Novell exteNd Composer™
JDBC Connect

5.0
@

USER’S GUIDE

Novell




Legal Notices
Copyright © 2000, 2001, 2002, 2003, 2004 SilverStream Software, LLC. All rights reserved.

Title to the Software and its documentation, and patents, copyrights and all other property rights applicable thereto,
shall at all timesremain solely and exclusively with SilverStream and itslicensors, and you shall not take any action
inconsistent with such title. The Software is protected by copyright laws and international treaty provisions. You
shall not remove any copyright notices or other proprietary notices from the Software or its documentation, and you
must reproduce such notices on all copies or extracts of the Software or its documentation. You do not acquire any

rights of ownership in the Software.

Novell, Inc.
1800 South Novell Place
Provo, UT 85606

www.novell.com

exteNd Composer JDBC Connect User’s Guide
January 2004



Online Documentation: To access the online documentation for this and other Novell products, and to
get updates, see www.novell.com/documentation.

Novell Trademarks

eDirectory isatrademark of Novell, Inc.

exteNd is atrademark of Novell, Inc.

exteNd Composer is atrademark of Novell, Inc.
exteNd Director is atrademark of Novell, Inc.
jBroker isatrademark of Novell, Inc.

NetWare is aregistered trademark of Novell, Inc.
Novell isaregistered trademark of Novell, Inc.

SilverStream Trademarks
SilverStream is aregistered trademark of SilverStream Software, LLC.

Third-Party Trademarks
All third-party trademarks are the property of their respective owners.

Third-Party Software Legal Notices

Jakarta-Regexp Copyright ©1999 The Apache Software Foundation. All rights reserved. Xalan Copyright ©1999
The Apache Software Foundation. All rights reserved. Xerces Copyright ©1999-2000 The Apache Software
Foundation. All rights reserved. Jakarta-Regexp , Xalan and Xerces software is licensed by The Apache Software
Foundation and redistribution and use of Jakarta-Regexp, Xalan and Xercesin source and binary forms, with or
without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code
must retain the above copyright notices, thislist of conditions and the following disclaimer. 2. Redistributionsin
binary form must reproduce the above copyright notice, thislist of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution. 3. The end-user documentation included with
theredistribution, if any, must include the following acknowledgment: "This product includes software developed
by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear in the
software itself, if and wherever such third-party acknowledgments normally appear. 4. The names " The Jakarta
Project”, "Jakarta-Regexp", "Xerces', "Xaan" and " Apache Software Foundation" must not be used to endorse or
promote products derived from this software without prior written permission. For written permission, please contact
apache@apache.org. 5. Products derived from this software may not be called "Apache" nor may "Apache" appear
in their name, without prior written permission of The Apache Software Foundation. THIS SOFTWARE IS
PROVIDED "ASI1S" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THEIMPLIED WARRANTIESOF MERCHANTABILITY AND FITNESSFOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION ORITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright ©1996-2000 Autonomy, Inc.

Copyright ©2000 Brett McLaughlin & Jason Hunter. All rightsreserved. Redistribution and usein source and binary
forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions
of source code must retain the above copyright notice, thislist of conditions, and the following disclaimer. 2.
Redistributions in binary form must reproduce the above copyright notice, thislist of conditions, and the disclaimer
that follows these conditionsin the documentation and/or other material s provided with the distribution. 3. The name
"JDOM" must not be used to endorse or promote products derived from this software without prior written
permission. For written permission, please contact license@jdom.org. 4. Products derived from this software may



not be called "JDOM", nor may "JDOM" appear in their name, without prior written permission from the JDOM
Project Management (pm@jdom.org). THIS SOFTWARE ISPROVIDED "ASIS' AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE APACHE SOFTWARE FOUNDATION OR ITSCONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This Softwareisderived in part from the SSLava™ Toolkit, which is Copyright ©1996-1998 by Phaos Technology
Corporation. All Rights Reserved. Customer is prohibited from accessing the functionality of the Phaos software.

The code of this project isreleased under a BSD-like license [license.txt]: Copyright 2000-2002 (C) Intaio Inc. All
Rights Reserved. Redistribution and use of this software and associated documentation (" Software'), with or without
modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must
retain copyright statements and notices. Redi stributions must al so contain acopy of thisdocument. 2. Redistributions
in binary form must reproduce the above copyright notice, thislist of conditions, and the following disclaimer inthe
documentation and/or other materials provided with the distribution. 3. The name "ExoLab" must not be used to
endorse or promote products derived from this Software without prior written permission of Intalio Inc. For written
permission, please contact info@exolab.org. 4. Products derived from this Software may not be called "Castor" nor
may "Castor" appear in their names without prior written permission of Intalio Inc. Exolab, Castor, and Intaio are
trademarks of Intalio Inc. 5. Due credit should be given to the ExolL ab Project (http://www.exolab.org/). THIS
SOFTWARE ISPROVIDED BY INTALIO AND CONTRIBUTORS “"ASIS" AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT
SHALL INTALIO OR ITSCONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.




About This Guide

Purpose

This guide describes how to use the exteNd Connect, referred to as the JDBC
Component Editor. The JDBC Component Editor is a standard component editor
in exteNd Composer.

Audience

Thisbook is for developers and systems integrators who are planning to use
exteNd Composer to devel op database-aware services and components.

Prerequisites

This book assumes prior familiarity with exteNd Composer’s work environment
and deployment options. Some familiarity with Structured Query Language
(SQL) isalso assumed.

Additional documentation

For the complete set of Novell exteNd Director documentation, see the Novell
Documentation Web Site (http://www.novell.com/documentation-
index/index.jsp).

About This Guide 5


http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp

JDBC Connect User’s Guide



Contents

About This Guide

1

Welcome to exteNd Composer and JDBC
Before YouBegin . . . . . . .. e e
AboutexteNd Connects . . . . . . . . . . e e

Getting Started with the JDBC Component Editor

Creating a JDBC Connection Resource . . . . . . . . . . . o v v v it v i i e i
About Constant and Expression Driven Connection Parameters. . . . . . . . . . . ...
About JDBC Drivers and Connection Pools. . . . . . . . .. .. ... ... .......

Creating XML Templates for Your Component . . . . . . . . . . ... ... ... ......

Creating a JDBC Component

Before Creating a JDBC Component . . . . . . . . . . . . . it

About the JDBC Component Editor Window. . . . . . . . . . . ... ... ... ... ...
Aboutthe Query Pane . . . . . . . . . . L

Performing JDBC Actions
ADOUL ACLIONS . . . . . . . e e
The SQL Statement Action. . . . . . . . . . . . . e e e e e
Handling of BinaryData. . . . . . . . . . . . . . .
Prepared Statements . . . . . . . . . . L L
Creating an SQL Statement using the Wizard . . . . . . . . .. ... . ... ... ...
Creating an SQL Statement Manually . . . . . . . . . . ... ... L.
Executing the SQL Statement . . . . . . . . . . ..o
Checkingthe Results . . . . . . . . . . . e
Using Stored Procedures . . . . . . . . . . . .
Colonsin SQL Statements . . . . . . . . . . . e e e
The SQL Batch Action . . . . . . . . . . . . e e
Start Batch . . . . . . . e
Execute Batch . . . . . . . . . .
Discard Batch. . . . . . . . . . . .
Creating Batch actions. . . . . . . . . . . . .
JDBC-Specific Expression Builder Properties . . . . . . . . . .. . ... oL
Using Other Actions in the JDBC Component Editor . . . . . . . . . ... . ... ... ...



Handling Errors and SQL MeSSages . . . . . . .« v v v v v i e e e e e

Using Custom Result Mapping
About Default Result Mapping . . . . . . . . . . . e e e
About Custom Result Mapping . . . . . . . . . . . e e
About Custom Result Mapping and Aliases. . . . . . . . . . . . . . ... ... ... . ...
Usingthe MapTarget Tab. . . . . . . . . . . . . e e e e
Looking at a MapTarget Example . . . . . . . . . . . . . . ...
Using The Detail Rows Tab. . . . . . . . . . . . . . . . . it e
Looking at a Detail Rows Example . . . . . . . . . . ... ...
Using the Declare Group/Repeat Tab. . . . . . . . . . . . . .. . . . ..
Looking at a Declare Group/RepeatExample . . . . . . . . . . .. .. ... ......

Stored Procedures

About Stored Procedure Mapping. . . . . . . . . .. e e e
BindingRules . . . . . . . . . e e
Using the Stored Procedure Mapping SetupDialog . . . . . . . .. .. ... .. ......
Returned Result Set. . . . . . . . . . . . e e

A JDBC Glossary
B Reserved Words

JDBC Connect User’'s Guide

59
59
61
62
63
66
68
68
71
73

1
1
78
78
80

81
85



Welcome to exteNd Composer and
JDBC

Before You Begin

Welcome to the Novell exteNd JDBC Connect User’s Guide. This Guideisa
companion to the exteNd Composer User’s Guide, which detailshow to use all the
features of Composer except for the Connect Component Editors. So, if you
haven't looked at the Composer User’s Guide yet, pleasefamiliarize yourself with
it before using this Guide.

exteNd Composer provides separate Component Editorsfor each Connect, such as
the JDBC connector. The special features of each component editor are described
in separate Guides like this one.

If you have been using exteNd Composer, and are familiar with the core
component editor (the XML Map Component Editor), then this Guide should get
you started with the JIDBC Component Editor.

NOTE: To be successful with this Component Editor, you must be familiar with
writing and constructing SQL statements.

About exteNd Connects

Novell exteNd is built upon asimple hub and spoke architecture. Thehubisa
robust XML transformation engine that accepts XML documents, processes the
documents, and returns an XML document. The spokes or Connects are plug-in
modulesthat “XML enable” sources of datathat are not XML-aware. These data
sources can be anything from legacy COBOL / VSAM managed information to
Message Queuesto HTML pages. exteNd Connects can be categorized by the
integration strategy each one employsto XML enable an information source. The
integration strategies are areflection of the major divisions used in modern
systems designs for Internet based computing architectures. Depending on your
B2Bi needs, exteNd can integrate your business systems at the User Interface,
Program Logic, and/or Datalevels.

Welcome to exteNd Composer and JDBC 9



What is JDBC?

JDBC isaJava-based API (Application Programming Interface) for executing
SQL statements. While often mistaken as an acronym meaning “ Java Database
Connectivity,” JDBC isin fact not an acronym at all, but a trademarked name.
JDBC consists of aset of classes and interfaces written in the Java programming
language that allows you to write one program to access different databases such
as Oracle, Sybase, Informix, etc., rather than needing to write a separate program
for each one.

You can write asingle program using the JDBC API and the program is able to
send SQL statements to the appropriate database. And since the application is
written in the Java programming language, there is no need to write different
applicationsto run on different platforms. The combination of Javaand JDBC lets
you write it once and run it anywhere, as the following illustration shows.

Oracle Sybase SQL Server

JAVA

Windows UNIX Windows NT

What Does JDBC Do?

JDBC makesit possible to do the following:

+ Establish a connection with a database
+ Send SQL statements (or queries) to be processed by the database

+ Process the results of the database processing

10 JDBC Connect User’s Guide



JDBCisalow-level interface used to call SQL commandsdirectly. It isintegrated
into Composer to interface between components and databases, allowing the
program to establish connections with the databases, send the SQL statements,
and processtheresults. Composer providestool sthat enable visual construction of
the necessary SQL commands.

About exteNd’s JDBC Component

Much like the XML Map Component, the JIDBC Component is designed to map,
transform, and transfer data between two different XML templates (i.e., request
and response XML documents). However, it is specialized to make a connection
to adatabase, process SQL statements against the database using elementsfrom a
Message Part within the query, and then map the results of the query to a Part.

A JDBC Component can perform simple datamani pulations, such asmapping and
transferring datafrom one XML document to ancther, or from an XML document
to adatabase table. It can a so perform sophisticated manipulations, such as
requesting data from disparate databases, transforming data from and to one or
more documents, executing SQL transactions against the database, and even
transforming the documents themselves. Like an XML Map Component, the
JDBC Component can process X SL, send mail, and post and receive XML
documents using the HTTP protocol.

Databases
t (S i
\ \ \ XML
XML, XSL, DTD = Processed
Composer

The JDBC Connect uses exteNd Composer as the backplane for XML-based data
interactions, making it possible to reach into databases at runtime (and design
time). Using exteNd Composer, you can assemble Action Models within a JDBC
Component to carry out sophisticated data transformations, using HTTP
(optionally) as a transport mechanism. Live database connections are available at
design time, so that you can edit and debug SQL queries as part of the design
process.

Welcome to exteNd Composer and JDBC 11



What Kinds of Applications Can You Build Using the
JDBC Component Editor?

You can build any business-to-business application that needs to push datainto or
pull datafrom a JDBC-accessible data store and uses XML asthe interchange
format. For example, you can write an application that retrieves the description,
picture and price of aproduct from adatabase and displaysit in the user’s browser.
If theinformation residesin two or more databases, you can mergetheinformation
from separate databases before displaying it to the user.

12 JDBC Connect User’s Guide



Getting Started with the JDBC
Component Editor

Creating a JDBC Connection Resource

Before you create a JDBC Component, you will find it necessary to create a
Connection Resource to access the SQL database. Each Connect, including the
JDBC connector, usesits own Connection type. Each Connection typeis
differentiated by the number and types of parameters used to connect to the
specific external data source.

About Constant and Expression Driven Connection Parameters

You can specify Connection parameter valuesin one of two ways. as Constants or
as Expressions. A constant based parameter uses the value you type in the
Connection dialog every time the Connection is used. An expression based
parameter alowsyou to set the value using a programmatic expression, which can
result in adifferent val ue each time the connection isused at runtime. Thisallows
the Connection’s behavior to be flexible and vary based on runtime conditions
each timeit is used.

For instance, one very simple use of an expression driven parameter in a JDBC
Connection would be to define the User ID and Password as PROJECT Variables
(e.g. PROJECT.XPATH(“ USERCONFIG/MyDeployUser”). Thisway when you
deploy the project, you can update the PROJECT Variablesin the Deployment
Wizard to values appropriate for the final deployment environment. At the other
extreme, you could have a custom script that queries a Java business object in the
Application Server to determinewhat User ID and Password to use.

» To switch a parameter from Constant driven to Expression driven:

1 Click theright mouse button in the parameter field you are interested in
changing.

Getting Started with the JDBC Component Editor 13



2 Select Expression from the context menu and the editor button will appear
or become enabled.

3 Click on the button and then create an expression that evaluatesto avalid
parameter value at runtime. (Strings should be wrapped in double-quotes.)

x|
Connection Type ‘JDBC Connection \_|
JDBC Driver lom_sssw_]dbc msg.odhc.AgOdbeDriver [ Default
JDBC URL debc:sssw:odbc:XCTutor\al
User 1D I =

Password I

DB Params I Paste

Deployed Pool Name I Select Al

Allow 50 Transactions [

Clear All

Constant

v Expression

About JDBC Drivers and Connection Pools

14

When you create a Connection Resource, you are asked to provide a Driver Name
and Connection Pool.

