
Novell exteNd Composer™

SAP Connect

USER’S GUIDE

www.novell.com
5.0

Legal Notices
Copyright © 2000, 2001, 2002, 2003, 2004 SilverStream Software, LLC. All rights reserved.

Title to the Software and its documentation, and patents, copyrights and all other property rights applicable thereto,
shall at all times remain solely and exclusively with SilverStream and its licensors, and you shall not take any action
inconsistent with such title. The Software is protected by copyright laws and international treaty provisions. You
shall not remove any copyright notices or other proprietary notices from the Software or its documentation, and you
must reproduce such notices on all copies or extracts of the Software or its documentation. You do not acquire any
rights of ownership in the Software.

Novell, Inc.

1800 South Novell Place

Provo, UT 85606

www.novell.com

exteNd Composer SAP Connect User’s Guide

January 2004

Online Documentation: To access the online documentation for this and other Novell products, and to
get updates, see www.novell.com/documentation.

Novell Trademarks
eDirectory is a trademark of Novell, Inc.
exteNd is a trademark of Novell, Inc.
exteNd Composer is a trademark of Novell, Inc.
exteNd Director is a trademark of Novell, Inc.
jBroker is a trademark of Novell, Inc.
NetWare is a registered trademark of Novell, Inc.
Novell is a registered trademark of Novell, Inc.

SilverStream Trademarks
SilverStream is a registered trademark of SilverStream Software, LLC.

Third-Party Trademarks
All third-party trademarks are the property of their respective owners.

Third-Party Software Legal Notices
Jakarta-Regexp Copyright ©1999 The Apache Software Foundation. All rights reserved. Xalan Copyright ©1999
The Apache Software Foundation. All rights reserved. Xerces Copyright ©1999-2000 The Apache Software
Foundation. All rights reserved. Jakarta-Regexp , Xalan and Xerces software is licensed by The Apache Software
Foundation and redistribution and use of Jakarta-Regexp, Xalan and Xerces in source and binary forms, with or
without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code
must retain the above copyright notices, this list of conditions and the following disclaimer. 2. Redistributions in
binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution. 3. The end-user documentation included with
the redistribution, if any, must include the following acknowledgment: "This product includes software developed
by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear in the
software itself, if and wherever such third-party acknowledgments normally appear. 4. The names "The Jakarta
Project", "Jakarta-Regexp", "Xerces", "Xalan" and "Apache Software Foundation" must not be used to endorse or
promote products derived from this software without prior written permission. For written permission, please contact
apache@apache.org. 5. Products derived from this software may not be called "Apache" nor may "Apache" appear
in their name, without prior written permission of The Apache Software Foundation. THIS SOFTWARE IS
PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright ©1996-2000 Autonomy, Inc.

Copyright ©2000 Brett McLaughlin & Jason Hunter. All rights reserved. Redistribution and use in source and binary
forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions
of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2.
Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the disclaimer
that follows these conditions in the documentation and/or other materials provided with the distribution. 3. The name
"JDOM" must not be used to endorse or promote products derived from this software without prior written
permission. For written permission, please contact license@jdom.org. 4. Products derived from this software may

not be called "JDOM", nor may "JDOM" appear in their name, without prior written permission from the JDOM
Project Management (pm@jdom.org). THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This Software is derived in part from the SSLava™ Toolkit, which is Copyright ©1996-1998 by Phaos Technology
Corporation. All Rights Reserved. Customer is prohibited from accessing the functionality of the Phaos software.

The code of this project is released under a BSD-like license [license.txt]: Copyright 2000-2002 (C) Intalio Inc. All
Rights Reserved. Redistribution and use of this software and associated documentation ("Software"), with or without
modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must
retain copyright statements and notices. Redistributions must also contain a copy of this document. 2. Redistributions
in binary form must reproduce the above copyright notice, this list of conditions, and the following disclaimer in the
documentation and/or other materials provided with the distribution. 3. The name "ExoLab" must not be used to
endorse or promote products derived from this Software without prior written permission of Intalio Inc. For written
permission, please contact info@exolab.org. 4. Products derived from this Software may not be called "Castor" nor
may "Castor" appear in their names without prior written permission of Intalio Inc. Exolab, Castor, and Intalio are
trademarks of Intalio Inc. 5. Due credit should be given to the ExoLab Project (http://www.exolab.org/). THIS
SOFTWARE IS PROVIDED BY INTALIO AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT
SHALL INTALIO OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

5555

Contents

About This Guide 7

1111 Welcome to exteNd Composer and SAP Connect 11
Before You Begin .11
About exteNd Composer Connectors .12
What is SAP Connect? .13
About exteNd’s SAP Component .17
What Applications Can You Build Using the SAP Component Editor? .18

2222 Getting Started with the SAP Component Editor 19
Installing SAP Java Connector Libraries (JCo) .19
Creating an SAP Connection Resource .23
SAP Connections .25
About SAP and Connection Pools. .30
Managing Pools. .32
Creating XML Templates for Your Component .36

3333 Creating an SAP Component 39
Before Creating an SAP Component .39
About the SAP Component Editor Window .43
About the Native Environment Pane .44

4444 Performing SAP Actions 47
About Actions .47
The SAP Function Action .48
SAP Action Model .54
Component with Connection Action .63
Using Other Actions in the SAP Component Editor .72
Handling Errors and Messages .72

5555 SAP Service 73
About Services .73
Creating an SAP Service. .75
Using the SAP Service Switch Action .78
Deploying the SAP Service Component .81
Testing an SAP Service .82

AAAA Document Management 83
About Document Management .83

BBBB SAP Glossary 85

SAP Connect User’s Guide6666

7777

About This Guide

Purpose

The guide describes how to use exteNd Composer SAP Connect, referred to as the
SAP Component Editor. The SAP Component Editor is a separately-installed
component editor in exteNd Composer.

Audience

The audience for the guide is developers and system integrators using exteNd
Composer to create services and components which integrate SAP applications.

Prerequisites

The guide assumes the reader is familiar with and has used exteNd Composer’s
development environment and deployment options. You must also have a good
understanding of SAP concepts and the SAP environment.

Additional documentation

For the complete set of Novell exteNd Composer documentation, see the Novell
Documentation Web Site (http://www.novell.com/documentation-
index/index.jsp).

Organization

The guide is organized as follows:

Chapter 1, Welcome to exteNd Composer and SAP, gives a definition and overview
of the SAP Component Editor.

Chapter 2, Getting Started with the SAP Component Editor, describes the
necessary preparations for creating a SAP component.

http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp

8888 SAP Connect User’s Guide

Chapter 3, Creating an SAP Component, describes how to create an SAP
Component using the SAP Component Editor.

Chapter 4, Performing SAP Actions, describes how to use the SAP Function
Action.

Chapter 5, Connection Pools, describes how to create and use connection pools.

Appendix A, Testing, describes environmental differences between animation
testing and deployment testing.

Appendix B, Document Management, describes document management within
the SAP Component Editor.

Appendix C, is a glossary.

9999

Conventions Used in the Guide

The guide uses the following typographical conventions.

Bold typeface within instructions indicate action items, including:

Menu selections

Form selections

Dialog box items

Sans-serif bold typeface is used for:

Uniform Resource Identifiers

File names

Directories and partial pathnames

Italic typeface indicates:

Variable information that you supply

Technical terms used for the first time

Title of other Novell publications

Monospaced typeface indicates:

Method names

Code examples

System input

Operating system objects

10101010 SAP Connect User’s Guide

11

1

Welcome to exteNd Composer and SAP Connect

Welcome to exteNd Composer and
SAP Connect Chapter 1

Before You Begin
Welcome to the Novell exteNd Composer SAP Connect Guide. This Guide is a
companion to the exteNd Composer User’s Guide, which details how to use all the
features of Composer, except the Connect Component Editors. So, if you haven’t
looked at the User’s Guide yet, please familiarize yourself with it before using this
Guide.

exteNd Composer provides separate Component Editors for each Connector, such
as SAP Connect. The special features of each component editor are described in
separate Guides like this one.

If you have been using exteNd Composer, and are familiar with the core
component editor, the XML Map Component Editor, then this Guide should get
you started with the SAP Component Editor.

Before you can begin working with SAP Connect, you must have installed it into
your existing exteNd Composer. Likewise, before you can run any Services built
with this Connector in the exteNd Composer Enterprise Server environment, you
must have already installed the Server side software for this Connector into
exteNd Composer Enterprise Server.

NOTE: To be successful with this Component Editor, you must be familiar with the
SAP environment and the applications that you want to XML-enable.

SAP Connect User’s Guide12

About exteNd Composer Connectors
exteNd Composer is built upon a simple hub and spoke architecture. The hub is a
robust XML transformation engine that accepts requests via XML documents,
performs transformation processes on those documents and interfaces with XML-
enabled applications, and returns an XML response document. The spokes, or
Connectors, are plug-in modules that "XML-enable" sources of data that are not
XML aware, bringing their data into the hub for processing as XML. These data
sources can be anything from legacy COBOL/VSAM managed information to
Message Queues to HTML pages. exteNd Composer Connectors can be
categorized by the integration strategy each one employs to XML-enable an
information source. The integration strategies are a reflection of the major
divisions used in modern systems designs for Internet- based computing
architectures. Depending on your eBusiness needs and the architecture of your
legacy applications, exteNd Composer can integrate your business systems at the
User Interface, Program Logic, or Data levels.

