Novell exteNd Composer™
Telnet Connect

5.0 www.novell.com

USER’S GUIDE

Novell.

Legal Notices
Copyright © 2000, 2001, 2002, 2003, 2004 SilverStream Software, LLC. All rights reserved.

Title to the Software and its documentation, and patents, copyrights and all other property rights applicable thereto,
shall at all timesremain solely and exclusively with SilverStream and its licensors, and you shall not take any action
inconsistent with such title. The Software is protected by copyright laws and international treaty provisions. You
shall not remove any copyright notices or other proprietary notices from the Software or its documentation, and you
must reproduce such notices on all copies or extracts of the Software or its documentation. You do not acquire any

rights of ownership in the Software.

Novell, Inc.
1800 South Novell Place
Provo, UT 85606

www.novell.com

exteNd Composer Telnet Connect User’s Guide
January 2004

Online Documentation: To access the online documentation for this and other Novell products, and to
get updates, see www.novell.com/documentation.

Novell Trademarks

eDirectory isatrademark of Novell, Inc.

exteNd is atrademark of Novell, Inc.

exteNd Composer is atrademark of Novell, Inc.
exteNd Director is atrademark of Novell, Inc.
jBroker isatrademark of Novell, Inc.

NetWare is aregistered trademark of Novell, Inc.
Novell isaregistered trademark of Novell, Inc.

SilverStream Trademarks
SilverStream is aregistered trademark of SilverStream Software, LLC.

Third-Party Trademarks
All third-party trademarks are the property of their respective owners.

Third-Party Software Legal Notices

Jakarta-Regexp Copyright ©1999 The Apache Software Foundation. All rights reserved. Xalan Copyright ©1999
The Apache Software Foundation. All rights reserved. Xerces Copyright ©1999-2000 The Apache Software
Foundation. All rights reserved. Jakarta-Regexp , Xalan and Xerces software is licensed by The Apache Software
Foundation and redistribution and use of Jakarta-Regexp, Xalan and Xerces in source and binary forms, with or
without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code
must retain the above copyright notices, thislist of conditions and the following disclaimer. 2. Redistributionsin
binary form must reproduce the above copyright notice, thislist of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution. 3. The end-user documentation included with
theredistribution, if any, must include the following acknowledgment: "This product includes software developed
by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear in the
software itself, if and wherever such third-party acknowledgments normally appear. 4. The names " The Jakarta
Project”, "Jakarta-Regexp", "Xerces', "Xaan" and " Apache Software Foundation" must not be used to endorse or
promote products derived from this software without prior written permission. For written permission, please contact
apache@apache.org. 5. Products derived from this software may not be called "Apache" nor may "Apache" appear
in their name, without prior written permission of The Apache Software Foundation. THIS SOFTWARE IS
PROVIDED "ASI1S" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THEIMPLIED WARRANTIESOF MERCHANTABILITY AND FITNESSFOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION ORITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright ©1996-2000 Autonomy, Inc.

Copyright ©2000 Brett McLaughlin & Jason Hunter. All rightsreserved. Redistribution and usein source and binary
forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions
of source code must retain the above copyright notice, thislist of conditions, and the following disclaimer. 2.
Redistributions in binary form must reproduce the above copyright notice, thislist of conditions, and the disclaimer
that follows these conditionsin the documentation and/or other materials provided with the distribution. 3. The name
"JDOM" must not be used to endorse or promote products derived from this software without prior written
permission. For written permission, please contact license@jdom.org. 4. Products derived from this software may

not be called "JDOM", nor may "JDOM" appear in their name, without prior written permission from the JDOM
Project Management (pm@jdom.org). THIS SOFTWARE ISPROVIDED "ASIS' AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE APACHE SOFTWARE FOUNDATION OR ITSCONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This Softwareisderived in part from the SSLava™ Toolkit, which is Copyright ©1996-1998 by Phaos Technology
Corporation. All Rights Reserved. Customer is prohibited from accessing the functionality of the Phaos software.

The code of this project isreleased under a BSD-like license [license.txt]: Copyright 2000-2002 (C) Intaio Inc. All
Rights Reserved. Redistribution and use of this software and associated documentation (" Software'), with or without
modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must
retain copyright statements and notices. Redi stributions must al so contain acopy of thisdocument. 2. Redistributions
in binary form must reproduce the above copyright notice, thislist of conditions, and the following disclaimer inthe
documentation and/or other materials provided with the distribution. 3. The name "ExoLab" must not be used to
endorse or promote products derived from this Software without prior written permission of Intalio Inc. For written
permission, please contact info@exolab.org. 4. Products derived from this Software may not be called "Castor" nor
may "Castor" appear in their names without prior written permission of Intalio Inc. Exolab, Castor, and Intalio are
trademarks of Intalio Inc. 5. Due credit should be given to the ExolL ab Project (http://www.exolab.org/). THIS
SOFTWARE ISPROVIDED BY INTALIO AND CONTRIBUTORS “"ASIS" AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT
SHALL INTALIO OR ITSCONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Contents

About This Guide

1

Welcome to exteNd Composer and Telnet User Interface

Before YoUu Begino e
About exteNd Composer CONNECESttt e e i

About exteNd Composer's Telnet Component,

What Applications Can You Build Using the Telnet User Interface Component Editor?

Getting Started with the Telnet Component Editor

Creating a Telnet Connection Resource. i
About CoNNECLION RESOUICES o ottt et e e e e e
About Constant and Expression Driven Connections.covuvnn..

About Code Page SUPPOIto e

Creating XML Templates for Your Component.

Creating a Telnet Component

Before Creating a Telnet Component.t e e
About the Telnet Component Editor Window i,
About the Telnet Native EnvironmentPane it
About Telnet Keyboard Support
About the Screen Object. e

What LIS ... e
HOW it WOTKS. . .o e e e

About Telnet-Specific MenuBar ltems i
About Telnet-Specific Context-Menu ltems i,

Native Environment Pane Context Menu
Action Pane Context MeNU i

About Telnet-Specific Buttons.

Record Button 33
Connection Button 33

Performing Telnet Actions

ADOUL ACHIONSo
About Telnet-Specific ACIONS. e

The Check Screen ACtION i e e e
Understanding the Check Screen Action 37
Readiness Criteria 37

The Send Buffer ACtion
Editing Text in the Send Buffer Dialog 41

About the Send Buffer Actionand Record Mode

How Keys Are Displayed in the Action Model o.... 42

Telnet-Specific Expression Builder EXtensions. i i 42
OGN e 43
Screen Methods. e 43
KBY S . 47

Screen Selections inthe Telnet Connect i 47
Selecting ContinUous Data. i 48
Selecting Rectangular REQIONSo e 49

About the Sample Program. e 50

Recording a Telnet SeSSION e 50

Looping Over Multiple Rows in Searchof Data 56

Editing a Previously Recorded Action Model 64
Changing an EXisting ACtioN e e 65
Adding A NeW ACtioN e 68
About Adding Alias ACLIONS e 71
Deleting an ACtion e 72

Testing your Telnet COMPONENtottt e e e e e 72

Using the Animation TOOIS e 74

Tips for Building Reliable Telnet Componentsttt 75

Using Other Actions in the Telnet Component Editor. 77

Handling Errors and MeSSages.ottt i ittt et e e e 77

Check Screen Errors 77
Send Buffer Errors 79
Errors Involving Connections 79

Finding a “Bad” ACtiON e 79
Advanced Telnet Actions 81
Data Sets that Span SCreeNsSot e e 82
Dealing with Redundant Datat e e e 83
An Example of Looping over Multiple Screens. e 85

Initial Actions 86

Setting Up the Main Loop 87
Screen Caching 88

The Main Loop 89

Performance Considerationsttt e 92
Logon Components, Connections, and Connection Pools 95
About Telnet Session Performancet e 95
When Will | Need Logon CompoNnentS?ottt e 95
Connection Pool ArchiteCture e 96
The Logon Connection’'s Rolein Pooling 929
How Many Pools Do I Need?. e 100
Pieces Required for Pooling. 100
How Do I Implement POoliNg? e e e e e 101
The Telnet Logon ComPONENtottt e et e e e e 101

Telnet Connect User’s Guide

Logon, Keep Alive, and Logoff Actions i 102

LOgON ACtiONS . ..o e 103
Maximizing Performance with the Logon Component 103
Keep Alive ACHIONS e 104
Maximizing Performance with Keep Alive Actions 106
Logoff ACIONS e 107
Logon Component Life Cycle. 107
About the Telnet CoNNECLION ot e 108
Many-to-One Mapping of Components to Logons 110
Connection Pooling with a Single Sign-On. 110
Creating a Connection Pool 110
OVEIVIEW . o ottt et e e e e e e e e 110
Creating a Basic Telnet Connection i e e 111
Creating a Logon COmMpPONENt.ottt e e e e 111
Creating a Logon Connection using a Pool Connection. 113

Maximizing Performance of Telnet Logon Connection 118
Static versus Dynamically Created Documents/Elements 118

Creating a Logon Connection using a Session Connectionovvviin .. 118
Creating a Telnet Component That Uses Pooled Connections 120
Maximizing Performance of Telnet Terminal Components 122
Managing PooIS e 122
Connection Pool Management and Deployed Services 126
Connection Discard Behavior. e 126
Screen Synchronization e e 127
Glossary 129
Telnet Keyboard Equivalents 131
Telnet Display Attributes 137
Viewing All Character Attributes at Once 138
Reserved Words 141
Java Code Pages 143

ABOUL ENCOAINGS. . . . ottt e 143

10 Telnet Connect User’s Guide

About This Guide

Purpose

The guide describes how to use exteNd Composer Telnet Connect, referred to as
the Telnet Component Editor. The Telnet Component Editor is a separately-
installed component editor in exteNd Composer.

Audience

The audience for the guide is devel opers and system integrators using exteNd
Composer to create services and components which integrate Telnet applications.

Prerequisites

The guide assumes the reader is familiar with and has used exteNd Composer’s
development environment and deployment options. You must also have an
understanding of the Telnet environment and building or using applications
utilizing Telnet or VT-seriesterminals (e.g. VT100).

Additional documentation

For the complete set of Novell exteNd Composer documentation, see the Novell
Documentation Web Site (http://www.novell.com/documentation-
index/index.jsp).

Organization

The guideis organized asfollows:

Chapter 1, Welcome to exteNd Composer and Telnet, gives a definition and
overview of the Telnet Component Editor.

Chapter 2, Getting Sarted with the Telnet Component Editor, describes the
necessary preparations for creating a Telnet component.

11

http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp

Chapter 3, Creating a Telnet Component, describes the parts of the component
editor.

Chapter 4, Performing Telnet Actions, describes how to use the basic Telnet
actions, aswell as the unique drag-and-drop conventions of Telnet Connect.

Chapter 5, Advanced Telnet Actions, discusses techniques for solving common
Telnet computing problems in the context of an Action Model.

Chapter 6, Logon Components, Connections, and Connection Pools, describes
how to enhance performance through use of shared connections.

Appendix A, isaglossary.

Appendix B, ANS Escape Sequences and Control Codes, recognized and /or used
by Telnet Connect.

Appendix C, Telnet Attributes, and their display significance along with a
discussion of how tousethegetattri bute().

Appendix D, Reserved Words, lists those words used only for Telnet Connect.

Conventions Used in the Guide
The guide uses the following typographical conventions.
Bold typeface within instructions indicate action items, including:

+ Menu selections
+ Form selections
+ Diaog box items

Sans-serif bold typefaceis used for:

+ Uniform Resource Identifiers
+ Filenames
+ Directories and partial pathnames

Italic typeface indicates:

+ Variable information that you supply
+ Technical terms used for the first time
+ Titleof other Novell publications

Monospaced typefaceindicates:

+ Method names

+ Code examples

+ Systeminput

+ Operating system objects
12 Telnet Connect User’s Guide

Welcome to exteNd Composer and
Telnet User Interface

Before You Begin

Welcome to the Telnet Connect Guide. This Guide is a companion to the exteNd
Composer User's Guide, which details how to use all the features of exteNd
Composer, except for the Connect Component Editors. If you haven't looked at
the Composer User's Guide yet, please familiarize yourself with it before using
this Guide.

exteNd Composer provides separate Component Editors for each Connect. The
special features of each component editor are described in separate Guides like
this one.

If you have been using exteNd Composer, and are familiar with the XML Map
Component Editor, then this Guide should get you started with the Telnet
Component Editor.

Before you can begin working with the Telnet Connect you must haveinstalled it
into your existing exteNd Composer. Likewise, before you can run any Services
built with this Connect in the exteNd Composer Enterprise Server environment,
you must have aready installed the server-side software for this Connect into
Composer Enterprise Server.

NOTE: To be successful with this Component Editor, you must be familiar with the
Telnet environment and the particular applications that you want to XML-enable.

About exteNd Composer Connects

exteNd Composer is built upon a simple hub and spoke architecture (Fig.1-1).
The hub isarobust XML transformation engine that accepts requests via XML
documents, performs transformation processes on those documents and
interfaces with XML -enabled applications, and returns an XML response
document. The spokes, or Connects, are plug-in modules that "X ML -enable"

Welcome to exteNd Composer and Telnet User Interface 13

14

sources of datathat are not XML aware, bringing their data into the hub for
processing as XML. These data sources can be anything from legacy
COBOL /applications to Message Queuesto HTML pages.

.

Mainframes

RPC
R XML

Databases

Enterprise
Messaging l 1 www

Figure 1-1

exteNd Composer Connects can be categorized by the integration strategy each
one employsto XML-enable an information source. The integration strategies
are areflection of the major divisions used in modern systems designs for
Internet-based computing architectures. Depending on your B2B needs and the
architecture of your legacy applications, exteNd Composer can integrate your
business systems at the User Interface, Program Logic, or Datalevels. (See
below.)

Telnet Connect User’s Guide

User
Interface

What Is Telnet?

Telnet is a specification (RFC 854) for acommunications protocol. The term Telnet
refersto ageneric TCP/IP protocol for emulating aterminal on ANSI standard
systems. Many applications for UNIX and VAX/VMS (as well as others) were
developed for terminal based systems. These systems allow remote execution of their
interface through the Telnet TCP/IP protocol. Telnet allows this by mimicking the
terminal in that it sends screens to a client and accepts keyed data from the client.
This interaction, through a so-called “dumb” terminal, meansthat all the datais
processed on the host computer. Telnet terminal emulation software can be used to
make a microcomputer or PC act asif it were a Telnet-type terminal whileitis
communicating with a host computer.

What is the Telnet Connect?

The Telnet Connect XML -enables VT-seriesand ANSI Terminal based systemsusing
the User Interface integration strategy by hooking into the Telnet Terminal Stream.
Using the Telnet Connect, you can make legacy applications and their businesslogic
available to the internet, extranet, or intranet processes. You can navigate through an
application asif you were at aterminal session, use XML documentsto drive
inquiries and updates into the screens rather than keying, use the messages returned
from application screens to make the same decisions asif you were at aterminal, and
move data and responses into XML documents that can be returned to the requestor

Welcome to exteNd Composer and Telnet User Interface 15

or continue to be processed. The Telnet screens appear in the Native
Environment Pane of the Telnet Component Editor.

About exteNd Composer's Telnet Component

Much like the XML Map component, the Telnet Component is designed to map,
transform, and transfer data between two different XML templates (i.e., request
and response XML documents). However, it is specialized to make a connection
(viaTelnet) to a host application, process the data using elements from a screen,
and then map the results to an output DOM. You can then act upon the output
DOM in any way that makes sense for your integration application. In essence,
you're able to capture data from, or push datato, a host system without ever
having to alter the host system itself.

A Telnet Component can perform simple data manipulations, such as mapping
and transferring data from an XML document into a host program, or perform
"screen scraping” of a Telnet program, putting the harvested datainto an XML
document. A Telnet Component has all the functionality of the XML Map
Component and can process XSL., send mail, and post and receive XML
documents using the HTTP protocol.

What Applications Can You Build Using the Telnet
User Interface Component Editor?

The Telnet User Interface Component Editor allows you to extend any XML
integration you are building to include any of your business applications that
support Telnet-based terminal interactions (See the exteNd Composer User's
Guide for more information.) For example, you may have an application that
retrieves a product's description, picture, price, and inventory from regularly
updated databases and displaysit in a Web browser. By using the Telnet
Component Editor, you can now get the current product information from the
operational systems and the static information (e.g., a picture) from a database
and merge the information from these separate information sources before
displaying it to auser. This provides the same current information to both your
internal and external users.

16 Telnet Connect User’s Guide

Getting Started with the Telnet
Component Editor

While there are many ways to go about creating Telnet Components, the most
commonly used steps in creating a simple Telnet Component are as follows:

+ Create XML Template(s) for the program.
+ Create a Connection Resource.
+ Create a Telnet Component.

+ Enter Record mode and navigate to the program using terminal emulation
available via the component editor’s Native Environment Pane.

+ Drag and drop input-document data into the screen as needed.
+ Drag and drop screen results into the output document.
+ Stop recording.

In this chapter, we' Il focus on creating and a configuring a Telnet Connection
Resource, which is an essential first step in being able to use Telnet Components.

Creating a Telnet Connection Resource

Before you can create a Telnet Component, you need to create a Connection
Resource to access the host program. If you try to create a Telnet Component in
the absence of any available Connection Resources, adialog will appear, asking
if you wish to create a Connection Resource. By answering Yesto this dialog,
you will be taken to the appropriate wizard.

About Connection Resources

When you create a Connection Resource for the Telnet Component, you will use
alive Telnet Connection to connect to a host environment of your choice. After
setting up your Connection Resource, it will be available for use by any number
of Telnet Components that might require a connection to the host in question.

Getting Started with the Telnet Component Editor 17

About Constant and Expression Driven Connections

18

You can specify Connection parameter values in one of two ways: as Constants
or as Expressions. A constant-based parameter uses the static value you supply in
the Connection dialog every time the Connection is used. An expression-based
parameter allows you to set the value in question using a programmatic
expression (that is, an ECM A Script expression), which can result in a different
value each time the connection is used at runtime. This allows the Connection's
behavior to be flexible and vary based on runtime conditions.

For instance, one very simple use of an expression-driven parameter in a Telnet
Connection would be to define the User ID and Password as PROJECT Variables
(e.g.: PROJECT. X Path("USERCONFIG/MyDeployUser"). This way, when you
deploy the project, you can update the PROJECT Variables in the Deployment
Wizard to values appropriate for the final deployment environment. At the other
extreme, you could have a custom script that queries a Java business object in the
Application Server to determine what User 1D and Password to use.

> To switch a parameter from Constant-driven to Expression-driven:

1 Click the right mouse button in the parameter field you are interested in
changing.

2 Select Expression from the context menu and the editor button will appear
or become enabled. See below.

Create a New Connection Resource x|

Specify the URL for the Telnet hast. The Telnet Port (narmally 23) needs to be setto the host's requirements.
Select or enter a Terminal Type used during Telnet negotiation. USERID and PASSWORD are available far
mapping in ECMAScript expressions. You may create mare than one Telnet Connection. Checking ‘Default’
makes this Connection the initial selection when creating a Telnet Component. Use the Test button to check
your connection.

Connection Type |Telnet Connection |L|
Host or IP Address I = [Default

Telnet Port |23

Terminal Type }m oo |_‘7
[1_ sekectal

Code Page |8859_1

Usel'IDI
Paz:woldl
Clear All
Constant
« Expression
[Back][Finish]I Cancel]

3 Click onthe Expression Editor button. The Expression Editor appears.

Telnet Connect User’s Guide

x|

“arighles: FunctionzMethods: Operators:
[)-<> Input [*}-Custom Scripts [-Math
[+-<> Temp [+}-Document [+ Relational
E'"'(> Output IEl-"ECI‘-‘I.I\.S[:ri[:i‘l IE-"Ltlui[:‘al
[t-<> _SystemFault [£)-Extended ECMAScript [+]-String
E""(> PROJECT El---T_eInet
[t}-<> Repeat Aliases [£-Login
[+ <> Node Aliases [z}-Screen Methods

[#-Keys

(validate [oKk][cancel |

4 Create an expression (optionally using the pick lists in the upper portion of
the window) that evaluates to avalid parameter value at runtime. Click OK.

> To create a Telnet Connection Resource:

1 From the Composer File menu, select New>xODbject, then open the
Resour ce tab and select Connection.

NOTE: Alternatively, you can highlight Connection in the Composer
window category pane, click the right mouse button, then select New.

The Create a New Connection Resour ce Wizard appears.

Getting Started with the Telnet Component Editor 19

Create a New Connection Resource ll

A Connection resource is used to establish communications with an Connector data source orwith a server
using HTTP authentication. You need to create connections for each type of data source or each HTTP server
you wish to communicate with. Enter a name and, optionally, a description for this Connection. The name
will appear in the Composer Detail Pane and in choice lists when you are prampted for objects in Composer
The name may not contain the characters:\7: 7" < = || Mames are case insensitive.

Mame:

ITeInetConnection

Description:

Furpose:
Input:
Cutput:
Remarks:

) e) Conce

Type a Name for the connection object.
Optionally, type Description text.
Click Next. The second panel of the wizard appears.

Create a New Connection Resource x|

Specifythe URL for the Telnet hast. The Telnet Port (hormally 23) needs 1o be setto the host's requirements.
Select or enter a Terminal Type used during Telnet negotiation. USERID and PASEWORD are available far
mapping in ECMASCript expressions. You may create more than one Telnet Connection. Checking ‘Default’
makes this Connection the initial selection when creating a Telnet Component. Use the Test button to check
your connection.

Connection Type |Ta|net Connection |v | Test

Host or IP Address [123.45.676.910 B - (O] Default
Telnet Port I23

Terminal Type }m on |L|
Code Page [859_1 [~]

User ID Imyid

Password I""“*‘""I

[Back][Finish][Cancel]

5 Select the Telnet Connection type from the pulldown menu. Dial og changes
appearance to show just the fields necessary for creating the Telnet
connection.

6 IntheHost or IP Addressfield, enter the physical (IP) address or hostname
alias for the machine to which you are connecting.

20 Telnet Connect User’s Guide

7 InthePort field, enter the number of the Telnet port. The default port
number is 23.

8 Inthe Terminal Type field, enter the type of terminal you wish to specify
when handshaking with the host. Select one of the valuesin the pulldown
menu (currently VT100, VT220, or VT320) or manually enter another
terminal type. Use lowercase letters “vt” (asin vt132) when entering avalue
manually.

NOTE: Some hosts may not let you log on as a “VT220” (or whatever). If
you know the kind of terminal(s) the host recognizes, you can enter an
acceptable value in this space to “spoof” the host into handshaking
successfully.

9 Inthe Code Pagefield, specify acode page (See“ About Code Page Support
on page 19.”

10 Enter aUser|D and Passwor d. These are not actually submitted to the host
during the establishment of a connection. They are simply defined here. (The
Password is encrypted.) Right-mouse-click and choose Expression if you
want to make these fields expression-driven. See discussion further above.

NOTE: After you've entered UserID and Password info in this dialog, the
ECMAScript global variables USERID and PASSWORD will point to these
values. You can then use these globals in Send Buffer expressions (or as
described in “Native Environment Pane Context Menu” on page -31).

11 Click the Default check box if you'd like this particular Telnet connection to
become the default connection for subsequent Telnet Components.

12 Click Finish. The newly created resource connection object appearsin the
Composer Connection Resource detail pane.

About Code Page Support

Code Page support in exteNd Composer Connection Resources allow you to
specify which Character Encoding schemeto use when transl ating characters sent
between exteNd Composer and other host systems. exteNd Composer data uses
Unicode character encoding (the Javaand XML standard). Existing legacy and
other host systems use avariety of character encoding schemes (i.e., Code Pages)
specific for their language or usage. A mechanism is needed to translate the
character encoding between these systemsiif they are to communicate with one
another. Thisishandledin exteNd Composer by specifying the Code Page used by
ahost system in the Connection Resource.

Creating XML Templates for Your Component

In addition to a connection resource, a Telnet Component may also require that

Getting Started with the Telnet Component Editor 21

22

you have already created XML templates so that you have sample documents for
designing your component. (For more information, see Chapter 5, “Creating
XML Templates,” in the exteNd Composer User's Guide.)