The JDBC Driver sun.jdbc.odbc.JdbcOdbcDriver is part of the JRE (Java
Runtime Environment, which you can find under the exteNdComposer directory),
and you can use this driver to establish your connection. But you can also obtain
other JDBC drivers. For instance, the Novell exteNd Application Server hasits
own JDBC drivers. Also, you can visit the Web site of the vendor for the SQL
database you' re using and download their driver(s).

A connection pool is a set of database connections managed by the application
server for the various applications it manages. It provides more efficient use of
database and connection resources for multiple applications running in the same
application server. This, inturn, canimprove overall system performance. You can
obtain the Pool Name for your application server from your Server Administrator.
For deploymentswithin the Novell exteNd Application Server the pool name will
be Databases/DBName/DataSource where DBName is the name that was used
when the database was added to the server. For example, if you were connecting
to the Tutorial Begin3 database provided with the application server, the pool name
would be Databases/Tutorial Begin3/DataSource.

JDBC Connect User’s Guide



> To create a JDBC connection resource:

1 Sdect File>New> xObject and select the Resource tab. Click on
Connection. The “ Create a New Connection Resource” Wizard appears.

2
3
4

5

Create a New Connection Resource

A Connection resource is used to establish communications with an Conneclor data source orwith a server
using HTTP authentication. You need {o create connections for each type of data source or each HTTP server
you wish to communicate with. Enter a name and, aptionally, a description for this Connection. The name
will appearin the Compaser Detail Pane and in choice lists when vou are prompted for ohjects in Composer.
The name may not contain the characters: 10 ?" = = | Mames are case insensitive

MHame:

yMewConnection

Description:

Furpose:
Input:
Cutput:
Remarks:

|(Next ][ Cancel

Type a Name for the connection object.
Optionally, type Description text.
Click Next.

Create a New Connection Resource

Enter a Driver name (e.0. com.sssw.jdbc.oracled.Driver) and a driver specific URL forthe database (e.g
jdheissswooracle:yDE). Enter a connection pool provided by the application server after deployment. Lise
the right mouse button to create a conditional expression for a connection parameter. Checking ‘Default
makes this Connection the initial selection when creating a JOBC Component. Use the Test button to check
your connection. You may save connections that fail the test.

Connection Type |JDEiC Connection |v|

JDBC Driver | [ Default
JDBC URL |

User ID I

Password I

DB Params I

Deployed Pool Mame |
Allow 5L Transactions

[ Back ][ Finish ][ Cancel ]

Select JDBC Connection from the Connection Type pull down menu.

Getting Started with the JDBC Component Editor

15



16

6

11

12

Inthe JDBC Driver field, enter the name of the JDBC driver you want to
use. For example, com.sssw.jdbc.mss.odbc.AgOdbcDriver for the Novell
exteNd driver. (For more information see “ About JDBC Drivers and
Connection Pools’ on page 14.)

NOTE: This parameter, and all subsequent parameters in this dialog, can
be dynamically set using Expressions. See “About Constant and Expression
Driven Connection Parameters” earlier in this chapter.

Inthe JDBC URI field, enter the location of the database you want to reach.
For example, jdbc:sssw:odbc:XCTutorial wherejdbc:sssw:odbc: is
required syntax by the driver and XCTutorial isan ODBC Data Source
Name (DSN) defined on the specific computer where the component will
run. (The DSN is defined externally from Composer by accessing the ODBC
Administrator in the Windows Control Panel.) For deployment, you can
maintain the connection described above, provided that the server allowsfor
ODBC connectivity. The more likely scenario is that you will want to take
advantage of the power of the application server in managing database
access. In that case, you need to provide the connection pool name as
described below.

NOTE: The JDBC Driver and JDBC URI fields are both case sensitive.
Enter avalid User I D to sign on to the selected database.
Enter avalid Password for the selected database.

In the DB Paramsfield, enter any database-specific parameters that might
apply to your connection. For example, to allow updates to a Novell exteNd
SQL Anywhere database, enter S3SqlAnywher eAuth=true as a parameter.
Note that parameters should be entered as name=value pairs. If more than
one name=value param is specified, separate the pairs using semicolons,
€.0., paraml=true;param2=true;param3=£false.

NOTE: If no database-specific parameters will be used, enter false in this
field.

Enter a Pool Name if required. For more information, see “ About JDBC
Drivers and Connection Pools’ on page 14.

NOTE: Connection pooling is only operational in the deployment
environment. Setting the name here will not affect Composer connections.
Only the deployed project will be affected.

Check the Allow SQL Transactions checkbox if you intend to exercise
direct control over transactions (using SQL Begin, Commit, and Rollback
verbs) in your component’s Action Model.

Checking the Allow SQL Transactions box has a number of effects:

JDBC Connect User’s Guide



13

14

15

—It turns auto-commit off for the JIDBC driver. (The state of the auto-
commit flag is restored, however, at the end of the transaction, before
returning the connection back to the pool.)

—It causes all SQL commit and rollback commands to be translated to the
corresponding JDBC connection calls.

—It causes Composer Enterprise Server to check the final Execute SQL
Action in the component to see that the final action isacommit or arollback.
If the final action is not a commit or rollback, Composer Enterprise Server
performs arollback by default, so that adirty connection (that is, a
connection with uncommitted changes) is not inadvertently returned to the
pool.

NOTE: For a further discussion of the Allow SQL Transactions checkbox,
see the Transactions chapter of the exteNd Composer Application Server
Guide for your application server.

Check the Default checkbox if you would like to use the current connection
as the default connection for any new JDBC Components you create in your
project.

Click Test to seeif your connection is successful. A “success’ or “failure”
message appears for your connection. You can continue creating the
resource, even if your connection fails.

NOTE: This does not test the connection pool (if defined).

Click Finish. The newly-created resource connection object appearsin the
Composer Connection Resource detail pane.

Getting Started with the JDBC Component Editor 17



¥ exteNd Composer: ActionExamples

File Edit View Tools Window Help
Gelv0dOxX

§ Resource El
Bl CodeTable

@ v

InvertorySystem

New Connection

onhection .

(o

I [ 3

Novell

@ Log || @\ Find][F% watch|| « Todo|

Feady

Creating XML Templates for Your Component

18

In addition to a connection resource, a JDBC component also requires that you
have already created XML templates so that you have sample documents for
designing your component. (See Chapter 5, Creating XML Templates, in the
Composer User’s Guide for more information.)

Also, if your component design calls for any other xObject resources such as
custom scripts or code table maps, it is best to create these before creating the
JDBC Component. For more information, see Creating Custom Scriptsin the

Composer User’s Guide.

JDBC Connect User’s Guide




Creating a JDBC Component

Before Creating a JDBC Component

Aswith all exteNd components, the first step in creating a JDBC component isto
specify the XML templates needed. (For more information, see Creating a New
XML Templatein the separate Composer User’s Guide.) Onceyou’ ve specified the
XML templates, you can create a component, using the template’s sample
documents to represent the inputs and outputs processed by your component.

Also, as part of the process of creating a JDBC component, you can select aJDBC
connection or you can create anew one. If you create the connection beforehand,
thenitisavailableto all new JDBC components. (See “ Creating aJDBC
Connection Resource” on page 13.)

» To create a new JDBC component:
1 Seect File>New>xObject. Select the Component tab and then JDBC.

NOTE: Alternatively, under Component in the Composer Navigator pane,
you can highlight JDBC, click the right mouse button, then select New.

2 The"Create aNew JDBC Component” Wizard appears.

Creating a JDBC Component 19



20

Create a New JDBC Component x|

AJDBC componentis used to push XML data into relational databases or pull data from thern into XML
documents. This wizard will guide you through the creation of a JDBC Component. Please enter a name
and, optionally, a description far the JDBEC component. The name will appear in the Composer Detail Pane
and in choice lists when you are prompted for abjects in Composer. The name may not contain the
characters:\ [ % "= = | Names are case insensitive (i.e. MyObjectMame is the same as myabjecthame).

Mame:

MyJDECCOmponent

Description:

Furpose:
Input:
Output:
Remarks:

[ H Next ][ Cancel

3 Enter aName for the new JDBC Component.
4 Optionally, type Description text.

5 Click Next. The XML Input/Output Property Info panel of the New JDBC
Component Wizard appears.

Create a New JDBC Component x|

Specify ane or mare XML Templates to help design Inputto this Component or'Weh Service and only one ta
design Qutput. The sample XML Documents in each Template are design time aids to help you build Action
Models for the camponent. The samples are not actually used at runtime after deployment to your application
server. The ldentifier is fixed and represents the name used to refer ta the XML Document during component
execution. Selecting System {ANY} allows you to use an emptytemplate {i.e. accept any document as Input).

Input Message

Part | Template Category | Template Name

|
Input |5ystem) [~ [ anry [

Output Message
Part | Template Category | Template Name

|
Output |5ystem) [~ [ anry [

[ Back ][ Next ][ Cancel]

6 Specify the Input and Output templates as follows.

+ Typeinaname for the template under Part if you wish the nameto
appear in the DOM as something other than “Input”.

+ Select aTemplate Category if it isdifferent than the default category.

JDBC Connect User’s Guide




9

+ SeectaTemplate Namefrom thelist of XML templatesin the selected
Template Category.

+ Toadd additional input XML templates, click Add and choose a
Template Category and Template Name for each.

+ Toremove an input XML template, select an entry and click Delete.

Select an XML template for use as an Output DOM using the same steps
outlined above.

NOTE: You can specify an input or output XML template that contains no
structure by selecting {SystemH{ANY} as the Input or Output template. For
more information, see “Creating an Output DOM without Using a Template” in
the User’s Guide.

Click Next. The Temp and Fault XML Template panel appears.

Create a New JDBC Component x|
Specify one or mare Temp and Fault XML Templates to help design tempoarary parts and fault handling for
this Component or Yeh Service. Use Temp documents for creating intermediate results or holding values
for reference. Specify XML Templates to serve as Fault documents to be passed back to clients under errar
conditions.
Temp Message
Part Template Category Template Name |
Fault Message
Part | Template Category | Template Mame |
| SystemFault |{Sys‘tem} |:||{Fautt} |:||
[ Back ][ Next J[ Cancel ]

If desired, specify atemplate to be used as a scratchpad under the “ Temp
Message” pane of the dialog window. This can be useful if you need a place
to hold values that will only be used temporarily during the execution of
your component or are for reference only. Select a Template Category if itis
different than the default category. Then select a Template Name from the
list of XML templatesin the selected Template Category.

10 Under the“Fault Message” pane, select an XML template to be used to pass

back to clients when an error condition occurs.

11 Asabove, to add additional input XML templates, click Add and choose a

Template Category and Template Name for each. Repeat as many times as
desired. To remove an input XML template, select an entry and click Delete.

Creating a JDBC Component 21



12 Click Next. The Connection Info panel of the “ Create a New JDBC
Component” Wizard appears.

Create a New JDBC Component 1'

Specify which Connection you wish to use for this Component or Service. To change any connection
parameters, you must change them in the Connection Resource ohject or create a new Connection
Resource ofthe same type with different parameters.

Connection |Invantory8ys‘tem | ~

JDBC Driver |

JDBC URL |

User ID I

Password I

DB Params I

Deployed Pool Name I

Allow SQL Transactions [

[ Back ][ Finish ][ Cancel ]

13 Select a Connection type from the pull down list. For more information on
the JDBC Connection, see “ Creating a JDBC Connection Resource” on

page 13.
14 Click Finish. The component is created and the JDBC Component Editor
appears.

22 JDBC Connect User’s Guide



¥ exteNd Composer: TutorialEnd [JDBC: InventorylLookup] 1= =]
File Edit View Component Action Animate Tools Window Help =
Dedi8 lyJ0 X @< Novell
|‘3@ InventoryLookup ] 23 MyJDBCComponent \
@ Input Data B X [ saL Statement |[ Result Mapping [ Resuit Text |
C]-< > PRODUCTREQLU Dt Operatorsieywords:
S umning hitti:ifesee. composer.co | 2 -AgdccessRights [=-soL I~
<> gku LORB437 [*1-Aghgents [£-SELECT
[+-AgContents [} DELETE
[#-Aginfo £ UPDATE
[#-AgResources [ INSERT
(& InventorySystem (= Math
@ Output Data [#-ProductSystem (- Relational -
5-<> INVENTORYSTAT| 2 Logical [v]
<> 5K
<> CATEGORY SQL Statement: [[] Execute As Prepared
<> ONHAND SELECT * FROM InventorySystem YWHERE Sk
<> COsT "Input X Path{' PRODUCTREQUEST/SKU"
<> cTaT TIIIII77 77717 TT 717 T 77
_ ) G EEE
- Native Environment | rnlorytookup
i
1 H H ml LOG "irin" + "Component starting...” + "\rin" TO System Output using Log Level b
Pane is empty until ot il o ’ il
LN xecute SOL: SELECT * FROM InventorySystem WHERE SKU ="Input.XPath{"PRO[
« ”
an “SQL Statement &5 WAP §TempINVENTORYSTATUS/SKU TO $OUtputINVENTORYSTATUSISKU
H B MAP $TempINVENTORYSTATUS/CATEGORY Via Code Table Map InventoryDisplay' T
action is added 5
ﬁ MAP $TempANVENTORYSTATUS/STATUS TO $OutputINVENTORYSTATUS/STATUS
W” LOG "irn™ + "End of Component.” + ™\rn™ TO Systern Output using Log Level 5
<7 ] B
Ready

About the JIDBC Component Editor Window

The JDBC Component Editor includes all the functionality of the XML Map
Component Editor. It contains mapping panes for Input and Output XML
documents as well as an Action pane.

The difference, however, isthat the JIDBC Component Editor also includes a
Native Environment pane common to all Connects. It appears asagrey pane until
you create an SQL Statement action, at which timeit is populated with the Query
pane, which is specific to the JDBC connector.

NOTE: To display the Query Pane, you must first select SQL Statement from the
Action menu and create an SQL action. Otherwise, the pane remains greyed out.