Figure 1-1

Welcome to exteNd Composer and SAP Connect 13

What is SAP Connect?
SAP provides enterprise resource software for core business processes via a series
of integrated modules . Examples of these core business processes include
inventory, order entry, accounts receivable, accounts payable, production
scheduling and payroll.

The Remote Function Call (RFC) protocol is the center for all communication
between SAP and external components.

ABAP (Advanced Business Application Programming) is the SAP programming
language. ABAP Function Modules can only be called from an external client if
they are RFC-enabled. SAP R/3 contains thousands of RFC-enabled Function
Modules (RFMs).

Included in these RFMs are BAPIs (Business Application Programming
Interface). A BAPI is an RFM that follows additional rules (see the SAP BAPI
Programming Guide) and is defined in the BOR (Business Object Repository) as
a method of an object type.

A Business Object Type is an object-oriented structure upon which the SAP
system is based. A single business object (e.g. Sales Order) represents a single
business detail and encompassses the functions and data of this detail. A business
object is one instance of a business object type.

All SAP business object types are defined and described within the SAP R/3 BOR.
The BOR is the central access point for external applications (e.g. Composer
integration applications) to access SAP Business object types.

BAPIs allow SAP business objects to be called from external applications. The
SAP Java Connector (JCo) is a Java API which provides access to BAPIs.

The following model illustrates this architecture:

SAP Connect User’s Guide14

Welcome to exteNd Composer and SAP Connect 15

SAP Connect allows both inbound and outbound calls to SAP BAPIs and other
RFC-enabled Function Modules (RFMs). exteNd Composer SAP Connect was
designed specifically to integrate with the SAP environment through the SAP JCo
(Java Connector). The SAP Connect component communicates with SAP
programs using the SAP JCo libraries to call SAP RFMs. Composer SAP Connect
XML-enables SAP R/3 applications using the Program Logic integration strategy.

Using SAP Connect, you can make SAP applications and their business logic
available to internet, extranet, or intranet processes. The SAP Function action
allows you to search for and select an SAP Function which you want to execute.
Once you find and select the desired function, you can select the SAP Request
fields to which you want to map data and you can select the SAP Response fields
from which you want to map data. These SAP Request and Response fields are
then displayed in the Native Environment Pane (NEP) on the SAP Request and
SAP Response tabs, respectively.

With the selected SAP function’s request data fields displayed in the NEP’s SAP
Request tab, you may map data from XML request documents to the SAP Request
fields. This data is mapped prior to executing the SAP function.

Similarly, with the SAP function’s response data fields displayed in the NEP’s
SAP Response tab, you may map data from SAP Response fields to the XML
request document. This data is mapped after executing the SAP function.

SAP Connect User’s Guide16

SAP Request and Response Tabs in the Native Environment Pane

Welcome to exteNd Composer and SAP Connect 17

About exteNd’s SAP Component

SAP Connect creates SAP Components which can be incorporated into exteNd
Composer Services. Much like the XML Map component, the SAP component is
designed to map, transform, and transfer data between two different XML
templates (i.e., request and response XML documents). It is specialized to allow
both inbound and outbound calls to SAP BAPIs or other RFC-enabled function
modules (RFMs).

Like any data-exchange operation, the SAP Component relies on a Connection
Resource. The Connection Resource specifies important information regarding
Host or IP Address, SAP System Number, SAP Client Number, SAP Language, as
well as the User ID, Password and Pooling Options of the Connection. Once
you’ve set up an SAP Connection Resource, you can use it to set up an SAP
Component that calls an SAP function which processes request data and returns
response data.

An SAP Component can perform simple data manipulations, such as mapping and
transferring data from an XML document into an SAP application, and putting the
data into an XML document. It can also perform sophisticated operations, such as
mapping. The SAP Component has all the functionality of the XML Map
component and can process XSL, send mail, and post and receive XML
documents using the HTTP protocol.

The following illustration shows how an SAP component uses a connection to
interact with data on the mainframe.

Figure 1-2

SAP Connect User’s Guide18

What Applications Can You Build Using the SAP
Component Editor?

The SAP Component Editor allows you to extend any XML integration you are
building to include your SAP applications (See exteNd Composer User’s Guide
for more information.) For example, you may have an application that retrieve a
product’s description, picture, price, and inventory from regularly updated
databases and displays it on a Web browser. By using the SAP Component Editor,
you can now get the current product information from the operational systems and
the static information (e.g., the picture) from the database and merge the
information from these separate information sources before displaying it to a user.
This provides the same current information to both your internal and external
users.

19

2

Getting Started with the SAP Component Editor

Getting Started with the SAP
Component Editor Chapter 2

Installing SAP Java Connector Libraries (JCo)
Novell exteNd Composer SAP Connect is designed specifically to integrate with the
SAP environment through the SAP JCo (Java Connector) libraries. Please see the
exteNd Composer SAP Connect Release Notes for specific software version support
info. You should obtain the appropriate (currently supported) version of the

Registered SAP users may download SAP JCo libraries from the following SAP site:
http://service.sap.com. A valid SAP Service Marketplace user ID and password is
required to access this SAP site.

Error Messages

NOTE: To install exteNd Composer SAP Connect, you must have SAP’s JCo libraries
installed. See discussion below.

If you do not have SAP Java Connector installed (as described below) prior to
installing Composer SAP Connect, the following dialog will be displayed.

SAP Connect User’s Guide20

Also, the log will have at least some of the following messages:

java.lang.NoClassDefFoundError:
com/sap/mw/jco/JCO$PoolChangedListener

java.lang.NoClassDefFoundError:
com/sap/mw/jco/JCO$ServerStateChangedListener

Enabler: SAP; Error: Cannot get build for:
com.sssw.b2b.ee.sap.rt.GNVSAPXObjectFactory

Enabler: SAPService; Error: Cannot get build for:
com.sssw.b2b.ee.sap.rt.GNVSAPServiceXObjectFactory

License Status

SAP Connect will not load if the ENABLER_LICENSE element in xconfig.xml
is not set to “true.” On the design-time machine, look for xconfig.xml under the
\Composer\Designer\bin directory. On the server-side, look in App
Server\Composer\lib.

Open xconfig.xml in a teswt editor. Look for the <COMPONENT_FACTORY>
entries for SAP and SAPService. Set the ENABLER_LICENSE element within
each of these to “true”:

<ENABLER_LICENSE enabled="true">

Then Save the modified file and restart Composer or the server, as applicable.

Getting Started with the SAP Component Editor 21

NOTE: Do not edit xconfig.xml while Composer is running. Composer overwrites its
config file at shutdown. If you have made edits while Composer is running, they will be
lost as soon as you exit Composer. Always stop Composer, then edit xconfig.xml, then
restart Composer.

exteNd Composer SAP Connect (Design Time)

For exteNd Composer SAP Connect design-time installation, follow SAP's
instructions for installing JCO libraries on Windows 2000/XP as appropriate. Here is
what you need to do to get started:

1 From the SAP website, download jco-ntintel-1.1.04.zip into an arbitrary
directory {jco-install-path}.

2 Unzip the file jco-ntintel-1.1.04.zip into an arbitrary directory {jco-install-path}.

3 Add the DLLs to the extend5\Composer\Designer\bin directory.

4 Add sapjco.jar to the exteNd5\Composer\Designer\lib directory.

5 Add a <JAR> entry for sapjco.jar to the SAP section of xconfig.xml (which is in
the \Composer\Designer\bin directory). For example:

<JAR>..\lib\jCO.jar</JAR>

exteNd Composer SAP Connect Server on Windows

For exteNd Composer SAP Connect on Composer Enterprise Server, follow SAP's
instructions for installing JCO on Windows 2000:

1 From the SAP site, download jco-ntintel-1.1.04.zip into an arbitrary directory
{jco-install-path}.

2 Unzip the file jco-ntintel-1.1.04.zip into an arbitrary directory {jco-install-path}.

3 Add the DLLs to a location within the application server directory tree that is in
the path so that they can be found at runtime. For example, the application server
bin directory.

4 Add jCO.jar to the Server's exteNd5\Composer\Designer\lib directory.

SAP Connect User’s Guide22

5 Add [PATH]\exteNd5\Composer\Designer\lib\jCO.jar to the application server's
CLASSPATH

exteNd Composer SAP Connect Server on Solaris

For exteNd Composer SAP Connect Server, follow SAP's instructions for installing
JCO on Solaris.

1 From the SAP site, download jco-sun-1.1.04.tgz or jco-sun-1.1.04.tar.z (or
appropriate version; see SAP Connect Release Notes) into an arbitrary directory
{jco-install-path}.

2 Expand the jco-sun-1.1.04.tgz or jco-sun-1.1.04.tar.z into an arbitrary directory
{jco-install-path}.

3 Add the SOs to a location with the application server directory tree that is in the
LD_LIBRARY_PATH sot that they can be found at runtime.

4 Add jCO.jar to the Server's exteNd5\Composer\Designer\lib directory.

5 Add [PATH]\exteNd5\Composer\Designer\lib\jCO.jar to your CLASSPATH
environment variable.

exteNd Composer SAP Connect Server on AIX

For exteNd Composer SAP Connect Server, follow SAP's instructions for installing
JCO on AIX.

1 From the SAP site, download jco-rs6000-1.1.04.tgz or jco-rs6000-1.1.04.tar.z
into an arbitrary directory {jco-install-path}.

2 Expand the jco-rs6000-1.1.04.tgz or jco-rs6000-1.1.04.tar.z into an arbitrary
directory {jco-install-path}.

3 Add The SOs to a location with the application server directory tree that is in the
LIBPATH sot that they can be found at runtime.