In many cases, your input documents will be designed to contain datathat a
terminal operator might type into the program interactively. Likewise, the output
documents are designed to receive data returned to the screen as aresult of the
operator's input. For example, in atypical business scenario, aterminal operator
may receive a phone request from a customer interested in the price or
availability of an item. The operator would typically query the host system via
“dumb terminal” in a Telnet session by entering information (such as a part
number) into aterminal when prompted. A short time later, the host responds by
returning data to the terminal screen, and the operator relays this information to
the customer. This session could be carried out by an exteNd Composer Web
Service that uses a Telnet Component. The part number (arriving viaHTTP)
might be represented as a data element in an XML input document. The looked-
up data returned from the host would appear in the component’s output
document. That data might in turn be output to a web page, or sent to another
business process as XML, etc.

NOTE: If your component design calls for any other xObject resources, such as
custom scripts or Code Table maps, it is best to create these before creating the
Telnet Component. For more information, see the exteNd Composer User's Guide.

Telnet Connect User’s Guide

Creating a Telnet Component

Before Creating a Telnet Component

Aswith all exteNd Composer components, the first step in creating a Telnet
component—assuming a Connection Resource is available—isto prepare any
XML templates needed by the component. (For more information, see “ Creating
aNew XML Template” in the Composer User's Guide.)

Once you've specified the XML templates, you can create a component, using the
template's sample documents to represent the inputs and outputs processed by
your component.

Also, as part of the process of creating a Telnet component, you must specify a
Telnet connection for use with the component (or you can create a new one). See
the previous chapter for information on creating Telnet Connection Resources.

> To create a new Telnet Component:

1 Select File>New>xObject. Open the Component tab and select Telnet
Terminal.

NOTE: Alternatively, under Component in the Composer window category
pane you can highlight Telnet Terminal, click the right mouse button, then
select New.

2 The"“Create aNew Telnet Component” Wizard appears.

Creating a Telnet Component 23

ate a New Telnet Terminal Component |

ATelnet Terminal Companent connects to a hostvia the Telnet protocol, processes data using elements
from a DO, and maps the results to an output DOM. Use this wizard to create a Telnet Component. Enter a
Mame and Description for this Telnet companent. The name will appear in the Composer window and in
choice lists when you are prompted for abjects ofthis type as vouwark in Compaoser. The Name is required
and may not contain the characters:y 27 " = = | Names are case insensitive.

Mame:

helnetoomponent

Description:

Furpose:
Input:
Output:
Remarks:

Hel

[][Next][Cancel

3 Enter aName for the new Telnet Component.
Optionally, type Description text.

5 Click Next. The XML Input/Output Property Info pane of the New Telnet
Component Wizard appears.

Create a New Telnet Terminal Component |

Specify one or mare XML Templates to help design Inputto this Component orYeb Service and only one to
design Qutput. The sample XML Documents in each Template are desion fime aids to help you build Action
Models forthe component. The samples are not actually used at runtime after deployment to your application
server. The Identifier is fixed and represents the name used to refer to the XML Document during compaonent
execution. Selecting System {ANY? allows you to use an empty ternplate {i.e. accept any document as Inpuf).

Input Message

Part | Template Category | Template Name |
Input |Eystem) [~ | gy [~]]
Dutput Message

Part | Template Category | Template Name

|
Output [zystem) [| fanvy]|

[Back][Mext][Cancel]

6 Specify the Input and Output templates as follows.

+ Typeinaname for the template under Part if you wish the nameto
appear in the DOM as something other than “Input”.

+ Select aTemplate Category if it isdifferent than the default category.

24 Telnet Connect User’s Guide

7

10

11

+ SeectaTemplate Namefrom thelist of XML templatesin the selected
Template Category.

+ Toadd additional input XML templates, click Add and choose a
Template Category and Template Name for each.

+ Toremoveaninput XML template, select an entry and click Delete.

Select an XML template for use as an Output DOM using the same steps
outlined above.

NOTE: You can specify an input or output XML template that contains no
structure by selecting {Systeml{ANY} as the Input or Output template. For
more information, see “Creating an Output DOM without Using a Template” in
the User’s Guide.

Click Next. The Temp and Fault XML Template panel appears.

Create a New Telnet Terminal Component x|
Specify one or mare Temp and Fault XML Templates to help design temporary parts and fault handling for
this Component or'Weh Service. Lse Temp documents for creating intermediate results or holding values
for reference. Specify XML Templates to serve as Fault documents to be passed backto clients under error
conditions.
Temp Message
Part Template Category Template Name |
Fault Message
Part | Template Category | Template Mame |
|_SystemFault ‘{Sys‘tem} |:||{Fau|t} |:||
Help @ [Back J[MNext J[Cancel |

If desired, specify atemplate to be used as a scratchpad under the “ Temp
Message” pane of the dialog window. This can be useful if you need a place
to hold values that will only be used temporarily during the execution of
your component or are for reference only. Select a Template Category if itis
different than the default category. Then select a Template Name from the
list of XML templatesin the selected Template Category.

Under the “ Fault Message” pane, select an XML template to be used to pass
back to clients when an error condition occurs.

As above, to add additiona input XML templates, click Add and choose a
Template Category and Template Name for each. Repeat as many times as
desired. To remove an input XML template, select an entry and click Delete.

Creating a Telnet Component 25

12 Click Next. The Connection Info panel of the Create a New Telnet
Component Wizard appears.

Create a New Telnhet Terminal Component |
Specify which Cannection you wish to use for this Compoaonent or Service. To change any connection
parameters, you must change them in the Connection Resource object or create a new Connection
Resource ofthe same type with different parameters.

Connection |Te|netConnection |L| Test
Host or IP Address I ¥ -
Telnet Port I
Terminal Type | |_|
Code Page | |_|
User D |
Password I”m
[Back H Finish H Cancel]

13 Select a Connection name from the pulldown list. For more information on
the Telnet Connection, see “ Creating a Connection Resource” in Chapter 2
of this Guide.

14 Click Finish. The component is created and the Telnet Component Editor
appears.

About the Telnet Component Editor Window

The Telnet Component Editor includes al the functionality of exteNd
Composer’s XML Map Component Editor. For example, it contains mapping
panes for Input and Output XML documents as well as an Action pane.

There is one main difference, however. The Telnet Component Editor also
includes a Native Environment Pane featuring a Telnet emulator. This screen
appears black until you either click the Connection icon in the main toolbar or
begin recording by clicking the Record button in the toolbar. Either action
establishes a Telnet emulation session inside the Native Environment Pane with
the host that you specified in the connection resource used by this Telnet
component.

About the Telnet Native Environment Pane

The Telnet Native Environment Pane provides Telnet emulation of your host
environment. From this pane, you can execute a Telnet session in real time,

26 Telnet Connect User’s Guide

interacting with the Native Environment Pane exactly as you would with the
screen on a“ dumb terminal.” You can also do the following:

+ Usedatafrom an Input XML document (or other available DOM) asinput
for a Telnet screen field. For example, you could drag a SKU number from
an input DOM into the “ part number” field of a Telnet screen, which would
then query the host and return data associated with that part number, such as
description and price.

+ Map the datafrom the returned Telnet screen and put it into an Output XML
document (or other available DOM, e.g., Temp, MyDom, or whatever).

+ Map header and detail information (such as aform with multiple line items)
from the Native Environment Pane to an XML document using an
ECMA Script expression or function.

About Telnet Keyboard Support

The Telnet Native Environment Pane supports the use of numerous special
terminal keys. The Terminal Keypad dialog (see below) is comprised of four
Tabs: Common Keys, NumPad Keys, Control Keys and Other Keys. Each Tab
contains a group of keyswith specific functionality.

Note that you can also achieve the use of additional keys (such as F13 through
F20) by using the picklists in the Expression Builder dialog, Function/Methods
column, under Telnet > Keys.

> How to Use the Floating Keypad:

1 Seect View/Terminal Keypad from the Composer Menu. A floating
Keypad appears. The Keypad window contains a series of tabs, including the
following: Common Keys, NumPad Keys, Control Keys and Other Keys.

2 Click on the appropriate Tab to display the keys you wish to view on the
Terminal Keypad.

3 Click onthe key you wish to invoke. If you require help, hover the mouse
over that key. Help will display the Telnet keyboard equivalent for that key.
You will seethe result of the key you clicked in the Native Environment
Pane.

4 Click OK to close the keypad. In order for the keypad to redisplay, you must
repeat step 1. When you display the keypad, you will return to the last Tab
that you were using.

Thefollowing pagesillustrate the four Tabs and corresponding keys that can be
used to interact with Telnet.

Common Keys: Includes directional keys, (Arrow Down, Arrow Left, Arrow

Creating a Telnet Component 27

Right, Arrow Up, BackSpace, BackTab) as well as Delete, Escape, Linefeed, Return,
and Tab. The function keys, F1 through F20, are also displayed.

x|
{mr [MumP ad Keys“’ Control Keys}[’ Other Keys]

Arrow Down Arrow Left Arrow Right Arrow Up
BackSpace Back Tab Delete Escape
Linefeed Return Tab FL

F2 F3 Fa F4
F& F7 Fa Fa
Flo Fl1 Flz F13
Fl4 Fl15 FlE F17
Fla Fl9 FZ0

NumPad Keys: Includes the digits 0-9, Minus, Comma, Period and Enter keys.

Terminal Keypad x|
Commeon Keys | MNumPad Keys rControI Keys]r Other Ke;rs]

0 1 2 3 4 3]

7 g g Minus Comma Period Enter

Control Keys: Includes 32 keys associated with specific functions. Refer to Appendix
B for a complete listing.

Telnet Connect User’s Guide

x|
rCommon Keys]r NumPad Keys | Control Keys rm

ACK BELL ES CAN

CE DC1 or XON DCZ DC3 or XOFF
nC4 DLE EM ENQ

EOT ESC ETE ETX

FF F3 G3 HT

LF NAK UL ES

s1 S0 S0H ST

SUB 3TN L5 VT

Other Keys: Includes keys to perform common functions for example: the Help
key.

Terminal Keypad x|
r Common Keys]f umPad Keys]r Contral Keys I Other Keys

Do Find Help Insertc KeyEnd KeyHome

Nexticn Previcn Bemove Select

NOTE: The complete list of special (non-printing) keys and their ANSI equivalents
is shown in Appendix B.

About the Screen Object

The Screen Object is abyte-array representation of the emulator screen shownin
the Native Environment Pane, with methods for manipulating the screen

Creating a Telnet Component 29

What it is

How it works

contents.

The Telnet component communicates with the host environment via a character-mode
terminal data stream, in aTelnet session. The user sends data to the host in the form of
keystrokes (or XML data mapped to cursor prompts). The host, in turn, sends the
terminal a stream of data which may contain anything from a single byte to awhole
screen’s worth of information. The Screen Object represents the current screen’s
worth of data. For a24 x 80 ANSI terminal screen, thisis 1,920 bytes of data.

When character data arrive from the host, appropriate updates to the Native
Environment Pane occur in real time. Those updates might be anything from a simple
cursor repositioning to a complete repaint of the terminal screen. The screen content
is, in this sense, highly dynamic.

When you have signaled exteNd Composer (viaa Check Screen action) that you wish
to operate on the current screen’s contents, the screen buffer is packaged into a Screen
Object that is made accessible to your component through ECM A Script.

Many times, it is not necessary for your component to “know” or understand the
complete screen contents prior to sending keystrokes back to the host or prior to
mapping datainto a prompt. But when mapping outbound from the screen to aDOM,
it can be useful to have programmatic access to the Screen Object. To make this
possible, the Connect for Telnet defines a number of ECM A Script extensions for
mani pulating screen contents. These extensions are described in further detail in the
next chapter. For now, asimple example will suffice. Suppose you are interested in
obtaining astring value that occurs on the screenin row 5 at column position 20. If the
string is 10 characters long, you could obtain its value by using the following

ECMA Script expression as the Source in aMap action (with an output DOM or temp
DOM asthe Target):

Screen. get Text At(5, 20, 10)

The 10 characters beginning at row 5, column 20 on the screen would be mapped to the
Target of the Map action.

30 Telnet Connect User’s Guide

For more examples (and complete APl documentation for the Screen object), see
the section on “ Tel net-Specific Expression Builder Extensions’ on page-42 inthe
next chapter.

About Telnet-Specific Menu Bar Iltems

Component Menu

Sart/Stop Recor ding—This menu option manages the automatic creation of
actions as you interact with a host program. Sart will enable the automatic
creation of actions as you interact with the screen and Sop will end action
creation.

Connect/Disconnect—This menu option allows you to control the connection to
the host. When you are recording or animating, a connection is automatically
established (and consequently, the connection icon is shown in the
“connected/disabled” state). However, this button is useful if you are not
recording and you merely want to establish a connection for the purpose of
navigating the Telnet environment.

About Telnet-Specific Context-Menu ltems

The Telnet Connect a so includes context-menu items that are specific to this
Connect. To view the context menu, place your cursor in the appropriate pane
(Native Environment or Action) and click the right mouse button.

Native Environment Pane Context Menu

When you right-mouse-click in the Native Environment Pane, you will seea
contextual menu. Themenuitemswill begreyed out if you are not in record mode.
In record mode, the context menu has the following appearance:

Send Buffer: USERID
Send Buffer: PASSWORD
Send Buffer...

Check Screen

The four commands work as follows:

Creating a Telnet Component 31

Send Buffer: USERID—Automatically sends User ID information to the host, based
on the value you supplied (if any) for User ID in the Telnet Connection Resource for
this component. Also creates the corresponding Send Buffer actionin the Action
Model.

Send Buffer: PASSWORD—Automically transmits Password information to the
host, based on the Password you supplied (if any) in the Telnet Connection Resource
for this component. Also creates the corresponding Send Buffer action in the Action
Model.

Send Buffer—Brings up the Send Buffer dial og, allowing you to create anew Send
Buffer Action. (See the next chapter for a detailed discussion of the use of this
command.)

Check Screen—Creates anew Check Screen action without bringing up adialog
(same as aclick on the Create Check Screen button in the toolbar).

Action Pane Context Menu

If you click the right mouse button when the mouse is located anywherein the Action
pane, a context menu appears as shown.

Mew Action 4 Send Buffer...

Edit Action Check Screen. .. [}
Disable Action Advanced »
Toggle Breakpoint Data Exchange 3
Repeat b
Cut Comment. .. Ctr+E
Copy Component... Ctri+T
Decision. .. Ctri+D
Delete Declare Alias...
Find... Function... Ctri+U
Find Mext Log... Ctri+L
Replace. .. Map... Ctri+m
Send Mail...
Switch. ..
Toda...

The function of the context menu items are as follows:

Send Buffer—Allows you to create a Send Buffer action. The Send Buffer Action
dialog will appear, allowing you to enter text and/or control-key commands that will

32 Telnet Connect User’s Guide

be sent to the Telnet host application. (This dialog will also let you enter an
ECMA Script expression, or an X Path fragment representing the location of
string data in your input DOM.) See the next chapter for a detailed discussion of
the use of this command.

Check Screen—This command allows you to create a new Check Screen action
(to sync the component with the host). A dialog appears, allowing you to specify
various go-ahead criteria as well as a Timeout value. See the next chapter for a
detailed discussion of the Check Screen action.

About Telnet-Specific Buttons

The Telnet Connect includes a number of Connect-specific tool icons (and/or
icons with Connect-specific functionality) on the component editor’s main
toolbar. They appear as shown below.

Record Button

Record icon (normal state)

)
9

Record icon (recording in progress)

Record icon (disabled)

The Record button allows you to capture keyboard and screen manipulations as
youinteract with the Native Environment Pane. Recorded operationsare placed in
the Action Model as actions, which you can then “ play back” during testing.

Connection Button

i Connection (disconnected state)
ﬁa Connection (connected state)

ﬁ Connection (connected/disabled state)

Creating a Telnet Component 33

34

The Connection button on Composer’s main toolbar toggles the connection state
of the component (using settings you provided during the creation of the
Connection Resource associated with the component).

NOTE: When you are recording or animating, a connection is automatically
established, in which case the button will be shown in the “connected/disabled”
state. When you turn off recording, the connection the button will return to the
enabled state.

Create Check Screen Button

The Create Check Screen button on Composer’s main tool bar should be
IE, clicked before the first user interaction with any given terminal screen.
This signals exteNd Composer that you intend to work with the screen
data as currently shown in the Native Environment Pane. Clicking this button
causes anew Check Screen Action to be inserted into the Action Model. (Seethe
next chapter for a detailed discussion of this action type.)

Telnet Connect User’s Guide

Performing Telnet Actions

About Actions

An action is similar to a programming statement in that it takes input in the form
of parameters and performs specific tasks. Please see the chaptersin the
Composer User's Guide devoted to Actions.

Within the Telnet Component Editor, a set of instructions for processing XML
documents or communicating with non-XML data sourcesis created as part of an
Action Model. The Action Model performs all data mapping, data
transformation, data transfer between hosts and XML documents, and data
transfer within components and services.

An Action Model is made up of alist of actions that work together. As an
example, one Action Model might read invoice data from a disk, retrieve data
from ahost inventory database, map the result to atemporary XML document,
make a conversion, and map the converted data to an output XML document.

The Action Model mentioned above would be composed of severa actions.
These actions would:

+ Open aninvoice document and perform a Telnet command to retrieve
invoice datafrom a host database

+ Maptheresult to atemporary XML document
+ Convert anumeric code using a Code Table
+ Maptheresult to an Output XML document

About Telnet-Specific Actions

The Telnet Connect includes two actions that are specific to the Telnet
environment: Check Screen and Send Buffer.

Performing Telnet Actions 35

Telnet Action Description

Check Screen Allows the component to stay in sync with the host
application. This action signals the component that
execution must not proceed until the screen is in a
particular state (which can be specified in the Check
Screen setup dialog), subject to a user-specified
timeout value.

Send Buffer Buffers a string for transmission to the host. The string
is formed from Map actions and/or from user
keystrokes. (The Send Buffer action can be created
manually, but will more often be generated
automatically when the user types into the screen or
maps data to the current prompt.)

The purpose of these actionsisto allow the Telnet component (running in a
deployed service) to replicate, at runtime, the terminal/host interactions that occur
in a Telnet session. The usage and meanings of these actions are described in
further detail below.

The Check Screen Action

36

Because of the latency involved in Telnet sessions and the possibility that screen
datamay arrivein an arbitrary, host-application-defined order, it is essential that
your component can depend on the terminal screen being in agiven state before it
operates on the current screen data. The Check Screen action makesit possiblefor
your component to stay “in sync” with the host. You will manually create Check
Screen actions at various pointsin your Action Model so that precisely the correct
screens are acted on at precisely the right time(s).

To create anew Check Screen action, you can do one of the following:

+ Click on the “Create Check Screen Action” button on the main toolbar, or

+ Perform aright mouse click inside the action list, then select New Action
and Check Screen from the contextual menu, or

+ Inthe component editor’s main menu bar, select Action, then New Action,
then Check Screen

NOTE: You will most often use the toolbar button when you are in Record mode.

Telnet Connect User’s Guide

> To create a Check Screen action using a menu command:

1 Perform aright mouse click inside the action list, then select New Action

3
4
5

and Check Screen from the contextual menu (or use the Action menu in the

main menu bar as described above). The Check Screen dialog appears.

X
Row Column:
I
fo
() Expression | EZ -
Timeout: (in milliseconds) Min wait: {in millisecands)
oo ED
[Apply][0K][Cancel]

Click one of the three radio buttons (Cursor position, Prompt, or

Expression), depending on how you want to specify the go-ahead (screen

readiness) criterion. (The default is“ Cursor position.”) See discussion
below.

Specify a Timeout value in milliseconds. (See discussion further below.)
Specify aMin wait value in milliseconds. (See discussion further below.)

Click OK.

Understanding the Check Screen Action

The purpose of the Check Screen Action dialog istwofold:

*

*

It alows you to specify the readiness criteria by which the screen state will

be judged at execution time.
It allows you to specify await time for program synchronization.

These factors are discussed in some detail below. Be sure to read and understand
the following sections before creating your first Telnet Component.

Readiness Criteria

It isimportant that the execution of actionsin your Action Model not proceed

until:

Performing Telnet Actions

37

Cursor Position

Prompt

Expression

Timeout

1 Thehost application isready, and

2 All screen data have arrived (that is, the screen isin aknown state)

Your component must have some way of “knowing” when the current screenis
ready. You can specify the readiness criterion based on cursor position, prompt
name, or an ECM A Script expression.

You can base readiness on the location of the terminal’s cursor. Simply enter the
row and column number of the cursor’s“prompt position.” (The values shown in
the Row and Column fields of the dialog will always automatically default to the
cursor’s current position. You will normally not have to enter the numbers

manually.)

The current prompt position can be specified on the basis of the character string
that immediately precedes the cursor position in the terminal emulation window.
For exampl e, the prompt may say “ Chooseone: (A, B, C, D)”. Inthisinstance, you
could specify “Choose one: (A, B, C, D)", or “(A, B, C, D)", or perhaps simply
“)", asthe go-ahead prompt. (The default value shown for the prompt string will
be the current screen contents for the line in which the cursor is positioned. The
default string will include all characters from the beginning of the prompt line up
to and including the last space character, if any, preceding the cursor.)

Itis possible that the prompt position or prompt text could vary dynamically at
runtime. For the ultimateflexibility in determining the go-ahead criterion, you can
click the Expression radio button in the Check Screen Action dialog and enter an
ECMA Script expression in the associated text field. At runtime, if the expression
evaluates as “true,” the screen will be considered ready; but not otherwise.

The timeout value (in milliseconds) represents the maximum amount of time that
your component will wait for screen data to both arrive and meet the readiness
criterion specified in the top part of the dialog. If the available screen data do not
meet the readiness criteria before the specified number of milliseconds have
elapsed, an exception is thrown.

38 Telnet Connect User’s Guide

NOTE: Obviously, since the latency involved in a Telnet session can vary greatly
from application to application, from connection to connection, or even from screen
to screen, a great deal of discretion should be exercised in deciding on a Timeout
value. Careful testing of the component at design time as well as on the server will
be required in order to determine “safe” timeout values.

The default Timeout value will vary depending on whether you arein Record
mode or you are merely creating Actions manually. In Record mode, the default
Timeout value is a calcul ated value based on the actual time that elapses between
the last operation and the loading of the new screen. (The value displayed in the
dialog istwice this“observed load time,” rounded up to the nearest full second.)
When you are creating a Check Screen action manually (not in Record mode), the
default valueis 1500 milliseconds.

Min Wait

The Min Wait time (in milliseconds) represents the amount of time your
component should wait beforethe initial check of the screen buffer. For example,
if you specify aMin Wait of 500, your component will check the screen for
readiness (according to the criteriayou specified) after waiting 500 milliseconds.
If the go-ahead criteria are met, the screen will be rechecked after another 100
milliseconds. Only if the second check is also good will execution of the
component proceed. If not, the screen will be rechecked at 100-millisecond
intervals until the Timeout value (above) has been reached. At that point, if the
screen still does not meet readiness requirements, an exception isthrown.

NOTE: Every Check Screen action checks the screen a minimum of two times.
Go-ahead doesn’t occur unless two consecutive checks are passed.

Thedefault value for Min Wait is 50 milliseconds. But regardless of the Min Wait
time, the screen will be checked onefinal time at the expiration of the Timeout
period, so that even if the Min Wait time is greater than the Timeout value, the
screen will still be checked once.

The Send Buffer Action

The Send Buffer action encapsulates “ keystroke data”’ (whether actually obtained
from keystrokes, or through a drag-and-drop mapping, or viaan ECMA Script
expression built with the Expression Builder) that will be sent to the host in a
single transmission at component execution time. When the Send Buffer action
executes, the buffered data are sent to the host in the form of a properly ANSI-
escaped byte stream.

The Send Buffer action can be created in several ways:

Performing Telnet Actions 39

+ InRecord mode, just begin typing after a Check Screen action has been
created. Keystrokes are automatically captured to a new Send Buffer action.

+ Right-mouse-click anywhere in the Action Model; a contextual menu
appears. Select New Action and Send Buffer.