Creating a JDBC Component 23



¥ extend Composer: TutorialEnd [JDBC: Inventorylookup] =10 x|
File Edit View Component Action Animate Tools Window Help EHO - & x
OEdS 00 X €9 S Novell
[3@ InventoryLookup ][%@ MyJDBCCompanent |
@ Input Data Ox
=-<> PRODUCTREQU
G uming hitp:hanani composer.co
Input Native Environment
mapping pane pane
@ output Data Ox & G-} [ﬁ E= Q (]
-< > INVENTORYSTAT
::SKU %/ LOG "rin" + "Component starting...” + "irn" TO Systermn
<> SQLE\?“%RY S0L Execute SQL. SELECT *FROM InventorySystermn WWHERE
<> cosT E= TO $OutputINVEN
S oIiTl K= . GORY Via Code T:
Output = Action Model pane [0 soutputate
mappmg pane W " TO System OL
T ] ]
Peady

About the Query Pane

When the Query pane (i.e.,, the activated Native Environment pane) is showing—
that is, when an SQL Statement action is selected—it becomes a fully functional
SQL environment for creating and testing queriesin real time. From this pane, you
can perform the following:

+ Take datafrom an Input Message (or other available Message Part) and use
it to create or modify an SQL Query against arelational data source

+ Taketheresults of that query and put it into a Message Part (e.g., Temp,
Output, MyDom, etc.)

The Query paneincludesthree tabs: the SQL Statement tab, the Results Mapping
tab, and the Results Text tab.

SQL Statement Tab

24

When the Query panefirst opens, it displaysthe SQL Statement tabinalive SQL
environment. The SQL Statement tab iswhere you' |l write or build SQL
commands. (Seeillustration below.) It may be necessary to resize the SQL
Statement panein order to see the SQL edit box. You can build whole or partial
statements by doubl eclicking nodesin the Dataand/or SQL Operatorstrees, or by
typing SQL straight into the bottom of the window.

JDBC Connect User’s Guide



S0L Staternent | Result Mapping | Result Text

Data: Operatorsikeywords:
-imventorySystem _+| | ®-80L -
H ---Math

[#-Relational

[#-Logical

E--Functions

i | IR R

SOL Staternent: [ Execute As Prepared

SELECT * FROM InventorySystern WHERE SkU
="Input ¥Path"PRODUCTREQUEST/SKU"Y

Result Mapping Tab

The Result M apping tab alows you to map the result of your database query into
an XML document. It also allowsyou to designate the exact XML branch element
under which you' d like the query result to appear. The Result Mapping tab is
shown bel ow.

S0l Statement Result Mapping | Result Tex]|

Result Row Placement

Enter the XML element to place results under:

frems 7]

INVENTORYSTATUS [

ol F Create element names as column names
F Create elements if column is null
|_ Inzlude datatype info in element attribute

|_ Generate Row numbers

0 Custom ColumnsR o' Group |
I_ Stored Procedure mapping |

Result Text Tab

The Result Text tab (see below) displays the actual SQL statement sent and the
data that was returned following the execution of the database query. Thisis
helpful if errant data shows up in a Temporary or Output Part. You can compare
the data from the Result Text tab with the datain the XML Message to see where
the error occurred.

Creating a JDBC Component 25



26

[ SOL Statement |[ Result Mapping | Result Text ]

EXECUTED:
SELECT * FROM InventarySystem WHERE SKU ='LORS437"

Sk CATEGORY  OMHAND COST

LORE43T 1 0 275
Stacki{on re-arder)

JDBC Connect User’s Guide

STATUS



Performing JDBC Actions

About Actions

An action is similar to a programming statement in that it takes input in the form
of parameters and performs specific tasks. Please see the chaptersin the Composer
User’s Guide devoted to Actions.

Within the JIDBC Component Editor, aset of instructions for processing XML
documents or communicating with non-XML data sourcesis created as part of an
Action Model. The Action Model performsall data mapping, datatransformation,
datatransfer between SQL databases and XML documents, and data transfer
within components and services.

An Action Model is made up of alist of actions. All actionswithin an Action
Model work together. As an example, one Action Model might contain individual
actions that read invoice data from a disk, retrieve data from an inventory
database, map the result to atemporary XML document, make a conversion, and
map the converted datato an output XML document.

The Action Model mentioned above would be composed of severa discrete
actions. These actions would:

+ Open aninvoice document and perform an SQL command to retrieve
invoice data from a database

+ Maptheresult to atemporary XML document

+ Convert anumeric code using a Code Table and map the result to an Output
XML document

Two of the actions available in Composer are specific to JDBC Components.
These are the SQL Statement Action and the SQL Batch Action.

Performing JDBC Actions 27



Mew Action J SOL Statement. ..
SOL Batch. ..
Advanced 4
Diata Euchanos k

These actions are described below.

The SQL Statement Action

The SQL Statement action is most commonly used to query an existing database
and then map the result to an XML document. However, the full set of SQL Data
Manipulation Language (DML) statements can be utilized (including database
inserts, deletes, and updates).

There are two ways to use the SQL Statement Action. The first isto create your
SQL statement using the wizard. The second isto create a custom SQL statement
either by typing it in directly or by selecting command statements from the
ECMA Script Expression Builder. In either case, you should be familiar with SQL
database commands and with the structure of the database(s) you are querying in
order to create valid statements with the SQL Statement action.

Handling of Binary Data

28

When you obtain binary data from a database that supports binary types (such as
MySQL, which supports CHAR BINARY, VARCHAR BINARY , TINYBLOB,,
BLOB , MEDIUMBLOB, and LONGBL OB binaries), you are dealing with data
that potentially contains characters and/or character combinations that areillegal
in XML.

NOTE: Merely mapping such data into a CDATA section is not a satisfactory
solution, because some characters (such as “angle brackets”) are illegal in CDATA.
Also, the character-combo “]]>" is not allowed within CDATA, since it signals the
end of a CDATA section.

One satisfactory way to handle binary datais to use Base64 encoding, which
essentially turns arbitrary byte streamsinto XML-safe ASCI| streams.
Composer’s default behavior is to automatically Base64-encode binary data
whenever possible, such aswhen binary data are returned from a database during
aSELECT or other "read” operation. Conversely, Composer will automatically
Base64-decode binary data before INSERTing or otherwise pushing it into a
database. You do not have to take any special action to make this happen.

JDBC Connect User’s Guide



If you want to take direct control over encoding or decoding of data, you can do so
with the Composer-defined ECM A Scri pt extension methodsbase64Encode() and
base64Decode(). The former takes abyte] | array argument and returns a String.
The latter takes a String and returns a byte[ ] array.

Prepared Statements

The JDBC Connect hasthe ability to prepare (or precompile) SQL commands and
cache them in memory so that when the same command executes over and over
again (for example, in aloop), the cached statement can be reused, with new
argument values inserted as need be. This can be asignificant performance
optimization in cases where statements execute many times.

You can designate any SQL statement as a“ prepared statement,” whether it was
created manually or viathe wizard, by using the “ Execute as prepared” checkbox.
This checkbox islocated on the first dialog of the wizard, and also provided just
above the SQL edit box for manually created SQL Statements:

I_ Execute Az Prepared

By default, this checkbox is unchecked. For SQL Statement actions that are
executed only oncein the course of aservice'slifetime, it isrecommended that
you leavethe checkbox disabled. For statementsinsideloops, the checkbox can be
checked.

NOTE: You may want to do some benchmarking to determine whether and to
what degree using the Execute as Prepared checkbox is beneficial in a given
application.

Creating an SQL Statement using the Wizard

The SQL Creation wizard leads you through the process of creating an SQL query.
Composer offers you the ability to create SQL statements using the SELECT,
DELETE, INSERT and UPDATE commands. Of course, the userid with which
you access the database must have the privileges required to perform these actions
for your JIDBC component to work correctly. Most useridswill beableto SELECT
from tables by default, but often you must have special permission to perform
DELETE, INSERT and UPDATE actions on tables. Check with your Database
Administrator if you are in doubt.

Performing JDBC Actions 29



The SQL SELECT Statement

The SQL Select Statement is used to select and return datafrom atable. For

examples on how to use the SQL Select statement, refer to

http://www.w3schools.com/sgl/sgl_select.asp. Depending on the size and
structure of your table, asimple SELECT statement may return alot of data. For
thisreason, SELECT statements are often filtered using a WHERE clause.

> To create an SQL SELECT Statement action using the wizard:
1 Create or open aJDBC Component.

2 Highlight alinein the Action Model where you want to place the SQL
Statement action. The new action will be inserted below the line you

highlight.

w

From the Action menu, select New Action, then SQL Statement.

4 Indicate that you wish to Create a SQL statement using the wizard.

Create a New S0L Statement. ll

You may choose between creating a custom SGL staterment or creating a SOL staterment
using the wizard. Far SOL statements requiring multiple tables, create a custom SQL
staternent.

(O Create Custom SQL statement

® Create a SQL statement using the wizard

Statement Type:

SELECT [

| |[[ Mext |[ Finish |[ cancel

5 Choose SELECT asthe Statement Type.

6 Click Next to display the dialog which allows you to choose a table from

which to select your data.

30 JDBC Connect User’s Guide



Create a New SOL Statement. 1|

Choose one tahle and the calumns within the table that you want the SELECT statement t
return.

Tables and Columns:

[ O AgResources [~]
[#- O InventorySystem
[ @ ProductSystem
SKU N
NAME
DESCRIPTION
[ MANUFACTURER
CJ LISTPRICE
[CJ IMAGEFILE
[ IMAGEHEIGHT
[ IMAGEWIDTH

T

7 Select the table and columns used for the SELECT statement by checking
the radio button check boxes associated with the required columns of the
table you wish to use. You will notice that if you hover your cursor over a
column, descriptive information about that column, such asits TY PE and
whether or not it can beaNULL field appears.

[<]

iJ(__Finish_|[_ cancel |

NOTE: You can select or deselect all the columns in a table by checking or
unchecking the box at the table level.

8 Click Next to bring up another dialog, which allows you to select columnsto
usein your WHERE statement to filter the results of the SELECT statement.

Create a New SOL Statement. ﬂ

Choose the Columnds) you wantto use inthe SELECT statement's WHERE clause to filter
the result set.

Tables and Columns:

= @ ProductSystem
SKU
I NAME
] DESCRIPTION
] MANUFACTURER
[CJ LISTPRICE
] IMAGEFILE
[CJ IMAGEHEIGHT
[ IMAGEWIDTH

[ Back ][ Mext ][ Finish ][ Cancel]

9 Click Next to moveto the final dialog, in which you specify the Target
Message Part and X Path placement for the results of your SQL Statement.

Performing JDBC Actions 31



Create a New S0OL Statement. x|

Selecta Part and enter the Target XPath for the result, Ifmultiple rows are returned, the
¥Path mustinclude a Row Target{e.q. RESULTINFO/ROW), Chaoose the aptions as
required.

Target

(®) XPath: putpu‘t [~] (0) Expression:

RESULTINFOIROWY g

Options
Create element names as column names
Create elements if column is null
[ Include datatype info in element attribute

[l Generate Row numbers

[ Back || |5 Finishos) [ cancel |

You can either specify an XPath, or select Expression to go to the
ECMA Script Expression Builder and

Optionally, you may also choose to:

+ Create element names as column name.

+ Createedementsif column isnull. This creates XML elements with
empty content if the column returned has no data.

+ Includedatatypeinfoin element attribute. This creates an attribute
for each element indicating the data type of the result column.

+ Generaterow numbers (if applicable).
10 Click Finish to create the action and return to the JIDBC Component Editor.

WHERE Clauses

32

The execute SQL SELECT statement is now displayed and highlighted in the
Action Model. When focus is on this new action, the Native Environment Pane
displaysatwo-tabbed dialog whichincludesaWHERE tab and aResult Text tab.
WHERE will bevisible by default. Thistab will be used to filter the result set.

JDBC Connect User’s Guide



[ WHERE | Result Text |

g = {dp ==} | Value |

| (L [~| LIKE
Mot Equal To
. Less Than
Greater Than
g Bi E[j q‘}i Q == Less Than or Equal Te
[=)--SampleJDBClmentorylool = Greater Than or Equal To
ﬂ” LOG ™rm" + "Comg, LIKE Search for a Pattern o Log Leveld

L - ecute SOL SELE BETWEEN An Inclusive Range R
ﬁ MAP $TempiINVEN] NOT BETWEEM An Exclusive Rangs US/SKU J
A i u " (=t 1 1T 3

‘= AT s ARD M T O T L e D T oy e Tl

> Filtering the resultset using the WHERE tab:

1

Select the Columns you wish to filter using the dropdown menu. Thislistis
popul ated according to the columns you chose in step three of the wizard.
You may select one or more columns with which to filter the list. To add a
column to thefilter for the result set, click on the + icon. To delete a column,
click the - icon. Columns can also be selected by group. To add a group,
click the {+ icon. To delete agroup, click the -} icon.

Select a Relation from the dropdown list. Examples for all these relational
operators can be found at http://www.w3schools.com/sql/sgl_where.asp.

When using the LIKE operator, the % symbol can be used as awildcard
character representing any number of missing characters at the beginning or
ending of your matching pattern. Text values should be surrounded by single
guotes, though most databases will also accept double quotes.

It isimportant to note that the BETWEEN...AND operator can be interpreted
differently by different databases. With some, “between” isliteral and only
values in between your test cases will be selected. Some databases will
include the test cases in your result set also. Some include the first case but
not the last, and vice versa. In general, with SQL, you should follow the
advice of that famous television lawyer and “Never ask a question you don’t
already know the answer to.”

For Value, either a constant or an expression can be entered. You may also
drag and drop fields from your XML Message Partsto create an expression.

The Logical dropdown menu allows you to create more complex WHERE
clauses using And/Or logic. Or, you may complete the clause by selecting
End.

Performing JDBC Actions 33



Once you have adjusted your WHERE clause to filter your results appropriately,
you will see the completed SQL statement in the Action Model.

If you open the Result Text tab, you will be ableto see thetext of the SQL and the
results produced by running the query.

¥ exteNd Composer: TutorialEnd [JDBC: SampleJDECInventoryLookup] 1ol x|
File Edit View Component Action Animate Tools Window Help BHO -8 x

D@8 00X a9 < Novell

|3@ Sample JDBC Inventory Lookup ]

[ WHERE | Result Text]

EXECUTED
ISELECT SKU, NAME, DESCRIFTION FROM ProductSystem WHERE SKU="LORB437'

IS kL MNAME DESCRIPTION

LORE437 Cherry Bookcase Features premium grade cherry in a scratch and dent resistant finish.