4 Add jCO.jar to the Server's exteNdComposer\lib directory.

5 Add [PATH]\exteNd5\Composer\lib\jCO.jar to your CLASSPATH environment
variable.

Getting Started with the SAP Component Editor 23

exteNd Composer SAP Connect Server on HP-UX

For exteNd Composer SAP Connect Server, follow SAP's instructions for
installing JCO on HP-UX.

1 From the SAP site, download jco-hp_32-1.1.04.tgz or jco-hp_32-1.1.04.tar.z
into an arbitrary directory {jco-install-path}.

2 Expand the jco-hp_32-1.1.04.tgz or jco-hp_32-1.1.04.tar.z into an arbitrary
directory {jco-install-path}.

3 Add The SLs to a location with the application server directory tree that is in
the SHLIB_PATH sot that they can be found at runtime.

4 Add jCO.jar to the Server's exteNdComposer\lib directory.

5 Add [PATH]\exteNd5\Composer\lib\jCO.jar to your CLASSPATH
environment variable.

Creating an SAP Connection Resource
Before you create an SAP Component, you will find it necessary to create a
Connection Resource to access the SAP system.

Each Connector, including SAP Connect, uses its own Connection Resource type.
The Connection Resources (for JDBC, 3270, 5250, CICS RPC, JMS, HTML,
Telnet, EDI, etc.) require various types of parameters, appropriate to the external
data source being connected. The appearance of the setup wizard changes
dynamically to reflect the type of Connection Resource that is selected.

Once you create a Connection Resource, you can reuse it for multiple SAP
components that you create, rather than creating a new connection each time.
Also, a Connection Resource, once created, can to some degree be self-
configuring in that its data fields can be linked to ECMAScript expressions that
control the parameter values associated with the connection (see below).

There are two types of SAP Connectors: the standard SAP Connection and the
SAP Service Connection. Steps for creating both types will be described below.

SAP Connect User’s Guide24

About Constant and Expression Driven Connection Parameters

You can specify Connection parameter values in one of two ways: as Constants or
as Expressions. A constant based parameter uses the value you type in the
Connection dialog every time the Connection is used. An expression based
parameter allows you to set the value using a programmatic expression, which can
result in a different value each time the connection is used at runtime. This allows
the Connection’s behavior to be flexible and vary based on runtime conditions
each time it is used.

For instance, one very simple use of an expression driven parameter in a SAP
Connection would be to define the User ID and Password as PROJECT Variables
(e.g. PROJECT.XPATH(“USERCONFIG/MyDeployUser”). This way when you
deploy the project, you can update the PROJECT Variables in the Deployment
Wizard to values appropriate for the final deployment environment. At the other
extreme, you could have a custom script that queries a Java business object in the
Application Server to determine what User ID and Password to use.

To switch a parameter from Constant driven to Expression driven:

1 Click the right mouse button in the parameter field you are interested in
changing.

2 Select Expression from the context menu and the editor button will appear
or become enabled.

3 Click on the button and then create an expression that evaluates to a valid
parameter value at runtime.

Getting Started with the SAP Component Editor 25

SAP Connections

To create a standard SAP Connection resource:

1 Select File>New>xObject, then open the Resource tab and select
Connection. The “Create a New Connection Resource” Wizard appears.

2 Type a Name for the connection object.

3 Optionally, type Description text.

4 Click Next.

SAP Connect User’s Guide26

5 Select SAP Connection from the Connection Type pull down menu.

6 Enter the Host name or IP address.

7 Enter the SAP System Number.

8 Enter the SAP Client Number.

9 Enter the SAP Language, for example EN are the letters for English.

10 Enter a valid Connection User ID to sign on to the selected database.

11 Enter a valid Connection Password for the selected database.

12 Select a Connection Pooling option. In the the dropdown list, choose from Non-
Pooled, Session or Pooled from the dropdown box.

Selecting Non-Pooled means a connection will be created on request.

Selecting Session means the connection is provided by the Session
Connection Manager.

Selecting Pooled means the connection is provided by the Pool Manager

Selecting either the Pooled or Session option for Connection Pooling will enable
the Advanced... button.

If you request a Pooled connection from a connection component by clicking on
Test, the connection is retrieved and released from the Connection Pool Manager,
and then the pool is deleted. If you request a Pooled connection from an SAP
component by clicking on Test or the component requests the connection, the
connection is retrieved and released from the Connection Pool Manager, however
the pool will not be deleted.

If you request a Session connection from a connection component by clicking on
Test, the connection is retrieved and released to the Session Connection Manager,
and then the session connection is deleted. If you request a Session connection
from an SAP component by clicking on Test or the component requests the
connection the connection is retrieved and released from the Session Pool
Manager, however the Session Connection Manager will not be deleted.

13 Check the Default checkbox if you would like to use the current connection as
the default connection for any new SAP Components you create in your project.

14 Click Test to see if your connection is successful. A “success” or “failure”
message appears for your connection. You can continue creating the resource,
even if your connection fails.

15 Click Finish. The newly-created resource connection object appears in the
Composer Connection Resource detail pane.

Getting Started with the SAP Component Editor 27

SAP Service Connection

An SAP Service is an event listener that registers with an SAP gateway server.
When an RFC is executed on the SAP server the results are forwarded to the
listener. The listener can then call other RFCs on the SAP Gateway Server using
the connection established to register the listener and execute any other valid
actions within its action model.

To create an SAP Service Connection resource:

1 Select File>New>xObject, then open the Resource tab and select
Connection. The “Create a New Connection Resource” Wizard appears.

Newly Created Resources

SAP Connect User’s Guide28

2 Type a Name for the connection object.

3 Optionally, type Description text.

4 Click Next.

5 Select SAP Service Connection from the Connection Type pull down
menu.

6 Enter an appropriate Gateway Service.

7 Enter the Gateway Host Name or IP address.

8 Enter the Program ID.

Getting Started with the SAP Component Editor 29

9 Enter the Host Name or IP address.

10 Enter the SAP System Number.

11 Enter the SAP Client Number.

12 Enter the SAP Language, for example EN are the letters for English.

13 Enter a valid Connection User ID to sign on to the selected database.

Scroll down to view the additional fields.

14 Enter a valid Connection Password for the selected database.

15 Check off Unicode Mode if desired.

16 Select a Connection Pooling option. In the the dropdown list, choose from
Non-Pooled, Session or Pooled from the dropdown box.

Selecting Non-Pooled means a connection will be created on request.

Selecting Session means the connection is provided by the Session
Connection Manager.

Selecting Pooled means the connection is provided by the Pool Manager

Selecting either the Pooled or Session option for Connection Pooling will
enable the Advanced... button.

If you request a Pooled connection from a connection component by
clicking on Test, the connection is retrieved and released from the
Connection Pool Manager, and then the pool is deleted. If you request a
Pooled connection from an SAP component by clicking on Test or the
component requests the connection, the connection is retrieved and released
from the Connection Pool Manager, however the pool will not be deleted.

SAP Connect User’s Guide30

If you request a Session connection from a connection component by
clicking on Test, the connection is retrieved and released to the Session
Connection Manager, and then the session connection is deleted. If you
request a Session connection from an SAP component by clicking on Test or
the component requests the connection the connection is retrieved and
released from the Session Pool Manager, however the Session Connection
Manager will not be deleted.

17 Check the Default checkbox if you would like to use the current connection
as the default connection for any new SAP Components you create in your
project.

18 Click Test to see if your connection is successful. A “success” or “failure”
message appears for your connection. You can continue creating the
resource, even if your connection fails.

19 Click Finish. The newly-created resource connection object appears in the
Composer Connection Resource detail pane.

About SAP and Connection Pools
Composer SAP Connect provides support for both Connection Pool Management
and Session Connection Management.

Connection Pool Management provides access to a pool of connections via the
JCo library using the JCo Pool Manager.

Session Connection Management provides a connection that persists the duration
of an HTTP session to which it is linked.

Both Session Connection Management and Connection Pool Management are
active in both Composer SAP Connect Designer and Composer SAP Connect
Server.

Session Connection Management

Session Connection Management helps performance when you want to make
multiple server requests with a server specified time frame (server request
timeout). The connection is maintained based on the server http request. The
connection is available from the sesssion connection manager as long as the
session remains alive. When the session times out, the session connection
manager is removed.

For an SAP Connection with Session Connection Pooling, a session connection
manager and a session connection will be created the first time a component using
the connection executes.

Getting Started with the SAP Component Editor 31

When Session Connection Pooling is selected for an SAP Connection Resource,
the Advanced button will display the Session Info dialog. The Session Info dialog
allows you to set Keep Alive and Inactivity Lifetime options for a managed
session connection.

Keep Alive: (default 5) - is the delay period between checks to see if the
connection is still alive. After this period Composer will ping the SAP system to
keep the connection open - or alive.

Inactivity Lifetime: (default 60) - is the timeout period in minutes that overrides
the HTTP session timeout. This is the time limit for an idle connection.

Connection Pool Management

In the SAP Connection dialog, when you specify Pooled as the Server Connection
Source for the SAP Connection, a pool using the JCo Pool Manager will be
created via the connection pool manager the first time a component using the
connection executes or when a user pre-initializes the pool from the SAP Console.

Interaction every 5 minutes
Active Connection for 60 minutes

SAP Connect User’s Guide32

When Pooling is selected as the Connection Pooling option for an SAP
Connection Resource, the Advanced button will display the Pool Info dialog. The
Pool Info dialog allows you to set the maximum initial pool size of the connection
pool.

