Novell exteNd Composer™
UTS Connect

www.novell.com

5.0 O

USER’S GUIDE

Novell.

Legal Notices
Copyright © 2000, 2001, 2002, 2003, 2004 SilverStream Software, LLC. All rights reserved.

Title to the Software and its documentation, and patents, copyrights and all other property rights applicable thereto,
shall at all timesremain solely and exclusively with SilverStream and its licensors, and you shall not take any action
inconsistent with such title. The Software is protected by copyright laws and international treaty provisions. You
shall not remove any copyright notices or other proprietary notices from the Software or its documentation, and you
must reproduce such notices on all copies or extracts of the Software or its documentation. You do not acquire any

rights of ownership in the Software.

Novell, Inc.
1800 South Novell Place
Provo, UT 85606

www.novell.com

exteNd Composer UTS Connect User’s Guide
January 2004

Online Documentation: To access the online documentation for this and other Novell products, and to
get updates, see www.novell.com/documentation.

Novell Trademarks

eDirectory isatrademark of Novell, Inc.

exteNd is atrademark of Novell, Inc.

exteNd Composer is atrademark of Novell, Inc.
exteNd Director is atrademark of Novell, Inc.
jBroker isatrademark of Novell, Inc.

NetWare is aregistered trademark of Novell, Inc.
Novell isaregistered trademark of Novell, Inc.

SilverStream Trademarks
SilverStream is aregistered trademark of SilverStream Software, LLC.

Third-Party Trademarks
All third-party trademarks are the property of their respective owners.

Third-Party Software Legal Notices

Jakarta-Regexp Copyright ©1999 The Apache Software Foundation. All rights reserved. Xalan Copyright ©1999
The Apache Software Foundation. All rights reserved. Xerces Copyright ©1999-2000 The Apache Software
Foundation. All rights reserved. Jakarta-Regexp , Xalan and Xerces software is licensed by The Apache Software
Foundation and redistribution and use of Jakarta-Regexp, Xalan and Xerces in source and binary forms, with or
without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code
must retain the above copyright notices, thislist of conditions and the following disclaimer. 2. Redistributionsin
binary form must reproduce the above copyright notice, thislist of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution. 3. The end-user documentation included with
theredistribution, if any, must include the following acknowledgment: "This product includes software developed
by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment may appear in the
software itself, if and wherever such third-party acknowledgments normally appear. 4. The names " The Jakarta
Project”, "Jakarta-Regexp", "Xerces', "Xaan" and " Apache Software Foundation" must not be used to endorse or
promote products derived from this software without prior written permission. For written permission, please contact
apache@apache.org. 5. Products derived from this software may not be called "Apache" nor may "Apache" appear
in their name, without prior written permission of The Apache Software Foundation. THIS SOFTWARE IS
PROVIDED "ASI1S" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THEIMPLIED WARRANTIESOF MERCHANTABILITY AND FITNESSFOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION ORITS
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Copyright ©1996-2000 Autonomy, Inc.

Copyright ©2000 Brett McLaughlin & Jason Hunter. All rightsreserved. Redistribution and usein source and binary
forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions
of source code must retain the above copyright notice, thislist of conditions, and the following disclaimer. 2.
Redistributions in binary form must reproduce the above copyright notice, thislist of conditions, and the disclaimer
that follows these conditionsin the documentation and/or other materials provided with the distribution. 3. The name
"JDOM" must not be used to endorse or promote products derived from this software without prior written
permission. For written permission, please contact license@jdom.org. 4. Products derived from this software may

not be called "JDOM", nor may "JDOM" appear in their name, without prior written permission from the JDOM
Project Management (pm@jdom.org). THIS SOFTWARE ISPROVIDED "ASIS' AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE APACHE SOFTWARE FOUNDATION OR ITSCONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This Softwareisderived in part from the SSLava™ Toolkit, which is Copyright ©1996-1998 by Phaos Technology
Corporation. All Rights Reserved. Customer is prohibited from accessing the functionality of the Phaos software.

The code of this project isreleased under a BSD-like license [license.txt]: Copyright 2000-2002 (C) Intaio Inc. All
Rights Reserved. Redistribution and use of this software and associated documentation (" Software'), with or without
modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must
retain copyright statements and notices. Redi stributions must al so contain acopy of thisdocument. 2. Redistributions
in binary form must reproduce the above copyright notice, thislist of conditions, and the following disclaimer inthe
documentation and/or other materials provided with the distribution. 3. The name "ExoLab" must not be used to
endorse or promote products derived from this Software without prior written permission of Intalio Inc. For written
permission, please contact info@exolab.org. 4. Products derived from this Software may not be called "Castor" nor
may "Castor" appear in their names without prior written permission of Intalio Inc. Exolab, Castor, and Intalio are
trademarks of Intalio Inc. 5. Due credit should be given to the ExolL ab Project (http://www.exolab.org/). THIS
SOFTWARE ISPROVIDED BY INTALIO AND CONTRIBUTORS “"ASIS" AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE DISCLAIMED. IN NO EVENT
SHALL INTALIO OR ITSCONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Contents

About This Guide

1

Welcome to exteNd Composer and UTS Connect

Before YouBegin

Getting Started with the UTS Component Editor

Steps Commonly Used to Create a UTS Component
Creating XML Templates for Your Component
Creating a UTS Connection Resource
Connection Resourceso
Constant and Expression Driven Connections

Creating a UTS Component

CreatingaUTS Component
About the UTS Component Editor Window
About the UTS Native EnvironmentPane
UTS Keyboard Support
About the Screen Object. Lo
Whatitiso
Howitworks
UTS-Specific Toolbar Buttons
UTS-Specific MenuBarltems
UTS-Specific Context-Menu ltems.
Native Environment Pane ContextMenu
Action Pane ContextMenuo

Performing Basic UTS Actions

About Actions L e
About UTS-Specific Actions
The Set Screen TextAction.
The Send Key Action
The Check Screen Action.
Using Actionsin RecordMode
UTS-Specific Expression Builder Extensions
Login
ScreenMethods
Multi-row Screen Selectionsinthe UTS Connect

Vii

iv

Selecting Continuous Data. 50

Selecting Rectangular Regions e 51
UTS Components in Action 53
The Sample Transaction e e 53
Recording a UTS SeSSION. o i e e e e 53
Editing a Previously Recorded ActionModel 61

Editing or Adding to an Existing Action o o 61

Deletingan Action e e 65

Looping Over Multiple Rows in Searchof Data 65
Testing your UTS Component 0 i i it e e s e e e 66
Using the Animation TooIs e e 68
Data Setsthat Span Screens. e e e 69

Multiple Screens L e e e 70
Dealingwith RedundantData. it 70
Tips for Building Reliable UTS Components 72
Using Other Actions in the UTS Component Editor. 73
Handling Errors and Messages o v v i i i e e e e e 73
Findinga“Bad” Action e e 74
Performance Considerations L 75
Logon Components, Connections, and Connection Pools 77
About UTS Terminal Session Performance. 77

When Will | Need Logon Components? v i i vt e 77
Connection Pool Architecture.. e 78

The Logon Connection's RoleinPooling 81

How Many Pools Do I Need? i i 82

Pieces Required for Pooling 82
How Do | Implement Pooling? e e 83
The UTS Logon Component 0 i i i e e et e e e e e e e e e e 83

Logon, Keep Alive, and Logoff Actions 84

LOGON ACLIONS o o o e e e e e e e e 85

Keep Alive Actions. e e e 86

Logoff Actions e 88

Logon ComponentLife Cycle 89
About the UTS Logon Connection i it e e 90

Connection Pooling with a Single Sign-On. 91
Creating a Connection Pool. 92

OVEIVIEBW. o o o e e e e e e e 92
Creating a Basic UTS Connection i it ittt 92
CreatingaLogon Component. i i i e e 93
Creating a Logon Connection using a Pool Connection 95
Creating a Logon Connection using a Session Connection. 101
Creating a UTS Component That Uses Pooled Connections. 103

Novell UTS Connect User’s Guide

Managing Pools

Using the exteNd Composer Console v i i i i i
Connection Pool Management and Deployed Services
Connection Discard Behavior.

Screen Synchronization
A Glossary
B UTS Display Attributes
C Reserved Words

vi Novell UTS Connect User’s Guide

About This Guide

Purpose

The guide describes how to use exteNd Composer UTS Connect, referred to asthe
UTS Component Editor. The UTS Component Editor is a separately-installed
component editor in exteNd Composer.

Audience

The audience for the guide is devel opers and system integrators using exteNd
Composer to create Web services and components which integrate UTS
applications.

