Composer and other host systems. exteNd Composer data uses
UniCode character encoding (the Java and XML standard). Existing legacy and
other host systems use a variety of character encoding schemes (i.e., Code Pages)
specific for their language or usage. A mechanism is needed to translate the
character encoding between these systems if they are to communicate with one
another. This is handled in exteNd Composer by specifying the Code Page used by
a host system in the Connection Resource used to access that system. For more
information on encoding, see Appendix B, “Java Code Pages”.

Figure 2-1

3270 Connect User’s Guide26

Handling System Messages
A special feature of 3270 Connections is the ability to handle unpredictable
message screens received during a terminal session that would be problematic to
a 3270 Component during its execution. One example of this type of message
screen is when the system administrator broadcasts notices to terminals warning
them of system shutdowns or other events. The arrival of this screen is both
unpredictable and unwanted during the normal execution of a 3270 Component
interacting with a system transaction. These system messages are usually
dispatched by a user hitting an AID key after having read them.

Both types of 3270 Connections (TN3270 and EPI 3270) allow you to define
special screen handlers to respond to screens you wish to exclude from component
processing. You can also define multiple screen handlers for a single connection.
By defining screen handlers in the Connection Resource, you can define your
handlers once and multiple components can take advantage of them by using the
same connection.

NOTE: Connection screen handlers are not restricted to messages from the
System Administrator. You can define a screen handler to respond to any screen
received in the terminal data stream.

General steps to creating a Screen Handler

1 Create a working 3270 Component that uses a 3270 Connection Resource.

2 Reproduce and capture the screen you wish to handle in a ScreenDoc DOM.

3 Select a field/data combination on the screen to uniquely identify this screen
to the screen handler.

4 Add the screen handler to the Connection Resource by supplying a screen
identity expression and an AID key for dispatching the screen.

Specific steps to creating a Screen Handler

1 Create your 3270 Component as you normally would (i.e. create a
Connection and other Resources as necessary and then build the component)

2 If your ScreenDoc DOM is not already visible, select View/Window Layout
from the menu bar, followed by clicking the XML Layout tab. Then move
ScreenDoc to the Visible list and click OK.

3 Save the component but leave it open. Capture the particular screen you wish
to handle as follows.

NOTE: This will take some coordination with your system
operator/administrator or whoever is responsible for generating the message
screen you wish to handle.

Getting Started with the 3270 Component Editor 27

a. Set a breakpoint on an action in the first Map Screen after the map Screen
containing your Log in actions. (If this is a Logon Component, then set
the breakpoint on the first action in the KeepAlive or Logout section.)

b. Animate the component by pressing F5.

c. Run to the Breakpoint by pressing F9.

d. Pause the Animation by pressing F6.

e. Initiate the system message.

f. Press Enter and the system message screen will appear in the Native Envi-
ronment Pane and the XML representation of the message will appear in
the Screen Doc pane.

4 Choose a test field whose data will serve to identify this screen as one you
wish to handle. For instance, you may choose the screen title field whose
data is “Display Messages.”

5 Hover your mouse pointer over the test field’s XML representation in the
ScreenDoc and note its full XPath location (e.g.
ScreenDoc/SCREEN/FIELD[5])

6 Stop Animation by pressing Shift-F5, sign off the host system, and close the
component, but do not save it.

7 In the Composer window, select the Connection Resource for the component
and open it.

3270 Connect User’s Guide28

8 On the Connection Info tab, press click on the Advanced button and the
System Screen handling dialog appears.

9 Check to Enable TN3270E protocol support. If the checkbox is unchecked,
disable and clear the Resource Name Text field.

10 Enter the Resource Name used in the TN3270 Connect, leave blank if the
Server is supplying the name. If you right-click on the Resource Name field,
you can change the value from a constant to an Expression and use
ECMAScript to fill in the value.

11 Click on the + icon to add a line to define Screen handler.

12 In the Expression field, type an expression comparing the test data against
the test field’s XPath (e.g.
ScreenDoc.XPath(“string(SCREEN/FIELD[5])”)= =” Display Messages”).

NOTE: the XPath string function is applied to make sure the comparison
works properly.

13 In the AID/DispatchKey field, select a key to send in response to the screen.

14 Click on OK to save the Handler, and click on OK to save the connection.

15 Test your System Screen Handler by animating the component past the
Logon Map Screen actions, setting a breakpoint, initiating the system
message, and continuing your animation past an Enter Send Key action.

Getting Started with the 3270 Component Editor 29

Creating a Style Sheet Resource
An additional resource associated with the 3270 Connector is the style sheet
resource. This allows you to create a style sheet with which to display the
emulation screen in the native environment pane.

To create a Style Sheet Resource:

1 Select File>New>xObject from the Composer menu, then click on the
Resource tab and select Terminal Style Sheet.

NOTE: Alternatively, you may highlight Terminal Style Sheet in the
Resource section of Composer’s category pane, click your right mouse
button, and select New.

The Create a New Terminal Style Sheet wizard appears.

2 Type a Name for the new style sheet. Optionally, you may type in
Description text.

3270 Connect User’s Guide30

3 Click the Next button. The Style Sheet Editor window appears.

4 Use the Style Sheet Editor as described below to configure your style sheet:

Style Sheet - Select a style sheet from this drop down list to change the
appearance of the emulation screen in the native environment pane. This
field initially contains the name you specified on the first page of the
Terminal Style Sheet wizard. To create a new style sheet, type a name
over one of the names in the list.

Set Default - Select this button to make the currently selected style sheet
the default for a component.

Form Map
Cell Width/Height - Modify these settings for drawing characters that
may be truncated by changing font types.
Background - Select this button to see background color options for the
style sheet.

Getting Started with the 3270 Component Editor 31

Field Style Map
3270 Style - This control lists the styles available from the TDS. You
cannot edit these values. Select the style you wish to map to a new style
you create.
GUI Style - This control lists available styles you create. Type over an
existing style to create a new one, then specify its Font, Foreground,
and Background using the corresponding buttons.
Border Style - Select one of three pre-defined borders from this drop
down list. You cannot edit this control.
Transparent Background - Select this check box if you want the GUI to
have a transparent background.

5 Click OK. The newly created style sheet resource appears in Composer’s
detail pane.

Creating XML Templates for Your Component

In addition to a connection resource, a 3270 component may also require that you
have already created XML templates so that you have sample documents for
designing your component. See Chapter 5, Creating XML Templates in the exteNd
Composer User’s Guide for more information.

New style sheet resource

3270 Connect User’s Guide32

In many cases, your input documents will be designed to contain data that a
terminal operator might type into the transaction interactively. Likewise, the
output documents are designed to receive data returned to the screen as a result of
the operator’s input. For example, in a business scenario, a terminal operator may
receive a phone request from a customer interested in the price or availability of
an item. The customer gives the operator a SKU number, which he or she enters
into the system. This represents a SKU number in an input document. Likewise,
when the operator’s terminal receives information back from the mainframe,
based on the SKU, and the operator provides this information back to the
customer, this represents the output document.

Also, if your component design calls for any other xObject resources such as
custom scripts or code table maps, it is best to create these before creating the 3270
Component. For more information, see the exteNd Composer User’s Guide.

33

3

Creating a 3270 Component

Creating a 3270 Component Chapter 3

Before Creating a 3270 Component
As with all exteNd Composer components, the first step in creating a 3270
component is to specify the XML templates needed. For more information, see
Creating a New XML Template in the Composer User’s Guide.

Once you’ve specified the XML templates, you can create a component, using the
template’s sample documents to represent the inputs and outputs processed by
your component.

Also, as part of the process of creating a 3270 component, you must select a 3270
connection or you can create a new one. See “Creating a 3270 Connection
Resource” on page 18.

To create a new 3270 Component:

1 Select File>New>xObject. Select the Component tab and choose 3270
Terminal.

NOTE: Alternatively, under Component in the Composer window category
pane you can highlight 3270 Terminal, click the right mouse button, then
select New.

2 The Create a New 3270 Component Wizard appears.

3270 Connect User’s Guide34

3 Enter a Name for the new 3270 Component.

4 Optionally, type Description text.

5 Click Next. The XML Input/Output Property Info panel of the New 3270
Component Wizard appears.

6 Specify the Input and Output templates as follows.

Type in a name for the template under Part if you wish the name to
appear in the DOM as something other than “Input”.

Select a Template Category if it is different than the default category.

Creating a 3270 Component 35

Select a Template Name from the list of XML templates in the selected
Template Category.

To add additional input XML templates, click Add and choose a
Template Category and Template Name for each.

To remove an input XML template, select an entry and click Delete.

7 Select an XML template for use as an Output DOM using the same steps
outlined above.

NOTE: You can specify an input or output XML template that contains no
structure by selecting {System}{ANY} as the Input or Output template. For
more information, see “Creating an Output DOM without Using a Template” in
the User’s Guide.

8 Click Next. The XML Temp/Fault Template Info panel of the New 3270
Component Wizard appears.

9 If desired, specify a template to be used as a scratchpad under the “Temp
Message” pane of the dialog window. This can be useful if you need a place
to hold values that will only be used temporarily during the execution of
your component or are for reference only. Specify the templates as indicated
in Step 6 above.

10 Under the “Fault Message” pane, select an XML template to be used to pass
back to clients when an error condition occurs.

As above, to add additional temp or fault XML templates, click Add and
choose a Template Category and Template Name for each. Repeat as many
times as desired. To remove an XML template, select an entry and click
Delete.

3270 Connect User’s Guide36

11 Click Next. The Connection Info panel of the Create a New 3270
Component Wizard appears.

12 Select a Connection name from the pull down list. For more information on
the 3270 Connection, see “Creating a Connection Resource” in Section 2 of
this Guide.

13 Click Finish. The component is created and the 3270 Component Editor
appears.

Creating a 3270 Component 37

About the 3270 Component Editor Window

The 3270 Component Editor includes all the functionality of the XML Map
Component Editor. It contains mapping panes for Input and Output XML
documents as well as an Action pane.

There are two key differences, however. The first is that the 3270 Component
Editor also includes a Native Environment pane common to all Connects. It
contains a 3270 or emulator and appears black until you select the Record or
connect button in the 3270 Component Editor window. Pressing the Record button
establishes a 3270 emulation session inside the Native Environment pane with the
host specified in the connection used by the 3270 component. The second
difference is the addition of a panel containing only an XML DOM called
ScreenDoc to the component editor window. This DOM presents an XML
document representation of each screen received from the host and is available for
reference and creating mapping actions within the component, and is available in
the expression builder, allowing the user to easily reference a screen field. For
those who want to create a quick HTML representation of the 3270 screen, they
can use the output of the ScreenDoc DOM and apply a style sheet to create an
HTML representation of the screen.

3270 Connect User’s Guide38

Input pane

Output pane

Native Environment pane

ScreenDoc
DOM

Action Model pane

Creating a 3270 Component 39

About the 3270 Native Environment Pane

The 3270 Native Environment pane provides 3270 emulation of your mainframe
environment. From this pane, you can perform the following:

Map data from an Input XML document (or other available DOM) and use it
as input for a 3270 screen field. For example, you could drag a SKU number
from an input DOM into the part field of a 3270 screen, which would then
query the mainframe and return data associated with that part number, such
as description and price.

Map the data from the returned 3270 screen and put it into an Output XML
document (or other available DOM, e.g., Temp, MyDom, etc.).

Map header and detail information (such as an invoice with multiple line
items) from an XML document into the transaction accessed in the native
environment pane using a special Multi-Row action.

Map header and detail information (such as customer name and transaction
history) from the transaction in the native environment pane into an XML
document.

The transaction functionality of the Native Environment pane is identical to that
of a 3270 terminal or terminal emulator.

About 3270 Keyboard Support

The 3270 Native Environment pane supports the use of several attention identifier
or AID keys: Enter, Clear, PA1-3, and PF1-24. The function for each attention key
varies, depending on the host application. These keys are mapped to the PC
keyboard as follows:

Table 3-1

You can either use the keys directly from the keyboard as you create a 3270
component or you can use a keypad tool bar available from the View menu.

3270 Key PC Key

Enter Enter

Clear ESC

PF1 through PF12 F1 through F12

PF13 through PF24 Shift F1 through Shift F12

PA1 through PA3 Ctrl F1 through Ctrl F3

3270 Connect User’s Guide40

About the ScreenDoc DOM

The ScreenDoc DOM is an XML document representation of the current screen
received through the terminal data stream in the Native Environment pane. All
Mapping actions to and from the screen display (including drag and drop) actually
reference elements in the ScreenDoc DOM. This provides you with the advantage
of being able to see and reference your familiar application screens while at the
same time working with them as XML documents.

What it does

The 3270 component communicates with the host environment via the block
mode terminal data stream in an asynchronous fashion. A block of data essentially
represents a screen. The host sends a screen block that is displayed in the
component. The screen is edited by the user (and ultimately by the component you
create) and the modified screen is sent back to the host for processing after you
press an AID key.