Managing Pools

Using the exteNd Composer Console

SAP Connection Pools can by managed through the SAP Console Screen.

How to Access the Console

1 If you are using the Novell exteNd Application Server, log on to your Server
via your web browser using http://localhost/SilverMaster50 (or whatever
is appropriate for the version in use). In this example, Novell exteNd App
Server 5.0 is used.

Getting Started with the SAP Component Editor 33

NOTE: If you are not using the exteNd app server, enter a URL of this form:

http://<hostname>:<port>/exteNdComposer/Console

2 Click on the exteNd Composer link. You should see the main console page:

3 Click on the SAP link in the left (nav) frame and the SAP Console General
Properties Screen will come into view.

SAP Connect User’s Guide34

4 Click the Console button. A browser popup window (the T27 Connection
Pool Management Screen) should appear:

Getting Started with the SAP Component Editor 35

The SAP Console provides the following information and interaction for
managing connection pools.

Pool Name - the full SAP connection pool name

In Use - is the number of connections in the pool that are currently allocated
to applications

Max Used - is the peak number of connections that have been used

Available - is the number of connections in the pool that are currently free

Pool Size - is the maximum size of the pool. This field can be edited when
resetting the Pool. To do so, enter the new pool size and press apply.

NOTE: Pool connections In Use will always be one more than required by the
application because one pool connection is required for connection to the
repository.

You may refresh the displayed pool information by pressing the Refresh Console
button.

If you attempt to resize the pool and the connections are in use, the following SAP
Console page will be displayed. You may press the Retry button to attempt to
resize the pool again. You may also press the Kill button to forcibly resize the
pool. This will close any open connections, delete the pool, and recreate it with the
specified size. You may navigate back to the main SAP Console by pressing the
Return button.

You may refresh the displayed pool information by pressing the Refresh button.

SAP Connect User’s Guide36

By default, the following SAP Console will be displayed when Pooling is not
used.

If a component requests a connection and the pool is exhausted the request will
timeout after 30 seconds and then an exception will be thrown.

In designer you can delete a pool by editing the connection that defines the pool
and testing the connection. You can also delete a connection pool by editing a
connection and pressing Finish. In either case, the pool will be forcefully deleted
pool.

Pools created via component execution will have a Pool Size using the pool size
set in the Pool Info dialog.

Creating XML Templates for Your Component

In addition to a connection resource, an SAP component also requires that you
have already created XML templates so that you have sample documents for
designing your component. (See Chapter 5, Creating XML Templates, in the
Composer User’s Guide for more information.)

Getting Started with the SAP Component Editor 37

Also, if your component design calls for any other xObject resources such as
custom scripts or code table maps, it is best to create these before creating the SAP
Component. For more information, see Creating Custom Scripts in the Composer
User’s Guide.

SAP Connect User’s Guide38

39

3

Creating an SAP Component

Creating an SAP Component Chapter 3

Before Creating an SAP Component
As with all Composer components, the first step in creating an SAP component is
to specify the XML templates needed. (For more information, see Creating a New
XML Template in the Composer User’s Guide.) Once you’ve specified the XML
templates you can create a component using the template’s sample documents to
represent the inputs and outputs processed by your component.

Also, as part of the process of creating an SAP component, you must select an
SAP connection or you can create a new one. If you created a connection
beforehand, then it is available to all new SAP components as a selection.

To create a new SAP component:

1 Select File>New>xObject, then open the Component tab and select SAP.

NOTE: Alternatively, under Component in the Composer window category
pane you can highlight SAP, click the right mouse button, then select New.

2 The “Create a New SAP Component” Wizard appears.

SAP Connect User’s Guide40

3 Enter a Name for the new SAP Component.

4 Optionally, type Description text.

5 Click Next. The XML Input/Output Property Info panel of the New SAP
Component Wizard appears.

6 Specify the Input and Output templates as follows.

Type in a name for the template under Part if you wish the name to
appear in the DOM as something other than “Input”.

Select a Template Category if it is different than the default category.

Creating an SAP Component 41

Select a Template Name from the list of XML templates in the selected
Template Category.

To add additional input XML templates, click Add and choose a
Template Category and Template Name for each.

To remove an input XML template, select an entry and click Delete.

7 Select an XML template for use as an Output DOM using the same steps
outlined above.

NOTE: You can specify an input or output XML template that contains no
structure by selecting {System}{ANY} as the Input or Output template. For
more information, see “Creating an Output DOM without Using a Template” in
the User’s Guide.

8 Click Next. The Temp and Fault XML Template panel appears.

9 If desired, specify a template to be used as a scratchpad under the “Temp
Message” pane of the dialog window. This can be useful if you need a place
to hold values that will only be used temporarily during the execution of
your component or are for reference only. Select a Template Category if it is
different than the default category. Then select a Template Name from the
list of XML templates in the selected Template Category.

10 Under the “Fault Message” pane, select an XML template to be used to pass
back to clients when an error condition occurs.

11 As above, to add additional input XML templates, click Add and choose a
Template Category and Template Name for each. Repeat as many times as
desired. To remove an input XML template, select an entry and click Delete.

SAP Connect User’s Guide42

12 Click Next. The Connection Info panel of the “Create a New SAP Component”
Wizard appears.

13 Select a Connection type from the pull down list. For more information on the
SAP Connection, see creating an SAP Connection Resource.

14 Click Finish. The component is created and the SAP Component Editor appears.

Creating an SAP Component 43

About the SAP Component Editor Window
The SAP Component Editor includes all the functionality of the XML Map
Component Editor. It contains mapping panes for Input and Output XML
documents as well as an Action Model pane.

SAP Connect User’s Guide44

About the Native Environment Pane
The SAP Component Editor’s Native Environment pane (which is initially grey)
will display two tabs, SAP Request and SAP Response, whenever an SAP
Function Action is highlighted in the Action Model pane. The SAP Request and
SAP Response tabs appear only if the Use Mapping Model checkbox is selected
(default) on the SAP Function Action’s SAP Request and SAP Response tabs,
respectively. Therefore, the SAP Action may have only a Request Tab, or only a
Response Tab, both a Request Tab and a Response Tab, or not tabs at all.

NEP SAP Request Tab

When the Native Environment Pane first opens, it displays the SAP Request tab.
The SAP Request Tab allows you to map data from an Input XML document (or
other available DOM) and use it as input for an SAP function’s request before the
SAP function is execution. For example, you could drag a customer ID number
from an input DOM into an SAP Request CUSTOMID field. Once executed, the
SAP function would return data associated with that customer ID.

Input
Document

Output
Document

Native Environment Pane

Action Model Pane

Creating an SAP Component 45

NEP SAP Response Tab

The NEP’s SAP Response Tab allows you to map data from an SAP function’s
response after the SAP function is executed. The data is mapped from the SAP
function’s Response field into an Output XML document (or other available
DOM, e.g., Temp, MyDom, etc.).

SAP Connect User’s Guide46

47

4

Performing SAP Actions

Performing SAP Actions Chapter 4

About Actions
An action is similar to a programming statement in that it takes input in the form
of parameters and performs specific tasks. (For general information on actions,
please see the chapters in the Composer User’s Guide devoted to Actions. This
discussion assumes you are familiar, already, with Composer’s basic actions.)
Within the SAP Component Editor, as with other Composer component editors, a
set of instructions for processing XML documents or communicating with non-
XML data sources can be created at design time and stored (for later deployment)
in an Action Model. The Action Model contains the business logic needed to
perform all data mapping, data transformation, data transfer between databases
and XML documents, and data transfer within components and services.

An Action Model is made up of a list of actions. All actions within an Action
Model work together. As an example, one Action Model might contain individual
actions that read invoice data from a disk, retrieve data from an inventory
database, map the result to a temporary XML document, make a conversion, and
map the converted data to an output XML document.

The Action Model mentioned above would be composed of several discrete
actions. These actions would:

Open a document and perform an SAP Function action to retrieve data from
an SAP database

Map the result to a temporary XML document

Convert a numeric code using a Code Table and map the result to an Output
XML document.

Composer SAP Connect allows both inbound and outbound calls to SAP’s BAPIs
or other RFC-enabled Function Modules (RFMs) from Composer and the runtime
environments. Composer SAP Connect uses the Java Connector libraries to call
SAP’s BAPI and RFMs.

SAP Connect User’s Guide48

The SAP Function Action
The SAP Component editor contains all the core functionality of exteNd
Composer’s XML Map Component editor. It has two additional actions relevant
only to the SAP Component editor:

SAP Function (discussed in this section)

Component with Connection (discussed further below)

The SAP Function action’s dialog is composed of three tabs: SAP Function, SAP
Request and SAP Response.

SAP Function Tab

The SAP Function Tab validates the function name to ensure that this function
exists in the SAP system to which it is currenly connected. If the function name is
valid, it is displayed in the Search for Function text field and can be selected in the
Functions list.

If the entered function name is invalid, the entry, “No function found”, is
displayed in the Function list. If another type of error occurs during validation,
such as a communications error, the entry “Error searching for function” displays
in the Functions list. The SAP Request and SAP Response tabs are enabled when
you double click on a valid function name in the Function list.

To Add an SAP Function Action:

1 From the Action Menu, click on New Action>SAP Function or RMB click
in the Map Action pane, New Action>SAP Function.

2 The first tab to appear in the dialog, is the SAP Function tab. When the
dialog displays, the SAP Request and SAP Response tabs are disabled and
the Functions list is empty.