+ Inthemain menu bar, under Action, select New Action and Send Buffer.

» To create a Send Buffer action using menu commands:

1 Right-mouse-click anywhere in the Action Model and select New Action,
then Send Buffer, from the contextual menu (or use the Action menu as
described above). The Send Buffer dialog will appear.

Send Buffer X|
() XPath: | |_| (®) Expression:
r'|sxunuua"l B -

[T Accept Key Strokes

[Apply H OK H Cancel]

2 TomapaDOM element’s contents to the buffer, click the XPath radio
button, then select a DOM from the pulldown list and type the appropriate
XPath node name in the text area (or click the Expression icon at right and
build the node name using the Expression Builder).

3 To specify the buffer’s contents using ECMA Script, click the Expression
radio button, then use the Expression Builder dialog to create an
ECMA Script expression that eval uates to a string.

4 To specify the contents of the buffer manually (by typing a string into the
text field), first check the Accept Key Strokes checkbox, then begin typing.
The Expression radio button will become selected automatically and every
key you presswill be entered into a quoted string in the text area. Control
keys (arrow keys, function keys, etc.) will automatically be translated to the
appropriate escape sequences. (See discussion below.)

5 Click OK.

40 Telnet Connect User’s Guide

Editing Text in the Send Buffer Dialog

When you arein “Accept Key Strokes’” mode, normal editing of text via
backspacing, cut/paste, etc. is not possible, since every keystroke is captured to
the dialog as an escaped string-literal value. For example, if you hit the
backspace key, avalue of “\u0008” will be appended to the string buffer, instead
of the previous character being deleted. This may not be what you want.

To edit the buffer contents directly (using cut, paste, backspace, and so on), first
uncheck the Accept Key Strokes checkbox. Then edit your text. To return to key-
capture mode, check Accept Key Strokes. Any additional keystrokeswill then be
trang ated to escape sequences and appended to the existing text.

On some occasions, you may wish to enter an escape value manually. You can do
this by unchecking Accept Key Strokes and typing the value in question
anywhere in the current text string. If you don’t know the escape sequence for a
given control key, you can find it by clicking the Expression icon to the right of
the text area (which brings up the Expression Builder dialog) and then
doubleclicking the appropriate control-key entry in the picklist in the upper part
of the Expression Builder dialog.

If you want to know what a given escape sequence meansin plain English,
simply select (highlight) the escape sequence(s) of interest and let the mouse
hover over the selection. See below.

Send Buffer x|
) XPath: | (2] (@ Expression:
"UDDDSlUDDDalqubH Quooog” @ o

[Translated: "W0008<LF=<ESC =[19"<HT ="|

Accept Key Strokes

[Apply J[oK][cancel]

A hover-help box will appear, containing the escape sequence’s plain-English
tranglation. For example, in the graphic above, the escape sequence “\u0008” has
been highlighted and the mouse is hovering over the selection. The hover-help
box shows that the combination “\u0008” is the Telnet equivalent of Backspace
(BS) or Control-H.

If agroup of escape sequencesis selected, you will see (in the hover-help box) all
character equivalents, wrapped in angle brackets. For example, upon selecting
the sequence “\u001b[A\u000a\u000d”, hover-help will display:

< Arrow Up > < LF = CTRL+J > < CR = CTRL+M >

Performing Telnet Actions 41

All specia (non-printing) keys and their ANSI equivalents are listed in “ Telnet
Keyboard Equivalents’ in Appendix B.

About the Send Buffer Action and Record Mode

When you are building an Action Model in Record mode, anew Send Buffer
actioniscreated for you automatically if you click the Check Screen button, then
begin typing. This makesit easy to build an Action Model, since all you have to
doisclick the Check Screen button, begin typing (or drag an element from the
Input DOM into the prompt area onscreen), wait for the next screen to arrive from
the host, click Check Screen, begin typing (or dragging), etc., repeatedly. In this
fashion, a sequence of Check Screen and Send Buffer actions can be built very
quickly and naturally.

When a Send Buffer action has been created automatically for you, all of your
subsequent keystrokes will be captured to the buffer until one of the following
ocCurs:

+ You perform aright-mouse-click.

+ You begin to create anew action in the Action Model.

+ Youdrag datainto or out of the Native Environment Pane.
+ You toggle the Record button to the non-recording state.

How Keys Are Displayed in the Action Model

When a Send Buffer action is created, the keystrokes that are captured in real
time are displayed in the Action Model either as plain a phanumeric values or (in
the case of non-printing characters) in an escaped format. For example, an up
arrow may be translated into \ u001b[a, where \u001b represents the two-byte
hex Unicode value of aparticular ANSI control code and [a represents the rest of
the ASCI| escape sequence for up-arrow. Backspace and delete keystrokes are
also represented as escape sequences. Therefore, if you wish to correct typosin
your Send Buffer action, you may want to doubleclick the action in the Action
Model (which brings up the Send Buffer dialog) and edit the buffer string by
hand.

Telnet-Specific Expression Builder Extensions

The Connect for Telnet exposes a number of Telnet-specific ECMA Script
variables and object extensions, which are visiblein Expression Builder picklists.
The Telnet-specific items are listed under the node |abelled “ Telnet.” There are
three child nodes: Login, Screen Methods, and Keys. Seeillustration bel ow.

42 Telnet Connect User’s Guide

x|
Wariables: FunctionsMethocds: Operators:

[« > Input [*-Custom Scripts [*-Math

[t > Temp [*-Document [#}-Relational
[« > Qutput [#-ECMAScript [#l-Logical
[<> _SystemFault [+ Extended ECMAScrint [+ String
[#-< > PROJECT [=-Telnet

[#]-«< > Repeat Aliases [#-Login

[+]-<< > Node Aliases [2]-Sereen Methods

} A

[Help @ Validate J[0K][cancel

picktree nodes

Telnet-specific

Login

Telnet Connection Resources have two global variablesthat are accessible from
Expression Builder dialogs: the USERID and PASSWORD. These properties
(available under the Login node of the picktree) specify the User ID and
Password values that may be requested by the host system when you connect.
You can map these variables into the terminal screen, which eliminates the need
for typing user and password information explicitly in amap action.

NOTE: You can also create a Send Buffer action where the XPath source is
defined as $PASSWORD.

Screen Methods

When an Expression Builder window is accessed from aMap or Function action
in the Telnet Component, the picklists at the top of the window expose special
Telnet-specific ECM A Script extensions, consisting of various methods of the
Screen object and predefined escape sequences corresponding to various
“specia keys’ on the virtual terminal’s keyboard.

Hover-helpisavailableif you let the mouse loiter over a given picktree item.
(Seeillustration.)

Performing Telnet Actions 43

x|
“ariahles: FunhctiohzMethocds: Cperators:

[+« > Input [£l-ECMAScript |Z| [#)-Math

<> Temp [£l-Extended ECMAScript [#)-Relational
[#-<> Output [#)-Logical

[{-<> _SystemFault [#-Login [#-String

[#-<< > PROJECT
[+« > Repeat Aliases
[#]-«< > Node Aliases

[Z)-Screen Methods

getAttribute{aRow, aColumn)
getCursorColumn()

getCursorRow()
getColumnCount()
getPrompt)
getRowCount()

getTextAt|int getRowCournt?)
extehd Composer extension method.

getTextrr Returnz number of rowes from the Telnet screen.
setText(asTex |
 [H-Keys v
(<] I 2]
[validate][oK [Cancel |

In addition, you can obtain more complete online help by clicking Help in the
lower left corner of the dialog.

The Screen object offers methods with the following names, signatures, and usage
conventions:

int getAttribute(nRow, nColumn)

This method will return the display attribute value of the character at the screen
position given by nRow, nColumn. The complete set of possible display attribute
valuesislisted in Appendix C. An example of using thismethod is:

if (Screen.getAttribute(5, 20) ==1) // if character at 5,
20 is bold

/1 do somet hi ng

int getCursorColumn(void)

44

This method returns the current column position of the cursor in the Telnet
emulator screen (Native Environment Pane). Column positions are one-based
rather than zero-based. In other words, in 24x80 mode, this method would return
avaue from 1 to 80, inclusive.

Telnet Connect User’s Guide

int getCursorRow(void)

This method returns the current row position of the cursor in the Telnet emulator

screen (Native Environment Pane). Row positions are one-based rather than zero-
based. In other words, in 24x80 mode, this method would return avalue from 1 to
24, inclusive.

int getColumnCount(void)

This method returns the native column-width dimension of the current screen.
(Dueto possible mode changesin the course of host-program execution, thisvalue
can change from screen to screen. Do not depend on this value staying constant
over thelife of the component.) When the program isin 24x80 mode, this method
will return 80. To retrieve al of the contents of row 15 of the current screen,
regardless of its native dimensions, you could do:

var myRow = Screen. get Text At (15, 1, Screen. get MaxColum());
String getPrompt(void)

Theget Pr onpt () method returnsthe string representing all charactersin the
cursor’srow, starting at column 1 and continuing to, but not including,

get Cur sor Col unm() —in other words, everything from the beginning of theline
to the cursor position. (Thisisthe same as the default prompt string shown in the
Check Screen dialog.) Example:

var thePronpt = Screen. getPronpt();
if (thePronpt().toLowerCase().indexOf("password") !'= -1)
Screen.setText(PASSWORD);

int getRowCount(void)

This method returns the native vertical dimension of the current screen. (Due to
possible mode changes in the course of host-program execution, this value can
change from screen to screen. Do not depend on this value staying constant over
the life of the component.) When a program isin 24x80 mode, this method will
return 24. To loop over all rows of ascreen, regardless of its native dimensions,
you could do:

for (var i =1; i <= Screen.get MaxRow(); i ++)
{
var nmyRow = Screen. get TextAt(i, 1, Screen.get MaxColum());

Performing Telnet Actions 45

/1 do sonething with myRow
}

String getText(nOffset, nLength)

Thismethod returnsthe string of characters (of length nLengt h) that occursinthe
Screen object at the byte offset given by nOf f set . Note that the offset is one-
based, not zero-based. Thus, to obtain all of a24 x 80 screen asan ECMA Script
String, you would do:

var whol eScreen = Screen.get Text(1, 24 * 80);

Any attempt to obtain character data beyond the bounds of the screen buffer will
result in an exception. For example, the following call will fail:

var whol eScreen = Screen.getText(1, 1 + 24 * 80); // ERROR

String getTextAt(nRow, nColumn, nLength)

This method returns an ECMA Script String that represents the sequence of
characters (of length nLengt h) in the current screen starting at the row and
column position specified. Note that nRowand nCol unm are one-based, not zero-
based. A zero value for either of these parameterswill cause an exception.

To obtain all of row 20 of a 24x80 screen, you would do:

var myRow = Screen. get TextAt(20, 1, 80);

The get Text At () techniqueisused internally in drag-and-drop Map actions
involving screen selections created as described in “ Selecting Continuous Data”
further below.

String getTextFromRectangle(nStartRow, nStartColumn,

46

nEndRow, nEndColumn)

This method returns a single String consisting of substrings (one per row)
comprising all the characters within the bounding box defined by the top left and
bottom right row/column coordinates specified as parameters. So for example, in
24x80 mode, you could obtain the upper left quarter of the screen by doing:

Telnet Connect User’s Guide

var toplLeftQuadrant =
Screen. get Text FronRect angl e(1, 1, 12, 40) ;

Theget Text Fr onRect angl e() method isused internally in drag-and-drop
Map actions involving rectangular screen selection regions created using the
Shift-selection method (see “ Sel ecting Rectangular Regions’ below).

Notethat the string returned by this method contains newline (\u000a) delimiters
between substrings. That is, there will be one newline at the end of each row’s
worth of data. The overall length of the returned string will thus be the number of
rows times the number of columns, plus the number of rows. For example,

Scr een. get Text FronRect angl e(1, 1, 4, 4) . | engt h will equal 20.

void setText(String)

Theset Text () method allowsyou to send datato the screen (and therefore the
host application) programmatically, without explicitly creating a Send Buffer
action. Example;

var nyPhone = "(203) 225-1800";
if (Screen.getPronpt().indexXd("Phone") !=-1)

Screen. set Text (myPhone + "\r"); // send string + CR

Keys

The Keys node of the Telnet-specific picktree in the Expression Builder dialog
has child nodes|abelled Common Keys, NumPad K eys, Control Keys, and Other
Keys. By doubleclicking the picklist items under these categories, you can
automatically generate the ANSI escape sequence for any non-printing
characters you wish to transmit to the host. The detailed contents of these
picktree items can be found in Appendix B.

Screen Selections in the Telnet Connect

There are two main ways of selecting data on the terminal screen (in the Native
Environment Pane) at design time, for purposes of dragging out. One method
selectstext in a continuous stream, from one screen-buffer offset to another; the
other method selectstext in an arbitrary onscreen bounding box or region.

Performing Telnet Actions 47

Selecting Continuous Data

When you drag across multiple rows of datawithout holding the Shift key down,
all charactersfrom theinitial screen offset (at the mouse-down event) to the final
screen offset (at mouse-up) are selected, as shown in the graphic below. (The

selected text is“reversed out.” A partial row has been selected, followed by three

complete rows, followed by a partial row.)

Tou searched for the AUTHOR: clancy tom

ATTTHOR. C Tom, 1947-
TITLE) of J Tow Clancy.

DEICRIFT 706 p. 24 cw.
NOTE 11/93, c.l $25.35 gift.

I (alk. paper) :

LOCATION CALL NO.

ck Lewel 5

Main

PIELIGHER s z.P. Putham's Sons, cl994.

SUBJECT Ryan, Jack (Fictitious character) -- Fictiom.
es -- Fiction.

CONAULS:&1] Locations

s

ATLABLE
AVAILABLE

Asindicated in the component editor window’s status line (lower |eft), the
selection in the above example actually begins at row 5, column 26, and ends at
row 9, column 35. If you wereto drag this sel ection out of the Native Environment
Pane, into aDOM, a Map action would be generated as follows:

— MAP Screen.getTextAt(5,26,329) TO $OutputInguinfResponsenfo

Noticethat the get Text At () method isused. This means the captured screen
characters form one string, which is mapped to Output/I nquiry/Response/l nfo.
No newlines or other special characters are inserted into the string. (Areas of the
screen shown in black are smply represented as space characters in the string.)

48 Telnet Connect User’s Guide

Selecting Rectangular Regions

Sometimes you may not want the selection behavior described above. In certain
cases, screen datamay be grouped into zoneswith their own natural boundaries.
For example, in the screen shown previoudly, thereisabox two-thirds of theway
down the screen containing information on the availability of a given book. You
may want to capture (for drag-out purposes) just the data enclosed within this
particular rectangular region on the screen. To do this, first hold the Shift key
down, then drag your mouse across the portion of the screen that you want to
select. The selected areais highlighted and the appropriate row/column start and
end points are displayed in the status line of the component editor’s window, as
below:

Tou searched for the AUTHOR: clancy tom

AUTHOR
TITLE

NOTE 5 g
SUBJECT : [Fi e . L

Selected via iction.
LEE 0 (s Shift-Drag

LOCATION CALL HO. STATUS
1l = CCAT Stack Lewel 5 P33553 La4b D43 1994 AVAILARLE
Z = SCAT Main PI3553.L245 D43 1984 AVAILARLE

ey NUMEER to more information, OR

¥ ATTHOER.
options

Inthisinstance, when you drag the rectangular highlight region out of the Native
Environment Pane, into aDOM, the resulting Map action uses the

get Text Fr onRect angl e() method described on page -46.The resulting
action looks like:

Performing Telnet Actions 49

| — MAP Screen.getTextFromRectangle(16,2,18,67) TO $OutputinquiryResponse/Status |

This method operates in a different fashion from get Text At () , because the
string returned by get Text Fr onRect angl e() iswrapped at the rectangle’s
right edge. Newlines are inserted at the wrap points as discussed in the API
description of get Text Fr onRect angl e() , further above.

About the Sample Program

For demonstration purposes, the CONSUL S program is used in the example that
follows. This Telnet program is offered online by the Connecticut state university
library system to allow usersto search for books and periodicals by title, author,
and other criteria.

Recording a Telnet Session

50

The Telnet Component differs from other components in that a major portion of
the Action Model is built for you automatically. This happens as you interact
with the host in the Native Environment pane as part of alive Telnet session.
Composer records your interactions as a set of auto-generated actionsin the
Action Model. Typically, in other exteNd Composer components (such as a
JDBC Component), you must manually create actionsin the Action Model,
which then perform the mapping, logging, transformation, communication, and
other tasks required by the component or service. By contrast, when you create a
Telnet Component, you record requests and responses to and from the host,
which end up as actions in the Action Modél. In addition, you can add standard
actions (Map, Log, Function, etc.) to the Action Model just the same asin other
components.

NOTE: In order to successfully build a Telnet Component, you should be familiar
with Telnet commands and the specifics of the application you intend to use in your
XML integration project.

The following example demonstrates several common tasks that you will
encounter in building Telnet Components, such as:

+ Creation of Check Screen actions

+ Automatic creation of Send Buffer actions

+ Drag-and-drop mapping of Input DOM elements to Telnet-screen prompts

+ Drag-and-drop mapping from the Native Environment Screen to the Output
DOM

Telnet Connect User’s Guide

+ Theuse of ECMAScript expressions to manipulate Screen object elements

Inthefollowing example, we start with an input XML document that containsthetitle
and author of abook. The goal of our Web Service isto do an author search online,
using the CONSUL S Telnet app, to seeif abook by the giventitle existsin thelibrary
system. If so, we retrieve its ISBN (International Standard Book Number) codein an
Output DOM. Whether we succeed or not, we insert an appropriate status message in
the Output DOM.

> To record a Telnet session:

1 Create a Telnet Component per the procedure shown in “To create a new Telnet
Component:” on page -23.

2 Once created, the Telnet Component Editor window appears, with the words
“Telnet Terminal Emulation” in the center of the Native Environment Pane,
indicating that no connection has yet been established with a host.

¥ exteNd Composer: MyStulf [Telnet Terminal: Sun-Desktop-1 Console]

File Edit View Component Aclion Animate Tools Window Help 0D -8 x|
O=zE8>x00 X e 7B Novell

Input Data

(=~ = BOOKINQUIRY

Tom
Clancy
Debt of Hanor

Telnet Terminal Emuiation

e s e

Fro @ e = @

B > inquiryResponse Libraryinguiry =
. ~ = Status
15BN

— 4 1 hE
Project | Registries <|I | »I

T
4 Output

[
3 Click the Record button. You are automatically connected to the host that you

selected in the Connection Resource for the component. An input screen appears
in the Native Environment pane as shown below.

Performing Telnet Actions 51

52

NOTE: The remainder of this example shows screens from a state
university library system’s online book locator service. There are many similar
Telnet services available online; consult your favorite Web search engine to
obtain IP addresses of such services.

E exteNd Composer: MyStuff [Telnet Logon: LogonT elnet] M [=1 B3
File Edit View Component Action Animate Tools Window Help EEINCET
D@38 00 X 7 =< Novell

& nput |Data
Bl BOOKINQUIRY
B AUTHOR
(= P FIRSTNAME |Tom

LASTNAME Clancy
e TITLE Dbt of Honor
COMMENT

n TITLE

= C.‘.‘.J.‘,mj.', T ‘..”D;tg... snsrsscem

= inquinfesponss
I o Status
1 i 158N

L) BEE @0
‘= Libranyinguiny
. [B CHEGK SGREEN for cursar position, where Row = 21 and Column = 56

4 Click the Create Check Screen Action button in the toolbar. A new Check

Screen action appearsin the action list. It defaults to a go-ahead condition
based on the current cursor position (which we assume will aways be 21,56
on this screen, with every future execution of this component—an
assumption worth questioning). We will tentatively accept the default
Timeout of 1500 milliseconds for this Check Screen action, since the
CONSULS program has arelatively quick response time. (Even so, careful
testing of the component should be done in order to verify that this timeout
valueis safe))

Typetheletter A (for Author) in the input screen of the Telnet environment
pane. A new Send Buffer action appears automatically in your component’s
action list. Notice that the ‘A’ you typed is already in the action.

NOTE: Telnet commands are often case-sensitive and should generally be
entered in ALL CAPS.

Telnet Connect User’s Guide

In this part of this particular host application, merely typing asingle
character (without hitting Enter or Return) causes a new screen to appear.
The host, in other words, processes the typed character immediately. This
isacommon Telnet idiom. You will not always need to hit Return or Enter
to get to a new screen.

W exteNd Composer: MyStuff [Telnet Logon: LogonT elnet]

File Edit View Component Acion Animate Tools Window Help 0 - & x
d=zE8&8/>00X% 07« Novell
® Input Dat |
s e aomeoR ¢ |
< > BOOKINQUIRY
ER<>pUTHOR |
FIRETNAME [Tom |
LASTNAME Clancy | as ‘h of the AUTHOR
TITLE Debt of Honor |
COMMENT | ABOUT an author

personal nane

in leonard

& Oulput Data

=] InquiryResponse
Status
I1SBM

|
e EREE N

|| = Librannguiry

| ¢ BB CHECKSCREEN for cursor position, where Row =21 and Colurn =56

,’ [-4 BUFFER A

New Send Buffer action appears here.

Ready fTerminal: Disconnected

Inresponseto ‘A’, the host program sends the new screen shown above.

Because we wish to terminate the Send Buffer action and go on to interact
with the new screen, you should click the Check Screen button in the
toolbar, at this point, to allow the component to “sync” our next action
with the current screen. Click the Create Check Screen Action button
now. The new Check Screen action appearsin the action list.

Performing Telnet Actions 53

54

10

NOTE: Were you to simply start typing your next command at this point
(without first creating a new Check Screen action), the command would be
appended to the still-active Send Buffer. In essence, you would be creating a
“type-ahead” buffer. At runtime, the buffer (containing two sets of screen
commands concatenated together) would be sent all at once. While this
would work okay in this particular program, the type-ahead technique could
fail in other real-world Telnet programs. Therefore, use caution when
deliberately overloading a Send Buffer action. A “best practices” approach is
to create a new Check Screen action for every new screen that appears
during your session.

Drag the BOOKINQUIRY/AUTHOR/LASTNAME node from the Input
DOM to the cursor position in the Native Environment Pane. “ Clancy”
(without quotation marks) appears in the prompt zone and a new Send
Buffer action appears automatically in the Action Model.

NOTE: This Telnet application is expecting the author’s name to be
provided as Last Name followed by First Name (with a space in between).
Hence, we dragged the LASTNAME element first.

Hit the spacebar on your keyboard. Notice that a space character is added to
“Clancy” in the Native Environment Pane. Also, anew Send Buffer actionis
created containing just the space character.

Drag the BOOKINQUIRY/AUTHOR/FIRSTNAME element from the Input
DOM to the cursor position in the Native Environment Pane. “ Tom”
(without quotation marks) appears after “Clancy ” in the prompt zone and a
new Send Buffer action appearsin the Action Model.

Note that the terminal screen has not changed (the host has not acted on our
input), because it is waiting for Return or Enter. Press Return or Enter to
tell the host that our query string (the author’s name) is complete. A new
Send Buffer action appears, containing \u000a, and the Native Environment
Pane updates to reflect the query results.

Telnet Connect User’s Guide

W exteNd Composer: MyStuff [Telnet Logon: LogonT elnet] [_[O]x]

File Edit View Component Acion Animate Tools Window Help @A -8 x
D@8 >00x%0 7R Novell
Input Data I
= BOOKINQUIRY ,
B> AUTHOR |
i FIRSTNAME [Tom I
LAGTNAME |Clancy IM| 12 entries foundl entries 1-5 are: LOCATIONS
TITLE Debt of Honor | §
COMMENT 1

|
|

Drag selected text
to Output DOM

|

Output Data f
< > InguiyResponse p
Status 12 entries
15BN

f@guﬁg. q)E‘ O,,, Hi —_—

1| LibranAnguiry

- @ CHECK SCREEN for cursor pasition, where Row =21 and Calumn = 56 '
-[B$ sEND BUFFER™a"
D CHECK SCREEN for cursor position, where Row =1 and Column =24
...[B SEND BUFFER $InputBOOKINQUIRY/AUTHORLASTNAME
.| SEND BUFFER™"
| D SEND BUFFER $input BOOKINQUIRY/AUTHORFIRS TNAME
|| ..B) SEND BUFFER™ w000a"

E ~...[BBy CHECK SCREEN for cursor position, where Row = 24 and Column = 38
| — MAP Screen.getTextat(2,1,19) TO $OutputinguiryResponse/Status

— | of ,:.