How it works

During the recording mode, each time a screen block of data is received by the
component, four things happen simultaneously:

The new screen is displayed in the Native Environment pane.

A Map Screen action appears in the Action Model. The Map Screen action is
where you will add, change, and delete actions for this particular screen.
Each time a new screen block is received as you build the component, a new
Map Screen action is created.

The Map Screen action calculates and records how many TDS fields were
received for this particular screen. This information is used for validation
purposes the next time the component is run.

The ScreenDoc DOM is refreshed with a new DOM that reflects the screen
just received. Block mode terminals send their data as a stream of fields.
These fields are defined using screen creation utilities in the host
environment (such as BMS in CICS).

Creating a 3270 Component 41

The fields are represented in the ScreenDoc DOM in the order they appear on the
screen starting from the upper left corner of the screen, moving across to the right,
then down a row starting again at the left and so on until the entire 80x24 screen
area is covered. Depending on how the original screen layout was defined, there
can be many fields. Some FIELDs are text labels on the screen and usually have
display attributes of protected (prot) and bright (brt). Some FIELDs are for data
entry and have an attribute of unprotected (unprot). Other FIELDs contain data but
are hidden from display with an attribute of dark (drk). Finally there are special
screen fields for implementing tabbing features on the screen, which are protected
from entering data and called bypass fields with an attribute bypass.

The end result of listing all the TDS fields is that the ScreenDoc DOM can be quite
large. Its use is primarily intended for finding hidden fields, verifying fields and
their locations by their attributes, and in cases where it is convenient, mapping
from the ScreenDoc DOM to the Output DOM using Composer’s drag and drop
features.

NOTE: Normally it is much quicker and more efficient to map directly to and from
the Native Environment pane using drag and drop instead of mapping to the
ScreenDoc DOM.

Each field in the TDS is represented in the ScreenDoc DOM as an element titled
FIELD. The ScreenDoc DOM contains as many FIELD elements as there are
fields in the TDS. The element displays any data defined for the field. Note that
screen fields are used for both field labels and data-entry fields.

About the ScreenDoc DOM

Whenever a Map Screen action executes, a new screen is displayed in the Native
Environment Pane (NEP). Each time a screen displays in NEP, an XML
representation of the screen is created in the ScreenDoc DOM. (To make this
DOM visible, you may need to select a View from the menu bar, then the Window
Layout choice next pick the XML Layout Tab, and finally move ScreenDoc to the
Visible list and click OK. To help locate the screen cursor position
programatically, each ScreenDoc Field returned by the TDS will have an attribute
named “cursor.” The attribute value of the cursor will be “false” for all the Fields
except one whose value will be “true.” To determine which Field has the cursor,
you can write an expression to check the cursor attribute and return the Field’s id
attribute as shown below.

3270 Connect User’s Guide42

In the sample list of ScreenDoc Fields in the above graphic, the XPath location
ScreenDoc.XPath (“SCREEN/FIELD[@cursor= ‘true’]/@id”) would return the
number “4” indicating that Field 4 is the current cursor location.

Each element also displays the following attributes for the field:

Table 3-2

Attribute Meaning

Column The screen column (1-80) where the field begins
starting from the left

Cursor Attribute value which can be “false” for all fields
except one must be “true”

Display Display attributes defined for the field in the TDS
(prot = protected, brt = bright, unprot=
unprotected, dark = dark, bypass = bypass)

Id An absolute sequence number representing the
fields position in the TDS

Length The fixed length of the field (1-80)

Row The screen row (1-24) where the field begins
starting from the top

Creating a 3270 Component 43

About 3270-Specific Menu Bar Items
View Menu

Keypad Tool Bar - This selection displays a keypad tool bar for the 3270 terminal
keys. It is docked to the top of the native environment pane. You can drag the
keypad from this location, changing it to a floating window. When you close the
floating window, the keypad returns to the native environment pane. To remove
the keypad from sight, select View, then Keypad Tool bar from the menu bar.

Component Menu

Style Sheet - This selection displays the style sheet editor dialog. It contains a few
pre-defined style sheets that appear as resources on the main Composer window.

Start/Stop Recording - This selection manages the automatic creation of actions
as you interact with a screen transaction. Start will create actions as you interact
with the screen and Stop will end action creation.

Connect/Disconnect - This selection allows you to control the connection to the
host. When you are recording or animating, a connection is automatically
established, so you are not required to use this button at that time. However, this
button is useful if you want to establish a connection simply to navigate through
the 3270 environment when you are not recording or animating.

3270 Connect User’s Guide44

About 3270-Specific Context Menu Items

The 3270 Connector also includes context menu items that are specific to this
Connector. To view the context menu, place your cursor in a field in the native
environment pane and click the right mouse button. The context menu appears as
shown.

The function of the context menu items are as follows:

Map - Allows you to create a Map action. This is done by highlighting a source in
the Input DOM, then highlighting a source in the Native Environment Pane. As a
result, a map action is created. Also you can click the RMB in the Native
Environment pane, select Map, and an action is created.

Style Sheet - Allows you to change the appearance of the native environment pane
by applying a different Style Sheet.

Field Test - Allows you to create a Throw Fault action for the selected field. An
expression for the fault condition will automatically be entered for you, based on
the field you clicked when you brought up the context menu. Select Throw
System Fault to define a new error message. (You have access to the ECMAScript
expression builder.) Alternatively, you may select Throw Defined Fault to select
a previously defined Fault Document from the dropdown list.

Creating a 3270 Component 45

For more information on how to use Throw Fault Actions, refer to Chapter 9 of the
Composer User’s Guide.

About 3270-Specific Buttons
The 3270 Connect includes two additional tools on the component editor tool bar:
the Record button and the Connect/Disconnect button. The Record button
enables the automatic creation of actions in the Action Model as you interact with
screen transactions. The Connect/Disconnect button controls your connection to
the mainframe. They appear as shown.

Off On Connected Disconnected

Record Connect/Disconnect

3270 Connect User’s Guide46

47

4

Performing 3270 Actions

Performing 3270 Actions Chapter 4

About Actions
An action is similar to a programming statement in that it takes input in the form
of parameters and performs specific tasks. Please see the chapters in the Composer
User’s Guide devoted to Actions.

Within the 3270 Component Editor, a set of instructions for processing XML
documents or communicating with non-XML data sources is created as part of an
Action Model. The Action Model performs all data mapping, data transformation,
data transfer between mainframes and XML documents, and data transfer within
components and services.

An Action Model is made up of a list of actions. All actions within an Action
Model work together. As an example, one Action Model might read invoice data
from a disk, retrieve data from a mainframe inventory database, map the result to
a temporary XML document, make a conversion, and map the converted data to
an output XML document.

The Action Model mentioned above would be composed of several actions. These
actions would:

Open an invoice document and perform a 3270 command to retrieve invoice
data from a mainframe database

Map the result to a temporary XML document

Convert a numeric code using a Code Table and map the result to an Output
XML document.

3270 Connect User’s Guide48

About 3270-Specific Actions

The 3270 Connector includes several actions that are specific to the 3270 and are
not included with Composer.

Table 4-1

Map Screen

In addition to showing where in the Action Model a specific transaction screen
appears, the Map Screen action is also used for error checking. When a screen is
first recorded, Composer saves a count of how many fields are in the screen. This
count is compared later during execution for error checking to ensure the actions
recorded will return the proper information. The Map Screen action appears in the
Action Model as shown.

3270 Action Description

Map Screen Indicates location in the Action Model to place
actions relative to a specific transaction screen.

Multi Row This action allows you to specify the mapping of
many-to-many data relationships between a
DOM and the 3270 screen.

Send Attention Key This action is created automatically by pressing
any Aid key. The action can be edited to change
the key sent back to the host.

Map Screen Action

Performing 3270 Actions 49

Multi Row

The Multi Row action can be used to input data from an XML document to a 3270
screen, or to output data from a 3270 screen to an XML document. This action
essentially creates repeat loops within the Action Model that map multiple rows of
data automatically from one document or screen to another. The Multi Row action is
discussed in detail in “About the 3270 Multi Row Wizard” on page 67.

Send Attention Key

Each time you select one of the AID keys displayed in the native environment tool bar,
or its corresponding keyboard key, or keys, (See “About 3270 Keyboard Support” on
page 39) a Send Attention Key action is mapped in the Action Model.

Double-clicking the Send Attention Key action in the Action Model displays a dialog
box that allows you to edit the key. Select from the dropdown list box the Value Key.
Click on the checkbox to override the cursor position. Edit the row and column if
needed or click on the expression builder icon to add a calculation.

Send Attention
Key action

3270 Connect User’s Guide50

3270 Specific Expression Builder Extensions

The Connect for TN3270 exposes a number of 3270-specific ECMAScript
variables and object extensions, which are visible in Expression Builder picklists.
The 3270-specific items are listed under the node labelled “3270.” There are two
child nodes: Login and Screen Methods. See illustration below.

Login

3270 Connection Resources have three global variables that are accessible from
Expression Builder dialogs: USERID, PASSWORD and RESOURCENAME.
The first two properties (available under the Login node of the picktree) specify
the User ID and Password values that may be requested by the host system when
you connect. The RESOURCE NAME variable specifies the Name of the
Resource as specified in the Advanced dialog of the 3270 Connection Dialog.
You can map any of these variables into the terminal screen, which eliminates the
need for typing user, password and resource information explicitly in a map
action.

NOTE: You can also create a Send Buffer action where the XPath source is
defined as $PASSWORD.

3270-specificpicktree nodes

Performing 3270 Actions 51

Screen Methods

When an Expression Builder window is accessed from a Map or Function action
in the 3270 Component, the picklists at the top of the window expose special
3270-specific ECMAScript extensions, consisting of various methods of the
Screen object and predefined escape sequences corresponding to various “special
keys” on the virtual terminal’s keyboard.

Hover-help is available if you let the mouse loiter over a given picktree item. (See
illustration.)

In addition, you can obtain more complete online help by clicking Help in the
lower left corner of the dialog.

The Screen object offers methods with the following names, signatures, and usage
conventions:

String getText(nOffset, nLength)

This method returns the string of characters (of length nLength) that occurs in the
Screen object at the byte offset given by nOffset. Note that the offset is one-
based, not zero-based. Thus, to obtain all of a 24 x 80 screen as an ECMAScript
String, you would do:

var wholeScreen = Screen.getText(1, 24 * 80);

3270 Connect User’s Guide52

Any attempt to obtain character data beyond the bounds of the screen buffer will
result in an exception. For example, the following call will fail:

var wholeScreen = Screen.getText(1, 1 + 24 * 80); // ERROR!

String getTextAt(nRow, nColumn, nLength)

This method returns an ECMAScript String that represents the sequence of
characters (of length nLength) in the current screen starting at the row and
column position specified. Note that nRow and nColumn are one-based, not zero-
based. A zero value for either of these parameters will cause an exception.

To obtain all of row 20 of a 24x80 screen, you would do:

var myRow = Screen.getTextAt(20, 1, 80);

The getTextAt() technique is used internally in drag-and-drop Map actions
involving screen selections.

String getTextFromRectangle(nStartRow, nStartColumn,
nEndRow, nEndColumn)

This method returns a single String consisting of substrings (one per row)
comprising all the characters within the bounding box defined by the top left and
bottom right row/column coordinates specified as parameters. So for example, in
24x80 mode, you could obtain the upper left quarter of the screen by doing:

var topLeftQuadrant =
Screen.getTextFromRectangle(1,1,12,40);

The getTextFromRectangle() method is used internally in drag-and-drop
Map actions involving rectangular screen selection regions created using the
Shift-selection method.

Note that the string returned by this method contains newline (\u000a) delimiters
between substrings. That is, there will be one newline at the end of each row’s
worth of data. The overall length of the returned string will thus be the number of
rows times the number of columns, plus the number of rows. For example,
Screen.getTextFromRectangle(1,1,4,4).length will equal 20.

Performing 3270 Actions 53

void setText(nOffset, aText)

The setText() method allows you to send data to a field in the screen
programmatically, beginning at a byte offset given by nOffset. Note that the
offset is one-based, not zero-based. If the text string is longer than the available
field, text is inserted up to the length of the current field. The following example
places a phone number string in the second row and the 12th column (This would
be an offset of 92, in a screen with 80 columns per row):

var myPhone = "(203) 225-1800";

if (Screen.getPrompt().indexOf("Phone") != -1)

Screen.setText(92, myPhone); // send string

void setTextAt(nRow, nColumn, aText)

The setTextAt() method allows you to send data to a field in the screen
programmatically, specifying a Row and Column location to start. If the text string
is longer than the available field, text is inserted up to the length of the current
field. The following example places a phone number in the 8th row, 20th column:

var myPhone = "(203) 225-1800";

if (Screen.getPrompt().indexOf("Phone") != -1)

Screen.setTextAt(8, 20, myPhone); // send string

Recording a 3270 Session
The 3270 component differs from other components because a major portion of
the Action Model is built for you automatically. This happens by interacting with
a live session from the host in the Native Environment pane and Composer
recording your activity as a set of actions in the Action Model. In other
components, you must manually create actions in the Action Model, which then
perform mapping, transformation, and transferring tasks. When you create a 3270
component, you essentially record the requests and responses to and from the
mainframe, which are entered as actions in the Action Model pane. For example,
when you select the Enter button in the 3270 Native Environment pane, the
Action Model records the action as shown in the graphic below. In addition, you
can add actions to the Action Model just the same as other components.

