Novell exteNd Composer™
Enterprise Server

www.novell.com

5.0
USER’S GUIDE ®

Novell

Legal Notices
Copyright © 2000, 2001, 2002, 2003, 2004 SilverStream Software, LLC. All rights reserved.

Title to the Software and its documentation, and patents, copyrights and all other property rights applicable thereto,
shall at all timesremain solely and exclusively with SilverStream and its licensors, and you shall not take any action
inconsistent with such title. The Software is protected by copyright laws and international treaty provisions. You
shall not remove any copyright notices or other proprietary notices from the Software or its documentation, and you
must reproduce such notices on all copies or extracts of the Software or its documentation. You do not acquire any

rights of ownership in the Software.

Novell, Inc.
1800 South Novell Place
Provo, UT 85606

www.novell.com

exteNd Composer Enterprise Server User’s Guide
January 2004

Online Documentation: To access the online documentation for this and other Novell products, and to
get updates, see www.novell.com/documentation.

Novell Trademarks

eDirectory isatrademark of Novell, Inc.

exteNd is atrademark of Novell, Inc.

exteNd Composer is atrademark of Novell, Inc.
exteNd Director is atrademark of Novell, Inc.
jBroker isatrademark of Novell, Inc.

NetWare is aregistered trademark of Novell, Inc.
Novell isaregistered trademark of Novell, Inc.

SilverStream Trademarks
SilverStream is aregistered trademark of SilverStream Software, LLC.

Third-Party Trademarks
All third-party trademarks are the property of their respective owners.

Third-Party Software Legal Notices

Jakarta-Regexp Copyright ©1999 The Apache Software Foundation. All rights reserved. Xalan Copyright ©1999
The Apache Software Foundation. All rights reserved. Xerces Copyright ©1999-2000 The Apache Software
Foundation. All rights reserved. Jakarta-Regexp , Xalan and Xerces software is licensed by The Apache Software
Foundation and redistribution and use of Jakarta-Regexp, Xalan and Xerces in source and binary forms, with or
without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code
must retain the above copyright notices, thislist of conditions and the following disclaimer. 2. Redistributionsin
binary form must reproduce the above copyright notice, thislist of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution. 3. The end-user documentation included with
theredistribution, if any, must include the following acknowledgment: "This product includes software developed
by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear in the
software itself, if and wherever such third-party acknowledgments normally appear. 4. The names " The Jakarta
Project”, "Jakarta-Regexp", "Xerces', "Xaan" and " Apache Software Foundation" must not be used to endorse or
promote products derived from this software without prior written permission. For written permission, please contact
apache@apache.org. 5. Products derived from this software may not be called "Apache" nor may "Apache" appear
in their name, without prior written permission of The Apache Software Foundation. THIS SOFTWARE IS
PROVIDED "ASI1S" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THEIMPLIED WARRANTIESOF MERCHANTABILITY AND FITNESSFOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION ORITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright ©1996-2000 Autonomy, Inc.

Copyright ©2000 Brett McLaughlin & Jason Hunter. All rightsreserved. Redistribution and usein source and binary
forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions
of source code must retain the above copyright notice, thislist of conditions, and the following disclaimer. 2.
Redistributions in binary form must reproduce the above copyright notice, thislist of conditions, and the disclaimer
that follows these conditionsin the documentation and/or other materials provided with the distribution. 3. The name
"JDOM" must not be used to endorse or promote products derived from this software without prior written
permission. For written permission, please contact license@jdom.org. 4. Products derived from this software may

not be called "JDOM", nor may "JDOM" appear in their name, without prior written permission from the JDOM
Project Management (pm@jdom.org). THIS SOFTWARE ISPROVIDED "ASIS' AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE APACHE SOFTWARE FOUNDATION OR ITSCONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This Softwareisderived in part from the SSLava™ Toolkit, which is Copyright ©1996-1998 by Phaos Technology
Corporation. All Rights Reserved. Customer is prohibited from accessing the functionality of the Phaos software.

The code of this project isreleased under a BSD-like license [license.txt]: Copyright 2000-2002 (C) Intaio Inc. All
Rights Reserved. Redistribution and use of this software and associated documentation (" Software'), with or without
modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must
retain copyright statements and notices. Redi stributions must al so contain acopy of thisdocument. 2. Redistributions
in binary form must reproduce the above copyright notice, thislist of conditions, and the following disclaimer inthe
documentation and/or other materials provided with the distribution. 3. The name "ExoLab" must not be used to
endorse or promote products derived from this Software without prior written permission of Intalio Inc. For written
permission, please contact info@exolab.org. 4. Products derived from this Software may not be called "Castor" nor
may "Castor" appear in their names without prior written permission of Intalio Inc. Exolab, Castor, and Intalio are
trademarks of Intalio Inc. 5. Due credit should be given to the ExolL ab Project (http://www.exolab.org/). THIS
SOFTWARE ISPROVIDED BY INTALIO AND CONTRIBUTORS “"ASIS" AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT
SHALL INTALIO OR ITSCONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Contents

About This Guide

1

Welcome to Novell exteNd Composer Enterprise Server

Support for Popular App Servers oo
Service TYPES . . . v o o e e
Service THQQers o e e

Composer Enterprise Server Overview

Deployment Archive Contents,

Novell exteNd App Server Database Requirement
Push-Model versus Pull-Model Deployment
Hot Deployment
Removing (Undeploying) Existing Applications
Updating Your License.

Runtime Administration of Composer Enterprise Server

Runtime Administration Consoles
Real-Time Update
How to Access the General Properties Console
General PropertiesUl.o

Caching and Cache Administration

Least-Recently-Used (LRU) Cache Algorithm
Cacheable Objects
Cache Scope e
User-Adjustable Settings
Performance Tuningo
ConnectionPools
Database ConnectionPools
Logon Components and Non-Database Connection Pools
Proxy Servers. e
Security Roles
Publishing XML Resources
PublishingJavaClasses
Controlling Access to JAR and Classfiles

The Runtime Framework

Composer Runtime Architecture. L.
Typical Request-Handling Scenario
Alternative Request-Handling Scenarios

(@]

Framework Classes. 0 e e
Where to Find the Source Filesand JavaDoc
Packages of Interest. e
StaticConstants e e

What Types of Programming Needs Does the Framework Address?

High-Level Architecture e e
Input and Data Conversion e e e e e e
Service Names within Framework Objects.
Obtaining a Service Instance e e e
Executing the Service
Delegating Service Calls Through GXSServiceComponentBean
Data-Passing Options e

Service THQQErS. o e e e e e e
IGXSServiceRuUNNer e
GXSServiceRunner and GXSServiceRunnerEx o oL
IGXSInputConversion and IGXSExInputConversion.

EJB-Deployed Services. e e e

Transaction Management

Transaction Control in exteNd Composer. i i

Transaction Deployment Considerations for the Novell exteNd Application Server
Servlet Deployment Considerations o
EJB Deployment. e e e e
XA-Aware Database Drivers. e
EJB Deployment Considerations e
JDBC Transaction Control: Allowing User Transactions.
References. e

exteNd Application Server Dependencies
CONNECLIONS. o o o e e e e

Using Novell exteNd ConnectionPools

Contents of Deployment Objects
Deployment EAR e e
Project JAR L e

Reserved Words

Server Glossary

Composer Enterprise Server User’s Guide

About This Guide

Purpose

This guide describes how to use exteNd Composer Enterprise Server and its
related administrative facilities, APIs, and classes to deploy and manage
Composer applications. As such, it is an adjunct to the exteNd Composer User'’s
Guide.

Audience

Thisguide isaimed at the application server administrator and/or persons tasked
with deployment and amanagement of Composer services.

Prerequisites

This book assumes prior familiarity with the exteNd Composer design-time
environment and Composer application-building metaphors. You should also be
familiar with Java archive formats (WAR, EAR, JAR) and J2EE depl oyment
conceptsin general.

Organization

Thisguideisorganized asfollows:

Chapter Description

Chapter 1, Welcome to Gives a definition and overview of the exteNd
exteNd Composer suite of products.

Enterprise Server

Chapter 2, Server Briefly describes exteNd Composer Enterprise
Overview Server specifications and the production runtime

environment.

Chapter 3, Planning Your Outlines the key environmental and resource-
Deployment related factors that should be considered before
deploying a Composer service.

About This Guide 9

Chapter

Description

Chapter 4, Deploying a
Project

Explains the available Service Trigger options
and how to use the exteNd Composer
Deployment Wizard.

Chapter 5, Using the
Deployment Framework

Describes how to customize or extend the

application server framework classes for non-
standard deployments. Read this chapter if you
need to use custom service triggers.

Chapter 6, Transaction
Management

Describes options for controlling the
transactional aspects of your application.

Appendix A, Novell
exteNd Application Server
Dependencies

Describes database connection-pool issues
specific to deployment in the Novell exteNd
Application Server.

Appendix B, Contents of
Deployments Objects

Describes the content of the files that are
installed into the application server.

Appendix C, Deployment
Framework API
Documentation

Describes the exteNd Composer Enterprise
Server Java framework files.

Appendix D, Reserved
Words

A listing of keywords that are used by Composer
and should be avoided in your code.

Appendix E, Glossary

Definitions of terms used in this guide.

Conventions

This guide uses the following stylistic and typographical conventions.

Bold serif typeface within instructions indicate action items, including:

+ Menu selections
+ Form selections
+ Dialog box items

Bold sans-serif typeface indicates:

+ Uniform Resource Identifiers

+ Filenames

Composer Enterprise Server User’s Guide

Italic typeface indicates:

+ Variableinformation that you supply
+ Technical terms used for thefirst time
+ Titleof other Novell publications

Monospaced typefaceindicates:

+ Method names

+ Code examples

+ System input

+ Operating system objects

Additional documentation

For the complete set of Novell exteNd Director documentation, see the Novell
Documentation Web Site:

http://www.novell.com/documentation/exteNd.html

11

http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation/exteNd.html
http://www.novell.com/documentation/exteNd.html

12 Composer Enterprise Server User’s Guide

Welcome to Novell exteNd
Composer Enterprise Server

Novell exteNd is a suite of web application development products aimed at
reducing the time required to develop and deploy powerful XML -enabled, portal-
aware web applicationsfor use on J2EE app servers. The Composer suite consists
of three products:

+ Composer—avisual design environment for creating B2B integration
applications

+ Composer Enterprise Server—aruntime environment that executes the
applications created in exteNd Composer

+ Composer Enterpriser Connects—afamily of products that extend the
capabilities of exteNd Composer and Server to permit the XM L -enablement
of diverse enterprise information sources such as databases, host
applications, and Java components.

The focus of this Guide is Composer Enterprise Server., which is the app-server-
resident “execution engine” for Composer-built services. (Each of the above
pieces hasits own documentation, so please refer to the exteNd Composer User’s
Guide for information on the design-time Composer executable, and refer to the
variousindividual User’'s Guidesfor the specific exteNd Composer Connects that
you need to incorporate into your applications.)

What is Composer Enterprise Server?

Novell exteNd Composer Enterprise Server (or Composer Server, for short) isthe
runtime environment for applications devel oped with exteNd Composer. Itisa
Java application that runsin its own thread on a J2EE-compliant enterprise
application server. It starts up when the app server starts up and shuts down when
the server shuts down.

Welcome to Novell exteNd Composer Enterprise Server 13

Composer Enterprise Server provides both the runtime execution engine for
Composer-built services (interpreting and processing the XML metadata
deployed from Composer), and an application-server tailored framework that
provides integration with services provided by an application server (e.g., thread
management, connection pooling, load balancing, failover, security, transaction
contral).

Runtime capabilities provided by Composer Enterprise Server include:

+ Deployment assistance

+ XML parsing

+ XSL and XForms processing

+ Instantiation and execution of Connect objects viainstallable factories
+ Interpretation of XML application object metadata

+ Mediation of SOAP-related interactions with the app server

+ Mediation of various other container-level app server interactions

+ Connection pooling and caching

Support for Popular App Servers

14

Composer Enterprise Server isavailablefor (and istested against) various popular
application servers, including not only the Novell exteNd Application Server but
IBM’s WebSphere, BEA WebL ogic, and Apache Tomcat, running on various
operating systems. (For the latest support matrix, go to
http://www.novell.com/documentation/exteNd.html.)

The application framework consists partly of base classes that are environment-
independent, and partly of classestailored to the specific application server within
which exteNd Composer Enterprise Server executes. Classes that are application-
server-specific include classes responsible for:

+ Logging
+ Connection pooling

« Transaction control (Enterprise Edition only)

Composer Enterprise Server User’s Guide

http://www.novell.com/documentation/exteNd.html

Service Types

Composer applications are organized into deployabl e units of work called
services. The servicesconsist of actionsstored in components. (For amore precise
definition of these terms, please consult the Composer User’s Guide.) All of the
action-model logic, connection info, and miscellaneous resources that make up
the componentsinside aservice, aswell asthe servicewrapper itself, are packaged
as XML metadata. (In other words, aComposer serviceisnot compiled bytecode.)
This means, among other things, that you can examine any individual component
of aComposer service using an ordinary text editor.

Composer Enterprise Server isthe runtime piece that invokes or instantiates
services based on incoming requests; executes the instructions (actions) contained
in the service and its components; manages caching and connection pooling; and
provides for other runtime needs of executing services.

Composer Enterprise Server handles service-invocation requests from a number
of sources:

+ Servlet-based trigger objects (see below)
+ EJB objects

+ JSPsthat invoke a service via custom tags that, in turn, reference the
Composer tag library

+ Direct programmatic invocation by Java objects

Service Triggers

A Composer service encapsulates the logic, connection information, and
resources needed to execute a unit of work. The service does not encapsulate any
triggering mechanism; invocation is abstracted out, to another type of object,
known as a service trigger.

The service trigger isresponsiblefor:

+ Dealing with any transport-related issues

+ Dataacquisition (marshalling/unmarshalling)

+ Instantiation of the target service

+ Passing properly formatted data to the target service

In most cases, the trigger object is a conventional HTTP servlet. But there are
other possibilities, to handle non-HT TP requests. Some of the other kinds of
events that can trigger a Composer service include:

Welcome to Novell exteNd Composer Enterprise Server 15

16

+ Arriva of amessage at a (JMS) message queue/topic. (Thiskind of event is
monitored by a IMS MessageL.istener.) A service that responds to thiskind
of triggering is known in Composer as a JMS Service. This functionality is
available only when the IMS Connect product isinstalled (asin the
Enterprise Edition of the exteNd suite).

+ Thefiring of an SAP function that has been designed to use aBAPI process
to trigger a Composer servlet. Thisfunctionality is available only when the
SAP Connect product isinstalled (as in the Enterprise Edition of the exteNd
suite).

o Adisk-1/0“write” operation in agiven path location on a storage device. (A
File Trigger causes a Composer serviceto start up when anew file appearsin
agiven location.)

+ Arriva of eemail in a particular mailbox at a given mail server.

+ Direct invocation by a*“scheduled task” daemon. (Composer supports
something called a Timer trigger.)

