
Novell exteNd Composer™

JDBC Connect

USER’S GUIDE

5.0

Legal Notices
Copyright © 2000, 2001, 2002, 2003, 2004 SilverStream Software, LLC. All rights reserved.

Title to the Software and its documentation, and patents, copyrights and all other property rights applicable thereto,
shall at all times remain solely and exclusively with SilverStream and its licensors, and you shall not take any action
inconsistent with such title. The Software is protected by copyright laws and international treaty provisions. You
shall not remove any copyright notices or other proprietary notices from the Software or its documentation, and you
must reproduce such notices on all copies or extracts of the Software or its documentation. You do not acquire any
rights of ownership in the Software.

Novell, Inc.

1800 South Novell Place

Provo, UT 85606

www.novell.com

exteNd Composer JDBC Connect User’s Guide

January 2004

Online Documentation: To access the online documentation for this and other Novell products, and to
get updates, see www.novell.com/documentation.

Novell Trademarks
eDirectory is a trademark of Novell, Inc.
exteNd is a trademark of Novell, Inc.
exteNd Composer is a trademark of Novell, Inc.
exteNd Director is a trademark of Novell, Inc.
jBroker is a trademark of Novell, Inc.
NetWare is a registered trademark of Novell, Inc.
Novell is a registered trademark of Novell, Inc.

SilverStream Trademarks
SilverStream is a registered trademark of SilverStream Software, LLC.

Third-Party Trademarks
All third-party trademarks are the property of their respective owners.

Third-Party Software Legal Notices
Jakarta-Regexp Copyright ©1999 The Apache Software Foundation. All rights reserved. Xalan Copyright ©1999
The Apache Software Foundation. All rights reserved. Xerces Copyright ©1999-2000 The Apache Software
Foundation. All rights reserved. Jakarta-Regexp , Xalan and Xerces software is licensed by The Apache Software
Foundation and redistribution and use of Jakarta-Regexp, Xalan and Xerces in source and binary forms, with or
without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code
must retain the above copyright notices, this list of conditions and the following disclaimer. 2. Redistributions in
binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution. 3. The end-user documentation included with
the redistribution, if any, must include the following acknowledgment: "This product includes software developed
by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear in the
software itself, if and wherever such third-party acknowledgments normally appear. 4. The names "The Jakarta
Project", "Jakarta-Regexp", "Xerces", "Xalan" and "Apache Software Foundation" must not be used to endorse or
promote products derived from this software without prior written permission. For written permission, please contact
apache@apache.org. 5. Products derived from this software may not be called "Apache" nor may "Apache" appear
in their name, without prior written permission of The Apache Software Foundation. THIS SOFTWARE IS
PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright ©1996-2000 Autonomy, Inc.

Copyright ©2000 Brett McLaughlin & Jason Hunter. All rights reserved. Redistribution and use in source and binary
forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions
of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2.
Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the disclaimer
that follows these conditions in the documentation and/or other materials provided with the distribution. 3. The name
"JDOM" must not be used to endorse or promote products derived from this software without prior written
permission. For written permission, please contact license@jdom.org. 4. Products derived from this software may

not be called "JDOM", nor may "JDOM" appear in their name, without prior written permission from the JDOM
Project Management (pm@jdom.org). THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This Software is derived in part from the SSLava™ Toolkit, which is Copyright ©1996-1998 by Phaos Technology
Corporation. All Rights Reserved. Customer is prohibited from accessing the functionality of the Phaos software.

The code of this project is released under a BSD-like license [license.txt]: Copyright 2000-2002 (C) Intalio Inc. All
Rights Reserved. Redistribution and use of this software and associated documentation ("Software"), with or without
modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must
retain copyright statements and notices. Redistributions must also contain a copy of this document. 2. Redistributions
in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the
documentation and/or other materials provided with the distribution. 3. The name "ExoLab" must not be used to
endorse or promote products derived from this Software without prior written permission of Intalio Inc. For written
permission, please contact info@exolab.org. 4. Products derived from this Software may not be called "Castor" nor
may "Castor" appear in their names without prior written permission of Intalio Inc. Exolab, Castor, and Intalio are
trademarks of Intalio Inc. 5. Due credit should be given to the ExoLab Project (http://www.exolab.org/). THIS
SOFTWARE IS PROVIDED BY INTALIO AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT
SHALL INTALIO OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

5About This Guide

About This Guide

Purpose

This guide describes how to use the exteNd Connect, referred to as the JDBC
Component Editor. The JDBC Component Editor is a standard component editor
in exteNd Composer.

Audience

This book is for developers and systems integrators who are planning to use
exteNd Composer to develop database-aware services and components.

Prerequisites

This book assumes prior familiarity with exteNd Composer’s work environment
and deployment options. Some familiarity with Structured Query Language
(SQL) is also assumed.

Additional documentation

For the complete set of Novell exteNd Director documentation, see the Novell
Documentation Web Site (http://www.novell.com/documentation-
index/index.jsp).

http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp

6 JDBC Connect User’s Guide

7

Contents

About This Guide 5

1 Welcome to exteNd Composer and JDBC 9
Before You Begin . 9
About exteNd Connects . 9
What is JDBC? . .10
What Does JDBC Do? . .10
About exteNd’s JDBC Component . .11
What Kinds of Applications Can You Build Using the JDBC Component Editor? 12

2 Getting Started with the JDBC Component Editor 13
Creating a JDBC Connection Resource . .13

About Constant and Expression Driven Connection Parameters13
About JDBC Drivers and Connection Pools. .14

Creating XML Templates for Your Component .18

3 Creating a JDBC Component 19
Before Creating a JDBC Component .19
About the JDBC Component Editor Window. .23

About the Query Pane .24

4 Performing JDBC Actions 27
About Actions .27
The SQL Statement Action. .28

Handling of Binary Data. .28
Prepared Statements . .29
Creating an SQL Statement using the Wizard .29
Creating an SQL Statement Manually .42
Executing the SQL Statement .46
Checking the Results . .47
Using Stored Procedures . .47
Colons in SQL Statements .51

The SQL Batch Action . .51
Start Batch .52
Execute Batch .53
Discard Batch . .53

Creating Batch actions . .54
JDBC-Specific Expression Builder Properties . .55
Using Other Actions in the JDBC Component Editor .56

JDBC Connect User’s Guide8

Handling Errors and SQL Messages . 56

5 Using Custom Result Mapping 59
About Default Result Mapping . 59
About Custom Result Mapping . 61
About Custom Result Mapping and Aliases. . 62
Using the MapTarget Tab . 63

Looking at a MapTarget Example . 66
Using The Detail Rows Tab . 68

Looking at a Detail Rows Example . 68
Using the Declare Group/Repeat Tab. . 71

Looking at a Declare Group/Repeat Example . 73

6 Stored Procedures 77
About Stored Procedure Mapping. . 77
Binding Rules . 78
Using the Stored Procedure Mapping Setup Dialog . 78
Returned Result Set. . 80

A JDBC Glossary 81

B Reserved Words 85

9

1

Welcome to exteNd Composer and JDBC

Welcome to exteNd Composer and
JDBC Chapter 1

Before You Begin
Welcome to the Novell exteNd JDBC Connect User’s Guide. This Guide is a
companion to the exteNd Composer User’s Guide, which details how to use all the
features of Composer except for the Connect Component Editors. So, if you
haven’t looked at the Composer User’s Guide yet, please familiarize yourself with
it before using this Guide.

exteNd Composer provides separate Component Editors for each Connect, such as
the JDBC connector. The special features of each component editor are described
in separate Guides like this one.

If you have been using exteNd Composer, and are familiar with the core
component editor (the XML Map Component Editor), then this Guide should get
you started with the JDBC Component Editor.

NOTE: To be successful with this Component Editor, you must be familiar with
writing and constructing SQL statements.

About exteNd Connects
Novell exteNd is built upon a simple hub and spoke architecture. The hub is a
robust XML transformation engine that accepts XML documents, processes the
documents, and returns an XML document. The spokes or Connects are plug-in
modules that “XML enable” sources of data that are not XML-aware. These data
sources can be anything from legacy COBOL / VSAM managed information to
Message Queues to HTML pages. exteNd Connects can be categorized by the
integration strategy each one employs to XML enable an information source. The
integration strategies are a reflection of the major divisions used in modern
systems designs for Internet based computing architectures. Depending on your
B2Bi needs, exteNd can integrate your business systems at the User Interface,
Program Logic, and/or Data levels.

JDBC Connect User’s Guide10

What is JDBC?
JDBC is a Java-based API (Application Programming Interface) for executing
SQL statements. While often mistaken as an acronym meaning “Java Database
Connectivity,” JDBC is in fact not an acronym at all, but a trademarked name.
JDBC consists of a set of classes and interfaces written in the Java programming
language that allows you to write one program to access different databases such
as Oracle, Sybase, Informix, etc., rather than needing to write a separate program
for each one.

You can write a single program using the JDBC API and the program is able to
send SQL statements to the appropriate database. And since the application is
written in the Java programming language, there is no need to write different
applications to run on different platforms. The combination of Java and JDBC lets
you write it once and run it anywhere, as the following illustration shows.

What Does JDBC Do?
JDBC makes it possible to do the following:

Establish a connection with a database

Send SQL statements (or queries) to be processed by the database

Process the results of the database processing

Welcome to exteNd Composer and JDBC 11

JDBC is a low-level interface used to call SQL commands directly. It is integrated
into Composer to interface between components and databases, allowing the
program to establish connections with the databases, send the SQL statements,
and process the results. Composer provides tools that enable visual construction of
the necessary SQL commands.

About exteNd’s JDBC Component
Much like the XML Map Component, the JDBC Component is designed to map,
transform, and transfer data between two different XML templates (i.e., request
and response XML documents). However, it is specialized to make a connection
to a database, process SQL statements against the database using elements from a
Message Part within the query, and then map the results of the query to a Part.

A JDBC Component can perform simple data manipulations, such as mapping and
transferring data from one XML document to another, or from an XML document
to a database table. It can also perform sophisticated manipulations, such as
requesting data from disparate databases, transforming data from and to one or
more documents, executing SQL transactions against the database, and even
transforming the documents themselves. Like an XML Map Component, the
JDBC Component can process XSL, send mail, and post and receive XML
documents using the HTTP protocol.

The JDBC Connect uses exteNd Composer as the backplane for XML-based data
interactions, making it possible to reach into databases at runtime (and design
time). Using exteNd Composer, you can assemble Action Models within a JDBC
Component to carry out sophisticated data transformations, using HTTP
(optionally) as a transport mechanism. Live database connections are available at
design time, so that you can edit and debug SQL queries as part of the design
process.