Performing SAP Actions 49

3 Click on the Search button to obtain a complete listing of functions (as
shown). To filter the search results, you may specify the search criteria. To
do so, enter an SAP function prefix followed by the wild card character (*)
(e.g. RFC*) to search for a type of SAP function. After entering the search
string, click the Search button. The list of functions that match the search
criteria are listed. Use the scroll bar to find the function, and doubleclick on
that choice. The wild card character can be used for any part of a literal
string (e.g. *FC, *FC*, RFC*, etc.)

If no functions match the search criteria, then a single entry, “No function(s)
found” displays in the Functions list. If you enter an empty string, then the
search uses the wild card character (*), by default.

If a search is successful, the search string is saved. Saved search strings are
used to filter the list of functions when the user creates subsequent SAP
Function actions.

After a successful search, the user may select an SAP function by double
clicking on it. Selecting an SAP function will set the Selected function label
and will enable the SAP Request and SAP Response tabs which can then be
viewed and edited.

4 Click on the SAP Request Tab.

SAP Connect User’s Guide50

By default, the Use NEP for mapping checkbox is selected. You should select
the Use NEP for mapping option if you want to map any data from an Input XML
document to SAP Request fields displayed within the Native Environement Pane.
Selecting the Use NEP for mapping option will enable all other controls on the
SAP Request tab.

If you do not want to map data from an Input XML document to SAP Request
fields, then deselect the Use NEP for mapping option by clearing the checkbox.
In this case, the Native Environment Pane will not have an SAP Request tab and
you will need to use the published methods available in the Expression Editor
(see Expression Editor section below). Even with the Use NEP for mapping
option selected you may still use the published methods in the Expression Editor.

You must click in the Include Field Attributes checkbox if you want field
attributes to be included. When both the Use NEP for mapping and the Include
Field Attributes options are selected, the SAP Request document displayed
within the NEP’s SAP Request tab will include metadata about each field,
structure and table as attributes.

By default the SAP Request Tree in the SAP Function dialog displays mandatory
nodes pre-selected and disabled. However, you may select or deselect any non-
mandatory node.

Default
Selected

Default
Selected

Performing SAP Actions 51

Within the SAP Request Tree a parent node will display as selected with a gray
background if some, but not all, non-mandatory child nodes are selected. A
parent node will be displayed as selected with a normal white background if all
non-mandatory child nodes are selected.

You may display a description the any field by placing the mouse over the field
name. The description will display within a tooltip as illustrated.

5 Click on the SAP Response Tab.

By default, the Use NEP mapping checkbox is selected. You should select the
Use NEP mapping option if you want to map any data from SAP Response
fields within the Native Environement Pane to an Output XML document.
Selecting the Use NEP mapping option will enable all other controls on the SAP
Response tab.

Selected
Default

Default
Selected

SAP Connect User’s Guide52

If you do not want map data from the SAP Response fields within the Native
Environement Pane to an Output XML document, then deselect the Use NEP
mapping option by clearing the checkbox. In this case, the Native Environment
Pane will not have an SAP Response tab and you will need to use the published
methods available in the Expression Editor (see Expression Editor section
below). Even with the Use NEP mapping option selected you may still use the
published methods in the Expression Editor.

You must click in the Include Field Attributes checkbox if you want field
attributes to be included. When both the Use NEP mapping and the Include
Field Attributes options are selected, the SAP Response document displayed
within the NEP’s SAP Response tab will include metadata about each field,
structure and table as attributes.

By default, the SAP Response Tree in the SAP Function dialog displays
mandatory nodes preselected and disabled. However, you may select or deselect
any non-mandatory node.

Within the SAP Response Tree a parent node will display as selected with a gray
background if some, but not all, non-mandatory child nodes are selected. A
parent node will be displayed as selected with a normal white background if all
non-mandatory child nodes are selected.

You may display a description the any field by placing the mouse over the field
name.

6 Click the OK button on the SAP Function action dialog to validate the entries and
save the action. If the Use Mapping Model option is selected for them, the SAP
Request and SAP Response tabs will appear in the Native Environment Pane and
the new SAP Function action will automatically be created in the Action Model
Pane.

Performing SAP Actions 53

SAP Function Action Structure

The action, as shown in the in the Action model, consists of 4 lines:

1 SAP Function with the selected function name.

2 Before Execute Actions: allows you to map data into the SAP Request
mapping model document or set data directly into an SAP function.

3 Execute SAP Function: sets SAP Request mapping model data into the
functions, executes the function and gets SAP Response mapping model data
from the funtion.

4 After Execute Actions: allows you to map data from the SAP Response
mapping model document or get data directly from the SAP function.

Editing an SAP Function Action

You may edit an existing SAP Function Action by performing the following:

NEP SAP Request and Response Tabs

SAP Function
Action

Action Model Pane

SAP Connect User’s Guide54

To Edit an SAP Function Action:

1 Highlight the root node of the action, click on RMB and select Edit or double-
click on the root node of the action

2 Make your changes to the Request and Response Tabs

3 Click OK to save changes.

SAP Action Model
The SAP Component differs from other components in that the SAP Function action
structure within the Action Model is built for you automatically. This structure is
created when you add an SAP Function to your Action Model. You can create an SAP
Component per the instructions in “How to Create an SAP Component” in Chapter 3
of this Guide. In creating the SAP Component shown in this example, the SAP Request
and SAP Response templates were selected for Input and Output respectively. Once
created, the new SAP Component appears in the SAP Component Editor window.

SAP Request
Template

SAP Response
Template

Performing SAP Actions 55

Before Execute Actions

Before Execute Actions allows you to map data into the SAP Request mapping model
document or set data directly into an SAP function. This can be done in several ways
as explained in the following sections.

Mapping a Portion of an XML Document into SAP Request Tab

To map a portion of an XML document into the SAP Request, start by doing a right-
mouse-click inside the empty area of the Native Environment pane (with the SAP
Request tab selected). This brings up a contextual menu.

Select the Map . . . command. This will bring up the Map dialog. As illustrated below,
the the Map dialog’s Source and Target fields are intialized.

In the Map dialog, Input is shown as the default Source Part and SAPRequest is shown
as the default Target. (You can choose different Source and Target Parts using the
pulldown menus.) If you know the XPath fragment that you want to use as the source,
type it in the box provided; otherwise, click on the blue Expression Editor icon on the
right. Clicking the Expression Editor icon brings up the Expression Editor dialog for
the Source.

Click here to
go to the
Expression
Editor.

SAP Connect User’s Guide56

With the aid of the pick lists in the top portion of this dialog, you can build an
XPath fragment and/or an ECMAScript expression simply by pointing and
clicking. In this case, we’ve expanded the tree view of the Input Part (in the upper
left) to show the complete Input tree structure. Doubleclicking an item in the tree
causes that item (i.e., the XPath fragment for that portion of the tree) to appear
automatically in the lower portion of the dialog. Once you click OK, the XPath
information appears in the appropriate place in the Map dialog.

To cause information to be mapped from Input to an XPath location of
MATNR_LOW in the message body, type in the Target portion of the Map dialog:

Performing SAP Actions 57

Once you click OK, the map dialog disappears and you’re able to see the result of your
mapping in the SAP Component Editor main window:

SAP Connect User’s Guide58

Adding More Map Actions

This procedure can be repeated as many times as necessary to populate the message
body with data. Alternatively, you can use Function actions (in conjunction with
ECMAScript DOM methods) to create XML nodes in the message body
programmatically.

You can use the drag-and-drop technique to map data from any portion of any Input
Part straight into the SAP Request Document (subject to the limitations outlined
below), or in the opposite direction. Simply click on an input node, in any visible Part
pane, and drag over to the desired spot in the SAP Request Document, then release the
mouse button. The appropriate Map action is added to the Action Model automatically.

Performing SAP Actions 59

Limitations on Mapping

You can drop nodes onto any branch or field node in the SAP Request tab. However,
you cannot drop nodes onto attributes. If the source value does not validate against the
target field node’s type, the “forbidden drag operation” symbol shown at left, is
displayed as the mouse pointer and the message, “Invalid drop target”, is displayed in
the status area. If the source value is too long for the target field nodes length, the
“forbidden drag operation” symbol is displayed and the message, “Invalid drag length
for this drop target” is displayed in the status area.

Execute SAP Function Action

When an SAP Function Action executes the SAP Request DOM, if it exists, it is
cleared and the SAP Response DOM, if it exists, is reloaded. Then the Before Execute
Actions list is executed. The Execute SAP Function action then executes by setting the
SAP Request mapping model document mappings into the function, executing the
function, and then setting the SAP Response mapping model document with the
function results.

When the root of an SAP Function action is the current (or highlighted) action in the
action model, the Execute SAP Function button on the main toolbar is enabled. It is
disabled at all other times. By clicking the on SAP Execute Function button, it
connects to the the SAP System, executes the actions within the SAP Function action
and then disconnects from the SAP system.

SAP Connect User’s Guide60

If execution is successful a message dialog appears:

Execute Action
Button

Performing SAP Actions 61

After Execute Actions: Adding a Map Action from the Response Tab

After Execute Actions allows you to map data from the SAP Response mapping
model document or get data directly from the SAP function.

Mapping a Portion of an SAP Response into an XML Document

To map a portion of an SAP Response to an XML document, start by doing a right-
mouse-click inside the empty area of the Native Environment pane (with the SAP
Response tab selected). This brings up a contextual menu.

Select the Map... command. This will bring up the Map dialog.