Itis possible to assign more than one trigger type to agiven service. The trigger
merely acquires and forwards data to the service (after instantiating the service).

Servicetriggerswill be discussed in additional detail in alater section.

Composer Enterprise Server User’s Guide

Composer Enterprise Server
Overview

This chapter introduces some basic runtime issues you will need to know about if
you intend to deploy projectsto Composer Enterprise Server and administer them
at runtime. Those issues include:

+ Deployment Archive Contents

+ Push-Model versus Pull-Model Deployment

+ Hot Deployment

+ Removing (Undeploying) Existing Applications
+ Updating Your License

Cache management and other administrative issues are discussed in the next
chapter.

NOTE: This chapter assumes that you are familiar with EAR, JAR, and WAR
packaging concepts, as well as other J2EE deployment idioms. You should also be
familiar with runtime and deployment concepts applicable to the particular app
server you will be targeting (Novell exteNd, IBM WebSphere, BEA WebLogic,
Apache Tomcat).

Deployment Archive Contents

Composer followsa standard J2EE deployment model, using the EAR (Enterprise
ARCchive) file type as the deployment object.

The deployment EAR wrappersall of the project-level resources and components
you’ ve chosen to deploy. The EAR is scoped to asingle project (.spf) file. The
EAR encapsulates all servicesthat exist in your project, and the resources they
use.

Composer Enterprise Server Overview 17

You can create your deployment EAR either with Composer (design time) or
Director. If you are using Composer Enterprise Edition (or the Enterprise Edition
exteNd suite), you can use Composer’s design-time deployment wizard to deploy
projects straight to the app server (or to a staging area of your choosing). In this
scenario, Composer does all the packaging for you, automatically, and puts the
resulting EAR on the app server. The EAR isimmediately “live,” with no need to
restart the server.

The other way of creating deployment archivesisto use Director’s native J2EE

packaging facilities.

NOTE: Director-native deployment is covered in the Director documentation.
Likewise, Composer Enterprise Edition deployment procedures are covered in the
Composer User’s Guide. See the appropriate guide for more information. The
following discussion centers on low-level descriptions of deployment artifacts.

A Composer deployment EAR contains the following types of objects:

Table 2-1

Object

Use

Notes:

Project JAR File

Contains the services,
components and
resources of the project,
in XML form.

The Components and
other xObjects that
comprise your
services are stored in
metadata form (not
Java class files).
Composer Enterprise
Server uses these files
to create your runtime
objects on the app
server.

NOTE: This file is
always generated, and
is always packaged
into the deployment
EAR.

EJB Service Trigger
class files

Allows services to be
invoked through EJBs
(potentially front-ended
by JSPs), which in turn
means Container
services (for transaction
control, etc.) are
available..

EJB triggers are
required for
standalone use of
Composer services as
part of local business
applications..

Composer Enterprise Server User’s Guide

WAR file

Contains manifest.mf file
(listing the JAR resources
for this deployment) and
web.xml (see below).

Required if Servlets or
EJBs are created.
Produced by
Composer
automatically.

web.xml file

Describes information
necessary to install
Service Trigger Java
classes into the
application server. The
URI associated with the
Servlet based Service
Triggers and JNDI name
for EJBs are described in
these.

Created automatically
and stored in a WAR
file within the
deployment EAR.

SilverCmd batch file
called
ImportObjects.bat

Contains SilverCmd utility
calls to install the
deployment objects into
the Novell exteNd
application server.

Created automatically.
(And invoked
automatically, if you
choose the “Yes” radio
button on the final
screen of the
Composer deployment
wizard.) This artifact is
created only for the
Novell exteNd
Application Server.

xc_deployment_info.

xml

Contains the deployment
profile from the last time
the Deployment Wizard
was executed.

Created automatically.
Allows exteNd to
restore the previous
deployment
information the next
time a deployment is
performed.

The following diagram summarizes the containment hierarchy of a deployment

EAR.

Composer Enterprise Server Overview

19

Deployment EAR Contents (typical)

' Deployment EAR |

{optional)
Project WAR | " Project JAR | | EJB JAR |
Manifest.mf XML (xObject metadata) Manifest.mf
web . xmlt X5D (schemas) ejb-jar.xml
WSDL (web service Java class files

descriptions)

(For amore detail ed description of the contents of these obj ects, see the appendix.)

Novell exteNd App Server Database Requirement

20

Many J2EE application servers use ordinary disk storage as the “backing store”
for app-server content. By contrast, the Novell exteNd Application Server (up
through and including version 5.1) uses a database.

NOTE: For a list of supported databases and drivers, see the Novell exteNd
Application Server release notes and documentation.

The app server storesitsown internal classes and runtime artifactsin a default
database called SilverMaster (or SilverMaster50; the name always contains the
version number in the final two characters). You can deploy your own projects
(your Composer and Director EAR and WAR files) directly to SilverMaster, if you
wish. But for better encapsul ation and easier management, you may want to create
individual databases for each project. The deployment process, in this case,
involves the following steps:

+ Create adatabase and make it available to the app server (using the client-
side smc.exe (Server Management Console) application that comes with
Novell exteNd app server)

+ Specify that database’s name in the Server Profile corresponding to the
deployment you wish to perform (in Director or Composer, use Tools >
Profiles. . . to accessthe dialog where you can create or edit Server Profiles;
and specify the target database there)

+ Deploy to the app server

Composer Enterprise Server User’s Guide

The deployment database for your project need only be created and installed once.
You can then deploy and redeploy your project into that database as many timesas
needed.

NOTE: A visual Ul for managing databases and drivers installed on the app
server is available in the smc.exe (Server Management Console) app that ships
with the app server. Consult the Novell exteNd Application Server documentation
for details.

Push-Model versus Pull-Model Deployment

Deployment of Composer servicesisusually initiated from within a Composer or
Director design-time environment. Director offers a variety of wizards and tools
for creating and packaging deployment artifacts, including those needed to deploy
Composer services. (See the Director documentation for details.) Composer
Enterprise Edition hasits own wizards and toolsto enabl e direct deployment from
the Composer design-time environment. (See the separate Composer User’s
Guidefor details.) Composer can do alive deploy straight to atarget app server, or
a"“packaging only” deploy to a staging area on disk.

Composer supports a push model aswell as apull model for deployment. The
push model is the case described above, where you initiate deployment from the
design side. In the pull model, deployment isinitiated from a browser console on
the server. (See the next chapter.)

Hot Deployment

You can deploy a project to the app server while the app server isrunning, even if
an earlier version of your project already existson the server. (The old deployment
EAR issimply overwritten.) Thereisno need to undeploy an existing EAR before
deploying a new one. However, you should clear the cache (see “ Clearing the
Cache” in the next chapter) before running the newly deployed project, because
it's always possible that old objects from the previous deployment are till in
memory.

Removing (Undeploying) Existing Applications

Various app-server vendors offer various tools for managing deployed web
applications. With the Novell exteNd Application Server, you can use the
following procedure to undeploy an already deployed object (which isto say,
remove it from its host database, without removing the database itself). To
undeploy a deployed Composer project:

Composer Enterprise Server Overview 21

22

1

2

With the app server running, launch the Server Management Console
(smc.exe) application.

In the toolbar at the top of the main window, click the Deployment button
(as shown below).

'E'l, MNovell exteMd Application Server Management Console - USER: A

File “ieww Help

& & # ;gr Deployment | i P @

L)

| Display server deployment information |

% localhost:20 Deploved Objects JHDI Tree

Deployed Ohjects:
= a Sitvertazters

In the main window under Deployed Objects, locate the database that
contains the deployed project you wish to undeploy. (All databases will be
listed in tree view.) Toggle the plus sign next to the database “ parent node”
to exposeits children. The child (or leaf) nodes of the tree represent
deployed archives.

Single-click (select) the deployed archive you wish to remove. (See
illustration below.)

CAUTION: If your deployment database is SilverMaster, be careful not to
select the Director EAR nor the exteNd Composer EAR. These EARs contain
runtime executables for Director and Composer.

Composer Enterprise Server User’s Guide

!, Novell exteNd Application Server Management Console - USER: Anony) - |EI|1|

File “iew Help

2 €& & 8 12 9 & EX Novell
ﬁ localhost JHDI Tree Manage URLs Resource Adapters
Deployed Objects:
= a SilverMastersn
§Diredor50
g exteMdComposzer_ear
. Helloorld_ear
gmainest_ear %
Efiahle Disahie St oy Undeploy
Hi— D

5 Click the Undeploy button in the lower right corner of the window. The
EAR or WAR in question will disappear from tree view and will no longer
exist on the app server.

NOTE: You cannot undeploy individual Composer services one at a time. The
entire project EAR will be undeployed as a unit.

For information on how to undeploy EAR and WAR files from other app servers,
consult the appropriate vendor’s product documentation.

Updating Your License

Should the need arise to update the license string associated with Composer
Enterprise Server, you can use the Updatel icense.bat file (located in your
exteNdComposer\bin directory) to accomplish this. From the command line, run:

updat eLi cense product newLi cense [Conposer/ Server]

where product isthe name of the particular product (whose license you would like
to update, newLicense isthe license string, and the final argument (one of
Composer or Server) specifies whether to update the design-time or runtime
version of the product in question.

You can seealist of installed products by running:

updat eLi cense -L

Composer Enterprise Server Overview 23

24 Composer Enterprise Server User’s Guide

Runtime Administration of
Composer Enterprise Server

This chapter discusses subjects of importance to anyone who needs to administer
deployed Composer services. Those subjectsinclude:

+ Thevarious consoles available for managing deployed Composer services,
and how to use them

+ How toinspect and/or edit license-string info for Composer server-side
products

+ Cache management and performance-tuning issues
« Security roles

+ How to publish (and control the visibility of) JAR files and custom Java
classes

Runtime Administration Consoles

You can manage various aspects of Composer Enterprise Server’sruntime
operation through browser-based (JSP-powered) consoles. In addition to a
General Properties console page where you can exercise control over settings of
more-or-less global scope, there are individual consolesfor the various Composer
Connects (such as JDBC, LDAP, Telnet, and so on), which expose Connect-
specific settings. The GUI allows easy navigation back and forth between and
among the various console.

NOTE: The consoles depend, in part, for their functionality on JavaScript, so be
sure scripting is enabled in your browser. Your browser should also be HTML 4.0
compliant and CSS-aware. No Java applets are used, however, so there is no need
to have a Java-plugin-enabled browser.

In addition to offering aGUI for adjusting important runtime settings, the General
Properties panel of the main administrative consol e letsyou inspect and/or update
your product license(s). Thisis discussed below.

Runtime Administration of Composer Enterprise Server 25

Real-Time Update

Any console settings you wish to change or experiment with will be updated on
the server in real time, as you adjust them, so that you do not have to restart the
server. Changes to cache settings, pool settings, etc., take effect immediately.

How to Access the General Properties Console

You can use the administrative console(s) at any time after the app server is
running. The entry point isthe General Properties page.

» To access the General Properties page:

1 Besurethe application server is running, with Composer Enterprise Server
installed and operational .

2 Launch your web browser.

3 If thetarget server isNovell exteNd Application Server: Navigate to the
default host address and port (for example, http:\\localhost:80.) A master
console window similar to the following will appear, with alist of links.
Click the exteNdComposer link.

3 Directory of SilverMaster50 -Inlﬂ
J File Edit Wiew Favorites Tools Help |JLinks »
J = Back - @ ﬁ = - |JAeress J BSnaglt Y
=
SilverMaster50
Directorso
extendCompos er
Helloworld
mailtest
robots, txt
silverMasterso
silverstream
El
@ [[BEwcnmaet

Other app servers: Enter the default host | P address, port, and
“exteNdComposer/Console” in your browser window and hit Go. (The URL
should look something like http://localhost/exteNdComposer /Console.)

The General Properties console screen will appear:

26 Composer Enterprise Server User’s Guide

=10l x|

| Fle Edk View Favorites Tooks Help |JLir|ks &]TestDirector7.5 & 123E1.4.1 ”|
| Epack - @2 A = - Hngdress [@) httpiiocatastiextenac ¥ | |J 0 Sriag:

; exteMd Composer Server Console - Microsoft Internek Explorer

exteNd Composer

Novell

I’|

About Products: WM Free Mermony: 18 Mb
3270 Log Level: 5
Apply Log Level
5250
CICSRPC Cache Status
iE Expressions Cached: 33
— ¥Path Modes Cached: 0
I Functions/Code Tables Cached: 0
- Component Types Cached: 2
HP3000 Total Components Cached: 2
Clear Cache
HTML -
JDBC Cache Tuning
M Expression / ¥Path Caching: & 0n 0ff
Component Cache Expiny: 720
LDAP
Total Component Cache Size: 250 b
PROCESS LI Apply Cache Tuning LI
|®_'| l_l_l_ E Local intranet 4

General Properties Ul

Navigator Frame

The General Properties page (shown above) has atoolbar at the top, a navigator
frame on the left, and a content frame with various text fields and buttons.

The navigator frame contains links for each of the Composer Enterprise Connect
products that you have installed (including eval versions). Clicking any link will
take you to a product-specific license-info page for the Connect in question. If the
Connect in question is capable of using connection pooling, there will bea
pushbutton on the license page labeled “ Console.”

NOTE: An exception to this rule is the JDBC Connect, whose pooling is handled
by the app server rather than by Composer Enterprise Server.

Runtime Administration of Composer Enterprise Server 27

Novell®exteNd" Composer

| Yersion b

Novell® exteNd™ Composer
Enterprize Server

TELHET Connect

Werzion 5.0 (81)

@ 1996-2003 SilverStream Software LLC

License key: B1420327E000000001

[Console |

If you press the Console button, a new browser window will open, containing a
console screen with information about connection pooling. (Consult the
documentation for the individual Connects to learn more about the use of these
connection-pooling consoles.) You can also open the connection-pooling console
window(s) by use of the toolbar buttons, as described below.

Toolbar

At thetop of the page, you'll find arow of buttons on atoolbar. The exact number
and kind of buttonswill depend on the number and type of Composer Enterprise
Connect products you currently have installed on the server. The toolbar
configuration for Composer Enterprise Edition is shown below:

A2 MConzale

P PREEEELERE
= b

Each button has a hover-tip associated with it. Thetip appears above the button. In
theillustration above, the cursor is hovering over the button corresponding to the
3270 Connect product. (The tooltip says“3270 Console.”) Clicking the button

will result in anew browser window opening, with the 3270 console showinginit.

Thevery first button on thefar | eft of thetoolbar isalink to the General Properties
page. This button is present on all Composer console pages.

28 Composer Enterprise Server User’s Guide

The button next to the General Properties button isthe Exit button. It closesthe
browser window.

The button at the far right of the toolbar is the Server-Based Deployment button.
This button will take you to a series of deployment screens that you can use to
locate and deploy a preexisting EAR, WAR, or JAR file that is ready to be
retrieved from a staging area on a network drive. (In other words, this button will
initiate a“pull-style” deployment.) To perform this kind of deployment requires
that a deploy-ready archive (e.g., EAR) already exist somewhere on disk.