JDBC Connect User’s Guide12

What Kinds of Applications Can You Build Using the
JDBC Component Editor?

You can build any business-to-business application that needs to push data into or
pull data from a JDBC-accessible data store and uses XML as the interchange
format. For example, you can write an application that retrieves the description,
picture and price of a product from a database and displays it in the user’s browser.
If the information resides in two or more databases, you can merge the information
from separate databases before displaying it to the user.

13

2

Getting Started with the JDBC Component Editor

Getting Started with the JDBC
Component Editor Chapter 2

Creating a JDBC Connection Resource
Before you create a JDBC Component, you will find it necessary to create a
Connection Resource to access the SQL database. Each Connect, including the
JDBC connector, uses its own Connection type. Each Connection type is
differentiated by the number and types of parameters used to connect to the
specific external data source.

About Constant and Expression Driven Connection Parameters

You can specify Connection parameter values in one of two ways: as Constants or
as Expressions. A constant based parameter uses the value you type in the
Connection dialog every time the Connection is used. An expression based
parameter allows you to set the value using a programmatic expression, which can
result in a different value each time the connection is used at runtime. This allows
the Connection’s behavior to be flexible and vary based on runtime conditions
each time it is used.

For instance, one very simple use of an expression driven parameter in a JDBC
Connection would be to define the User ID and Password as PROJECT Variables
(e.g. PROJECT.XPATH(“USERCONFIG/MyDeployUser”). This way when you
deploy the project, you can update the PROJECT Variables in the Deployment
Wizard to values appropriate for the final deployment environment. At the other
extreme, you could have a custom script that queries a Java business object in the
Application Server to determine what User ID and Password to use.

To switch a parameter from Constant driven to Expression driven:

1 Click the right mouse button in the parameter field you are interested in
changing.

JDBC Connect User’s Guide14

2 Select Expression from the context menu and the editor button will appear
or become enabled.

3 Click on the button and then create an expression that evaluates to a valid
parameter value at runtime. (Strings should be wrapped in double-quotes.)

About JDBC Drivers and Connection Pools

When you create a Connection Resource, you are asked to provide a Driver Name
and Connection Pool.

The JDBC Driver sun.jdbc.odbc.JdbcOdbcDriver is part of the JRE (Java
Runtime Environment, which you can find under the exteNdComposer directory),
and you can use this driver to establish your connection. But you can also obtain
other JDBC drivers. For instance, the Novell exteNd Application Server has its
own JDBC drivers. Also, you can visit the Web site of the vendor for the SQL
database you’re using and download their driver(s).

A connection pool is a set of database connections managed by the application
server for the various applications it manages. It provides more efficient use of
database and connection resources for multiple applications running in the same
application server. This, in turn, can improve overall system performance. You can
obtain the Pool Name for your application server from your Server Administrator.
For deployments within the Novell exteNd Application Server the pool name will
be Databases/DBName/DataSource where DBName is the name that was used
when the database was added to the server. For example, if you were connecting
to the TutorialBegin3 database provided with the application server, the pool name
would be Databases/TutorialBegin3/DataSource.

Getting Started with the JDBC Component Editor 15

To create a JDBC connection resource:

1 Select File>New> xObject and select the Resource tab. Click on
Connection. The “Create a New Connection Resource” Wizard appears.

2 Type a Name for the connection object.

3 Optionally, type Description text.

4 Click Next.

5 Select JDBC Connection from the Connection Type pull down menu.

JDBC Connect User’s Guide16

6 In the JDBC Driver field, enter the name of the JDBC driver you want to
use. For example, com.sssw.jdbc.mss.odbc.AgOdbcDriver for the Novell
exteNd driver. (For more information see “About JDBC Drivers and
Connection Pools” on page 14.)

NOTE: This parameter, and all subsequent parameters in this dialog, can
be dynamically set using Expressions. See “About Constant and Expression
Driven Connection Parameters” earlier in this chapter.

7 In the JDBC URI field, enter the location of the database you want to reach.
For example, jdbc:sssw:odbc:XCTutorial where jdbc:sssw:odbc: is
required syntax by the driver and XCTutorial is an ODBC Data Source
Name (DSN) defined on the specific computer where the component will
run. (The DSN is defined externally from Composer by accessing the ODBC
Administrator in the Windows Control Panel.) For deployment, you can
maintain the connection described above, provided that the server allows for
ODBC connectivity. The more likely scenario is that you will want to take
advantage of the power of the application server in managing database
access. In that case, you need to provide the connection pool name as
described below.

NOTE: The JDBC Driver and JDBC URI fields are both case sensitive.

8 Enter a valid User ID to sign on to the selected database.

9 Enter a valid Password for the selected database.

10 In the DB Params field, enter any database-specific parameters that might
apply to your connection. For example, to allow updates to a Novell exteNd
SQL Anywhere database, enter S3SqlAnywhereAuth=true as a parameter.
Note that parameters should be entered as name=value pairs. If more than
one name=value param is specified, separate the pairs using semicolons,
e.g., param1=true;param2=true;param3=false.

NOTE: If no database-specific parameters will be used, enter false in this
field.

11 Enter a Pool Name if required. For more information, see “About JDBC
Drivers and Connection Pools” on page 14.

NOTE: Connection pooling is only operational in the deployment
environment. Setting the name here will not affect Composer connections.
Only the deployed project will be affected.

12 Check the Allow SQL Transactions checkbox if you intend to exercise
direct control over transactions (using SQL Begin, Commit, and Rollback
verbs) in your component’s Action Model.

Checking the Allow SQL Transactions box has a number of effects:

Getting Started with the JDBC Component Editor 17

—It turns auto-commit off for the JDBC driver. (The state of the auto-
commit flag is restored, however, at the end of the transaction, before
returning the connection back to the pool.)

—It causes all SQL commit and rollback commands to be translated to the
corresponding JDBC connection calls.

—It causes Composer Enterprise Server to check the final Execute SQL
Action in the component to see that the final action is a commit or a rollback.
If the final action is not a commit or rollback, Composer Enterprise Server
performs a rollback by default, so that a dirty connection (that is, a
connection with uncommitted changes) is not inadvertently returned to the
pool.

NOTE: For a further discussion of the Allow SQL Transactions checkbox,
see the Transactions chapter of the exteNd Composer Application Server
Guide for your application server.

13 Check the Default checkbox if you would like to use the current connection
as the default connection for any new JDBC Components you create in your
project.

14 Click Test to see if your connection is successful. A “success” or “failure”
message appears for your connection. You can continue creating the
resource, even if your connection fails.

NOTE: This does not test the connection pool (if defined).

15 Click Finish. The newly-created resource connection object appears in the
Composer Connection Resource detail pane.

JDBC Connect User’s Guide18

Creating XML Templates for Your Component
In addition to a connection resource, a JDBC component also requires that you
have already created XML templates so that you have sample documents for
designing your component. (See Chapter 5, Creating XML Templates, in the
Composer User’s Guide for more information.)

Also, if your component design calls for any other xObject resources such as
custom scripts or code table maps, it is best to create these before creating the
JDBC Component. For more information, see Creating Custom Scripts in the
Composer User’s Guide.

19

3

Creating a JDBC Component

Creating a JDBC Component Chapter 3

Before Creating a JDBC Component
As with all exteNd components, the first step in creating a JDBC component is to
specify the XML templates needed. (For more information, see Creating a New
XML Template in the separate Composer User’s Guide.) Once you’ve specified the
XML templates, you can create a component, using the template’s sample
documents to represent the inputs and outputs processed by your component.

Also, as part of the process of creating a JDBC component, you can select a JDBC
connection or you can create a new one. If you create the connection beforehand,
then it is available to all new JDBC components. (See “Creating a JDBC
Connection Resource” on page 13.)

To create a new JDBC component:

1 Select File>New>xObject. Select the Component tab and then JDBC.

NOTE: Alternatively, under Component in the Composer Navigator pane,
you can highlight JDBC, click the right mouse button, then select New.

2 The “Create a New JDBC Component” Wizard appears.

JDBC Connect User’s Guide20

3 Enter a Name for the new JDBC Component.

4 Optionally, type Description text.

5 Click Next. The XML Input/Output Property Info panel of the New JDBC
Component Wizard appears.

6 Specify the Input and Output templates as follows.

Type in a name for the template under Part if you wish the name to
appear in the DOM as something other than “Input”.

Select a Template Category if it is different than the default category.

Creating a JDBC Component 21

Select a Template Name from the list of XML templates in the selected
Template Category.

To add additional input XML templates, click Add and choose a
Template Category and Template Name for each.

To remove an input XML template, select an entry and click Delete.

7 Select an XML template for use as an Output DOM using the same steps
outlined above.

NOTE: You can specify an input or output XML template that contains no
structure by selecting {System}{ANY} as the Input or Output template. For
more information, see “Creating an Output DOM without Using a Template” in
the User’s Guide.

8 Click Next. The Temp and Fault XML Template panel appears.

9 If desired, specify a template to be used as a scratchpad under the “Temp
Message” pane of the dialog window. This can be useful if you need a place
to hold values that will only be used temporarily during the execution of
your component or are for reference only. Select a Template Category if it is
different than the default category. Then select a Template Name from the
list of XML templates in the selected Template Category.

10 Under the “Fault Message” pane, select an XML template to be used to pass
back to clients when an error condition occurs.

11 As above, to add additional input XML templates, click Add and choose a
Template Category and Template Name for each. Repeat as many times as
desired. To remove an input XML template, select an entry and click Delete.

JDBC Connect User’s Guide22

12 Click Next. The Connection Info panel of the “Create a New JDBC
Component” Wizard appears.

13 Select a Connection type from the pull down list. For more information on
the JDBC Connection, see “Creating a JDBC Connection Resource” on
page 13.

14 Click Finish. The component is created and the JDBC Component Editor
appears.

Creating a JDBC Component 23

About the JDBC Component Editor Window
The JDBC Component Editor includes all the functionality of the XML Map
Component Editor. It contains mapping panes for Input and Output XML
documents as well as an Action pane.

The difference, however, is that the JDBC Component Editor also includes a
Native Environment pane common to all Connects. It appears as a grey pane until
you create an SQL Statement action, at which time it is populated with the Query
pane, which is specific to the JDBC connector.

NOTE: To display the Query Pane, you must first select SQL Statement from the
Action menu and create an SQL action. Otherwise, the pane remains greyed out.