3270 Connect User’s Guide54

NOTE: You should be familiar with 3270 commands and the application you are
interfacing into your XML integration project in order to successfully build a 3270
component.

To record a 3270 session:

1 Create a 3270 component per the instructions in “Before Creating a 3270
Component” on page 33. Once created, the new 3270 component appears in
the 3270 Component Editor window.

NOTE: In addition to the buttons found on the XML Map Component Editor
tool bar, the 3270 Component Editor includes a Record and
Connect/Disconnect button as shown above.

2 Click the Record button. An input screen appears in the Native Environment
pane and a “Map Screen” action is recorded in the Action Model pane.

Record button Connect/Disconnect button

Performing 3270 Actions 55

3 Type “PART” in the input screen of the 3270 environment pane as shown
below.

NOTE: The 3270 commands are case sensitive and must be entered in ALL
CAPS.

4 Click the Enter button in the 3270 pane. The ENTER PART screen appears
in the 3270 pane and the actions are recorded in the Action Model pane
under Screen Actions.

Recorded
action

3270 Connect User’s Guide56

5 Drag the SKU data from the Input DOM to the SKU field in the 3270
ENTER PART screen. The action is recorded in the Action Model pane and
appears in the status bar.

Typing in “PART” and clicking Enter
are recorded as screen actions.

Performing 3270 Actions 57

NOTE: You can also use the Map Action to map the Input SKU to the
ENTER PART screen SKU field; however, dragging and dropping is much
quicker and easier. For more information on the Map Action feature, see the
exteNd Composer User’s Guide.

6 Click the Enter button in the 3270 pane. The 3270 ENTER PART screen is
populated with the SKU’s associated data.

7 Drag and drop an element from the ENTER PART screen to the Output
DOM, for example, the SKU number. The data you drag and drop appears in
red in the Output DOM.

Action Model and status bar reflect
drag and drop action

3270 Connect User’s Guide58

8 Continue to drag and drop data elements from the ENTER PART screen to
the desired field in the Output Part until complete. Each time an element is
dragged from the ENTER PART screen to the Output Part an action is
recorded in the Action Model pane.

9 Click the Save icon on the toolbar.

Editing a Previously Recorded Action Model

You will undoubtedly encounter times when you need to edit a previously
recorded action model. Unlike editing other components, editing a 3270
component requires extra attention. When a 3270 component executes, it plays
back a sequence of actions that expect certain screens and data to appear in order
to work properly. So when editing a component you must be careful not to make
the action model sequence inconsistent with the mainframe transaction execution
sequence you recorded earlier.

In general, to ensure successful edits, the following recommendations apply:

Do not cut or copy “Map Screen” action blocks and paste them into other
locations in your action model.

Carefully check and edit individual Map actions that interact with the screen
after copying and pasting them within an action model.

Performing 3270 Actions 59

Use Composer's drag and drop features to add new Map actions that interact
with the screen. Animate to the line of interest in your Action Model, pause
animation, and turn on Record mode. This will prevent your Action Model
from getting out of sync with the proper ScreenDoc DOM and /or fields
within a specific ScreenDoc DOM.

Don't delete any Multi-Row related lines (or any actions for that matter) in
your Action Model during animation. This may prevent your component
from functioning properly.

Changing an Existing Action

The following procedure will explain how to change an existing action in a
previously recorded session.

To Change an existing action in a previously recorded Action Model:

1 Open the component that includes the previously recorded Action Model
that you’d like to edit. The component appears in the 3270 Component
Editor window.

2 Navigate to the action in the Action Model where you’d like to make your
edit and highlight the action.

3270 Connect User’s Guide60

3 Click the Toggle Breakpoint button. The highlighted action becomes red.

4 Click the Start Animation button. The animation tools become active.

Start animation
Toggle breakpoint

Run to Breakpoint/End

Performing 3270 Actions 61

5 Click the Step to Breakpoint/End button. The Action Model executes all of
the actions from the beginning to the breakpoint you set in step 3 above and
appears as shown.

6 Click the Pause button on the animation tool bar.

7 In the Component Editor tool bar, click the Record button.

8 Execute any additional actions that you’d like to add to the Action Model.

9 Select File, then Save, or click the Save button on the Component Editor
tool bar.

10 Follow the instructions in “Using the Animation Tools” to test your
component.

Editing Attention Keys

Whenever you press Enter on the keyboard or click one of the many attention
keys in the 3270 Native Environment pane while recording a session, an action is
recorded in the Action Model. An example of this is shown below.

Record button Pause button

3270 Connect User’s Guide62

These actions, like any other, can be deleted, moved, or copied. You may also
double click an Attention Key action and edit it from a dialog box.

Adding a New Action

The following procedure explains how to add a new action in a previously
recorded session.

To Add a Action to a previously recorded Action Model:

1 Open the component that includes the previously recorded Action Model
that you’d like to add an action in. The component appears in the 3270
Component Editor window.

Performing 3270 Actions 63

2 Navigate to the action in the Action Model where you’d like to add the
action and highlight the action.

3 Click the Toggle Breakpoint button. The highlighted action becomes red.

3270 Connect User’s Guide64

4 Click the Start Animation button. The animation tools become active.

5 Click the Run to Breakpoint/End button. The Action Model executes all of
the actions from the beginning to the breakpoint you set in step 3 above and
appears as shown.

Start animation Toggle breakpoint

Run to Breakpoint/End

Performing 3270 Actions 65

6 Click the Pause button on the animation tool bar.

7 In the Component Editor tool bar, click the Record button.

8 Use Composer's drag and drop features to add new Map actions that interact
with the screen. The new action will be added directly under the highlighted
line.

9 Select File, then Save, or click the Save button on the Component Editor
tool bar.

10 Follow the instructions in “Using the Animation Tools” to test your
component.

About Adding Alias Actions

If you are adding Map Actions in a loop that are alias perform the following steps:

To Add an Alias Action to a previously recorded Action Model:

1 Open a component.

Record button

3270 Connect User’s Guide66

From the Action menu, select New Action, then Map. The Map Action
dialog box displays.

2 Select the Xpath and from the dropdown list for Source, Order_Lines is
selected from the dropdown list.

3 Either type in the information, or click the Expression Builder button and
create a new expression.

4 Create an XPath to be represented by the alias. Click from the dropdown list
for the alias

5 Click OK.

The new action is inserted below the line you select. (New line is highlighted
in the screen below to show it was inserted.

Performing 3270 Actions 67

Deleting an Action

The following procedure explains how to delete an action in a previously recorded
session

To Delete an Action to a previously recorded Action Model:

1 Highlight the action line that you want to delete.

2 Click on the RMB and select Delete from the menu. You may also highlight
the line and press the Delete button on your keyboard.

About the 3270 Multi Row Wizard
The 3270 Connect includes drag and drop capabilities that allow you to drag data
from an XML document into a 3270 or from a 3270 screen into an XML document
quickly and easily; however, in cases where there are a variable number of rows
and possibly multiple screens of data, using the drag and drop method is not
effective. To resolve this issue, the 3270 Connector includes a Multi Row Wizard
that allows you to specific the mapping of many-to-many data relationships
between a DOM and the 3270 screen. The Multi Row Wizard, which appears as an
option in the Action>New Action menu of a 3270 component, can be used to
input data from an XML document to the repeating area of a 3270 screen, or to
output the repeating data from a 3270 screen to an XML document. The Multi
Row Wizard essentially creates repeat loops within the Action Model that map
multiple rows of data automatically from one document or screen to another until
complete, regardless of the number of rows or number of screen pages.

3270 Connect User’s Guide68

About the Multi Row Samples in this Document

There are many ways the Multi Row Wizard can be used when inputting or
outputting multiple rows of data to and from XML documents and 3270 screens,
and not every scenario can be addressed in this document. Two basic sample
components are provided here that should give you a clear understanding of how
the Multi Row Wizard is generally used.

The first procedure shows you a component that uses the Multi Row Wizard to
input multiple elements of data from an XML document to a 3270 screen. The
second procedure shows a component that uses the Multi Row Wizard to output
multiple rows of data from a 3270 screen to an Output DOM.

The procedures in this section are strictly for demonstration purposes. Unlike the
Composer tutorial, theses procedures are not intended for following along step-
by-step.

To prepare for using the Multi Row Wizard to input data:

1 Create a component per the instructions in “Before Creating a 3270
Component” on page 33. For this example, the component is called
“3270SampleInput.” The component is shown below in the 3270
Component Editor.

2 Click the Record button. A blank screen appears in the Native Environment
pane.

Record button

Performing 3270 Actions 69

3 The user can then type in a transaction in the transaction line. This example
uses “GORD” as the transaction.

4 Press Enter on the keyboard.

NOTE: Alternatively, you may select Enter on the 3270 keypad toolbar
within the Native Environment pane. To view this tool bar, select View from
the 3270 Component Editor menu bar, then Keypad Toolbar.

This example then displays an “ENTER ORDER” 3270 screen in the Native
Environment pane.

5 The user then drags and drops the applicable header data from the input
DOM to the corresponding field in the 3270 ENTER ORDER screen. For
this example, the following data is dragged and dropped:

3270 Connect User’s Guide70

Table 4-2

The 3270 ENTER ORDER screen appears as shown.

From: DOM Field To: 3270 ENTER ORDER Screen Field

ODATE DATE:

OCUST CUST:

ONAME NAME:

OBADDR BILL TO: (First line)

OBCITY BILL TO: (Second line)

OBST BILL TO: (Second line, 2-character field to the right of city)

OBZIP BILL TO: (Second line, 5-character field to the right of state)

OSADDR SHIP TO: (First line)

OSCITY SHIP TO: (Second line)

OSST SHIP TO: (Second line, 2-character field to the right of city)

OSZIP SHIP TO: (Second line, 5-character field to the right of
state)

OPAY PAYMENT METHOD:

OPAYINFO ACCOUNT #:

Performing 3270 Actions 71

6 Identify the area of repetitive rows that you will select for the Multi Row
action.

7 For multi-row actions the user needs to define the area that contains
repeating data either manually or by highlighting the area. In this example,
the user drags the cursor over the line item input field area in the 3270
ENTER ORDER screen, beginning in the upper left corner and moving to
the lower right corner. A gray background highlight appears over the drag
marquee.

NOTE: Make sure that you start your drag process with your cursor outside
of the first field. If you start dragging within a field, Composer assumes you
are trying to move the field itself.

The 3270 input field area appears as shown.

To use the Multi Row Wizard to input data:

NOTE: If you are outputting data, see discussion further below (“To use the Multi
Row Wizard to output data:” on page 78 of the guide).

From the 3270 Component Editor menu, select Action, then New Action,
then Multi Row. The Multi Row Wizard appears. The wizard automatically
fills in the dialog based on the area you highlighted. See “To prepare for
using the Multi Row Wizard to input data:” on page 68 for an example.

Input
field area

3270 Connect User’s Guide72

If you would like to edit the fields or you did not highlight an area, you
would do so as follows:

NOTE: The 3270 screen is comprised of columns and rows - the default is
24 lines x 80 columns.

Start Line - This is the first row from the top where you want the wizard
to start counting rows.

Start Column - This is the first column where you want the wizard to
begin. Column 1 is the first column on the left.

Records Down - This is the number of records you want the wizard to
include in the loop.

Records Across - It is a common practice for COBOL programmers to
list records down a page and then continue to wrap records back to the
top. The result is several records side-by-side down a page. You would
use this field to specify how many records are listed side-by-side in a
given row.

Lines/Record - If a record is longer than 80 characters, it wraps to the
next line. If it exceeds 160 characters, it wraps to a third line. You need to
indicate how many lines are required per record.

Columns/Record - This field indicates how many columns are
included in the record, 80 being the maximum.

8 Edit the fields if desired. When satisfied with the parameters, click Next.
The second panel of the Multi Row Wizard appears.

To set up a repeat action in the Multi Row Wizard:

NOTE: If you are outputting data, see “To use the Multi Row Wizard to output
data:” on page 78.

Performing 3270 Actions 73

After completing the first panel of the Multi Row Wizard, continue as
follows.

9 Select the Input radio button in the Use XML As area. This panel is used to
create a repeat action for processing the multiple elements or screen rows. Its
use is similar to the basic “Repeat for Element” action available in all
components.

In the Representing field, click the Expression builder button. The
Expression builder window appears.

Expression builder

3270 Connect User’s Guide74

10 Expand the Input element in the XPath Content frame.

Navigate to the OITEM element and double click. The expression appears in the
comment pane in the bottom of the window. For this example, the OITEM
element is the one on which we will loop.