Ready / |

/

New action appears here

11 Click the Create Check Screen button in thetoolbar. A new Check Screen

12

action appears, with a default go-ahead condition based on the cursor
location of row 24, column 38. (Row 24 is the bottom row and column 38
is about halfway across the 80-column screen; see screenshot above.)
There is no need to change the Check Screen default in this case.

In the Native Environment Pane, select the terminal-screen text in row 2,
from column 2 to column 18, by clicking and dragging the mouse.

NOTE: Notice that as you click and drag, the onscreen row/column
coordinates of the selected area are displayed in the status line of the
component editor window (lower left corner).

Performing Telnet Actions 55

13 Lift your finger off the mouse button and place the mouse over the selected
text. A finger cursor will appear. Click-drag the selection to the Output
DOM InquiryResponse/Satus node. The selected text isinserted into the
DOM at the desired location, and a new Map Action is generated in the
Action Model automatically.

14 Click the Record button to turn recording off.

Looping Over Multiple Rows in Search of Data

56

In the CONSUL S example (above), the goa isto find the ISBN (International
Standard Book Number) information for the book we're interested in and map it
into the Output DOM. Therefore, when the CONSUL S application shows usthe
result of our author search, we need to scan that screen, looking for the book title
in question. If thetitle exists, our next action should be to send the corresponding
line number, which will cause CONSUL S to display a new screen showing
detailed information (including I SBN) for the book.

By simple visual inspection of the terminal emulator screen (see previous
illustration), it's easy to see that Tom Clancy’s Debt of Honor islisted asline-item
number 3 in the search-results screen. But this only holds true for this particular
search. A search on adifferent author/title combination might yield ahit at a
different line position. (Or if Tom Clancy writes more books, Debt of Honor could
assume a different listing position.) To determine the line position of the book at
runtime, we should iterate through lines 4 through 11 of the terminal screen,
searching for the string stored in the BOOKINQUIRY /TITLE node of our Input
DOM. The next example shows how to do this, building on the previous example.

» To search for a data item one row at a time:

1 At thebottom of the Action Model, add a new Repeat While action.
(Perform aright-mouse-click, then select New Action, Repeat, and Repeat
While.) The Repeat While dialog appears.

Telnet Connect User’s Guide

Repeat While |

Source
While:
|r0windex =8 B ~

Index Variable:
iowindex

Target
Alias:

Representing:

(®) XPath: rnput [>] () Expression:

| g

ok [cancet]

In the While text-entry box, type an expression representing the loop-
termination condition you wish to apply to thisloop. In this case, our
condition involves a check of the index variable, r ow ndex. We will be
checking 8 rows of screen datain all.

In the Index Variable text-entry area, enter the name of your index
variable (in this case, r o ndex).

Since we are only retreiving a single value (one book) from the screen, we
do not need tofill in the optional Target portion of the dialog. Therefore,
just click OK. A new Repeat While action is added to the component’s
Action Model.

In this example, we're looking for a specific string within a given row. If
the string is found, we will take several actions, then break out of the loop.
We will perform our row parsing and string search within a Decision
Action. Create anew Decision Action by clicking the right mouse button
and selecting New Action > Decision from the contextual menu. The
Decision Action dialog appears.

Performing Telnet Actions 57

58

Decision X|

Decision Expression:

war myRow = Screen.getTextatrowindex+4, 1, @ =
a0 toLowerCased;

war bookTitle =

Stringilnput XPath"BOOKIMNAUIRYTITLE) toLowerCasel;

myRow indexOff hookTitle) 1= -1|

[_ok [Cancel]

6 Enter aDecision Expression. In this example, the three-line expression is:

var nyRow = Screen. get Text At (r om ndex+4, 1,
80) .t oLower Case() ;
var bookTitle =
String(!l nput. XPat h(" BOOKI NQUI RY/ TI TLE")) . t oLower Ca
se();

nyRow. i ndexOF (bookTitle) !'= -1

Thefirst line uses the Screen object’s get Text At () method (see page -46)
to retrieve the 80 characters of data (i.e., one full line, in a 24x80 terminal
screen) at r owd ndex + 4. We add an offset of 4 to the index variable
because our search of screen data should begin at row 4 and continue through
row 11. (The index variableitself will have valuesfrom 0 to 7. The loop
terminates when r ow ndex reaches 8.)

The second line of code above simply retrieves the book title as alowercase
string from the Input DOM. (Notice that because we don’t want our search to
be case-sensitive, we force both strings—the query string and the target-
object string—to be lowercase.)

Thefinal line of codeisthe actual “condition check.” It relies on the core-
ECMAScript String method i ndexdf () , which returns —1 when the
argument string is not a substring of the string on which the method is being
called.

In the TRUE branch of the Decision Action, create a new Send Buffer
action. (Right-mouse-click, then choose New Action > Send Buffer from
the contextual menu.) The Send Buffer dialog appears.

Telnet Connect User’s Guide

8 Click the Expression radio button and then enter an ECM A Script
expression in the text-edit area. In this example, we' ve entered:

var item = Screen. get Text At (rowl ndex + 4, 1,10);
var regex = new RegExp("\\d+");
i tem mat ch(regex)[0];

Thefirst lineretrieves the first ten characters of datainthe “hit” row using
the get Text At () method. Within this string, we want the first substring
of numeric characters, representing the CONSULS line number of the
book (i.e., 3). One way to extract this substring is with the ECMA Script
String method, mat ch() , which takes aregular expression object asan
argument. On success, this method returns an array, of which the zeroth
item is the matched text. Our regular expression consists of backslash-d
followed by a plus sign, which means “one or more digit charactersin a
row.”

NOTE: The RegExp constructor takes a String argument, in which
backslashes that are to appear as literal backslashes “must be escaped
with a backslash.”

The net result of these lines of ECMA Script is that the number preceding
the book title in the target row (namely, ‘3') is supplied to the host
application via a Send Buffer action. No newline need accompany the
number ‘3. Upon receiving this number, the host application will
immediately send back a new screen giving detailed information about the
indicated book, as shown bel ow.

Performing Telnet Actions 59

60

10

11

Tou ched for the AUTHOR: clancy tom

ATTTHOR Clancy, Tom, 19
Debt of hon

1, (Fictd —- Fictiom.

Intelli -- Fiction.

ISEN

Create anew Check Screen action by performing a right-mouse-click and
selecting New Action > Check Screen from the contextual menu. The
Check Screen dialog appears.

Select the Expression radio button and enter “true” in the text-edit area. Set
aMin wait value of 100, which (in this case) we know from experienceis
generous.

NOTE: The combination of “true” and 100 means we will automatically
accept any screen data that get sent within 100 milliseconds.

Create a new Function Action. (Right-mouse-click: select New
Action > Function.) In this action, we will retrieve the first ISBN number
on the page, if one exists, and store it into an ECM A Script global.

The expression we will useis:

this.isbn = "Not found"; // set up gl obal
var screen = Screen.getText(1, 24 * 80); // fetch whole
screen
if (screen.indexOF("ISBN) !'=-1) // if ‘1SBN occurs,
get it

this.isbn = I Trinm(screen.split('ISBN)[1]).split("
")[0ol;

Telnet Connect User’s Guide

Thefirst line above simply declares and initializes an ECM A Script global
variable (which, on success, will be overwritten with avalid ISBN value).

The second line of code retrieves the entire screen buffer as a string and
placesitinalocal variable, t ext . (We assume here that we're in 24x80
mode.)

The third line checks the screen buffer to see if “ISBN” occursin it. If so,
we split the buffer into an array of substrings using “1SBN” asthe
delimiter. The array member at index 1 will contain the ISBN number,
trailed by a partial screen’sworth of information (and possibly containing
one or more leading space characters). The custom ECMA Script function
| Tri m() isused to trimming leading spaces, while the split method is
again employed to break our string into an array of substrings, assuming
spaces to be the delimiters. The zeroth item of thisfinal array isthe ISBN
string that we' re looking for. See the series of graphics below.

Performing Telnet Actions 61

screen.split ('ISBN') [0]

ATTTHOE.
TITLE

Intelli

[alk. paper)

+ = ADDITIONAL
P,,E, Y.+

screen.split ('ISBN') [1]

62 Telnet Connect User’s Guide

leading spaces

1Trim(screen.split('ISBN') [1])

o y

1 {alk. paper) :

ATUTHOR

(screen.split ('ISBN') [1]) .split (" ') [0]

12 On finding the information we' re looking for, we no longer need to iterate
through line items. Therefore, create a Break Action to break out of the
loop. (Right-mouse-click; New Action; Break.)

13 Create aMap action that mapst hi s. i sbn to the InquiryResponse/l SBN
node of the Output DOM.

The completed Action Model looks like this:

Performing Telnet Actions 63

ISR ibrandnguiry

........ @ CHECK SCREEM for cursor position, where Row =21 and Calumn = 56
........ @ SEND BUFFER “A™
........ B3, CHECK SCREEN for cursor position, where Row = 1 and Column = 24
........ B SEND BUFFER $Input/BOOKINQUIRY/AUTHORLASTNAME
..... B SEND BUFFER™"
. |BBy SEND BUFFER $Input/BOOKINQUIRY/AUTHORFIRSTHAME
.. BBy SEND BUFFER " w000a"
........ @ ZHECK SCREEM for cursor position, where Row =24 and Column = 38
—4 MAP Screen.getTextAt(2,1,19) TO $OutputinguingResponse/Status
B G WHILE rowlindex < 8 INDEXED BY rowindex
£--Loop Action

é-...?'[v IF var myRow = Screen.getTextAtirowindex+4, 1, 80).toLowerCase{y;Cvar bookTitle = Strir

- TRUE

IE SEND BUFFER war item = Screen.getTextAt{ rowindex + 4, 1,10);Cvar regex = ne
@ CHECK SCREEM for Expressian: true
- fix) CALL this.isbn = "Not found";DCiar t=t =Screen.getText{1,24 * 80x0If (t=t.indexOf('IS

Editing a Previously Recorded Action Model

64

You will encounter times when you need to edit a previously recorded action
model. Unlike the situation with other components, editing a Telnet Component
requires extra attention. When a Telnet Component executes, it plays back a
seguence of actionsthat expect certain screens and datato appear at certain times
in order to work properly. So when editing a component you must be careful not
to make the action model sequence inconsistent with the host program execution
seguence you recorded earlier.

In general, to ensure successful edits, the following recommendations apply:

+ Exercise extreme care when using Cut, Copy, and/or Paste to delete, move,
or replicate actionsin your Action Model. Actions that were created
automatically during a“Record” session will often create data dependencies
that are easily overlooked in the editing process.

+ When you need to use drag-and-drop to add new Map actionsto your Action
Model, click the Start Animation button in the Action Pane toolbar and step
to the line of interest in your Action Model; then Pause animation and turn
on Record mode. At this point, you can safely drag to and from the screen.
Following this procedure will prevent your Action Model from getting out of
sync with the host or conflicting with previously mapped DOM data.

Telnet Connect User’s Guide

Changing an Existing Action
Thefollowing procedure will explain how to change an existing action in a
previously recorded session.

» To Change an existing action in a previously recorded Action Model:

1 Openthe component that includes the Action Model you'd like to edit. The
component appears in the Telnet Component Editor window.

¥ extend Composer: helloworld [Telnet Terminal: filerename] i =[]
File Edit View Component Action Animate Tools Window Help BO -8 x
D@8 P08X 07 8RS Novell
|’@ File rename]
@ Input Data
=<3 GETLISTING
<> FILEMANME
Telnet Terminal Emulation
B Temp Data
(=] <> GETMNAMECHG
<> OLDMAME
< > NEWNAME
<> NAMECHGCM =N BE-R2@ I
2
B8 SEND BUFFER "S3adminw000a"
ax @ CHECK SCREEM for cursor position, where Row = 6 and Colurmn
D Output Pata B SEND BUFFER "S3adminiu000a”
[=)<>RESFONSE [EQ\ CHECK SCREEN for prompt:"$ "
<> NEWNAME . .
<> NEWLISTING B8 SEND BUFFER “cd jexporthome!S3adminisuejunkw000a™
B, CHECK SCREEN for prompt: "$ "
BB SEND BUFFER "pwdiu000a™
B, CHECK SCREEN for prompt: "% -
< >
Btart of action list [Terminal: Mot Connected

2 Navigate to the action in the Action Model where you'd like to make your
edit and highlight the action.

Performing Telnet Actions 65

b B B3 @ Il

= Libraryinguiry

E CHECK SCREEM far Expression: true

.. BBy SEND BUFFER "A"

E CHECK SCREEM far Expression: true

@ SEND BUFFER $input BOOKINQUIRYAUTHORLASTNAME

.| BBy SEND BUFFER ™ *

@ SEND BUFFER $input BOOKINQUIRY/AUTHORFIRSTHAME

[B SEND BUFFER " wi000a"

@ CHECK SCREEM far cursor position, where Row =24 and Column = 38
AP Screen.getTextAt(2,1.19) TO $OutputinguiryResponseiStatus

e T T T P T | LT,

3 Click the Toggle Breakpoint button (or press F2). The highlighted action
becomes red.

Start Animation

Toggle Breakpoint

@ B2 @

- Libraryinguiry

..... @ CHECK SCREEM for Expression: true

..... B8 SEND BUFFER A"

..... @ CHECK SCREEM for Expression: true

..... B SEND BUFFER $Input BOOKINQUIRY/AUTHORLASTNAME
..... B sEND BUFFER™ "

..... B8 SEND BUFFER $input BOOKINQUIRY/AUTHORFIRSTHAME
..... B8 SEND BUFFER " w000a"

..... @ CHECK SCREEM for cursor position, where Row =24 and Column =38
...... S AP Screen.getTextat(2,1,19) TO $OutputinguinResponse/Status

T T e T P T

4 Click the Sart Animation button. The animation tools (in the Actions
pane’s tool bar) become enabled.

66 Telnet Connect User’s Guide

«

Step to Breakpoint/End

mEEE el

= Librarynguiry

lﬂ CHECK SCREEM for Expression: true

.|B SEND BUFFER "A"

lﬂ CHECK SCREEM for Expression: true

@ SEMND BUFFER $Input/BOOKINQUIRY/AUTHORLASTNAME
..|E8 SEND BUFFER ™"

.|B SEMD BUFFER $InputBOOKINQUIRY/AUTHORFIRS THAME

Click the Sep to Breakpoint/End button. The Action Model executes all of

the act

ions from the beginning of the Action Model to the breakpoint you set

in step 3 above.

In the Component Editor tool bar, click the Record button.

¥ exteNd
File Edit

0 =

Record button

Composer:MyStuff [Telnet Term ik Librarylnguiry]

Wiew Component Action Arfmate Tools Window Help HD -8 x

= Xle s e g Novell

= Input

Data

<> BOOKINGQUIRY
<> AUTHOR

- FIRSTHAME |Aguinas

2 LASTHAME |Thomas

<> CONMERT

@ Qutput

pata dEBEEREIN

=]

@ CHECK SCREEM for Expression: true

B SEND BUFFER A"

@. CHECK SCREEN for Expression: true

B SEND BUFFER $input BOOKINQUIRYIAUTHORLASTHAME

B sEND BUFFER™ "

@ SEND BUFFER $input BOOKINQUIRY/AUTHORFIRSTHAME

B SEND BUFFER " w000a"

D CHECK SCREEN for cursor position, where Row =24 and Column = 38

ﬁg AP Screen.getTextAt(2,1,19) TO $0utputinguinyRasponse/Status

YT R TN

4| |

Performing Telnet Actions 67

7 Perform any additional drag-and-drop (or other) actions that you'd like to
make to the Action Model.

8 Turn off recording. (Toggle the Record button.)

9 Test your component.

Adding A New Action

The following procedure explains how to add anew action in a previously
recorded session.

> To Add a Action to a previously recorded Action Model:

1 Open the component that includes the Action Model you'd like to add an
action in. The component appears in the Telnet Component Editor window.

¥ exteNd Composer: helloworld [Telnet Terminal: filerename] =10 x|
File Edit View Component Action Animate Tools Window Help B0 -8 x
@8 vy00X @7 RE Novell
‘D filelename]
& Input Data
(=< > GETLISTING
<> FILENAME
Telnet Terminal Emulation
@B Temp Data
[=}-<> GETHAMECHG
<> OLDNAME
<> NEWNAME
<> NAMECHGCM SEEBE-EFS N
[BE¥ilerename A
[B SEND BUFFER "S3adminu000a™
= [BQ) CHECK SCREEM for cursar position, where Rowi = 6 and Colurn
X
(D Output Pata SEND BUFFER "S3adminu000a"
[5<> RESPONSE [ER) CHECK SCREEN for prompt $”
<> NEWMAME . _ .
<> NEWLISTING [BS SEND BUFFER "cd /exporthome/S3admin/suejunkiu000a
[B) CHECK SCREEN for prompt *$ "
[B SEND BUFFER "pwdi000a"
[B) CHECK SCREEN for prompt *$ " -
< >
Btart of action fist [Terminal: Mot Connected

2 Navigate to the action in the Action Model where you'd like to make your
addition and highlight the action.

68 Telnet Connect User’s Guide

i B =3 @ N

= Libraryinguiry

..... [E3) CHECK SCREEN for Expression: true

_____ [B® SEND BUFFER A"

..... @ CHECK SCREEM for Expression: true

..... @ SEND BUFFER $Input BOOKINQUIRY/AUTHORLASTNAME
_____ B SEND BUFFER™™

..... @ SEND BUFFER $input BOOKINOUIRY/AUTHORFRSTNAME
..... @ SEND BUFFER " wO00a™

..... @ CHECK SCREEM for cursar position, where Row =24 and Column =38
...... .;5 AP Screen.getTextat(2,1,19) TO $0utput InguinyResponseStatus

I I T T T O SN T

3 Click the Toggle Breakpoint button (or press F2). The highlighted action
becomes red.

Start Animation

Toggle Breakpoint

@ B R @ I

=] Libraryinguiny

..... @ CHECK SCREEM far Expression: true

..... @ SEND BUFFER ™A™

..... @ CHECK SCREEM for Expression: true

..... @ SEMD BUFFER $inputBOOKINGUIRY/AUTHORLAS TMAME
..... @ SEMD BUFFER™™

..... @ SEND BUFFER $input BOOKINQUIRY/AUTHORTFIRSTNAME
..... @ SEMD BUFFER " w0D0a"™

..... @ CHECK SCREEM for cursor position, where Row =24 and Column =38
...... .,3 AP Screen.getTextAt(2,1,19) TO $OutputinguinyResponse/Status

[T T P s P

4 Click the Sart Animation button. The animation tools (in the Actions
pane’s toolbar) become enabled.

Performing Telnet Actions 69

Step to Breakpoint/End

@ B3 @ Il

=] Librarynguiny

..... @. CHECK SCREEM far Expression: true

..... ES SEND BUFFER "A"

..... lE. CHECK SCREEM for Expression: true

..... ES SEND BUFFER $input BOOKINQUIRY/AUTHORALASTNAME
..... B SEND BUFFER ™™

..... @ SEMD BUFFER $input BOOKINQUIRY/AUTHORFIRSTHAME
..... @ SEMD BUFFER ™ w00D0a"™

..... lﬂ CHECK SCREEM for cursor position, where Row =24 and Column =38
...... ﬁ AP Screen.getTextaty 9) TO $Output InquinyResponse/Status

o BT TTI T T [T .

5 Click the Sep to Breakpoint/End button. The Action Model executesall of
the actions from the beginning of the Action Model to the breakpoint you set
in step 3 above.

6 Inthe Component Editor tool bar, click the Record button.

Record button

¥ exteNd Composer:MyStuff [Telnet Term-=I: Librarylnguiry]

File Edit View Component Action Arfnate Tools Window Help HD -8 x
lERE8/xdaxes7Be Novell
{2 Input Data
<> BOOKINGQUIRY

<> AUTHOR

2 FIRSTHAME |Aguinas
2 LASTHAME [Thomas
LS > DOMMENT

@Output Data . E’>§ [@ "'?ﬁ O “

=]

@ CHECK SCREEN for Expression: true

B SEND BUFFER A"

J§ CHECK SCREEN for Expression: true

B SEND BUFFER $input/BOOKINQUIRYIAUTHOR/LAS TNAME
@ SEMD BUFFER ™™

B SEND BUFFER $input BOOKINQUIRYIAUTHORFIRSTHAME
B SEND BUFFER " 00"

J§ CHECK SCREEN for cursor position, where Row =24 and Column = 38
ﬁ AP Screen.getTextAt(2, $OutputinguiryResponse/Status

70 Telnet Connect User’s Guide

Use Composer's drag and drop features to add new Map actions that interact

with the screen. The new action will be added directly under the highlighted

line.
Turn off recording. (Toggle the Record button.)

Test your component.

About Adding Alias Actions

If you are adding Map Actionsin aloop that are alias perform the following steps:

» To Add an Alias Action to a previously recorded Action Model:

1 Open acomponent.

2 Fromthe Action menu, select New Action, then Map. The Map Action

dialog box displays.
Il

SOurce

() ¥Path: | |_| (®) Expression:

Ecreen.getTextAt(meuunter+ 4,10,56)| E -~
i

Options

ol) - Dl |

Target

() ¥Path: |Fi|e|ist |1| (") Expression:

|£\uth0rName @

[Apply J[0K][Cancel |

Select the Expression for Source, and the dropdown box is grayed out.

Either type in the information, or click the Expression Builder button and
create a new expression.

Create an X Path to be represented by the alias. Click from the dropdown list
for the dias.

Click OK.
The new actionisinserted below the lineyou select. (New lineis highlighted

in the screen below to show it was inserted.

Performing Telnet Actions 71

sl

... By SEND BUFFER “Aw000a"

lﬂ CHECK SCREEN far prompt: " AUTHOR: "

... SEND BUFFER "Kleineru000a™

lﬂ CHECK SCREEM for cursor position, where Row =24 and Column =38

IZ—II'C' WHILE rowCounter < 4 CREATE Filelist REFRESENTING $Output/duthorListidat
.- Loop Action

...... —p WAP Screen.getTextAtirowCounter+ 4,6,1) TO $FilelistMo

AP Screen.getTextAt{rowCounter+ 4,10,56) TO $Filelist/AuthorName
...... —p MAP Screen.getTextAt{rowCounter+ 4,70,9) TO $FilelistNoEntry

i B CHFECK SCEEEM for Fynression Screenaet Textat(9 1.9 i =="all norts™

Deleting an Action
Thefollowing procedure explains how to delete an action in apreviously recorded
session
> To Delete an Action to a previously recorded Action Model:

Highlight the action line that you want to delete and click on the RMB and select
Delete from the menu. You may also highlight the line and press the Del ete button
on your keyboard.

B SENU BURFER TISWUUUE™

=T, IF Screen.o Edit Action

=) TRUE Disable Action

() CALL 1oggle Breakpoint String().lastindexOf(Scree
[=}-FALSE

T CALL Cut Stringi).lastindexOf{Scree
& maplisting | Copy LDMAME
i) CALL var ne i filename was: " + listing -
&5 WA newnal DelEte HGNEWNAME
f(x) CALLrenany, Find.. &3 haces(listing) + * * + StripS)
&5 maP renamy Find Mext MECHGNAMECHGCMD
ES senD BUFF__RePlcs [NAMECHGCMD

SE MAP $Temp/GETHAMECHGNEWNAME TO $Output RESPONSENE

Testing your Telnet Component

Composer includes animation tools that allow you to easily test your component.
On the Telnet Component Editor tool bar you'll find the Execute button, which

72 Telnet Connect User’s Guide

allows you to execute the entire Action Model and verify that your component
works as you intend. It isimportant to test a newly created Telnet Component to
be sure that Timeout valuesin all Check Screen actions are appropriate and that
Send Buffer and other actions work as intended.