Native Environment
Pane is empty until
an “SQL Statement”

action is added

JDBC Connect User’s Guide24

About the Query Pane

When the Query pane (i.e., the activated Native Environment pane) is showing—
that is, when an SQL Statement action is selected—it becomes a fully functional
SQL environment for creating and testing queries in real time. From this pane, you
can perform the following:

Take data from an Input Message (or other available Message Part) and use
it to create or modify an SQL Query against a relational data source

Take the results of that query and put it into a Message Part (e.g., Temp,
Output, MyDom, etc.)

The Query pane includes three tabs: the SQL Statement tab, the Results Mapping
tab, and the Results Text tab.

SQL Statement Tab

When the Query pane first opens, it displays the SQL Statement tab in a live SQL
environment. The SQL Statement tab is where you’ll write or build SQL
commands. (See illustration below.) It may be necessary to resize the SQL
Statement pane in order to see the SQL edit box. You can build whole or partial
statements by doubleclicking nodes in the Data and/or SQL Operators trees, or by
typing SQL straight into the bottom of the window.

Input
mapping pane

Output
mapping pane

Action Model pane

Native Environment
pane

Creating a JDBC Component 25

Result Mapping Tab

The Result Mapping tab allows you to map the result of your database query into
an XML document. It also allows you to designate the exact XML branch element
under which you’d like the query result to appear. The Result Mapping tab is
shown below.

Result Text Tab

The Result Text tab (see below) displays the actual SQL statement sent and the
data that was returned following the execution of the database query. This is
helpful if errant data shows up in a Temporary or Output Part. You can compare
the data from the Result Text tab with the data in the XML Message to see where
the error occurred.

JDBC Connect User’s Guide26

27

4

Performing JDBC Actions

Performing JDBC Actions Chapter 4

About Actions

An action is similar to a programming statement in that it takes input in the form
of parameters and performs specific tasks. Please see the chapters in the Composer
User’s Guide devoted to Actions.

Within the JDBC Component Editor, a set of instructions for processing XML
documents or communicating with non-XML data sources is created as part of an
Action Model. The Action Model performs all data mapping, data transformation,
data transfer between SQL databases and XML documents, and data transfer
within components and services.

An Action Model is made up of a list of actions. All actions within an Action
Model work together. As an example, one Action Model might contain individual
actions that read invoice data from a disk, retrieve data from an inventory
database, map the result to a temporary XML document, make a conversion, and
map the converted data to an output XML document.

The Action Model mentioned above would be composed of several discrete
actions. These actions would:

Open an invoice document and perform an SQL command to retrieve
invoice data from a database

Map the result to a temporary XML document

Convert a numeric code using a Code Table and map the result to an Output
XML document

Two of the actions available in Composer are specific to JDBC Components.
These are the SQL Statement Action and the SQL Batch Action.

JDBC Connect User’s Guide28

These actions are described below.

The SQL Statement Action
The SQL Statement action is most commonly used to query an existing database
and then map the result to an XML document. However, the full set of SQL Data
Manipulation Language (DML) statements can be utilized (including database
inserts, deletes, and updates).

There are two ways to use the SQL Statement Action. The first is to create your
SQL statement using the wizard. The second is to create a custom SQL statement
either by typing it in directly or by selecting command statements from the
ECMAScript Expression Builder. In either case, you should be familiar with SQL
database commands and with the structure of the database(s) you are querying in
order to create valid statements with the SQL Statement action.

Handling of Binary Data

When you obtain binary data from a database that supports binary types (such as
MySQL, which supports CHAR BINARY, VARCHAR BINARY , TINYBLOB ,
BLOB , MEDIUMBLOB, and LONGBLOB binaries), you are dealing with data
that potentially contains characters and/or character combinations that are illegal
in XML.

NOTE: Merely mapping such data into a CDATA section is not a satisfactory
solution, because some characters (such as “angle brackets”) are illegal in CDATA.
Also, the character-combo “]]>” is not allowed within CDATA, since it signals the
end of a CDATA section.

One satisfactory way to handle binary data is to use Base64 encoding, which
essentially turns arbitrary byte streams into XML-safe ASCII streams.
Composer’s default behavior is to automatically Base64-encode binary data
whenever possible, such as when binary data are returned from a database during
a SELECT or other ”read” operation. Conversely, Composer will automatically
Base64-decode binary data before INSERTing or otherwise pushing it into a
database. You do not have to take any special action to make this happen.

Performing JDBC Actions 29

If you want to take direct control over encoding or decoding of data, you can do so
with the Composer-defined ECMAScript extension methods base64Encode() and
base64Decode(). The former takes a byte[] array argument and returns a String.
The latter takes a String and returns a byte[] array.

Prepared Statements

The JDBC Connect has the ability to prepare (or precompile) SQL commands and
cache them in memory so that when the same command executes over and over
again (for example, in a loop), the cached statement can be reused, with new
argument values inserted as need be. This can be a significant performance
optimization in cases where statements execute many times.

You can designate any SQL statement as a “prepared statement,” whether it was
created manually or via the wizard, by using the “Execute as prepared” checkbox.
This checkbox is located on the first dialog of the wizard, and also provided just
above the SQL edit box for manually created SQL Statements:

By default, this checkbox is unchecked. For SQL Statement actions that are
executed only once in the course of a service’s lifetime, it is recommended that
you leave the checkbox disabled. For statements inside loops, the checkbox can be
checked.

NOTE: You may want to do some benchmarking to determine whether and to
what degree using the Execute as Prepared checkbox is beneficial in a given
application.

Creating an SQL Statement using the Wizard

The SQL Creation wizard leads you through the process of creating an SQL query.
Composer offers you the ability to create SQL statements using the SELECT,
DELETE, INSERT and UPDATE commands. Of course, the userid with which
you access the database must have the privileges required to perform these actions
for your JDBC component to work correctly. Most userids will be able to SELECT
from tables by default, but often you must have special permission to perform
DELETE, INSERT and UPDATE actions on tables. Check with your Database
Administrator if you are in doubt.

JDBC Connect User’s Guide30

The SQL SELECT Statement

The SQL Select Statement is used to select and return data from a table. For
examples on how to use the SQL Select statement, refer to
http://www.w3schools.com/sql/sql_select.asp. Depending on the size and
structure of your table, a simple SELECT statement may return a lot of data. For
this reason, SELECT statements are often filtered using a WHERE clause.

To create an SQL SELECT Statement action using the wizard:

1 Create or open a JDBC Component.

2 Highlight a line in the Action Model where you want to place the SQL
Statement action. The new action will be inserted below the line you
highlight.

3 From the Action menu, select New Action, then SQL Statement.

4 Indicate that you wish to Create a SQL statement using the wizard.

5 Choose SELECT as the Statement Type.

6 Click Next to display the dialog which allows you to choose a table from
which to select your data.

Performing JDBC Actions 31

7 Select the table and columns used for the SELECT statement by checking
the radio button check boxes associated with the required columns of the
table you wish to use. You will notice that if you hover your cursor over a
column, descriptive information about that column, such as its TYPE and
whether or not it can be a NULL field appears.

NOTE: You can select or deselect all the columns in a table by checking or
unchecking the box at the table level.

8 Click Next to bring up another dialog, which allows you to select columns to
use in your WHERE statement to filter the results of the SELECT statement.

9 Click Next to move to the final dialog, in which you specify the Target
Message Part and XPath placement for the results of your SQL Statement.

JDBC Connect User’s Guide32

You can either specify an XPath, or select Expression to go to the
ECMAScript Expression Builder and

Optionally, you may also choose to:

Create element names as column name.

Create elements if column is null. This creates XML elements with
empty content if the column returned has no data.

Include data type info in element attribute. This creates an attribute
for each element indicating the data type of the result column.

Generate row numbers (if applicable).

10 Click Finish to create the action and return to the JDBC Component Editor.

WHERE Clauses

The execute SQL SELECT statement is now displayed and highlighted in the
Action Model. When focus is on this new action, the Native Environment Pane
displays a two-tabbed dialog which includes a WHERE tab and a Result Text tab.
WHERE will be visible by default. This tab will be used to filter the result set.

Performing JDBC Actions 33

Filtering the resultset using the WHERE tab:

1 Select the Columns you wish to filter using the dropdown menu. This list is
populated according to the columns you chose in step three of the wizard.
You may select one or more columns with which to filter the list. To add a
column to the filter for the result set, click on the + icon. To delete a column,
click the - icon. Columns can also be selected by group. To add a group,
click the {+ icon. To delete a group, click the -} icon.

2 Select a Relation from the dropdown list. Examples for all these relational
operators can be found at http://www.w3schools.com/sql/sql_where.asp.

When using the LIKE operator, the % symbol can be used as a wildcard
character representing any number of missing characters at the beginning or
ending of your matching pattern. Text values should be surrounded by single
quotes, though most databases will also accept double quotes.

It is important to note that the BETWEEN...AND operator can be interpreted
differently by different databases. With some, “between” is literal and only
values in between your test cases will be selected. Some databases will
include the test cases in your result set also. Some include the first case but
not the last, and vice versa. In general, with SQL, you should follow the
advice of that famous television lawyer and “Never ask a question you don’t
already know the answer to.”

3 For Value, either a constant or an expression can be entered. You may also
drag and drop fields from your XML Message Parts to create an expression.

4 The Logical dropdown menu allows you to create more complex WHERE
clauses using And/Or logic. Or, you may complete the clause by selecting
End.

Columns

Relation

Value

Logical

JDBC Connect User’s Guide34

Once you have adjusted your WHERE clause to filter your results appropriately,
you will see the completed SQL statement in the Action Model.

If you open the Result Text tab, you will be able to see the text of the SQL and the
results produced by running the query.

The SQL DELETE Statement

Delete statements in SQL are used to delete entire rows from tables. If you wish to
delete, null out or otherwise modify individual column values within rows in a
table, you should use the MODIFY command (described below). The steps to
follow to create an SQL DELETE statement are fairly similar to those for creating
an SQL SELECT statement.

To create an SQL DELETE Statement action using the wizard:

1 Create or open a JDBC Component.

2 Highlight a line in the Action Model where you want to place the SQL
Statement action. The new action will be inserted below the line you
highlight.

3 From the Action menu, select New Action, then SQL Statement.

4 Indicate that you wish to Create a SQL statement using the wizard.

5 Select DELETE for your Statement Type.

Performing JDBC Actions 35

6 Click Next to select the table from which rows will be deleted using the
DELETE statement.

Only one table can be checked at a time. In the case of DELETE, you will
not be able to select individual columns at this point in the wizard. This
screen is for table selection only, and the columns are all selected and grayed
out, indicating that they will all be available for selection in the next dialog
of the wizard.

7 Click Next to open the next dialog, from which you will select the column(s)
which will be used by the DELETE statement’s WHERE clause to filter the
records which will be deleted.