Prerequisites

The guide assumes the reader is familiar with and has used exteNd Composer’s
development environment and deployment tools. You must also have an
understanding of the UTS environment and building or using applications
utilizing UTS. Familiarity with other mainframeterminal emulators, suchasUTS,
3270, 5250 or VT-seriesterminals (e.g. VT100) would also be helpful asyou read
through this guide.

Additional documentation

For the complete set of Novell exteNd Composer documentation, see the Novell
Documentation Web Site (http://www.novell.com/documentation-
index/index.jsp).

Organization

The guideis organized asfollows:

vii

http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp

Chapter 1, Welcome to exteNd Composer and UTSUser Interface, givesa
definition and overview of the UTS Connect and Component Editor and the types
of applications you may build using them.

Chapter 2, Getting Sarted with the UTS Component Editor, describes the
necessary preparations for creating a UTS component.

Chapter 3, Creating a UTS Component, describes the different parts of the
component editor.

Chapter 4, Performing UTS Actions, describes how to use the basic UTS actions,
aswell asthe unique features of the UTS Connect.

Chapter 5, UTSComponentsin Action, demonstrates using UTS components and
actions using a sample application in the context of an Action Model.

Chapter 6, Logon Components, Connections, and Connection Pools, describes
how to enhance performance through use of shared connections.

Appendix A, isaglossary.

Appendix B, UTS Attributes, and their display significance along with a
discussion of how tousethegetattri bute().

Appendix C, Reserved Words, lists those words used only for UTS Connect.

Conventions Used in the Guide
The guide uses the following typographical conventions.
Bold typeface within instructions indicate action items, including:

+ Menu selections
+ Form selections
+ Diaog box items

Sans-serif bold typefaceis used for:

+ Uniform Resource |dentifiers
+ Filenames
+ Directories and partial pathnames

Italic typeface indicates:

+ Variable information that you supply
+ Technical terms used for the first time
+ Titleof other Novell publications

Monospaced typefaceindicates:

viii UTS Connect User’s Guide

Method names

Code examples

System input

Operating system objects

X UTS Connect User’s Guide

Welcome to exteNd Composer and
UTS Connect

Before You Begin

Welcome to the UTS Connect Guide. This Guide is a companion to the exteNd
Composer User's Guide, which details how to use all the features of exteNd
Composer, except for the Connect Component Editors. If you haven't looked at
the Composer User's Guide yet, please familiarize yourself with it before using
this Guide.

exteNd Composer provides separate Component Editors for each Connect. The
special features of each component editor are described in separate Guides like
this one.

If you have been using exteNd Composer, and are familiar with the XML Map
Component Editor, then this Guide should get you started with the UTS
Component Editor.

Before you can begin working with the UTS Connect you must have installed it
into your existing exteNd Composer. Likewise, before you can run any Services
built with this Connect in the exteNd Composer Enterprise Server environment,
you must have aready installed the server-side software for this Connect into
Composer Enterprise Server.

NOTE: To be successful with this Component Editor, you must be familiar with the
UTS environment and the particular applications that you want to XML-enable.

About exteNd Composer Connects

exteNd Composer is built upon a simple hub and spoke architecture (Fig.1-1).
The hub isarobust XML transformation engine that accepts requests via XML
documents, performs transformation processes on those documents and
interfaces with XML -enabled applications, and returns an XML response
document. The spokes, or Connects, are plug-in modules that "X ML -enable"

Welcome to exteNd Composer and UTS Connect 15

16

sources of datathat are not XML aware, bringing their data into the hub for
processing as XML. These data sources can be anything from legacy
COBOL /applications to Message Queuesto HTML pages.

Mainframes

RPC

Databases ﬁ”/;r&
Enterprise

Messaging l 1 www

Figure 1-1

exteNd Composer Connects can be categorized by the integration strategy each
one employsto XML-enable an information source. The integration strategies
are areflection of the major divisions used in modern systems designs for
Internet-based computing architectures. Depending on your B2B needs and the
architecture of your legacy applications, exteNd Composer can integrate your
business systems at the User Interface, Program Logic, or Datalevels. (See
below.)

UTS Connect User’s Guide

User
Interface

What is the UTS Connect?

The UTS Connect XML -enables Unisys host system data using the User
Interface integration strategy by hooking into the terminal data stream.

UTS, which standsfor Universal (or Unisys) Terminal System, isused to interact
with the popular Unisys mainframe models, including the ClearPath X, 1100
and 2200. Before personal computers became widely available in the mid-1980s,
companies relied heavily on large mainframe systems like these to store and
access vital information.

Using the UTS Connect, you can make legacy applications and their business
logic available to the internet, extranet, or intranet as Web Services. The UTS
Connect Component Editor allows you to build Web Services by simply
navigating through an application as if you were at aterminal session. You will
use XML documentsto drive inquiries and updates into the screens rather than
keying, use the messages returned from application screens to make the same
decisionsasif you were at aterminal, and move data and responses into XML
documents that can be returned to the regquestor or continue to be processed. The
UTS screens appear in the Native Environment Pane of the UTS Component
Editor.

About exteNd Composer's UTS Component

Much like the XML Map component, the UTS Component is designed to map,
transform, and transfer data between two different XML templates (i.e., request
and response XML documents). However, it is specialized to make a connection

Welcome to exteNd Composer and UTS Connect 17

toaUnisys UTS host application, process the data using elements from a screen,
and then map the results to an output DOM. You can then act upon the output
DOM in any way that makes sense for your integration application. In essence,
you're able to capture data from, or push datato, a host system without ever
having to alter the host system itself.

A UTS Component can perform simpl e data manipulations, such as mapping and
transferring datafrom an XML document into a host program, or perform "screen
scraping” of a UTS transaction, putting the harvested datainto an XML
document. A UTS Component has all the functionality of the XML Map
Component and can process XSL., send mail, and post and receive XML
documents using the HT TP protocol.

What Applications Can You Build Using the UTS

Connect?

18

exteNd Composer, and consequently the UTS Connect, can be applied to the the
following types of applications:

1 Businessto Business Web Service interactions such as supply chain
applications.

2 Consumer to Business interactions such as self-service applications from
Web Browsers.

3 Enterprise Application Integrations where information from heterogeneous
systemsis combined or chained together.

Fundamentally, the UTS Component Editor allows you to extend any XML
integration you are building to include any of your business applications that
support UTS-based terminal interactions (See the exteNd Composer User's Guide
for more information.)

For example, you may have an application that retrieves a product's description,
picture, price, and inventory from regularly updated databases and displaysitina
Web browser. By using the UTS Component Editor, you can now get the current
product information from the operational systemsand the static information (e.g.,
apicture) from a database and merge the information from these separate
information sources before displaying it to a user. This provides the same current
information to both your internal and external users.

UTS Connect User’s Guide

Getting Started with the UTS
Component Editor

Steps Commonly Used to Create a UTS Component

While there are many ways to go about creating UTS Components, the most
commonly used steps in creating a simple component are as follows:

+ Create XML Template(s) for the program.

+ Createa UTS Connection Resource.

+ CreateaUTS Component.

+ Enter Record mode and navigate through the program using terminal
emulation available via the component editor’s Native Environment Pane.

+ Drag and drop input-document data into the screen as needed.
+ Dragand drop screen results into the output document.
+ Stop recording.

This chapter will cover thefirst two stepsin this process.

Creating XML Templates for Your Component

Although it is not strictly necessary to do so, your UTS Component may require
you to create XML templates so that you have sample documents for designing
your component. (For more information, see Chapter 5, “ Creating XML
Templates,” in the exteNd Composer User's Guide.)

In many cases, your input documents will be designed to contain data that a
terminal operator might type into the program interactively. Likewise, the output
documents are designed to receive data returned to the screen as aresult of the
operator's input. For example, in atypical business scenario, aterminal operator
may receive a phone request from a customer interested in the price or
availability of an item. The operator would typically query the host system via
hisor her UTS terminal session by entering information (such as a part number)
into aterminal when prompted. A short time later, the host responds by returning

Getting Started with the UTS Component Editor 19

data to the terminal screen, and the operator relays thisinformation to the
customer. This session could be carried out by an exteNd Composer Web Service
that uses a UTS Component. The regquested part number might be represented as
adataelement in an XML input document. The looked-up data returned from the
host would appear in the component’s output document. That data might in turn
be output to aweb page, or sent to another business process as XML, etc.

NOTE: Your component design may call for other xObject resources, such as
custom scripts or Code Table maps. If so, it is also best to create these objects
before creating the UTS Component. For more information, see the exteNd
Composer User's Guide.