To execute a Telnet Component:

1 OpenaTenet Component. The Telnet Component Editor window appears.

Execute button

¥ exteNd Composer: helloworld [Telnet Terminal: filerename/] : -(0Of x|
Fie Edit Wiew Component Action Animate Took Window Help HoO -8 x
ER@EyDOX @7 B Novell
"@ filerename }
E-) Input Data
[=)- <> GETLISTING
<> FILENAME
Telnet Terminal Emulation
E‘) Temp Data
(=) <> GETNAMECHG
<> OLDNAME
<> NEWNAME
<> NAMECHGCM SEHEBE2S N
z
|ES: SEND BUFFER "S3adminu000a"
ECHECK SCREEN far cursor position, where Row =6 and Colurmn
® output pata Bx B SEND BUFFER "S3adminu000a”
<> RESPONSE [EQ) CHECK SCREEN for prampt "
<> NEWNAME _ _
<> NEWLISTING B SEND BUFFER "cd jexporthome’S3admin/suejunkiu000a™
[EQ) CHECK SCREEN for prompt "$ "
[ES: SEND BUFFER "pwdwi000a"™
[EQ) CHECK SCREEN for prompt "$ " ”
< >
tart of action list [Terminal: Mot Connected

2 Select the Execute button. The actionsin the Action Model execute. If the
component executes successfully, a message appears as follows.

x

Execution campleted

3 Click OK.

Performing Telnet Actions 73

After executing the component, you may want to doubl echeck the contents of your
DOMsto be sure al of the appropriate data mappings occurred as expected. To
make all data elementsvisible, select Expand XML Documentsfrom the View
menu. This expands all of the parents, children, data elements, etc. of the DOM
trees, so that you can easily see the results of execution of the component.

Using the Animation Tools

74

Inthe Action Model, you'll find animation toolsthat allow you to test a particular
section of the Action Model by setting one or more breakpoints. Using these
tools, you can run through the actions that work properly, stop at the actions that
are giving you trouble, and then troubleshoot the problem actions one at atime.

»The following procedureisabrief example of the functionality of the animation
tools. For acompl ete description of all the animation tools and their functionality,
please refer to the exteNd Composer User's Guide.

> To run a Telnet Component using Animation Tools:

1 1.0OpenaTelnet Component. The component appearsin the Telnet
Component Editor window.
NOTE: Animation and Recording are mutually exclusive modes in the

component. In order to record during animation, you must either pause, or
stop animation and then turn on record mode.

2 Click the Sart Animation button in the Action Model tool bar, or press F5
on the keyboard. All of the tools on the tool bar become active, and a
connection is established with the host. The Native Environment Pane
becomes active.

3 Click the Sep Into button. The first Check Screen action becomes
highlighted.

Telnet Connect User’s Guide

@G F =0

Step Into nted Mode - less than 1 screen -
..... /7 Make sure that Input FILELIST FindFileSpec = *1xt so only a couple of

..... /7 Wake sure we have a login prompt, then a Password prompt, and final

..... E. CHECK SCREEN far prampt: "login: ™

..... @ SEND BUFFER "S3adminw000a™

..... @ CHECK SCREENM far prampt: "Password: ™

..... @ SEMD BUFFER "S3adminw0ooa™

..... [EQ\ CHECK SCREEN for prompt: "

..... /# Check the Screen Mode...

ﬁ MAF Screen.getMaxColumns() TO $Output FILELIST/Screen/Columns

ﬁ MAP Screen.getMaxRows() TO $Output FILELIST/ScreenRows

..... /f Switch to the file test directory... _I_"I
»

4 |

Click the Sep I nto button again. The Check Screen action (above) executes
and the next action becomes highlighted.

Click the Sep Into button repeatedly to execute actions one-by-one.

Click other buttons (Step Over, Run To Breakpoint, Pause, etc.) asdesired to
control the execution of the component. Note that you can set a breakpoint at
any time during execution by clicking the mouse on an action line and
hitting F2 or using the Set Breakpoint button.

Once execution is compl ete, the following message appears.

Animation x|

Animation completed.

Tips for Building Reliable Telnet Components
Thefollowing tips may be helpful to you in building reliable Telnet Components.

*

*

Always follow a Send Buffer action with a Check Screen action.

In Check Screen actions, accept the default go-ahead condition (based on
cursor position) only when you are certain that the absolute cursor position
will always be constant for the given screen. Many times, it is safer to write
a custom expression.

Performing Telnet Actions 75

76

A fast, accurate way to create a prompt-based Check Screen action during
recording is to highlight (select) the characters of interest immediately preceding
the cursor (up to but not including the cursor position), then click the right mouse
button and select Check Screen. Thisautomatically creates a Check Screen action
based on the prompt you highlighted.

When typing a custom prompt string under Prompt (in the Check Screen dialog),
remember to escape any quotation marks that might appear within the prompt
string.

Avoid using Check Screen go-ahead criteria based on variable information, such
as dates, times, etc.

Avoid Check Screensthat do nothing but wait a specified period of time using the
Min Wait setting. While this technique may work, it can create significant
performance bottlenecks.

Remember that the default Timeout values used in Check Screen actions are
calculated from actual response times during the design session. This has a
couple of implications. First, the default Timeout value may need to be increased,
for load-sensitive applications. Secondly, deleting a Check Screen action may
cause synchronization timeouts on subsequent executions. Careful testing will
reveal these sorts of problems.

When disjointed go-ahead criteria come into play, such as when the middle of a
screen remains constant during arepaint but the first and last lines change, you
may want to create two Check Screen actions then combine them into one action
that’s based on an expression.

Telnet Connect User’s Guide

Using Other Actions in the Telnet Component Editor

In addition to the Check Screen and Send Buffer actions, you have all the
standard Basic and Advanced Composer actions at your disposal aswell. The
complete listing of Basic Composer Actions can be found in Chapter 7 of the
Composer User’s Guide. Chapter 8 contains a listing of the more Advanced
Actions available to you.

Handling Errors and Messages

Intesting a Telnet Component, you may encounter errorsrelating to Check Screen
and/or Send Buffer actions. These result in adialog similar to the following:

warning x|

Error executing component: Timeout. Expected prampt text x§
was hot established

dti03001

| Details >> |2 0K

This section discusses possible error conditions and how to deal with them.

Check Screen Errors

Most of the errors you are likely to encounter at execution time will berelated to
Check Screen actions. It isimportant to realize that every one of the Check Screen
errors discussed below isatimeout error. If one of the errors described below
occurs, it meansthat the go-ahead criteriayou specified in the Check Screen setup
dialog were not met within the Timeout period. Therefore, you should first try to
determine whether slow host response might be the real problem (in which case,
the solution isto increase the Timeout value for the Check Screen actionin
question). If the error still occurs after the Timeout value has been increased, then
you can be surethe error isdueto an incorrect or inappropriate go-ahead condition
in your Check Screen action.

Thefollowing paragraphs describe typical error messages and their meanings.

Performing Telnet Actions 77

“Expected cursor position (Row = {0}, Column = {1}) was not established”

This error means that the Check Screen failed because the cursor was not at the
expected location at the expiration of the Timeout period. Perhaps the host
application changed, or the prompt line may be varying dynamically in some way
that you weren't anticipating, etc. It's also possible, as explained above, that the
Check Screen simply “timed out” for reasons having to do with heavy host |oad or
abad connection. Try increasing the Timeout value for the given Check Screen
action. If that doesn’t help (or if you suspect that the problem involves an
inappropriate choice of go-ahead criteria), try rewriting the Check Screen go-
ahead condition based on something other than fixed cursor coordinates. For
example, specify aprompt string, or use an Expression to validate the screen
contents in some way.

“Expected prompt text {0} was not established”

This error means that the Check Screen failed because the prompt was not
identical to the specified (expected) prompt string prior to the expiration of the
Timeout period. The prompt line may be varying dynamically in some way that
you weren't anticipating. Or (as explained above) the host response time may
simply have increased unexpectedly due to heavy load or other factors. If you
suspect that host latency is aproblem, try increasing the Timeout value for the
Check Screen action. Otherwise, rewrite your Check Screen go-ahead criteriato
be based on something other than a hard-coded prompt value. For example,
specify an Expression that validates the prompt in some way.

“Screen Check Expression {0} was evaluated as false”

This error happens when the Check Screen go-ahead is based on an ECMA Script
expression and the expression happensto eval uate asfal se at execution time. Once
again, it'simportant to realize that this sort of error can be triggered simply on the
basis of dow host response (timeout). When the host is slow to respond, it means
that your ECM A Script expression will be evaluated on the basis of whatever isin
the screen buffer as of the moment of timeout. If no data (or insufficient data) have
arrived, the expression is bound to evaluate as fal se.

Tofix thissort of problem, either increase the Timeout valuefor this Check Screen
action (if you suspect that the problem is host latency) or try modifying the logic
in your ECMA Script expression.

78 Telnet Connect User’s Guide

Send Buffer Errors

If you see an automatically generated Send Buffer action at the top of your Action
Model that containsthe string "\u001b[?1;2c" (or something similar), it meansthat
you have specified no terminal type (or perhaps an unrecognized terminal type) in
the Terminal Typefield of the Telnet Connection Resource setup dial og.

Send Buffer errorswill, in general, be rare. Be on guard, however, for Send
Buffersthat contain more than one screen’s worth of commands (so-called “type-
ahead” buffering). Such actions are easy to create accidentally. An Action Model
with overloaded Send Buffers may work correctly as you step through actions at
animation time, but can fail when the component-as-a-whole is executed, dueto
screen synchronization problems. The way to avoid problems hereisto make sure
that for every Send Buffer action, there is always be a corresponding Check
Screen action.

Errors Involving Connections

If connection pooling, which isdiscussed in detail in Chapter 6, isused, and there
has been an attempt to log on with abad UserID or Password, that connection
instance will not be usable and that member of the pool will be skipped over in
subsequent connection requests. An error message will be sent to the server log
saying “Logon connection in pool <Pool name> was discarded for User ID <User
ID>." You should check for messages of this sort during preproduction testing
and/or any time performance issues arise.

Finding a “Bad” Action

When you have alarge Action Model (containing dozens or hundreds of Check
Screen and Send Buffer actions), simply locating the action that's responsible for
an error can be a challenge. One way to find the problematic action isto:

1 Select and Copy the text after “ Expected” in the error dialog. (Click the
Details button if need be, to expose the full error description. Highlight the
relevant text, such as cursor coordinates. Then use Control-C to Copy.)

Click inside the Action Model.
Use Control-F to initiate a search.

Paste the error text into the search dialog.

o b W N

Execute the search.

Performing Telnet Actions 79

80

Of coursg, if you have multiple Check Screen actions that are based on identical
go-ahead criteria, the foregoing technique won't necessarily be helpful. If that's
the case, set abreakpoint at the midpoint of your Action Model, and run the
component. If the error doesn’t occur, move the breakpoint to a spot halfway
between the original breakpoint and the end of the action list. (Otherwise, if the
error does happen, set the breakpoint at a spot one quarter of the way down from
the top of the action list.) Run the component again. Keep relocating the
breakpoint, each time halving the distance between the last breakpoint or the top
or bottom of the action list, as appropriate. In this way, you can quickly narrow
down the location of the problematic action. (Using this “binary search” strategy,
you should be able to debug an Action Model containing 128 actionsin just 7
tries.)

Telnet Connect User’s Guide

Advanced Telnet Actions

Telnet-based computing differs from other types of computing (including other
terminal-based interactions) in a number of important ways:

+ Dataarrive acharacter at atime, rather than in chunks.

+ Thereisno obvious structure to arriving data; and the datamay arrivein an
arbitrary order.

+ Screen updates may involve just a portion of the screen (perhaps asingle
character) or the whole screen.

+ Retrieval of data sets may require repeated roundtrip communications with
the host. (One query may bring many screens’ worth of data, which must be
captured through multiple “page forward” commands, etc.)

+ Information that spans screens may be (and often is) partially duplicated on
the final screen.

These factors can make automating a Telnet interaction (viaan Action Model)
challenging. The goal of this chapter isto suggest some strategiesfor dealing with
common (yet potentially problematic) Telnet-computing situations in the context
of an eXtend Action Model.

To get the most out of this chapter, you should already have read Chapter 4,
“Performing Telnet Actions” and you should be familiar with Action Model
programming constructs (such as looping viathe Repeat While action). In
addition, you should have some experience using ECM A Script.

Advanced Telnet Actions 81

Data Sets that Span Screens

82

A common requirement in Telnet computing isto capture a data set that spans
multiple screens. |n caseswhere the screen containsalinethat says something like
“Page 1 of 4,” it'sastraightforward matter to inspect the screen at the point where
thisline occurs (using one of the ECMA Script Screen-object methods described
earlier, in the section titled “ Tel net-Specific Expression Builder Extensions’ on
page -42) and construct aloop that iterates through all available screens. But
sometimes it’s not obvious how many screens’ worth of data there may be. In
some cases, the only clue that you have may be the presence of a“More”
command (for example) at the top or bottom of the screen, which changesto
“Back” (or “End,” or some other message) when you reach the final screen. In
other cases, you may betold how many total records exist, and you may be ableto
determine (by visual inspection) how many records are displayed per screen;
hence, you can calculate the total number of screens of information awaiting you.

Thepoint isthat if your query resultsin (potentially) more than one screen’sworth
of information, you must be prepared to iterate through all available screensusing
aRepeat/While action, and stop when no additional screensareavailable. You will
have to supply your own custom logic for deciding when to stop iterating. Your
logic might depend on one or more of the following strategies:

+ Determine the total number of screensto visit by “scraping” that
information, if available, off the first screen.

+ Divide“total records’ (if thisinformation is available) by the number of
records per screen (if thisis known in advance), and add one.

+ Visit screens one-by-one and break when ablank record is detected.

+ Visit screens one-by-one until aspecia string (such as“End” or “Go Back™)
is detected.

+ Visit screens one-by-one until two consecutive identical screens have been
encountered.

Obviously, the strategy or strategies you should use will depend on the
implementation specifics of the Telnet application in question. For some
applications, iterating through screens until a blank record is encountered would
be appropriate, whereas for others, it wouldn't be.

An example of an Action Model that combines two of these strategies will be
discussed in detail further below.

Telnet Connect User’s Guide

Dealing with Redundant Data

In Telnet applications, it's common for the final screen of amultiscreen result set
to be“ padded” with data from the previous screen. In this way, the appearance of
afull screen ismaintained.

Consider the following two screen shots. The top one shows the next-to-last
screen’sworth of information in a query that returned six screens of information.
Noticethat the reversed-out statusline (row 2 from thetop) says* 43 entriesfound,
entries 3340 are.”, followed by line entries. Since there are 43 records in the
overall data set, and the next-to-last screen ends with record number 40, you'd
expect the next (and final) screen to show records 41 through 43. Instead, the final
screen looks like the one at the bottom of the next page. Notice that it shows
records 36 through 43—that is, it contains five records (36 through 40) from the
previous screen. In most cases, you will not want to capture this redundant data.
The question is: How can you detect and reject redundant records of this sort?

ECMA Script offersan easy and convenient way of maintaining unduplicated lists.
Thetrick isto create abare (uninitialized) Object, then attach record names as
properties. Since no object can ever have two properties with identical names,
assigning record names as property names means the object’s property listisan
unduplicated list of record names.

Tou searched for the AUTHOR: thomas aquinas CONSULE: 411 Locations

LOCATIONS

. SJ’ .[II

43 entries found, entrie: 40 are:
Thowmas Acuinas Saint 1225 1274

33 Summa contra gentiles.

34 Summa contra gentiles.

35 The 3umma contra gentiles of 3aint Thowmas Adquinas,

36 Summa theologiae @ a concise translation

37 Summa theologica

38 Summa theologica.

39 Summa theologica.

40 Summa theologica.

Lo T o T o T o T I T T =

Pleasze type the NUMEER of the item you want to see, OR

F > Go FORWARD 4 > ANOTHER Search by AUTHOR + > ADDITIONAL options
B > Go BACEWARD I > PRINT

N > NEW Search L > LIMIT this Search

Choose one (33-40,F,B,N,4,P,L,J,E,T,X,+) I

Advanced Telnet Actions 83

FTou searched for the AUTHOR: thomas acquinas CONSULS: 411 Locations
43 entries found, entries 3 are: LOCATIONS
Thomas Acquinas Saint 1225 1274
36 Summa theologiae : a concise translation E
37 Gumma theologica C
38 fumma theologica. c, 3, W
39 Summa theologica. C
40 Humma theologica. C
4] Gumma theologica. Prima secundae. Quaestio 90-97, 3
42 The teacher : The wmind : Truth, questions X, XI C
43 The teacher, The mind (Truth, dquestions X, ¥T) 5
Pleazse type the NUMEER of the item you want to see, OR
B » Go BACEWARD P = PRINT
N > NEW Search L » LIMIT this Search
4 = ANOTHEE Search by AUTHOR + > ADDITIONAL options
Choosze one (36-45,B,N,4,P,L,J0,E, ¥, X,+) I

A short example will make this clearer. Suppose you have an array of itemsin
which some items are listed more than once:

var myArray = new Array(
"Toni, "Anmy", "G eg", " Tont, "Amy");

To unduplicate this array, you could assign properties to a bare object, where the
property names equal the array values:

var nyQbject = new Qobject(); // create a bare object

for (var i =0; i < myArray.length; i++) // |oop over array

{
var arrayMenber = nyArray[i]; // fetch array nenber
myQbj ect[arrayMenber] = true; // create the property

/1 Now obtain all property nanes

/1 in a new, unduplicated array:

84 Telnet Connect User’s Guide

var uni queVal ues = new Array();
var n = 0; // counter
for (var propertyNane in nyQbject) // enunerate property nanes

uni queVal ues[n++] = propertyNaneg;
/I Now "uniqueValues' containsjust " Toni', " Any", " Gr eg"

We will usethistrick to our advantage in the Telnet example discussed bel ow.

An Example of Looping over Multiple Screens

Let'slook at a sample Telnet component that combines several of the strategies
we' ve been talking about. The host application is a university library system’s
book locator service. Inthisexample, we have an input document that specifiesan
author’s name. Based on that name, we want to query the library for al available
book titles by that author and capture the results to an output DOM. We want the
output document to contain an unduplicated list of titles.

This example will demonstrate:

+ How to "scrape" data from multiple screens, without knowing in advance
how many screens there are.

+ How to reject duplicate records as they are encountered.
+ How to create Output DOM nodes programmatically.

+ Breaking out of the main loop if ablank record is encountered or the final
screen has been reached.

Thelogic for our Action Model’s main loop can be summarized (in pseudocode)
asfollows:

Det ermi ne the nunber of records-per-screen
While (true) // enter a "forever" |oop
Fetch a record
— | F Record is Vvalid /1 i.e., not blank
Wite data to Qutput DOM
I F Screen has been conpletely processed

Fet ch next screen
ELSE BREAK // final screen processed
— ELSE BREAK /1 bl ank record reached

[IF this is not the final screen

Advanced Telnet Actions 85

Initial Actions

86

Theinitial portion of the Action Model for this example looks exactly like the
actions created in the earlier example (see “ Recording a Telnet Session” on page
-50), except that in this case our author is Thomas Aquinas. Theinitial actionsare
simply the Check Screen and Send Buffer actions necessary to conduct an Author
search on "Thomas Aquinas.”

Theinitial screen of our result set looks like:

Fou searched for the AUTHOR: thomas afquinas CON5ULS: 411 Locations
43 entries found, entries 1-§ are: LOCATIONS
Thomas Aquinas Saint 1225 1274
1l An Acuinas reader 3
Z Amuinas Scripture series. 1966 --> See THOMAS, AQUINAS, SAINT, 1225:-1
3 Aruinas: selected political writings. k]
4 Conmentary on Aristotle's Physics. c, 5
5 Commentary on the De anima of Aristotle C
6 Concerning being and essence (e ente et essentia) E
7 De regno, ad regem Cypri. 3
8 An introduction to the metaphysicz of ft. Thomaz Aquina E
Please type the NUMEER of the item you want to see, 0OR
F > Go FORWARD P > PRINT
N » NEW 3earch L > LIMIT this Search
4 > ANOTHEE Search by AUTHOR + > ADDITIONAL options
Choose one (1-8,F N, &, F,L,J,E, ¥V, X, +) I

At the very beginning of the second row, we' retold how many records ("entries")
were found. We can capture this information by using a Function Action:

x|

Function Expression:
ar lineZ = Screen.getTextst(2 1,800, @ -
ar tatalHits = ITrimdline2Y;
utaIHits=101aIHits.spIi1(")[EI];|

Aopty)[Ok [Conce

Telnet Connect User’s Guide

Thisthree-line script obtains all of Row 2 inalocal variablecalled | i ne2, trims
leading spaces off the line, and splits the line on space characters (capturing the
zeroth member of theresulting array into avariable, t ot al Hi t s). After this, it's
asimple matter to write the "total hits" number into the Output DOM using aMap
Action.

At this point, we could use the "total hits' number as the basis for our main loop.
But for illustration purposes, we' re going to bypass that tactic, because not every
Telnet host reports "total hits" information on the first response screen. We will,
however, take advantage of the fact that this particular application reports the
number of records per screen (in row two). Here again, though, it’s possible—with
clever ECMA Script programming—to determine "records-per-screen”
information dynamically, at runtime. Alternatively, you can just hard-code this
value after visually inspecting the screen.

NOTE: At some point, you will have to decide whether (and under what
circumstances) it makes sense to hard-code something like the number of records
per screen, as opposed to applying runtime logic. With Telnet applications, it's rare
that you can count on being able to determine every important screen
characteristic dynamically. Some fore-knowledge of the host application’s behavior
will almost always be implicit in the final Action Model.

We will store the records-per-screen number in an ECMA Script variable,
booksPer Scr een. In thisexample, there are eight records per screen.

Setting Up the Main Loop

Before creating our main loop, we need to set up an index variable that will be
used when creating nodesin our Output DOM. Thisindex (called

bookNunber) will start at one and will be incremented once for every book title
we capture to Output. The reason thisindex starts at oneinstead of zero isthat
DOM nodes use one-based indexing. We will be using bookNurber to index our
nodes.

We also will use an ECMA Script expression (in a Function Action) to create a
blank ECMA Script object:

var bookTabl e = new Obj ect();

By storing book titles as property names on this object, we can keep an
unduplicated list of records, as explained further above (see “ Dealing with
Redundant Data").

Advanced Telnet Actions 87

Screen Caching

To create the loop, we place a Repeat While action in the Action Model. (Right-
mouse-click, then select New Action > Repeat > Repeat While.)) The dialog
settings for thislook like:

Repeat While X

SOUrCe
Whiile:
|true E -

Index Variable:

Target
Alias:

Representing:

(7) Expression:

|)4

@ XPath: 'nput [~]

[oK

][Cancel]

By setting the While condition to true, we are—in effect—creating an infinite
loop. The exit conditions for thisloop are twofold:

« If ablank record (all space characters) is encountered, the loop is terminated.

+ If thecurrent screen isidentical to the previous one, the loop is terminated.

The latter condition provides a suitably robust way to break out of our infinite
loop.What’s more, it's generally applicable to awide range of Telnet
applications—not just the library-query application.

Theindex variablei , which cycles from zero to booksPer Screen — 1, serves
two roles:

1 Itletsusknow whenit'stime to fetch a new screen (namely, when the value
reaches booksPer Screen — 1), and

2 It servesasthe basisfor our row offset when fetching records.

One additional bit of pre-loop setup code involves caching the current screen. We
include the following Function Action statement immediately before beginning
the loop:

88 Telnet Connect User’s Guide

previ ousScreen =
Screen. get Text At (1, 1, Screen. get Col umCount () *
Scr een. get RowCount ()) ;

Thevariable pr evi ousScr een caches the contents of the last-looked-at screen
so that we can check newly obtained screens against it. If anewly obtained screen
has exactly the same content as the screen we just processed, thisis ahint that we
have reached the final screen (and we should therefore terminate the loop).

The Main Loop

We're now in aposition to look at what our Action Model’s main loop actually
does.

First Half

Consider the first portion of the loop as shown below. Thisiswhere most of the
real work takes place.