Click OK. You are returned to the second screen of the Multi Row Wizard, which
now appears with the new expression in the Representing field.

Performing 3270 Actions 75

NOTE: When using the Expression builder, Composer automatically
creates an Alias. In this example, Composer created the alias called OITEM.
For more information on Aliases, please see the exteNd Composer User’s
Guide.

11 Click Next. The Iterate screen of the Multi Row Wizard appears.

To iterate to the next record:

NOTE: If you are outputting data, see “To use the Multi Row Wizard to output
data:” on page 78.

This screen allows you to tell the Multi Row Wizard what to do when it encounters
an end of page. In the example (see “About the Multi Row Samples in this
Document” on page 68), there is only one page of data, so there is no check mark
in the Can Iterate to Next Record Set box.

Click Finish. The Multi Row actions you created in the wizard appear in the
Action Model pane, with the Add all multi row map actions here! comment
highlighted.

3270 Connect User’s Guide76

To add Multi Row Actions to input data:

1 Highlight the Add all multi row map actions here! comment in the Action
Model if not already highlighted.

2 Navigate to the first instance of OITEM in the Input Part pane.

3 Drag and drop the children of OITEM into the applicable fields in the first
row of line item fields in the 3270 screen as follows:

Table 4-3

4 The Input Part and ENTER ORDER 3270 screens appear as shown.

5 The Action Model pane appears as shown.

From: Input DOM To: ENTER ORDER 3270 Screen

OISKU PART

OIDESC DESCRIPTION

OIQTY QTY

OICOST COST

Performing 3270 Actions 77

6 Notice that Map actions within the Multi Row actions block reference fields
by their relative position in the row and not their absolute position within the
screen. So the target of the first Map action is $RECORD/FIELD[1]. Using
drag and drop to create your Map actions within the context of the Multi
Row will create and assign these field indexes for you automatically.

The final Action Model appears as shown.

3270 Connect User’s Guide78

7 Select File, then Save from the 3270 Component Editor menu bar, or click
the Save button.

8 Follow the instructions in “Using the Animation Tools” on page 88 to test
your component.

To use the Multi Row Wizard to output data:

1 Create a component per the instructions in “Before Creating a 3270
Component” on page 33. For this example, a component called
“3270SampleOutput” is created. The component is shown below in the 3270
Component Editor.

2 Click the Record button. A blank screen with one line appears in the Native
Environment pane.

Record button

Performing 3270 Actions 79

3 The user would navigate to the correct screen for this example the user
would type in a transaction in the transaction line. This examples uses
‘MENU” as the transaction.

Press Enter on the keyboard. This example displays an “INSTRUCTIONS”
3270 screen in the Native Environment pane.

NOTE: Alternatively, you may select Enter on the 3270 tool bar within the
Native Environment pane. To view this tool bar, select View from the 3270
Component Editor menu bar, then Keypad Toolbar.

4 In this example, “BRWS” is entered in the TRANSACTION field and
“10001” in the NUMBER field.

Press Enter on the keyboard. A “FILE BROWSE” 3270 screen appears.

3270 Connect User’s Guide80

5 For multi-row actions the user needs to define the area that contains
repeating data either manually or by highlighting the area. In this example,
the user drags the cursor over the data area beginning in the upper right hand
corner and moving to the lower left hand corner. A gray background
highlight appears over the drag marquee.

NOTE: Make sure that you start your drag process with your cursor outside
of the first field. If you start dragging within a field, Composer assumes you
are trying to move the field itself.

6 The FILE BROWSE screen appears as shown.

7 From the 3270 Component Editor menu, select Action, then New Action,
then Multi Row. The Multi Row Wizard appears. The wizard automatically
fills in the dialog based on the area you highlighted in the previous step.

Performing 3270 Actions 81

8 Edit the fields if desired. When satisfied with the parameters, click Next.
The second panel of the Multi Row Wizard appears.

9 Select the Output radio button for the Use XML As. This panel is used to
create a repeat action for processing the multiple elements or screen rows. Its
use is similar to the basic “Repeat for Element” action available in all
components.

In the Representing field, click the Expression builder button. The
Expression builder window appears.

Expression
builder

3270 Connect User’s Guide82

Expand the Output element in the XPath Content frame.

10 Navigate to the ACCINFO element and double click. The expression
appears in the comment pane in the bottom of the window. For this example,
the ACCINFO element is the one on which we will loop.

11 Click OK. You are returned to the second screen of the Multi Row Wizard,
which now appears with the new expression in the Representing field.

Performing 3270 Actions 83

NOTE: When using the Expression builder, Composer automatically
creates an Alias. In this example, Composer created the alias called
ACCINFO. For more information on aliases, please see the exteNd
Composer User’s Guide.

12 Click the Next button. The Iterate screen of the Multi Row Wizard appears.
This screen tells the wizard what to do when it encounters an end of page.

13 Check the Can Iterate to Next Record Set box.

14 Select F1 from the Iterate by attention key pull down list.

NOTE: The 3270 screen itself contains the instructions for the iteration
keys. For this example, the FILE BROWSE screen included instructions that
said to use the F1 key to page forward.

3270 Connect User’s Guide84

15 Click Next.

To complete the Boundary parameter page of the Multi Row Wizard:

1 Select the Blank Record radio button. This tells the wizard that a blank
record indicates the end point of the loop action. You may also use the
Expression builder to set a different indicator for the loop’s end point. For
more information on using the Expression builder, please see the exteNd
Composer User’s Guide

2 Click Finish. The Multi Row actions you created in the wizard appear in the
Action Model pane, with the Add all multi row map actions here!
comment highlighted.

To add the Multi Row Actions to output data:

1 Highlight the Add all multi row map actions here! comment in the Action
Model if not already highlighted.

2 Navigate to the first instance of ACCINFO in the Output DOM pane.

Performing 3270 Actions 85

3 Drag and drop the data from the 3270 FILE BROWSE screen to the Output
DOM as follows:

Table 4-4

4 The Output DOM appears as shown.

5 Select File, then Save from the 3270 Component Editor menu bar, or click
the Save button.

6 Follow the instructions in “Using the Animation Tools” on page 88 to test
your component.

To edit the Multi Row Actions:

1 Click on the MultiRow Action that you wish to change in the Action Pane.
The dialog box appears.

From: FILE BROWSE To: Output DOM

NUMBER ACCTID

NAME NAME

AMOUNT BALANCE

3270 Connect User’s Guide86

2 Click on the appropriate Tab, edit the fields and click the OK button. Refer
to the Previous sections on using the MuliRow Wizard to Input or Output
data.

Executing your 3270 Component

Composer includes animation tools that allow you to test your component. On the
3270 Component Editor tool bar you’ll find the Execute button, which allows you
to execute the entire Action Model and verify that your component works as you
intend.

To execute a 3270 component:

1 Open a 3270 component. The 3270 Component Editor window appears.

Performing 3270 Actions 87

2 Select the Execute button. The actions in the Action Model execute and,
when complete, a message appears.

3 Click OK.

Execute button

Animation tools

3270 Connect User’s Guide88

4 From the View menu, select Expand XML Documents. This expands all of
the parents, children, data elements, etc. of the XML Documents, which
allows you to see the results of the executed component. If you do not
expand the XML Documents, you won’t see if the data you wanted to move
from the 3270 environment made it to the Output DOM.

Using the Animation Tools
In the Action Model, you’ll find animation tools that allow you to test a particular
section of the Action Model by setting one or more breakpoints. This way, you can
run through the actions that work properly, stop at the actions that are giving you
trouble, and then troubleshoot the problem actions one at a time.

NOTE: The following procedure is a brief example of the functionality of the
animation tools. For a complete description of all the animation tools and their
functionality, please refer to the exteNd Composer User’s Guide.

To run the animation:

1 Open a 3270 Component. The component appears in the 3270 Component
Editor window.

NOTE: Animation and Recording are mutually exclusive modes in the
component. In order to record during animation, you must either pause, or
stop animation and then turn on record mode.

Start Animation button

Performing 3270 Actions 89

2 Click the Start Animation button in the Action Model tool bar, or press F5
on the keyboard. All of the tools on the tool bar become active.

3 Click the Step Into button. The first Map Screen action becomes
highlighted.

4 Click the Step Into button again. The instruction that enters the command
“PART” into the input field of the Native Environment pane becomes
highlighted.

5 Click the Step Into button again. The word “PART” appears in the input line
of the Native Environment pane.

Step Into button

3270 Connect User’s Guide90

6 Click the Step Into button again. The ENTER PART screen appears in the
Native Environment pane.

7 Click the Step Into button again. In the Action Model, the instruction for
dragging and dropping the SKU from the Input DOM to the SKU field of the
ENTER PART screen field becomes highlighted.

Performing 3270 Actions 91

8 Click the Step Into button again. The SKU data from the Input DOM
appears in the SKU field of the ENTER PART screen.

9 Click the Step Into button again. The ENTER PART screen becomes
populated with the data associated with the SKU number.

10 Click the Step Into button again. In the Action Model, the instruction to drag
the SKU data from the ENTER PART screen to the Output DOM becomes
highlighted.

3270 Connect User’s Guide92

11 Click the Step Into button again. The SKU data from the ENTER PART
screen appears in the SKU field of the Output DOM.

12 Continue to click the Step Into button until all the data elements from the
ENTER PART fields appear in the Output DOM, as shown.

13 Once complete, the following message appears.

Performing 3270 Actions 93

Component with Connection Action
The Component with Connection Action is unique because it allows a 3270
component to call another component allowing that component to share the same
connection. The action allows you to break up a large component into a main 3270
component and a sub-components so it is easier to maintain the Action Model. The
ability to have the main component share with the sub-component the connection
greatly reduces the amount of connection overhead and transaction navigation at
run time. Before you begin, determine how many sub-components you will
require and then build and save the shells (containing no recorded actions) for
when you are ready to begin recording.

To use the Component with Connect Action

1 Create and record the basic structure of the main component to the point
where you are ready to call a sub-component. For this example, the main
component will be entitled “3270 Caller.”

2 From the Main menu, or by clicking the RMB, select New
Action>Component/w connection. The following dialog appears.

3270 Connect User’s Guide94

3 From the Component Type pull down list, select the name of the component
type. From the Component Name pull down list, select the name of the
Component.

4 Select the passed ID if you need to change it from the pull down list. Select
the returned ID if you need to change it from the pull down list. Click OK.

5 The following action appears in the map pane.

Performing 3270 Actions 95

6 Animate the Main component and step into the Component with Connection
action, the sub-component will now open. See how the screen changed to the
component entitled “3270Called.”

7 Click on the Pause button on the Animation tool bar to enable the Record
button.

8 Click on Record button and record the sub-component actions.

3270 Connect User’s Guide96

9 Save the component before stopping the recording process.

10 The 3270 Called window will now switch back to the 3270 Caller window.

Performing 3270 Actions 97

Using Style Sheets in the Native Environment Pane
The Style Sheet feature of the 3270 Component Editor provides you with options
as to how you want to view the Native Environment pane.

To apply a Style Sheet to the Native Environment pane:

1 From the Component menu on the 3270 Component Editor window, select
Style Sheet. The Style Sheet Editor dialog appears.

2 Choose a Style Sheet from the Style Sheet drop down list. For detailed
information on using the Style Sheet editor, see “Creating a Style Sheet
Resource” on page 29.

3 Click OK.

3270 Connect User’s Guide98

Using Other Actions in the 3270 Component Editor
In addition to the Map Screen and Multi Row action, you have all the standard
Basic and Advanced Composer actions at your disposal as well. The complete
listing of Basic Composer Actions can be found in Chapter 7 of the Composer
User’s Guide. Chapter 8 contains a listing of the more Advanced Actions
available to you.

Handling Errors and Messages
This section describes common errors you may see while executing the animation
tools.

Screen Field Count Changed

This error occurs during animation or execution of certain transactions. One
condition that can cause this is when a transaction sends one or more screens to the
terminal that do not require a response from the user (i.e., pressing an Aid key)
and then sends a screen that does require a response. For instance, some
transactions are designed to display a message screen (e.g., “Please wait...”) and
then display the actual transaction screen that the user wants. The user cannot
respond to the message screen, its display is under the control of the transaction.
The problem with transactions behaving this way occurs during animation. As you
step from action to action, Composer’s Map Screen actions count how many fields
each screen has and compares this number with the original field count when you
recorded the component. Since the transaction can send a second screen before
you have stepped to its corresponding Map Screen action, the field counts get out
of sync.

Performing 3270 Actions 99

To correct this error, you must determine why the field count has changed and then

try one of the following remedial actions.

Double-click the Map Screen action that failed in the Action Model and
change the field count variable to the correct number of fields.

Double-click the Map Screen action, disable the field count checking, and

wrap the whole Map Screen action block within a Try On Error action that
will allow you to conditionally process a field count error instead of an

exception being thrown, which halts component
execution.