DEBEEOIN

PnpleJDBCInvenlond_nokup

L' xecute SQL SELECT: SELECT SKU, NAME, DESCRIPTION FROM ProductSystem WHERE SKU=Input. XPath("PRODUCTREQUES

i/ LOG "rin" + "Component starting..." + "rin" TO Systern Output using Log Level 5

&5 MAF $TempINVENTORYSTATUS/SKU TO $Output INVENTORYSTATUS/SKU

&5 MAP $TempINVENTORYSTATUSICATEGORY Via Code Table Map ThventoryDisplay TO $OutputINVENTORYSTATUSICATEGORY
E5 MAP $TempINVENTORYSTATUS/STATUS TO $OutputINVENTORYSTATUS/STATUS

i LOG "Irin" + “End of Companent.” + “Irn" TO Systern Outaut using Log Level §

Ol []

Peady

The SQL DELETE Statement

34

Delete statementsin SQL are used to delete entire rows from tables. If you wishto
delete, null out or otherwise modify individual column values within rowsin a
table, you should use the MODIFY command (described below). The stepsto
follow to create an SQL DEL ETE statement arefairly similar to thosefor creating
an SQL SELECT statement.

» To create an SQL DELETE Statement action using the wizard:

1
2

Create or open a JDBC Component.

Highlight aline in the Action Model where you want to place the SQL
Statement action. The new action will be inserted below the line you
highlight.

From the Action menu, select New Action, then SQL Satement.
Indicate that you wish to Create a SQL statement using the wizard.
Select DELETE for your Statement Type.

JDBC Connect User’s Guide



6 Click Next to select the table from which rows will be deleted using the
DELETE statement.

Create a New S[L Statement. X
Selectthe tahle frome which DELETE statement to delete rows.

Tables and Columns:

[ O AgResources [~]
- O InventorySystem
=+ @ ProductSystem

w

[ Back [ Wext [ Finish |[ Cancel |

Only one table can be checked at atime. In the case of DELETE, you will
not be able to select individual columns at this point in the wizard. This
screen isfor table selection only, and the columns are all selected and grayed
out, indicating that they will all be available for selection in the next dialog
of the wizard.

7 Click Next to open the next dialog, from which you will select the column(s)
which will be used by the DELETE statement’s WHERE clause to filter the
records which will be deleted.

Performing JDBC Actions 35



Create a New SOL Statement. x|

Choose the Columnis) youwantto use inthe DELETE statement's WHERE clause.
Warning: Ifyou do not specify a WHERE clause, ALL records will be deleted.

Tables and Columns:

=} ® ProductSystem
SKU
[ NAME
[ DESCRIPTION
[ MANUFACTURER
I LISTPRICE
J IMAGEFILE
[ IMAGEHEIGHT
J IMAGEWIDTH

[ Back H |[ Finish ” Cancel ]

8 Click Finish to create the new action and display it in the Action Model. As
described above in the SELECT statement, the WHERE tab will be
displayed. Use the the WHERE filtering (described in “WHERE Clauses”
above) to complete your SQL Delete statement. The Result Text tab shows
the text of the SQL and the results produced by running the statement.

The SQL INSERT Statement

Insert statementsin SQL are used to insert entire rowsinto tables. If you wish to
insert or otherwise modify individual column values within rowsin atable, you
should use the MODIFY command (described below). The stepsto follow to
create an SQL INSERT statement are also fairly similar to those for creating an
SQL SELECT statement.

> To create an SQL INSERT Statement action using the wizard:
1 Create or open aJDBC Component.

2 Highlight alinein the Action Model where you want to place the SQL
Statement action. The new action will be inserted below the line you
highlight.

From the Action menu, select New Action, then SQL Satement.
Indicate that you wish to Create a SQL statement using the wizard.
Select INSERT for your Statement Type.

36 JDBC Connect User’s Guide



6 Click Next to select the table(s) into which rows will be inserted by the
INSERT statement. At the same time, select the columns which will be

provided with new data by the statement.

Create a Mew SOL Statement.

Selectthe tahle into which a new row will be inserted. Selectthe columns in the table for

which the INSERT staterment will provide data.

Tables and Columns:

[ O AgAccessRights

[ O AgAgents

[z} O AgContents

[ O Aglinfo

[ O AgResources

=} @ InventorySystem
SKU
CATEGORY
ONHAND
COST
[ STATUS

<]

o

|[i-Finish.}| [ cancel |

7 Click Finish toinsert the new SQL Insert Statement into your Action Model

and return to the Component Editor.

The Native Environment Pane displays two tabs: Column Values and Result Text.

Column Vaues will be displayed by default.

¥ exteNd Composer: TutorialEnd [JDBC

;ample JDECInventoryl ook

o) x|
File Edit “iew Component Action Animate Tools Window Help BHE - F x
eI yI0X @S Novell
[3& Sample JDBC Inventory Lookup ]
@ Input Data B x [ Column Yalues ]f Result Text |
E‘---¢:;> PROO Table:  InventorySystem
[ L vl httpcfwnew. composer.comn
L > gl LORB43T Calumn Walle |
SkU Cutput P athINVENTORYSTATUSIS KLY E -
CATEGORY 1 @ -
OMHAMD 200 lE .
COST 275 -
S O=x [

Loress’ @ W B IEER @ I

(=) SampleJDBClnventoryl ookup

ﬁ MAP $TempINVENTORYSTATUS/SKU TO $0u‘lpu1.l'IN\r‘E|Z|

] ]

|$Othlet SMVEMTORYSTATUS /STATUS

Performing JDBC Actions 37



Specifying Column Values

The Column Values pane displays a table with two columns. The first presents a
list of the columns selected during the final step of the SQL Insert wizard. In the
second column, you will define the values for the columns of the row to be
inserted. You a so have the ability to drag and drop datafrom a M essage Part to the
Value column, as shown in the SKU example above.

Asaways, the Result Text tab shows the text of the SQL and the results produced
by running the statement. You will notice that Composer automatically surrounds
non-numeric data with single quotes.

[ Column Values | Result Text ]

EXECUTED:
INSERT INTO InventorySystern (SKU, CATEGORY, OMHANMD, COST) WALUES (LORS457, 1, 200, 275)

SALCODE=10
UFDATECOUNT =1

The SQL UPDATE Statement

38

Update statementsin SQL are used to modify datawithin the rows and/or columns
of atable. The stepsto follow to create an SQL UPDATE statement are also fairly
similar to those for creating an SQL SELECT statement.

To create an SQL UPDATE Statement action using the wizard:

1 Create or open aJDBC Component.

2 Highlight alinein the Action Model where you want to place the SQL
Statement action. The new action will be inserted below the line you
highlight.

From the Action menu, select New Action, then SQL Satement.
Indicate that you wish to Create a SQL statement using the wizard.

Select UPDATE for your Statement Type.

o a A ©

Click Next to select the table(s) and columns to modify with the SQL
statement.

JDBC Connect User’s Guide



Create a New S0L Statement. x|
Selectthe table and columnis) that will be modified by UPDATE statement.

Tables and Columns:

[+ O AgAccessRights A
[ O AgAgents
[+ O AgContents
[ O Aginfo
[~

[ O AgResources

=} ® InventorySystem
SKU
CATEGORY
OMNHAND
COST
CIsSTATUS

[ Back (I Wexi_.]( Finish | Cancel |

7 Click Next to bring up the final dialog, which allows you to select which
columns will be used by the WHERE clause of the Update statement.

Create a New S0L Statement. x|

Choose the Calumnis) you want to use in the LUPDATE statement's WHERE clause to filtel
the result set.

Tables and Columns:

=} @ InventorySystem
SKU
I CATEGORY
[ ONHAND
Clcost
CIsSTATUS

[ Back ” |[ Finish ][ Cancel ]

8 Select the appropriate columns and click Finish to complete the action and
add it to the Action Model.

Just aswith the SELECT and DEL ETE commands, the Native Environment Pane

will display aWhere tab and a Result Text Tab. In this case, though, it will also
display a Column Values tab as seen with the Insert command.

Performing JDBC Actions 39



Use the Where tab to filter the record set to be updated as demonstrated in
“WHERE Clauses’ on page-32 above. You may select the columnsand definethe
criteriafor those columnsin order to update only the desired records.

|J WHERE ][ Column Values || Result Text |

G = {qp =}

‘ |SKU > = & |'athINVENTORYSTATUSISKUY) B - End =

Tab to Column Valuesto provide the values for each of the columnsto be updated.
Updating Column Valuesis demonstrated in “ Specifying Column Values’ above.

WHERE [ Column Values ] Result Text |
Table: InventorySystem

Column “alue |
SKU 'SUE2234" @ -
CATEGORY 2 @ -
CMHAMND 44 @ -
COST 3000 @ -

Asalways, the Result Text Tab showsthetext of the SQL and the results produced
by running the statement. You will notice that Composer automatically surrounds
non-numeric data with single quotes.

WHERE || Column Values [ Resuitt Text]
[

EXECUTED:
LIPDATE InventorySystern SET Sk = 'LORB437 CATEGORY ='2, ONHAND =
366, COST=12, STATUS = "1"WHERE SKU="LOR2437

SQLCODE=0
LUPDATECOUNT =0

Editing a SQL Statement Created with the Wizard

Once you have created your SQL statment, you may find that you need to edit it.
Thisisatwo part process. Begin by double-clicking onthe EXECUTE SQL action
in the Action Model. Thiswill bring up atabbed dialog, as shown below.

40 JDBC Connect User’s Guide



Edit SQL Statement x|

| Table and column selection panel ][ WHERE clause column selectar |[ Result Map Properties |

Choose ane table and the columns within the table that yvou want the SELECT statement to
return.

Tables and Columns:

[#- O AgAgents

[#- O AgContents

[ O Aginfo

[ O AgResources

=} @ InventorySystem
SKU
CATEGORY
ONHAND
COST
STATUS

[+ O ProductSystem

< ]

[<1

Thesetabsallow you modify the basic Table, Column and Target selectionsfor the

SQL Query. The number of tabswill vary according to the type of SQL Statement
you are editing.

+ TheTableand column selection panel tab isavailable for all SQL

statement types. It allows you to modify the tables and/or columns you had
chosen to use in your SQL query.

+ The WHERE clause column selector tab is available for the SELECT,
DELETE and UPDATE statement types. Use thistab to modify the columns
you had chosen to use for your Where clause.

+ TheResult Map Propertiesisavailable only for SQL SELECT actions.
Here you can modify the Target location for the results of your query.

Once you have edited the information in these tabs, you may need to further
modify the SQL Statement using the additional tabs available when theiteminthe
Action Model isclicked on asingletime, or after you have clicked on OK inthe
Edit SQL Statement tabs, described above.

Back in the Native Environment Pane, you will see a screen that resembles the
following.

|' WHERE " Column Values |[ Result Text |
o = (g -}

‘ =0 [+ = $ |'LOR843T'

Performing JDBC Actions 41



Again, the number of tabs shown will vary according to the type of SQL
Statement.

+ TheWHERE tabisavailablefor all SELECT, DELETE and Update SQL
Statements prepared using the wizard. Here you can modify the filter chosen
to limit your query.

+ TheColumn Valuestab isavailablefor INSERT and UPDATE queries. Use
this tab to modify the values you originally designated as being inserted or
changed as aresult of your SQL statement.

+ TheResult Text tabisavailable for all SQL Statements. It shows the query
that was executed and the results it produced.

Creating an SQL Statement Manually

42

The manual creation of SQL statements for usein JDBC Componentsis done
inside the Query/Result Mapping Pane.

¥ exteNd Composer: TutorialEnd [JDBC: Inventorylookup]

File Edit View Component Action Animate Tools Window Help HO - & x
@&/ X QS Novell
£ ‘1“;‘ pata 8oL Statement | Result Mapping | Result Text
& OPRO Data: Operatorsikeywrords:
g Hminfhltp ot COMBY | - pgaccesst Rights 7501
L > SHLORB43T g I Math Query ReSU t
£ AgContents - Relational 4 .
- Aginfo 4 Logical M P
+ hoResources 3 Funciions apping Fane
o InventorySystem
B output b
SQL Statement [ Exasute As Prepared
SELECT * FROM InventorySystermn WHERE SIKU =*Input %P ath(’ PRODUCTREQUEST/SKU™)" S Q L State m e nt
SDEEBEE2IN
{2 Temn Data entoryL ookup 1=
=-<> INVENTOR i/ LoG"inn" + “Component starting...” + *\rn" TO System Output using Log Level §
i :: Sl SUACAE LM (W, ocute SOL: SELECT * FROM InventorySystem WHERE SKU ="input XPath{"PRODUC
i CATEG!
<> ONHAID 5 MAP $TempINVENTORYSTATUS/SKU TO $OUtpUtINVENTORYSTATUSSKU =
\.<>cosT|275 =g ATUS/CATEGORY Via Code Talle TO ORVSTS _
<> sTATUOuL o7 Stock] | 4T | _'—I

{ction: Execute SQL. SELECT * FROM InventorySystem WHERE SKU ='Input ¥P ath{ PRODUCTREQUESTISKU)'

If you are editing a previously created action model that already contains SQL
Statement actions, you can make the Query/Result Mapping Pane comeinto view
simply by selecting (clicking on) any existing SQL Statement action. Otherwise,
you will create an SQL Statement action.

> To manually create an SQL Statement action:

1 Create or open aJDBC Component.

2 Highlight alinein the Action Model where you want to place the SQL
Statement action. The new action will be inserted below the line you
highlight.

3 From the Action menu, select New Action, then SQL Satement.

JDBC Connect User’s Guide



4 Indicate that you wish to Create a Custom SQL Statement. The
Query/Result Mapping pane appears in the Native Environment pane of the
JDBC Component Editor window, as shown above.

Building an SQL Statement Manually

Building an SQL Statement manually involves bringing together data, operators,
and keywords.

» To build an SQL Statement:

1 Placethecursor in the SQL Statement control box in the Query/Result
Mapping pane.
2 Expand the Data columns and/or the Operator/K eywor ds by clicking the

plus signs. Theillustration below shows Data and Operator/K eywords trees
look like with several parent nodes expanded.

S0L Staterment | Result Mapping | Result Text'

Data: OperatorsikKeywords:
---ngResources A ENS:IQLSELECT =
- InventorySystem
e [-DELETE
' - FROM
.. \WHERE
F-UPDATE
[#-INSERT
=-Relational
..... = Equal
----- <> Not Equal
----- < Less than
..... LISTPRICE = Greater than
----- IMAGEFILE 4= Less or equal -
..... IMAGEHEIGHT -»= Greater or equal
----- IMAGEWIDTH hd Elff o ;I
S0L Statement: [ Execute #s Prepared

SELECT * FROM InventarySystem WHERE SKU ="Input xPath('PRODUCTREQUESTISKLU"Y

3 Double-click each Data column and/or Oper ator/K eywor d that you would
like to add to the SQL Statement box. When you double-click an item, it
automatically appearsin the SQL Satement box at the insertion point.