General Properties and Settings

The main frame of the General Properties page contains controls for inspecting
and adjusting various runtime parameters on the fly.

General Properties and Settings

WM Free Memony: 25 Mb
Log Level: |5
Apply Log Level |

Cache Status
Expressions Cached: 43
Functions/Code Tables Cached:
Component Types Cached:
Total Components Cached:

[Lo R

Clear Cache |

Cache Tuning

Expression Caching: & 0n O Off
Component Cache Expiny: 720
Total Component Cache Size: 250
Apply Cache Tuning|

Runtime Administration of Composer Enterprise Server 29

License Manager

If you want to change the log-message threshold for your Composer project(s),
enter anumber from 1to 10intheL og L evel field and click the Apply Log L evel
button. (The lower the number, the more verbose the logging.) Changestake place
immediately.

Click the Clear Cachebutton if you want to purge all objectsfrom thein-memory
cacheimmediately. (See additional discussion below.)

You can enter new cache settings as desired (again, see discussion below), then
click the Apply Cache Settings button to make your new settings take effect
immediately.

The exteNd Composer logo in the top left corner of the General Properties pageis
itself abutton. The cursor changes to a hand when you allow the mouse to linger
over the words “ exteNd Composer.”

; exteNd Composer Server Console - Microsoft Internf

J File Edit Wiew Favorites Tools Help
| vk - @ A 4 > -~

extenNd CDI‘I"I%)SEF Yersionglicense

1 E
| lick For License infarmation

1 = | @
General Properties j

P

If you click the mouse when it is over the Composer logo, you will seethe content
area of the browser window change appearance:

30 Composer Enterprise Server User’s Guide

Novell®exteNd" Composer

| Yersion 5

Hovell® exteMd™ Composer
Enterprze Server

Yersion 5.0 (1065)

@ 199-2003 SilverStream Software LLC
License key: B1420324 2400000001
Licensed to: Default Company
License davs left: Unlimited

License CPU count: Unlimited

Licenses..

This screen displays the current license key, product version and build number,
and other important information. You may be asked for thisinformation when and
if you need to contact Customer Support.

At the bottom of the license summary page, thereisal icenses. . . button. If you
click this button, a new browser window will open:

Runtime Administration of Composer Enterprise Server 31

3 Manage Licenses - Microsoft Internet Explorer ;Iglll
exteNd Composer

(=] Novell.
Installed Component License Information |
Name License Status
Core Product |B142032424DDDDDDD1

Cannot get build for:

com.sssw,b2b, ee.zap, it GHNYSAPXObjectFactory,

exteMd Composzer S4P Connect is designed to

integrate with the SAP environment through the SAP

Sap IRBFE@DDLSEBC@ABC@ Java Connector [JCo] libraries. Therefare, to install
exteMd Compozer S4P Connect, vou must have the
S4P JCo installed, Please see the section entitled
"Installing S4P Jawa Connector (JCo)" in the exteld
Composer 54P Connect Release Notes,

SAPService [RBFE@DDLEEBC@ABCE conr oSt e bom vt GMVS AP ServiceXObjectFastory
3270 [B14z03z4c500000001 Loaded
3270logon [B14z03z4c500000001 Loaded
‘ii?ﬁn IFH A2N32RERRONNNONNNT | naded I _}ILI
@ BT —

This page givesadetailed listing of licenseinformation, including Statusinfo that
may be useful for troubleshooting. In the above picture, for example, the entry for
SAP Connect has adetailed status message explaining why the connector did not
load. Likewise, the entry for SAP Service contains a message mentioning a
specific class name. Again, you may be asked for this information when
contacting Customer Support.

Caching and Cache Administration
The General Properties page of the Composer Enterprise Server consolegivesyou
the ability to inspect cache statistics as well as adjust caching parameters. This

section, and the sections that follow, address the various issues you need to know
about in order to use this portion of the console to best advantage.

What Is Caching?

Caching refers to temporary storage of in-memory objects that might be costly to
create over and over again. It's atechnique for achieving runtime-object reuse.

32 Composer Enterprise Server User’s Guide

The goal of caching isto enable higher performance: more units of work per
second. When objects are already available in memory and don’'t haveto be
created from scratch, applications take lesstime to run. Thetrick isknowing
which objectsto cache, and how to manage the cache so asto minimize RAM
usage, data-copying, garbage collection overhead, etc. These are nontrivial issues,
especialy in acontainer process that manages a heterogeneous,complex, fast-
changing execution environment. Fortunately, Composer Enterprise Server does
most of the hard work for you.

Thedown sideto caching, in general, isthe need for extramemory to store cached
objects. Beyond this, thereis the potential for performance degradation if cache-
management overhead becomes great. The cost of managing a cache can become
significant if the cache contains large numbers of objects, or if conditions are so
dynamic that new objects are being “turned over” quickly.

Ideally, a cache should contain only frequently accessed items, and/or items that
are costly to create. But it’s not always obvious which items meet these criteria.

The cache hasto “know” how to identify (and retain) high-demand objects while
removing infrequently accessed objectsthat are only taking up valuable memory.

Least-Recently-Used (LRU) Cache Algorithm

Composer Enterprise Server handles cache management automatically, viaa
least-recently-used (LRU) algorithm.

L RU meansthat cacheable objects, oncethey exist, are kept in memory until some
predetermined number of cached objects has been reached or exceeded, at which
point the least recently used objects will be removed if it is necessary to add new
objects. The* predetermined number” is something you can set yourself, using the
Total Component Cache Size control on the Composer Enterprise Server main
console. Entering alarge number in thisfield tells Composer Enterprise Server to
maintain alarge number of objectsin memory, at the expense of available free
Virtual Machine memory. Setting alow number means relatively few objectswill
be retained in memory, freeing up RAM. The default value is 250.

NOTE: A large value does not guarantee better performance: For example,
routine JVM garbage collection (compaction and purging of memory) becomes
more timeconsuming if the cache is large, and LRU analysis (and pruning) of the

cache is more costly as well. You will have to experiment with different cache
settings to find the “sweet spot” for your particular production environment.

Cacheable Objects

Composer can cache the following types of objects:

Runtime Administration of Composer Enterprise Server 33

+ Components (XML Map, JDBC, LDAP, Telnet, and other components)
+ Actions (Log, Map, Function, Decision, etc.)
+ User-scripted functions in Custom Script resources

+ Code Table resources
Composer does not cache;

+ Resource XObjects other than Code Table: For example, there is no caching
of WSDL Resources, Form Resources, Images, JARS, XSD, etc.

+ XML Templates

+ User objects (custom Java objects)

Of course, CPUs, operating systems, and VMs all have their own caching
mechanisms. It's possible (indeed likely) that objects not cached by Composer
will residein a cache of one kind or another at runtime.

Cache Scope

Composer Enterprise Server provides runtime services for all Composer-built
executables deployed on the app server, regardless of which EAR, WAR, or JAR
file(s) the executables come from. Accordingly, caching operates across a scope
that encompasses any and all Composer deployments on a given server. This
means that any time you change cache parametersin the console, you are
potentially affecting all deployed services.

For example, if you' ve deployed five projects, with three services each, and those
15 total services contain agrand total of 400 cacheable objects, Composer
Enterprise Server will cache the 250 most recently used objects (no matter what
type they are or which project they came from), assuming you’ ve kept the default
Total Component Cache Size setting of 250. If you adjust the cache size up or
down, Composer Enterprise Server will add to or prune the cache as appropriate,
again according to LRU only, with no regard for which object came from which

deployed app.

User-Adjustable Settings

The user-adjustable caching parameters available on the General Properties
console screen include:

34 Composer Enterprise Server User’s Guide

+ Expression Caching on/off—This radio button tells Composer Enterprise
Server whether to include Actions (such as Map, Decision, Function, etc.) in
the cache. (Actions are considered “expressions’ at runtime.) If you are
using agenerous Total Component Cache Size (see bel ow) but are not seeing
any performance improvement under load, try turning Expression Caching
off.

+ Component Cache Expiry—This setting allows you to put a maximum
limit (in minutes) on the lifetime of inactive (but still cached) objects. The
default is 720 minutes (12 hours), which means no inactive item will stay in
memory longer than 12 hours. (The key intuition hereisthat if an object has
been in memory for 12 hours and hasn’t been used, it probably doesn’t need
to be in memory any longer.)

+ Total Component Cache Size—Thisisthe maximum number of objects (of
all types) that will be stored in the cache at runtime. The default is 250.

The cache-expiry andtotal sizelimitsare enforced viaadaemon process—acache
pruner—that runsin its own thread. Every ten seconds, the pruner inspects the
cacheto seeif any objects have “expired” (reached their inactivity time limit, or
“Expiry,” as discussed above), in which case those objects are summarily purged
from the cache, regardless of whether the cacheisfull.

IMPORTANT: The console contains a button called Apply Cache Tuning. This
button applies the changes you've made (if any) to cache settings and refreshes
the console. Don't forget to click this button after you've edited any cache settings.

Clearing the Cache

The General Properties and Settings console contains a button called “ Clear
Cache.” This button doesjust what it says: It immediately removes all stored
objects from cache memory. The console's Cache Status numbers will update in
real timeto reflect this.

You will typically usethe Clear Cache button when redeploying (“ hot” deploying)
aproject after modifying it. If old, unmodified objects from the previous
deployment are still in the cache, you may not see your new project’s changestake
effect until the cacheis cleared.

NOTE: Undeploying a project (using the app-server’s own utilities for removing
deployed objects) does not obviate the need for clearing the cache. See
“Removing (Undeploying) Existing Applications” in the previous chapter.

The Clear Cache button is often useful in testing. For example, if you are running
in-house benchmark teststo determine which of various cache settings is optimal
for agiven set of conditions, you would probably want to zero out the cache
between runs.

Runtime Administration of Composer Enterprise Server 35

Performance Tuning

Performance optimization is a complex subject because of the many variables
involved and the non-obviousinteractions between them. There are few hard-and-
fast rules. Some issues to be aware of include the following:

+ Larger cache sizes may improve application performance, but those gains
can be offset by the larger amount of time spent in garbage collection (which
isunder control of the VM, not Composer).

+ Inan LRU-governed system, larger cache sizes may not have adramatic
effect if the VM is already using generational garbage collection (asisthe
case on the HotSpot server VM by default).

+ Incremental (as opposed to generational) garbage collection can be turned on
viaaVM param. You may want to test performance with and without
incremental GC enabled.

+ Always be sure the same VM is used on production machines and
performance-test machines. If you tune against a particular VM and then
redeploy to adifferent VM, performance may not be what you expected.

+ Besurethe VM command-line params used in testing are exactly the same
as those on the final target machine.

+ Garbage-collection algorithms generally change with each new release of a
VM, so be sureto retest every time anew VM release comes out.

+ Tuning requirements will differ significantly depending on whether your
applications are 1/0 bound, compute-intensive, or memory-intensive.
Deploying a new project into a set of existing projects may alter the mix of
dependencies and change the performance of other apps, because the newly
deployed services may be 1/0O-bound, whereas the preexisting services might
be compute-intensive.

The only way to know which cache and pool settings are best for a given set of
appsisto test.

Connection Pools

36

In aclient/server system, one of the most resource consumptive operationsis
connection management. Allowing each transaction to open and close a
connection for each request usually introduces significant overhead. To minimize
this overhead, Composer Enterprise Server allows you to exploit the connection
pooling features of your application server.

Composer Enterprise Server User’s Guide

It'simportant to make a distinction between database connection pooling and
other types of connection pooling. In general, database connection pooling is
under the control of the app server, whereas other types of pooled connections
(such as 3270 connection pools) are under the direct control of Composer. In the
database case, you should consult the documentation for your app server for
information of a more detailed nature than will be presented here. (The different
app servers, such as Novell exteNd, WebL ogic, WebSphere, etc., have different
setup and administrative capabilities for managing and creating database
connection pools.)

Database Connection Pools

Inthe Novell exteNd Application Server, database connection poolsareidentified
by database name. To take advantage of the server’s connection pooling, the
Connection Resource for the target database must have the pool hame specified.
You will want to coordinate with your app server administrator on this at design
time, when setting up Connection Resources for your JDBC components.

Logon Components and Non-Database Connection Pools

For connections to non-database resources, Composer Enterprise Server provides
connection pooling capabilities that augment those of the application server.
Composer Enterprise Server’s connector-specific connection pools are
configurable and manageabl e through separate consol e pages.

Some of the Composer connectors (chiefly those that emulate terminal sessions:
3270, 5250, Telnet, etc.) offer the ability not only to pool connections, per se, but
tologinto aparticular “ start page” of an application or system (which sometimes
involves navigating past several screens). The ability to pool properly pre-
positioned (by “start page”) connectionsis afforded by so-called Logon
Components, which you build as part of your project in Composer at design time.

In order for Logon componentsto work properly, their existence needsto be made
known to the application server aswell asto Composer Enterprise Server. If your
project uses Logon Components, you should do the following after deploying
your project to the server:

> To enable the use of Logon Components:

1 Locate the Composer deployment JAR that contains your Logon
Components. Thiswill be aJAR file (bearing the name of your project)
located in the \archives folder of your staging area’s main output folder.

2 Manualy copy the JAR file to the app server’s\lib folder.

Runtime Administration of Composer Enterprise Server 37

3 Follow the app-server vendor’s recommendation for putting the JAR filein
your server’s classpath.

NOTE: If you're using Novell exteNd Application Server, you can add
appropriate $SS_LIB entries in agjars.conf after copying the JAR files to the
lib directory of the app server

4 Restart the server.

If you want to go ahead and initialize the logon components (thus opening
all pool connections and bringing them to the proper startup screen),
continue to the next two steps. Otherwise, if you are okay with letting
connections and logons happen in real time as they are needed (and taking
the onetime performance hit associated with that), you can skip the next two
steps.

5 Navigate to the Composer runtime console (using your web browser) and
click into the console for the particular Connect product in question.

6 Click thelnitialize Connection Pool button. (This step needs to be done
every time you start the server, if you want connections to be set up before
going live. Otherwise, there will be a onetime speed hit asindividual logon
connections “ start up” one by one, on demand.)

The architectural and other particulars of various types of pools differ somewhat
depending on the type of back-end system involved. Theseissues are discussed in
greater detail in the variousindividual User’s Guides for the various Composer
Connect products (e.g., 3270, 5250, CICS RPC, IMS). See the appropriate guide
for more information.

Proxy Servers

If your service will be running inside aproxy server, you will need to inspect (and
possibly hand-edit) certain settingsin your xconfig.xml file.

NOTE: There are two xconfig.xml files: One for design time, and another one on
the server. The design-time file can be found under Composer\Designer\bin. The
server-side file can be found under AppServer\Composer\lib. Be sure Composer
is not running when you make hand edits to the design-time file. (Composer
overwrites the file on shutdown.) Likewise, make edits to the server-side version of
this file when the server is stopped. Then restart the server.