Creating a UTS Connection Resource

Once you have the XML templatesin place, your next step will be to create a
Connection Resource to access the host program. If you try to createa UTS
Component in the absence of any available Connection Resources, a dialog will
appear, asking if you wish to create a Connection Resource. By answering Yesto
this dialog, you will be taken to the appropriate wizard.

Connection Resources

20

When you create a Connection Resource for the UTS Component, you will have
what appear to be three choices: astraight Connection, aLogon Connection and a
MultiBridge Connection. Generally speaking, you will use the straight UTS
Connection to connect to your host environment. The Logon Connection is used
for connection pooling, which will be explained in greater detail in Chapter 6 of
this Guide. The MultiBridge Connection is a gateway server version that
minimizes the number of connections going back to the host and also contains
added security. A MultiBridge connection would need to be specially enabled
with the help of Novell and a third party business partner. If you think that your
application needs to use a MultiBridge connection, please contact exteNd
Technical Support.

After setting up your UTS Connection Resource, it will be available for use by
any number of UTS Components that might require a host connection.

> To create a UTS Connection Resource:

1 From the Composer File menu, select New> xObject, then open the
Resour ce tab and select Connection.

NOTE: Alternatively, under Resource in the Composer window category
pane you can highlight Connection, click the right mouse button, then select
New.

UTS Connect User’s Guide

The Create a New Connection Resour ce Wizard appears.

Credke aNew Connection Resouree

AConnection resource is used to establish communications with an Connectar data source or with a server
using HTTP authentication. You need ta create connections for each type of data source or each HTTP server
youwish to communicate with. Enter a name and, optionally, a description for this Connection. The name
will appear in the Composer Detall Pane and in choice lists when you are prampted for ohjects in Composer.
The name may not contain the characters: W/ : 2" == | Names are case insensitive.

Marne:

UTSStandard|

Description:

Furpose
Input:
Cutput:
Remarks:

][Next][Cancel

Type a Name for the connection object.
Optionally, type Description text.
Click Next. The second panel of the wizard appears.

x

Header Infa “onnection Info |

Connection Type IUTS Connection LI Test

Host or IP Address |www.utssys.com " Defautt

uTs Port [23

Host Connection 1D IOD1 101

Seszion MName IAppDne

Host App Mame Iappone

CSUID |mycsuid

Screen wait (seconds) IGD

Screen Rows |24

Screen Columns ISD

User ID [MYUSERID

Paszword I""""*""'*

Help oK Cancel

Select the UT S Connection type from the pull-down menu. The dialog

changes appearance to show just the fields necessary for creating the UTS
connection.

IntheHost or I P Addressfield, enter the physical (IP) address or hosthame
alias for the machine to which you are connecting.

Getting Started with the UTS Component Editor 21

7 Inthe UTSPort field, enter the number of the UTS port. The default port
number is 23.

8 IntheHost Connection ID field, enter an identifier string used to manage
your terminal connection to the host.

9 Inthe Session Namefield, enter a string to identify your UTS session.

10 Inthe Host App Namefield, enter a string to identify the host application
you wish to access.

11 Inthe CSU Id field, enter your CSU id.

12 Inthe Screen Wait (seconds) field, enter the amount of time in seconds that
aUTS Terminal component will wait for the arrival of the next screen in the
Check Screen Action pane (this sets the default value).

13 Inthe Screen Rowsfield, specify the default number of rows per screen.

14 Inthe Screen Columnsfield, specify the default number of columns per
screen.

15 Enter aUser1D and Passwor d. These are not actually submitted to the host
during the establishment of a connection. They are simply defined here (the
password is encrypted.) Right-mouse-click and choose Expression if you
want to make these fields expression-driven.

NOTE: After you've entered UserID and Password info in this dialog, the
ECMAScript global variables USERID and PASSWORD will point to these
values. You can then use these variables in Set Screen Text expressions (or
as described under “Native Environment Pane Context Menu” in Chapter 3.

16 Click the Default check box if you'd like this particular UTS connection to
become the default connection for subsequent UTS Components.

17 Click Finish. The newly created resource connection object appears in the
Composer Connection Resource detail pane.

Constant and Expression Driven Connections

22

You can specify Connection parameter values in one of two ways: as Constants
or as Expressions. A constant-based parameter uses the static value you supply in
the Connection dialog every time the Connection is used. An expression-based
parameter allows you to set the value in question using a programmatic
expression (that is, an ECM A Script expression), which can result in a different
value each time the connection is used at runtime. This allows the Connection's
behavior to be flexible and vary based on runtime conditions.

For instance, one very simple use of an expression-driven parameter inaUTS
Connection would be to define the User ID and Password as PROJECT Variables
(e.g.: PROJECT. X Path("USERCONFIG/MyDeployUser"). This way, when you

UTS Connect User’s Guide

deploy the project, you can update the PROJECT Variables in the Deployment
Wizard to values appropriate for the final deployment environment. At the other
extreme, you could have a custom script that queries a Java business object in the
Application Server to determine what User 1D and Password to use.

» To switch a parameter from Constant-driven to Expression-driven:

1 Click theright mouse button in the parameter field you are interested in
changing from a constant to an expression.

2 Select Expression from the context menu and the editor button will appear
or become enabled. See below.

x

Header Infa Connection Info |

Connection Type IUTS Connection LI Test
Host or IP Address Iwww.utssvs.com [Default
uTs Port [23

Host Connection ID IOD1 1m

Session Mame IAppDne

Host App Mame |app0ne @
- Cut
CSUID |mycswd
Copy
Screen wait (seconds) IGD Paste
Screen Rows |24 Select Al
Screen Columng ISD Find. ..
User ID [MYUSERID RelEEE
Replace...
Pazsword I********]
Clear all
Constant
Help v Expression OK Cancel

3 Click onthe Expression Editor button. The Expression Editor appears.

Getting Started with the UTS Component Editor 23

ﬂ

wariahbles: Functionshiethods: Operators:
....< > Input #-Custom Scripts -
<> Output Document

> _systemFault ECMAScript #-Logical
> PROJECT +-Extended ECMASCript #-String
> Repeat Aliases =-UTS

[#-<> Node Aliases

[(Hetp] (Validate][OK][Cancel |

4 Create an expression (optionally using the pick lists in the upper portion of
the window) that evaluates to avalid parameter value at runtime. Click OK.

24 UTS Connect User’s Guide

Creating a UTS Component

Creating a UTS Component

As discussed in the previous chapter, before you proceed with creating aUTS
component you must first prepare any XML templates needed by the component.
(For more information, see “Creating a New XML Template” in the Composer
User's Guide.) During the creation of your component, you will use these
template's sample documents to represent the inputs and outputs processed by
your component.

Also, as part of the process of creating a UTS component, you must specify a
UTS connection for use with the component (or you can create a new one). See
the previous chapter for information on creating UTS Connection Resources.

» To create a new UTS Component:

1 Select File>New>xObject then open the Component tab and select UTS
Terminal.

NOTE: Alternatively, under Component in the Composer window category
pane you can highlight UTS Terminal, click the right mouse button, then
select New.

2 The“Create aNew UTS Component” Wizard appears.

Creating a UTS Component 25

Create a New UTS Terminal Component 5[

AUTS Terminal Cormponent connects to a hostvia the UTS protocol, processes data using elements from a
DOM, and maps the results to an output DOM. Use this wizard to create a UTS Component. Enter a Mame
and Description for this UTS component. The name will appear in the Composer window and in choice lists
when you are prompted for objects of this tvpe as vou work in Composer. The Mame is reguired and ray not
contain the characters:\ 1.7 "= = | Names are case insensitive.

Matne:

UTSSample

Description:

FurmOge:
Input:
Output
Rernarks:

Help (& | Mext Cancel

3 Enter aName for the new UTS Terminal Component.

N

Optionally, type Description text.

5 Click Next. The XML Input/Output Property Info pane of the New UTS
Component Wizard appears.

Create a New UTS Terminal Component x|

Specify ane ar more XML Templates to help design Input to this Component or Web Service and only one to
design Qutput. The sample XML Documents in each Template are design time aids to help you build Action
Maodels for the component. The samples are not actually used at runtime after deployment fo your application
server. The ldentifier is fixed and represents the name used to refer to the XML Document during component
execution. Selecting System {ANY} allows you to use an empty template (i e. accept any document as Inpuf)

Input Message
Part | Template Categaory I Template Name

|
Input [(System] [][tanv I~

Output Message
Part | Template Category | Template Name

|
Output [(svstem} [[[¢y I~

[Back][MNext][Cancel]

6 Specify the Input and Output templates as follows.

+ Typeinanamefor the template under Part if you wish the name to
appear in the DOM as something other than “Input”.