4 Optionally, you may drag elements from an open DOM tree (e.g., the Input
DOM pane) into the SQL Statement box.

5 Optionally check the Execute as Prepared checkbox. (See discussion
further above, under “Prepared Statements”.)

Performing JDBC Actions 43



Building an Example Query

44

Hereis an example SQL statement:

SELECT * FROM ProductSystem WHERE SKU =
' : Input .XPath ("PRODUCTREQUEST/SKU") ' ;

In order to build this statement, the component must satisfy the following:

+ The component must be able to use a (previously defined) connection
resource to connect to the database

+ The database must have atable called ProductSystem that has a column
caled SKU

+ The component must have atemplate containing a sample XML document
with aroot element, PRODUCTREQUEST, that has a child e ement named
SKU

This example statement, in plain English, means:

“Select all columns from the database’s ProductSystem table where arecord’'s
value in column SKU isequal to the content of the Input DOM’s
PRODUCTREQUEST/SKU element.”

> To build the example statement:

1 Expand the SQL treein the Expression builder and double-click SELECT.
2 Double-click * inthe Expression Builder.
3 Double-click FROM in the Expression Builder.
4 TypeProductSystem.
5 Double-click WHERE in the Expression Builder.
6 TypeSKU=.
7 Select SKU inthe Input DOM and drag it into the SQL Statement control.
8 Optionally type asemicolon ( ;) at the end of the SQL Statement.
9 Sdect File>Save. The Query/Result Pane should look like this:
5L Statement] Result Mapping | Result Tex |
Data: Operatorsieyvwords:
+-AghccessRights j FOR BROWSE |
+-Aghgents
+-AgContents +-DELETE
+-Aginfo +-UPDATE -
+-AgResources | + INSERT |
SQL Staterment: [” Execute As Prepared
SELECT * FROM ProductSystemn WHERE SkKU=‘Input¥Path{"PRODUCTREQUESTISKL""

JDBC Connect User’s Guide



Mapping Results into the Output DOM

When you have created your SQL Statement manually, you must use the Result
M apping pane to select where to place the rows and columns of your resultsinto
the XML Document tree.

> To use Result Mapping:

1

2

3

Select the Result Mapping tab in the Query/Results M apping pane. The
Results Mapping pane appears.

SQL Staternent ResultMapping | ResuItTextI

Result Row Placement

Enterthe XML element to place results under:

frems 7]

[IMVENTORYSTATUS i

ol |7 Create element names as column names
|7 Create elements if column is null
I- Include datatype info in element attribute

I_ Generate Row numbers

0 Custom Column/RonyGroup |

I- Stored Procedure mapping

Under Result Row Placement, select the destination Part to which you
would like the result of the SQL query mapped.

Next, select the Part element under which you'd like each result row to
appear. If an appropriate Part is not listed, you may add another XML
template using the File>Pr operties>M essages dialog from the menu. If a
Part is not visible, go to View>XML Documents>Show/Hide.

Select options as follows:

Default Result Mapping: Choose the first radio button for standard
Column/Row/Group mapping:

+ Create element name as column name.

+ Createeementsif columnisnull. Thiscreates XML elementswith
empty content if the column returned has no data.

+ Includedatatypeinfoin element attribute. This creates an attribute
for each element indicating the data type of the result column.

+ Generaterow numbers (if applicable).

Performing JDBC Actions 45



Custom Result Mapping: Choose the second radio button, Custom
Column/Row/Group, to perform custom column, row, or group mapping
(see Chapter 5).

Stored Procedure Mapping: Choose Stored Procedure mapping to map data
returned from stored procedures. (see Chapter 6).

5 Seect File>Save.

Editing a Manually Created SQL Statement

To edit a SQL statment once you have created it manually, simply click on the
EXECUTE SQL action in the Action Model.

[ sQL statement | Result Mapping || Result Text |
Drata: OperatorsMeywords:
L)-Aginfo [~] Z-s0L [~]
[*}-AgResources [+-SELECT
- InventorySystem | [*)-DELETE

5KU [=-UPDATE

CATEGORY [+ INSERT

ONHAND [+]-Math

COST | |[#)-Relational e
i STATUS [+| E-Logical [+]
SQL Statement: [l Execute As Prepared
SELECT * FROM InventorySystem WHERE k1L
“Input XPath{'PRODUCTREQUEST/SKLMY

+ Usethe SQL Statement Tab to edit the Text of your SQL statement manually
or use the methods above to change your selections of Data, Operators and
Keywords.

+ Usethe Result Mapping Tab to modify the target placement for the returned
data.

+ Usethe Result Text Tab to show the query that was executed and the results
of the query.

Executing the SQL Statement

46

After you have built the SQL Statement, either manually or using the wizard, click
the Execute button to run it.

JDBC Connect User’s Guide



Eer: TutonalEnd [JDBC: Inventorylookup]

(<)

Component  Action Ani

ols  Window Help

> 00 X4
e
£ || saL statem M Regii Mapping | Result T |
Drata: Operatorsfieyawn
Qdhwnani cOMMRIE e d el
RE437 +-AgResources Ql
= InventorySystem E t +-SELECT
SKU Xxecute —I-DELETE
CATEGORY button FROM
ONHAND WHER
COST +-UPDATE
STATUS +-INSERT
P-|| = ProductSystem 0 Tath

Checking the Results

You can check the results of your SQL statement by looking at the dataretrieved
in the familiar row and column format. To do so, click the Result Text tab. This

tab isavailablefor all SQL Statements, whether created manually or using the
wizard.

[ saL Statement][ Result Mapping]' Result Text ]

EXECUTED:
SELECT * FROM InventorySystem WHERE SkKU ="LORS2437"

= CATEGORY QPrHAND COsT STATUS

LORB437 1 0 75 Out of
Stockion re-arder)

If the query result returned by the SQL statement |ooks correct, you can continue
designing your component’s Action Model. Otherwise, you can return to the SQL
Statement tab and debug your SQL as necessary.

Using Stored Procedures

Many RDBMS vendors provide the ability to execute procedural code stored in
the RDBMSS system. Using these stored procedures allows for high-performance
interfaces that are independent of the underlying table implementations.

Performing JDBC Actions 47



Using stored procedures can be helpful in controlling access to data. User access
to data can be limited to the scope of the stored procedure. Limiting accessto data
with stored procedures preserves dataintegrity by insuring datais entered ina
consistent manner. Stored procedures also improve efficiency. They’ re memory
resident, which speeds execution. Their use decreases network traffic.
Productivity isimproved viatheir use since stored procedures only need to be
written and debugged once but can be reused by many.

While often used interchangably, for the sake of discussion we'll differentiate
between the terms Procedures and Functions. A Procedure is a subroutine that
doesn’t necessarily return any databut may viathe call’s parameters or as external
result sets. A Function, on the other hand, always returns something. Both
Procedures and Functions can pass Parameters.

Novell exteNd Composer allows you to map parameters to stored procedures and
functions, execute stored procedures and functions and map returned data to
DOM/node combinations.

Syntax Requirements

In order to package the Procedure or Function call correctly, exteNd Composer
requires certain formatting conventions be followed. For example:

{ —indicates that acall to a Function or Procedure follows
} —indicates the end of acall to a Function or Procedure

The syntax for procedures and functions support parameters which may be
Expressions, Placeholders or Constants.

Expression: Expressions may be used pass variable input data to a procedure or
function. Expressions used as parametersin procedure and function calls are
preceeded with a colon () and enclosed in single quotes. (e.g.
‘:<variablename>").

Question Mark: Question Marks ( ?) may be used as parameters and serve as
placeholdersto which the procedure returns data. A question mark isalso used for
theresult in afunction.

Constant: Constants are used to pass input data in procedures and functions but,
unlike expressions or placeholders cannot be used to accept returned data. Literal
values are enclosed in single quotes.

Rules for Stored Procedure Parameters

Stored procedures may have Input Parameters, | nput/Output parameters and
Output Parameters.

48 JDBC Connect User’s Guide



Input Parameters: |nput Parameters pass data to stored procedures. | nput
Parameters may be Constants or Expressions.

I nput/Output Parameters: |nput/Output Parameters pass data to stored
procedures and accept datareturned from stored procedures. Input/Output
parameters must be Expressions.

Output Parameters: Output Parameters accept data returned from stored
procedures. Output parameters may be either an Expression or aQuestion Mark as
aplaceholder.

Using Procedures and Functions in a JDBC Component
For all the examples below the following steps should be executed.
» Add anew SQL action

 Execute as Prepared is set to true (check the checkbox; see “ Prepared
Statements” on page 19).

NOTE: For mapping the results of stored procedures, see Chapter 6.

Syntax for running a Procedure from within exteNd Composer
Procedures that do not return avalue:

{ call [<packagenames>.]<procedurename> [ ([paraml,
param2..,paramn] )] }

Example:

{ call composerDemoPackage.spl withParams('12345','George’) }
Procedures that return aresult set:

{ call [<packagenames>.]<procedurename> [ ([paraml,
param2..?... .paramn] )]}

where ?isaparameter to which the result set isreturned. A result set may also be
returned to other parameters which contain Expressions.

Example:
{ call composerDemoPackage.sp withParams('93324', ‘:FirstName’,
?)}
In thisexample ‘93324’ isaconstant, ‘:FirstName' isan Expression and ?isa
placeholder.
NOTE: Only Oracle returns result sets as parameters. Non-Oracle RDBMSs may

return result sets but, not as parameters.

Performing JDBC Actions 49



Backward Compatability for Oracle Procedures that return aresult set:

Prior to version 4.0, exteNd Composer provided support for Oracle Procedures
that return result sets as parameters. To do so, exteNd Composer (prior to version
4.0) required the user to specify the Oracle Cursor Position within the procedure
call. The pre-Composer 4.0 syntax included ocp:n —where ocp standsfor Oracle
Cursor Position and :n indicates which parameter containsthe cursor. This syntax
was used in pre-4.0 versions of exteNd Composer and ismaintained in version 4.0
and greater for backward compatability.

{ call [<packagenames>.]<procedurenames [ ([paraml,

param2..0Cp:X... .paramn] )]}

Example:
{ call composerDemoPackage.sp withParams('93324', ‘Melissa’,
ocp:3)}

NOTE: The contents of the result set will be returned in the same manner as a
standard SELECT statement. The results will be automatically be mapped to the
selected XML Document. The defaults are Output as the Document and
RESULTINFO/ROW as the XPath location.

Syntax for Calling a Function from within Composer

50

Functions that return aresult set:

{ ?» = [<packagename>].<functionName> [ ([paraml,
param2..,paramn] )]}

Example:
{ ? = call composerDemoPackage.fn justOneReturn( ) }

Backward Compatability for Oracle Functions that return aresult set:

To provide backward compatability with pre-4.0 versions of exteNd Composer,
the following syntax will continue to be supported in exteNd Composer 4.0 and

greater.
{ ocp:1 = [<packagename>].<functionNames> [ ([paraml,
param2..,paramn] )]}

Example:
{ ocp:1 = call composerDemoPackage.fn justOneReturn( ) }

JDBC Connect User’s Guide



Other Methods of Calling Functionsfor Specific Tasks

You may call any function that does not update the database from within a select
statement.

Example:
select fn_addMin(4,6) "Sum" from dual

To use afunction that does not return aresult set but updates the database, call it
from within afunction that does return aresult set — see the example
fn_callAddMin

Example:

{ » = call composerDemoPackage.fn callAddMin (22,44 ) }

Colons in SQL Statements

Colonsare special charactersin SQL Statements, because exteNd Composer treats
colons as markersindicating the presence of ECMA Script immediately to the
right. In the above action, the SQL Statement includes the string

‘:Input.XPath (“PRODUCTREQUEST/SKU") ’

which contains a colon followed by an ECM A Script expression involving the
XPath() method. Without the colon, the string would be evaluated as a string-
literal. With the colon, it is evaluated as an ECM A Script expression.

NOTE: If you need to use colons as literal values inside SQL Statements, escape
every occurrence of a literal colon with a backslash. Otherwise, you may see
errors.

The SQL Batch Action

Most database drivers allow batch execution of SQL statementsin order to
minimize demand on connection resources. For example, auser may want to insert
datainto atable in one database and delete data from atable in another database,
all inoneround trip. Thisis possible with the SQL Batch action.

SQL Batch actions allow you to specify that a particular group of SQL Statement
actions should be accumulated into a single batch and transmitted to the database
asaunit.

NOTE: SELECT operations may not be used in batches. Use only INSERT,
DELETE, and UPDATE statements.

To accessthe SQL Batch action, right-click inside the action pane and choose New
Action > SQL Batch as shown below.

Performing JDBC Actions 51



Action

Cpa Ll SOl Statement [

Disable Advanced b
Data Exchange
Process 4
Repeat ]

Comment...
Campaonent..
Decision...
Declare Alias...
Function...
Log...

Map...

Send Mail...
Switch. .

There are three SQL Batch commands, each of which places a new action in the
action model: Start Batch, Execute Batch, and Discard Batch.

Start Batch

You must tell Composer where the beginning of abatch occurs, by placing a Start
Batch statement before the first SQL Statement in a series of statements that you
want to group. This command sets a checkpoint for rollback purposes (in casethe
batch does not finish normally).

From thefirst occurrence of this command until the next occurrence of an Execute
Batch command (seebelow), SQL Statementsare merely accumul ated, rather than
executed. Execution of a batch does not occur until an Execute Batch command is
reached.

Regular (non-SQL) actions, such asMap and Function actions, are not affected by
Batch operations. If you place Map actions, Function actions, or any other non-
SQL actionswithin or after agroup of batched SQL Statement actions, those
actions will execute before the SQL Statementsin your batch, because the batch
cannot execute until an Execute Batch is reached.

52 JDBC Connect User’s Guide



Execute Batch

Discard Batch

An Execute Batch command causes all SQL Statementsin abatch to be sent, asa
unit, to the database. (If no Execute Batch command is issued, none of the SQL
Statements in the preceding batch will get executed.)

An Execute Batch statement can be placed immediately after a batch of SQL
Statement actions, or it can be placed at some point downstream of the batched
actions (possibly in one branch of a Decision action). In other words, you can
create a batch in one location and execute it, conditionally, from another location
in your action model.

The Discard Batch command is a memory-deall ocating command that causes the
previously held batch to go out of scope. It freesthe memory held by the preceding
batch.

Ordinarily, when an SQL batch executes without error, the batch is discarded
automatically after it executesand thereisno need toissue an explicit discard. You
would use Discard Batch when you have an action model that contains two or
more sequential SQL batches (each with its own Execute Batch command)
wrapped in Try/On Error statements. The need for the Discard Batch arises when
one of the upstream batches executes abnormally (generating an exception). In
order to continue to another batch, you need to purge the previous batch from
memory (with aDiscard Batch in the On Error branch of the“ Try” action). Failure
to use Discard Batch under these conditions would cause the next Start Batch to
throw an exception. This scenario is shown in the illustration below.