At design time, you can modify a project’s proxy-server settingsin exteNd
Composer viathe Designer tab on the Tools > Preferences dialog. (Seethe
Composer User’s Guide for details.) When you shut down Composer,
xconfig.xml is updated for you with respect to proxy-server settings that you
made in Tools > Preferences.

38 Composer Enterprise Server User’s Guide

On the server, you need to inspectand/or edit xconfig.xml manually in order to
“syncup” theruntime proxy server parameterswith those you used at design time.
Simple go to your AppServer\Composer\lib folder and open xconfig.xml file
with atext editor. Look for the PROXY SERVERINFO tag. The child elements
under this tag allow you to fine-tune your proxy settings. Edit them as necessary
(with the server shut down), then restart the server.

NOTE: Be sure the USEPROXYSERVER element is set to “ON” if your app will
be running inside a proxy server at runtime.

Here is an example of what the relevant section of xconfig.xml looks like:

<PROXYSERVERI NFO>

<USEPROXYSERVER Desc="1f on, the additional PROXY options
are enabled (valid values are on | off)">on</ USEPROXYSERVER>

<HTTPPROXYHOST Desc=" For Doc I/O, HITP Actions etc., if
network uses a proxy enter nanme here."></ HTTPPROXYHOST>

<HTTPPROXYPORT Desc="Port nunber HTTPPROXYHOST | i stens
on. " >80</ HTTPPROXYPORT>

<HTTPNONPROXYHOSTS Desc="Li st of hosts that do not
require a Proxy. Each hostname nust be seperated by a pipe
' | ' . ">l ocal host </ HTTPNONPROXYHOSTS>

<FTPPROXYHOST Desc=" For Doc |/0O HITP Actions etc., if
network uses a proxy enter name here."></ FTPPROXYHOST>

<FTPPROXYPORT Desc="Port nunber FTPPROXYHOST |i stens
on. " >80</ FTPPROXYPORT>

<I-- Note: The followi ng section applies only if you are
in a Wndows NT Lan Manager (NTLM security environnent -->
<NTLMCREDENTI ALS>
<NTLMJUSER>MyUser Nane</ NTLMJUSER>
<NTLMPWD>aEPUgN2YTUWV+s0y/ AXHWBA==
</ NTLMPVD>
<NTLMDOMAI N/ >
<PROXYNTLMPROTECTED>0n</ PROXYNTLMPROTECTED>
</ NTLMCREDENTI| ALS>
</ PROXYSERVERI NFO>

Notethat if your proxy server requiresthe use of NTLM Authentication, you will
need to copy the NTLMCREDENTIALS portion of the PROXY SERVERINFO
block (see above) from your design-time xconfig.xml file to your server-side
xconfig.xml file. Thisblock will exist in your design-time xconfig.xml fileif and
only if you have set your NTLM credentialsin the dialog at Tools > Preferences
> Designer > Advanced > Setup. (You may haveto exit Composer in order to see
the changes show up in xconfig.)

Runtime Administration of Composer Enterprise Server 39

Security Roles

Security Roles (a J2EE feature supported by most app servers) provide a highly
granular, inheritance-based mechanism by which you can set and enforce access
privileges to deployed services that use connections and connection pools. With
security roles, constraints can be placed on HTTP actions for particular URL
patterns. Roles are also common in database connection pool scenarios.

Security Roles for container-scoped objects are created and administered at the
application-server level (rather than in Composer). You should consult your app
server documentation for detailed information on how to set up and manage roles
on your particular server. In Composer, you use role namesto identify a particular
service with arole so that when the service acts as a client (to obtain connections,
invoke beans, etc.) it can identify itself appropriately.

Most of the service-trigger property sheetsin Composer’s design-time
environment have afield in which you can specify the Role required in order to
run the servlet/trigger in question.

NOTE: Service-trigger property sheets are visible only in Composer Enterprise
Edition.

When you specify a Role namein atrigger property sheet, you are essentially
limiting access to the Composer service. Therole of the caller must match the
Rolerequired by the service, or it must inherit from arole with appropriate access
rights, in order for the caller to invoke the target service. In this scenario, the
Composer serviceisthe target of the request and uses the role mechanism to
decide whether the caller is qualified to trigger the service.

You can also specify a“Run As’ role for Composer services that will execute
other services. In this scenario, the Composer serviceisthe client, rather than the
target. The“Run As’ role gives the Composer service a Role (an identity for
security purposes) to be known by when it calls other services.

Publishing XML Resources

When establishing a busi ness-to-business process, you may need to publish (or
expose) certain filesthat are required by other services, or perhaps by your
business partners. Examples of these filesinclude X SL style sheets for rendering
an invoice and DTD/schemafiles for validating documents sent by your site.

For management and maintenance purposes, it isusually more effectiveto prepare
these filesin their own dedicated JAR and deploy them to the application server.
A URI can then be associated with the JAR and its contents published .

40 Composer Enterprise Server User’s Guide

Theuse of special-purpose JARs can also be an effective strategy for resourcefiles
needed by your services, since they allow you to deploy and maintain ancillary
files (and the servicesthat use them) separately. In creating special-purpose JARS,
you need to plan ahead and indirect all references to these resources through
exteNd Project Variables.

Publishing Java Classes

You may find it convenient or necessary to use non-Composer-built Java classes
or JARsin your service. If you do require additional Javaclassesin your
application, you must make them available (visible) to Composer Enterprise
Servce and/or the app server.

If your JARs or classes need to be visible to Composer Enterprise Server, you can
edit or create <JAR> elementsunder the <RUNTIM E> block of xconfig.xml. (You
can locate the xconfig.xml file for the runtime environment in Composer
Enterprise Server’s\lib directory. On the design-time side, look in Composer’s
\bin directory.)

NOTE: You must do this when the server is not running, since Composer
overwrites xconfig.xml at shutdown.

If JARs need to be visible to the app server, and you're using Novell exteNd
Application Server, you can add appropriate $SS_LIB entriesin agjars.conf and
copy the JAR filesto thelib directory of the app server; or you can add classes
directly to the server’s application database.

Other application servers have their own classpath exposure points, generally
involving .bat or .shfilesand/or config filesand/or custom environment variables.
You can read about these in the appropriate vendor’s documentation.

For development purposes, you can always set the system environment classpath
variable to point to your classes or JARS, using operating-system utilities. This
should be done only for development work, however. In a production
environment, you should limit the scope of JAR/class access to just the
applications that need access.

Controlling Access to JAR and Class files

In J2EE, there are five ways in which JARs and/or classes can be installed such
that they can be found by client processes within an app-server environment:

Runtime Administration of Composer Enterprise Server 41

42

Asindividual classes within aweb archive’'s WEB-I NF/classes folder.
These classes are visible only to processes that live within the same archive.
If the classes are general-purpose utility classes, this may not be the best
location because the classes might not be functionally related to the archive
that contains them. A higher-level scope might be more appropriate so that
the classes do not need to be put inside multiple WARS that need them.

AsaJAR filewithin aweb archive’'s WEB-INF/lib folder. Again, thisisa
good placeto put utility classes functionally related to the applicationsin the
WAR. But since these JAR files will be visible only from within the WAR,
thisis not agood place for utility JARs that might be needed by multiple
modules. You could end up putting multiple copies of the JAR inside
numerous WARS, creating a maintainability nightmare.

Asindividual classeswithin an EJB module. Although the classes are visible
from other modules that use a manifest file, thisis not something you should
strive for, because the utility classes may not be functionally related to other
code in the EJB module.

AsaJAR stored within the enterprise application archive (the deployment
EAR). The classes are then visible to any modul e within the application that
has avalid manifest file. Thisis usually agood solution, asit keepsthe
classes neatly packaged in their own JAR file, which is usable by any
servicesinthe EAR. In Composer, the easiest way to accomplish thiskind of
JAR-within-EAR packaging isto bring a JAR into your project at design
time using the JAR Resource wizard. (See the chapter on Resourcesin the
Composer User’s Guide.) From that point on, the JAR gets deployed with
your project automatically.

AsJARs or individual classes on the application server’s global classpath.
Thisis by far the easiest solution, since it makes classes visible to any
applications running on the server. But from a design standpoint, it's a bad
idea, for the following reasons.

+ Portability issues: Becausethe classeslive outside of the EAR or WAR,
they represent files that must be copied along with the project. (The
project isno longer self-contained.) It also means changing the global
classpath of each server to which the project or JAR is deployed.

+ Compatibility and Maintainability issues: It forcesall client processes
running on the server to use the same version of the classes. If the
external classes are updated, all client applications must be upgraded
and/or retested.

+ Visibility issues: The classes are visible to all applications running on
the server. Thisisusually not what you want.

Composer Enterprise Server User’s Guide

The classpath mechanism is a high-level, coarse-granularity mechanism for
controlling class and package visibilities. If the goal isto restrict runtime accessto
code rather than design- and runtime visibility of code packages, it may be
appropriate to consider using the programmatic and/or declarative role-based
security models available for EJBs and WARs. (WAR security isa JREE 1.3
concept.) If remote method invocation is an option, many access-control models
areavailable.

Theissue of how best to share “shared code” is anotoriously difficult one,
regardless of the control mechanism(s) available. As with performance tuning,
there are no hard and fast rules that apply for all situations.

Runtime Administration of Composer Enterprise Server 43

44 Composer Enterprise Server User's Guide

The Runtime Framework

Most of the time, you will find Composer’s native deployment facilities and
packaging options more than adequate to meet the architectural requirements of
your business applications. But if your devel opment needs are such that it's
essential to be able to manipulate Composer-built services on a programmatic
level, you will need to know how to write code that leverages Composer’s
Framework API for low-level Javaintegration.

The Composer framework is a set of classes (in source code form) for working
with, or extending, Composer runtime objects. Its features are discussed in some
detail later in this chapter.

In many cases, you can create your own custom service-trigger objects without
hand-writing any “setup” code. Novell exteNd Director has code-generation
wizards that can create servlet, EJB, JSP, and Java stub files for you, which you
can then customize. (See the Deployment chapter of the main Composer User’s
Guide for more detailed information on how to use these wizards.) But to fully
understand the generated skel-code, you need to be familiar with the basic
architectural assumptionsand APl requirements of Composer’sruntimelayer. The
information in thischapter will give you the essential background info you needin
order to create classes that interact with Composer runtime objects.

NOTE: This chapter is aimed at intermediate-level (or higher) Java programmers
who are interested in understanding the application programming interface for
code-level access to Composer runtime objects. To benefit from this chapter, you
should be thoroughly familiar with servlet and bean programming, and J2EE app
server runtime idioms in general.

This chapter will be of help to you if you need to:

+ Invoke Composer services programmatically from your own Java classes

+ Augment existing Composer “datainput” functionality by providing your
own support for transports, protocols, or data formats not natively supported
by Composer

The Runtime Framework 45

+ Create service triggers that respond to events not natively supported by
Composer’s existing trigger types

+ Obtain direct accessto aservice's output art runtime so that you can perform
custom post-processing of data or do some kind of custom dispatching of
data, etc.

NOTE: The following discussion deals with runtime issues only. A software
development kit (SDK) for creating your own pluggable design-time artifacts in
Composer is available by special request through the Novell exteNd marketing
organization.

Composer Runtime Architecture

46

The corefunctionality of Composer Enterprise Server isprovided by the classesin
xcs-all.jar (in Composer’s\lib directory, under the app server install path), plus
the three dozen or so accompanying technology-specific JAR filesin the\lib
directory. The classesin xcs-all.jar provide all of the essential “ core services’
your deployed Composer apps need in order to run on the server, including:

+ Instantiation of service objects

+ Dataconversion (preprocessing) in advance of service execution
+ Actual execution of servicelogic

+ Basic support functions, like XML parsing, XSL processing, etc.
+ Accessto app-server services

+ Support for various kinds of connectivity (LDAP, JDBC, etc.)

+ Caching and cache management

Instantiation and execution of service objectsis done through decoding and
deserialization of the metadata stored in your deployment archives. When you
create a service or component in Composer (design time), you are actually
creating an XML file that wrappers the actionsin your service or component’s
Action Model. If you' ve ever examined the contents of a Composer-created
deployment archive, you will probably have noticed that it contains no compiled
classes (except if the deployment involves EJBS).

Instead of bytecode, each action in each component’s Action Model consists of a
metadata description. Composer Enterprise Server understands how to convert
that description into executable code at runtime. The classes that do this are
opague: They are not exposed in the Framework API (see below), except for the
main execute() method of GXSSer vi ceConponent .

Composer Enterprise Server User’s Guide

Invocation of a Composer service typically occurs through a servlet. But (again)
you' |l noticethere are no servletsin your deployment WAR or EAR. Invocationis
handled by a*“master servlet” aready residing on the server. Your deployment
archive contains only a metadata description of how to call the server-resident
“trigger servlet.” (That description isin the web.xml filein the WAR.) The
metadata description containsinitialization parameters for the servlet. Those
parameters include the name of the service that needs to be run, the name of the
“converter class’ that should be used for preprocessing arriving data, whether to
instantiate the service as an EJB, etc.

Typical Request-Handling Scenario

From Composer Enterprise Server’s point of view, the eventsthat typically
accompany invocation of a Composer service include the following:

request
1 /
GXSServiceRunnerEx

(derives from HttpServlet)
1

3) 2

\ GXSServiceFactory
Converter Class
(e.g. GXSInputFromHttpParams)

- -2l GXSServiceComponent

1 Arequest arrives at the app server: e.g., XML arrivesviaHTTP POST. The
server notifiesthe appropriate servlet, in this case GX SServiceRunner Ex (a
pre-installed, always-present Composer Enterprise Server class that handles
most servlet-based requests for Composer services).

2 Theservice-runner servlet uses Composer Enterprise Server’'s
GXSServiceFactory classto obtain an instance of the desired kind of
service (represented by the GX SServiceComponent shown above).

The Runtime Framework 47

3 The service runner calls on the appropriate converter class (one of several
core Composer Server utility classes) to fetch arriving data and put it in
String or String-array format. Converter classes are discussed in more detail
below.

4 Finaly, the service runner calls the service component’s execute() method.
In the typical case, this method returns a Java String containing the XML
output of the service. (Various overloaded versions of the method exist, each
with its own return type.)

Once the service has finished executing, the servlet performs any necessary post-
processing on the output data (for example, last-minute X SL transformations), in
its processResponse() method.

There are many possible variations on the scheme just described. The above
diagram describes one common scenario, involving servliets and HT TP requests.
It isintended to illustrate important Composer architectural idioms, such as:

+ Theuseof a“servicerunner” object (in this case, aserviet) to runa
Composer service

+ Theuse of afactory to obtain the instantiated service. Delegation through a
factory object makesit possible for Composer to do behind-the-scenes
housekeeping (including things like cache management) in away that's
transparent to the service runner. It also simplifies working with EJB
deployments, since the service factory can obtain a service as aregular Java
object or as an EJB, based on the request parameters.