JDBC Connect User’s Guide36

8 Click Finish to create the new action and display it in the Action Model. As
described above in the SELECT statement, the WHERE tab will be
displayed. Use the the WHERE filtering (described in “WHERE Clauses”
above) to complete your SQL Delete statement. The Result Text tab shows
the text of the SQL and the results produced by running the statement.

The SQL INSERT Statement

Insert statements in SQL are used to insert entire rows into tables. If you wish to
insert or otherwise modify individual column values within rows in a table, you
should use the MODIFY command (described below). The steps to follow to
create an SQL INSERT statement are also fairly similar to those for creating an
SQL SELECT statement.

To create an SQL INSERT Statement action using the wizard:

1 Create or open a JDBC Component.

2 Highlight a line in the Action Model where you want to place the SQL
Statement action. The new action will be inserted below the line you
highlight.

3 From the Action menu, select New Action, then SQL Statement.

4 Indicate that you wish to Create a SQL statement using the wizard.

5 Select INSERT for your Statement Type.

Performing JDBC Actions 37

6 Click Next to select the table(s) into which rows will be inserted by the
INSERT statement. At the same time, select the columns which will be
provided with new data by the statement.

7 Click Finish to insert the new SQL Insert Statement into your Action Model
and return to the Component Editor.

The Native Environment Pane displays two tabs: Column Values and Result Text.
Column Values will be displayed by default.

JDBC Connect User’s Guide38

Specifying Column Values

The Column Values pane displays a table with two columns. The first presents a
list of the columns selected during the final step of the SQL Insert wizard. In the
second column, you will define the values for the columns of the row to be
inserted. You also have the ability to drag and drop data from a Message Part to the
Value column, as shown in the SKU example above.

As always, the Result Text tab shows the text of the SQL and the results produced
by running the statement. You will notice that Composer automatically surrounds
non-numeric data with single quotes.

The SQL UPDATE Statement

Update statements in SQL are used to modify data within the rows and/or columns
of a table. The steps to follow to create an SQL UPDATE statement are also fairly
similar to those for creating an SQL SELECT statement.

To create an SQL UPDATE Statement action using the wizard:

1 Create or open a JDBC Component.

2 Highlight a line in the Action Model where you want to place the SQL
Statement action. The new action will be inserted below the line you
highlight.

3 From the Action menu, select New Action, then SQL Statement.

4 Indicate that you wish to Create a SQL statement using the wizard.

5 Select UPDATE for your Statement Type.

6 Click Next to select the table(s) and columns to modify with the SQL
statement.

Performing JDBC Actions 39

7 Click Next to bring up the final dialog, which allows you to select which
columns will be used by the WHERE clause of the Update statement.

8 Select the appropriate columns and click Finish to complete the action and
add it to the Action Model.

Just as with the SELECT and DELETE commands, the Native Environment Pane
will display a Where tab and a Result Text Tab. In this case, though, it will also
display a Column Values tab as seen with the Insert command.

JDBC Connect User’s Guide40

Use the Where tab to filter the record set to be updated as demonstrated in
“WHERE Clauses” on page -32 above. You may select the columns and define the
criteria for those columns in order to update only the desired records.

Tab to Column Values to provide the values for each of the columns to be updated.
Updating Column Values is demonstrated in “Specifying Column Values” above.

As always, the Result Text Tab shows the text of the SQL and the results produced
by running the statement. You will notice that Composer automatically surrounds
non-numeric data with single quotes.

Editing a SQL Statement Created with the Wizard

Once you have created your SQL statment, you may find that you need to edit it.
This is a two part process. Begin by double-clicking on the EXECUTE SQL action
in the Action Model. This will bring up a tabbed dialog, as shown below.

Performing JDBC Actions 41

These tabs allow you modify the basic Table, Column and Target selections for the
SQL Query. The number of tabs will vary according to the type of SQL Statement
you are editing.

The Table and column selection panel tab is available for all SQL
statement types. It allows you to modify the tables and/or columns you had
chosen to use in your SQL query.

The WHERE clause column selector tab is available for the SELECT,
DELETE and UPDATE statement types. Use this tab to modify the columns
you had chosen to use for your Where clause.

The Result Map Properties is available only for SQL SELECT actions.
Here you can modify the Target location for the results of your query.

Once you have edited the information in these tabs, you may need to further
modify the SQL Statement using the additional tabs available when the item in the
Action Model is clicked on a single time, or after you have clicked on OK in the
Edit SQL Statement tabs, described above.

Back in the Native Environment Pane, you will see a screen that resembles the
following.

JDBC Connect User’s Guide42

Again, the number of tabs shown will vary according to the type of SQL
Statement.

The WHERE tab is available for all SELECT, DELETE and Update SQL
Statements prepared using the wizard. Here you can modify the filter chosen
to limit your query.

The Column Values tab is available for INSERT and UPDATE queries. Use
this tab to modify the values you originally designated as being inserted or
changed as a result of your SQL statement.

The Result Text tab is available for all SQL Statements. It shows the query
that was executed and the results it produced.

Creating an SQL Statement Manually

The manual creation of SQL statements for use in JDBC Components is done
inside the Query/Result Mapping Pane.

If you are editing a previously created action model that already contains SQL
Statement actions, you can make the Query/Result Mapping Pane come into view
simply by selecting (clicking on) any existing SQL Statement action. Otherwise,
you will create an SQL Statement action.

To manually create an SQL Statement action:

1 Create or open a JDBC Component.

2 Highlight a line in the Action Model where you want to place the SQL
Statement action. The new action will be inserted below the line you
highlight.

3 From the Action menu, select New Action, then SQL Statement.

Query/Result
Mapping Pane

SQL Statement
control box

Performing JDBC Actions 43

4 Indicate that you wish to Create a Custom SQL Statement. The
Query/Result Mapping pane appears in the Native Environment pane of the
JDBC Component Editor window, as shown above.

Building an SQL Statement Manually

Building an SQL Statement manually involves bringing together data, operators,
and keywords.

To build an SQL Statement:

1 Place the cursor in the SQL Statement control box in the Query/Result
Mapping pane.

2 Expand the Data columns and/or the Operator/Keywords by clicking the
plus signs. The illustration below shows Data and Operator/Keywords trees
look like with several parent nodes expanded.

3 Double-click each Data column and/or Operator/Keyword that you would
like to add to the SQL Statement box. When you double-click an item, it
automatically appears in the SQL Statement box at the insertion point.

4 Optionally, you may drag elements from an open DOM tree (e.g., the Input
DOM pane) into the SQL Statement box.

5 Optionally check the Execute as Prepared checkbox. (See discussion
further above, under “Prepared Statements”.)

JDBC Connect User’s Guide44

Building an Example Query

Here is an example SQL statement:

SELECT * FROM ProductSystem WHERE SKU =
':Input.XPath("PRODUCTREQUEST/SKU")';

In order to build this statement, the component must satisfy the following:

The component must be able to use a (previously defined) connection
resource to connect to the database

The database must have a table called ProductSystem that has a column
called SKU

The component must have a template containing a sample XML document
with a root element, PRODUCTREQUEST, that has a child element named
SKU

This example statement, in plain English, means:

“Select all columns from the database’s ProductSystem table where a record’s
value in column SKU is equal to the content of the Input DOM’s
PRODUCTREQUEST/SKU element.”

To build the example statement:

1 Expand the SQL tree in the Expression builder and double-click SELECT.

2 Double-click * in the Expression Builder.

3 Double-click FROM in the Expression Builder.

4 Type ProductSystem.

5 Double-click WHERE in the Expression Builder.

6 Type SKU =.

7 Select SKU in the Input DOM and drag it into the SQL Statement control.

8 Optionally type a semicolon (;) at the end of the SQL Statement.

9 Select File>Save. The Query/Result Pane should look like this:

Performing JDBC Actions 45

Mapping Results into the Output DOM

When you have created your SQL Statement manually, you must use the Result
Mapping pane to select where to place the rows and columns of your results into
the XML Document tree.

To use Result Mapping:

1 Select the Result Mapping tab in the Query/Results Mapping pane. The
Results Mapping pane appears.

2 Under Result Row Placement, select the destination Part to which you
would like the result of the SQL query mapped.

3 Next, select the Part element under which you’d like each result row to
appear. If an appropriate Part is not listed, you may add another XML
template using the File>Properties>Messages dialog from the menu. If a
Part is not visible, go to View>XML Documents>Show/Hide.

4 Select options as follows:

Default Result Mapping: Choose the first radio button for standard
Column/Row/Group mapping:

Create element name as column name.

Create elements if column is null. This creates XML elements with
empty content if the column returned has no data.

Include data type info in element attribute. This creates an attribute
for each element indicating the data type of the result column.

Generate row numbers (if applicable).

JDBC Connect User’s Guide46

Custom Result Mapping: Choose the second radio button, Custom
Column/Row/Group, to perform custom column, row, or group mapping
(see Chapter 5).

Stored Procedure Mapping: Choose Stored Procedure mapping to map data
returned from stored procedures. (see Chapter 6).

5 Select File>Save.

Editing a Manually Created SQL Statement

To edit a SQL statment once you have created it manually, simply click on the
EXECUTE SQL action in the Action Model.

Use the SQL Statement Tab to edit the Text of your SQL statement manually
or use the methods above to change your selections of Data, Operators and
Keywords.

Use the Result Mapping Tab to modify the target placement for the returned
data.

Use the Result Text Tab to show the query that was executed and the results
of the query.

Executing the SQL Statement

After you have built the SQL Statement, either manually or using the wizard, click
the Execute button to run it.

Performing JDBC Actions 47

Checking the Results

You can check the results of your SQL statement by looking at the data retrieved
in the familiar row and column format. To do so, click the Result Text tab. This
tab is available for all SQL Statements, whether created manually or using the
wizard.

If the query result returned by the SQL statement looks correct, you can continue
designing your component’s Action Model. Otherwise, you can return to the SQL
Statement tab and debug your SQL as necessary.

Using Stored Procedures

Many RDBMS vendors provide the ability to execute procedural code stored in
the RDBMS system. Using these stored procedures allows for high-performance
interfaces that are independent of the underlying table implementations.

JDBC Connect User’s Guide48

Using stored procedures can be helpful in controlling access to data. User access
to data can be limited to the scope of the stored procedure. Limiting access to data
with stored procedures preserves data integrity by insuring data is entered in a
consistent manner. Stored procedures also improve efficiency. They’re memory
resident, which speeds execution. Their use decreases network traffic.
Productivity is improved via their use since stored procedures only need to be
written and debugged once but can be reused by many.