Performing JDBC Actions 53



TRY
Start Batch
(SQL Statements)

Execute Batch

ON ERROR
| Discard Batch |

TRY

Start Batch &

(SQL Statements)

Execute Batch

ON ERROR
1

Discard Batch

In the case depicted above, where there are two SQL batches (each enclosed in a
Try/On Error action), failure to include a Discard Batch action in the error branch
of thefirst Try will causethe next Start Batch to throw an exception (assuming the
first batch fails).

In summary: When two or more batches will execute sequentially, wrap eachina
Try/On Error action and include a Discard Batch command in the On Error
branch of each.

For action modelsin which thereis only asingle SQL batch, Discard Batch is not
necessary. After normal execution of a(single) batch, memory allocated to the
batch isreleased automatically; and if the batch returns an error, the batch will go
out of scope (and be garbage-collected) when the component itself goes out of
scope.

Creating Batch actions

Batch actions are created using the SQL Batch menu command (available from
Action > New Action > SQL Batch in the JDBC Component Editor main menu,
or viaNew Action > SQL Batch in the contextual menu).

54 JDBC Connect User’s Guide



> To create a SQL Batch action:

1 Placethecursor in aline preceding the group of SQL Statements that you
want to batch. Then press the right mouse button and select New Action >
SQL Batch. The Batch setup dialog appears.

Batch E3

Choase an option to either Start, Execute, or Discard &
Sl Batch, While in hatch mode, all SQL statements
exceptfor 3 SELECT are included in the Batch.

¥ Start Batch
€ Execute Batch fends batch)

" Discard Batch (ends batch)

Help 0K Cancel

2 Choosethe Sart Batch radio button to insert a Start Batch command in your
action model. Otherwise, choose Execute Batch or Discard Batch, as
appropriate.

3 Click OK to dismissthedialog. A new action appearsin your action model.

JDBC-Specific Expression Builder Properties

SQL queries can result in certain status and/or error values being returned (for
exampl e, the number of records that were changed by an Update). Often, itis
useful to be able to reference these values in ECMA Script expressions. The
Expression Builder pick list (in the top portion of the Expression Editor window)
contains properties that are specific to JIDBC Actionsinvolving SQL: namely,
SQLSTATE, SQLCODE, and UPDATECOUNT. (See panel below.)

Performing JDBC Actions 55



r Source Expression

Wariahles: FunctionsiMethods: Ciperators:
&< Input #-Customn Scripts =-Math
----": > Temp E-Document =1-Relational
<2 Output - ECMASCript -Logical
<> PROJECT =-Extended ECMAScript =-String

<> Repeat Aliases || -JDBC
=< Node Aliases :

"hitpieeea composer comtutarialfproductresponse”

Help Yalidate oK Cancel

Using Other Actions in the JDBC Component Editor

In addition to the SQL Statement action, you have all the standard Basic and
Advanced Composer actions at your disposal as well. The complete listing of
Basic Composer Actions can be found in Chapter 7 of the Composer User’s
Guide. Chapter 8 contains alisting of the more Advanced Actions available to
you.

Handling Errors and SQL Messages

SQL returns certain coded values when errors occur (i.e., no record wasfound in
aQuery) or asareport on theresult of certain actions (i.e., how many recordswere
changed by an Update). Theseresults appear onthe Result Text tab asthree special

variables |abeled:

+ SQLSTATE

+ SQLCODE

+ UPDATECOUNT
+ LASTSQL

These variables are available to ECM A Scri pt functions you may write and can be
used for error handling within your JDBC component. For instance, you can create
aDecision action to process after an SQL statement. Based on the value returned
inthe UPDATECOUNT variable, you can choose one or the other set of actionsin
the two branches of the Decision action. Likewise, error information contained in
SQL STATE or SQLCODE (which are standard SQL status variables) can be used
to branch to appropriate recovery logic in case of error.

56 JDBC Connect User’s Guide



The LASTSQL variableis an exteNd-defined string variable which contains the
last SQL statement to actually execute in the component in question. Logging the
value of thisvariable can be useful for troubleshooting.

Performing JDBC Actions 57



58 JDBC Connect User’s Guide



Using Custom Result Mapping

The following sections describe the similarities and differences between default
and custom result mapping for the Execute SQL action. Custom mapping features
are described in detail.

About Default Result Mapping

The mapping of data returned from an Execute SQL action is determined by
specifications on the Result Mapping tab in the SQL Mapping pane. The two
Result Row Placement controls allow you to determine where in the target
document to place the result set data. The drop down list specifies the Message
Part or Repeat alias context and the Expression edit box specifies the XPath
location within the Context.

The Context is either the name of aPart in the component or the name of a Repeat
alias already specified in the component (where the Repeat aliasitself represents
aMessage Part context and X Path location). The Expression edit box specifiesan
XPath, the last el ement of which acts asthe parent element for the returned results
and will receivethe data. Thelast element that receivesthe datais called the Row
Target. If multiple rows are returned, then multiple Row Targets will be created.

Each column returned in arow will appear as achild element of each Row Target.

Using Custom Result Mapping 59



¥ exteNd Composer: TutorialEnd [JDBC: Sample]DBECInventoryLookup] ] 3]

Fie Edit View Component Action Animate Tools Window Help =
CedE8 00X Q< Novell
& output Data 3% | (50l statement | Result Mapping | Result Text|

(=)< > RESULTINFO

<> Ra0w ——
< Bk m\
> CATEGORY |3

- 2 ONHAND [t}

Result Row Placement
Enter the XML element o pl.

putput

ce results under:

&> COST 393 [RESULTINFO/ROW i2g
LS 3 GTATUS Out of Stock{on re-order)

- > ROW

> RO @® [ Create element names as column names

| > ROW [ create elements if calumn is null

|- > ROW [Tl Include datatype info in element attribute

] <>

ROw () Custom Column/Row/Group
|- ROW
) ROW [ Stored Procedure mapping

|- ROW

SEHEER-2OI

SampleJDECImventondookup E\
i W LOG *™rin™ + “Component starting...” + *\rin" TO Systern Qutput using Log Level &

: Lo/ <ecute SOL: SELECT * FROM InventorySystem

ol [ B
Ready

[
[
[
[
[ > ROV [l @enerate Row numbers
[
[
[
[

By default, the Row Target is named “ROW” and is achild of aroot element
named “RESULTINFO,” and the results are written to Output, as shown above.
Notice that no checkboxes are checked in the Result Mapping pane.

You can change the result mapping to use any target X Path of your choice. For
exampl e, you can use the Result Mapping tab to specify a Row Target such as
Temp/RESULTINFO/Result as shown in the graphic below.

exteNd Composer: TutorialEnd [IJDBC: SampleJDBCInventoryLookup] B =] 53]
P p Y p
File Edit View Component Action Animate Tools Window Hslp B0 -8 x
UEEE 00X QS Novell
@ output ‘Data O X | (sqL statement | Result Mapping | Resuit Text|
Result Row Placement
Enterth ML elementto place results under:
emnp
=) Temp Data _______@_5_..—-—- [~
<> RESULTINFO_g =] [RESULTINFOsROMWY e
E-<>

==V CHR1111 Olecdnd . '

> cATEGORY 3 @® reate element names as column names
> QNHAND 0 [ create elements if column is null
(B COST 988 [ include datatype info in element attribute
L QTATUS Qut of Stock(on re-order) ([ &enerate Raw numbers

(<> ROw

<> ROW ) Gustom Golumn/Row/Group
E: :; ng [ stared Procedure mapping

(<> ROV [~]

W’LOG r'in® + “Component starting...™ + *“rn* TO Systern Output using Log Level 5 =
(B W zecute SOL: SELECT * FROM InventorySystem =
Al bl

[sTemp RESUILTINFO /ROW

60 JDBC Connect User’s Guide



Result Mapping functionality includes the following default behaviors:

*

*

*

*

Target element names created in the document are the same as column
names returned in the result set

All columnsreturned in the result set are mapped to the target document
All columns are mapped to the same parent target element
All rows are placed into a single document

NOTE: Any column names that contain spaces will have the spaces replaced with
the underscore character since XML does not permit spaces in element names.

About Custom Result Mapping

Use custom result mapping to:

*

*

*

*

*

Create target element names different than the column names returned
Map columns to different row targets

Group the result set data by one or more columns

Map only group information

Map group and detail information

Custom result mapping is accessed viathe Custom ... button on the Result
Mapping tab.

{®) Custom Column/RowiGroup

If you click this button, you will be presented with adialog that has three tabs,
labeled Map Target, Detail Rows, and Declare Group/Repeat.

Using Custom Result Mapping 61



Custom Mapping Settings

|' Map Target ][ Detail Rows |[ Declare Group /Repeat |
e . A Y

Columns Context Target XPath Basef4 encode |
il MyTemp INVENTOR Y PRODUCTDetailTheCategory O
2 MyTemp IN'VENTOR'Y /PRODUCTDetail MySKU 2]
3 My Temp INYENTORY PRODUCTDetail My Onhand [}
4 My Temp INYENTORY PRODUCTDetail My Cost [}
s O

The use of thisdialog is discussed in detail below.

About Custom Result Mapping and Aliases

Novell exteNd Composer’s default mapping behavior isto iterate through alist of
one or more nodes (i.e., elements specified by an XPath pattern) from a source
document, and map them to a single target document X Path location. If the target
location doesn’t exist, Composer createsit. If you know the source list is greater
than one, you must indicate to exteNd Composer whether you wish to map to the
same physical target |ocation for each member of the sourcelist (i.e., overwritethe
datain the specified physical target location), or create a new physical target
location for each member of the source list (i.e., add new target locations as the
repeated source is mapped). You indicate that you want to map each member of
the source list to the same physical target location by specifying the Context asan
actual DOM name. You indicate that you want to map each member of the source
list to anew physical target location by specifying the Context using an alias.

NOTE: This is also true for the Repeat for Element and the Repeat for Group

actions.

62 JDBC Connect User’s Guide




You can think of the multiple rows of datareturned by a SELECT statement asa
repeating set of elementsin an XML document. In that case, you may choose to
create aDeclare Group action creating alist of Groupsand Detail elementswithin
the Groups. Then you would create a Repeat for Group action to process the
Group list or detail of each Group. The Custom Map Target, Detail Rows, and
Declare Group/Repeat tabs provide a similar alias ability for repeating rowsin
SQL result sets as the Declare Group and Repeat for Group actions do for
repeating elementsin a document.

Using the MapTarget Tab
TheMap Target tab isused to:

+ Create your own target element names for each result set column

+ Specify atarget Context for each result set column

The Map Target tab controls the mapping of each returned row’s individual
columns. For each column, you specify a Context — Target X Path combination.
The Context — Target X Path combination is specified for each columnin the order
they arelisted in the projection list for the SELECT statement in your Execute
SQL action. You cannot use Custom Result Mapping without filling in the Map
Target tab.

TheMap Target tablewill initially appear without any rows. Usethe + icon to add
additional rows. Use the - icon to delete rows. Use the up and down arrows to
arrange the rows of the Map Target table.

Column: This number refersto the columnsin the order they are listed in your
SELECT statement.

Context: Thisspecifiesthetarget document for the column. The Target X Path will
be appended to the Context to produce the full XPath |ocation for the columniin
the target document. The Context can be a

+ Document — You may usethis choiceif your result set contains only onerow,
otherwise each additional row will overwrite the previous row’s data.

+ Detail Alias— A Detail Aliasis defined on the Detail Rows tab and consists
of a Document name and partial Target XPath. Or the Detail Alias may
consist of a Group Alias (defined on the Declare Group/Repeat tab) and
partial Target XPath location. Using a Detail Aliastells exteNd Composer to
create anew physical target location for each member of the sourcelist (i.e.,
each row in aresult set).

Using Custom Result Mapping 63



64

+ Group Alias— A Group Aliasis defined on the Declare Group/Repeat tab
and consists of a Document name and partial X Path location. Using a Group
Aliastells exteNd Composer to create a new physical target location once
for each Group in the source list (i.e., where each group represents multiple
rowsin aresult set).

+ Repeat Alias— If the Execute SQL action is contained with a Repeat action
in your Action Model you may choose its Target alias. In this case, the
Context will resolve to a Document and partial XPath to which the Target
XPath (see below) will be appended.

When grouping and mapping detail column data, the Declare Group/Repest,
Detail Rows, and Map Target tab work together to define the complete X Path
location for the column. (Seeillustration.) For instance, a column on the Map
Target tab will be represented by a Context and X Path. The Context may be a
Detail Aliasdefined onthe Detail Rowstab. The Detail Aliasin turnwill represent
another Context and X Path. Its Context may be a Group Alias defined on the
Declare Group/Repeat tab. Finally the Group Aliasitself will represent another
Context and X Path.

By defining the Group and Detail aliases separately, you are able to map rowswith
duplicate column data (the basis for your groups) just once into group header
elements by using the Group alias as a context, and map columnswith unique data
(the detail of your groups) multiple times within the group header elements by
using a Detail Alias whose Context isaGroup Alias.

Target XPath: Thisisan XPath fragment that specifies the custom name to be
given to the column and optionally pre-pended by any additional parent elements.
The Target XPath will be pre-pended by the Context to produce the final location
for the column in the target document.

Base64 encode: The checkbox in thiscolumn allowsyou to convert binary datato
an XML -safe representation for usein aDOM element.

NOTE: Composer’s default behavior is to automatically Base64-encode binary
data returned from a database during a SELECT or other "read” operation. This is
necessary to ensure that the target XML node contains no “illegal characters.” See
“Handling of Binary Data” in the previous Chapter for additional info.

JDBC Connect User’s Guide



|' Map Target [ Detail Rnws][ Declare Gl'ouprepeat]
ne a v

Columns| Context Target XPath Basef4 encode |
1 p===$gCATEGORY TheCATEGORY (]
2 MyOutputDetail  [MySKU O
3 Iy OutputDetail My ONHAMD ]
4l = MyCutputDetail MyCOST ]

Map Target | Detail Rows || Declare Group /Repeat
Detail Alias:
"ty OutputDetai

Representing:

HCATEGORY [v]

‘PRODUCTDetaiﬂ 74

Map Target || Detail Rows |' Declare Group /Repeat

Hn om A P

| Group Alias | Columns | Context | Target ¥Path |
—oF-::ATEGOR‘f [CATEGORY [Output INVEWTORY/ACATEGORY IGROUP |

The three tabs of the Custorn Mapping Settings dialog can be used to define
sophisticated any-to-any mappings of result-set temns to Part elernent,
Notice how user-defined aliazes (representing, in each case,

3 Part context and target XPath) can be substituted back
into earlier tab context slots,

A processing summary for the Map Target tab is shown in the table bel ow.