+ Theseparation of data-prefetch logic from service invocation logic by means
of converter classes (which handle the details of collecting XML input from
various kinds of HTTP payloads)

Obviously, not al datatravelsby HTTP, and it's not always convenient to invoke
services from a servlet. Other scenarios need to be taken into account.

Alternative Request-Handling Scenarios

48

One useful variation on the above invocation schemeis afforded by the
GXSServiceComponentBean class, wherein a bean implements the

| GXSServiceRunner interface. The GXSServiceComponentBean provides extra
isolation between the client/request layer and the invocation-target layer, so that it
becomes possible for a single type of Java object (the bean) to field requests from
many potential types of client objects (servlets, JSPs, arbitrary Java objects).
Experienced developerswill recognize features of the well-known Proxy and
Facade design patternsin this approach.

Composer Enterprise Server User’s Guide

Remote access to Composer services can also occur through EJBs. The
GXSEJBServiceComponent class implements javax.ejb.EnterpriseBean,

| GXSServiceRunner, java.io.Serializable, and javax.gjb.SessionBean. Likewise,
thereis an EJB equivalent of GXSServiceComponent, called GXSEIBService.
Enterprise Java Beans make possible the use of any number of well-known design
patterns.

In addition to the familiar “ request-response” paradigm, of course, it'spossibleto
enlist Composer servicesin other operational flows. For example, you might have
aComposer servicethat startsup in responseto ascheduling daemon of somekind
and executes at regular timed intervals. It might not use any input data; it may or
may not produce any output. Perhaps it performs a recurring maintenance
function. Thistype of specialized invocation scenario can be supported through
the use of acustom trigger object (your own, or derived from aframework object)
that implements the | GXSServiceRunner interface.

Source code for many of the classes and interfaces just mentioned can befoundin
the Composer Enterprise Server framework distribution archive, xcs-src.jar (see
next section). The main classes are discussed in more depth below, but for
definitive information you should consult the source code or the Javadoc.

Framework Classes

To facilitate working with Composer deployment and runtime objects, Novell
provides a set of framework classes that can be used to create custom Service
Triggers for Composer services, alter the Composer JSP tag library, change the
way datais passed, etc. This framework comprises aruntime API for working
with Composer services.

Where to Find the Source Files and JavaDoc

You will find the framework filesin the AppServer\Composer\lib path under
your main \exteNd install directory. Look for these two files:

+ api-xs.zip: Thisarchive contains the JavaDoc files (HTML) for the
framework API.

+ Xcssrcjar: Thisarchive contains Java source code for the approximately
130 classes that make up the framework. (Included in this set of files are the
sources for the custom JSP tag library that comes with Composer. For a
description of the tag library, see the appendix in the main Composer User’s
Guide)

The Runtime Framework 49

Packages of Interest

Unless you have unusually far-reaching requirements, it’s unlikely that you will
work with more than a handful of the 130+ classesin xcs-src.jar. Nevertheless, a
great deal of useful example code can be found there for working with Composer
services using servlet technology, EJB technology, SOAPR, JSP taglib, transaction
managers, etc.

Some of the more interesting packages include:

*

Static Constants

com.sssw.b2b.xs.deploy.wl 70: Helper classesto install J2EE components
into the WebL ogic Server 7.0, utilizing capabilities of the
Depl oyer RuntimeMBean class.

com.sssw.b2b.xs.deploy.ws50: Support classesfor deploying to WebSphere,
utilizing AppManager features.

com.sssw.b2b.xs.bean: This package contains Java beans that can
instantiate and utilize a deployed Composer service. The classes provide for
separation of input conversion from component execution.

com.sssw.b2b.xs.gjb: This package provides an EJB session bean class for
obtaining remote access to Composer service components, as well as home
and remote interfaces for same.

com.sssw.b2b.xs.service.conver sion: Contains various helper classes for
obtaining XML data by way of various transports and packagings. (These
classes will be discussed in further detail below.)

com.sssw.b2b.xs.mail: Contains classes that make an entry point from
SMTP/MIME/POP3 to deployed services.

com.sssw.b2b.xs.tl: JSP custom tag library implementation.
com.sssw.b2b.xs.deploy2.tc4: Deploy handlers for Tomcat 4.1 platform.

com.sssw.b2b.xs.soap: Provides an implementation of a service trigger that
responds to SOAP requests, utilizing Novell exteNd WSSDK technol ogy.

com.sssw.b2b.xs.util: A grabbag of utility classes, including classes to
manipulate JARs, a vulture class that watches a certain directory for
incoming files, a class to represent the manifest.mf file found in Java
archives, and classes with miscellaneous static convenience methods.

Seethefilecalled constant-values.html in xcs-src.jar for acomprehensivelist of
constants used in the framework classes.

50 Composer Enterprise Server User’s Guide

What Types of Programming Needs Does the
Framework Address?
The framework allows you to use your own objects to instantiate and execute

Composer services. This capability can be important for many devel opment
scenarios. For example:

*

You can use your own objects to perform custom pre-processing of data
(perhaps converting non-XML datato XML) before passing it to a
Composer service.

You can post-process a service's output in some custom fashion, perhaps
altering its mime-type.

The framework makes it easy to augment Composer’sinvocation layer. For
example, you might have legacy CGI scripts (in Python or PHP, say) that
need to be able to call Composer services directly.

If your development efforts involve operating-system-level calls, you may
have C++/Java crossover points that require direct access to Composer
services.

The framework also makes it easier to customize your deployments to take
advantage of special app-server services. This can sometimes be important if
you're deploying to a platform that’s not currently supported by Novell, or
you need to “bridge across’ to anon-J2EE server API of some kind.

For performance profiling, you may want to create test routines that can call
Composer services directly (eliminating servlet-engine and network-stack
overhead) so that you can benchmark different cache configurations, for
example, without clouding the results with non-cache-related issues
(browser/router/proxy latencies and such).

If you need to implement certain design patterns in your J2EE projects, it
might be necessary (or convenient) to extend various framework classes.

High-Level Architecture

The framework affords agreat deal of flexibility in choosing how to invoke a
service. A few of the possible choices are depicted in the diagram bel ow.

The Runtime Framework 51

GXSServiceRunner

Possible Invocation Architectures

arbitrary service-)
Java Object —* rtl:nner — |GXSServiceComponent
ean

Service Factory

—» |GXSServiceComponent
servlet

service-

servlet/JSP —| runner
bean

—» |GXSServiceComponent

—FE JB Container
(any of the above) = (any of the above) = —
GXSEJBServiceComponent

The choice of how to set up your invocation layer will probably be dictated by
architectural concerns related to:

*

*

*

*

Whether you are composing large, distributed web apps with reusable
components, or small, “low-cost” apps that are self-contained

Whether you need to support remote invocation across machines (via RMI
rather than SOAP)

Whether your data will mostly arrive by HTTP as opposed to other
transports

The need to implement certain J2EE design patterns
Possible enlistment of servicesin transactions
Your personal programming style

The invocation patterns shown in the foregoing diagram are all supported, in one
way or another, by the design-time deployment options of Director and Composer.
If you are using the framework, it's presumably because you need to customize
some aspect of the invocation layer (by extending one or more of the classes
shown). That'swhat this discussion will focus on.

Input and Data Conversion

Most (but not all) Composer services operate on input data of some kind.
Composer services expect to receive input data (if any) in one of the following
forms:

52 Composer Enterprise Server User’s Guide

+ XML dtring (java.lang.String containing raw XML)
+ A Javaarray of XML strings

+ A DOM object (of type org.w3c.dom.Document)

+ Anarray of DOM objects

+ A pair of String arrays: one representing SOAP body parts, another
representing SOAP header parts.

If your input datawill be arriving viaHTTP, you may find it convenient to use or
extend one of the framework’s existing converter classes, which are designed to
handle the most common HT TP transport scenarios. (See the Javadoc and/or
source code for the com.sssw.b2b.xs.ser vice.conver sion framework package.)

Whether your input dataarrive by HTTP or not, and whether you chooseto usethe
framework converter classes or not, your code must be prepared to passinput data
to your service in one of the formats described above.

Service Names within Framework Objects

When referring to a service name within aframework object (such asa service
runner servlet), you should use only the full-context name of your service: That is
to say, you should combine the deployment context with the service component
name.

Thefollowing isan example of afully qualified service name;
com your conpany. conposer . Product | nquiry

Where:

+ com your conpany. conposer isthe deployment context specified during
deployment

+ Product I nqui ry isthe Composer service component name

NOTE: Novellrecommends, as a best practice, that you include “composer” in the
deployment context of every Composer-created artifact, and “director” in the
context of every Director-built artifact. This is not only to provide namespace
separation of artifacts that might be built by different development team members
working remotely, but to make debugging easier. (At stack-trace time, it's valuable
to be able to see, at a glance, which product the artifact was created in.)

Obtaining a Service Instance

You will generally use the static createService() method of the
GXSServiceFactory object to obtain areference to a so-called service component
This overloaded methods comesin three flavors, with signatures as follows:

The Runtime Framework 53

| GXSSer vi ceConponent createService(java.lang. String
full Servi ceNane)

| GXSSer vi ceConponent creat eServi ce(l GXSServi ceRunner aOri gi nator)

| GXSSer vi ceConponent creat eServi ce(javax. nanmi ng. | ni tial Cont ext
aContext, java.lang.String aJNDI Nane)

Thefirst caseis simplest: You can obtain a (non-EJB) service by name. In the
second case, the caller (an | GXSServiceRunner) passes a reference to itself; the
factory inspectsthe caller’s properties to obtain initialization parameters, then
instantiates and configures the service.

The third method produces a service component as an EJB (assuming the service
was deployed that way to begin with). The factory needs to know the initial INDI
context and INDI Name of the service's home interface in order to obtain a
reference to the EJB (or its accessor object). After that, the factory takes care of
any communication with the EJB container.

Executing the Service

54

The code for executing aservice directly is straightforward. First, obtain an
instance of the desired service by means of a service factory object. Then call the
execute() method of the service object. The execute method returnsthe service's
output document(s) as native XML in String form.

Codefor calling aservice can be assimple as:
String inputDoc =

“<?xm version=\"1.0\" encodi ng=\"UTF-8\"?><root/>";
String out putDoc = “*;

String serviceNane = "com acne. conposer. Product | nquiry";

try {
/1 Obtain an instance of the desired service:
| GXSSer vi ceConponent nyService =

GXSSer vi ceFactory. creat eServi ce(serviceNane);

/1 Execute the service:

out put Doc = nyServi ce. execute(inputDoc);
}

cat ch(GXSException gxsEx)

{

Composer Enterprise Server User’s Guide

/1 Do something with exception
}

Using thiskind of code, you can invoke a Composer service from any kind of
custom Java object (not just aservlet). Of course, it'sthe caller’sjob to obtain the
input datafor the service, so it can be passed directly in the execute method. Inthe
bare-minimal code shown above, you are passing a single input document as a
native-XML string. If you need to pass more than one document, perhaps as a
DOM object (i.e., an object of type org.w3c.dom.Document), you can call one of
the other variants of execute() or executeEx(); see the discussion under “Data-
Passing Options’ below.

Delegating Service Calls Through GXSServiceComponentBean

Instead of calling execute() on afactory-obtained serviceinstance, you might find
that amore flexible and architecturally robust way of doing thingsisto delegate
service operations through an accessor object: namely, abean. (Not an EJB, but a
regular Javabean.) Inthisstrategy, you instantiate ageneral -purpose bean directly,
use the bean’s setter methods to specify the desired service name, input
document(s), and other parameters, then call execute() on the bean. (The bean
then delegates the call to the service.)

The framework provides a utility bean for this purpose, in aclass called
GXSServiceComponentBean. Code for utilizing this bean typically looks similar
to that shown below.

private static final String SERVI CE_NAME =
"com conposer. MyServi ce";

/1 Legal values here are “Normal” or “EJB":
private static final String SERVICE_TYPE = "Normal";

/1 Instantiate the bean
GXSSer vi ceConponent Bean | Service =
new GXSSer vi ceConponent Bean() ;

/1 Configure it

| Servi ce. set | nput XM_Doc(aXM.);

| Servi ce. set Servi ceName(SERVI CE_NAME) ;
| Servi ce. set Servi ceType(SERVI CE_TYPE);

/1 Now execute the service:
try {

}
catch (GXSException e) {

Systemout.println(e);

| Servi ce. execute();

}

The Runtime Framework 55

// Obtain the service's output:
String myQutput = | Service. get Qut put XM_Doc() ;

The bean mechanism offersagreat deal of flexibility. The bean itself isgeneric: It
can be“configured” dynamically to bind to any service. It implementsthe

| GXSServiceRunner interface, which means that through avariety of setter
methods, you can specify XSL resource info, converter class name, and other
config parametersfor the service beforeinvoking it. Likewise, you can useawide
variety of “getters’ to obtain information back from the service after it executes.
In addition, the GXSServiceComponentBean class has utility methods, such as
getXPath() and findDocByPartName(), that can be helpful in manipulating
output data.

The service-runner bean (GXSServiceComponentBean) allows you to specify, via
setServiceType(), whether to use EJB access to obtain and execute the target
service (assuming it was deployed in EJB fashion), or non-EJB (“Normal™)
access. This hides some of the complexity of working with services deployed as
EJBs.

The custom tag library used in Director-generated (and Composer-generated) JSP
codeis built around usage of the GXSServiceComponentBean object. (Source
code for the tag library itself is part of the framework.)

NOTE: The GXSServiceComponentBean class inherits from a utility class called
GXSServiceComponentBase (which in turn implements the service-runner
interface). Consult the source code and/or Javadoc for these two classes to learn
more about the numerous setter, getter, and utility methods they offer.

Data-Passing Options

56

The execute() method on GXSServiceComponent is overloaded to alow you to
pass and receive XML datain variousways. Variants of this method exist to allow
passing more than oneinput document (as either aString array or an array of DOM
objects), or passing input asajava.io.Reader. In each case, the return type mimics
the input type.

Thereisalso an overloaded method called executeEx() that differsfrom execute()
in that it returns a GXSEXResponse object, which is alightweight wrapper object
for responses from SOAP services that might involve one or more output parts
and/or header parts.

Thevarious signatures of execute() and executeEx() are shown bel ow, along with
abrief description of the intended usage..

java.lang. String execute()

Composer Enterprise Server User’s Guide

Executes a Composer service that does not expect an input document.
org. w3c. dom Docunent execut e(org. w3c. dom Docunent al nput Doc)
Executes the Composer service using the supplied DOM.

org. w3c. dom Docunent execut e(org. wdc. dom Docunent []
al nput Docs)

Executes the Composer service using the supplied mulitple DOMs.
java.io. Reader execute(java.io.Reader xnlIn)
Executes the Composer service using the supplied XML Reader.
java.lang. String execute(java.lang. String xm |n)
Executes the Composer service using the supplied XML string.
java.lang. String execute(java.lang. String[] al npDocs)
Executes the Composer service using the supplied XML strings.
GXSExResponse execut eEx(j ava.l ang. String[] al npDocs)
Executes the Composer service using the supplied XML strings.