While often used interchangably, for the sake of discussion we’ll differentiate
between the terms Procedures and Functions. A Procedure is a subroutine that
doesn’t necessarily return any data but may via the call’s parameters or as external
result sets. A Function, on the other hand, always returns something. Both
Procedures and Functions can pass Parameters.

Novell exteNd Composer allows you to map parameters to stored procedures and
functions, execute stored procedures and functions and map returned data to
DOM/node combinations.

Syntax Requirements

In order to package the Procedure or Function call correctly, exteNd Composer
requires certain formatting conventions be followed. For example:

{ – indicates that a call to a Function or Procedure follows

} – indicates the end of a call to a Function or Procedure

The syntax for procedures and functions support parameters which may be
Expressions, Placeholders or Constants.

Expression: Expressions may be used pass variable input data to a procedure or
function. Expressions used as parameters in procedure and function calls are
preceeded with a colon (:) and enclosed in single quotes. (e.g.
‘:<variablename>’).

Question Mark: Question Marks (?) may be used as parameters and serve as
placeholders to which the procedure returns data. A question mark is also used for
the result in a function.

Constant: Constants are used to pass input data in procedures and functions but,
unlike expressions or placeholders cannot be used to accept returned data. Literal
values are enclosed in single quotes.

Rules for Stored Procedure Parameters

Stored procedures may have Input Parameters, Input/Output parameters and
Output Parameters.

Performing JDBC Actions 49

Input Parameters: Input Parameters pass data to stored procedures. Input
Parameters may be Constants or Expressions.

Input/Output Parameters: Input/Output Parameters pass data to stored
procedures and accept data returned from stored procedures. Input/Output
parameters must be Expressions.

Output Parameters: Output Parameters accept data returned from stored
procedures. Output parameters may be either an Expression or a Question Mark as
a placeholder.

Using Procedures and Functions in a JDBC Component

For all the examples below the following steps should be executed.

• Add a new SQL action

• Execute as Prepared is set to true (check the checkbox; see “Prepared
Statements” on page 19).

NOTE: For mapping the results of stored procedures, see Chapter 6.

Syntax for running a Procedure from within exteNd Composer

Procedures that do not return a value:

{ call [<packagename>.]<procedurename>[([param1,
param2…,paramn])]}

Example:

{ call composerDemoPackage.sp1_withParams(‘12345’,’George’) }

Procedures that return a result set:

{ call [<packagename>.]<procedurename>[([param1,
param2…?…..paramn])]}

where ? is a parameter to which the result set is returned. A result set may also be
returned to other parameters which contain Expressions.

Example:

{ call composerDemoPackage.sp_withParams('93324', ‘:FirstName’,
?)}

In this example ‘93324’ is a constant, ‘:FirstName’ is an Expression and ? is a
placeholder.

NOTE: Only Oracle returns result sets as parameters. Non-Oracle RDBMSs may
return result sets but, not as parameters.

JDBC Connect User’s Guide50

Backward Compatability for Oracle Procedures that return a result set:

Prior to version 4.0, exteNd Composer provided support for Oracle Procedures
that return result sets as parameters. To do so, exteNd Composer (prior to version
4.0) required the user to specify the Oracle Cursor Position within the procedure
call. The pre-Composer 4.0 syntax included ocp:n – where ocp stands for Oracle
Cursor Position and :n indicates which parameter contains the cursor. This syntax
was used in pre-4.0 versions of exteNd Composer and is maintained in version 4.0
and greater for backward compatability.

{ call [<packagename>.]<procedurename>[([param1,
param2…ocp:x…..paramn])]}

Example:

{ call composerDemoPackage.sp_withParams('93324', ‘Melissa’,
ocp:3)}

NOTE: The contents of the result set will be returned in the same manner as a
standard SELECT statement. The results will be automatically be mapped to the
selected XML Document. The defaults are Output as the Document and
RESULTINFO/ROW as the XPath location.

Syntax for Calling a Function from within Composer

Functions that return a result set:

{ ? = [<packagename>].<functionName>[([param1,
param2…,paramn])]}

Example:

{ ? = call composerDemoPackage.fn_justOneReturn() }

Backward Compatability for Oracle Functions that return a result set:

To provide backward compatability with pre-4.0 versions of exteNd Composer,
the following syntax will continue to be supported in exteNd Composer 4.0 and
greater.

{ ocp:1 = [<packagename>].<functionName>[([param1,
param2…,paramn])]}

Example:

{ ocp:1 = call composerDemoPackage.fn_justOneReturn() }

Performing JDBC Actions 51

Other Methods of Calling Functions for Specific Tasks

You may call any function that does not update the database from within a select
statement.

Example:

select fn_addMin(4,6) "Sum" from dual

To use a function that does not return a result set but updates the database, call it
from within a function that does return a result set – see the example
fn_callAddMin

Example:

{ ? = call composerDemoPackage.fn_callAddMin(22,44) }

Colons in SQL Statements

Colons are special characters in SQL Statements, because exteNd Composer treats
colons as markers indicating the presence of ECMAScript immediately to the
right. In the above action, the SQL Statement includes the string

‘:Input.XPath(“PRODUCTREQUEST/SKU”)’

which contains a colon followed by an ECMAScript expression involving the
XPath() method. Without the colon, the string would be evaluated as a string-
literal. With the colon, it is evaluated as an ECMAScript expression.

NOTE: If you need to use colons as literal values inside SQL Statements, escape
every occurrence of a literal colon with a backslash. Otherwise, you may see
errors.

The SQL Batch Action
Most database drivers allow batch execution of SQL statements in order to
minimize demand on connection resources. For example, a user may want to insert
data into a table in one database and delete data from a table in another database,
all in one round trip. This is possible with the SQL Batch action.

SQL Batch actions allow you to specify that a particular group of SQL Statement
actions should be accumulated into a single batch and transmitted to the database
as a unit.

NOTE: SELECT operations may not be used in batches. Use only INSERT,
DELETE, and UPDATE statements.

To access the SQL Batch action, right-click inside the action pane and choose New
Action > SQL Batch as shown below.

JDBC Connect User’s Guide52

There are three SQL Batch commands, each of which places a new action in the
action model: Start Batch, Execute Batch, and Discard Batch.

Start Batch

You must tell Composer where the beginning of a batch occurs, by placing a Start
Batch statement before the first SQL Statement in a series of statements that you
want to group. This command sets a checkpoint for rollback purposes (in case the
batch does not finish normally).

From the first occurrence of this command until the next occurrence of an Execute
Batch command (see below), SQL Statements are merely accumulated, rather than
executed. Execution of a batch does not occur until an Execute Batch command is
reached.

Regular (non-SQL) actions, such as Map and Function actions, are not affected by
Batch operations. If you place Map actions, Function actions, or any other non-
SQL actions within or after a group of batched SQL Statement actions, those
actions will execute before the SQL Statements in your batch, because the batch
cannot execute until an Execute Batch is reached.

Performing JDBC Actions 53

Execute Batch

An Execute Batch command causes all SQL Statements in a batch to be sent, as a
unit, to the database. (If no Execute Batch command is issued, none of the SQL
Statements in the preceding batch will get executed.)

An Execute Batch statement can be placed immediately after a batch of SQL
Statement actions, or it can be placed at some point downstream of the batched
actions (possibly in one branch of a Decision action). In other words, you can
create a batch in one location and execute it, conditionally, from another location
in your action model.

Discard Batch

The Discard Batch command is a memory-deallocating command that causes the
previously held batch to go out of scope. It frees the memory held by the preceding
batch.

Ordinarily, when an SQL batch executes without error, the batch is discarded
automatically after it executes and there is no need to issue an explicit discard. You
would use Discard Batch when you have an action model that contains two or
more sequential SQL batches (each with its own Execute Batch command)
wrapped in Try/On Error statements. The need for the Discard Batch arises when
one of the upstream batches executes abnormally (generating an exception). In
order to continue to another batch, you need to purge the previous batch from
memory (with a Discard Batch in the On Error branch of the “Try” action). Failure
to use Discard Batch under these conditions would cause the next Start Batch to
throw an exception. This scenario is shown in the illustration below.

JDBC Connect User’s Guide54

In the case depicted above, where there are two SQL batches (each enclosed in a
Try/On Error action), failure to include a Discard Batch action in the error branch
of the first Try will cause the next Start Batch to throw an exception (assuming the
first batch fails).

In summary: When two or more batches will execute sequentially, wrap each in a
Try/On Error action and include a Discard Batch command in the On Error
branch of each.

For action models in which there is only a single SQL batch, Discard Batch is not
necessary. After normal execution of a (single) batch, memory allocated to the
batch is released automatically; and if the batch returns an error, the batch will go
out of scope (and be garbage-collected) when the component itself goes out of
scope.

Creating Batch actions

Batch actions are created using the SQL Batch menu command (available from
Action > New Action > SQL Batch in the JDBC Component Editor main menu,
or via New Action > SQL Batch in the contextual menu).

Performing JDBC Actions 55

To create a SQL Batch action:

1 Place the cursor in a line preceding the group of SQL Statements that you
want to batch. Then press the right mouse button and select New Action >
SQL Batch. The Batch setup dialog appears.

2 Choose the Start Batch radio button to insert a Start Batch command in your
action model. Otherwise, choose Execute Batch or Discard Batch, as
appropriate.

3 Click OK to dismiss the dialog. A new action appears in your action model.

JDBC-Specific Expression Builder Properties
SQL queries can result in certain status and/or error values being returned (for
example, the number of records that were changed by an Update). Often, it is
useful to be able to reference these values in ECMAScript expressions. The
Expression Builder pick list (in the top portion of the Expression Editor window)
contains properties that are specific to JDBC Actions involving SQL: namely,
SQLSTATE, SQLCODE, and UPDATECOUNT. (See panel below.)

JDBC Connect User’s Guide56

Using Other Actions in the JDBC Component Editor
In addition to the SQL Statement action, you have all the standard Basic and
Advanced Composer actions at your disposal as well. The complete listing of
Basic Composer Actions can be found in Chapter 7 of the Composer User’s
Guide. Chapter 8 contains a listing of the more Advanced Actions available to
you.

Handling Errors and SQL Messages
SQL returns certain coded values when errors occur (i.e., no record was found in
a Query) or as a report on the result of certain actions (i.e., how many records were
changed by an Update). These results appear on the Result Text tab as three special
variables labeled:

SQLSTATE

SQLCODE

UPDATECOUNT

LASTSQL

These variables are available to ECMAScript functions you may write and can be
used for error handling within your JDBC component. For instance, you can create
a Decision action to process after an SQL statement. Based on the value returned
in the UPDATECOUNT variable, you can choose one or the other set of actions in
the two branches of the Decision action. Likewise, error information contained in
SQLSTATE or SQLCODE (which are standard SQL status variables) can be used
to branch to appropriate recovery logic in case of error.