+ SeectaTemplate Category if it is different than the default category.

+ Select aTemplate Name fromthelist of XML templatesin the selected
Template Category.

26 UTS Connect User’s Guide

9

10

11

12

+ Toadd additional input XML templates, click Add and choose a
Template Category and Template Name for each.

+ Toremoveaninput XML template, select an entry and click Delete.

Select an XML template for use as an Output DOM using the same steps
outlined above.

NOTE: You can specify an input or output XML template that contains no
structure by selecting {SystemH{ANY} as the Input or Output template. For
more information, see “Creating an Output DOM without Using a Template” in
the User’s Guide.

Click Next. The Temp and Fault XML Template panel appears.

x
Specify ane or more Termp and Fault XML Templates to help design termporary parts and fault handling for
this Component or Web Servdice. Use Temp documents for creating intermediate results or holding values
for reference. Specify XML Templates to serve as Fault documents to be passed back to clients under error
conditions.
[Temp Message
Part Template Category | Template Name |
Fault Message
Part | Template Category | Template Name |
| SystemFault |{Sy5‘tem} |:||{F3Uﬂ} |:||
[Back (Mo [Cancel |

If desired, specify atemplate to be used as a scratchpad under the “ Temp
Message” pane of the dialog window. This can be useful if you need a place
to hold values that will only be used temporarily during the execution of
your component or are for reference only. Select a Template Category if itis
different than the default category. Then select a Template Name from the
list of XML templatesin the selected Template Category.

Under the “ Fault Message” pane, select an XML template to be used to pass
back to clients when an error condition occurs.

As above, to add additional input XML templates, click Add and choose a
Template Category and Template Name for each. Repeat as many times as
desired. To remove an input XML template, select an entry and click Delete.

Click Next. The Connection Info panel of the Create aNew UTS
Component Wizard appears.

Creating a UTS Component 27

Create a New Connection Resource 1'

Specify the URL for the UTS host. The UTS Port (normally 23) needs to be setto the host's requirements.
Select ar enter a Terminal Type used during UTS negoatiation. USERID and PASSWORD are available for
mapping in ECMAScript expressions. You may create more than one UTS Connection. Checking Default’
makes this Connection the initial selection when creating a UTS Component. Use the Test button to check
vour connection

Connection Type [UTS Connection = Test
Host or IP Address IWWW myutsconn.cam = I Defautt
uTS Port [23

Host Connection 1D IOD1 1M

Seszion Name IAppDnE

Host &App Matme |app0ne

csu D tipesyl

Screen wait (seconds) IEU

Screen Rows |24 LI

| Help Back | Finish | Cancel |

13 Select a Connection name from the pulldown list. For more information on
the UTS Connection, see “Creating aUTS Connection Resource” in Chapter
2.

14 Click Finish. The component is created and the UTS Component Editor
appears.

About the UTS Component Editor Window

28

The UTS Component Editor includes all the functionality of exteNd Composer’s
XML Map Component Editor. For example, it contains mapping panes for Input
and Output XML documents as well as an Action pane.

Thereisone main difference, however. The UTS Component Editor also includes
aNative Environment Pane featuring a UTS emulator. This screen appears blue
until you either click the Connection icon in the main toolbar or begin recording
by clicking the Record button in the toolbar. Either action establishesaUTS
emulation session inside the Native Environment Pane with the host that you
specified in the connection resource used by this UTS component.

UTS Connect User’s Guide

W entend Composer: Unisys [UTS Terminak SampleUTSCompanent] =10l =

Sie b Mien Comperent e Gndebe Tons Wndoeo lep O .8 x
CEES TR/ B0 BT Novell
oo) 2T Termn ;‘” !fJTssamplel

& ~andem| ngen
andcm et na

hput wsts

= UZERCINF G

=S PROJEST CUNIG
L= DESIFUET IMJ EEAN WODE

Navigator
Pane

- Bl ton= 1zni=

Native Environment Pane

UTS Terminal

@i cod: Tobiz ap
e G wivn KML
U] EDI D zoumertde: S —
AR Documents FEEBEE@I
4 »
| =
”"‘—I 5 i B SE €0 EIH TEHT AT (24, 2; F30M "cunuduifui™
L shoe L. = DEEI 3 YE3_ZM J EEAI_ODE

2
o S | T sERDREY R
LR THEC <80 . | el Texl
il Instance L Begnacopy Action N
Pane L iy CALL Seres Pane i
L%y SERC KEY

B3 CHZC- SCREEN for Expre ssion: Screan getText —
1eoizet 4] | *

Output Pane

Bl A SIROCH FIWPROZCT_2CLFIS [Fermicnal bl Curmizene:

About the UTS Native Environment Pane

The UTS Native Environment Pane provides UTS emulation of your host
environment. From this pane, you can execute a UTS session in real time,
interacting with the Native Environment Pane exactly as you would with the
screen on aterminal connected to a Unisys mainframe. You can also do the
following:

+ Usedatafrom an Input XML document (or other available DOM) as input
for aUTS screen field. For example, you could drag a SKU number from an
input DOM into the “part number” field of a UTS screen, which would then
guery the host and return data associated with that part number, such as
description and price.

+ Mapthe datafrom the returned UTS screen and put it into an Output XML
document (or other available DOM, e.g., Temp, MyDom, etc.).

+ Map header and detail information (such as aform with multiple line items)
from the Native Environment Pane to an XML document using an
ECMA Script expression or function.

UTS Keyboard Support

The UTS Native Environment Pane supports the use of several special attention

Creating a UTS Component 29

keysincluding: Clear Home, Local, Previous Page, Specify, Forms Mode Toggle,
Next Page, Receive and Transmit. The function for each attention key may vary
depending on the host application. These keys are mapped to the PC Keyboard as

follows:
Table 1-1:

UTS Key PC Key UTS Key PC Key
MsgWait Ctrl + W F11 F11
SOE Ctrl +S F12 F12
Transmit Enter F13 Shift + F1
UnlckKhbd Esc F14 Shift + F2
F1 F1 F15 Shift + F3
F2 F2 F16 Shift + F4
F3 F3 F17 Shift + F5
F4 F4 F18 Shift + F6
F5 F5 F19 Shift + F7
F6 F6 F29 Shift + F8
F7 F7 F21 Shift + F9
F8 F8 F22 Shift + F10
F9 F9 F23 Shift + F11
F10 F10 F24 Shift + F12

You can either use the keys directly from the keyboard as you create your UTS
Component, or you can use a keypad tool bar available from the view menu.

> How to Use the Floating Keypad:

1 Select View/Terminal Keypad from the Composer Menu. A floating
Keypad appears.

30 UTS Connect User’s Guide

2 Click on the key you wish to invoke. If you require help, hover the mouse
over that key. Help will display the UTS keyboard equivalent for that key.
You will seethe result of the key you clicked in the Native Environment
Pane.

3 Click OK to closethe keypad. In order for the keypad to redisplay, you must
repeat step 1.

x
Hey Functions |
MagWait | 50E | Transmit | Unlcisdd |
1| rz | = Fra |
5| Fe | 7| Fs |
r¢ | Ffo | m1 | rmz |
F13 | Fia | F1s | Fi6 |
Fi7 | me | Fe | Fzo |
F21 | rz | Fez | Faa |

About the Screen Object

What it is

How it works

The Screen Object is abyte-array representation of the emulator screen shownin
the Native Environment Pane, with methods for manipulating the screen
contents.

The UTS component communicates with the host environment via the block
mode terminal data stream, inaUTS session. A block of data essentially
represents a screen. The host sends a screen block that is displayed in the
component. The screen is edited by the user (and ultimately by the component
you create) and the modified screen block is sent back to the host for processing
after you press an attention key. The Screen Object represents the current
screen’s block of data. For a 24 x 80 terminal screen, thisis 1,920 bytes of data.

When character data arrives from the host, appropriate updates to the Native

Creating a UTS Component 31

Environment Pane occur in real time. Those updates might be anything from a
simple cursor repositioning to a complete repaint of the terminal screen. The
screen content is, in this sense, highly dynamic.

When you have signal ed exteNd Composer (viaa Set Screen Text action) that you
wish to operate on the current screen’s contents, the screen buffer is packaged into
a Screen Object that is made accessible to your component through ECMA Script.