The Navigator Options Dialog allows you to:

Enter the field count (number) which will raise an error

You MUST remember to re-select this check box before deployment.

Override connection defaults by clicking in the checkbox to allow an
override based on the seconds entered in the Screen Wait field for one
navigation action.

Set an expression that is checked each time a packet was received and
processed

Return to the next step (which may include Screen Field Count check) if the
Screen Evaluation Expression is true.

Disable the Map Screen field count checking and add your own action to
check the field count. You can do this by creating a Throw Fault action that
checks the field count (e.g.,
ScreenDoc.XPath(“count(SCREEN/FIELD)”)>68) needed for your
application. An example is shown below.

Map Screen field count
checking box.

3270 Connect User’s Guide100

There are additional circumstances where field counts can get of sync, for
example:

A spooler message from a print job arrives unexpectedly. To remedy this, the
user would delete the errant Map Screen action from the Action Model.

Applications that send the same screen but with a variable number of fields.

Errors Involving Connections

If connection pooling is used, and there has been an attempt to log on with a bad
UserID or Password, that connection instance will not be usable and that member
of the pool will be skipped over in subsequent connection requests. An error
message will be sent to the server log saying “Logon connection in pool <Pool
name> was discarded for User ID <User ID>.” You should check for messages of
this sort during preproduction testing and/or any time performance issues arise.

There are a few different steps you can take to resolve a bad UserID or Password:

Alert your System Administrator that the UserID and Password doesn’t
work. If the administrator checks the ID and Password and it is good, then
reset the server from the Connection Manager Console.

If the UserID and Password is bad, remove it from the connection pool.

101

5

Logon Components, Connections, and Connection Pools

Logon Components, Connections,
and Connection Pools Chapter 5

This section discusses certain features available in the 3270 Connect designed to
maximize performance of deployed services.

About 3270 Terminal Session Performance
The overall performance of any service that uses back-end connectivity is usually
dependent on the time it takes to establish a connection and begin interacting with
the host. Obtaining the connection is “expensive” in terms of wait time. One
strategy for dealing with this is connection pooling, a scheme whereby an
intermediary process (whether the app server itself, or some memory-resident
background process not associated with the server) maintains a set number of
preestablished, pre-authenticated connections, and oversees the “sharing out” of
these connections among client apps or end users.

Connection pooling overcomes the latency involved in opening a connection and
authenticating to a host. But in terminal-based applications, a considerable
amount of time can be spent “drilling down” through menu selections and
navigating setup screens in order to get to the first bonafide application screen of
the session. So even when connections are reused through pooling, session-prolog
overhead can be a serious obstacle to performance.

Composer addresses these issues by providing connection pooling, managed by a
special kind of component (called a logon component) that can maintain an open
connection at a particular “drill-down” point in a terminal session, so that clients
can begin transactions immediately at the proper point in the session.

When Will I Need Logon Components?

Logon Components are useful in several types of situations:

3270 Connect User’s Guide102

When you have a need for multiple tiers of pooling based on multiple
security challenges within your system. (For example, users may need one
set of logon credentials to get into the network, another to get into the
mainframe, and another to get into the CICS region.) Serial log-in
requirements may dictate the use of multiple logon components.

When your service needs stateful “session-based” connections.

When you need the performance advantages available through connection
pooling.

If performance under load is not a high-priority issue and your connectivity needs
are relatively uncomplicated, you may not need to use Logon Components at all.
But there is no way to know if performance is adequate merely by testing services
at design time, on a desktop machine.

Components and services built with the 3270 Component Editor may appear to
execute quickly at design time (in Animation Mode, for example). But in real-
world conditions—which is to say under load, with dozens or even hundreds of
requests per second arriving at the server—session overhead can be a significant
factor in overall transaction time. The only way to know whether you need to use
the special performance enhancement features described in this chapter is to do
load testing on a server, under test conditions that mimic real-world “worst case”
conditions.

Connection Pool Architecture
When you install the 3270 Terminal Connect, three types of Connection
Resources are added to Composer’s Connection Resource wizard:

TN3270 Connection

EPI 3270 Connection

3270 Logon Connection (henceforth simply called a Logon Connection)

The TN3270 and EPI connections are true terminal connections that establish a
session with a host system (e.g., a VTAM host—a system that supports the Virtual
Telecommunications Access Method).

Logon Components, Connections, and Connection Pools 103

The TN3270 and EPI 3270 connection resources are designed to make individual
connections to the host on an as-needed basis. The connection is made just-in-time and
discarded as soon as the client is done. It is not reused in any way.

The Logon Connection, on the other hand, is different. It defines a pool of User IDs
and passwords, each of which can make its own connection (TN3270 or EPI). The
Logon Connection also serves as an indirection layer to allow clients to connect to the
host at exactly the point in the host program (exactly the screen) where the client needs
to start. This entry-point-location behavior is made possible by the Logon Component.
(A Logon Connection always uses a Logon Component to get to the actual
connection.) The architecture is shown in the graphic below.

A Connection Resource is always required in order to get to the host. (This is true for
any Composer service that uses 3270 components.) For simplicity, this diagram shows
the Connection Resource going directly to the host; in the real world, there may be
intervening delegation layers involving VTAM.

3270 Connect User’s Guide104

The Logon Component contains Actions (an action model) designed to find a
particular screen of interest in the host program. This drill-down location is the
effective entry point of the transaction for any upstream process that uses this
Logon Component. You can think of the Logon Component as a go-between
between the physical connection (represented by the Connection Resource) and
the logic layer (represented by the 3270 Component itself.

In order for a 3270 Component (at the top of the diagram) to use a Logon
Component, it needs to enlist the aid of a Logon Connection resource. The Logon
Connection is the bridge between the 3270 Component and the Logon
Component.

The kinds and responsibilities of the various objects discussed above are
summarized in the following table.

Object Role

Connection Resource
(TN3270 or EPI)

Allows a connection to be established with a
host system.

Logon Component Specialized type of component in which the
action model contains Logon, Keep Alive, and
Logoff action blocks. This component can
maintain a connection at a particular launch
screen in a host program.

Logon Connection Specialized type of Connection Resource that
associates a pool of UserIDs and passwords
with a given Logon Component type. At
runtime, connections are established for client
processes on demand (and reused), with one
Logon Component instance per connection.
Every connection in the pool provides ready
access to a given point (a particular launch
screen) in the host program, thanks to the
associated Logon Component (see above).

3270 Terminal
Component

Contains the action model that comprises the
business logic for a particular 3270 interaction
(or transaction).

Logon Components, Connections, and Connection Pools 105

The Logon Connection’s Role in Pooling

The Logon Connection differs from the ordinary “host-direct” connection
resource in that it manages pooling (the sharing of connection instances and
Logon Component instances at runtime).

In the context of a Composer service, pooling not only allows reuse of (open)
connections at runtime, it also increases the effective bandwidth of a deployed
service. Consider the simple case where you’ve designed a 3270 component that
uses a regular connection resource. In creating the connection resource, you will
have specified a UserID and password for the resource to use so that at runtime,
the component can log in to the host. When an actual running instance of your
component is using that connection, no other instance of the component can log in
to the host using that same set of credentials. The bandwidth of your service is
limited to one connected instance at a time.

With a Logon Connection, on the other hand, numerous host connections can be
maintained in a “live” state so that multiple instances of your component can
access the host (each on its own connection) without waiting. Throughput is
dramatically increased.

The diagram below shows one possible runtime case where three component
instances (two instance of 3270 Terminal Component A and one instance of 3270
Terminal Component B) are executing on the server. Instance 1 of Component A
is using UserID ‘E’ to obtain a connection. This component has its own dedicated
instances of Logon Component M and Connection S.

Terminal Component B has just finished executing and is relinquishing its
connection (established through credentials defined by UID ‘F’). Note that
because connection pooling is in effect, Component B’s downstream resources (its
Logon Component instance, M2, and its Connection instance, S2) are not simply
discarded; they remain live. As a result, Terminal Component A2 is able to obtain
(reuse) the M2/S2 resource instances that were previously held byTerminal
Component B.

3270 Connect User’s Guide106

In this diagram, Logon Connection D is associated with four connections based on
four UIDs (user IDs or credentials: A-thru-F). One is in use; another (UID ‘F’) is
alive but not being used; and two are inactive but available (i.e., valid UIDs have
been assigned, so these two connections can be made live at any time).

How Many Pools Do I Need?

It’s possible for several different 3270 components to draw from the same
connection pool. It’s also possible for different components to draw from different
pools. This means different Logon Connections.

An important factor in deciding how many Logon Connection resources (in effect,
how many pools) your service needs is the number of different start screens (or
entry point screens) needed by the various components in your project. Suppose
Terminal Component A needs to begin its work at a particular starting screen in a
host application, but you’ve also designed another component—Terminal
Component B—that needs to start on a different screen. Components A and B will
need separate Logon Connections, and the separate Logon Connections will point
to separate Logon Components. (In any given connection pool, Composer objects
are shared in such a way that every user of the pool must start at the same screen.)

Pieces Required for Pooling

The combination of a Logon Connection, a Logon Component, and its Connection
Resource form the basis of a connection pool. Starting from the host or VTAM
layer and working up the chain:

The Connection Resource defines the most basic parameters necessary for
establishing a connection with the VTAM host. When connection pooling is
in effect, runtime instances of this object are kept alive and reused.

The Logon Component defines the set of steps (actions) necessary to get to a
particular entry point in the host program. (At runtime, an instance of this
component will actually carry out those steps in order to arrive at, and
maintain ready-to-use, a particular screen location in the host program.)
When connection pooling is in effect, instances of this object are kept alive
and reused.

The Logon Connection is a special type of resource that contains all the
information needed to define a connection pool. This resource is designed to
encapsulate pool-management info and does not establish host connections
directly; instead, it delegates those responsibilities to the Logon Component
(which delegates them, in turn, to the appropriate Connection Resource).

Logon Components, Connections, and Connection Pools 107

How Do I Implement Pooling?
To create the various objects required for pooling, you’ll go through the following
basic steps (each of which will be discussed in greater detail in the sections to
follow):

1 First, you’ll create a basic connection resource. The resource will be one of:

TN3270—a standard terminal connection, or

EPI 3270—a 3270 connection implemented through the External
Presentation Interface

2 Next, you’ll create a Logon Component that uses the connection resource
defined in Step 1. As part of this process, you’ll create an action model
designed to navigate to a certain point in the host program.

3 You will create a Logon Connection resource, which is a specialized type of
connection resource that relies on a Logon Component (from Step 2) to
make the basic connection (through the resource defined in Step 1).

4 Finally, you’ll create a 3720 Terminal Component and associate it with the
Logon Connection resource of Step 3.

These steps are described in detail starting with the discussion at “Creating a
Connection Pool” further below. Before going to that section, however, you
should become familiar with the design principles behind the Logon Component
(and also the Logon Connection). We’ll start with the Logon Component, since it’s
impossible to create a Logon Connection without using a Logon Component.

The 3270 Logon Component
The Logon Component is a special type of component: It has an Action Model, yet
can be used as a connection resource as well. The Action Model of this type of
component is designed to manage a connection that will be used by multiple 3270
Terminal Components. In most respects, the Logon Component is the same as a
3270 Terminal component. The differences are:

1 In a Logon Component, the Action Model is organized around connection-
management tasks. Those tasks are implemented via special actions: the
Logon Action, KeepAlive Action, and Logoff Action.

2 A Logon Component is not invoked directly by another component or
service. Its invocation is under the control of a Logon Connection.

NOTE: A Logon Component must and can only be used in conjunction with
a Logon Connection.

3270 Connect User’s Guide108

Instead of calling the Logon Component directly, using (for example) a
Component Action, you will associate the Logon Component with a special
connection resource called a Logon Connection. When your 3270 Terminal
Component executes, it executes via the Logon Connection, which in turn
executes the Logon Component.

Logon, Keep Alive, and Logoff Actions

The Logon Component provides several screen-management capabilities that are
important factors in overall performance. These capabilities are implemented in
terms of Logon, Keep Alive, and Logoff actions:

Logon Actions—These actions navigate through the host environment and
park at a desired launch screen in the host system. The connection is
activated using UserIDs from the pool. The 3270 Terminal components that
subsequently reuse the connection have the performance benefit of already
being at the launch screen and won’t incur the overhead of navigating to the
launch screen as if they had come in under their own new session.

Keep Alive Actions—These actions do two important tasks. First, they
prevent the host from dropping a connection if it is not used within a
standard timeout period defined by the host. Second, these actions must
insure that the connection is always positioned at the “launch screen in the
host, even after performing the Keep Alive actions needed to prevent the
connection from dropping (the first important task).

Logoff Actions—These actions exit the host environment in a manner you
prescribe for all the connections made by User IDs from the pool, when a
connection is being terminated.