SAP Connect User’s Guide62

In the Map dialog, SAP Response is shown as the default Source and Output is
shown as the default Target Part. (You can choose different Source and Target
Parts using the pulldown menus.) If you know the XPath fragment that you want
to use as the source, type it in the field provided; otherwise, click on the blue
Expression Editor icon on the right. Clicking the Expression Editor icon brings up
the Expression Editor dialog for the Source.

Performing SAP Actions 63

With the aid of the pick lists in the top portion of this dialog, you can build an
XPath fragment and/or an ECMAScript expression simply by pointing and
clicking. In this case, we’ve expanded the tree view of the SAP Response
Document (in the upper left) to show the complete tree structure. Doubleclicking
and item in the tree causes that item (i.e. the XPath fragment for that portion of the
tree) to appear automatically in the lower portion of the dialog. When you click
OK, the XPath information appears in the appropriate place in the Map dialog.

Adding More Map Actions

This procedure can be repeated as many times as necessary to populate the Output
Part with data. Alternatively, you can use Function actions (in conjunction with
ECMAScript DOM methods) to create XML nodes in the Output Part
programmatically.

You can use the drag-and-drop technique to map data from any portion of the SAP
Response Document straight into the Output Part. Simply click on any node in the
SAP Response Document and, while holding the mouse button, drag the node over
to the desired spot in the Output Part, the release the mouse button. The
appropriate Map action is added to the Action Model.

Component with Connection Action

The Component with Connection Action is unique because it allows an SAP
component to call another component allowing that component to share the same
connection. The action allows you to break up a large component into a main SAP
component and subcomponents so it is easier to maintain the Action Model. The
ability to have the main component share the connection with the subcomponent
greatly reduces the amount of connection overhead which enhances runtime
performance. This is extremely useful when you want to specify a session
connection.

To use the Component with Connection Action

1 Create and record the basic structure of the main component to the point
where you are ready to call a subcomponent. For this example, the
subcomponent will be entitled “BAPI_MATERIAL_GET_ DETAIL.”

SAP Connect User’s Guide64

2 From the Main menu, or by clicking the RMB, select New
Action>Component/w connection. The following dialog appears.

3 From the Component Type pull down list, select the name of the component type.
From the Component Name pull down list, select the name of the Component.

Performing SAP Actions 65

4 Select the passed ID if you need to change it from the pull down list. Select
the returned ID if you need to change it from the pull down list. Click OK.

5 The following action appears in the map pane.

6 Animate the Main component and step into the Component with Connection
action. The subcomponent will now open. Notice how the screen changed to
the component entitled “BAPI MATERIAL GET DETAIL.”

7 Build the subcomponent action model as you did the component.

NOTE: You will notice in this example a Repeat for Element action built to
process multiple rows.

8 Now animate the subcomponent and step into it. The results will now appear
for the subcomponent in the Output DOM and the SAP Response tab.

9 Save the component and subcomponent action models.

SAP Connect User’s Guide66

SAP-Specific Expression Builder Properties

An SAP Action Model can be built by using the Expression Builder and setting
data directly into an SAP function. Often, it is useful to be able to reference these
values in ECMAScript expressions. The Expression Builder pick list (in the top
portion of the Expression Editor window) contains methods specific to SAP: (See
dialog below.)

Performing SAP Actions 67

Simple Field Methods

Object getImportField(String asName) - gets a Simple Import field
value by name.

setImportField(String asName, String asType) - sets a Simple
Import field value by name and type. Used as a Target expression in Map
actions.

Object getExportField(String asName) - gets a Simple Export field
value by name.

Structure Methods

Object getImportStructField(String asStructName, String
asName) - gets an Import Structure field value by structure name and field
name.

Node getImportStructAsXML(String asStructName) - gets an
Import Structure by name as an XML Node.

setImportStructField(String asStructName, String asName,
String asType) - sets an Import Structure field value by structure name,
field name, and field type. Used as a Target expression in Map actions.

setImportStructWithXML(String asStructName) - sets an Import
Structure by name with an XML Node.

SAP Connect User’s Guide68

Object getExportStructField(String asStructName, String
asName) - gets an Export Structure field value by structure name and field name.

Node getExportStructAsXML(String asStructName) - gets an Export
Structure by name as an XML Node.

Table Methods

Object getTableField(String asTableName, String asName) - gets
a Table field value by table name and field name.

Node getTableAsXML(String asTableName) - gets a Table by name as an
XML Node.

int getTableRowCount(String asTableName) - gets the number of rows
in a named Table as an integer.

appendTableRow(String asTableName) - appends a row to the end of
named Table.

nextTableRow(String asTableName) - moves the cursor to the next row in
the named Table.

setTableRow(String asTableName, int aiRow) - moves the cursor to
specified row in the named Table.

setTableField(String asTableName, String asName, String
asType) - sets a Table field value by table name, field name, and field type.
Used as a Target expression in Map actions.

setTableWithXML(String asTableName) - sets a Table by name with an
XML Node

Function Methods

Node getFunctionAsXML() - returns a Node representing the SAP function.
Can be used before or after execution.

dumpFunctionToLog() - calls getFunctionAsXML(), adds a DATE attribute to
the function name element, and prints with format to the log via the Framework
Factory log() method.

String getLastError() - returns the most recent execution error.

String getFunctionName() - returns the function name.

Object getRFCObject() - returns the RFC object. For JCo this is a
JCO.Function Object.

Performing SAP Actions 69

setRequestSetAsString(boolean abFlag) - sets whether input to a function prior to
execution should be set as a String or converted to an Object appropriate for the
field type and then set. By default this flag is true in the ECMA wrapper. For
example, if true and the field type is DATE then input via the model document or
published setter methods is expected to be in the form "YYYYMMDD". If false
and the field type is DATE and the input is via the model document the String
will be used as input to a java Date() object. If false and the field type is DATE
and the input is via a published setter the user can directly pass in a java Date()
Object or the user can pass in a String which will be used as input to a java Date()
object.

Field Type Conversions when flag is false

BCD - java BigDecimal

BYTES - byte[] array (currently) no way to pass an array in

CHAR - java String

DATE - java Date (conversion tries YYYYMMDD pattern and

java Date() default string patterns)

FLOAT - java Double

INT - java Integer

INT1 - java Integer

INT2 - java Integer

NUM - java String

XSTRING - byte[] array (currently) no way to pass an array in

TIME - java Date

SAP Connect User’s Guide70

setResponseGetAsString(boolean abFlag) - sets whether output from a
function after execution should be retrieved as a String or as an Object
appropriate for the field type. By default this flag is true in the ECMA
wrapper. For example, if true and the field type is DATE then the field will
be retrieved using the JCO.Field.getString() method for the model document
and for published getters. If false and the field type is DATE and the field is
being retrieved via the model document then the field will be retrieved using
the JCO.Field.getObject() method and then converted to a String using the
Objects toString() method. If false and the field type is DATE and the field
is being retrieved via a published getter method then the field will be
retrieved using the JCO.Field.getObject() method.

Field Type Conversions when flag is false

BCD - java String

BYTES - byte[] array (if getting for response model document getString() is
used)

CHAR - java String

DATE - java Date

FLOAT - java Double

INT - java Integer

INT1 - java Integer

INT2 - java Integer

NUM - java String

XSTRING - byte[] array (if getting for response model document getString()
is used)

TIME - java Date

Processing Table Rows

Getting and setting SAP tables requires different logic because Tables may have
multiple rows.

Getting Table Rows via the SAP Response Model Document

Rows in the SAP Response document are identified by the <item> element. To
process multiple rows all a user needs to do is create a Repeat for Element action
in the After Execute Actions list of the SAP Function action. Figure 8 shows an
example.

Performing SAP Actions 71

Getting Table Rows via Published Getter Methods

By using SAP.getTableRowCount(), SAP.getTableField(), and
SAP.nextTableRow() together with a Repeat While action a user can walk the
items in a Table.

Setting Table Rows via the SAP Request Model Document

A SAP function may allow a user to enter multiple records via a table. To insert
multiple rows via the SAP Request model document the user may create a Repeat
for Element action in the Before Execute Actions list.

Setting Table Rows via Published Setter Methods

By using SAP.appendTableRow() and SAP.setTableField() together with a Repeat
for Element action a user can insert multiple rows into a table.

SAP Connect User’s Guide72

Using Other Actions in the SAP Component Editor
In addition to the Add SAP Function action, you have all the standard Basic and
Advanced Composer actions at your disposal as well. The complete listing of
Basic Composer Actions can be found in Chapter 7 of the Composer User’s
Guide. Chapter 8 contains a listing of the more Advanced Actions available to
you.

Handling Errors and Messages
Error handling has been enhanced. If a connection error occurs at any time during
design time Composer releases the connection to allow you to fix the problem and
recover without exiting the component.

The SAP Function dialog will now display one of three error messages in the
Functions list:

No function(s) found - RFC_FUNCTION_SEARCH failed to find RFCs
matching the criteria. Can occur when pressing Search.

Error searching for functions - Communications error or other system error. Can
occur when pressing Search.

Error getting metadata for function - Communications error or other system error.
Can occur when selecting a function.

73

5

SAP Service

SAP Service Chapter 5

The SAP Service is a type of Composer service that can be activated by an
incoming RFC call to an SAP server. In essence, the SAP Service becomes a BAPI
destination, and the action logic in the service becomes the BAPI logic of that
destination. The Composer SAP Service may call other BAPIs (via SAP
Components) or it may not. The service might, in the course of executing, call
JDBC or 3270 components, execute LDAP queries, participate in a CICS
transaction, or use other kinds of connectivity involving other Composer Connect
products. Then again, it might simply take data in, transform it in some way, and
send XML out.