GXSExResponse execut eEx(j ava.lang. String[] al npDocs,
java.lang. String[] al npHdr Docs)

Executes the Composer service using the supplied XML strings.

Service Triggers

A servicetrigger, broadly speaking, is any object responsible for obtaining a
service instance and executing it. In the framework, the principal trigger objects
are GXSServiceRunnerand GXSServiceComponentBean. The former is a servlet;
the latter is a general-purpose bean.

The GXSServiceRunner class inherits from javax.serviet.http.HttpServiet and
implements the | GXSServiceRunner interface (as well asjava.io.Serializable).
The GXSServiceRunner Ex class differs from GXSServiceRunner in its ability to
deal with one or more input documents.

GXSServiceComponentBean inherits from GXSServiceComponentBase. Both
implement 1GXSServiceRunner aswell asjava.io.Serializable. The parent class,
GXSServiceComponentBase, has many getter and setter methods, allowing you to
fine-tuneits functionality dynamically. It is not limited to handling HTTP
requests.

The Runtime Framework 57

If you are implementing atrigger that handles data arriving viaHTTP, a
convenient starting point may be GXSServiceRunner or GXSServiceRunner Ex.

Of course, strictly speaking, it is not necessary for you to extend any of the
framework’s preexisting service-runner classesin order to execute aservice. In
fact, it’s not even necessary for your custom trigger object to implement

| GXSServiceRunner. (See “ Executing the Service” for example code that neither
extends nor implements framework classes.) Even so, you should understand how
these classes and interfaces work.

IGXSServiceRunner

58

Theinterface that al framework service-runner objects implement is

| GXSServiceRunner. Thisinterface hastwo methods, called getServiceProperty()
and getClassLoader(), plus numerous predefined public/static properties
(Strings) that are used for parameter discovery at runtime. The
getServiceProperty() method takes a String as an argument; the String should
match one of the static property strings defined on |GXSServiceRunner. The
getServiceProperty() method uses the String passed to it as akey to look up
information about the service environment.

For example, one of the propertiesis called SERVICE_NAME. The hard-coded
(final) value of 1GXSServiceRunner.SERVICE_NAME is"servicename." If your
service-runner object receivesthisvaluein acall to getServiceProperty(), the
method should return the name of the service that will be called.

The getServiceProperty() method is called by various objects that, from timeto
time, might receive areference to your service-runner and might need to look up
information about the service your runner intends to run. For example, the
GXSServiceFactory object hasan overloaded method called createService(). One
of the createService() methods takes an | GXSServiceRunner argument. Using the
passed-in service-runner reference, thefactory object caninspect propertiesonthe
caller to determine how to configure a service instance before returning it to the
caller. This same mechanism is used by various data-converter objectsin the
framework.

Asit turnsout, your service runner does not need to define lookup values (nor
“get” methods) for all of the String propertiesin the | GXSServiceRunner interface.
Some of the properties are relevant only in specialized scenarios involving (for
example) digitaly signed XML in SOAP transactions. For most common
scenarios, the only “discovery” properties you must make available before every
call to aservicefactory’s createService() method are the SERVICE_NAME and
SERVICE_TYPE properties. (The latter allows the factory or converter object to
discover whether the caller is expecting an EJB, or non-EJB service.)

Composer Enterprise Server User’s Guide

A bare-minimal implementation of |GXSServiceRunner is shown below:

cl ass MyServi ceRunner inplements | GXSServi ceRunner

{
private String nfFul | Servi ceNane;

MySer vi ceRunner (String full Servi ceNane)
{

}

nFul | Servi ceNane = ful |l Servi ceNang;

public String getServiceProperty(String aNane)

{
i f(aName == | GXSSer vi ceRunner. SERVI CE_NAME)

return nful | Servi ceNane;

el se if(aNane == | GXSServi ceRunner. SERVI CE_TYPE)
return | GXSServi ceRunner . SERVI CE_TYPE_NORMAL;

el se
return null;

}

public C assLoader getd assLoader ()

{

return Thread. current Thread(). get Cont ext Cl assLoader ();

}

}
Notethat if getServiceProperty() is called with an argument other than
SERVICE_NAME or SERVICE_TYPE, the method returns null. It isimportant to
return null here, because the Composer runtime objectsthat call
getServiceProperty() implement default behaviors of various kinds based on a
null return value being encountered. If you return adummy value (such as“Not
supported”), you will get unpredictable results.

In addition to getServiceProperty(), your service runner needs to provide an
implementation of getClassLoader() for use by factory objects. The
implementation shown in above is appropriate for most cases.

GXSServiceRunner and GXSServiceRunnerEx

If your code will be handling HT TP requests, you might want to extend
GXSServiceRunnerEx. Thisisthe framework’s all-purpose servlet for triggering
Composer services.

The following code shows how to extend GXSServiceRunner Ex. It implements a
custom Java class called MyComposer ServiceRunner.

package com conposer;

import javax.servlet.*;

The Runtime Framework 59

60

import javax.servlet.http.*;

inmport java.io.*;

inmport java.util.*;

import com sssw. b2b. xs. *;

import com sssw. b2b. xs. servi ce. GXSSer vi ceRunner Ex;

public class MyConposer Servi ceRunner extends GXSServi ceRunner Ex

{
static final String CONTENT_TYPE = "text/htm";

/1 Overload the followi ng nethod if you want to
/1 override the default converter class architecture

protected String[] processRequest Ex(HttpServl et Request aReq)
throws Servl et Exception

{

return super.processRequest Ex(aReq);

}

/1 Overload the followi ng nethod if you want to
/1 override default response architecture

public void processResponse(String xm CQut,
Ht t pSer vl et Request req,

Ht t pSer vl et Response res)
t hrows GXSException

super . processResponse(xm Qut, req, res);

}

The processRequestEx() and processResponse() methods offer convenient hooks
for implementing your own special datapre- and post-processing logic. Theabove
code merely delegates execution to the parent’s default implementations of these
methods. Remove the “super” calls and insert your own code to take over control
of pre- and post-processing.

The example class shown above inherits from GXSServiceRunner, which in turn
inherits from HttpServiet. Normal servlet control flow applies. In
GXSServiceRunner, the following flow occurs:

o doGet(), if invoked, calls doPost()

+ ThedoPost() method calsinitService(), which obtains the desired service
via GXSServiceFactory.createService(this).

+ Also within doPost(), a method named performProcessRequest() is called.

Composer Enterprise Server User’s Guide

+ performProcessRequest() calls processRequest(), which in turn obtains the
input data for the service. (To obtain the data, a GXS nputConverterBean is
instantiated. The bean, in turn, inspectsthe CONVERTER_CLASS NAME
property of the service runner to determine which converter classto use.)
The service's execute() method is then called.

+ When processRequest() returns, the method processResponse() executes.
Thisiswhere data post-processing can be performed. It is also where any
OutputStreams that are opened from the HttpServietResponse should be
closed.

NOTE: The default implementation of processResponse() contains code
for converting XML to HTML (using server-side XSL transformation), based
on the value of the HTML_INDICATOR property set by the service runner.
Study the source code for GXSServiceRunner if you want to see how this
kind of data post-processing can be done.

Initialization Parameters

It'simportant to understand that the default implementati on of GXSServiceRunner
depends on framework methods (specifically, methods belonging to
GXSServiceFactory and GXS nputConverter Bean) in which the service runner
itself isan argument to the method. When areference to the service runner is
passed thisway, it's because the factory object needs accessto the caler’'s
properties. The propertiesin question usually involve configuration parameters of
some kind.

For example, when GXSServiceRunner callsthe GXSServiceFactory method
createService(), passing ‘this' as an argument, the factory uses the servlet
reference to find out the name of the serviceto obtain and the type of service (EJB
or non-EJB). These pieces of information ultimately come from the servlet’'s
initialization parameters (in particular, the params called “ servicename” and
“xcs_servicetype”). Theinitialization parameters, in turn, are specified in the
web.xml filein the servlet’s WAR module.

Thefollowing listing shows what the web.xml servlet entry for the
MyComposer ServiceRunner class might ook like. This example assumesthat the
target Composer serviceis called Hellowbrld and that the framework-supplied
GXS nputFromHttpParams converter classwill be used to obtain data from the
HTTP request.

<servl et >
<servl et - nane>
My Conposer Ser vi ceRunner

</ servl et - name>

<di spl ay- nane />

<servl et-class>

com conposer . MyConposer Ser vi ceRunner

</servl et-class>

The Runtime Framework 61

62

<init-paranp
<par am nane>ser vi cenane</ par am nane>
<par am val ue>com conposer . Hel | owbr | d</ par am val ue>
</init-paranr
<

nit-paranp

<par am name>Xxcs_ser vi cet ype</ par am nane>
<par am val ue>NORMAL</ par am val ue>
</init-paranr

<

nit-paranp

<par am nane>t r ansf or m_i nt o_ht m </ par am nane>
<par am val ue>f al se</ param val ue>
</init-paranr

<

nit-paranp

<par am name>r oot nane</ par am nanme>
<par am val ue>gr eet i ng</ par am val ue>
</init-paranr

<

nit-paranp
<par am name>convert er cl assnane</ par am nanme>
<par am val ue>
com sssw. b2b. xs. servi ce. conver si on. GXSI nput Fr ontHt t pPar ans
</ param val ue>
</init-paranr
</ servl et>

Notethat the " servicename” init param specifiesthe complete (full-context) name
of thetarget service, in this case com.composer.Helloworld.

Other parameters are supplied aswell, such as “rootname” (to specify the root
element name of the XML document that the converter class will create asinput
to the service), a“transform_into_html” flag to indicate to GXSServiceRunner
whether to attempt X SL transformation of the output datain processResponse(),
and so on.

The important point to noteisthat if you intend to extend GXSServiceRunner or
GXSServiceRunner Ex, you should ensure that the web.xml file for your serviet

class specifies, at aminimum, theinit params“ servicename”, “xcs_servicetype”,
and “ converterclassname” (and valid valuesfor them), as shown above. The other

initialization parameters are optional.

The framework factories “ understand” alarge number of possible init parameter
types:. seethe properties defined on the | GXSServiceRunner interfacefor afull list.
Some of the more commonly used params are shown in the following table.
(Required params arein bold.)

Composer Enterprise Server User’s Guide

IGXSServiceRunner
Property Name

Description

Initialization
Parameter

GXSServiceRunner
method

SERVICE_NAME

The name of the
Composer
service
component.

servicename

getServiceName()

ROOT_NAME

The root node
that is expected
as the input
document.

rootname

getRootName()

JNDI_NAME

The JNDI name
of the EJB home
interface, for the
Composer
service
component.

jndiname

getIndiServiceName()

CONVERTER_
CLASS_NAME

The class that
should be used to
convert the HTTP
request into an
XML document.

converterclassname

getConverterClassName()

PARAM_NAME

The name of the
parameter that
contains the input
XML document.

XCS_paramname

getxcsParamName()

SERVICE_TYPE

Whether the
service
component
reference is an
EJB or NORMAL.

XCS_servicetype

getServiceType()

PROVIDER_PARAM The JNDI providerURI
provider URI.
CONTEXT_FACTORY The JNDI context | contextfactory

factory.

HTML_INDICATOR

An indicator used
to specify
whether the
output document
will be rendered
as HTML.

transform_into_html

getOutputHTMLIndicator()

The Runtime Framework

63

OUTPUT_XSL

If the output
document is
being
transformed into
HTML, this will
give the URI of
the style sheet.
This is only
necessary if the
XSL processing
instruction has
not been
embedded in the
output XML
document.

output_xsl_URI getOutputXSL()

If your servlet classwill be used in an environment where the web.xml init-param
mechanism can’t be relied upon, you should provide custom implementations of
the following methods:

get Servi ceName() to bind the servlet to the Composer service
component (mandatory in all cases)

get Root Nanme() to return the name of the root element to be used if the
converter classwill be GXS nputFromHttpParams (otherwise “root” will be
used by default)

get Servi ceType() should return astring value of “NORMAL” or “EJB”,
indicating the type of service component that will be invoked (mandatory in
all cases)

get Converter Cl assNanme() should return the name of aclass that
implements the | GXSI nput Conver si on interface (not mandatory in every
case, but recommended as a best practice)

get Qut put HTMLI ndi cat or () should return trueif the output of the
service will be transformed into HTML using the default implementation of
processResponse(); falseif it will be XML. (Again, (not mandatory in every
case, but recommended as a best practice.)

IGXSInputConversion and IGXSExInputConversion

64

The framework’s servlet-based service runner class (GXSServiceRunner Ex)
makes use of so-called converter classesto obtain dataarriving viaHTTP. These
classes are intended to provide a clean separation of “data marshalling and
unmarshalling” logic from service invocation logic.

Composer Enterprise Server User’s Guide

The converter classes in the framework implement the |GXSExInputConversion
interface (which in turn extends | GXS nputConversion). Thisinterface has only
one method:

String[] processMiltipl eRequests(H tpServl et Request aReq)

Asyou can see, this method essentially converts a servlet request to an array of
XML strings.

NOTE: Since you cannot implement the IGXSExInputConversion interface if your
custom service runner class does not use (or cannot supply) a HttpServletRequest
object, this discussion applies only if you are extending GXSServiceRunnerEx (or
if you are implementing a custom servlet that will eventually get passed to factory
objects). If your trigger class does not inherit from HttpServlet, you can implement
your own scheme for fetching data, and simply pass the data to the service’s
execute() method.

Most of the framework’s converter classes implement a constructor that takes a

| GXSServiceRunner argument so that the converter can obtain initialization
parameters (or other information) from the caller. Study the source code for the
framework converter classesif you want to see examples of thistechniquein use.

Framework-Supplied Converter Classes

The framework contains anumber of predefined converter classes (that is, classes
that implement the | GXSExInputConversion interface). The names of these
classes can be specified in servlet init-params, or supplied to the

setConverter ClassName() method of GXSServiceComponentBase.

Converter classes available in the framework include:

+ GXSInputFromHttpContent — Obtains XML directly from the request’s
InputStream

+ GXSInputFromHttpMultiPartRequest — Obtains XML from multipart
form data

+ GXSConvertHttpM PRegqNonBuff — Same as above, but uses a non-
buffered MultipartRequest. (Note: The MultipartRequest classis defined in
the framework. See the relevant Javadoc and/or source code for details.)

+ GXSInputFromHttpParams— Obtains XML by parsing query parameters
off the tail end of the URL in an HTTP GET. Those params are assembled
into an XML document on the fly.

+ GXSInputFromHttpSpecificParam — Assumes that aform has been
POSTed, with afield called ‘xmilfile’ that contains XML.

The Runtime Framework 65

+ GXSInputFromJavaObject — Thisis actually a convenience object for
use by Composer JSP taglib methods. It is constructed using areferenceto a
GXSServiceComponentBean. The bean needs to be able to point to a XML
String whose variable nameislocated in an init param called ‘xmldoc’. See
source code for details.