These actions and their meanings will be discussed in greater detail below. For
now, it’s enough to know that these three action groupings are created for you
automatically when you first create a Logon Component. Note the (empty) Logon,
Keep Alive, and Logoff action blocks in the action model shown below:

Logon Components, Connections, and Connection Pools 109

Logon Actions

Actions you place in the Logon group are primarily concerned with signing into
the host security screen and then navigating through the host menu system to a
launch screen where each 3270 Terminal component’s Action Model will start. It
is important that any 3270 Terminal component using a Logon component be able
to start execution at the same common screen. Otherwise, the performance gains
of avoiding navigation overhead won’t be realized and more importantly, the odd
3270 terminal component won’t work.

You can create actions under the Logon Actions block the same way as you would
in an ordinary 3270 Terminal Component—namely by using the Record feature to
create (in real time) whatever actions are necessary in order to enter sign-on info
such as User ID and Password (as well as your initial menu choices to arrive at the
launch screen).

NOTE: Remember to use the User IDs and Passwords from the Logon
Connection Pool. (See the discussion at “Creating a Logon Connection using a
Pool Connection” below.) To do this, you need to map the two special system
variables called USERID and PASSWORD to the appropriate fields on the screen.
By specifying these two variables, you make it possible for exteNd Composer to
automatically locate and use values from the next active and free Pool slot.

The launch screen is a common point of execution for all the 3270 Terminal
Components that use the User ID pool provided by a Logon Connection. The
Logon actions in a Logon Component (which are executed only once when a new
connection is established) let the calling component—your 3270 Terminal
Component—begin execution at a given screen in the host program.

Maximizing Performance with the Logon Component

The Logon Actions must be structured properly and therefore always begin and
end with a Map Screen Action as shown in the screen below.

3270 Connect User’s Guide110

The final Map Screen action in the Logon block guarantees that control is not
turned over to the 3270 Component before the screen of interest has arrived in the
connection. Without this, the 3270 Component could start at an invalid screen,
throw an exception, and possibly corrupt a transaction. It is not necessary for the
Map Screen to contain any actions, per se, but it is critical that the Map Screen
prevents control being passed to the 3270 Component prematurely. It also
performs a field count check on the screen when it arrives to make sure it is the
same screen captured during the initial recording session.

NOTE: You may notice when animating a Logon Component that the ending Map
Screen is skipped. This is normal design-time behavior. In a production
environment , the actions in a Logon Component always execute in an interleaved
manner with a 3270 Terminal component. Animating a Logon Component from
start to finish actually creates an abnormal sequence of events that would result in
two Map Screens being processed in succession, which is not allowed.

The performance benefit comes into play as a result not only of connection reuse
but launch-screen reuse. For example, if a User ID pool of three entries is fully
used and (ultimately) reused by the execution of a component fifteen times, the
overhead of navigating to a menu item that executes the transaction of interest will
occuro nly three times. Likewise, there will only be three logons to the host
because the Logon actions at the top of a Logon Component are executed only
once—when a new connection is activated (not when it is reused). This is key to
obtaining maximum performance in a high-transaction-volume production
settings.

Logon Components, Connections, and Connection Pools 111

NOTE: When possible, use the Try/On Error action to trap potential logon errors
that may be recoverable. Otherwise, the UserID trying to establish the failed logon
will be discarded from the pool, decreasing the potential pool size. The pool size
will remain smaller until you manually reset the discarded connections using the
exteNd Composer Enterprise Server Console for 3270. See Managing Pools
Sections in this Chapter for more details.

Keep Alive Actions

The Keep Alive block is where you will place actions that “ping the host” in
whatever way necessary to keep the connection alive so that it can be reused.

Keep Alive actions usually involve sending an AID key, such as <ENTER>, to the
host at some specified interval. However, if after sending the AID key the screen
changes to some screen that is different than the launch screen, you must be sure
to return the Logon Component to the launch screen in the Keep Alive section.
Failure to do so will leave the next component at an incorrect screen, causing it to
fail.

The Pool Info dialog of the Logon Connection setup dialog (see discussion at
“Creating a Logon Connection using a Pool Connection” below) is where you
control how often the Keep Alive actions will execute. If you specify in your
Logon Connection pool that you would like to keep a free connection active for
three minutes, but the host will normally drop a connection after two minutes of
inactivity, you can specify keyboard actions to take place at 30-second intervals to
let the host know the connection is still active.

3270 Connect User’s Guide112

Keep Alive actions will be executed multiple times, at intervals defined by the
Keep Alive parameter defined on the Pool Info dialog of the Logon Connection.

The Inactivity Lifetime parameter (just below Keep Alive on the Pool Info dialog)
tells Composer how long it should wait, in the event the connection is not actually
used by a 3270 Terminal Component, before relinquishing the connection.

NOTE: The execution of the Keep Alive actions of a Logon Component will not
cause the Inactivity Lifetime clock to reset in the Logon Connection. Only a 3270
Terminal component’s execution will reset the Inactivity Lifetime. In other words, if
a live connection is never actually used (but is merely kept alive by “Keep Alive”
actions), then it will time out according to the Inactivity Lifetime value in the Pool
Info dialog. But if the connection is used (by a 3270 component) before it times out,
the timer is reset at that point.

The last action inside a Keep Alive block should be an empty but “enabled”
navigation action. If a user disables this last action, animation will not work
properly due to two consecutive empty navigation actions occurring. For example,
if an action in Logon and the first action in Keep Alive are disabled, an error
occurs.

Logon Components, Connections, and Connection Pools 113

Maximizing Performance with Keep Alive Actions

Map Screen actions must occur at the beginning and end of the Keep Alive
section.

Not only must the Keep Alive section prevent the connection from closing, but it
must make sure that the proper launch screen is present when the execution is
completed. Therefore, the first Map Screen checks to make sure that during the
time the connection was available but not in use, an unexpected screen didn’t
arrive from the host. The ending Map Screen prevents the premature release of the
connection to the next 3270 Component. See below for a typical Keep Alive
block.

Logoff Actions

Logoff actions essentially navigate the User ID properly out of the host system
after a timeout.

Logoff actions execute once for a given connection, and only when a connection
times out (i.e. the Inactivity Lifetime expires) or the connection is closed via the
3270 Server console.

In a “best practices” sense, it’s vitally important to make Logoff Actions
bulletproof. If an exception occurs during execution of the Logoff actions, exteNd
Composer will break its connection with the host, freeing the UserID in the pool.
But the UserID may still be active on the host. Until the host kills the UserID (from
inactivity), a subsequent attempt by the pool to log on with that UserID may fail,
unless you’ve coded your logon to handle the situation. Logon failures cause the
UserID to be discarded from the pool, reducing the potential pool size and
performance overall. As with Logon and Keep Alive actions, the way to guarantee
you are on the proper screen at the end of the logoff is to end with a Map Screen.

3270 Connect User’s Guide114

Logon Component Life Cycle

Each time a User ID is activated from the Logon Connection Pool, an instance of
the corresponding Logon Component is created and associated with that User ID.
Then the Logon actions are executed until the desired launch screen is reached. At
this point the 3270 Terminal component execution begins. When it is finished
another 3270 Terminal component using the same Logon Connection may begin
executing, starting at the same launch screen.

If no other component requests the connection, then the connection-instance in
question enters an active but free state (an “idle state”) defined by the Inactivity
Lifetime and KeepAlive settings on the Pool Info dialog of the Logon Connection.
If the Keep Alive period (e.g., 2 minutes) is shorter than the Inactivity Lifetime
(e.g., 120 minutes), then at appropriate (2-minute) intervals, the Keep Alive
actions will be executed, preventing a host timeout and dropped connection; and
the Keep Alive Period begins anew.

A Logon Component’s execution lifetime is dependent on the activity of the
Logon Connection that uses it. As long as one entry in the Logon Connection pool
is active, then one instance of the Logon Component will be in memory in a live
state. A Logon Component instance will go out of scope (cease executing) when
the last remaining pool entry expires due to inactivity. The only other way to stop
execution of a Logon Component is through the 3270 Console on the Server.

About the 3270 Logon Connection

The Logon Connection is not a true connection object like a TN3270 Connection
Resource, but a pointer to a Logon Component (which in turn connects to a host
either through a conventional Connection Resource or yet more intervening
Logon Connection/Logon Component pairs). The Logon Connection
encapsulates information needed to describe a pool of connections. That includes
User IDs and passwords, plus pool settings involving the time interval between
retries on discarded connections, etc. Another function of the Logon Connection
is that it ensures the use of different instances of the same Logon Component for
all the User IDs for which connections are made.

The dialogs you’ll use in setting up a pool of User IDs for a Logon Connection are
shown in the following set of illustrations. Arrows denote the buttons that lead to
continuation dialogs.

Logon Components, Connections, and Connection Pools 115

Every Logon Connection is associated with a given Logon Component. In
addition, the Logon Connection provides the following User ID pool
functionality:

1 It allows the specification of multiple User IDs in advance ensuring that
clients are able to secure a connection when one is needed

3270 Connect User’s Guide116

2 It allows the reuse of a User ID/connection once it is established to eliminate
repeated user authentications and disconnects

3 It allows a single User ID to use multiple connections if this is supported by
the host system

4 It keeps a connection active to prevent host timeouts during inactive periods

5 It lets you specify when to remove a connection from the active pool

6 It sets a timeout period to use for a fully active pool to provide a free
connection

7 It lets you specify error handling dependent on the state of the Logon
Component used by the Logon Connection

Many-to-One Relationship of Components to Logons

In order for multiple instances of a 3270 Terminal component or different 3270
Terminal components to use a the same Logon Connection, the following
conditions must be met:

1 All the 3270 Terminal components must use the same Connection Resource
(thereby sharing the TN3270 Host, Port and data encoding parameters or
EPI 3270 connection Gateway and Server parameters)

2 All the 3270 Terminal components must have a common launch screen in
the host system from which they can begin execution (see “About the 3270
Logon Component” below for more detail).

Connection Pooling with a Single Sign-On

If your host system security supports multiple logins from a single user ID, you
may have circumstances where you wish to pool the single User ID. This can be
accomplished by performing the following steps:

Specify a User ID/Password in the Connection Resource used by the Logon
Component.

On the Pool Info dialog of the Logon Connection, specify a Pool Size greater
than 1.

Do NOT check the Override the UID/PWD setting in the Pool Info dialog
of the logon Connection.

These steps will cause each pool slot to use the User ID and Password contained
in the Connection object and not use the user IDs from the pool.

Logon Components, Connections, and Connection Pools 117

Creating a Connection Pool

Overview

When creating a 3270 Terminal component, you normally first create the
Connection object it needs. Similarly, when creating the objects comprising a
Connection Pool, you must create certain objects first, starting (in essence) at the
host and working your way backwards to the 3270 Terminal Component that will
access the host.

A typical sequence of steps for creating a Connection Pool is:

Create the host Connection

Create the Logon Component that uses the Connection

Create Logon Connection that uses the Logon Component

Create one or more 3270 Terminal Components that use the Logon
Connection

Creating a Connection
This step is simple. Create a new Connection Resource (TN3270 or EPI) as
described in Chapter 2 of this Guide. Even though you will be using User IDs and
Passwords defined in the Logon Connection later, you should still define one in
the Connection as well. This will be needed when you define the Logon
Component in the next step. Alternatively, you can simply use an existing
Connection Resource.

Creating a Logon Component

To create a 3270 Logon Component:

1 From the Composer File menu, select New> xObject, then select the
Component tab and choose 3270 Logon.

3270 Connect User’s Guide118

The Header Info panel of the New xObject Wizard appears.

2 Type a Name for the connection object.

3 Optionally, type Description text.

4 Click Next and the Connection Info panel appears.

5 Select a Connection from the drop down list.

6 Click Finish and the Logon Component Editor appears.

NOTE: Recording actions follows a series of steps. The cursor must be
positioned over Logon, turn record on, when you are done, turn Record off.
Position the cursor to Keep Alive, turn Record on, when you are done, turn
Record off. Position the cursor to Logoff, turn record on, when you are done,
turn record off.

7 Record Logon Actions for logging into the host and navigating to the launch
screen using the same Recording techniques described in Chapter 4 of this
Guide.

8 Edit the Logon Map actions that enter a User ID and Password to instead use
the special USERID and PASSWORD variables described in the section
titled “3270 Specific Expression Builder Extensions” in Chapter 4 of this
Guide.

Logon Components, Connections, and Connection Pools 119

9 Create the needed SEND Key actions in the Keep Alive section of the
Action Model (a quick way is to copy an existing SEND key action, Paste it,
and then modify the key code sent).

10 Record Logoff actions for properly exiting the host.

11 Save and Close the Logon Component.

Creating a Logon Connection using a Pool Connection

To create a 3270 Logon Connection:

1 From the Composer File menu, select New> xObject, then open the
Resource tab and select Connection, or you can click on the icon. The
Header Info panel of the New xObject Wizard appears.