In this chapter, you’ll learn what the capabilities of the SAP Service are, how to
create such a service, and how to use it. Before proceeding, you should already
have familiarized yourself with the sections of this guide that deal with creating
SAP connections (see Chapter 2, “Getting Started with the SAP Component
Editor”) and using SAP actions (see Chapter 4, “Performing SAP Actions”). You
should also be familiar with Composer action-model programming concepts (see
the separate Composer User’s Guide).

About Services

In Composer’s navigation tree (or explorer tree), there is a category called Service.
Under this category, if you have Composer Enterprise Edition, you will see three
types of service listed: JMS Service, Web Service, and SAP Service. (The latter is
visible only if you have the SAP Connect and all relevant JCO libraries installed
as described in Chapter 2, “Getting Started with the SAP Component Editor”.)
You can create service xObjects (instances of deployable services, created in
Composer) falling under any one of these service types.

SAP Connect User’s Guide74

The services you create in Composer usually execute components. Any of the
types of services listed above can make calls to any number of components of any
type. For example, an SAP Service can wrapper calls to XML Map, JDBC, and
SAP Components. What distinguishes a service from a component is that the
service xObject is triggerable. When your project is deployed on the server (in
EAR form, usually), the components in it can be invoked only by Composer
services, whereas the services within a project can be invoked by various kinds of
trigger objects (the most common being HTTP servlets). Composer’s three main
kinds of service differ in how they are invoked. The JMS Service is triggered by
arrival of messages on a JMS message queue or topic. The Web Service can be
triggered by any number of mechanisms: arrival of an HTTP request, arrival of e-
mail at a mail server, direct invocation by a Java object, etc.

The SAP Service is an event listener that registers with an SAP gateway server.
When an RFC (remote function call) is executed on an SAP gateway server, the
results are forwarded to the listener (in this case, a Composer SAP Service). The
listener can then call other remote functions on the gateway server using the same
connection that was established to register the listener.

When to Use an SAP Service

The choice of whether to wrapper your SAP Components with an SAP Service as
opposed to, say, a Web Service should be based on the kind of message-exchange
pattern in which your service will participate. Will your service respond to RFCs?
Or will it initiate function calls on its own? Consider the four canonical Web
Service message-exchange types:

One-way. The endpoint receives a message.

Request-response. The endpoint receives a message, and sends a correlated
message.

Solicit-response. The endpoint sends a message, and receives a correlated
message.

Notification. The endpoint sends a message.

If messages are being sent via RFC, the first two types of exchange patterns (one-
way and request-response) can be implemented with an SAP Service. The second
two kinds of exchanges, in which the endpoint (your application) initiates the
sending of a message (by calling an RFC), can be handled with an SAP
Component packaged inside any kind of service.

SAP Service 75

The rule of thumb is: If your application will be consumed by other SAP
applications or functions, using RFCs transmitted via SAP gateway server, your
app is going to be deployed as an SAP Service. If your application will be invoked
by non-SAP-gateway processes (i.e., you don’t need to register with an SAP
gateway server), then you’ll deploy your SAP-enabled application as a Web
Service or JMS Service.

SAP Service Action Model

The SAP Service is like any other kind of executable xObject (XML Map
Component, JDBC Component, etc.) in that it has an action model that can utilize
any of Composer’s core action types: Log, Map, Decision, etc. In theory, you
could perform all of your business logic inside the SAP Service’s action model
(assuming no other kinds of connectivity are needed, such as JDBC or LDAP). As
a best-practices issue, however, you should put all of your business logic in
individual components, and use the service to call the components. The kinds of
logic you should employ at the service level are things like fault-trapping and
logging.

When you first create an SAP Service, you will notice that an action (called an
SAP Service Switch) is present in the action model. This action is present once
and only once in any given SAP Service and never occurs in an SAP Component.
Therefore, it is not available on any menu commands. Composer always creates
the action for you when you create an SAP Service. The purpose of this action is
to allow you to associate RFC Function Names with action logic on a case basis.
This action is discussed again in a later section of this chapter.

Creating an SAP Service
The following steps tell how to create an SAP Service in Composer.

To create an SAP Service:

1 Create an SAP Service Connection Resource (if you have not already done
so) to define the connection between your service and the SAP host or
gateway server.

NOTE: The SAP Service Connection Resource is different from an ordinary
SAP Connection Resource. Please refer to the discussion at “To create an
SAP Service Connection resource:” in “Getting Started with the SAP
Component Editor” for more information.

2 In Composer’s explorer tree, right-click on the SAP Service category and
choose New. Alternatively, use File > New > xObject and select SAP
Service as shown in the illustration below.

SAP Connect User’s Guide76

3 In the dialog that appears, enter a Name for your service in the text field
provided. See below.

4 Click Next. A new wizard panel opens.

SAP Service 77

5 In this dialog, specify the XML Template sample documents you wish to use in
the design of your service’s inputs and outputs.

6 Click Next. A new wizard panel appears.

SAP Connect User’s Guide78

7 In this dialog, specify any Temp documents you would like to use in your service.
(You can add these later, if need be. If you’re not sure what to do, click Next for
now.)

8 Click Next. A new wizard panel appears.

9 In this dialog, verify (using the Connection pulldown menu control at the top of
the list of controls) that you have selected the desired SAP Service Connection
that will be used by this SAP Service. Optionally click the Test button to verify
that a live connection exists.

10 Click Finish. The dialog goes away and a new action model appears, with one
SAP Service Switch action in it.

11 Save your work.

Using the SAP Service Switch Action
As mentioned earlier, whenever you create a new SAP Service component, Composer
creates a new action model containing a single action called SAP Service Switch. This
action allows you to specify Function names that you would like to designate as the
RFC targets that your action model can handle. In this respect, the SAP Service Switch
is like an ordinary Switch action. A request comes in to your service, and depending on
which function-name the requestor is looking for, the SAP Service Switch action
executes at the appropriate “case” statement.

SAP Service 79

The following example shows how this action works.

To configure and use the SAP Service Switch:

1 In an SAP Service’s action model, find and doubleclick the SAP Service
Switch action line. When you do this, a dialog appears:

2 To search for function names that are registered on the server, enter a search
string (with optional wildcards) in the Search for Function text area. Then
use the Search button to initiate a search. Results will be displayed in the
Found Functions list.

In the above illustration, the search term was “BAPI*” (which means “bring
back all names of all functions that begin with BAPI”). Many function
names were found that meet this description. Probably only a few (perhaps
just one) will be handled by your service. This step verifies that the names
you want to handle are in fact registered on the server.

3 Use the Found Functions picklist on the left to designate function names that
will be handled by your service. Transfer selected names under Found
Functions to the list on the right by using the plus-sign icon. Use the minus-
sign icon to remove names from the list on the right. (Use up and down
arrows to reorder the chosen names.) Names on the right will become the
basis of “case” blocks in your SAP Service Switch action.

SAP Connect User’s Guide80

NOTE: You may optionally enter (by hand), in the right-hand list, the name(s) of
functions you know will be handled by your service. You can also use the flyout
menu on the right edge of the Mapping list to bring up buttons that will let you
determine the mapped value programmatically, using ECMAScript, or by LDAP
lookup.

4 Highlight (select) one of the items in the list on the right, then click the Mapping
button. A dialog will appear.

SAP Service 81

5 This dialog has two tabs: SAP Service Request and SAP Service Response.
Their usage is identical to that of the SAP Request and SAP Response tabs in
the dialog for the SAP Function Action, as described in the Actions chapter,
under the section beginning under “Click on the SAP Request Tab.” Refer to that
discussion for a detailed explanation.

6 Exit out of all dialogs. In the action model, you will see new lines that start with
“FUNCTION:” and the name(s) of the function(s) you specified in the previous
pickers. You can now create individual actions as need be under each function
block, to handle calls to that function name.

Notice that when you single-click on any “FUNCTION:” line (any case in the switch),
the native environment pane (NEP) updates to show the structure of SAP Service
Request and SAP Service Response documents (each with its own tab). Again, the
usage of these tabs is similar to that of the SAP Request and SAP Response tabs in the
NEP when working with SAP Actions. See the discussion at “Mapping a Portion of an
XML Document into SAP Request Tab” for details.

Deploying the SAP Service Component
To deploy an SAP Service in Novell exteNd Composer Enterprise Edition,using the
Composer deployment UI, simply create a Deployment xObject as described in the
Deployment chapter of the Composer User’s Guide, and drag any SAP service
instance from the instance pane under the explorer tree, to the SAP Service category
node under the Deployment Object explorer tree.

Use File > Deploy Project (Cntl-F5) to begin the deployment process.

SAP Connect User’s Guide82

Testing an SAP Service
Since the SAP Service merely listens for incoming RFC requests targeted at
named destinations, the only true way to test an SAP Service in “host mode” is to
establish a live connection to an SAP gateway server and then have a remote entity
make an RFC request to your service. As it turns out, this can be done at design
time (and you can then step through your service in debug mode), if you can
establish a live connection and you have a process of some kind (perhaps an SAP
component built for test purposes) that can “call” your service with the appropriate
function name. Although doing this is not hard, it does require the availability of
a live SAP system for testing, the use of SAP tools for creating and configuring
RFC destinations, and experience with BAPIs. These techniques are beyond the
scope of this guide, but you can obtain additional help and guidance by consulting
the Novell exteNd web site and/or by contacting your Novell representative
directly.