Many times, it is not necessary for your component to “know” or understand the
complete screen contents prior to sending keystrokes back to the host or prior to
mapping datainto a prompt. But when mapping outbound from the screen to a
DOM, it can be useful to have programmatic accessto the Screen Object. To make
this possible, the Connect for UTS defines a number of ECM A Script extensions
for manipulating screen contents. These extensions are described in further detail
in the next chapter. For now, a simple example will suffice. Suppose you are
interested in obtaining a string val ue that occurs on the screen in row 8 at column
position 11. If the string is 10 characterslong, you could obtain its value by using
an ECM A Script expression within aCheck Screen action that refersto the getText
method:

SEAEBEFFOI

UTSSample Screen
[l SET SCREEM TEXT AT (24, 2) FROM "coreffcifci” getText
Ty SEND KEY TRANSMIT method

@ CHECK SCREEM for Expression: Screen.getText(8,11,10) == "Thank you * 4—
. ff Begin to capture messages...

- Tx) CALL Screen.setMessageCaptureOnd)

Ty SEND KEYF1

@ CHECK SCREEM for Expression: Screen.getText(6,7,10) == “First Name™

.. fff ceceee

=] e WHILE Screen.hasMoreMessages() CREATE a REFRESENTIMNG $Outputiaimsg IM|

RPN gt .

In the example shown above, the 10 characters beginning at row 8, column 11 on
the screen are checked to make sure they contain the characters “ Thank you”.

Screen methods such as these will be discussed in greater detail in the section on
“UTS-Specific Expression Builder Extensions” in Chapter 4.

UTS-Specific Toolbar Buttons

If you are familiar with exteNd Composer, you will noticeimmediately that the
UTS Connect includes anumber of Connect-specific tool icons on the component
editor’s main toolbar. They appear as shown below.

32 UTS Connect User’s Guide

Record Button

Record icon (normal state)

®
'

'@ Record icon (disabled)

Record icon (recording in progress)

The Record button allows you to capture keyboard and screen manipulations as
you interact with the Native Environment Pane. Recorded operationsareplaced in
the Action Model as actions, which you can then “play back” during testing.

Connection Button

fﬁ Connection (disconnected state)
ﬁa Connection (connected state)
ﬁ Connection (connected/disabled state)

The Connection button on Composer’s main toolbar toggles the connection state
of the component (using settings you provided during the creation of the
Connection Resource associated with the component).

NOTE: When you are recording or animating, a connection is automatically
established, in which case the button will be shown in the “connected/disabled”

state. When you turn off recording, the connection the button will return to the
enabled state.

Set Screen Text Button

The Set Screen Text button on exteNd Composer’s main toolbar is used
E to indicate that you wish to send datato the screen object. Clicking this
button will brings up the Set Screen Text dialog, allowing you to create
anew Set Screen Text Action.. (See the next chapter for adetailed discussion of
this action type.)

Creating a UTS Component 33

Send Key Button

The Send Key button on Composer’s main toolbar would be pressed

when you wish to add a Send Key Action to the Action Model. (Seethe

next chapter for adetailed discussion of this action type.) The various
UTS attention keys are discussed in the section above entitled “UTS Keyboard
Support”.

Create Check Screen Button

The Create Check Screen button on Composer’s main toolbar isused to
@ check that theterminal screenisinthe state you expect it to be. Clicking
this button will brings up the Check Screen dialog, alowing you to
create anew Check Screen Action. (The next chapter contains a detailed
discussion of this action type.)

UTS-Specific Menu Bar Items

Component Menu

Two additional items have been added to the Component drop down menu for the
UTS Connect. These are Start/Stop Recording and Connect/Disconnect
(depending on your current status).

Sart/Sop Recording—This menu option manages the automatic creation of
actions as you interact with a host program. Sart will enable the automatic
creation of actions as you interact with the screen and Stop will end action
creation.

Connect/Disconnect—This menu option allows you to control the connection to
the host. When you are recording or animating, a connection is automatically
established (and consequently, the connection icon is shown in the
“connected/disabled” state). However, this menu choice is useful if you are not
recording and you merely want to establish a connection for the purpose of
navigating the UTS environment.

UTS-Specific Context-Menu ltems

The UTS Connect also includes context-menu items that are specific to this
Connect. To view the context menu, place your cursor in either the Native
Environment pane or the Action pane and click the right mouse button.

34 UTS Connect User’s Guide

Native Environment Pane Context Menu

When you right-mouse-click in the Native Environment Pane, you will seea
contextual menu. Themenuitemswill be greyed out if you are not in record mode.
In record mode, the context menu has the following appearance:

Set Screen Text: USERID
Set Screen Text: PASSWORD

Set Screen Text..

Check Screen...

The four commands work as follows:

Set Screen Text: USERID—Automatically sends User ID information to the
host, based on the value you supplied (if any) for User ID inthe UTS Connection
Resource for this component. Also creates the corresponding Set Screen Text
action in the Action Model.

Set Screen Text: PASSW ORD—Automically transmits Password information to
the host, based on the Password you supplied (if any) in the UTS Connection
Resource for this component. Also creates the corresponding Set Screen Text
action in the Action Model.

Set Screen Text...—Createsanew Set Screen Text dialog, allowing you to create
anew Set Screen Text Action. (Seethenext chapter for adetail ed discussion of the
use of this command).

Check Screen...—Brings up the Check Screen dialog, allowing you to create a
new Check Screen Action. (Thiswill be discussed in greater detail in the next
chapter.)

Action Pane Context Menu

If you click the right mouse button when the mouse is located anywhere in the
Action pane, a context menu appears as shown.

Creating a UTS Component 35

Mew Action Set Screen Text

Edit Action Check Screen
Dizable Action Advanced »
Toggle Breakpoint Data Exchange »
Process 4
Cut Repeat 3
Copy Comment. .. Ctri+E
Component... CErieT
Delete Decision, .. Ctri+D
Find... Declare Alias...
Find Mezxt Function... Ctri+l
Replace. .. Log... Ctri+L
Map... CEri+M
Send Mail...
Switch. ..
Todo...

The UTS-specific functions of the context menu items are as follows:

Set Screen Text—Allows you to create a Set Screen Text action to send data to
the host. A dialog appears, allowing you to specify what you want to send to the
host as well as determining the screen position where the information will be
received. (See the next chapter for a detailed discussion of the use of this
command.)

Check Screen— Allows you to create a new Check Screen action which is used
to make sure the appropriate screen is present before the component continues
processing. A dialog appears, allowing you to specify various go-ahead criteria
aswell as a Timeout value. (The next chapter contains a detailed discussion of
the Check Screen action.)

36 UTS Connect User’s Guide

Performing Basic UTS Actions

About Actions

An action is similar to a programming statement in that it takes input in the form
of parameters and performs specific tasks. Please see the chaptersin the
Composer User's Guide devoted to Actions.

Within the UTS Component Editor, a set of instructions for processing XML
documents or communicating with non-XML data sourcesis created as part of an
Action Model. The Action Model performs al data mapping, data
transformation, data transfer between hosts and XML documents, and data
transfer within components and services.

An Action Model is made up of alist of actions that work together. As an
example, you might design an Action Model that would read some invoice data
from afile and then transform the data in some way before placing it in an output
XML document.

The Action Model mentioned above would be composed of severa actions.
These actions would:

+ Usean XML document containing a sku number asinput to perform aUTS
transaction which retrieves the invoice data for that sku from an inventory
database that resides on your Unisys host

+ Maptheresult to atemporary XML document
+ Convert anumeric code using a Code Table
+ Map the result to an Output XML document

About UTS-Specific Actions

As mentioned in the previous chapter, the UTS Connect includes three actions
that are specific to the UTS environment: Set Screen Text, Send Key and Check
Screen.

Performing Basic UTS Actions 37

UTS Action Description

Set Screen Text Allows the user to specify what data is transmitted to
the host and at what screen position it will be
received. The string is formed from Map actions, user
keystrokes or it may come from an ECMAScript
Expression. The Set Screen Text action can be
created manually, but will more often be generated
automatically when the user types into the screen or
maps data to the current prompt.

Send Key Sends a UTS-specific attention key to the host
system. The Send Key action can be created
manually by clicking an icon, or automatically when
the user presses one of the mapped keys or selects it
from the UTS keypad.

Check Screen Allows the component to stay in sync with the host
application. This action signals the component that
execution must not proceed until the screen is in a
particular state (which can be specified in the Check
Screen setup dialog), subject to a user-specified
timeout value.

The purpose of these actionsisto allow the UTS component (runningin a
deployed service) to replicate, at runtime, the terminal/host interactionsthat occur
inaUTS session. The usage and meanings of these actions are described in further
detail below.

The Set Screen Text Action

The Set Screen Text action encapsulates “ keystroke data’ (whether actually
obtained from keystrokes, or through a drag-and-drop mapping, or viaan

ECMA Script expression built with the Expression Builder) that will be sent to
the host in a single transmission at component execution time. When the Set
Screen Text action executes, the data will appear on the host system screen. The
datawill not, however, be sent to the host until an attention key of some sort is
sent using the Send Key Action..