EI e WHILE true INDEXED BY 1

--Loop Actions
..... f(¢) CALL var bookTitle = rTrim{Screen.getTextAt(4 + i, 9,53} // fetch current record
E|7t* IF Screen.getTextat(4 + 1,9,53) |= (new Array(53))join{") /fis it awvalid record?
. TRUE

E| e IF hookTable[hookTitle] == null /! title not encountered before?
.- TRUE
f(x) CALL bookTable[bookTitle] = true //tally it as encountered

...... = WAP bookNumber TO Output.createXPath{"InquiryResponse/Books[$bookNumber]No™)

...... — MAP bookTitle TO Output.createXPath("'InquiryResponse/Books[$hookNumber] Title™)

- T*) CALL bookNumber += 1;

.. FALSE

.- FALSE
LB hreak

Thefirst action inside the loop is a Function Action, which fetches the 53
characters beginning at column 9 of row 4 + i.Therowswe'reinterestedin
include rows 4 through 11, inclusive; thisisthe zonein which the host reports our
lineitems. Sincei cyclesfrom zeroto 7, wecanuse"4 +i" asarow offset in our
code.

Advanced Telnet Actions 89

90

Once we' ve obtained arecord, we do a validation check before proceeding. Only
if the zone that the record came from is non-empty will we continue with the loop.
We use a Decision Action with a decision expression of:

Screen.get TextAt(4 +i, 9, 53) != (new Array(53)).join(" ")

The statement on theright side of the expression means" create anew, empty array
of length 53, and convert it to a String by joining the array members together,
using a single space character asthe delimiter." Since each array member isnull,
this essentially forms a String consisting of 53 space charactersin arow. We can
compare this String with the onscreen string to determine if a blank record was
encountered.

In the TRUE branch of our Decision Action, weimmediately check to seeif the
book title we just fetched has already been encountered. (We don’t want
duplicates.) Since we' ve been using the tactic of keeping book titles as property
names on thebookTabl e object (see discussion further above), all we haveto do
to check for prior existence of the book is execute a Decision Action against the
expression:;

bookTabl e[bookTitle] == null

If this statement istrue, it meansthe bookTabl e object has no property who's
name matchesthe StringinbookTi t | e. Whenthisisthe case, it meanswe can go
ahead and do our mapping operations. (Otherwise, we fall through and keep
iterating.)

In the TRUE branch of this decision, we mark bookTabl e[bookTitle] as
true; this assigns a new, non-null property to book Tabl e. We then map an index
number as well as the book title to new nodes in our Output DOM. By applying a
target expression of

Qut put . creat eXPat h(" I nqui r yResponse/ Books[$bookNunber]/Titl e
")

for mapping, we are ableto use the running index in bookNunber to create anew
node instance under I nquiryResponse/Books with element name Title.

Finally, we increment bookNunber .

Telnet Connect User’s Guide

Second Half

Inthefina portion of our loop, we check to seeif it'stime to fetch anew screen.
If so, we execute the necessary Send Buffer command to tell the host we want to
page forward to the next screen.

E|‘J'E,, IF i == booksPerScreen - 1
.. TRUE

/7 Is it time to fetch a new screen?

......... B SENDBUFFER"F"
......... [E@ cHECK SCREEN for Expression: true
...... f(x) CALL var thisScreen = Screen.getTextAt{1,1,Screen.getColumnCount{) * Screen.getRowCount());

[_]....?-j IF thisScreen == previousScreen
& TRUE

Noticethat as soon aswe' ve fetched the new screen, we capture its contentsinto a
String variable, t hi sScr een. Then we execute a Decision Action in which we
simply comparet hi sScr een to pr evi ousScr een. If thetwo are equal, we use
aBreak Action to break out of the loop. Otherwise we fall through and continue
executing.

NOTE: Use care when deciding a Min Wait time for the Check Screen action
shown above. If the Min Wait is short and the go-ahead condition is true, it's
possible you could unintentionally skip a screen and break out of the loop
prematurely.

If we're still executing, wereset i (the row index variable) and stuff
t hi sScr een into pr evi ousScr een in preparation for the next round.

The Output DOM resulting from our loop ends up looking something like this:

Advanced Telnet Actions 91

|| = Output ||D ata

Bl 2 InguirgResponse |.=]

L€ > TotalTitles 43
- > Books

{ > Mo 1

L > Title An Aguinas reader
== = Books

{ > Mo P

L > Tile Aguinas Scripture serieg
== = Books

{ > Mo 3

L > Tile mruinas: selected politic
== = Books

{ > Mo 4

L > Title Commentary on Aristotlg
== = Books

{ > Mo 5

L > Title Comrentary on the De 4
B]

< =Ho B

L > Title Cancerning being and e

The DOM lists al thetitles found for this author, numbered sequentially. And
even though the final screen’s worth of data contains a significant amount of
informati on duplicated from the preceding screen, our DOM contains no duplicate
titles.

Performance Considerations

92

You can perform millisecond-based timing of your Action Model’s actions by
wrapping individual actions (or block of actions) in timing calls.

> To time an Action:

1 Click intothe Action Model and place a new Function Action immediately
before the action you wish to time. (Right-mouse-click, then New Action >
Function.)

2 Inthe Function Action, enter an ECM A Script expression of the form:
startTi me = Nunber (new Dat e)

3 Insert anew Function Action immediately after the action you wish to time.

Telnet Connect User’s Guide

4 Inthe Function Action, enter an ECMA Script expression of the form:;

endTi ne = Nunber (new Dat e)

5 CreateaMap Action that mapsendTi ne — st art Ti ne to atemporary
DOM element. (Right-mouse-click, New Action > Map.)

6 Run the Component. (Click the Execute button in the main toolbar.)
If you do extensive profiling of your Action Model, you will probably find that the
overwhelming majority of execution timeis spent in Check Screen actions. (You

will seldom, if ever, encounter a Check Screen that executes in less than 150
milliseconds.) Two implications of this worth considering are:

+ ECMAScript expressions (in Map and/or Function actions) will seldom, if
ever, be a performance consideration for the component as awhole.

+ Overal component performance rests on careful tuning of Min Wait and
Timeout values in Check Screen actions.

Finally, remember that testing is not truly complete until the deployed service has
been tested (and proven reliable) on the app server.

For additional performance optimization through the use of shared connections,
be sure to read the next chapter, on Logon Components.

Advanced Telnet Actions 93

94 Telnet Connect User’s Guide

Logon Components, Connections,
and Connection Pools

This section discusses certain features avail able in the Telnet Connect designed to
maximize performance of deployed services.

About Telnet Session Performance

The overall performance of any service that uses back-end connectivity isusually
dependent on thetime it takes to establish a connection and begin interacting with
the host. Obtaining the connection is “expensive” in terms of wait time. One
strategy for dealing with thisis connection pooling, a scheme whereby an
intermediary process (whether the app server itself, or some memory-resident
background process not associated with the server) maintains a set number of
preestablished, pre-authenticated connections, and oversees the “ sharing out” of
these connections among client apps or end users.

Connection pooling overcomes the latency involved in opening a connection and
authenticating to a host. But in terminal-based applications, a considerable
amount of time can be spent “drilling down” through menu selections and
navigating setup screens in order to get to the first bonafide application screen of
the session. So even when connections are reused through pooling, session-prolog
overhead can be a serious obstacle to performance.

Composer addresses these issues by providing connection pooling, managed by a
special kind of component (called alogon component) that can maintain an open
connection at a particular “drill-down” point in aterminal session, so that clients
can begin transactions immediately at the proper point in the session.

When Will | Need Logon Components?

Logon Components are useful in several types of situations:

Logon Components, Connections, and Connection Pools 95

+ When you have aneed for multipletiers of pooling based on multiple
security challenges within your system. (For example, users may need one
set of logon credentials to get into the network, another to get into the
mainframe, and another to get into database.) Serial 10g-in requirements may
dictate the use of multiple logon components.

+ When your service needs stateful “ session-based” connections.

+ When you need the performance advantages available through connection
pooling.

If performance under load is not a high-priority issue and your connectivity needs

are relatively uncomplicated, you may not need to use Logon Components at all.

But thereisno way to know if performanceis adequate merely by testing services

at design time, on adesktop machine.

Components and services built with the Telnet Component Editor may appear to
execute quickly at design time (in Animation Mode, for example). But in real-
world conditions—which isto say under load, with dozens or even hundreds of
requests per second arriving at the server—session overhead can be a significant
factor in overall transaction time. The only way to know whether you need to use
the special performance enhancement features described in this chapter isto do
load testing on a server, under test conditionsthat mimic real-world “ wor st case”
conditions.

Connection Pool Architecture

96

When you install the Connect for Telnet, two types of Connection Resources are
added to the Connection creation wizard:

+ Telnet Connection
+ Telnet Logon Connection (henceforth referred to as a Logon Connection)

The Telnet Connection isatrue terminal connection and (when used by a Telnet
component) can establish asession with ahost system. Thisisthe connection-type
we have been using throughout this Guide.

Connection
Telnet A
Component " Host Z
A Protocol: ¥T100
UserlD: admin
Component Connection Host

Telnet Connect User’s Guide

The Telnet connection resource is designed to make an individual connection to
the host on an as-needed basi s. The connection is made just-in-time and discarded
as soon asthe client isdone. It isnot reused in any way.

The Logon Connection, on the other hand, is different. It defines a pool of User
IDs and passwords, each of which can make its own connection. The Logon
Connection also serves as an indirection layer to alow clients to connect to the
host at exactly the point in the host program (exactly the screen) where the client
needs to start. This entry-point-location behavior is made possible by the Logon
Component. (A Logon Connection always uses a L ogon Component to get to the
actual connection.) The architecture is shown in the graphic below.

Telnet
Component

Logon
Connection

Logon
Component

Connection
Resource

A Connection Resource isaways required in order to get to the host. (Thisistrue
for any Composer service that uses Telnet components.) For simplicity, this
diagram shows the Connection Resource going directly to the host; in the real
world, there may be intervening delegation layers for security purposes.

Logon Components, Connections, and Connection Pools 97

The Logon Component contains Actions (an action model) designed to find a
particular screen of interest in the host program. This drill-down location is the
effective entry point of the transaction for any upstream process that uses this
Logon Component. You can think of the Logon Component as a go-between
between the physical connection (represented by the Connection Resource) and
the logic layer (represented by the Telnet Component itself.

In order for a Telnet Component (at the top of the diagram) to use a Logon
Component, it needsto enlist the aid of a Logon Connection resource. The Logon
Connection is the bridge between the Telnet Component and the Logon
Component.

The kinds and responsihilities of the various objects discussed above are
summarized in the following table.

Object Role

Telnet Connection Allows a connection to be established with a
Resource host system.

Logon Component Specialized type of component in which the

action model contains Logon, Keep Alive, and
Logoff action blocks. This component can
maintain a connection at a particular launch
screen in a host program.

Logon Connection Specialized type of Connection Resource that
associates a pool of UserIDs and passwords
with a given Logon Component type. At
runtime, connections are established for client
processes on demand (and reused), with one
Logon Component instance per connection.
Every connection in the pool provides ready
access to a given point (a particular launch
screen) in the host program, thanks to the
associated Logon Component (see above).

Telnet Terminal Contains the action model that comprises the
Component business logic for a particular Telnet
interaction (or transaction).

98 Telnet Connect User’s Guide

The Logon Connection’s Role in Pooling

The Logon Connection differs from the ordinary “host-direct” connection
resource in that it manages pooling (the sharing of connection instances and
Logon Component instances at runtime).

In the context of a Composer service, pooling not only allows reuse of (open)
connections at runtime, it also increases the effective bandwidth of a deployed
service. Consider the smple case where you' ve designed a Telnet component that
uses aregular connection resource. In creating the connection resource, you will
have specified a UserID and password for the resource to use so that at runtime,
the component can log in to the host. When an actual running instance of your
component isusing that connection, no other instance of the component canlogin
to the host using that same set of credentials. The bandwidth of your serviceis
limited to one connected instance at atime.

With a Logon Connection, on the other hand, numerous host connections can be
maintained in a“live’ state so that multiple instances of your component can
access the host (each on its own connection) without waiting. Throughput is
dramatically increased.

The diagram below shows one possible runtime case where three component
instances (two instance of Telnet Terminal Component A and one instance of
Telnet Terminal Component B) are executing on the server. Instance 1 of
Component A isusing UserlD ‘E’ to obtain a connection. This component hasits
own dedicated instances of Logon Component M and Connection S.

Terminal Component B has just finished executing and isrelinquishing its
connection (established through credentials defined by UID ‘F'). Note that
because connection pooling isin effect, Component B’s downstream resources (its
Logon Component instance, M2, and its Connection instance, S2) are not simply
discarded; they remain live. Asaresult, Terminal Component A2 isableto obtain
(reuse) the M2/S2 resource instances that were previously held by Terminal

Component B.
Component Logon
: Connection S,
Al Busy Connection D e
Done
Connection 5,
UID G Inactive Host 7
Component [Reuse UID H Inactive
A2 UDF | > 4

Logon Components, Connections, and Connection Pools 99

Inthisdiagram, Logon Connection D isassociated with four connections based on
four UIDs (user IDs or credentials: A-thru-F). Oneisin use; another (UID ‘F') is
alive but not being used; and two are inactive but available (i.e., valid UIDs have
been assigned, so these two connections can be made live at any time).

How Many Pools Do | Need?

It's possible for several different Telnet components to draw from the same
connection pool. It's also possiblefor different componentsto draw from different
pooals. This means different Logon Connections.

Animportant factor in deciding how many L ogon Connection resources (in effect,
how many pools) your service needs is the number of different start screens (or
entry point screens) needed by the various componentsin your project. Suppose
Terminal Component A needsto beginitswork at a particular starting screenina
host application, but you’ ve aso designed another component—Terminal
Component B—that needsto start on adifferent screen. Components A and B will
need separate L ogon Connections, and the separate L ogon Connectionswill point
to separate L ogon Components. (In any given connection pool, Composer objects
are shared in such away that every user of the pool must start at the same screen.)

Pieces Required for Pooling

100

The combination of aL ogon Connection, aL ogon Component, and its Connection
Resource form the basis of a connection pool. Starting from the host layer and
working up the chain:

+ The Connection Resource defines the most basic parameters necessary for
establishing a connection with the host. When connection pooling isin
effect, runtime instances of this object are kept aive and reused.

+ TheLogon Component defines the set of steps (actions) necessary to getto a
particular entry point in the host program. (At runtime, an instance of this
component will actually carry out those steps in order to arrive at, and
maintain ready-to-use, a particular screen location in the host program.)
When connection pooling isin effect, instances of this object are kept alive
and reused.

+ TheLogon Connection isa special type of resource that contains all the
informati on needed to define a connection pool. Thisresource is designed to
encapsul ate pool-management info and does not establish host connections
directly; instead, it delegates those responsibilities to the Logon Connection
(which delegates them, in turn, to the appropriate Connection Resource).

Telnet Connect User’s Guide

How Do | Implement Pooling?

To create the various pieces required for pooling, you'll go through the following
basic steps (each of which will be discussed in greater detail in the sectionsto
follow):

1 First, you'll create abasic Telnet connection resource, as demonstrated in
Chapter 2 of this Guide.

2 Next, you'll create a Logon Component that uses the connection resource
defined in Step 1. As part of this process, you'll create an action model
designed to navigate to a certain point in the host program.

3 You will create a Logon Connection resource, which is a specialized type of
connection resource that relies on a Logon Component (from Step 2) to
make the basic connection (through the resource defined in Step 1).

4 Finadly, you'll create a Telnet Terminal Component and associate it with the
Logon Connection resource of Step 3.

These steps are described in detail starting with the discussion in “ Creating a
Connection Pool” further below. Before going to that section, however, you
should become familiar with the design principles behind the Logon Component
(and also the Logon Connection). We' Il start with the Logon Component, sinceit’s
impossible to create a Logon Connection without using a Logon Component.

The Telnet Logon Component

The L ogon Component isaspecial type of component: It hasan Action Model, yet
can be used as a connection resource aswell. The Action Model of thistype of
component is designed to manage a connection that will be used by multiple
Telnet Terminal Components. |n most respects, the Logon Component isthe same
asaTelnet Terminal component. The differences are:

1 InaLlogon Component, the Action Model is organized around connection-
management tasks. Those tasks are implemented via specia actions:. the
Logon Action, Keep Alive Action, and L ogoff Action.

2 A Logon Component is not invoked directly by another component or
service. Itsinvocation is under the control of aLogon Connection.

NOTE: A Logon Component must and can only be used in conjunction with
a Logon Connection.

Logon Components, Connections, and Connection Pools 101

Instead of calling the Logon Component directly, using (for example) a
Component Action, you will associate the Logon Component with a special
connection resource called a Logon Connection. When your Telnet Terminal
Component executes, it executes viathe Logon Connection, whichin turn
executes the Logon Component.

Logon, Keep Alive, and Logoff Actions

102

The Logon Component provides several screen-management capabilitiesthat are
important factorsin overall performance. These capabilities are implemented in
terms of Logon, Keep Alive, and Logoff actions:

+ Logon Actions—These actions navigate through the host environment and
park at adesired launch screen in the host system. The connection is
activated using Userl Ds from the pool. The Telnet Terminal components that
subsequently reuse the connection have the performance benefit of already
being at the launch screen and won't incur the overhead of navigating to the
launch screen as if they had come in under their own new session.

+ Keep Alive Actions—These actions do two important tasks. First, they
prevent the host from dropping a connection if it is not used within a
standard timeout period defined by the host. Second, these actions must
insure that the connection is always positioned at the “launch screen in the
host, even after performing the Keep Alive actions needed to prevent the
connection from dropping (the first important task).

+ Logoff Actions—These actions exit the host environment in a manner you
prescribe for all the connections made by User IDs from the pool, when a
connection is being terminated.

These actions and their meanings will be discussed in greater detail below. For
now, it's enough to know that these three action groupings are created for you
automatically whenyou first create aL. ogon Component. Notethe (empty) Logon,
Keep Alive, and Logoff action blocks in the action model shown below:

QE=EFEOI
=i ogonTelnet

-y LOGON

. i..Log On Actions

KEEF ALIVE

...Keep Alive Actions
5-am8 LOGOFF
3......Lng Off Actions

Telnet Connect User’s Guide

Logon Actions

Actions you place in the LOGON group are primarily concerned with signing
into the host security screen and then navigating through the host menu system to
alaunch screen where each Telnet component's Action Model will start. It is
important that any Telnet component using a Logon component be able to start
execution at the same common screen. Otherwise, the performance gains of
avoiding navigation overhead won't be realized and more importantly, the odd
Telnet component won't work.

You can create actions under the Logon Actions block the same way asyou would
in an ordinary Telnet Terminal Component—namely by using the Record feature
to create (inreal time) whatever actionsare necessary in order to enter sign-oninfo
such as User | D and Password (aswell asyour initial menu choicesto arrive at the
launch screen).

NOTE: Remember to use the User IDs and Passwords from the Logon
Connection Pool. (See the discussion in “Creating a Logon Connection using a
Pool Connection” on page -113.) To do this, you need to map the two special
system variables called USERID and PASSWORD to the appropriate fields on the
screen. By specifying these two variables, you make it possible for exteNd
Composer to automatically locate and use values from the next active and free
Pool slot.

The launch screen is acommon point of execution for all the Telnet Terminal
Components that use the User 1D pool provided by aLogon Connection. The
Logon actionsin aLogon Component (which are executed only once when anew
connection is established) let the calling component—your Telnet Terminal
Component—begin execution at a given screen in the host program.

Maximizing Performance with the Logon Component

The Logon Actions must be structured properly and therefore always begin and
end with a Check Screen Action as shown in the screen below.

| TEST_Example
B 48 LOGON
=1--Log On Actions
. CHECK SCREEN for cursar position, where Row =7 and Column =8
g SEND BUFFER "USERIDWOD0G"
@ CHECK SCREEM far cursor pasition, where Row =21 and Column =1
i B SENMD BUFFER ™wi00D0a"™

@ CHECK SCREEM for cursar pasition, where Row = 22 and Column = 49

Logon Components, Connections, and Connection Pools 103

Thefinal Check Screen action in the Logon block guarantees that control is not
turned over to the Telnet Component before the screen of interest hasarrivedinthe
connection. Without this, the Telnet Component could start at an invalid screen,
throw an exception, and possibly corrupt atransaction.

NOTE: You may notice when animating a Logon Component that the ending
Check Screen is skipped. This is normal design-time behavior. In a production
environment , the actions in a Logon Component always execute in an interleaved
manner with a Telnet Terminal Component. Animating a Logon Component from
start to finish actually creates an abnormal sequence of events that would result in
two Check Screens being processed in succession, which is not allowed.

The performance benefit comesinto play as aresult not only of connection reuse
but launch-screen reuse. For example, if aUser ID pool of three entriesisfully
used and (ultimately) reused by the execution of a component fifteen times, the
overhead of navigating to amenu item that executes the transaction of interest will
occur only threetimes. Likewise, there will only be three logons to the host
because the Logon actions at the top of aLogon Component are executed only
once—when a new connection is activated (not when it isreused). Thisiskey to
obtaining maximum performance in a high-transaction-volume production
settings.

NOTE: When possible, use the Try/On Error action to trap potential logon errors
that may be recoverable. Otherwise, the UserID trying to establish the failed logon
will be discarded from the pool, decreasing the potential pool size. The pool size
will remain smaller until you manually reset the discarded connections using the
exteNd Composer Enterprise Server Console for Telnet. See Managing Pools
Sections in this Chapter for more details.

Keep Alive Actions

104

The Keep Alive block iswhere you will place actionsthat “ ping the host” in
whatever way necessary to keep the connection alive so that it can be reused.

Keep Alive actions usually involve sending akey like <ENTER>, to the host at
some specified interval. However, if after sending the key the screen changesto
some screen that is different than the launch screen, you must be sureto return the
Logon Component to the launch screen in the Keep Alive section. Failureto do so
will leave the next component at an incorrect screen, causing it to fail.

In Telnet connections, you may type aletter and then use backspaceto eraseit. See
the following screen. Thiswill create and send a buffer action to the Host. This
action allows interaction to be maintained with the Host and keeps the terminal
connected.

Telnet Connect User’s Guide

Ed) KEEP ALIVE
-Keep Alive Actions

@ CHECK SCREERN for cursar position, where Row =22 and Column =49
.[B§ SEMND BUFFER "10008"

....[B® CHECK SCREEN for cursor po®gn, where Row = 22 and Column = 49

This escape sequence corresponds to “1”
and “Backspace.”

The Pool Info dialog of aLogon Connection setup dialog (see discussion in

“Creating a Logon Connection using a Pool Connection” on page -113) iswhere
you control how often the Keep Alive actions will execute. If you specify in your
Logon Connection pool that you would liketo keep afree connection active for 60
minutes, but the host will normally drop aconnection after two minutes of activity,

you can specify keyboard actionsto |et the host know the connectionis still active
such as sending an <ENTER>key.

Logon Components, Connections, and Connection Pools 105

Pool Info =

Fool size specifies the total number of cannections that can he established. Keep
Alive, Inactivity and Entry wait parameters setthe timings associated with each
cannection. Selecting "Override UID/IPWD" allows you to specify different logons. The
userid and password from the base connection will be used if no override is
specified. Specify Reuse Cannection ta verify that the praper Screen state is present
hefore a connection can be reused.

Pool size ID
Keep Alive (minutes) |2
Inactivity Lifetime (minutes) IED \
Entry wait (seconds) ISD k

User ID I

Password I
Override UID/PWD [|
Use Sequential Connections [

Reuse connection only
if expression is true |

B ~

[o% [Cancer]

interaction every
2 minutes

ive connection for
60 minutes

Keep Alive actions may be executed multiple times, at intervals defined by the
Keep Alive parameter defined on the Pool Info dialog of the Logon Connection.

NOTE: The execution of the Keep Alive actions does not cause the Inactivity
Lifetime clock to reset in the Logon Connection. Only a Telnet Component’s
execution will reset the Inactivity Lifetime.

Thelast action inside a Keep Alive block should be an empty but “enabled”
navigation action. If a user disables thislast action, animation will not work
properly dueto two consecutive empty navigation actionsoccurring. For example,
if an action in Logon and thefirst action in Keep Alive are disabled, an error
occurs.