NOTE: If you try to enter Animation mode in an SAP Service action model, all
animation toolbar buttons will become disabled except for the Stop button. Then
nothing happens. Here’s what’s going on: Hitting the Start Animation button
actually does start the execution of your service. But because the service requires
an incoming RFC request to act on, it will appear to “hang” on the initial action (the
SAP Service Switch action) while it “listens” on the connection. If a request never
comes in, the service “listens” forever (or until you hit the Stop Animation button). If
a request does come in, animation will continue and you can step into or step over
individual actions in debug mode using the toolbar buttons.

83

A

Document Management

Document Management Appendix A

About Document Management

Each SAP Function action has two document names and aliases associated with it:
the SAP Request Document and the SAP Response Document. Regardless of
whether Use Mapping Model is selected, these aliases are saved with the action.
The SAP Component keeps a table of these names so that new unique names can
be generated and prevent you from accidentally using a name already in use.

If you delete an SAP Function action, the alias name associated with that action is
not removed from the table. To reuse these names, you must either close and
reopen the component (thus purging the names from the cache), or execute the
Reload XML Documents command from the Component menu.

Documents are loaded on an as-needed basis. When you click on or in an SAP
Function action, the Native Environment Pane will load the needed documents by
creating the XML documents with the alias names based on the model definitions
stored within the action as well as storing them in the document manager.

When a user executes the Reload XML Documents, the following tasks are
performed:

Clear the Alias Table

Clear the Undo/Redo stack

Walk through the action tree and for each SAP Function action, add a
Request and Response entry in the Alias table

Issue a request to the document manager to remove documents from those
names.

SAP Connect User’s Guide84

You can share Alias names among multiple SAP Function actions by copying and
pasting the SAP Function actions. This can create problems keeping the Native
Environment Pane in synch with the current SAP Function action. To handle this
problem, each SAP Function action has a unique idenitfier that is stored along with the
alias names in the Alias table. When you click on an SAP Function action, the Native
Environment Pane checks for the entry for each alias to see if it is associated with the
current action. If it is, a request is made to the document manager. If it is not, a request
is made to the document manager with the reload flag set to true and then update the
entry in the Alias table with the SAP Function action’s identifier.

85

B

SAP Glossary

SAP Glossary Appendix B

ALE

Application Link Enabling

Supports the creation and operation of distributed applications and application
integration achieved via synchronous and asynchronous communication. Provides
business-controlled message exchange with consistent data on loosely linked SAP
applications.

BAPI

Business Application Programming Interface

BOR

Business Object Repository

Control Record

Contains information about the content, structure, sender, receiver, and status of the
IDoc.

Data Record

Consists of administrative part (control field) and a data part (segments).

IDoc

Intermediate Document. IDocs are structured data containers in which data can be
stored hierarchically. This data format is generated by SAP’s R/3 and mySAP.com
products.

Interface Repository

The place where all the SAP interfaces relevant to inter-enterprise communication are
published.

SAP Connect User’s Guide86

JCo

Java Connector

Native Environment Pane (NEP)

A pane in the SAP Component Editor that displays the SAP Request fields and SAP
Response fields to which and from which XML document data may be mapped.

RPC

Remote Function Call

SAP Function Action

A special action for the SAP Component Editor that enables you to search for and
select SAP functions and then select SAP Request and SAP Response fields that will
be displayed in the Native Environment Pane (NEP).

Scalar Data

The data is represented directly as content of the parameter element. It is represented in
text form

Status Records

Describes the previous processing steps of the IDoc.

Structured Data (BA or records)

This data is represented by an XML element that is entered in every field of the
structure as a sub element of the parameter element.

Table Data (internal SAP tables or arrays)

The data is represented by an XML element entered in every row of the table s a sub
element of the parameter element.

XML Business Documents

XML documents which are instanced from the XML schemas defined in the
Repository

XML Schemas

Defines how the XML document represents the call of the interface or the result of the
call, are stored for each interface in the Interface Repository.

SAP Glossary 87

SAP Connect User’s Guide88

89

Index

Numerics
3270 23
5250 23

A
action 47
Action Model 47
Actions 47
actions 72
After Execute Actions - Add a Map Action from the

Response Tab 61
AIX 22
ALE 85
Alias names 84

B
BAPI 13, 73, 85
Before Execute Actions 55
BOR 13
building applications 18
business object type 13

C
CICS RPC 23
code table map 37
component editor 43
Component with Connection Action 63
connection pool 30
connection pooling 26, 29
Connection Pool Management 31
connection pool management 30
Connection Resource 23
connection resource 17, 23
Constant and Expression Driven Connections 24
Constant Driven Connection 24
Create

SAP Connection Resource 24
Creating an SAP Component 39

Creating an SAP Connection Resource 23
custom script 37

D
data manipulation 17
default 26, 30
Document 83
Document Management 83

E
ECMAScript 23, 56
EDI 23
Editing a SAP Function Action 53
Execute SAP Action 59
Expression Driven Connection 24
Expression Editor 55
exteNd Composer Services 17
exteNd Connectors 12

F
fieldyype conversions 69
forbidden drag operation 59
Found Functions 79
function methods 68

G
gateway 74

H
Handling Errors and Messages 72
HP-UX 23
HTML 23
hub and spoke 12

I
import 67
In 72

90

inactivity lifetime 31
include field attributes 50

J
Java Connector 13, 15
JCo 13, 15, 19, 68
JDBC 23
JMS 23

K
keep alive 31

L
Limitations on Mapping 59

M
Map Actions 58
Map command 55
Mapping a Portion of an XML Document into SAP

Request Tab 55

N
Native Environment Pane 44, 83
new xObject 39

P
pool info 32
pool name 35
processing table rows 70

Q
queries 24
Queues 12

R
Reload XML Documents 83
Repeat for Element 65
request 15
response 15
RFC 73
RFC-enabled Function Modules 15
RFM 15

S
SAP Action Model 54
SAP component 39

about 17
SAP component editor

building applications 18
SAP Connect 13
SAP Function Action 48
SAP Function Action Structure 53
SAP Function Tab 48
SAP gateway server 74
SAP R/3 15
SAP Request 48
SAP Request Tab 44
SAP Response 48
SAP Response Tab 45
SAP Service 73
SAP Service Request 81
SAP Service Response 81
SAP Service Switch Action 78
SAP-Specific Expression Builder Properties 66
Service Switch 78
session 26, 30
session connection management 30
setting table rows 71
simple field methods 67
Solaris 22
structure methods 67
switch action 78

T
table methods 68
table rows 70
Telnet 23

91

template 40
Templates 36
Temp XML Document 41
test 26, 30
timeout 36
To use the Component with Connect Action 63

U
use mapping model 50
user ID 17

W
Windows NT 21

X
XML template 36
XPath 55

92

	Contents
	About This Guide
	Conventions Used in the Guide

	Welcome to exteNd Composer and SAP Connect
	Before You Begin
	About exteNd Composer Connectors
	What is SAP Connect?
	About exteNd’s SAP Component
	What Applications Can You Build Using the SAP Component Editor?

	Getting Started with the SAP Component Editor
	Installing SAP Java Connector Libraries (JCo)
	Error Messages
	License Status
	exteNd Composer SAP Connect (Design Time)
	exteNd Composer SAP Connect Server on Windows
	exteNd Composer SAP Connect Server on Solaris
	exteNd Composer SAP Connect Server on AIX
	exteNd Composer SAP Connect Server on HP-UX

	Creating an SAP Connection Resource
	About Constant and Expression Driven Connection Parameters

	SAP Connections
	SAP Service Connection

	About SAP and Connection Pools
	Session Connection Management
	Connection Pool Management

	Managing Pools
	Using the exteNd Composer Console

	Creating XML Templates for Your Component

	Creating an SAP Component
	Before Creating an SAP Component
	About the SAP Component Editor Window
	About the Native Environment Pane
	NEP SAP Request Tab
	NEP SAP Response Tab

	Performing SAP Actions
	About Actions
	The SAP Function Action
	SAP Function Tab
	SAP Function Action Structure
	Editing an SAP Function Action

	SAP Action Model
	Before Execute Actions
	Mapping a Portion of an XML Document into SAP Request Tab

	Adding More Map Actions
	Limitations on Mapping

	Execute SAP Function Action
	After Execute Actions: Adding a Map Action from the Response Tab
	Mapping a Portion of an SAP Response into an XML Document

	Adding More Map Actions

	Component with Connection Action
	SAP-Specific Expression Builder Properties
	Simple Field Methods
	Structure Methods
	Table Methods
	Function Methods

	Processing Table Rows
	Getting Table Rows via the SAP Response Model Document
	Getting Table Rows via Published Getter Methods
	Setting Table Rows via the SAP Request Model Document
	Setting Table Rows via Published Setter Methods

	Using Other Actions in the SAP Component Editor
	Handling Errors and Messages

	SAP Service
	About Services
	When to Use an SAP Service
	SAP Service Action Model

	Creating an SAP Service
	Using the SAP Service Switch Action
	Deploying the SAP Service Component
	Testing an SAP Service

	Document Management
	About Document Management

	SAP Glossary
	ALE
	BAPI
	BOR
	Control Record
	Data Record
	IDoc
	Interface Repository
	JCo
	Native Environment Pane (NEP)
	RPC
	SAP Function Action
	Scalar Data
	Status Records
	Structured Data (BA or records)
	Table Data (internal SAP tables or arrays)
	XML Business Documents
	XML Schemas