Performing JDBC Actions 57

The LASTSQL variable is an exteNd-defined string variable which contains the
last SQL statement to actually execute in the component in question. Logging the
value of this variable can be useful for troubleshooting.

JDBC Connect User’s Guide58

59

5

Using Custom Result Mapping

Using Custom Result Mapping Chapter 5

The following sections describe the similarities and differences between default
and custom result mapping for the Execute SQL action. Custom mapping features
are described in detail.

About Default Result Mapping
The mapping of data returned from an Execute SQL action is determined by
specifications on the Result Mapping tab in the SQL Mapping pane. The two
Result Row Placement controls allow you to determine where in the target
document to place the result set data. The drop down list specifies the Message
Part or Repeat alias context and the Expression edit box specifies the XPath
location within the Context.

The Context is either the name of a Part in the component or the name of a Repeat
alias already specified in the component (where the Repeat alias itself represents
a Message Part context and XPath location). The Expression edit box specifies an
XPath, the last element of which acts as the parent element for the returned results
and will receive the data. The last element that receives the data is called the Row
Target. If multiple rows are returned, then multiple Row Targets will be created.
Each column returned in a row will appear as a child element of each Row Target.

JDBC Connect User’s Guide60

By default, the Row Target is named “ROW” and is a child of a root element
named “RESULTINFO,”and the results are written to Output, as shown above.
Notice that no checkboxes are checked in the Result Mapping pane.

You can change the result mapping to use any target XPath of your choice. For
example, you can use the Result Mapping tab to specify a Row Target such as
Temp/RESULTINFO/Result as shown in the graphic below.

Using Custom Result Mapping 61

Result Mapping functionality includes the following default behaviors:

Target element names created in the document are the same as column
names returned in the result set

All columns returned in the result set are mapped to the target document

All columns are mapped to the same parent target element

All rows are placed into a single document

NOTE: Any column names that contain spaces will have the spaces replaced with
the underscore character since XML does not permit spaces in element names.

About Custom Result Mapping
Use custom result mapping to:

Create target element names different than the column names returned

Map columns to different row targets

Group the result set data by one or more columns

Map only group information

Map group and detail information

Custom result mapping is accessed via the Custom ... button on the Result
Mapping tab.

If you click this button, you will be presented with a dialog that has three tabs,
labeled Map Target, Detail Rows, and Declare Group/Repeat.

JDBC Connect User’s Guide62

The use of this dialog is discussed in detail below.

About Custom Result Mapping and Aliases
Novell exteNd Composer’s default mapping behavior is to iterate through a list of
one or more nodes (i.e., elements specified by an XPath pattern) from a source
document, and map them to a single target document XPath location. If the target
location doesn’t exist, Composer creates it. If you know the source list is greater
than one, you must indicate to exteNd Composer whether you wish to map to the
same physical target location for each member of the source list (i.e., overwrite the
data in the specified physical target location), or create a new physical target
location for each member of the source list (i.e., add new target locations as the
repeated source is mapped). You indicate that you want to map each member of
the source list to the same physical target location by specifying the Context as an
actual DOM name. You indicate that you want to map each member of the source
list to a new physical target location by specifying the Context using an alias.

NOTE: This is also true for the Repeat for Element and the Repeat for Group
actions.

Using Custom Result Mapping 63

You can think of the multiple rows of data returned by a SELECT statement as a
repeating set of elements in an XML document. In that case, you may choose to
create a Declare Group action creating a list of Groups and Detail elements within
the Groups. Then you would create a Repeat for Group action to process the
Group list or detail of each Group. The Custom Map Target, Detail Rows, and
Declare Group/Repeat tabs provide a similar alias ability for repeating rows in
SQL result sets as the Declare Group and Repeat for Group actions do for
repeating elements in a document.

Using the MapTarget Tab
The Map Target tab is used to:

Create your own target element names for each result set column

Specify a target Context for each result set column

The Map Target tab controls the mapping of each returned row’s individual
columns. For each column, you specify a Context – Target XPath combination.
The Context – Target XPath combination is specified for each column in the order
they are listed in the projection list for the SELECT statement in your Execute
SQL action. You cannot use Custom Result Mapping without filling in the Map
Target tab.

The Map Target table will initially appear without any rows. Use the + icon to add
additional rows. Use the - icon to delete rows. Use the up and down arrows to
arrange the rows of the Map Target table.

Column: This number refers to the columns in the order they are listed in your
SELECT statement.

Context: This specifies the target document for the column. The Target XPath will
be appended to the Context to produce the full XPath location for the column in
the target document. The Context can be a:

Document – You may use this choice if your result set contains only one row,
otherwise each additional row will overwrite the previous row’s data.

Detail Alias – A Detail Alias is defined on the Detail Rows tab and consists
of a Document name and partial Target XPath. Or the Detail Alias may
consist of a Group Alias (defined on the Declare Group/Repeat tab) and
partial Target XPath location. Using a Detail Alias tells exteNd Composer to
create a new physical target location for each member of the source list (i.e.,
each row in a result set).

JDBC Connect User’s Guide64

Group Alias – A Group Alias is defined on the Declare Group/Repeat tab
and consists of a Document name and partial XPath location. Using a Group
Alias tells exteNd Composer to create a new physical target location once
for each Group in the source list (i.e., where each group represents multiple
rows in a result set).

Repeat Alias – If the Execute SQL action is contained with a Repeat action
in your Action Model you may choose its Target alias. In this case, the
Context will resolve to a Document and partial XPath to which the Target
XPath (see below) will be appended.

When grouping and mapping detail column data, the Declare Group/Repeat,
Detail Rows, and Map Target tab work together to define the complete XPath
location for the column. (See illustration.) For instance, a column on the Map
Target tab will be represented by a Context and XPath. The Context may be a
Detail Alias defined on the Detail Rows tab. The Detail Alias in turn will represent
another Context and XPath. Its Context may be a Group Alias defined on the
Declare Group/Repeat tab. Finally the Group Alias itself will represent another
Context and XPath.

By defining the Group and Detail aliases separately, you are able to map rows with
duplicate column data (the basis for your groups) just once into group header
elements by using the Group alias as a context, and map columns with unique data
(the detail of your groups) multiple times within the group header elements by
using a Detail Alias whose Context is a Group Alias.

Target XPath: This is an XPath fragment that specifies the custom name to be
given to the column and optionally pre-pended by any additional parent elements.
The Target XPath will be pre-pended by the Context to produce the final location
for the column in the target document.

Base64 encode: The checkbox in this column allows you to convert binary data to
an XML-safe representation for use in a DOM element.

NOTE: Composer’s default behavior is to automatically Base64-encode binary
data returned from a database during a SELECT or other ”read” operation. This is
necessary to ensure that the target XML node contains no “illegal characters.” See
“Handling of Binary Data” in the previous Chapter for additional info.

Using Custom Result Mapping 65

A processing summary for the Map Target tab is shown in the table below.

SQL Results Context = Document Context = Alias

One Row
Returned

One row target is found or
created for the first (and only)
result row.

One row target is found or
created for the first (and
only) result row.

JDBC Connect User’s Guide66

Looking at a MapTarget Example

Let’s assume your Execute SQL action issued the following statement:

SELECT CATEGORY, SKU, ONHAND, COST FROM InventorySystem

Which returned the following row data:

You could fill out the Map Target tab as shown below:

Multiple
Rows
Returned

One row target is found or
created for the first result row.
Subsequent rows find and
map to the same physical
target location. (Without an
alias, each row’s data is
overwritten by the next row
until only the last row’s data is
left.)

One row target is created for
every result row.

Category SKU Onhand Cost

3 CHR1111 0 999

2 DAD7777 89 245

4 GAR1234 17 100

1 LOR8437 0 275

1 LOR8438 21 375

4 MOM4666 233 300

4 RAC4567 156 230

4 ZAC9080 4 555

SQL Results Context = Document Context = Alias

Using Custom Result Mapping 67

Column one according to the SELECT statement will be CATEGORY. The
Context is a document named “MyTemp” and the target XPath location within the
Context will be “INVENTORY/PRODUCTDetail/TheCATEGORY”. Notice that
CATEGORY is being renamed to TheCATEGORY and being pre-pended with
parent elements of INVENTORY/PRODUCTDetail. This same logic applies to
the remaining columns.

However, since we have yet to define or use any aliases, each row’s column data
will be written to the same four physical target locations specified on the tab. If
only one row is returned, then its data will be mapped to the target document with
no problems. If multiple rows are returned as in our example, then each successive
row’s data will overwrite the previous row’s data until only the last row’s data
exists. (Only in rare cases will this situation be desirable.)

JDBC Connect User’s Guide68

Normally, you use the Map Target tab by itself if only one row is returned and all
you wish to do is change the names of the target elements to something different
than the column names. (Or if you want to assign different parent elements to
individual columns.)

To avoid overwriting data with multiple result-set rows, you need to use a Detail
Alias from the Detail Rows tab telling exteNd Composer to create a new physical
target location for each row mapped.

Using The Detail Rows Tab
The Detail Rows tab allows you to create a mapping alias tied to either a document
Context or a Group/Repeat alias Context. Use of the Detail Rows tab is optional.

Detail Alias: This is a name you specify that will be referenced as a Context on the
Map Target tab for mapping columns in a result set row.

Context: This is a document name or Group/Repeat alias you specify. The Target
XPath will be appended to this Context to produce part of the final location for the
column in the target document (the remaining part comes from the Target XPath
on the Map Target tab). The Context can be a:

Document – Using a Document name tells exteNd Composer to create a new
physical target location once for each row in the result set.

Group Alias – A Group Alias is defined on the Declare Group/Repeat tab
and consists of a Document name and partial Target XPath location. Using a
Group Alias tells exteNd Composer to create a new physical target location
once for each detail row belonging to each Group (i.e., each group represents
multiple rows in a result set).

Target XPath: This is an XPath fragment that you specify. It will be pre-pended
by the Context on this tab and appended with the Target XPath on the Map Target
tab to complete the final location for the column in the target document.