+ GXSInputFromSoapContent — Obtains XML strings from elements
under the BODY element of a SOAP request. Every element is accumulated
into a String|].

You should study the source code for these classes to see how they work before
implementing any but the most trivial of custom converter classes. Depending on
what kinds of data conversion you need to do, you may be able to extend an
existing converter class (and save yourself alot of coding).

A custom converter classwill look something like this.

public class MyConverterd ass inplements | GXSI nput Conversi on
{

/1 Attribute that holds the service
/'l runner for querying paraneters.

| GXSSer vi ceRunner nmRunner = nul | ;

/1 Constructor to take the | GXSServiceRunner
/1 so that the class can retrieve parans
public MyConverterd ass(| GXSServi ceRunner aRunner)

{

nmRunner = aRunner;

/'l the processRequest nethod shoul d take

/1 an HttpServl et Request as

/1 a parameter and return an XM. doc as a String:

public String processRequest(HttpServl et Request aReq)
t hr ows GXSConver si onExcepti on

{
String | sexpandedDoc = nul | ;
/1l (create or obtain XML . . .)
return | seExpandedDoc;
}

66 Composer Enterprise Server User’'s Guide

EJB-Deployed Services

The Enterprise Java Bean (EJB) APl implements a container architecture
designed to facilitate clean separation of logic, data-access, and presentation
layers while also providing connection pooling, transaction management,
persistence, access control (via Roles), “naming services’ (JNDI), and remote
invocation mechanisms, so as to free applications from having to implement or
manage such features individually.

Composer services can be deployed as EJBs. In Composer Enterprise Edition, a
simple drag-and-drop Ul exists for designating EJB associations at design time
(seethe separate Composer User’s Guide), such that when you choose aserviceto
deploy as an EJB session bean, you can specify whether it isto be Stateful or
Stateless, the transaction participation level (Mandatory, Never, Supports, €tc.),
and the INDI name of the service.

Since EJBs cannot beinstantiated directly by use of constructors, you must usethe
GXSServiceFactory's static createService() method to obtain areferenceto a
service. The signature of the method in question is:

public static | GXSServi ceConponent
createServi ce(javax. nam ng. I nitial Context aContext,

java.l ang. String aJNDI Nane)
t hrows GXSException

The returned service object is of type | GXSServiceComponent, which meansiit
supports all of the various execute() overloaded signatures discussed previously.

An alternative to using the GXSServiceFactory is to utilize the
GXSServiceComponentBean class, which can act asakind of “proxy object” for
interacting with Composer services. Example code for using this JavaBean was
given earlier (under “ Delegating Service Calls Through
GXSServiceComponentBean™). To use this bean as an EJB-service accessor,
follow the procedure discussed before, but specify “ EJB” in setServiceType(), and
inadditionto calling setServiceName() with the name of the deployed service, use
setIndi ServiceName() to specify the INDI name that you supplied for the service
at deployment time. If you are implementing the |GXSServiceRunner interface
yourself, you should provide an implementation of getJndi ServiceName() inyour
service runner and vector to it from getServiceProperty() when the latter getsa
request for INDI_NAME.

The Runtime Framework 67

Getting the EJB Home and Remote Interfaces

68

The EJB remote interface, called IGXSEJBServiceComponent, islocated in the
com.sssw.b2b.xs.ejb package. When deploying an Composer service asan EJB,
you will assign aJNDI name to the EJB. It isthis name rather than the qualified
Composer service name that will be used to get a reference to the EJBs home
interface. The name of the EJB home interface for creating the
IGXSEJBServiceComponent iSIGXSEJBServiceHome.

When specifying the INDI name for an EJBs home interface remember that, for
the Novell exteNd Application Server, the string “ sssw://host/RMI/” needsto be
prepended. For example, if you were deploying an EJB into an Application Server
called main.server, and the INDI name for the EJB happens to be
com/acmelinventory/Productinquiry, then thefully qualified INDI name would
be sssw://main.server/RMIl/com/acmefinventory/Productinquiry.

Once the home interface has been retrieved, much like the GXSServiceFactory's
creat eSer vi ce() method, amethod called cr eat e() can beinvoked which
will return the remote interface of the EJB. (Thisisthe closest thing to
“instantiating” an EJB that existsin the EJB world.) Theremoteinterface contains
several execute methods, as described below:

java.lang. String execute()

Method to execute a Composer service that does not expect an input
document.

java.lang. String execute(java.lang. String i nXM.)
Method to execute the Composer service against asingle XML document.
java.lang. String execute(java.lang. String[] aslnputStrs)

Method to execute the Composer service component using multipleinput
documents.

GXSExResponse execut eEx(java.lang. String[] aslnputStrs)
Executes the Composer service using the supplied XML strings.

GXSExResponse execut eEx(java.lang. String[] al npDocs,
java.lang. String[] al npHdrDocs)

Executes the composer service component using the supplied XML strings
asinputs and headers.

You will noticethat the Reader or Document versionsof execute() availableinthe
| GXSSer vi ceConponent are not availablein the EJB remote interface. Thisis
because neither Reader nor Document is serializable and thus neither oneisable
to appear in aremote method.

Composer Enterprise Server User’s Guide

Factory to Obtain EJB Home Interfaces

If you want low-level control over EJB access, you will want to know about a
factory class called GXSEJBAccessor, located inthe com.sssw.b2b.xs.sssw
package. It containstwo methodsto obtain an EJB’shomeinterfacefrom aNovell
exteNd Application Server.

One method can be used within a server that does not require authentication; the
second provides two extra parameters for username and password.

When using the factory, there is no need to fully qualify the INDI name assigned
to the EJB. The factory creates the fully qualified hosthame with the supplied
parameters. In the following example, the INDI name of the EJB is
com/acme/inventory/Productinquiry, the Novell exteNd Application Server
nameismain.server and the ports are at their installation default of 80 for HTTP
and 54890 for RMI.

import com sssw. b2b. xs. ej b;
import com sssw. b2b. xs. sssw. GXSEJBAccessor ;

public void doSonmeEJBStuff () throws java.rmn .RenpteException
{
| GXSEJBSer vi ceHone srvcHone = GXSEJBAccessor. get HomeBean(
“com sssw. b2b. xs. ej b. | GXSEJBSer vi ceHone” ,
“conf acne/ i nvent ory/ Product I nqui ry”, “main.server”,
80, 54890);
| GXSEJBSer vi ceConponent ej bSrvc = srvcHone. create();
/1 Do sonmething with the service conponent

The Runtime Framework 69

70 Composer Enterprise Server User’s Guide

Transaction Management

Composer applications that perform transactions require special planning and
deployment. Runtime and deployment issues associated with transaction
management are covered in this chapter. For a discussion of design-timeissues,
such as how to use the Transaction Action, see the chapter on Advanced Actions
in the Composer User’s Guide.

NOTE: JTA and XA -resource transaction features (including Composer’s
Transaction Action as described below) are not supported in the version of
Composer that comes with exteNd 5 Suite Professional Edition. Full transaction
support is available in the Enterprise Edition version of Composer.

Transaction Control in exteNd Composer

In Composer Enterprise Edition, the Transaction action can call any of the defined
Java Transaction API (JTA) server-side transaction commands. For example:

+ Thebegin, commit, and rollback commands are available for use in projects
that will be deployed as servlets or EJBs with bean-managed transaction
behavior.

+ The Set Rollback Only command is available for use in projects that will be
deployed as container-managed EJBs.

These choices, appropriately enabled/disabled, are available from the Transaction
dialog (see below), which appears when you create anew Transaction Action in
Composer.

Transaction Management 69

Transaction

Designer Transaction Emulation Mode For The Project

|Servlet0r Bean Managed

' Begin Transaction
¢ Cammit Transactian
' Rollback Transaction

o

Help oK Cancel

Transaction Deployment Considerations for the Novell
exteNd Application Server

Asdescribed in an earlier chapter, Composer services can be front-ended by
servlets, EJBs, or arbitrary Java classes. Each mechanism has important
implicationsfor transaction control, asaresult of the way transactions are defined
in the Java Transaction API (JTA).

Servlet Deployment Considerations

Servlet deployment using JDBC connection pools are recommended when
complex transactional behavior isnot required, such asinquiry-only services. The
primary limitations of Servlet deployments are:

+ Declarative transaction control isnot allowed. If thisisareguirement, use an
EJB deployment instead.

+ JDBC connections from the connection pool destined for a Servlet are by
default set with auto-commit turned on. This means that after each Update,
Delete, or Insert statement, the transaction is automatically committed to the
database. Subsequent rollbacks will have no effect. There are two ways to
change this behavior:

1. Issue a Begin Transaction command (using a Transaction action), and
utilize a subsequent Commit or Rollback command as appropriate.

2. Check the “Allow SQL Transactions’ checkbox for the connection. See
“JDBC Transaction Control: Allowing User Transactions’ on page 74 for
further details.

NOTE: Nested transactions are not allowed, but sequential ones are.

70 Composer Enterprise Server User’s Guide

EJB Deployment

Deploying Composer services as EJBs gives the maximum transaction
management flexibility. EJBs are the recommended deployment choiceif your
application requires a distributed transaction environment where data has to be
updated in anumber of back end systems. Before examining exteNd specifics for
EJB Deployment, it isworthwhile to review the deployment options regarding
transactions asindicated in the EJB specification. The following definitions are
helpful:

Application is the user of the transaction services, normally the EJB.

Container isthe application server provided context in which an EJB is deployed
to and executes.

Resource M anager istheinterface to the back end system, such as a database or
amessage queue.

Resour ce Adapter isthe interface to the Resource manager, such asa JDBC
driver.

Transaction Manager isan application server provided object that controls the
flow of the transaction, setting up the transaction between all players. This
normally involves mapping the high level callstolow level transaction callsto the
standard X/Open XA protocol.

See the accompanying illustration.

Transaction

EJB Bean-managec
Manager

Centainer-managed

Container Resource | | Resource
Adaptor Manager

o Back-end

Application Server data source

Transaction Management 71

All container-managed transactions are on a method call basis, while stateful
Bean-managed transactions may span method calls. The EJB literature sometimes
impliesthat with EJBs, all transaction management is done behind the scenes and
is of no concern to the application devel oper. Although complex two-phase
commit logicis, in fact, performed automatically (and rollbacks will
automatically occur if exceptions are thrown), devel opers till need to have an
understanding of how EJB transactions are managed in order to ensure desired
application results.

Bean Managed Transaction Demarcation

When an EJB is deployed as a Bean-managed transaction, it is expected to
communicate with the transaction manager indirectly viaa simplified transaction
interface called User Transaction. UserTransaction provides transactional
commands such as begin, commit, and rollback. These commands are only
available to the Bean if it is deployed as Bean-managed. If they are issued when
the EJB is deployed as Container-managed, an Illegal StateException is thrown.
Consequently, developers need to know in advance how the Bean isgoing to be
deployed.

Container-Managed Transaction Demarcation

72

Container-managed Transaction demarcation, also known as declarative
transaction support, isa powerful and flexible meansfor transaction support. The
application assembler isfree to determine the EJB’s transactional behavior post
congtruction. Container-managed transactions are most useful in cases where
EJBs utilize other EJBsto get work done. The classic example of thiscaseisa
stateless Session Bean calling several Entity Beansto update various tablesin a
database. Linking their transaction via declarative transaction management
greatly reducesthe complexity of the code, asany failurein any of the components
can automatically roll back the transaction.

EJBs support six different Contai ner-managed transaction types. The most
important differentiator among the six isthe notion of transaction propagation. If
one EJB with an ongoing transaction calls another, the transaction may or may not
be passed along to the second EJB. If it is passed, and the transaction is
subsequently rolled back, then al work donein all EJBs within the scope of that
transaction are rolled back.

Container-managed transaction typesinclude:

Table 5-2
Transaction type Behavior
Not Supported No transaction support is available.

Composer Enterprise Server User’s Guide

Required If called with a transaction, it will join, else it will
create one.

Supports If called with a transaction, it will use, otherwise it
will run without one.

Requires New Always creates a new transaction. The callers
transaction is suspended until this one completes.

Mandatory If called with a transaction, it will use, otherwise it
throws an exception.

Never If called with a transaction, it will throw an
exception.

In Container-managed transactions, there is no way to call any type of commit.
The user can initiate arollback by calling theset Rol | backOnl y() method on
the EJB context. Thiscall isonly appropriate in certain situations, however. If the
application is deployed as a Bean-managed EJB, or a Container-managed EJB
without Transaction support, acall to set Rol | backOnl y() will resultina
java.lang. |1 egal St at eExcepti on.

Container-managed transactions are a very powerful mechanism to perform
complex transaction management in a heterogeneous environment. Such a
complex distributed environment requires support from the back end resource
manager, the middleware drivers, and the application server.

NOTE: At this time, the Novell exteNd Application Server supports distributed
transaction management across connections from a single connection pool. Check
with the appropriate vendor’s documentation if you are using a server other than
Novell exteNd Application Server.

XA-Aware Database Drivers

Check that you are using an X A-enabled database driver before using transactions
involving database access. Most vendors provide XA and non-X A version of their
drivers. If you are not able to use an XA-aware driver, you may still be ableto
enlist JIDBC components in transactions, but you should commence the
transaction before opening the database connection (i.e., before calling the JIDBC
component). You should test this scenario, obviously, beforerelying onit.

Transaction Management 73

EJB Deployment Considerations

EJB deployment is recommended in situations where complex transactional
behavior is required. By default, the Deployment Wizard bases the deployment-
mode choice on the current Transaction Emulation Mode (as set in Tools >
Preferences, using the Designer tab). If the emulation mode you’ ve chosen
indicates a bean-managed EJB deployment, the Deployment Wizard will create
thistype of deployment. Otherwise, it will default to a Container-managed,
“Transaction Not Supported” deployment. (One can easily change from Not
Supported to Mandatory, Supports, Requires New, or any of the other valid
choicesfor bean or Container-managed transactions using the pull-down menu in
the Transaction Attribute field of the EJB-Based Service Triggers Panel of the
Deployment Wizard.)

JDBC Transaction Control: Allowing User Transactions

74

Manual control of transactionsis sometimes required. For such situations, exteNd
Composer hasaspecia checkbox on the JIDBC connection component that allows
user-controlled SQL transactions.

NOTE: This is an advanced option, and should only be used if you are
comfortable with the details of SQL programming.

Create a New JDBC Component

Specify which Connection you wish to use for this Component or Service. To change any connection
parameters, you must change them in the Connection Resource ohject or create a new Connection
Resource ofthe same type with different pararneters.

Connection IInventoryS\,rstem j Test |

JDBC Drivar Ir_:c-rr be.mss.odbe. AgOdbeDriver

JDBG URL [idbe rodbeHCTutorial

UserID I

FPassword I

Deployed Pool Mame I
Allow SQL Transactions [

|Ifchecked, user may use SGOL Commit and Rollback verbs to manage transactions.