SQL Results Context = Document Context = Alias

One Row One row target is found or One row target is found or

Returned created for the first (and only) created for the first (and
result row. only) result row.

Using Custom Result Mapping 65



SQL Results Context = Document Context = Alias

Multiple One row target is found or One row target is created for
Rows created for the first result row. every result row.
Returned Subsequent rows find and

map to the same physical
target location. (Without an
alias, each row’s data is
overwritten by the next row
until only the last row’s data is
left.)

Looking at a MapTarget Example

Let’'s assume your Execute SQL action issued the following statement:
SELECT CATEGORY, SKU, ONHAND, COST FROM InventorySystem

Which returned the following row data:

Category SKU Onhand Cost
3 CHR1111 0 999
2 DAD7777 89 245
4 GAR1234 17 100
1 LOR8437 0 275
1 LOR8438 21 375
4 MOM4666 233 300
4 RAC4567 156 230
4 ZAC9080 4 555

You could fill out the Map Target tab as shown below:

66 JDBC Connect User’s Guide



Custom Mapping Settings x|
|' Map Target ][ Detail Rows |[ Declare Group /Repeat |
LI N

Columns Context Target ¥Path Basef4 encode |

1 My Temp INYENTORY PRODUCTDetail TheCategory O

H MyTemp INVENTOR Y FRODUCTDetailMySKU ]

3 MyTemp INYENTORY PRODUCTDetailMyOnhand ]

n Wy Temp INYENTORY PRODUCTDetailMyCost ]

s ]

Column one according to the SELECT statement will be CATEGORY. The

Context isadocument named “MyTemp” and the target X Path location within the
Context will be“INVENTORY/PRODUCTDetail/TheCATEGORY”. Notice that
CATEGORY isbeing renamed to TheCATEGORY and being pre-pended with
parent elements of INVENTORY/PRODUCTDetail. This samelogic appliesto

the remaining columns.

However, since we have yet to define or use any aliases, each row’s column data
will be written to the same four physical target locations specified on the tab. If
only onerow isreturned, then its datawill be mapped to the target document with
no problems. If multiplerowsarereturned asin our example, then each successive
row’s datawill overwrite the previous row’s data until only the last row’s data
exists. (Only in rare cases will this situation be desirable.)

B MyTemp Data
- > [NYENTORY
=€ PRODUGTD etail
<> TheCATEGORY |3
LD By S CHR1111
b 22 YO HAND 0
LD N COST 999

Using Custom Result Mapping

67



Normally, you use the Map Target tab by itself if only one row isreturned and all
you wish to do is change the names of the target elements to something different
than the column names. (Or if you want to assign different parent elementsto
individual columns.)

To avoid overwriting data with multiple result-set rows, you need to use a Detail
Alias from the Detail Rowstab telling exteNd Composer to create a new physical
target location for each row mapped.

Using The Detail Rows Tab

TheDetail Rowstab alowsyou to create amapping aliastied to either adocument
Context or a Group/Repeat alias Context. Use of the Detail Rows tab is optional.

Detail Alias: Thisisanameyou specify that will bereferenced asaContext onthe
Map Target tab for mapping columnsin aresult set row.

Context: Thisisadocument name or Group/Repeat alias you specify. The Target
XPath will be appended to this Context to produce part of thefinal location for the
column in the target document (the remaining part comes from the Target X Path
on the Map Target tab). The Context can be a:

+ Document — Using a Document name tells exteNd Composer to create anew
physical target location once for each row in the result set.

+ Group Alias— A Group Aliasis defined on the Declare Group/Repeat tab
and consists of a Document name and partial Target X Path location. Using a
Group Alias tells exteNd Composer to create a new physical target location
once for each detail row bel onging to each Group (i.e., each group represents
multiple rowsin aresult set).

Target XPath: Thisisan XPath fragment that you specify. It will be pre-pended
by the Context on this tab and appended with the Target X Path on the Map Target
tab to complete the final location for the column in the target document.

Looking at a Detail Rows Example

68

Assuming your Execute SQL action issued the following statement:
SELECT CATEGORY, SKU, ONHAND, COST FROM InventorySystem

You could fill out the Detail Rows tab as shown below:

JDBC Connect User’s Guide



Custom Mapping Settings x|

Map Target | Detail Rows | Declare Group /Repaat

Detail Alias:

My TermpDetail

Representing:

pyTemp [v]

‘| NVENTORYIPRODUCTDetail 4

ok J( cancet)

Since the Context MyTemp and Target X Path fragment
INVENTORY/PRODUCTDetail are now specified on the Detail Rows tab
(creating anew physical target location for each row), references to them must be
replaced on the Map Target tab with the Detail Alias“MyTempDetail.”

Continuing the example used in the previous section, you would update the Map
Target tab asfollows:

Using Custom Result Mapping 69



70

Custom Mapping Settings

|' Map Target [Detail Rnws" Declare Gl'oLlpr‘Repeat]

b = aw

Columns Context Target XPath Basef4 encode |

1 Iy TempDetail TheCATEGORY O

2 My TempDetai MySKU ]

3 My TempDetail [y OMHAND ]

4 My TempDetail MyCOST (]

5 [

Help @ 0K ][ Cancel ]

By using a Detail Alias specified on the Detail Rows tab, you will ensure that if
multiple rows are returned in the result set, each row will create a new physical
target location under INVENTORY/PRODUCTDetail.

When not used in conjunction with the Declare Group/Repeat tab, you can think
of the Detail Rowstab as creating a“ Repeat for Row” alias. If the Context for a
Column on the Map Target tab is a Detail Alias (instead of a document), then
exteNd creates a new Target XPath each time arow mapping occurs. In thisway,
multiplerowsintheresult set create multiple Row Targetsin the document without
overwriting the previousrow'sdata. Thisisthe samefunctionality provided by the
Result Mapping tab’s Custom... option, except that you get to rename the

columns.

JDBC Connect User’s Guide




TheCATEGORY |2

hy Sk DADTTIT
Wy ONHAMD g8
My COST 244

=& & PRUDLIC TDetall

..... <> TheCATEGORY 4_Q—

..... <> ysKU GARTEI4
..... <> MyONHAND 17
..... <> MyCOST 100

- <> PRODUCTDetail
..... > TheCATEGORY (1 < —

..... <> ysKU LoRaka?
..... <> MyONHAND [0
..... <> MyCOST 275

-1 <> PRODUCTDetail
----- <> TheCATEGORY [1 r
..... <2 hySKU LORBRESE
..... = 2 Wy MHAND 1

My COST 374

FIFE e e o

Theresult set data may not be arranged exactly the way we want, however. For
exampl e, the subtrees under PRODUCT Detail (seeillustration above) arelisted
without regard to product category information. If you look under

PRODUCT Detail/TheCATEGORY, you can see that two rows belong to
category 1, and one row each belong to categories 2 and 3. (Thisexampleisinthe
Action Examples project under the Sample directory in your Composer
installation. You might want to step through the JIDBC Component from which the
above screen shot wastaken, whichiscalled “ Custom Result Mappingin JDBC.”)

Perhaps you' d rather see row data grouped according to category. To do this, you
need to use a Group Alias from the Declare Group/Repeat tab.

Using the Declare Group/Repeat Tab
The Declare Group/Repeat tab is used to:

+ Create groups of result set records based on one or more result set columns

+ Create aGroup Aliasto use as a Context for Detail Rows

+ Create aGroup Aliasto use as a Context for Map Targets (creating Group
Headers)

Using Custom Result Mapping 71



72

By declaring aGroup Alias you create alist comprised of the unique values found
in a.column across multiple rows. Any Map Target column that uses the Group
Aliaswill map its column data only once for each unique Group essentially
creating group header information.

In addition, each unique group value pointsto alist of the rowsthat belong to it.
Any Detail Alias on the Detail Rows tab that uses the Group Alias will map its
rows together for that group.

Group Alias: Thisis aname you specify that is referenced as a Context on the
Map Target and/or Detail Rows tabs.

Columns:. Specify one or more columns separated by a commato create your
groups. Using two columns means that only unique combinations of the
concatenated values of the two columns will create a group.

NOTE: The columns you specify must form the basis of an ORDER BY clause in
the SELECT statement for the Execute SQL action. If you omit the ORDER BY
clause, your results will be unpredictable.

Context: Thisisadocument name in the component or Repeat for Group or
Repeat for Element aliasin the Action Model that contains the Execute SQL
action. The Target XPath is appended to this Context to produce part of the final
location for the column in the target document. (The remaining part comes from
the Target XPath on the Map Target tab and optionally from the Target X Path on
the Detail Rowstab.) The Context can be a:

+ Document — Using a Document name tells exteNd Composer to write to the
same physical document for each Group.

+ Repeat for Group Alias— If your Execute SQL action isinside a Repeat for
Group action in your Action Model, then you may use its target alias as the
Context for each Group. Thistells exteNd Composer to create new Groups
once for each Group processed in the enclosing Repeat for Group action.

+ Repeat for Element Alias - If your Execute SQL actionisinside a Repeat for
Element action in your Action Model, then you may useitstarget aliasasthe
Context for each Group. Thistells exteNd Composer to create new Groups
once for each repeating element processed in the enclosing Repeat for
Element action.

Target XPath: Thisisan XPath fragment that you specify. It is pre-pended by the
Context on this tab and appended with the Target X Path on the Map Target tab
(and optionally with the Target XPath on the Detail Rows tab) to complete the
final location for the column in the target document.

JDBC Connect User’s Guide



Looking at a Declare Group/Repeat Example
Assuming your Execute SQL action issued the following statement:

SELECT CATEGORY, SKU, ONHAND, COST FROM InventorySystem order
by CATEGORY

You could fill out the Detail Rows tab as shown below:

Custom Mapping Settings x|

Map Target || Detail Rows | Declare Group /Repeat
R =W

Group Alias | Columns | Context | Target XPath |
GCATEGORY [CATEGORY [Output INVENTORY IACATEGORY/GROUP |

ok J[ cancel ]

Similar to the example for Detail Rows, since the Context MyTemp (and Target
XPath fragment INVENTORY/PRODUCT) is now specified on the Declare
Group/Repeat tab, referencesto it must be replaced on the Detail Rows tab with
the Group Alias“gCATEGORY.” In addition, you are no longer listing just
PRODUCTDetail under INVENTORY but rather groups of PRODUCT Detail so
anew element isintroduced into the Group’s Target XPath called
“ACATEGORY Group.” Thusfor each Group mapped, a new

ACATEGORY Group element is created.

Continuing the example used in the previous two sections, you would update the
Detail Rowstab as follows:

Using Custom Result Mapping 73



Custom Mapping Settings |

Map Target | Detail Rows || Declare Group/Repeat

Detail Alias:

ityOLtpUtDetai

Representing:

BHCATEGOR'Y [~

‘PRODUCTDetaiﬂ 4

ok [ Caneet )

Notice that the Context of “MyTemp” has been replaced by the Group Alias
gCATEGORY which represents MyTemp/INVENTORY/ACATEGORY Group.
Thismeansthat Detail Rows belonging to the Group are the only ones mapped,
instead of all the Detail Rows.

Continuing the example used in the previous two sections, you would update the
Map Target tab as follows:

74 JDBC Connect User’s Guide



Custom Mapping Settings x|

Map Target | Detail Rows || Declare Group/Repeat |
g o= oW

Columns Context Target ¥Path Basef4 encode I

1 gCATEGORY TheCATEGORY (]

2 IMyOutputDetail  [MySKU ]

3 IMyOutputDetail  MyONHAND ]

4 MyOutputDetail  [MyCOST ]

5 | [+] OJ

Help @ [ ok [ cancel |

We have replaced the Context for the CATEGORY column with the Group Alias.
Thismeansthat CATEGORY isonly mapped once for each Group instead of once
for each detail row.

B hyTemp [ata
== > [NWENTORY
- > ACATEGORY Group
1 > TheCATEGORY |3
> PRODUGCTDeta
o 2 S KL CHR1111
L 3 MyONHAND |0
L > yCost 5499
£ > ACATEGORYGroup
L > TheCATEGORY[2
=< > PRODUCTDeta
< > piySKU DADTTTT
e 2 MyONHAND |89
L 2 Wy oSt 245
=< > ACATEGORYGroup
1 > TheCATEGORY [4

Using Custom Result Mapping 75



76

When you declare a Group Alias, the result set rows are scanned and organized
into groups establishing how many processing loopswill occur during mapping. If
eight rows arein theresult set with only four different values (e.g., 3, 2,4, 1, 1, 4,
4, 4) then there will be four group mapping loops (e.g., 1, 2, 3, 4) and eight detail
loops tied to their appropriate group mapping loops (e.g., group one hasitstwo
detail rows, group two hasitsonedetail row, group three hasits one detail row, and
group four hasits four detail rows).

Using the prior graphics, you can trace how the final context for the Map Target
columnsis constructed for Column one and Column two. Column oneisthe
CATEGORY from the result set. Its name in the DOM will be TheCATEGORY.
Its ancestor elements are determined by the context “gCATEGORY” defined as
MyTemp/INVENTORY /ACATEGORY Group on the Declare Group/Repeat tab.
So the final XPath for CATEGORY is:

Output/INVENTORY/ACATEGORYGroup/TheCATEGORY

Sincethe context for TheCATEGORY isaGroup alias, it will be mapped oncefor
each group or four times as determined earlier.

Column two isthe SKU datafrom the result set. Its name in the DOM will be
MySKU. Its ancestor elements are determined by the context “MyTempDetail”
defined to be gCATEGORY (defined above) plus PRODUCTDetail. So the final
context for the column will be

MyTemp/INVENTORY/ACATEGORY Group/PRODUCT Detail/MySKU. Since
the context for MySKU isaDetail Alias, it is mapped once for each Detail Row.
However, each Detail Row has a Context of a Group Alias limiting mapping to
only those detail rows that belong to the Group.

JDBC Connect User’s Guide



Stored Procedures

Novell exteNd Composer supports the mapping of data returned by stored
procedures. The following sections describes the stored procedure mapping
features.

About Stored Procedure Mapping

Novell exteNd Composer alows for mapping the data returned by stored
procedures to DOM/Node combinations. To do so, select the Sored Procedure
mapping checkbox on the Result M apping tab in the Query/Results M apping
Pane.