The Set Screen Text action can be created in severa ways:

+ InRecord mode, just begin typing on the Native Environment Pane.
Keystrokes are automatically captured to a new Set Screen Text action.

+ Right-mouse-click anywhere in the Action Model; a contextual menu
appears. Select New Action and Set Screen Text.

38 UTS Connect User’s Guide

*

In the main menu bar, under Action, select New Action and Set Screen
Text.

> To create a Set Screen Text action using menu commands:

1 Right-mouse-click anywhere in the Action Model and select New Action,

6

then Set Screen Text, from the contextual menu (or use the Action menu as
described above). The Set Screen Text dialog will appear.

Set Screen Text ﬂ
Source
" XPath: 'nput LI {+ Expression:
l'cnreffcifci“ 74

Screen postion to receive source expression data

Riowae |24 k -

Col I2 k -

Help | | oK | Cancel |

To map aDOM element’s contents to the buffer, click the XPath radio
button, then select a DOM from the pulldown list and type the appropriate
XPath node name in the text area (or click the Expression icon at right and
build the node name using the Expression Builder).

To specify the buffer’s contents using ECMA Script, click the Expression
radio button, as shown on the screen above, then use the Expression Builder
dialog to create an ECM A Script expression that eval uates to a string.

To specify the Row at which to receive data, type avaue in the field. By
default, the number you type will be a constant. The down arrow next to the
k (constant) allows you to toggle back and forth between entering a constant
and an ECMA Script expression.

To specify the Column at which to receive data, type avaluein the field. By
default, the number you type will be a constant. The down arrow next to the
k (constant) allows you to toggle back and forth between entering a constant
and an ECMA Script expression

Click OK.

NOTE: When a Set Screen Text action is created automatically for you while
recording your session, all of your subsequent keystrokes will be captured to the
buffer until you press an attention key or select one from the Send Key dialog.

Performing Basic UTS Actions 39

The Send Key Action

The Send Key action does simply that - it sends an attention key to the host. This
action will generally follow a Set Screen Text action so that the information you
wish to transmit to the host gets there. When the Send Key action executes, the
data you specified in the Set Screen Text action are actually transmitted to the
host. Some Send Key actions, of course, stand alone and can be pressed at any
time to receive specific information, clear the screen or navigate to different
aress.

The Send Key action can be created in several ways:

+ InRecord mode, press one of the PC keys designated as an attention key (see
the previous chapter for a discussion of these keys) to have the attention key
executed at the current cursor position.

+ From the drop down menu, select View, Terminal Keypad, click on an
attention key and click OK to have the attention key executed at the current
cursor position.

+ Click on the Send Key icon in the main toolbar to bring up the Send Key
dialog box.
> To create a Send Key action using the main toolbar icon:

1 With focus on the action after which you would like your Send Key action to
appear, click onthe Send Key icon in the main toolbar. The Send Key dialog

will appear.
x|
Key Yalue:
[Override Cursor Position
Romy
|24 74
Colurmn
K 74
Help | OK I Cancel I

2 Fromthe Key Value drop down, select the attention key you would like to
send to the host. Remember that the function for each attention key may vary
depending on the host application.

40 UTS Connect User’s Guide

3

4

5

6

If you wish the key to execute at a position other than the current
row/column location, check the Override Cursor Position box. This will
enable the Row and Column position fields.

To specify the Row at which to transmit the key, type avaluein thefield. By
default, the number you type will be a constant. Alternatively, you can click
on the Expression builder to enter the row in the form of an ECMA Script
expression.

To specify the Column at which to transmit the key, type avaluein thefield.
By default, the number you type will be a constant. Alternatively, you can
click on the Expression builder to enter the column in the form of an

ECMA Script expression.

Click OK.

The Check Screen Action

Because of the latency involved in UTS sessions and the possibility that screen
datamay arrivein an arbitrary, host-application-defined order, it is essential that
your component can depend on the terminal screen being in agiven state beforeit
operates on the current screen data. The Check Screen action makesit possible for
your component to stay “in sync” with the host. You will manually create Check
Screen actions at various pointsin your Action Model so that precisely the correct
screens are acted on at precisely the right time(s).

To create anew Check Screen action, you can do one of the following:

*

*

Click on the “Create Check Screen Action” button on the main toolbar, or

Perform aright mouse click inside the action list, then select New Action
and Check Screen from the contextual menu, or

In the component editor’s main menu bar, select Action, then New Action,
then Check Screen

While you are in Record mode, with your cursor in the Native Environment
Pane, right-click then select Check Screen.

NOTE: You will most often use the toolbar button when you are in Record mode.

» To create a Check Screen action using a menu command:

1

With your cursor positioned in the Action Model on the action item after
which you want your new item to appear, perform aright mouse click. Then
select New Action and Check Screen from the contextual menu (or use the
Action menu in the main menu bar as described above). The Check Screen
dialog appears.

Performing Basic UTS Actions 41

Check Screen x|

Screen Wait (in seconds)

e

Screen Evaluation Expression

Screen.gefText(8,11,10) == "Thank you " [74

Crop ok) cameat)

2 Specify a Screen Wait value in seconds. (See discussion below.)

3 Specify aScreen Evaluation Expression by typing onein directly or
clicking on the Expression Builder icon to create one. (See discussion
below.)

4 Click OK.

Understanding the Check Screen Action

Screen Wait

Itisimportant that the execution of actionsin your Action Model not proceed until
the host application isready, and all screen datahave arrived (that is, the screenis
in aknown state).

Your component must have some way of “knowing” when the current screenis
ready. The Check Screen Action is how you specify the readiness criteria.

The purpose of the Check Screen Action dialog istwofold:

+ It alowsyou to specify await time for program synchronization.

+ It alowsyou to specify an expression which will be used as acriterion to
judge whether the screen isin a state of readiness at execution time.

The Screen Wait value (in seconds) represents the maximum amount of time that
your component will wait for screen datato arrive and meet the readiness criterion
specified in the expression. If the available screen data do not meet the readiness
criteria before the specified number of seconds have elapsed, an exception is
thrown.

42 UTS Connect User’s Guide

NOTE: Obviously, since the latency involved in a UTS session can vary greatly
from application to application, from connection to connection, or even from screen
to screen, a great deal of discretion should be exercised in deciding on a Screen
Wait value. Careful testing of the component at design time as well as on the server
will be required in order to determine “safe” Screen Wait values.

The default Screen Wait valueis determined by what you entered when setting up
your UTS Connection Resource.

Expression

To determineyour “go-ahead” criterion, you can click the Expression radio button
in the Check Screen Action dialog and enter an ECM A Script expression in the
associated text field. The expression you create will usually check onthe existence
of some specific data at alocation in the Screen Object buffer. At runtime, if the
expression evaluates as “true,” the screen will be considered ready; but not
otherwise. An example of such an expression would be:

Screen. get Text (1, 11,4) == “MARC’

Expressions are discussed in detail below.

Using Actions in Record Mode

The easiest way to create an Action Model for your component is to use Record
mode. When you build an Action Model in thisway, anew Set Screen Text action
is created for you automatically as soon as you begin typing or drag an element
from the Input DOM into the appropriate field onscreen. All you need thendois
send the appropriate attention key, wait for the next screen to arrive from the host,
add a Check Screen action to make sure you are on the right screen and begin the
process again, repeatedly. In this fashion, a sequence of Set Screen Texts, Send
Keys and Check Screens actions can be built very quickly and naturally.

Working in record mode will be discussed further in Chapter 5, in the section
entitled “ Recording aUTS Session.”

UTS-Specific Expression Builder Extensions

The Connect for UTS exposes several UT S-specific ECMA Script variables and
object extensions, which are visiblein Expression Builder picklists. The UTS-
specificitemsarelisted under thenodelabelled “UTS.” Therearetwo child nodes:
Login and Screen Methods. Seeillustration below.

Performing Basic UTS Actions 43

Login

¥ Check Screen Expression 2 x|

“ariahles: FunctiohsMethods:
(- 2> Input #-Custom Scripts 3
(- > Qutput #-Document [#-Relational
- > _SystemFault [+ ECMASCript B-Logical
[#-< > PROJECT #-Extended ECMAScript [=-String
(-« > Repeat Aliases =-UTS
[#-<< > Node Aliases (#-Login

#-Screen Methods

A

Screen.gptText(8,11,10) =="Thank you"

picktree nodes

UTS-specific

UTS Connection Resources have two global variables that are accessible from
Expression Builder dialogs: USERID and PASSWORD. These properties
(available under the Login node of the UTS picktree) specify the User ID and
Password values that may be requested by the host system when you connect.
You can map these variables into the terminal screen, which eliminates the need
for typing user and password information explicitly in amap action.