Help Next Cancel

Checking the Allow SQL Transactions box does the following:

« It turns auto-commit off for the JDBC driver

Composer Enterprise Server User’s Guide

References

+ Ittrandatesal SQL commit and rollback commandsto the equivalent JDBC
connection cals

+ It causes exteNd Composer Enterprise Server to perform arollback on the
JDBC connection if the last Execute SQL Action in the JDBC component
was not a commit or a rollback.

NOTE: This behavior is important if connection pools are used. When you
return a connection to the pool, the pool manager expects to be handed a
“clean” connection. If you return a dirty connection (a connection with
uncommitted changes on it), undesirable results, such as table locking and
transaction scope mismatches, can occur. To prevent this, Composer detects
a dirty connection, and attempts to clean it by issuing a rollback, unless the
user has explicitty commanded a commit. Bottom line: It is vitally important
that you explicitly issue a commit (with a Transaction Action) at the end of the
JDBC component action model, after all database operations have
completed, if your transactionable logic executed without error.

+ Itrestoresthe state of the autocommit flag at the end of the transaction
immediately before returning the connection back to the pool

If you check the Allow SQL Transactions box, Novell recommends that you
deploy your Composer service either as a conventional servlet-triggered service,
or as an EJB in the Contai ner-managed, “Not Supported” transaction mode. In
addition, we strongly recommend that you issue acommit or arollback asthe last
SQL statement in your JDBC component. A “best practice” would be to wrap the
entire JDBC component action model in a Try/On Fault block to catch any
exceptions.

NOTE: As database drivers may react differently, be sure to test your application
in a deployed state to verify the desired transactional behavior.

EJB home page: http://java.sun.com/products/ejb

JTA home page: http://java.sun.com/products/jta

Transaction Management 75

76 Composer Enterprise Server User’s Guide

exteNd Application Server
Dependencies

Connections

Using Novell exteNd Connection Pools

When specifying the connection pool namein the exteNd JDBC connection panel,
make surethat it is specified using the Novell exteNd naming convention. Any
database that has been added to the server is available for use with a connection
pool. The naming convention for a database pool is
Databases/appDBName/DataSource where appDBName isthe name of the
exteNd Application Server database that will be used for connection pooling.

For example, if aexteNd Application Server had a database attached called
ProductionDB, the correct qualified name for the pool would be

Databases/ProductionDB/DataSource

exteNd Application Server Dependencies 79

80 Process Manager User’s Guide

Contents of Deployment Objects

If you look in your staging directory after deploying, you will see a number of
files. This appendix describes those files.

Deployment EAR

Thisisthe final packaging of your project into a deployable object: Itiswhat’'s
deployed, ultimately, to the app server. Thisfile, like WAR and JAR archives, can
be opened with any .zip-file viewer. If you openit, you will see aproject JAR, a
WAR file, and optionally an EJB JAR and application.xml file.

Project JAR

Deploying a project resultsin the creation of aJAR file (the “ Project JAR”) that
containsall thexObjects(aswell asother XML files, such asschemasand WSDL)
used in your project’sdeployed services. The xObjects are encoded as metadatain
individual XML files (one per xObject). The xObject XML files have a context
associated with them in the JAR. The context follows a naming convention that
consists of atwo-part path prefixed to the name of the xObject file.

Thefirst path part, which you create, is a unique name called the deployment
context. This can be any name of your choosing. (You specify thisvalueinthefirst
panel of the Composer deployment wizard.) The deployment context is used to
distinguish two Composer services from each other that are named the samein
different Composer projects residing in the same application server database. (In
other words, the deployment context provides namespace separation.)

Contents of Deployment Objects 81

WAR

Servlets

EJBs

The second path part, which exteNd creates automatically, mirrors the same
directory structure as the original Composer project on the hard disk. The
directory structure for aComposer project consists of aroot directory whose name
isthe name for the project, with subdirectories for each xObject type created (i.e.,
JDBC, Map, Connections, Functions, Script, Service, Code Tablesetc.). Consider
a Composer project called Tutorial, with aJDBC component named
Lookuplnventory. Thedisk directory / file structure would contain the following:

{parent directory of project}\Tutoria\JDBC\LookupInventory.XML.
Thefinal part of the path isthe name of the xObject.
Example:
com.yourcompany.project.jdbc.Lookuplinventory
Where:

+ com.yourcompany.project is the deployment context
+ jdbc isthe object type (and directory name)
+ Lookupinventory isthe xObject

The WAR fileinside your deployment EAR contains amanifest aswell asa
web.xml file. The manifest filetellsthe app server about the JARsin your project.
The web.xml file contains servlet/URL/classfile associations and rel ated
information, so that at runtime the app server knows how to invoke the trigger
servletsthat (in turn) invoke your services.

For each Servlet that the Deployment Wizard generates, an entry is made in the
web.xml file of the WAR file. The WAR file, in turn, is stored inside the
deployment EAR.

For each EJB that the Deployment Wizard generates, an entry is created in the
manifest file for the EJB deployment JAR, called meta-inf/ejb-jar.xml, which
contains the type of EJB (i.e., session or entity), environment settings for each
EJB, and the classes that make up the EJB. An entry is also made in the
BuildEJBs.XML descriptor file that specifies the EJBsto build and their INDI
names.

82 Composer Enterprise Server User’s Guide

The EJB Jar is named using the JAR filename that was specified in the
Deployment Wizard. The name of the deployment EJB JAR file and the remote
interface EJB JAR, both of which are built on the Novell exteNd Application
Server during the deployment, are also based upon the project JAR filename. The
naming conventions for the three JAR filenames are:

o EIB JAR —EJIB-xxxx

+ EJB deployment JAR — EJBDeployxxxx

+ EJB Remoteinterface JAR — EJBStub-xxxx
(where xxxx isthe name of the Project JAR file)
In the following example the Project JAR filenameis Production.jar

+ EJIJB JAR: EJB-Production.jar
+ EJIB Deployment/built JAR: EJBDeployProduction.jar
+ EJB Remoteinterface JAR: EJBStub-Production.jar

ImportObjects.bat

This batch utility contains all of the SilverCmd callsto import and deploy the
various artifacts (deployment files) that were created by the Deployment Wizard.
SeetheNovell exteNd Application Server documentation for detailed information
about this utility.

Contents of Deployment Objects 83

84 Composer Enterprise Server User’s Guide

Reserved Words

Avoid using Java-language keywordsin your deployment-context strings. The

following table lists Java keywords.

Java Keywords

abstract boolean break
byte case catch
char class const
continue default do
double else extends
final finally float

for goto if
implements import instanceof
int interface long
native new package
private protected public
return short static
strictfp super switch
synchronized this throw
throws transient try

void volatile while

Reserved Words

85

86 Composer Enterprise Server User’s Guide

Server Glossary

Bean Managed Transactions

An Enterprise Java Bean that demarcatesits own transaction boundariesis said to exercise bean-
managed transaction control. (The alternative is Container-managed transactions.) The bean-
managed model allows the programmer to exert low-level control over transaction logic, but at the
expense of extra code and program complexity.

Connection Pool

A group of database connectionsthat can be shared among processes, under the control of a
management process (typically the application server). Since opening and closing database

connections can becostly from a performance standpoint, it makes sense for a server to cache
connections.

Container-Managed Transactions

Also known as declarative transaction control, the Container-managed transaction model shifts
transaction management responsibilities out of the EJB and into its Container. EJBs that use this
transaction model need not be “transaction aware” at theinterna code level. Instead, the bean’s
transaction attributes can be set in adescriptor, and the Container will ensure that appropriate control
is exercised over transactionsin which the bean may play a part. The Container-managed model can
greatly reduce code complexity while increasing reliability.

Deployment Context

JNDI

The deployment context is a name string (whose elements are separated by periods) that can be used
to prevent namespace collisions between services with like-named components.

JavaNaming and Directory Interface. A standard extension to the Java platform, providing aunified

interface to multiple naming and directory schemes that might exist across file systems and server
domains.

Server Glossary 87

JTA

Java Transactions API. A standard Javainterface between the transaction manager and parties
involved in adistributed transaction system. Bean-managed transactions rely on this API.

Params (URL/Form)

One of the four canonical Composer service trigger types. This Servlet type builds an in-memory
XML document using HTTP URI form parameters as the names of nodes and their values as text.
Multiple values for a parameter can be handled, but multiple input documents are not created.

Service Triggers

A Service Trigger is aJava Servlet or Enterprise Java Bean created when deploying a project from
Composer. It submitsa Serviceto exteNd.Server for execution. A Service Trigger is also associated
with an URI and convertsinbound datainto XML documents as input to the service it triggers.

SOAP (Simple Object Access Protocol)

A platform-independent protocol for remote invocation of objects using HTTP asthe transport layer
and XML to represent the payload.

XML (HTML form field)

One of the four canonical Composer servicetrigger types. This Servlet type extracts a service'sinput
document from aPOSTed form’sfield. The Servlet expectsthe field name containing the XML fileto
be called ‘xmifile" and it usesthe first occurrence of this parameter for the extraction.

XML (HTTP POST)

One of the four canonical Composer service trigger types. Thistype of trigger Servlet extracts an
XML document sent viaan HT TP POST method. This differsfrom HTML Form POSTsthat contain
parameter name | value pairs. The payload of thiskind of HTTPtransmissionis, infact, theraw XML
document. It is aconvenient method for exchanging XML documents with trading partners.

XML Metadata

All exteNd objects created in Composer are themselves stored as XML files. The object dataand
processing instructionsin these files are referred to as XML metadata. The exteNd runtime engine
processes this metadata to perform XML Integration services.

XML (MIME multipart)

Another of the four canonical Composer service trigger types. This Servlet type extracts aservice's
input document from a multipart encoded form containing a field with an input type of file. The
Servlet expects the field name containing the XML file to be called ‘xmifile' and it usesthe first
occurrence of this parameter for the extraction.

88 exteNd Composer Enterprise Server Guide

Index

A

agjars.conf 36, 39
Allow SQL Transactions 74
application server
transaction deployment considerations 70
auto-commit 74

C

connection pool 73
connection pools 34

using Novell exteNd connection pools 77
container-managed transaction demarcation 72
Container-managed transaction types 74
container-managed transaction types 72
context 51

D

dependencies, server 77
deployment

context 51

EB 71,74

servlet considerations 70
deployment context 51, 79
deployment objects

contents 79

EJBs 80

ImportObjects.bat 81

project JAR 79

servlets 80

EJB
application 71
container 71
container-managed transaction demarcation 72
container-managed transaction types 72
deployment 71

deployment considerations 74
factory to obtain EJB homeinterfaces 67
getting the home and remote interfaces 66
resource manager 71
transaction manager 71

EJB deployment 71, 74

EJB servicetriggerspanel 74

IGXSEJBServiceComponent 66
IGXSEJBServiceHome 66
ImportObjects.bat 81

J

JARfiles 38
Javaclasses
adding 39
JavaTransaction APl 69
JDBC transaction control 74
alowing user transactions 74

N

Novell exteNd application server
transaction deployment considerations 70
Novell exteNd connection pools 77

P

pools, connection 77

Project JAR 16

project JAR 79

Project Variables 39

proxy server 36
PROXYSERVERINFO 37
publishing XML resources 38

R

resources, publishing XML 38
Roles 38

rollback 72

S

Server
about 11
overview 15
whatitis 11
server dependencies 77
connections 77
service triggers
definitionof 86
SQL, transaction control using 74

T

Transaction action 69
transaction management
servlet deployment considerations 70
transaction deployment considerations for the
Novell exteNd application server 70
transaction manager 69
transactions
Container-managed 74
declarative 72
propagation 72
SQL control of 75

U

USEPROXYSERVER 37

X

xconfig.xml 36, 37
XML metadata, definitionof 86

88

89

90

91

92

	Contents
	1 Welcome to Novell exteNd Composer Enterprise Server 11
	2 Composer Enterprise Server Overview 15
	3 Runtime Administration of Composer Enterprise Server 23
	4 The Runtime Framework 43
	5 Transaction Management 69
	A exteNd Application Server Dependencies 77
	B Contents of Deployment Objects 79
	C Reserved Words 83
	D Server Glossary 85

	About This Guide
	Welcome to Novell exteNd Composer Enterprise Server
	What is Composer Enterprise Server?
	Support for Popular App Servers
	Service Types
	Service Triggers

	Composer Enterprise Server Overview
	Deployment Archive Contents
	Novell exteNd App Server Database Requirement

	Push-Model versus Pull-Model Deployment
	Hot Deployment
	Removing (Undeploying) Existing Applications
	Updating Your License

	Runtime Administration of Composer Enterprise Server
	Runtime Administration Consoles
	Real-Time Update
	How to Access the General Properties Console
	General Properties UI
	Navigator Frame
	Toolbar
	General Properties and Settings
	License Manager

	Caching and Cache Administration
	What Is Caching?
	Least-Recently-Used (LRU) Cache Algorithm
	Cacheable Objects
	Cache Scope
	User-Adjustable Settings
	Clearing the Cache

	Performance Tuning
	Connection Pools
	Database Connection Pools
	Logon Components and Non-Database Connection Pools
	Proxy Servers
	Security Roles

	Publishing XML Resources
	Publishing Java Classes
	Controlling Access to JAR and Class files

	The Runtime Framework
	Composer Runtime Architecture
	Typical Request-Handling Scenario
	Alternative Request-Handling Scenarios

	Framework Classes
	Where to Find the Source Files and JavaDoc
	Packages of Interest
	Static Constants

	What Types of Programming Needs Does the Framework Address?
	High-Level Architecture
	Input and Data Conversion
	Service Names within Framework Objects
	Obtaining a Service Instance
	Executing the Service
	Delegating Service Calls Through GXSServiceComponentBean
	Data-Passing Options

	Service Triggers
	IGXSServiceRunner
	GXSServiceRunner and GXSServiceRunnerEx
	Initialization Parameters

	IGXSInputConversion and IGXSExInputConversion
	Framework-Supplied Converter Classes

	EJB-Deployed Services
	Getting the EJB Home and Remote Interfaces
	Factory to Obtain EJB Home Interfaces

	Transaction Management
	Transaction Control in exteNd Composer
	Transaction Deployment Considerations for the Novell exteNd Application Server
	Servlet Deployment Considerations
	EJB Deployment
	Bean Managed Transaction Demarcation
	Container-Managed Transaction Demarcation

	XA-Aware Database Drivers
	EJB Deployment Considerations
	JDBC Transaction Control: Allowing User Transactions
	References

	exteNd Application Server Dependencies
	Connections
	Using Novell exteNd Connection Pools

	Contents of Deployment Objects
	Deployment EAR
	Project JAR
	WAR
	Servlets
	EJBs
	ImportObjects.bat

	Reserved Words
	Server Glossary
	Bean Managed Transactions
	Connection Pool
	Container-Managed Transactions
	Deployment Context
	JNDI
	JTA
	Params (URL/Form)
	Service Triggers
	SOAP (Simple Object Access Protocol)
	XML (HTML form field)
	XML (HTTP POST)
	XML Metadata
	XML (MIME multipart)