3270 Connect User’s Guide120

2 Type a Name for the connection object.

3 Optionally, type Description text.

4 Click Next and the Connection Info panel appears.

5 For the Connection Type select “3270 Logon Connection” from the drop
down list.

6 In the Connect Via control, select the Logon Component you just created.

7 Click on the Pool Info button and the Pool Info dialog appears.

Logon Components, Connections, and Connection Pools 121

8 Enter a Pool Size number. This represents the total number of connections
you wish to make available in this pool. For each connection, you will be
expected to supply a UserID/Password combination later.

9 Enter a KeepAlive time period. This number represents (in minutes) how
often you wish to execute the Keep Alive actions in the associated Logon
Component whenever the connection is active but free (i.e. not being used
by a 3270 Terminal component). The number you enter here should be less
than the Timeout period defined on the host for an inactive connection.

10 Enter an Inactivity Lifetime. This number represents (in minutes) how long
you wish to keep an active free connection available before closing out the
connection and returning it to the inactive portion of the connection pool.
Remember, that once the connection is returned to its inactive state in the
pool, it will incur the overhead of logging in and navigating host screens
when it is re-activated.

11 Enter an Entry Wait time in seconds. This time represents how long a 3270
Terminal component will wait for a free connection when all the pool entries
are active and in use. If this time period is reached, an Exception will be
thrown to the Application Server.

3270 Connect User’s Guide122

12 Checking Override UID/PWD means you wish to specify User
ID/Password combinations for use in the connection pool. When checked,
this activates the Set USERIDs button. Click on the button to display the Set
USERIDs and PASSWORDS dialog.

On the Toolbar there are three icons: Add which adds an empty row, Delete,
which deletes a highlighted row and Paste which allows you to copy/paste
information from a spreadsheet into the table.

NOTE: Alternate and faster ways to enter data are to copy data from a
spread sheet and paste it into the table. Make sure your selection contains
two columns. The first column must contain UserID; the second Password.
Open the spreadsheet, copy the two columns and as many rows as needed.
Open the table and immediately press the Paste icon located on the toolbar.
You can also copy data from tables in a Microsoft Word® document using the
same technique.

13 Enter as many USERID/PASSWORD combinations needed, until you
reach the size of the pool you specified, then click OK. (If you enter more,
then the pool size will automatically adjust to the new size.)

14 Click OK to dismiss the “Set User IDs and Passwords” dialog and return to
the Pool Info dialog.

15 Optionally check the Pool Resource Names checkbox in the Pool Info
dialog, if you are using 3270E (extended protocol) and intend to manage
terminals by identifier strings. (Checking the checkbox will enable the Set
Device Names... button. Click the button to bring up the “Set Resource
Names” dialog. Then enter terminal IDs in the dialog and click OK.)

Paste Add

Delete

Logon Components, Connections, and Connection Pools 123

16 Optionally click the Use Sequential Connections checkbox if you want
Composer to establish connections in the same order that User IDs were
listed in the “Set User IDs and Passwords” dialog. Connections will be made
in numerical sequence.

17 In the Retry discarded after field, enter a value representing the number of
minutes to wait between connection retries (attempts to reestablish a
connection).

18 In the Max retry discarded field, enter a value representing the number of
connection attempts to try before giving up (which means permanently
discarding the connection).

19 Optionally check the Reuse connection only if expression is true control.
This control allows you to enter an ECMAScript expression that evaluates to
true or false based on some test of the launch screen. The purpose of the
expression is to check to make sure the launch screen is the proper one each
time a new 3270 Component is about to reuse an active free connection.
Under circumstances unrelated to your Composer service, it’s possible that
the launch screen will be replaced by the host with a different screen. For
instance, if there is a system ABEND on the host, the launch screen in the
Logon Component may be replaced by a System Message screen.

NOTE: For instructions on how to create this expression, see the discussion
at “Handling System messages” in Chapter 2 of this Guide. Also refer to
“Maximizing Performance of the 3270 Logon Connection” in this Chapter.

The following a is a sample Custom Script used to see if a particular screen
is present. If it is not, the script writes a message to the console stating that
the screen is bad and the logon connection is being released. This function is
called from the “Reuse connect only if expression is true” control on the
Pool Info dialog.

20 Click OK to return to the Connection Info panel.

function checkValidLaunchScreen(ScreenDoc)
{
 var screenText = ScreenDoc.XPath("SCREEN").item(0).text
 if((screenText.indexOf("MENU") != -1 || screenText.indexOf("APLS") != -1) &&
 (screenText.indexOf("COMMAND UNRECOGNIZED") == -1 ||

screenText.indexOf("UNSUPPORTED FUNCTION") == -1))
 {
 return true;
 }
 else
 {
 java.lang.System.out.println("Warning - Releasing logon connection at bad screen");
 java.lang.System.err.println("Warning - Releasing logon connection at bad screen");
 return false;
 }
}

3270 Connect User’s Guide124

21 Click Finish and the Logon Connection is saved.

Maximizing Performance of 3270 Logon Connection

To prevent 3270 Components from beginning execution on a connection that may
have been left on an invalid screen by a previous 3270 component, the Logon
Connection Resource allows the connection itself to check for the presence of the
launch screen. This is accomplished by using the option titled “Reuse connection
only if expression is true” on the Pool Info dialog of the Logon Connection. The
screen test you specify here is executed each time a 3270 Component completes
execution. If the test fails, exteNd Composer will immediately disconnect from
the host, possibly leaving a dangling UserID on the host. As noted before, the host
will eventually kill the user, but the UserID may be discarded from the pool if it is
accessed again before being killed, thereby reducing the pool size and
consequently overall performance.

Another reason to use the “Reuse connection only if true” option is that you can
perform very detailed tests against the screen to make sure it is your launch screen.
While Map Screen actions do perform a screen check, they only look at the
number of fields in the terminal data stream. In most cases, this is sufficient.
However, it is possible two different screens can have the same number of fields
in which case the expression based test that examines the content of the screen will
produce more rigorous results. A best practices approach mandates that you use
this feature all the time.

Static versus Dynamically Created Documents/Elements

In some Composer applications, users have a need to place various control,
auditing, and/or meta-data in an XML document. This document may or may not
be in addition to the actual elements/documents being processed (i.e. created from
an information source). If this document structure and data is dynamically created
by multiple Map actions (i.e. over 100) performance of the component and
therefore the entire service may suffer. To boost performance, create the portion of
the document structure without the dynamic content ahead of time, then load it
into the Service at runtime via an XML Interchange action and retain the Map
actions for dynamic content. This can boost performance as much as 30% in some
cases.

Creating a Logon Connection using a Session
Connection

Sometimes, you may want the extra level of control over session parameters that
a Logon Connection affords, without necessarily wanting to use pooling. In this
case, you can follow the procedure outlined below.

Logon Components, Connections, and Connection Pools 125

To create a 3270 Logon Connection:

1 From the Composer File menu, select New> xObject, then select the
Resource tab and choose Connection, or you can click on the icon. The
Header Info panel of the New xObject Wizard appears.

2 Type a Name for the connection object.

3 Optionally, type Description text.

4 Click Next and the Connection Info panel appears.

5 For the Connection Type select “3270 Logon Connection” from the drop
down list.

3270 Connect User’s Guide126

6 In the Connect Via control, select the Logon Component you just created.

7 The Screen wait (seconds) field, displays the amount of time in seconds that
a 3270 Terminal component will wait for a the next screen to arrive in the
Map Action Pane.

8 Click the Session Connections radio button and then on Session Info button.

9 The Keep Alive (minutes) number represents (in minutes) how often you
wish to execute the Keep Alive actions in the associated Logon Component
whenever the connection is active but free (i.e. not being used by a 3270
Terminal component). The number you enter here should be less than the
Timeout period defined on the host for an inactive connection.

10 The Inactivity Lifetime (minutes) number represents (in minutes) how long
you wish to keep an active free connection available before closing out the
connection and returning it to the inactive portion of the connection pool.
Remember, that once the connection is returned to its inactive state in the
pool, it will incur the overhead of logging in and navigating host screens
when it is re-activated.

11 Click in the checkmark box if you want to Reuse connection only if
expression is true. If you choose to do so, the expression field automatically
displays and you can click on the expression icon to display the if the
expression is true dialog.

Logon Components, Connections, and Connection Pools 127

Creating a 3270 Terminal Component That Uses
Pooled Connections

At this point, you are ready to create a 3270 Terminal Component that can use the
Connection Pool. For the most part, you will build the component as you would a
normal 3270 Terminal component, the only difference being the Connection you
specify on the connection panel of the New Component Wizard. (You’ll specify a
Logon Connection instead of a regular TN3270 or EPI Connection.)

To create a 3270 Terminal Component:

1 From the Composer File menu, select New>xObject, then select the
Component tab and choose 3270 Terminal.The Header Info panel of the
New xObject Wizard appears.

2 Type a Name for the component.

3 Optionally, type Description text.

4 Click Next and the XML Property Info panel appears.

5 Select the necessary Input and Output Templates and click Next, and the
Temp/Fault panel appears.

6 Select the necessary Temp and Fault Templates and click Next, and the
Connection Info panel appears.

7 Select the Logon Connection you created and click on Next, and the
Component editor appears.

8 Build the component according to instructions in Chapter 3 of this Guide.

3270 Connect User’s Guide128

Maximizing Performance of 3270 Terminal Components

Once the launch screen is obtained by the Logon Component’s logon actions, it is
handed to the 3270 Terminal Component that uses the connection. Then the 3270
Terminal component (when finished executing) leaves the screen handler back at
the launch screen. If the 3270 Component finishes without being on the launch
screen (i.e. it releases the connection back to the pool with an invalid screen), then
it is possible that all subsequent 3270 Components that use the connection may
throw exceptions, rendering the connection useless. It also will degrade overall
performance and possibly cause data integrity problems within the component
processing.

Once again, ensure that the launch screen is present. The last action to execute in
a 3270 Component must be a Map Screen that checks for the launch screen. This
can be tricky if your component has many decision paths that may independently
end component execution. You must be sure that each path ends with a Map
Screen action.

Managing Pools
Connections pools can be managed through the 3270 Console Screen.

How to Access the Console

1 If you are using the Novell exteNd Application Server, log on to your server
via your web browser using http://localhost/SilverMaster50 (or whatever
is appropriate for the version in use). In this example, Novell exteNd App
Server 5.0 is used.

Logon Components, Connections, and Connection Pools 129

NOTE: If you are not using the exteNd app server, enter a URL of this form:

http://<hostname>:<port>/exteNdComposer/Console

2 Click on the exteNd Composer link. You should see the main console page:

3 Click on the 3270 link in the left (nav) frame. The 3270 Console General
Properties Screen will come into view.

3270 Connect User’s Guide130

4 Click the Console button. A browser popup window (the Connection Pool
Management Screen) should appear:

5 To initialize a Logon Connection Pool, enter its deployment context, the
word "connection", and the actual connection name in the text field near the
bottom of the screen. (See illustration above.) Then click the Initialize Pool
button.

NOTE: Refer to the appropriate Composer Enterprise Server guide for more
information.

6 Optionally click the Refresh Console button to update the view.

Logon Components, Connections, and Connection Pools 131

Connection Pool Management and Deployed Services

The Connection Pool Management Screen displays the current state of the
connection(s) with the 3270 Connect. The screen contains a table listing the Pool
Name, Description of the connection, the maximum number of connections in the
pool, the number of connections in use, the number of connections available, the
number of connections discarded. It also contains several buttons allowing you to
perform various actions related to connection pooling, which are outlined in the
table below.

Connection Discard Behavior

The performance benefits of connection pooling are based on the ability of more
than one user to access a resource, or set of resources, at once. The way a
connection is established begins with the logon component picking the User ID
and Password from the table. If the connection fails, then it is discarded for this
User ID and Password and another is tried until a connection is established. The
failure of one connection doesn’t necessarily prevent a successful connection from
being established.

Button Name Action

Reset Discarded Resets the Discarded connections which are then
reflected in the table

Reset (Pool) Resets the Available and Discarded connections
which are then reflected in the table

 Refill (Pool) Refills the pool with the maximum number of
connections

Additional Buttons on 3270 Connection Pool Manager Console

 Refresh
Console

Shows the current status of the connection pool

 Initialize Pool Initializes a Logon Connection Pool by entering a
relative path to the deployed lib directory. This will
not work unless the deployed jar is extracted. Click
on the SUBMIT button when finished.

3270 Connect User’s Guide132

The Connect for 3270 addresses the “one bad apple” problem by discarding any
connection that can’t be established (for whatever reason: bad user ID, timed-out
password, etc.) and reusing the others. When a connection is determined to be
unusable, the Connect for 3270 will write a message to the system log that says:
“Logon connection in pool <Pool name> was discarded for User ID <User ID>.”

Screen Synchronization

Screen synchronization has special ramifications for users of pools. If a situation
arises in which a user leaves a connection without the screen returning to its
original state, the next user will begin a session with the screen in an unexpected
state and an error will occur. To prevent this, we have a screen expression which
the user can specify in the connection pool. It is important that the last action in a
3270 Component be a Send Attention Key action that will result in the session
ending with the correct logon screen active.