NOTE: You can also create a Set Screen Text action where the XPath source is
defined as $PASSWORD.

Screen Methods

44

When an Expression Builder window is accessed from aMap or Function action
inthe UTS Component, the picklists at the top of the window expose special UTS-
specific ECMA Script extensions, consisting of various methods of the Screen
object.

Hover-helpisavailableif you let the mouse loiter over agiven picktreeitem. (See
illustration.)

UTS Connect User’s Guide

x
ariahles: Functionshiethods: Dperators:
< > Input E-Screen Methods =] | =-Math
<>O0utput || getattribute(aRow, aColumn) ‘Relational
<> SystemFautt || = - getCursorCol() Logical
<>PROJECT || = getCursorRow{) - String
<> Repeat Aliases || getCols{)
-+ > Node Aliases || - getNextMessage()
----- getPromp()
...... QB‘[RCIWS[]
----- getText(aRow, aColumn, aLenigth)
----- ot TavtEromBect: tRnw aStart

Skring getText{Object aRow, Object aColumn, Object aLength)
exkeNd Composer extension method,
Returns bext string Found at position aR.ow and aColumn for alength characters,

PO IGIT TETH o7 T, O3 TEATy

----- setMessageCaptureOffi)
----- setMessageCaptureOn()
------ twneKevsiasKevText) hd
4| xi 3|
Screen.getText(g, 11,10y =="Thank you"
Help | Validate | Ok | cancel |

In addition, you can obtain more complete online help by clicking Help in the
lower |eft corner of the dialog.

The Screen abject offers methods with the following names, signatures, and usage
conventions:

getAttribute(nRow, nColumn)
Returns datatype: int

This method returns the display attribute value of the character at the screen
position given by aRow, aColumn. The complete set of possible display attribute
valuesislisted in “UTS Display Attributes’. An example of using this method is:

if (Screen.getAttribute(5, 20) ==34) // if character at row
5, col 20 is protected and bold

/1 do sonething
getCursorCol(void)

Returns datatype: int

Thismethod returnsthe current column position of the cursor inthe UTS emul ator
screen (Native Environment Pane). Column positions are one-based rather than
zero-based. In other words, in 24x80 mode, this method would return avalue from
1to0 80, inclusive.

Performing Basic UTS Actions 45

getCursorRow(void)

getCols(void)

Returns datatype: int

This method returns the current row position of the cursor in the UTS emulator
screen (Native Environment Pane). Row positions are one-based rather than zero-
based. In other words, in 24x80 mode, this method would return avaluefrom 1to
24, inclusive.

Returns datatype: int

Thismethod returnsthe native horizontal dimension of the current screen. (Dueto
possible mode changes in the course of host-program execution, this value can
change from screen to screen. Do not depend on this value staying constant over
the life of the component.) When a program isin 24x80 mode, this method will
return 80. Toloop over all columnsof ascreen, regardlessof itsnative dimensions,
you could do:

for (var i = 1; i <= Screen.getCol s(); i++)

{
var nyCol = Screen.getTextAt(i, 1, Screen.getCols());
/1 do something with myCol

}

getNextMessage(void)

Returns datatype: string

The result of this method, when placed in avariable, returns the string
representing the next captured message. Theset MessageCapt ur eOn()
method (see below) must be set in order for this method to return anything. In
addition to these, there are two other messaging methods: hasMor eMessages()
and set MessageCapt ur ek f () . Below is an example demonstrating how the
four of them might all be used together:

function nmsgChecker (t heScr een)

{
t heScr een. set MessageCapt ureOn() ;
whil e (theScreen. hasMor eMessages())

{
al ert (t heScr een. get Next Message());

46 UTS Connect User’s Guide

getPrompt(void)

getRows(void)

t heScr een. set MessageCapt ureOf f () ;

Returns datatype: string

Theresult of this method, when placed in avariable, returns the string
representing all charactersin the cursor’srow, starting at column 1 and continuing
to, but not including, the value returned by get Cur sor Col () —in other words,
everything from the beginning of the line to the current cursor position. Asan
example:

var pronpt=Screen. get Pronpt();
al ert (pronpt);

NOTE: The string returned may or may not actually be a host prompt.

Returns datatype: int

This method returns the native vertical dimension of the current screen. (Due to
possible mode changes in the course of host-program execution, this value can
change from screen to screen. Do not depend on this value staying constant over
the life of the component.) When a program isin 24x80 mode, this method will
return 24. To loop over all rows of ascreen, regardless of its native dimensions,
you could do:

for (var i = 1; i <= Screen.getRows(); i++)
{
var myRow = Screen.getText(i, 1, Screen.getRows());

/1 do something with myRow

}
var whol eScreen = Screen.getText(1, 1 + 24 * 80); // ERROR

getStatusLine(void)

Returns datatype: string

Theresult of this method, when placed in avariable, returns an ECMA Script
String that representsthe black statusline at the bottom of the Native Environment
Pane. This statuslineisonly enabled following a Check Screen action.

If youwishedto create an alert stating the current status of the screen, for example,
you could create a function action like the following:

Performing Basic UTS Actions 47

var screenStatus = Screen. get StatusLine();

al ert(screenStatus);

getText(nRow, nColumn, nLength)
Returns datatype: String

This method returns an ECMA Script String that represents the sequence of
characters (of length nLengt h) in the current screen starting at the row and
column position specified. Note that nRow and nCol urm are one-based, not zero-
based. A zero value for either of these parameterswill cause an exception.

To put the first half of the 20th row of a 24x80 screen into avariable, you would
do:

var myRow = Screen. get Text(20, 1, 40);

Theget Text () techniqueisused internally both for drag-and-drop Map actions
involving screen selections (described in “ Selecting Continuous Data” further
below) and in the Check Screen action.

NOTE: If the amount of data selected by the function's arguments goes past the
end of a screen line, no newlines or other special characters are inserted into the
string.

getTextFromRectangle(nStartRow, nStartColumn,nEndRow, nEndColumn)

The get Text Fr onRect angl e() method returns a single String consisting of
substrings (one per row) comprising all the characters within the bounding box
defined by the top left and bottom right row/column coordinates specified as
parameters. So for example, in 24x80 mode, you could obtain the upper left
quarter of the screen by doing:

var toplLeftQuadrant =
Scr een. get Text FronRect angl e(1, 1, 12, 40) ;

The get Text Fr onRect angl e() method is used internally in drag-and-drop
Map actions involving rectangular screen selection regions created using the
Shift-selection method (see” Sel ecting Rectangular Regions’ below).

Note that the string returned by this method contains newline delimiters between
substrings. That is, there will be one newline at the end of each row’s worth of
data. The overall length of the returned string will thus be the number of rows
times the number of columns, plus the number of rows. For example,

Scr een. get Text FronRect angl e(1, 1, 4, 4) . | engt h will equal 20.

48 UTS Connect User’s Guide

hasMoreMessages(void)

ThehasMr eMessages() method returnstrueif more messages are availableto
obtain viathe get Next Message() method, described above. This method is
demonstrated along with the other messaging methods in the

get Next Message() method, described above.

putString(nRow, nColumn, textString)

Theput St ri ng() method allows you to send data to a specific row/column
location on the screen programmatically, without explicitly creating a Set Screen
Text action. Example:

var goHone = "HOWE";
Screen. put String(2,14, goHonme); // send string to screen

putStringlnField(nFieldNumber, textString)

Theput St ri ngl nFi el d() method allowsyou to send datato aspecific field on
the screen programmatically, without explicitly creating a Set Screen Text action.
Inthe MARC system, for example, there aretypically two fields, the Action: field
on the second line, and the Choice: field on the 21st line. The example below
would have the same effect as the putString one above:

var goHonme = "HOMVE";

Screen. put StringlnField(1, goHone); // send string to screen

setMessageCaptureOff(void)

Theset MessageCapt ur eX f () method turns off the message capture feature
(seeset MessageCapt ur eOn() below):

setMessageCaptureOn(void)

Theset MessageCapt ur eOn() method turns on the message capture feature so
that all host messages are stored for retrieval by the caller. Thismethod is
demonstrated along with the other messaging methods in the

get Next Message() method, described above.

typeKeys(String keys)

Thet ypeKeys(Str) method alowsthe keystroke you represent by string to be
emulated on the screen. The specified string will be placed at the current cursor
position on the screen. A function containing the following text would have the
same effect as a SendK ey action:

Screen. typekeys("[Transnmit]")

Performing Basic UTS Actions 49

Multi-row Screen Selections in the UTS Connect

In record mode, it is possible to select multiple rows of datain a continuous
stream, for purposes of dragging out to a DOM.