Looking at a Detail Rows Example

Assuming your Execute SQL action issued the following statement:

SELECT CATEGORY, SKU, ONHAND, COST FROM InventorySystem

You could fill out the Detail Rows tab as shown below:

Using Custom Result Mapping 69

Since the Context MyTemp and Target XPath fragment
INVENTORY/PRODUCTDetail are now specified on the Detail Rows tab
(creating a new physical target location for each row), references to them must be
replaced on the Map Target tab with the Detail Alias “MyTempDetail.”
Continuing the example used in the previous section, you would update the Map
Target tab as follows:

JDBC Connect User’s Guide70

By using a Detail Alias specified on the Detail Rows tab, you will ensure that if
multiple rows are returned in the result set, each row will create a new physical
target location under INVENTORY/PRODUCTDetail.

When not used in conjunction with the Declare Group/Repeat tab, you can think
of the Detail Rows tab as creating a “Repeat for Row” alias. If the Context for a
Column on the Map Target tab is a Detail Alias (instead of a document), then
exteNd creates a new Target XPath each time a row mapping occurs. In this way,
multiple rows in the result set create multiple Row Targets in the document without
overwriting the previous row’s data. This is the same functionality provided by the
Result Mapping tab’s Custom… option, except that you get to rename the
columns.

Using Custom Result Mapping 71

The result set data may not be arranged exactly the way we want, however. For
example, the subtrees under PRODUCTDetail (see illustration above) are listed
without regard to product category information. If you look under
PRODUCTDetail/TheCATEGORY, you can see that two rows belong to
category 1, and one row each belong to categories 2 and 3. (This example is in the
Action Examples project under the Sample directory in your Composer
installation. You might want to step through the JDBC Component from which the
above screen shot was taken, which is called “Custom Result Mapping in JDBC.”)

Perhaps you’d rather see row data grouped according to category. To do this, you
need to use a Group Alias from the Declare Group/Repeat tab.

Using the Declare Group/Repeat Tab
The Declare Group/Repeat tab is used to:

Create groups of result set records based on one or more result set columns

Create a Group Alias to use as a Context for Detail Rows

Create a Group Alias to use as a Context for Map Targets (creating Group
Headers)

JDBC Connect User’s Guide72

By declaring a Group Alias you create a list comprised of the unique values found
in a column across multiple rows. Any Map Target column that uses the Group
Alias will map its column data only once for each unique Group essentially
creating group header information.

In addition, each unique group value points to a list of the rows that belong to it.
Any Detail Alias on the Detail Rows tab that uses the Group Alias will map its
rows together for that group.

Group Alias: This is a name you specify that is referenced as a Context on the
Map Target and/or Detail Rows tabs.

Columns: Specify one or more columns separated by a comma to create your
groups. Using two columns means that only unique combinations of the
concatenated values of the two columns will create a group.

NOTE: The columns you specify must form the basis of an ORDER BY clause in
the SELECT statement for the Execute SQL action. If you omit the ORDER BY
clause, your results will be unpredictable.

Context: This is a document name in the component or Repeat for Group or
Repeat for Element alias in the Action Model that contains the Execute SQL
action. The Target XPath is appended to this Context to produce part of the final
location for the column in the target document. (The remaining part comes from
the Target XPath on the Map Target tab and optionally from the Target XPath on
the Detail Rows tab.) The Context can be a:

Document – Using a Document name tells exteNd Composer to write to the
same physical document for each Group.

Repeat for Group Alias – If your Execute SQL action is inside a Repeat for
Group action in your Action Model, then you may use its target alias as the
Context for each Group. This tells exteNd Composer to create new Groups
once for each Group processed in the enclosing Repeat for Group action.

Repeat for Element Alias - If your Execute SQL action is inside a Repeat for
Element action in your Action Model, then you may use its target alias as the
Context for each Group. This tells exteNd Composer to create new Groups
once for each repeating element processed in the enclosing Repeat for
Element action.

Target XPath: This is an XPath fragment that you specify. It is pre-pended by the
Context on this tab and appended with the Target XPath on the Map Target tab
(and optionally with the Target XPath on the Detail Rows tab) to complete the
final location for the column in the target document.

Using Custom Result Mapping 73

Looking at a Declare Group/Repeat Example

Assuming your Execute SQL action issued the following statement:

SELECT CATEGORY, SKU, ONHAND, COST FROM InventorySystem order
by CATEGORY

You could fill out the Detail Rows tab as shown below:

Similar to the example for Detail Rows, since the Context MyTemp (and Target
XPath fragment INVENTORY/PRODUCT) is now specified on the Declare
Group/Repeat tab, references to it must be replaced on the Detail Rows tab with
the Group Alias “gCATEGORY.” In addition, you are no longer listing just
PRODUCTDetail under INVENTORY but rather groups of PRODUCTDetail so
a new element is introduced into the Group’s Target XPath called
“ACATEGORYGroup.” Thus for each Group mapped, a new
ACATEGORYGroup element is created.

Continuing the example used in the previous two sections, you would update the
Detail Rows tab as follows:

JDBC Connect User’s Guide74

Notice that the Context of “MyTemp” has been replaced by the Group Alias
gCATEGORY which represents MyTemp/INVENTORY/ACATEGORYGroup.
This means that Detail Rows belonging to the Group are the only ones mapped,
instead of all the Detail Rows.

Continuing the example used in the previous two sections, you would update the
Map Target tab as follows:

Using Custom Result Mapping 75

We have replaced the Context for the CATEGORY column with the Group Alias.
This means that CATEGORY is only mapped once for each Group instead of once
for each detail row.

JDBC Connect User’s Guide76

When you declare a Group Alias, the result set rows are scanned and organized
into groups establishing how many processing loops will occur during mapping. If
eight rows are in the result set with only four different values (e.g., 3, 2, 4, 1, 1, 4,
4, 4) then there will be four group mapping loops (e.g., 1, 2, 3, 4) and eight detail
loops tied to their appropriate group mapping loops (e.g., group one has its two
detail rows, group two has its one detail row, group three has its one detail row, and
group four has its four detail rows).

Using the prior graphics, you can trace how the final context for the Map Target
columns is constructed for Column one and Column two. Column one is the
CATEGORY from the result set. Its name in the DOM will be TheCATEGORY.
Its ancestor elements are determined by the context “gCATEGORY” defined as
MyTemp/INVENTORY/ACATEGORYGroup on the Declare Group/Repeat tab.
So the final XPath for CATEGORY is:

Output/INVENTORY/ACATEGORYGroup/TheCATEGORY

Since the context for TheCATEGORY is a Group alias, it will be mapped once for
each group or four times as determined earlier.

Column two is the SKU data from the result set. Its name in the DOM will be
MySKU. Its ancestor elements are determined by the context “MyTempDetail”
defined to be gCATEGORY (defined above) plus PRODUCTDetail. So the final
context for the column will be
MyTemp/INVENTORY/ACATEGORYGroup/PRODUCTDetail/MySKU. Since
the context for MySKU is a Detail Alias, it is mapped once for each Detail Row.
However, each Detail Row has a Context of a Group Alias limiting mapping to
only those detail rows that belong to the Group.

77

6

Stored Procedures

Stored Procedures Chapter 6

Novell exteNd Composer supports the mapping of data returned by stored
procedures. The following sections describes the stored procedure mapping
features.

About Stored Procedure Mapping

Novell exteNd Composer allows for mapping the data returned by stored
procedures to DOM/Node combinations. To do so, select the Stored Procedure
mapping checkbox on the Result Mapping tab in the Query/Results Mapping
Pane.

This will enable the Setup... button. Press the Setup... button to display the Setup
dialog for Stored Procedure Mapping.

JDBC Connect User’s Guide78

Binding Rules
It is important to understand exteNd Composer binds to all Expressions and
placeholders represented by Question Marks placeholders (e.g. either
‘:<expression>’ or ?) but not Constants (e.g. ‘abc’).

Using the Stored Procedure Mapping Setup Dialog
The Stored Procedure Mapping Setup dialog is used to map the data returned by a
stored procedure. The Setup dialog allows you to specify Context - Target XPath
combinations for the returned data.

Use the + and - controls to add and delete Context - Target XPath combinations.

Oracle RDBMSs return result sets as parameters. Non-Oracle RDBMSs return
result sets but, not as parameters. Select the Returns Result Set check box when
result sets are returned by non-Oracle RDBMSs. Selecting the Returns Result
Set check box for non-Oracle RDBMSs enable exteNd Composer to find the
returned result set.

NOTE: All Expressions and placeholders (e.g. ?) must be specified in the Stored
Procedure Mapping Setup dialog in order to correctly map the returned data.

For each returned Input/Output parameter (which may be expressions) and each
Output parameter (which may be either an expression or a ?) (see the Rules for
Stored Procedures section in Chapter 4), complete the following:

Stored Procedures 79

Id: Based on the SQL parameters, Id is the number sequence of the return values
you’re expecting. Using Id, you will need to explicitly specify the sequence
positions of each of the parameters containing either expressions (e.g.
‘:<ExpressionName>’) or placeholders (e.g. ?). For example, the following
procedure call has three parameters: a constant, ‘Process’, a placeholder, ? and an
expression, ‘:Smith’. The value ‘Process’ does not need an Id in the Stored
Procedure Mapping pane since exteNd Composer does not bind to values. The Id
entries for the placeholder - ? and the variable ‘:Smith’ are, respectively, 2 and 3.
exteNd Composer binds to variables and placeholders, therefore, they must be
specifed in the Stored Procedure Mapping pane in order to properly map the data
returned by a stored procedure.

Example:

{ call DemoPackage.sp_withParams('Process', ?, ':Smith') }

Qual: Qual qualifies the parameter as an Input parameter, an Output parameter or
as an Input/Output parameter.

Data Type: Data Type is a drop down list which provides the following options:
VARCHAR, DECIMAL, DATE, BINARY or Oracle Result Set. When Oracle
Result Set is selected, Context and Target XPath do not apply (N/A) and are,
therefore, disabled.

Scale: The value of Scale specifies the decimal place precision.

Map: The Map checkbox is selected to map the parameter.

Context: this specifies the target document for the column. The Target XPath will
be appended to the Context to produce the full XPath location for the column in
the target document. The Context can be a:

Document – You may use this choice if your result set contains only one row,
otherwise each additional row will overwrite the previous row’s data.

Detail Alias – A Detail Alias is defined on the Detail Rows tab and consists
of a Document name and partial Target XPath. Or the Detail Alias may
consist of a Group Alias (defined on the Declare Group/Repeat tab) and
partial Target XPath location. Using a Detail Alias tells exteNd Composer to
create a new physical target location for each member of the source list (i.e.,
each row in a result set).

Group Alias – A Group Alias is defined on the Declare Group/Repeat tab
and consists of a Document name and partial XPath location. Using a Group
Alias tells exteNd Composer to create a new physical target location once
for each Group in the source list (i.e., where each group represents multiple
rows in a result set).