Maximizing Performance with Keep Alive Actions

Check Screens must occur at the beginning and end of the Keep Alive section.

106 Telnet Connect User’s Guide

Logoff Actions

Not only does the Keep Alive section prevent the connection from closing, but it
must make sure that the launch screen is present when the execution is compl eted.
The beginning Check Screen checks to make sure that during the time the
connection was available but not in use, that an unexpected screen didn't arrive
from the host. And again, the ending Check Screen preventsreleasing the
connection to the next Telnet Component prematurely after executing the Keep
Alive actions. See the following screen.

d| KEEF ALINE

i....Keep Alive Actions
@. CHECK SCREEM for cursar position, whers Row = 22 and Colurnn = 49
@ SEMD BUFFER "{w0008"
@ CHECK SCREERM for cursor posgition, where Row = 22 and Colurmn = 49

Logoff actions essentially navigate the User ID properly out of the host system
after atimeout.

Logoff actions execute only once for a given connection and only when a
connection times out (i.e. the Inactivity Lifetime expires) or screen expression
criteriais not met, or the connection is closed viathe Telnet Server console.

Ina“best practices’ sense, it'svitally important to make Logoff Actions
bulletproof. If an exception occurs during execution of the Logoff actions, exteNd
Composer will break its connection with the host, freeing the UserID in the pool.
But the UserID may still be active on the host. Until the host killsthe UserID (from
inactivity), a subsequent attempt by the pool to log on with that UserID may fail,
unless you' ve coded your logon to handle the situation. Logon failures cause the
UserlD to be discarded from the pool, reducing the potential pool size and
performance overall. Aswith Logon and Keep Alive actions, theway to guarantee
you are on the proper screen at the end of the logoff isto end with a Check Screen.

Logon Component Life Cycle

Eachtime aUser ID isactivated from the L ogon Connection Pool, an instance of
the corresponding L ogon Component is created and associated with that User ID.
Then the Logon actions are executed until the desired launch screen isreached. At
this point the Telnet Terminal component execution begins. When it is finished
another Telnet Terminal component using the same L ogon Connection may begin
executing, starting at the same launch screen.

Logon Components, Connections, and Connection Pools 107

If no other component requests the connection, then the connection-instance in
guestion enters an active but free state (an “idle state”) defined by the Inactivity
Lifetime and Keep Alive settings on the Pool Info dialog of the Logon
Connection. If theKeep Alive period (e.g., 2 minutes) is shorter than the I nactivity
Lifetime (e.g., 120 minutes), then at appropriate (2-minute) intervals, the Keep
Aliveactionswill be executed, preventing ahost timeout and dropped connection;
and the Keep Alive Period begins anew.

A Logon Component’s execution lifetimeis dependent on the activity of the
Logon Connection that usesit. Aslong as one entry in the Logon Connection pool
is active, then one instance of the Logon Component will bein memory inalive
state. A Logon Component instance will go out of scope (cease executing) when
the last remaining pool entry expires dueto inactivity. The only other way to stop
execution of a Logon Component is through the Telnet Console on the Server.

About the Telnet Connection

108

The Logon Connection is not atrue connection object like a Telnet Connection
Resource, but a pointer to aLogon Component (which in turn connects to a host
either through a conventional Connection Resource or yet more intervening
Logon Connection/L ogon Component pairs). The Logon Connection
encapsulates information needed to describe a pool of connections. That includes
User IDs and passwords, plus pool settingsinvolving the time interval between
retries on discarded connections, etc. Another function of the Logon Connection
isthat it ensures the use of different instances of the same Logon Component for
all the User IDsfor which connections are made.

Thediaogsyou'll usein setting up apool of User IDsfor aL.ogon Connection are
shown in the following set of illustrations. Arrows denote the buttons that lead to
continuation dialogs.

Telnet Connect User’s Guide

Create a New Connection Resource 5[

Select a Telnet Logon Component for each poal entry's connection. Each Telnet Component using this
Logon Connection will use a previously established connection or create a new connection hased on pool
information specified in Pool Info dialog. Checking Defaull’ makes this Connection the initial selection when
requesting a Telnet Logon Component.

Connection Type |Te\r|e'l Logon Connection [~]
Connect Via [TelnetLogonComp [+ [Defauit

connection. Selecting "Override UIMPWD" allows you to specify different logons. The
userid and passward from the basd connection will e used if no averride is
specified. Specify Reuse Connectidito verify that the proper Screen state is present
hefore a connection can be reused

[

Paol size [0

Keep Alive (minutes) |2

Inactivity Lifetims (minutes) [60

Entry wait (seconds) [30

User D |

Password |

Owerride UID /PWD

Use Sequential Connections [

Reuse connectian only Set Pool Uterids and Passwords

if expression is trus - i
[Scree % G
User D Password [
1 John
7 oo T
Help T 3 G.em ge
4 Ringo

Every Logon Connection is associated with a given Logon Component. In addi-
tion, the Logon Connection provides the following User ID pool functionality:

1

a1

It allows the specification of multiple User IDs in advance ensuring that
clients are able to secure a connection when one is needed

It allowsthe reuse of aUser |D/connection onceit is established to eliminate
repeated user authentications and disconnects

It allows asingle User ID to use multiple connectionsiif thisis supported by
the host system

It keeps a connection active to prevent host timeouts during inactive periods
It lets you specify when to remove a connection from the active pool

It sets atimeout period to use for afully active pool to provide a free
connection

Logon Components, Connections, and Connection Pools 109

7 Itletsyou specify error handling dependent on the state of the Logon
Component used by the Logon Connection

Many-to-One Mapping of Components to Logons

In order for multiple instances of a Telnet component or different Telnet
components to use the same Logon Connection, the following conditions must be
met:

1 All the Telnet components must use the same Connection Resource (thereby
sharing the Telnet Host, Port and Terminal type).

2 All the Telnet components must have a common launch screen in the host
system from which they can begin execution (see “ The Telnet Logon
Component” above for more detail).

Connection Pooling with a Single Sign-On

If your host system security supports multiple logins from a single user 1D, you
may have circumstances where you wish to pool the single User ID. This can be
accomplished by performing the following steps:

+ Specify aUser ID/Password in the Connection Resource used by the Logon
Component

+ Onthe Pool Info dialog of the Logon Connection, specify aPool Size greater
than one

+ Do NOT check the Override the UID/PWD setting in the Pool Info dialog
of the Logon Connection.

These steps will cause each pool slot to use the User ID and Password contained
in the Connection object and not use and user |Ds from the pooal.

Creating a Connection Pool

Overview

When creating a Telnet Terminal component, you normally create the Connection
object it needsfirst. Similarly, when creating the objects comprising a Connection
Pool, you must create certain objects first, starting (in essence) at the host and
working your way backwards to the Telnet Terminal Component that will access
the host.

A typical sequence of steps for creating a Connection Pool isoutlined in the
diagram below:

110 Telnet Connect User’s Guide

Step One:

Create a basic host
Connection Resource \

Step Two:
Create Logon Component

that uses basic Connection \

Step Three:

Create Logon Connection
that uses Logon Component \

Step Four:
Create standard Components
using Logon Connection

Creating a Basic Telnet Connection

Thisstep issimple. Create anew Connection Resource as described in “To create
a Telnet Connection Resource:” on page -19 of this Guide. Even though you will
be using User IDs and Passwords defined in the Logon Connection later, you
should still define onein the Connection aswell. Thiswill be needed when you
define the Logon Component in the next step. Alternatively, you can simply use
an existing Connection Resource.

Creating a Logon Component

> To create a Telnet Logon Component:

1 From the Composer File menu, select New> xObject, then open the
Component tab and choose Telnet L ogon.

The Header Info panel of the New xObject Wizard appears.

Logon Components, Connections, and Connection Pools 111

112

reate a New Telnet Logon Component |

ATelnet Logon Component connects to a hostvia the Telnet protocol, processes data using elements from a
DM, and maps the results to an output DOM. Use this wizard to create a Telnet Component. Enter a Name
and Description for this Telnet carmponent. The name will appear in the Composerwindow and in choice
lists when you are prampted for ohjects of this type as youwoark in Composer. The Mame is required and
may not contain the characters: v /.7 "= = . | Mames are case insensitive.

Mame:

I‘I’elnetLogonComp

Description:

Furpose:
Input:
Cutput:
Remarks:

) Next_J[_Cancet]

2 TypeaName for the component.
3 Optionaly, type Description text.
4 Click Next and the Connection Info panel appears.

Create a New Telnet Logon Component x|

Specifywhich Connection you wish to use for this Component or Service. To change any connection
parameters, yau must change them in the Connection Resource object ar create a new Connection
Resource ofthe same type with different parameters.

Connection |Te|netCnnnedinn |i|

Host or IP Address I [-

Telnet Port I

Terminal Type | ‘ |

Code Page | [+

User iD |

Password I"‘"‘"“"*

Help (@ [Back | Finish |[Cancel |

5 Select aConnection from the drop down list. (Thiswill be the basic
connection, not the logon connection.)

6 Click Finish and the Logon Component Editor appears.

Telnet Connect User’s Guide

NOTE: Recording actions follows a series of steps. The cursor must be
positioned over LOGON; then turn Record on, and when you are done, turn
Record off. Position the cursor to Keep Alive, turn Record on, and when you
are done, turn Record off. Position the cursor to LOGOFF, turn Record on,
then when you are done, turn Record off.

7 Record Logon Actions for logging into the host and navigating to the launch
screen using the same Recording techniques described in Chapter 4 of this
Guide.

8 Edit the Logon Map actionsthat enter a User 1D and Password to instead use
the special USERID and PASSWORD variables described in the section
titled "Telnet Specific Expression Builder Extensions’ in Chapter 4 of this
Guide.

9 Create the needed SEND Buffer actionsin the Keep Alive section of the
Action Model (aquick way isto copy an existing SEND key action, Paste it,
and then modify the key code sent).

Send Buffer x|
() ®Path: | |_| (®) Expression:
|"ISIuE|DDa"| B -

] Accept Key Strokes

(_Appty J[0K][Cancel

10 Record Logoff actions for properly exiting the host

11 Save and Close the logon Component.

Creating a Logon Connection using a Pool Connection

> To create a Telnet Logon Connection:

1 From the Composer File menu, select New> xObject, then open the
Resour ce tab and select Connection, or you can click on theicon. The
Header Info panel of the New xObject Wizard appears.

Logon Components, Connections, and Connection Pools 113

114

Create a New Connection Resource x|

A Connection resource is used to establish communications with an Connectar data source orwith a server
using HTTP authentication. You need to create connections far each type of data source or each HTTP server
you wish to communicate with. Enter a name and, optionally, a description for this Connection. The name
will appear in the Composer Detail Pane and in choice lists when you are prompted for objects in Composer.
The name may not contain the characters: 127" = = | Names are case insensitive.

MHame:

I‘Felnetoonnection

Description:

Furpose:
Input:
Cutput:
Remarks:

J(_Next][Cancel

2 Type aName for the connection object.
3 Optionaly, type Description text.

4 Click Next and the Connection Info panel appears.

Create a New Connection Resource x|

Selecta Telnet Logon Component for each pool entry's connection. Each Telnet Component using this
Logon Connection will use a previously established connection or create a new connection based on poal
information specified in Pool Info dialog. Checking 'Default’ makes this Connection the initial selection when
requesting a Telnet Lagon Companent.

Connection Type |Te|net Logon Conhection [~]

Connect \fia |Te|nelL0g0nCDmp [»] [Default

Pool Connections (®) Poal Info...

Session Connections () | |

[Back][Finish ” Cancel]

5 For the Connection Type select "Telnet Logon Connection” from the drop
down list.

6 IntheLogon Via control, select the Logon Component you just created.

7 Click on the Pool Info button and the Pool Info dialog appears.

Telnet Connect User’s Guide

10

11

12

Pool Info |

Pool size specifies the total number of connections that can be estahlished. Keep
Alive, Inactivity and Entry weait parameters setthe timings associated with each
connection. Selecting "Override LIDIPWD" allows you to specify different logons. The
userid and password from the base connection will be used ifno averride is
specified. Specify Reuse Connection to verify that the proper Screen state is present
hefare a connection can be reused

Pool size ID

Keep Alive (minutes) |2

Inactivity Lifetime (minutes) ISU

Entry wait (seconds) ISD

User ID I

Pazzword I
Override UID/PWD [|
Use Sequential Connections []

Reuse connection only
if expression is true |

E ~

Enter a Pool Size number. This represents the total number of connections
you wish to make available in this pool. For each connection, you will be
expected to supply a UserlD/Password combination later.

Enter aKeep Alive time period. This number represents (in minutes) how
often you wish to execute the Keep Alive actions in the associated L ogon
Component whenever the connection is active but free (i.e. not being used
by a Telnet component). The number you enter here should be less than the
Timeout period defined on the host for an inactive connection.

Enter an I nactivity Lifetime. This number represents (in minutes) how long
you wish to keep an active free connection available before closing out the
connection and returning it to the inactive portion of the connection pool.
Remember, that once the connection isreturned to itsinactive state in the
pool, it will incur the overhead of logging in and navigating host screens
when it isre-activated.

Enter an Entry Wait timein seconds. Thistime represents how long a Telnet
component will wait for afree connection when al the pool entries are
active and in use. If thistime period is reached, an Exception will be thrown
to the Application Server.

Checking Override Ul D/PWD means you wish to specify User

I D/Password combinations for use in the connection pool. When checked,
this activates the Set USERID/PASSWORD button. Click on the button to
display the Set USERIDs and PASSWORDS dialog.

Logon Components, Connections, and Connection Pools 115

116

Add Set Pool Userids and Passwords x|

D P d
e/ — /'User ****** 'asswor |
Delet e —

George [

1

2

3

1 ingo
Paste/ -

OntheToolbar there arethreeicons. Add which adds an empty row, Delete, which
deletes a highlighted row and Paste which allows you to copy/paste information
from a spreadsheet into the table. For more on this, see the following Note.

NOTE: Alternate and faster ways to enter data are to copy data from a spread
sheet and paste it into the table. Make sure your selection contains at least two
columns, UserlID and Password. The first and second column must contain data, all
other columns will be disregarded. The first number column you see in the screen
is automatically generated. Open the spreadsheet, copy the two columns and as
many rows as needed. Open the table and immediately press the Paste button.
You can also copy data from tables in a Microsoft Word® document using the same
technique.

13 Enter as many USERID/PASSWORD combinations until you reach the size
of the pool you specified and click OK. Pool size will be adjusted depending
upon how many rows you entered.

14 Click OK to dismissthe“Set User IDs and Passwords’ dialog and return to
the Pool Info dialog.

15 Optionally check the Use Sequential Connections control if you want
Composer to establish connections in the same order that User IDs were
listed in the “ Set User IDs and Passwords’ dialog. Connectionswill be made
in numerical sequence.

Telnet Connect User’s Guide

16 Optionally check the Reuse connection only if expression istrue control.
Thiscontrol allows you to enter an ECM A Script expression that evaluatesto
true or false based on some test of the launch screen. The purpose of the
expression isto check to make sure the launch screen is the proper one each
time anew Telnet Component is about to reuse an active free connection.
Under circumstances unrelated to your Composer service, it's possible that
the launch screen will be replaced by the host with a different screen. For
instance, if there is a system ABEND on the host, the launch screen in the
Logon Component may be replaced by a System Message screen.

Thefollowing ais a sample Custom Script used to seeif a particular screen
ispresent. If it isnot, the script writes a message to the consol e stating that
the screen is bad and the logon connectionis being released. Thisfunctionis
called from the “Reuse connect only if expression istrue”’ control on the
Pool Info dialog.

function checkValidLaunchScreen(ScreenDoc)
{
var screenText = ScreenDoc. XPath("SCREEN").item(0).text
if((screenText.indexOf("MENU") != -1 || screenText.indexOf("APLS") I=-1) &&
(screenText.indexOf("COMMAND UNRECOGNIZED") == -1 ||
screenText.indexOf("UNSUPPORTED FUNCTION") ==-1))
{

return true;

}

else

javalang.System.out.printin("Warning - Releasing logon connection at bad screen”);
java.lang.System.err.printin(*Warning - Releasing logon connection at bad screen");
return false;

}
}

17 Click OK to return to the Connection Info panel.
18 Click on Finish and the Logon Connection is saved.

Logon Components, Connections, and Connection Pools 117

Maximizing Performance of Telnet Logon Connection

To prevent Telnet Components from beginning execution on a connection that
may have been left on an invalid screen by a previous Telnet component, the
Logon Connection Resource alowsthe connection itself to check for the presence
of the launch screen. Thisis accomplished by using the option titled “ Reuse
connection only if expressionistrue” on the Pool Info dialog of the Logon
Connection. The screen test you specify here is executed each time a Telnet
Component completes execution. If the test fails, exteNd Composer will
immediately disconnect from the host, possibly leaving adangling UserID on the
host. Asnoted before, the host will eventually kill the user, but the UserlD may be
discarded from the pool if it is accessed again before being killed, thereby
reducing the pool size and consequently overall performance.

Another reason to use the “ Reuse connection only if true” option isthat you can
perform very detail ed tests against the screen to make sureit isyour launch screen.
While Map Screen actions do perform a screen check, they only look at the
number of fieldsin the terminal data stream. In most cases, thisis sufficient.
However, it is possible two different screens can have the same number of fields
inwhich case the expression based test that examinesthe content of the screen will
produce more rigorous results. A best practices approach mandates that you use
thisfeature all the time.

Static versus Dynamically Created Documents/Elements

In some Composer applications, users have aneed to place various control,
auditing, and/or meta-datain an XML document. This document may or may not
bein addition to the actual elements/documentsbeing processed (i.e. created from
an information source). If this document structure and datais dynamically created
by multiple Map actions (i.e. over 100) performance of the component and
therefore the entire service may suffer. To boost performance, create the portion of
the document structure without the dynamic content ahead of time, then load it
into the Service at runtime viaan XML Interchange action and retain the Map
actionsfor dynamic content. This can boost performance as much as 30% in some
Cases.

Creating a Logon Connection using a Session
Connection

Sometimes, you may want the extralevel of control over session parameters that
a L ogon Connection affords, without necessarily wanting to use pooling. In this
case, you can follow the procedure outlined below.

118 Telnet Connect User’s Guide

> To create a Telnet Session Connection:

1 From the Composer File menu, select New> xObject, then open the
Resour ce tab and select Connection, or you can click on the icon.

The Header Info panel of the New xObject Wizard appears.

Create a New Connection Resource LI

A Connection resource is used to establish communications with an Connector data source orwith a server
using HTTP authentication. You need to create connections far each type of data source or each HTTF server
you wish to cammunicate with. Enter a name and, optionally, a description for this Connection. The name
will appear in the Composer Detail Pane and in choice lists when you are prompted for objects in Composer.
The name may not contain the characters: 1/ ?" < = | Names are case insensitive.

Mame:

helnetCunnectlon

Description:

Furpose
Input:
Cutput:
Remarks:

) e (Gt

2 TypeaName for the connection object.
3 Optionaly, type Description text.

4 Click Next and the Connection I nfo panel appears.

Create a New Connection Resource X|

Select a Telnet Logon Component for each poal entry's connection. Each Telnet Component using this
Logon Caonnection will use a previously established connection or create a new connection based on pool
infarmation specified in Poal Info dialog. Checking Default’ makes this Connection the initial selection when
requesting a Telnet Logon Companent.

Connection Type |Telnet Logon Connection |L|
Connect Via |Te|netLDgDnCDmp [v] [Default

Pool Connections () |—|

[Back][Finish][Cancel]

Logon Components, Connections, and Connection Pools 119

5 For the Connection Type select “ Telnet Logon Connection” from the drop
down ligt.

6 Inthe Connect Via control, select the Logon Component you just created.
7 Click the Session Connections radio button and then on Session I nfo.

Session Info X

keep Alive sets the interval after which Keep Alive action will be executed on
connection, while it's sitting idle. Inactivity lifetime sets the time limit for connection ta
he idle. Specify Reuse Connectian to verify that the proper ScreenDoc state is
present before a connection can be reused.

Keep Alive (minutes) |2

Inactivity Lifetime (minutes) IED

Reuse connection only [
if expression is true

(oK [cancel |

8 TheKeep Alive (minutes) number represents (in minutes) how often you
wish to execute the Keep Alive actions in the associated Logon Component
whenever the connection is active but free (i.e. not being used by a Telnet
Terminal component). The number you enter here should be less than the
Timeout period defined on the host for an inactive connection.

9 Thelnactivity Lifetime (minutes) number represents (in minutes) how long
you wish to keep an active free connection available before closing out the
connection and returning it to the inactive portion of the connection pool.
Remember, that once the connection is returned to its inactive state in the
pool, it will incur the overhead of logging in and navigating host screens
when it isre-activated.

10 Click in the checkmark box if you want to Reuse connection only if
expression istrue. If you choose to do so, the expression field automatically
displays and you can click on the expression icon to display the if the
expression istrue dialog.

Creating a Telnet Component That Uses Pooled
Connections

At this point, you are ready to create a Telnet Component that can use the Con-

120 Telnet Connect User’s Guide

nection Pool. For the most part, you will build the component as you would a
normal Telnet component, the only difference being the Connection you specify
on the New xObject Wizard. (You'll specify aLogon Connection instead of a
regular Telnet Connection.)

> To create a Telnet Component:

1 From the Composer File menu, select New > xObject, then open the

N~ o o »~ wWwN

Component tab and select Telnet. The Header Info panel of the New
xObject Wizard appears.

Create a New Telnet Terminal Component |

ATelnet Terminal Component connects to a host via the Telnet protocol, processes data using elements
fram a DOM, and maps the results to an output DOM. Use this wizard to create a Telnet Camponent. Enter a
Mame and Description for this Telnet component. The name will appear inthe Composerwindow and in
choice lists when you are prompted for objects of this type as you work in Composer. The Mame is required
and may not contain the characters: 4 f:? " = = | Mames are case insensitive.

Mame:

ITeInetCompunent

Description:

FPurpose:
Input:
Output:
Remarks:

) et [Caneel

Type a Name for the component.

Optionally, type Description text.

Click Next and the XML Property Info panel appears.

Select the necessary I nput and Output Templates for your component.
Click Next. The Connection Info panel appears.

Select the Logon Connection you created and click on Next. The Component
editor appears.

Build the component as described in “ To create a new Telnet Component:”
on page -23 of this Guide.

Logon Components, Connections, and Connection Pools 121

Maximizing Performance of Telnet Terminal Components

Once the launch screen is obtained by the logon Component’slogon actions, it is
handed to the Telnet Terminal Component that uses the connection. Then the
Telnet Terminal component (when finished executing) leaves the screen handler
back at the launch screen. If the Telnet Component finishes without being on the
launch screen,(i.e. it rel eases the connection back to the pool with an invalid
screen) then it is possible that all subsequent Telnet Components that use the
connection may throw exceptions rendering the connection useless. It also will
degrade overall performance and possibly cause data integrity problemswithin
the component processing.

Once again, to ensure that the launch screen is present, the last action to execute
in a Telnet Component must be a Check Screen that checks for the launch screen.
This can betricky if your component has many decision paths that may
independently end component execution. You must be sure that each path ends
with a Check Screen action.

Managing Pools

122

Connections pools can be managed through the Telnet Console Screen.

» How to Access the Console

1 If youareusing the Novell exteNd Application Server, log on to your Server
viayour web browser using http://localhost/Silver M aster 50 (or whatever
is appropriate for the version in use). In this example, Novell exteNd App
Server 5.0 is used.