S0L Staternent ResultMapping |ResuI1Tem]

Result Row Placement
Enter the XML element to place results under:

[Temp Rd

INYEMTORYSTATUS

f* |v Create element names az calumn nameas
W Create elements if column is null
Include datatype info in element attribute

Zenerate Row numbers

% Custorn Columni/RongGroup Custom...

i

| |7 Stored Procedure mapping Setup... |

Thiswill enablethe Setup... button. Pressthe Setup... button to display the Setup
dialog for Sored Procedure Mapping.

Stored Procedures 77



Stared Procedure Mapping:
op - [ Returns Result Set
Id | Gual | Drata Type | Scale | Mapl Context Target ¥Path
Help OK! Cancel
Binding Rules

It isimportant to understand exteNd Composer binds to all Expressions and
placeholders represented by Question M arks placeholders (e.g. either
‘:<expression>' or ?) but not Constants (e.g. ‘abc’).

Using the Stored Procedure Mapping Setup Dialog

The Stored Procedure Mapping Setup dialog is used to map the datareturned by a
stored procedure. The Setup dialog allows you to specify Context - Target X Path
combinations for the returned data.

Use the + and - controlsto add and delete Context - Target X Path combinations.

Oracle RDBM Ssreturn result sets as parameters. Non-Oracle RDBM Ssreturn
result sets but, not as parameters. Select the Returns Result Set check box when
result sets are returned by non-Oracle RDBM Ss. Sel ecting the Retur ns Result
Set check box for non-Oracle RDBM Ss enable exteNd Composer to find the
returned result set.

NOTE: All Expressions and placeholders (e.g. ?) must be specified in the Stored
Procedure Mapping Setup dialog in order to correctly map the returned data.

For each returned Input/Output parameter (which may be expressions) and each
Output parameter (which may be either an expression or a ?) (see the Rulesfor
Stored Procedur es section in Chapter 4), complete the following:

78 JDBC Connect User’s Guide



Id: Based onthe SQL parameters, Id isthe number sequence of the return values
you're expecting. Using I d, you will need to explicitly specify the sequence
positions of each of the parameters containing either expressions (e.g.
‘:<ExpressionName>") or placeholders (e.g. ?). For example, the following
procedure call has three parameters: a constant, ‘ Process’, aplaceholder, ?and an
expression, ‘:Smith’. The value ‘Process does not need an Id in the Sored
ProcedureM apping pane since exteNd Composer doesnot bind tovalues. Theld
entries for the placeholder - ? and the variable *:Smith’ are, respectively, 2 and 3.
exteNd Composer binds to variables and placeholders, therefore, they must be
specifedinthe Sored Procedure M apping panein order to properly map thedata
returned by a stored procedure.

call DemoPackage . Sp withParams Process', ?, :Smith
] i ( )

Qual: Qua qualifiesthe parameter asan Input parameter, an Output parameter or
as an Input/Output parameter.

Data Type: Data Typeisadrop down list which provides the following options:
VARCHAR, DECIMAL, DATE, BINARY or Oracle Result Set. When Oracle
Result Set is selected, Context and Target XPath do not apply (N/A) and are,
therefore, disabled.

Scale: The value of Scale specifiesthe decimal place precision.
M ap: The Map checkbox is selected to map the parameter.

Context: this specifiesthe target document for the column. The Target X Path will
be appended to the Context to produce the full XPath |ocation for the columniin
the target document. The Context can be a

+ Document — You may usethis choiceif your result set contains only onerow,
otherwise each additional row will overwrite the previous row’s data.

+ Detail Alias— A Detail Aliasis defined on the Detail Rows tab and consists
of a Document name and partial Target X Path. Or the Detail Alias may
consist of a Group Alias (defined on the Declare Group/Repeat tab) and
partial Target XPath location. Using a Detail Aliastells exteNd Composer to
create anew physical target location for each member of the sourcelist (i.e.,
each row in aresult set).

+ Group Alias— A Group Aliasis defined on the Declare Group/Repeat tab
and consists of a Document name and partial X Path location. Using a Group
Alias tells exteNd Composer to create a new physical target location once
for each Group in the source list (i.e., where each group represents multiple
rowsin aresult set).

Stored Procedures 79



+ Repeat Alias— If the Execute SQL action is contained with a Repeat action
in your Action Model you may choose its Target alias. In this case, the
Context will resolve to a Document and partial X Path to which the Target
XPath (see below) will be appended.

+ --viastandard -- will use the Result M apping tab’s Result Row Placement
specification.

+ --Viacustom-- will use the settings on the Custom M apping Settings
dialog.

When grouping and mapping detail column data, the Declare Group/Repeat,
Detail Rows, and Map Target tab work together to define the complete X Path
location for the column. (Seeillustration.) For instance, a column on the Map
Target tab will be represented by a Context and X Path. The Context may be a
Detail Aliasdefined onthe Detail Rowstab. The Detail Aliasin turnwill represent
another Context and X Path. Its Context may be a Group Alias defined on the
Declare Group/Repeat tab. Finally the Group Aliasitself will represent another
Context and X Path.

By defining the Group and Detail aliases separately, you are able to map rowswith
duplicate column data (the basis for your groups) just onceinto group header
elements by using the Group alias as a context, and map columnswith unique data
(the detail of your groups) multiple times within the group header elements by
using a Detail Alias whose Context isaGroup Alias.

Target XPath: Thisisan XPath fragment which will be appended to Context to
specifiy the full XPath location int the target document.

Returned Result Set

80

A result set is mapped to a document with elements created from the result set’s
column names.

+ Target element names created in the document are the same as column
names returned in the result set

+ All columnsreturned in the result set are mapped to the target document
+ All columns are mapped to the same parent target element

+ All rows are placed into a single document

NOTE: Any column names that contain spaces will have the spaces replaced with
an underscore character since XML does not permit spaces in element names.

JDBC Connect User’s Guide



JDBC Glossary

Connection Pool

A set of database connections managed by the application server for the various applications it
manages.

Custom Result Mapping

The Custom Result Mapping dialog provides asimilar alias ability for repeating rowsin SQL result
sets as the Declare Group and Repeat for Group actions do for repeating elements in a document.
Declare Group/Repeat Tab

Thistab of the Custom Results Mapping dialog is used to create groups of result set records on one or
more result set columns, create a Group Aliasto use asaContext for Detail Rows, and create a Group
Aliasto use as a Context for Map Targets (creating Group Headers).

Detail Rows Tab
This tab of the Custom Results Mapping dialog allows you to create amapping aiastied to either a
document Context or a Group/Repeat alias Context. Use of the Detail Rowstab is optional.

DOM

A Document Object Model (DOM) isan XML document constructed as an object in a software
program'smemory. It provides standard methods for manipulating the object. In Composer, DOM is
often synonymous with XML Document. DOMs are represented as hierarchical treeswith asingle
root node.

DOM Context

The name of aDOM (Input, Output, Temp, €tc.), or the name of a Repeat alias previously defined in
the component. (The dias itself represents a DOM context, representing the nodepath hierarchy
upstream of a given element.)

JDBC Glossary 81



82

Execute SQL Action
Same as SQL Statement Action.

JDBC

A Sun trademark for the Java API for accessing relational database data. It is commonly assumed to
mean Java Database Connectivity.

Map Target Tab

Thistab of the Custom Results Mapping dialog is used to create target element names for each result
set column and specify atarget Context for each result set column.

Native Environment Pane

A panein the JDBC Component Editor that simulates an actual SQL environment when you issue a
query.

Query/Result Mapping Pane

(Same as the Native Environment Pane.) A panein the JDBC Component Editor that includes three
tabs: the SQL Statement tab, the Result Mapping tab, and the Results Text tab.

Result Mapping Tab

A tab in the Query/Result M apping Pane that allows you to map the result of your database query to
an XML document.

Result Text Tab

A tab in the Query/Result Mapping Pane that displaysthe actual data that was returned following the
execution of the database query.

Row Target

Thereceiving element in amapping operationis called the row target. It represents a specific position
inthe DOM tree of an XML file.

SQL Statement Action

Most commonly used to query an existing database and then map the result to an XML document.

SQL Statement Tab
A tab in the Query/Result Mapping Pane that allows you to write or build SQL commands.

JDBC Connect User’s Guide



SQLCODE

A global ECMA Script variable created by the execution of SQL statements. Contains a status code
generated by the database engine.

SQLSTATE

A global ECMAScript variable created by the execution of SQL statements. Contains information
generated by the database engine.

UPDATECOUNT

A global ECMAScript variable created by the execution of SQL statements. Contains a count of the
number of rows changed by the database engine.

JDBC Glossary 83



84 JDBC Connect User’s Guide



The following terms are reserved words in exteNd Composer for the JIDBC

Reserved Words

Connect and should be avoided in any user created |abels or objects.

*

*

*

SQLCODE
SQLSTATE
UPDATECOUNT
LASTSQL

Reserved Words

85



86 JDBC Connect User’s Guide



Index

A

actionmenu 56
actionmodel 27
actions

overview 27

using basic and advanced 56
advanced actions 56
dias

and custom result mapping 62
Allow SQL Transactions 16
And/Or logicinaWHERE clause 33
auto-commit 17

base64Decode() 29

base64 encode 64
base64Encode() 29

basic actions 56

batch actions (see SQL Batch) 51
BETWEEN...AND operator 33

C

codetable map, creating 18
colons, special meaning in SQL action 51
commit 17
component
creatingnew 19
component editor window 23
connection
creating 13
dirty 17
connectionpool 14
definitionof 81
Constant and Expression Driven Connections 13
context 63, 71
creating SQL usingthe Wizard 29

Custom Mapping Settings 80
custom result mapping 61, 62
definitionof 81
custom script
creating 18

database-specific parameters 16
DataType 79
DB Params 16
declare group/repeat example 73
Declare Group/Repeat tab 71
definitionof 81
default result mapping 59
detail alias
used asacontext 63, 79
detail rows example 68
Detail Rowstab
definitionof 81
Discard Batch 53
document, used asacontext 63, 79

ECMA Script

in SQL Statements 51
ECMAScript functions, using 56
errorsand SQL messages 56
examplequery 44
Execute as Prepared 29
Execute Batch 53
Execute SQL action

definitionof 81
executing the SQL statement 46
Expressions 78

G

group alias
creating 71
used asacontext 64, 79

87



Id 79

J

JDBC
creating XML templatesfor 18
definition of 82
overview 10
what doesitdo 10
JDBC component
about 11
creatingnew 19
JDBC Component Editor
about thewindow 23
building applications 12
JDBC connection pools 14
JDBC connection resource 13
JDBC drivers 14
JDBC wizard 29

L

LASTSQL 56,57
LIKE operator 33

M
map target
example 66
Map Target tab 63
definitionof 82

native environment pane
definitionof 82

o

Oracle Result Set 79

88 JDBC Connect User’s Guide

P

Perry Mason 33
precompiled SQL 29
prepared SQL statements 29

Q

Qua 79

query, building an example 44

Query/Result Mapping Pane. 42

Query/Result mapping pane 24
definitionof 82

Relationa operators 33
repeat alias
creating 71
used asacontext 64, 80
Result Mapping 80
result mapping
using custom 61
using default 59
result mappingtab 25
definitionof 82
resulttexttab 25
definitionof 82
rollback 17
row target 59, 60

S

S3SglAnywhereAuth 16
Scde 79
scope of SQL batches 54
SQL
prepared statements 29
transaction verbs 16
SQL Anywhere 16
SQL Batch Action 51
SQLCODE 56
definitionof 83
SQL messages 56
SQL SELECT Statements 30
SQLSTATE 56



definitionof 83

SQL statement
building 43
checking theresults 47
executing 46

SQL statement action
definitionof 82

SQL statementtab 24
definitionof 82

SQL wizard 29

Start Batch 52

Stored Procedure Mapping 77

T

target element names 63
target XPath 63, 64, 71, 80
Temp XML Document 21
transactions

auto-commit flag 17

SQL 16
Try/On Error 53

U

UPDATECOUNT 56
definitionof 83

WHERE Clauses
filtering withinthewizard 32
WHERE clauses
And/Or logic 33
% wildcard 33
wildcards 33

X

XML template
creating 18

89



90 JDBC Connect User’s Guide



	About This Guide
	Contents
	1 Welcome to exteNd Composer and JDBC 9
	2 Getting Started with the JDBC Component Editor 13
	3 Creating a JDBC Component 19
	4 Performing JDBC Actions 27
	5 Using Custom Result Mapping 59
	6 Stored Procedures 77
	A JDBC Glossary 81
	B Reserved Words 85

	Welcome to exteNd Composer and JDBC
	Before You Begin
	About exteNd Connects
	What is JDBC?
	What Does JDBC Do?
	About exteNd’s JDBC Component
	What Kinds of Applications Can You Build Using the JDBC Component Editor?

	Getting Started with the JDBC Component Editor
	Creating a JDBC Connection Resource
	About Constant and Expression Driven Connection Parameters
	About JDBC Drivers and Connection Pools

	Creating XML Templates for Your Component

	Creating a JDBC Component
	Before Creating a JDBC Component
	About the JDBC Component Editor Window
	About the Query Pane
	SQL Statement Tab
	Result Mapping Tab
	Result Text Tab



	Performing JDBC Actions
	About Actions
	The SQL Statement Action
	Handling of Binary Data
	Prepared Statements
	Creating an SQL Statement using the Wizard
	The SQL SELECT Statement
	WHERE Clauses
	The SQL DELETE Statement
	The SQL INSERT Statement
	Specifying Column Values
	The SQL UPDATE Statement
	Editing a SQL Statement Created with the Wizard

	Creating an SQL Statement Manually
	Building an SQL Statement Manually
	Building an Example Query
	Mapping Results into the Output DOM
	Editing a Manually Created SQL Statement

	Executing the SQL Statement
	Checking the Results
	Using Stored Procedures
	Syntax Requirements
	Using Procedures and Functions in a JDBC Component

	Colons in SQL Statements

	The SQL Batch Action
	Start Batch
	Execute Batch
	Discard Batch

	Creating Batch actions
	JDBC-Specific Expression Builder Properties
	Using Other Actions in the JDBC Component Editor
	Handling Errors and SQL Messages

	Using Custom Result Mapping
	About Default Result Mapping
	About Custom Result Mapping
	About Custom Result Mapping and Aliases
	Using the MapTarget Tab
	Looking at a MapTarget Example

	Using The Detail Rows Tab
	Looking at a Detail Rows Example

	Using the Declare Group/Repeat Tab
	Looking at a Declare Group/Repeat Example


	Stored Procedures
	About Stored Procedure Mapping
	Binding Rules
	Using the Stored Procedure Mapping Setup Dialog
	Returned Result Set

	JDBC Glossary
	Reserved Words
	Index