JDBC Connect User’s Guide80

Repeat Alias – If the Execute SQL action is contained with a Repeat action
in your Action Model you may choose its Target alias. In this case, the
Context will resolve to a Document and partial XPath to which the Target
XPath (see below) will be appended.

-- via standard -- will use the Result Mapping tab’s Result Row Placement
specification.

-- via custom -- will use the settings on the Custom Mapping Settings
dialog.

When grouping and mapping detail column data, the Declare Group/Repeat,
Detail Rows, and Map Target tab work together to define the complete XPath
location for the column. (See illustration.) For instance, a column on the Map
Target tab will be represented by a Context and XPath. The Context may be a
Detail Alias defined on the Detail Rows tab. The Detail Alias in turn will represent
another Context and XPath. Its Context may be a Group Alias defined on the
Declare Group/Repeat tab. Finally the Group Alias itself will represent another
Context and XPath.

By defining the Group and Detail aliases separately, you are able to map rows with
duplicate column data (the basis for your groups) just once into group header
elements by using the Group alias as a context, and map columns with unique data
(the detail of your groups) multiple times within the group header elements by
using a Detail Alias whose Context is a Group Alias.

Target XPath: This is an XPath fragment which will be appended to Context to
specifiy the full XPath location int the target document.

Returned Result Set
A result set is mapped to a document with elements created from the result set’s
column names.

Target element names created in the document are the same as column
names returned in the result set

All columns returned in the result set are mapped to the target document

All columns are mapped to the same parent target element

All rows are placed into a single document

NOTE: Any column names that contain spaces will have the spaces replaced with
an underscore character since XML does not permit spaces in element names.

81

A

JDBC Glossary

JDBC Glossary Appendix A

Connection Pool

A set of database connections managed by the application server for the various applications it
manages.

Custom Result Mapping

The Custom Result Mapping dialog provides a similar alias ability for repeating rows in SQL result
sets as the Declare Group and Repeat for Group actions do for repeating elements in a document.

Declare Group/Repeat Tab

This tab of the Custom Results Mapping dialog is used to create groups of result set records on one or
more result set columns, create a Group Alias to use as a Context for Detail Rows, and create a Group
Alias to use as a Context for Map Targets (creating Group Headers).

Detail Rows Tab

This tab of the Custom Results Mapping dialog allows you to create a mapping alias tied to either a
document Context or a Group/Repeat alias Context. Use of the Detail Rows tab is optional.

DOM

A Document Object Model (DOM) is an XML document constructed as an object in a software
program's memory. It provides standard methods for manipulating the object. In Composer, DOM is
often synonymous with XML Document. DOMs are represented as hierarchical trees with a single
root node.

DOM Context

The name of a DOM (Input, Output, Temp, etc.), or the name of a Repeat alias previously defined in
the component. (The alias itself represents a DOM context, representing the nodepath hierarchy
upstream of a given element.)

JDBC Connect User’s Guide82

Execute SQL Action

Same as SQL Statement Action.

JDBC

A Sun trademark for the Java API for accessing relational database data. It is commonly assumed to
mean Java Database Connectivity.

Map Target Tab

This tab of the Custom Results Mapping dialog is used to create target element names for each result
set column and specify a target Context for each result set column.

Native Environment Pane

A pane in the JDBC Component Editor that simulates an actual SQL environment when you issue a
query.

Query/Result Mapping Pane

(Same as the Native Environment Pane.) A pane in the JDBC Component Editor that includes three
tabs: the SQL Statement tab, the Result Mapping tab, and the Results Text tab.

Result Mapping Tab

A tab in the Query/Result Mapping Pane that allows you to map the result of your database query to
an XML document.

Result Text Tab

A tab in the Query/Result Mapping Pane that displays the actual data that was returned following the
execution of the database query.

Row Target

The receiving element in a mapping operation is called the row target. It represents a specific position
in the DOM tree of an XML file.

SQL Statement Action

Most commonly used to query an existing database and then map the result to an XML document.

SQL Statement Tab

A tab in the Query/Result Mapping Pane that allows you to write or build SQL commands.

JDBC Glossary 83

SQLCODE

A global ECMAScript variable created by the execution of SQL statements. Contains a status code
generated by the database engine.

SQLSTATE

A global ECMAScript variable created by the execution of SQL statements. Contains information
generated by the database engine.

UPDATECOUNT

A global ECMAScript variable created by the execution of SQL statements. Contains a count of the
number of rows changed by the database engine.

JDBC Connect User’s Guide84

85

B

Reserved Words

Reserved Words Appendix B

The following terms are reserved words in exteNd Composer for the JDBC
Connect and should be avoided in any user created labels or objects.

SQLCODE

SQLSTATE

UPDATECOUNT

LASTSQL

JDBC Connect User’s Guide86

Title for Your Book-87

87

Index

Index

A
action menu 56
action model 27
actions

overview 27
using basic and advanced 56

advanced actions 56
alias

and custom result mapping 62
Allow SQL Transactions 16
And/Or logic in a WHERE clause 33
auto-commit 17

B
base64Decode() 29
base64 encode 64
base64Encode() 29
basic actions 56
batch actions (see SQL Batch) 51
BETWEEN...AND operator 33

C
code table map, creating 18
colons, special meaning in SQL action 51
commit 17
component

creating new 19
component editor window 23
connection

creating 13
dirty 17

connection pool 14
definition of 81

Constant and Expression Driven Connections 13
context 63, 71
creating SQL using the Wizard 29

Custom Mapping Settings 80
custom result mapping 61, 62

definition of 81
custom script

creating 18

D
database-specific parameters 16
Data Type 79
DB Params 16
declare group/repeat example 73
Declare Group/Repeat tab 71

definition of 81
default result mapping 59
detail alias

used as a context 63, 79
detail rows example 68
Detail Rows tab

definition of 81
Discard Batch 53
document, used as a context 63, 79

E
ECMAScript

in SQL Statements 51
ECMAScript functions, using 56
errors and SQL messages 56
example query 44
Execute as Prepared 29
Execute Batch 53
Execute SQL action

definition of 81
executing the SQL statement 46
Expressions 78

G
group alias

creating 71
used as a context 64, 79

JDBC Connect User’s Guide88

I
Id 79

J
JDBC

creating XML templates for 18
definition of 82
overview 10
what does it do 10

JDBC component
about 11
creating new 19

JDBC Component Editor
about the window 23
building applications 12

JDBC connection pools 14
JDBC connection resource 13
JDBC drivers 14
JDBC wizard 29

L
LASTSQL 56, 57
LIKE operator 33

M
map target

example 66
Map Target tab 63

definition of 82

N
native environment pane

definition of 82

O
Oracle Result Set 79

P
Perry Mason 33
precompiled SQL 29
prepared SQL statements 29

Q
Qual 79
query, building an example 44
Query/Result Mapping Pane. 42
Query/Result mapping pane 24

definition of 82

R
Relational operators 33
repeat alias

creating 71
used as a context 64, 80

Result Mapping 80
result mapping

using custom 61
using default 59

result mapping tab 25
definition of 82

result text tab 25
definition of 82

rollback 17
row target 59, 60

S
S3SqlAnywhereAuth 16
Scale 79
scope of SQL batches 54
SQL

prepared statements 29
transaction verbs 16

SQL Anywhere 16
SQL Batch Action 51
SQLCODE 56

definition of 83
SQL messages 56
SQL SELECT Statements 30
SQLSTATE 56

89

definition of 83
SQL statement

building 43
checking the results 47
executing 46

SQL statement action
definition of 82

SQL statement tab 24
definition of 82

SQL wizard 29
Start Batch 52
Stored Procedure Mapping 77

T
target element names 63
target XPath 63, 64, 71, 80
Temp XML Document 21
transactions

auto-commit flag 17
SQL 16

Try/On Error 53

U
UPDATECOUNT 56

definition of 83

W
WHERE Clauses

filtering within the wizard 32
WHERE clauses

And/Or logic 33
% wildcard 33
wildcards 33

X
XML template

creating 18

JDBC Connect User’s Guide90

	About This Guide
	Contents
	1 Welcome to exteNd Composer and JDBC 9
	2 Getting Started with the JDBC Component Editor 13
	3 Creating a JDBC Component 19
	4 Performing JDBC Actions 27
	5 Using Custom Result Mapping 59
	6 Stored Procedures 77
	A JDBC Glossary 81
	B Reserved Words 85

	Welcome to exteNd Composer and JDBC
	Before You Begin
	About exteNd Connects
	What is JDBC?
	What Does JDBC Do?
	About exteNd’s JDBC Component
	What Kinds of Applications Can You Build Using the JDBC Component Editor?

	Getting Started with the JDBC Component Editor
	Creating a JDBC Connection Resource
	About Constant and Expression Driven Connection Parameters
	About JDBC Drivers and Connection Pools

	Creating XML Templates for Your Component

	Creating a JDBC Component
	Before Creating a JDBC Component
	About the JDBC Component Editor Window
	About the Query Pane
	SQL Statement Tab
	Result Mapping Tab
	Result Text Tab

	Performing JDBC Actions
	About Actions
	The SQL Statement Action
	Handling of Binary Data
	Prepared Statements
	Creating an SQL Statement using the Wizard
	The SQL SELECT Statement
	WHERE Clauses
	The SQL DELETE Statement
	The SQL INSERT Statement
	Specifying Column Values
	The SQL UPDATE Statement
	Editing a SQL Statement Created with the Wizard

	Creating an SQL Statement Manually
	Building an SQL Statement Manually
	Building an Example Query
	Mapping Results into the Output DOM
	Editing a Manually Created SQL Statement

	Executing the SQL Statement
	Checking the Results
	Using Stored Procedures
	Syntax Requirements
	Using Procedures and Functions in a JDBC Component

	Colons in SQL Statements

	The SQL Batch Action
	Start Batch
	Execute Batch
	Discard Batch

	Creating Batch actions
	JDBC-Specific Expression Builder Properties
	Using Other Actions in the JDBC Component Editor
	Handling Errors and SQL Messages

	Using Custom Result Mapping
	About Default Result Mapping
	About Custom Result Mapping
	About Custom Result Mapping and Aliases
	Using the MapTarget Tab
	Looking at a MapTarget Example

	Using The Detail Rows Tab
	Looking at a Detail Rows Example

	Using the Declare Group/Repeat Tab
	Looking at a Declare Group/Repeat Example

	Stored Procedures
	About Stored Procedure Mapping
	Binding Rules
	Using the Stored Procedure Mapping Setup Dialog
	Returned Result Set

	JDBC Glossary
	Reserved Words
	Index