3 Directory of SilverMaste Ol x|

| Fle Edi Wiew Favortes Took Help |

| ddress |&] http: flocalhost:a0; _;[
=]

SilverMasters(

exteNdiomposer
robots. tHE

JilverMascerso
Silver3tream

a

& | Cane l_ l_ l_ Local intranet

Telnet Connect User’s Guide

NOTE: If you are not using the exteNd app server, enter a URL of this form:
http://<hostname>:<port>/exteNdComposer/Console

2 Click ontheexteNd Composer link and alist of installed Connects displays
to the left of the main console page:

/3 exteNd Composer Server Console - Microsoft Internet Explorer ==l 3

File Edit “iew Favortes Toolz Help |
s D fa) aQ G 7
Back Famard Stop Refresh Home Search Favaiites
Address I@ hittp: fflocalhost<CT utonial/exteM dComposer/Console jsp j @Go | Lirks **
exteNd Composer
=] Novell
Installed Products: General Properties and Settings
TELNET Wi Free Memory: 17 Mb
Log Level: |1
sap i
Apply Log Level
s
HTML Cache Status
il Expressions Cached: o7
— xPath Modes Cached: 0
Functions/Code Tablas Cached: 12
e Component Types Cached:
5250 Total Components Cached: [
Clear Cache
3270
PROCESS Cache Tuning
JDBC Expression / »Path Caching: &0 ©0ff
Component Cache Exping 720

3 Click onthe Telnet link in the left (nav) frame and the Telnet Console
General Properties Screen will comeinto view.

Logon Components, Connections, and Connection Pools 123

3 exteNd Composer Server Console - Microsoft Internet Explorer

File Edit ‘jew Favorites Tools Help

GBack ~ = -) at | Qsearch [ElFavorites GfMedia 4 | S 0 - /

address I&j http:f flocalhost fexteNdComposer/Console j &ran | Links **| &0

exteNd Composer

;I =] ™
i Novell'exteNd Composer
| version 3
EDI1
HP3000 Novell® exteNd™ Composer
HTML Enterprise Server
JDBC TELHET Connect
JMS Wersion 5.0 (142)
LDAP @ 1995-2003 SilverStream Software LLC
Licensze key: E4ER75FB1600000001
PROCESS
T27

4 Click on Console. A browser popup window (the Telnet Connection Pool
Management Screen) should appear.

124 Telnet Connect User’s Guide

/3 Telnet Console - Microsoft Internet Explorer [0]

File Edt VMiew Favoites Tools Help |

« . =+ . 9 3 a @ 3 :
Ezck Farpard Stap Refresh Home Search Favarites Histary
Addiess I@ hitp: A/goarter2- /=T utorial/exteN dCompaser/TelnetConsole j @Go ‘ Links *!

exteNd Composer

[Novell

exteNd Composer Telnet Connection Pool Manager

Pool Name Description Max InUse Avail Discarded Pool Actions
NY Librany Pool Telnet Logon Connection 3 0 0 1 Resel Discarded| Resel| Refill
AS400-Pool Telnet Logon Connection 3 0 2 1 Reset Discarded| Reset| Refil
Refresh Console

To initialize a Logon Connection Pool, enter it's deployment context,
"cannection”, and connection name in the field below. ..
<deployment contexts/connection/ <connection name>

|e . comytestconnection/myLogonlnixml Initialize Pool

|E:| Dane ’7’7’7 @ Local intranet 4

5 Toinitialize aLogon Connection Pool, enter its deployment context, the
word "connection”, and the actual connection name in the text field near the
bottom of the screen. (Seeillustration above.) Then click the Initialize Pool
button.

NOTE: Refer to the appropriate Composer Enterprise Server guide for more
information.

6 Optionaly click the Refresh Console button to update the view.

Logon Components, Connections, and Connection Pools 125

Connection Pool Management and Deployed Services

The Connection Pool Management Screen displays the current state of the
connection(s) with the Telnet Connect. The screen containsatablelisting the Pool
Name, Description of the connection, the maximum number of connectionsin the
pool, the number of connectionsin use, the number of connections available, the
number of connections discarded. It also contains several buttons allowing you to
perform various actions related to connection pooling, which are outlined in the
table below.

Table 0-1:

Button Name Action

Reset Discarded Resets the Discarded connections which are then
reflected in the table

Reset (Pool) Resets the Available and Discarded connections
which are then reflected in the table

Refill (Poal) Refills the pool with the maximum number of
connections

Additional Buttons on Telnet Connection Pool Manager Console

Refresh Shows the current status of the connection pool
Console
Initialize Pool Initializes a Logon Connection Pool by entering a

relative path to the deployed lib directory. This will
not work unless the deployed jar is extracted. Click
on the SUBMIT button when finished.

Connection Discard Behavior

The performance benefits of connection pooling are based on the ability of more
than one user to access aresource, or set of resources, at once. The way a
connection is established begins with the logon component picking the User ID
and Password from the table. If the connection fails, then it is discarded for this
User ID and Password and tries another until a connection is established. The
failure of one connection doesn’t necessarily prevent asuccessful connectionfrom
being established.

126 Telnet Connect User’s Guide

The Connect for Telnet addresses the “ one bad apple” problem by discarding any
connection that can’t be established (for whatever reason: bad user 1D, timed-out
password, etc.) and reusing the others. When a connection is determined to be

unusable, the Connect for Telnet will write a message to the system log that says:
“Logon connection in pool <Pool name> was discarded for User ID <User ID>.”

Screen Synchronization

Screen synchronization has special ramifications for users of pools. If asituation
arisesin which a user |eaves a connection without the screen returning to its
original state, the next user will begin a session with the screen in an unexpected
state and an error will occur. To prevent this, we have a screen expression which
the user can specify in the connection pool. It isimportant that the last actionina
Telnet Component be a correct Send Key action that will result in the session
ending with the correct logon screen active.

NOTE: The last action should be an empty Check Screen action so that the Telnet
Terminal component waits until the launch screen arrives before giving up the
connection. (This should happen automatically, when you create the Send Key
action, but nevertheless, the last action should be the Check Screen.)

If you want to check, at runtime, for the presence of abad screen at the end of a
user session, include a Function action at the end of your component’s action
model that executes afunction similar to the one shown below:

function checkVal i dRel easeScreen(ScreenDoc)

{
var screenText = ScreenDoc. XPat h(" SCREEN').item(0).text

if((screenText.indexOr("MENU') != -1 ||
screenText.indexOF ("APLS") I= -1) &&
(screenText. i ndexCOf (" COMMAND UNRECOGNI ZED') == -1 ||
screenText . i ndexOf (" UNSUPPORTED FUNCTI ON') == -1))

{

return true;
}
else // Wite error messages to
/1 Systemout and Systemerr:
{

java.l ang. System out. println("Warning - Rel easing | ogon
connection at bad screen");
java.lang. Systemerr.println("Warning - Rel easing | ogon
connection at bad screen");
return fal se;

}

Logon Components, Connections, and Connection Pools 127

This function checks the screen text and returns false if the final screen is not
correct. The check returnstrue if the screen contains“MENU” or “APLS” and

does not contain “COMMAND UNRECOGNIZED” nor “UNSUPPORTED
FUNCTION.”

128 Telnet Connect User’s Guide

Glossary

ANSI

American National Standards I nstitute.

Check Screen

An action that action signals the component that execution must not proceed until the screenisina
particular state, subject to a user-specified timeout value.

Dumb Terminal

A computer terminal that has no onboard CPU, memory, or storage devices, beyond the minimum
necessary to communicate with amore powerful host machine.

ECMAScript

Any JavaScript-like language that conforms to European Computer Manufacturers Association
standard No. 262.

Native Environment Pane

A panein the Telnet Component Editor that provides an emulation of an actual Telnet terminal
session.

Screen Object

A special DOM in the Telnet (and 5250) component editor windows representing the current Telnet
screen display as an XML document.

Send Buffer

An action that appearsin the Action Model whenever athere is map to the screen or keys entered on
the screen.

TCP/IP

Abbreviation for Transmission Control Protocol/Internet Protocol

Telnet

Glossary 129

A specification (RFC854) for acommunications protocol (TCP/IP) used for emulating aterminal on
ANSI standard systems.

Type-ahead
A technique for preloading a keyboard buffer with more than one screen’s worth of commands.

Terminal Emulation
A technique for imitating the runtime behavior of a“dumb terminal” on adesktop (or other) machine.

VT100
VAX Terminal, model 100. Also refersto the particular ANSI encoding used by this class of terminal.

130 Telnet Connect User’s Guide

Telnet Keyboard Equivalents

Telnet Common Keys

Arrow Down \u001b[B
Arrow Left \u001b[D
Arrow Right \u001b[C
Arrow Up \uOO1b[A
BackSpace \u0008
Back Tab \u001bOP\u0009
Delete \u007f
Escape \u001b
Linefeed \u000a
Return \u000d
Tab \u0009

Telnet Keyboard Equivalents 131

132

Telnet Functional

Keys F1-F20

F1 \u0O01bOP

F2 \u001bOQ

F3 \u0O01bOR

Fa \u001bOS

F5 \u001b[15~
F6 \u001b[17~
F7 \u001b[18~
F8 \u001b[19~
F9 \u001b[20~
F10 \u001b[21~
F11 \u001b[23~
F12 \u001b[24~
F13 \u001b[25~
F14 \u001b[26~
F15 \u001b[28~
F16 \u001b[29~
F17 \u001b[31~
F18 \u001b[32~
F19 \u001b[33~
F20 \u001b[34~

Telnet Connect User’s Guide

Telnet NumPad Keys

0 \u001bOp
1 \u001bOq
2 \u001bOr
3 \u001bOs
4 \u001bOt
5 \u001bOu
6 \u001bOv
7 \u001bOw
8 \u001bOx
9 \u001bOy
Minus \u001bOm
Comma \u001bOl
Period \u001bOn
Enter \u001bOM

Telnet Control Keys

ACK \u0006 (CTRL+F)
BELL \u0007 (CTRL+G)
BS \u0008 (CTRL+H)
CAN \u0018 (CTRL+X)
CR \u000d (CTRL+M)
DC1 or XON \u0011 (CTRL+Q)
DC2 \u0012 (CTRL+R)

Telnet Keyboard Equivalents

133

134

DC3 or XOFF \u0013 (CTRL+S)
DC4 \u0014 (CTRL+T)
DLE \u0010 (CTRL+P)
EM \u0019 (CTRL+Y)
ENQ \u0005 (CTRL+E)
EOT \u0004 (CTRL+D)
ESC \u001b (CTRL+[)
ETB \u0017

(CTRL+W)
ETX \u0003 (CTRL+C)
FF \u000c (CTRL+L)
FS \u001c (CTRLH\)
GS \u001d (CTRL+])
HT \u0009 (CTRL+l)
LF \u000a (CTRL+J)
NAK \u0015 (CTRL+U)
NUL \u0000

(CTRL+SpaceBar)
RS \u00le (CTRL+~)
Sl \u000f (CTRL+O)
SO \u000e (CTRL+N)
SOH \u0001 (CTRL+A)
STX \u0002 (CTRL+B)
SUB \u00la (CTRL+Z)
SYN \u0016 (CTRL+V)
us \u001f (CTRL+?)

Telnet Connect User’s Guide

VT \u000b (CTRL+K)
Telnet Other Keys
Do \u001b[29~
Find \u001b[1~
Help \u001b[28~
Insert \u001b[2~
KeyEnd \uOO1b[F
KeyHome \uOO01b[H
NextScn \uO01b[6~
PrevScn \u001b[5~
Remove \u001b[3~
Select \u001b[44~

Telnet Keyboard Equivalents

135

136 Telnet Connect User’s Guide

Telnet Display Attributes

TheScreen. get Attri but e() method will return one of the values shown
bel ow, representing the current attribute state of the onscreen character at the

given location.

Number Attribute

0 normal display

1 bold on

2 faint

3 standout

4 underline (mono only)
5 blink on

7 reverse video on

8 nondisplayed (invisible)
30 black foreground

31 red foreground
32 green foreground
33 yellow foreground
34 blue foreground
35 magenta foreground

Telnet Display Attributes

137

36 cyan foreground
37 white foreground
40 black background
41 red background

42 green background
43 yellow background
44 blue background
Number Attribute

45 magenta background
46 cyan background
47 white background

Viewing All Character Attributes at Once

Usingthe Screen. get At t ri but e() method, you can easily write afunction that
captures all attributes (at all screen locations) at once. The following ECM A Script
function, for example, can be used at design timeto display screen attributesin an alert
dialog.

function showAttributes(nyScreen)

{

var attribs = new String(); // create enpty string

I/l lterate over all rows and col ums:
for (var i = 1; i <= nyScreen.get RowCount(); i++, attribs += "\n")
for (var k = 1; k <= nyScreen. get Col umCount (); k++)
attribs += myScreen.get Attribute(i,k);
/1 display the results:
alert(attribs);
138 Telnet Connect User’s Guide

Thefollowing illustrations show a Telnet screen and the result of applying the
showAt t ri but es() function to the screen:

Welcome to The New York Fublic Librar

Library

Entrance

Telnet Display Attributes 139

140

Ega Ecma$cript Alert

000
M1 1111111111111 111111 1111111111111111111111111100000000000000000
000
000
T 11111111 1111111444444444444444444444411000000000000000000000000000
T 11111 1111111111 444444444444444444444411000000000000000000000000000
T 11111 1111111111 444444444444444444444411000000000000000000000000000
T 11111 1111111111 444444444444444444444411000000000000000000000000000
T 11111 1111111111 444444444444444444444411000000000000000000000000000
T 1111111111 1111111111444444444444444444444411000000000000000000000000000
T 1111111111 1111111111444444444444444444444411000000000000000000000000000
T 1111111111 1111111444444444444444444444411000000000000000000000000000
T 1111111 11111111111444444444444444444444411000000000000000000000000000
T 1111111 11111111111444444444444444444444411000000000000000000000000000
T 1111111111111 4444 444444444444 44444411000000000000000000000000000
T 1111111111111 4444 444444444444 44444411000000000000000000000000000
000
000
T 1T 1T 11 1111111111111 1111 11111111111111111111111110000000000000
T 11 111 1111111111111 111111111111111111111111111000000000000000
000
000
000

Telnet Connect User’s Guide

Reserved Words

The following terms are reserved words in exteNd Composer for Telnet Connect
and should not be used as labels for any user-created variables, methods, or
objects.

-USERID

+PASSWORD

+PROJECT

«Screen

-getAttribute

+getCursorColumn

-getColumnCount

-getPrompt

-getRowCount

«getText

«getTextAt

-getTextFromRectangle

«setText

Reserved Words 141

142 Telnet Connect User’s Guide

Java Code Pages

About Encodings

exteNd Composer’s ability to perform character encoding conversionsistied
directly to the Java VM in use. The supported encodings vary between different
implementations of the Java 2 platform. Sun's Java 2 Software Devel opment Kit,
Standard Edition, v. 1.2.2 for Windows or Solaris and the Java 2 Runtime
Environment, Standard Edition, v. 1.2.2 for Solaris support. The encodings can be
found at the Sun web page:

http://java.sun.com/products//jdk/1.2/docs/guide/internat/encoding.doc.html

Sun'sJava 2 Runtime Environment, Standard Edition, v. 1.2.2 for Windows comes
in two different versions: US-only and international. The international version
(which includesthe lib\i18n.jar file) supports al encodingsin both tables.

Java Code Pages 143

144 Telnet Connect User’s Guide

Index

Symbols

$PASSWORD 43

A

About Adding AliasActions 71
About the Telnet Connection 108
Accept Key Strokes 40, 41
actions, editing 64
Adding A New Action 68
Animation 66, 69

tools 74
animation 74
array, unduplicatingan 84
attributes, screen 138

B

binary search technique 80
blank record 88
breakpoint 80
breakpoints 67, 70, 75
buttons, toolbar 33

C

caching screens 88
calculated Timeout 39
Changing an Existing Action 65
Check Screen Action 36
purposeof 37
Clancy, Tom 54
Code Pages
encodings 143
support 21
comparing screens 88
Connection Discard Behavior 126
Connection Pool
stepsfor creating 110
Connection Pool Console, refreshing 126

Connection Pooling with aSingle Sign-On 110

Connection Pool Management and Deployed
Services 126
Connection Pools
implementing 101
stepsincreating 110
ConnectionPools
status 126
Connection Resource 17, 96, 111
constant-driven 18
expression-based 18
how to create 19
Connections
logon 108
resetting discarded 126
CONSULS 50, 51
context menus 31
control keys (also see Appendix B) 41
coordinates, onscreen 55
Create Check Screen button 34
createX Path() method 90
Creating a Connection Pool 110
Creating aLogon Connection 113
Creating a Telnet Component 119
Cursor Position 38
Cutting/Copying actions 64

D

debugging 77
Decision Action 57
default Min Waittime 39
default Timeout value 39
Deleting an Action 72
DOM 27
draganddrop 48, 64
dumb terminal 27

E

ECMA Script
Telnet-specific methods 42
unduplicating datawith 83
editing an Action Model 64
errorsand error messages 77
escapevalues 41
exceptions 39, 77

145

Expression Builder
picklistsin 43
Expression Editor 18

F

F13through F20 27
final screen, detecting 83
Floating Keypad 27
Function Action 86

G

getAttribute() 44
getColumnCount() 45
getCursorColumn() 44
getCursorRow() 45
getPrompt() 45
getRowCount() 45

getText() 46

getTextAt() 46, 48
getTextFromRectangle() 46, 50

H

handshaking 21

hard-coded values 87

Host or IP Address 20

hover-help box, escape codesand 41

Inactivity Lifetime 106, 115, 120
indexOf() 58, 60

index variables 87

infiniteloop 88

Initialize Pool 126

ISBN 51, 56, 60

iterating through screens 82

J

join() method 90

146

K

Keep Alive 120
KeepAlive Actions 101

L

latency 39
launch screen 102
Logoff action 102
LOGOFF Actions 107
Logonaction 102
Logon Actions 103
L ogon Component
definition 101
L ogon Components
creating 111
Logon Connections 96
looping over multiple screens 85
ITrim() 60

M

Managing Pools 122

Maximizing Performance of Telnet Logon
Connection 118

Maximizing Performance of Telnet Terminal
Components 122

Maximizing Performance with KEEP ALIVE
Actions 106

Maximizing Performance with the Logon
Component 103

millisecond timing 92

MinWait 37

default of 50ms 39
multiple screens, grabbing datafrom 82

N

Native Environment Pane 26

newlines, in rectangular screen selections 50
non-printing characters 42, 47

non-printing keys 29

NumPad Keys 27, 28

O

Output DOM notes, creating 85
Overridethe UID/PWD 110
Override UID/PWD 115

P

padded screens 83
PASSWORD global 43
performancetuning 92
picklists 43
Pool Infodialog 105
pools
checking status 126
implementing 101
initializing 126
refilling 126
resetting 126
pool size 115
Port 21
profiling 92
PROJECT Variables 18
Prompt 38
prompt string 76
property names 87
pseudocode 85

R

readiness criteria 37

recording 31, 50

rectangular onscreen selections 49
redundant data, dealing with 83
Refill Pool 126

Refresh Consolel 126
RegExp() 59

RegEXxp constructor 59

regular expressions 59
rejection of duplicates 83
Repeat Whileaction 88

Reset Discarded 126

Reset Pool 126

Reuse connection 120
RFC854 15

S

scraping data 82

scraping datafrom multiple screens 85

screen caching 88
Screen Object 29
API for al methods 44
screens, comparing 88
screen scraping 16
Screen Selections 47
Screen Synchronization 127
selecting onscreen data 47
Send Buffer
PASSWORD 32
USERID 32
Send Buffer Action 39
creating 40
exiting 42
hover helpindialog 41
Record Modeand 42
setText() 47
shift-drag selection technique 49
Shift key down, dragging with 49
split) 60
spoofing 21
spoofing, logon 21
Static versus Dynamically Created
Documents/Elements 118
Step to Breskpoint 67, 70
strategies for loop termination 82
synchronization 37

T

Telnet Connection types 96
Telnet specification 15
Temp XML Document 25
Terminal Type 21

testing 72
ThomasAquinas 86
Timeout 37, 38, 39

Tipsfor building Telnet Components 75

To create a Telnet Component
121

To create a Telnet Logon Connection
113

Toggle Breakpoint 66, 69

147

toolbar buttons 33
troubleshooting 77
type-ahead 54, 79

U

unduplicating records 83
Unicode 21,42
USERID global 43

Vv

VAX 15
VT100 130
VT220 21

w

While (Repeat-While action) 57

X

XML Templates 21
XPath 40
XSL 16

148

	Contents
	1 Welcome to exteNd Composer and Telnet User Interface 13
	2 Getting Started with the Telnet Component Editor 17
	3 Creating a Telnet Component 23
	4 Performing Telnet Actions 35
	5 Advanced Telnet Actions 81
	6 Logon Components, Connections, and Connection Pools 95
	A Glossary 129
	B Telnet Keyboard Equivalents 131
	C Telnet Display Attributes 137
	D Reserved Words 141
	E Java Code Pages 143

	About This Guide
	Welcome to exteNd Composer and Telnet User Interface
	Before You Begin
	About exteNd Composer Connects
	What Is Telnet?
	What is the Telnet Connect?
	About exteNd Composer's Telnet Component
	What Applications Can You Build Using the Telnet User Interface Component Editor?

	Getting Started with the Telnet Component Editor
	Creating a Telnet Connection Resource
	About Connection Resources
	About Constant and Expression Driven Connections
	About Code Page Support

	Creating XML Templates for Your Component

	Creating a Telnet Component
	Before Creating a Telnet Component
	About the Telnet Component Editor Window
	About the Telnet Native Environment Pane
	About Telnet Keyboard Support
	About the Screen Object
	What it is
	How it works

	About Telnet-Specific Menu Bar Items
	About Telnet-Specific Context-Menu Items
	Native Environment Pane Context Menu
	Action Pane Context Menu

	About Telnet-Specific Buttons
	Record Button
	Connection Button

	Performing Telnet Actions
	About Actions
	About Telnet-Specific Actions
	The Check Screen Action
	Understanding the Check Screen Action
	Readiness Criteria

	The Send Buffer Action
	Editing Text in the Send Buffer Dialog

	About the Send Buffer Action and Record Mode
	How Keys Are Displayed in the Action Model

	Telnet-Specific Expression Builder Extensions
	Login
	Screen Methods
	Keys

	Screen Selections in the Telnet Connect
	Selecting Continuous Data
	Selecting Rectangular Regions

	About the Sample Program
	Recording a Telnet Session
	Looping Over Multiple Rows in Search of Data
	Editing a Previously Recorded Action Model
	Changing an Existing Action
	Adding A New Action
	About Adding Alias Actions
	Deleting an Action

	Testing your Telnet Component
	Using the Animation Tools
	Tips for Building Reliable Telnet Components
	Using Other Actions in the Telnet Component Editor
	Handling Errors and Messages
	Check Screen Errors
	Send Buffer Errors
	Errors Involving Connections

	Finding a “Bad” Action

	Advanced Telnet Actions
	Data Sets that Span Screens
	Dealing with Redundant Data
	An Example of Looping over Multiple Screens
	Initial Actions
	Setting Up the Main Loop
	Screen Caching
	The Main Loop

	Performance Considerations

	Logon Components, Connections, and Connection Pools
	About Telnet Session Performance
	When Will I Need Logon Components?

	Connection Pool Architecture
	The Logon Connection’s Role in Pooling
	How Many Pools Do I Need?
	Pieces Required for Pooling

	How Do I Implement Pooling?
	The Telnet Logon Component
	Logon, Keep Alive, and Logoff Actions
	Logon Actions
	Maximizing Performance with the Logon Component

	Keep Alive Actions
	Maximizing Performance with Keep Alive Actions

	Logoff Actions
	Logon Component Life Cycle

	About the Telnet Connection
	Many-to-One Mapping of Components to Logons
	Connection Pooling with a Single Sign-On

	Creating a Connection Pool
	Overview

	Creating a Basic Telnet Connection
	Creating a Logon Component
	Creating a Logon Connection using a Pool Connection
	Maximizing Performance of Telnet Logon Connection
	Static versus Dynamically Created Documents/Elements

	Creating a Logon Connection using a Session Connection
	Creating a Telnet Component That Uses Pooled Connections
	Maximizing Performance of Telnet Terminal Components

	Managing Pools
	Connection Pool Management and Deployed Services
	Connection Discard Behavior
	Screen Synchronization

	Glossary
	Telnet Keyboard Equivalents
	Telnet Display Attributes
	Viewing All Character Attributes at Once

	Reserved Words
	Java Code Pages
	About Encodings