NOTE: The last action should be an empty Map Screen action so that the 3270
Terminal component waits until the launch screen arrives before giving up the
connection. (This should happen automatically, when you create the Send
Attention Key action, but nevertheless, the last action should be the Map Screen.)

If you want to check, at runtime, for the presence of a bad screen at the end of a
user session, include a Function Action at the end of your component’s action
model that executes a function similar to the one shown below:

function checkValidReleaseScreen(ScreenDoc)

{

 var screenText = ScreenDoc.XPath("SCREEN").item(0).text

 if((screenText.indexOf("MENU") != -1 ||
screenText.indexOf("APLS") != -1) &&

 (screenText.indexOf("COMMAND UNRECOGNIZED") == -1 ||
screenText.indexOf("UNSUPPORTED FUNCTION") == -1))

 {

 return true;

 }

 else // Write error messages to

// System.out and System.err:

 {

java.lang.System.out.println("Warning - Releasing logon
connection at bad screen");

java.lang.System.err.println("Warning - Releasing logon
connection at bad screen");

 return false;

 }

}

Logon Components, Connections, and Connection Pools 133

In this particular example, this function checks the screen text and returns true if
the screen contains “MENU” or “APLS” and does not contain “COMMAND
UNRECOGNIZED” nor “UNSUPPORTED FUNCTION.” Otherwise it returns
false.

3270 Connect User’s Guide134

135

A

Testing

Testing Appendix A

Environmental Differences between Animation Testing
and Deployment Testing

There are significant environmental differences between Animation testing in
Composer and Deployment testing. Both types of testing are needed to adequately
verify the components and services you build. The differences are detailed in the
table below.

Table A-1

Testing in Composer Deployment Testing

OS Win98 or WinNT or Win
2000.

WinNT or Sun Solaris.

Platform JRE (Java Runtime
Environment).

Application Server
complete with JRE
support for Failover,
Security, Connection
Mgt., etc.

Component or
Service Startup

Directly from Composer. By Service Triggers only
(i.e., deployment Servlets
or EJBs).

xObject access From disk files. From a JAR file in
Application Server.

Runtime Context Test individual
components or
components running
within a service.

Always from within a
service.

3270 Connect User’s Guide136

Service and
Component Inputs

Input documents
frequently come from
sample XML documents
on the local machine as
well as DOMs from other
services or components.

Input documents are
passed into the services
and components via
Service Triggers, or
DOMs from other
services or components.

Project Variables for:
* Log File Paths
* DTD URIs
* XSL URIs
* Send Mail Server
* XML Inter-
change URIs

Usually point to locations
on local machine (but
could be on Servers or
Web).

Should point to locations
on production Servers
and Web.

Testing Tools In addition to Log actions,
you can use dialog boxes
(ECMAScript alert()
function) to display
runtime values.

No dialog boxes can be
used.

JDBC Connection Doesn’t use Server
Connection Pools – May
be using Test Databases.

Uses Server-provided
Connection pools –
Should be using
Production Databases.

HTTP Connections May be pointing to local
machine or test servers.

Should be pointing to test
or production servers.

3270 Connections Usually point to test
systems and test UserIds
and Passwords.

Should point to
production systems and
production UserIds and
Passwords.

5250 Connections Usually point to test
systems and test UserIds
and Passwords.

Should point to
production systems and
production UserIds and
Passwords.

CICS(ECI) - RPC
Connections

Usually point to test
systems and test UserIds
and Passwords.

Should point to
production systems and
production UserIds and
Passwords.

Testing in Composer Deployment Testing

137

B

Java Code Pages

Java Code Pages Appendix B

About Encodings
exteNd Composer’s ability to perform character encoding conversions is tied
directly to the Java VM in use. The supported encodings vary between different
implementations of the Java 2 platform. Sun's Java 2 Software Development Kit,
Standard Edition, v. 1.2.2 for Windows or Solaris and the Java 2 Runtime
Environment, Standard Edition, v. 1.2.2 for Solaris support. The encodings can be
found at the Sun web page:

http://java.sun.com/products//jdk/1.2/docs/guide/internat/encoding.doc.html

Sun's Java 2 Runtime Environment, Standard Edition, v. 1.2.2 for Windows comes
in two different versions: US-only and international. The international version
(which includes the lib\i18n.jar file) supports all encodings in both tables.

3270 Connect User’s Guide138

139

C

3270 Glossary

3270 Glossary Appendix C

AID Key

Any of the following 3270-supported keys:

Table C-1

Field

A unit of data contained in a TDS. A field may be a label to display on the screen,
an item of data, or special blank non-display fields. Each field has its own
attributes that determine how it is displayed and if the area can be modified.

Native Environment Pane

A pane in the 3270 Component Editor that provides an emulation of an actual
3270 terminal session.

Map Screen Action

A special non-editable action that indicates the location in an Action Model where
a new terminal data stream (TDS) screen is received. Any actions intended to
interact with this screen must be placed subordinate to the Map Action’s Screen
Actions line in the Action Model.

3270 Key PC Key

Enter Enter

Clear ESC

PF1 through PF12 F1 through F12

PF13 through PF24 Shift F1 through Shift F12

PA1 through PA3 Ctrl F1 through Ctrl F3

3270 Connect User’s Guide140

Multi Row Transform

A special action for mapping repeating rows of data within a 3270 screen between
a DOM and the 3270 screen. This action also transforms the ScreenDom and
creates a hierarchical view of the screen. This action along with a Multi Row
Group action, a Decision action, and additional Repeat actions are created by the
Multi Row Wizard. Special care should be taken when editing any of these
actions.

ScreenDoc

A special DOM in the 3270 (and 5250) component editor windows representing
the current 3270 screen display as an XML document.

Send Attention Key

An action that appears in the Action Model whenever an AID key is pressed.

TDS

Terminal Data Stream

141

D

Reserved Words

Reserved Words Appendix D

The following terms are reserved words in exteNd Composer 3270 Connect and
should be avoided in any user-created labels or scripts.

• USERID

• PASSWORD

• PART

• MENU

• AID key

• SEND ATTENTION KEY

• MULTIROW

3270 Connect User’s Guide142

143

Index

Symbols
$PASSWORD 50

Numerics
3270 component

about 14
before creating 33
creating new 33
steps commonly used to create 17

3270 component editor
about the window 37
building applications 16
getting started 17

3270 Connect 13
3270 Logon Component 107
3270 native environment pane 39
3270 session, recording 53
3270 specific

actions 48
component menu 43
context menu 44
Map Screen 48
menu bar items 43
Multi Row 49
Send Attention Key 49
view menu 43

3270 Terminal Session Performance 101

A
About Adding Alias Actions 65
action menu 98
Action Model

editing previously recorded 58
actions

overview 47
using basic and advanced 98

Adding a New Action 62
advanced actions 98
AID Key, definition of 139
animation

running 88
using tools 88

attention keys, editing 61

B
basic actions 98
building applications 16

C
Code Pages

encodings 137
support 25

code table map, creating 32
component editor window 37
Component with Connection Action 93
Connection Discard Behavior 131
Connection Pool Architecture 102
Connection Pool Console, refreshing 131
Connection Pool Management and Deployed

Services 131
ConnectionPools

status 131
connection resource

about 18
creating for 3270 18

Connections
resetting discarded 131

Constant and Expression Driven Connections 18
Creating a 3270 Terminal Component 127
Creating a Connection Pool 117
Creating a Logon Connection 119
Creating a Logon Connection using a Pool

Connection 119
Creating a Logon Connection using a Session

Connection 124
custom script, creating 32

D
Deleting an Action 67

144

E
ECMAScript 20, 22, 136

Telnet-specific methods 50
environmental differences between animation and

deployment testing 135
error messages 98
Expression Builder

picklists in 51
exteNd Connectors 12

F
field, definition of 139
following 59

G
Gateway URL 20
getText() 51
getTextAt() 52
getTextFromRectangle() 52

H
Handling System Messages 26
help 16

I
Initialize Pool 131

K
KEEPALIVE 111
KeepAlive Actions 107
keyboard support 39

L
launch screen 108
Logoff action 108
Logon action 108

M
Managing Pools 128
Map Screen action, definition of 139
Maximizing Performance of 3270 Logon

Connection 124
Maximizing Performance of 3270 Terminal

Components 127
Maximizing Performance with KEEP ALIVE

Actions 113
Maximizing Performance with the Logon

Component 109
Multi Row

3270 specific 49
about samples 68
about the Wizard 67
adding actions to input data 76
adding actions to output data 84, 85
using the Wizard to input data 68, 71
using the Wizard to output data 78

Multi Row Transform, definition of 140

N
native environment pane 39

using Style Sheets 97
native environment pane, definition of 139

O
Override the UID/PWD 116

P
Password 20
PASSWORD global 50
picklists 51
pools

checking status 131
initializing 131
refilling 131
resetting 131

145

R
recording a 3270 session 53
Refill Pool 131
Refresh Consolel 131
Reset Discarded 131
Reset Pool 131

S
sample transactions 17
ScreenDoc, definition of 140
ScreenDoc DOM

how it works 40
what it does 40

Screen Field Count Changed 98
Screen Object

API for all methods 51
Screen Synchronization 132
Send Attention Key

about 49
definition of 140

setText() 53
Single Sign-On 116
Static versus Dynamically Created

Documents/Elements 124
Style Sheet

applying 97
using in the native environment pane 97

Style Sheet resource
creating 29

T
TDS, definition of 140
Temp XML Document 35
transactions, sample 17

U
UserID 20
USERID global 50

W
Wizard

Multi Row 67
using to input data 68, 71
using to output data 78

X
XML templates for 3270, creating 31

146

147

148

	Contents
	About This Guide
	Welcome to exteNd Composer and 3270 User Interface
	Before You Begin
	About exteNd Composer Connectors
	What is the 3270 (TDS) Connect?
	About exteNd Composer’s 3270 Component
	What Applications Can You Build Using the 3270 User Interface Component Editor?
	Where to Go for More Help

	Getting Started with the 3270 Component Editor
	The Sample Transactions
	Steps Commonly Used to Create a 3270 Component

	Creating a 3270 Connection Resource
	About Connection Resources
	About Constant and Expression Driven Connections
	About Code Page Support

	Handling System Messages
	Creating a Style Sheet Resource
	Creating XML Templates for Your Component

	Creating a 3270 Component
	Before Creating a 3270 Component
	About the 3270 Component Editor Window
	About the 3270 Native Environment Pane
	About 3270 Keyboard Support
	About the ScreenDoc DOM
	What it does
	How it works
	About the ScreenDoc DOM

	About 3270-Specific Menu Bar Items
	View Menu
	Component Menu
	About 3270-Specific Context Menu Items

	About 3270-Specific Buttons

	Performing 3270 Actions
	About Actions
	About 3270-Specific Actions
	Map Screen
	Multi Row
	Send Attention Key
	3270 Specific Expression Builder Extensions
	Login
	Screen Methods

	Recording a 3270 Session
	Editing a Previously Recorded Action Model
	Changing an Existing Action
	Editing Attention Keys

	Adding a New Action
	About Adding Alias Actions
	Deleting an Action

	About the 3270 Multi Row Wizard
	About the Multi Row Samples in this Document
	Executing your 3270 Component

	Using the Animation Tools
	Component with Connection Action
	Using Style Sheets in the Native Environment Pane
	Using Other Actions in the 3270 Component Editor
	Handling Errors and Messages
	Screen Field Count Changed
	Errors Involving Connections

	Logon Components, Connections, and Connection Pools
	About 3270 Terminal Session Performance
	When Will I Need Logon Components?

	Connection Pool Architecture
	The Logon Connection’s Role in Pooling
	How Many Pools Do I Need?
	Pieces Required for Pooling

	How Do I Implement Pooling?
	The 3270 Logon Component
	Logon, Keep Alive, and Logoff Actions
	Logon Actions
	Maximizing Performance with the Logon Component

	Keep Alive Actions
	Maximizing Performance with Keep Alive Actions

	Logoff Actions
	Logon Component Life Cycle

	About the 3270 Logon Connection
	Many-to-One Relationship of Components to Logons
	Connection Pooling with a Single Sign-On

	Creating a Connection Pool
	Overview

	Creating a Connection
	Creating a Logon Component
	Creating a Logon Connection using a Pool Connection
	Maximizing Performance of 3270 Logon Connection
	Static versus Dynamically Created Documents/Elements

	Creating a Logon Connection using a Session Connection
	Creating a 3270 Terminal Component That Uses Pooled Connections
	Maximizing Performance of 3270 Terminal Components

	Managing Pools
	Connection Pool Management and Deployed Services
	Connection Discard Behavior
	Screen Synchronization

	Testing
	Environmental Differences between Animation Testing and Deployment Testing

	Java Code Pages
	About Encodings

	3270 Glossary
	AID Key
	Field
	Native Environment Pane
	Map Screen Action
	Multi Row Transform
	ScreenDoc
	Send Attention Key
	TDS

	Reserved Words
	Index