Selecting Continuous Data

50

When you drag across multiple rows of datawithout holding the Shift key down,
all charactersfrom theinitial screen offset (at the mouse-down event) to the final
screen offset (at mouse-up) are selected, as shown in the graphic below. (The
selected text is“reversed out.” A partial row has been selected, followed by two
complete rows, followed by another partial row.

Thark you for wring Lore Technology's

T (U3 and Canada) ,

alas@ctc-coTa. com

You will notice that as you drag, the component editor window’s statuslinein the
lower | eft-hand corner reports the beginning and ending rows and columns of your
selection. If, while in Record mode, you were to drag this selection out of the
Native Environment Pane, into a DOM, a Map action would be generated as
follows:

ﬁ MAF Screen.getText(10,9,339) TC $Output'SCREENINFO/Screen

Noticethat the get Text () method isused. This means the captured screen
charactersform onestring, which ismapped to Output/SCREENINFO/Screenl.
No newlines or other special characters are inserted into the string. (Any blank
spaces highlighted in darker blue on the screen shown are simply represented as
space charactersin the string.)

UTS Connect User’s Guide

Selecting Rectangular Regions

Sometimes you may not want the selection behavior described above. In certain
cases, screen data may be grouped into zones with their own natural boundaries.
For example, in the screen shown previously, you may want to capture (for drag-
out purposes) just the five terms in the bottom left without their definitionsand a
lot of blank space. To do this, first hold the Control key down, then drag your
mouse across the portion of the screen that you want to select. The selected areais
highlighted and the appropriate row/column start and end points are displayed in
the status line of the component editor’s window, as below:

Cors Teckmol cqp
Pleares sign in cur quest bock.

Ei st Hame:

Last Mamez : liddle Init.: _

Selected via Ctrl-Drag

In thisinstance, when you drag the rectangular highlight region out of the Native
Environment Pane, into aDOM, the resulting Map action uses the

get Text FronRect angl e() method described above. Theresulting actionlooks
like this:

ﬁ MAP Screen.getTextFromRectangle(6,7,20,16) TO $Output/SCREENINFO/SCreen2

This method operates in a different fashion from get Text () , because the string
returned by get Text Fr onRect angl e() iswrapped at therectangl€’sright edge.
Newlines are inserted at the wrap points as discussed in the API description of
get Text FronRect angl e() , further above.

Performing Basic UTS Actions 51

52 UTS Connect User’s Guide

UTS Components in Action

The Sample Transaction

For demonstration purposes, this guide uses a simple demo interface offered for
demonstration purposes by athird party. The transactions shown herein the form
of screen captures will be representative of the type of transactions commonly
used by operators on UTS terminals. Unlike the exercises in the Composer
Tutorial, these steps are not meant to be followed by the user, but are merely given
here for illustrative purposes.

Recording a UTS Session

The UTS Component differs from other components in that a major portion of
the Action Model is built for you automatically. This happens as you interact
with the host in the Native Environment pane as part of alive UTS session.
Composer records your interactions as a set of auto-generated actionsin the
Action Model. Typically, in other exteNd Composer components (such as a
JDBC Component), you must manually create actionsin the Action Model,
which then perform the mapping, logging, transformation, communication, and
other tasks required by the component or service. By contrast, when you create a
UTS Component, you record reguests and responses to and from the host, which
end up as actionsin the Action Model. In addition, you can add standard actions
(Map, Log, Function, etc.) to the Action Model just the same asin other
components.

NOTE: In order to successfully build a UTS Component, you should be familiar
with the specifics of the host application you intend to use in your XML integration
project.

The following example demonstrates several common tasks that you will
encounter in building UTS Components, such as:

+ Automatic creation of Set Screen Text actions

UTS Components in Action 53

54

*

Automatic creation of Send Key actions
Automatic creation of Check Screen actions
Drag-and-drop mapping of Input DOM elements to UT S-screen prompts

Drag-and-drop mapping from the Native Environment Screen to the Output
DOM

The use of ECMA Script expressions to manipul ate Screen object elements

The following example starts with an XML document that contains several
parameters used asinput to a guest book page. The goal of this particular
component issimply to sign aguest book on the demo system and receive some
information back from the terminal. Several screen messageswill be placed inthe
Output DOM.

> To record a UTS session:

1

2

3

Create aUTS Component per the procedure shown in Chapter 3, “Creating a
UTS Component”.

Once created, the UTS Component Editor window appears, with the words
“UTS Terminal” in the center of the Native Environment Pane, indicating
that no connection has yet been established with a host.

exte U impleUTSComponent] =]}

File Edit smponent At e ook Windaw Heb a0 .8 x
U2ESE8 »y0XF70 BLEB S Novell
[9) SampleuTsC omponent
@ mput Data Ox
= <> SCREENINPUT

<>Login coreffeifcl

3 LName Muonroe

<= Fiiame Marin

<> agon MGM Studios

<>City Halwood

<> Stale CA -

<>zp 90210 UTS Terminal

> amail normajean @hotmail ¢ o

<> phone 123-555-1234
D Output JData O @EBEEION

<>uEe1
I MSG2
<> Producls

<[T >
freaciy [Termina: tiot Connected

Click the Record button. You are automatically connected to the host that
you selected in the Connection Resource for the component. An input screen
appears in the Native Environment pane as shown below.

UTS Connect User’s Guide

W extend Composer: Unisys [UTS Terminak: SampleUTSCompanent]

21811
Fils Egt View Component Action Animate Took Window Melp ad -8 x
@S $00X7® B% 0| S Movell

(1) sampieuTSComponant |

@ 1nput Data Ox
=) <> SCREENINPUT |

<> Login coredfeiic]
=2 LName Monros
<5 Fiame Maribm
<> Aadan MGM Studios
<>City Holkpweocid
<> State Ca
<> Tp 30210
<> sinail normajean @habinail ¢ o
<>phone 123-555-1234

5 ouput (o ox @EBES2 N

<> SCREEMINFO S ampeUTSCompanent ~|

<>MzG1
<= W562
=3 Products

fready [Ferarina: Comnected

4 Begin by checking the screen to make sure you have arrived at the expected
place. This should always be the first action when you arrive at anew screen
inaUTS Component (or any terminal component for that matter). To do

this, use the left button on your mouse to highlight some text on the native
environment panel and then right click and select Check Screen. The Check

Screen dialog window appears, with an expression already entered as shown

below:
x|

Screen Wait (in seconds)

e

Screen Evaluation Expression

|Screen.getText(23,2,18)::"Entery0uruser—id" @

5 Click OK and the Check Screen action is added to the action model.

UTS Components in Action

55

6 Reposition your cursor to the space just after the arrow prompt in the Native
Environment pane. In thisUTS application, exact placement in the entry
fieldsisimportant. Drag the SCREENPUT/L ogin node from the Input DOM
to the second column of the 24th row of the Native Environment Pane. You
will notice when you drag the item that the text appears after the arrow
prompt and anew Set Screen Text action appears automatically inthe Action
Model.

DEEFEZO I

SampleUTSComponent
CHECK SCREEN for Expression: Screen.getText{23,2,18) == "Enter your user-id"
SET SCREEN TEXT AT (24, 2) FROM $Input/SCREENINPUT Login

7 Position your cursor after the text that was entered and press the Enter Key.
You will seethat a Send Key Transmit Action isadded to your Action Model
and the screen changes in response.

Thard yoa 198 wring Care Toahralogy' s Java VT dess

ITCBridgd TTI dor thd Tava plasioms g 4 TT] temeindl sl aner
develloped im the Jiva langaige. ETEBeidge commnicifer 8o your
]

Trdryr IR oy tha Dncarmae §oineranat vis Cord Technadagy
Bhelnilridet (Rl -0 gateway soitsars aod stamdard Tava endbled
brosaars.

Please contact Core Technelogy at $8=308:1013 (U and Canada) .
SAT-RET-155L (Trsamvamionald, or e-wail ur a5 FalerBOCE-gone, pom
mith ary questions or cowserta.

Fress TL ar Drkes
R - ST——
DQEEFI3O I
Samplel TSCormpsoment

B0 CHECK SCREEN for Expression: Screen.getText (23,2, 18) == “Enter your user id"
[} SET SCREEN TEXT AT (24, 2) FROM $input SCREENINPUTLagin

ASSEND KEY TRAHSMIT

UTS Connect User’s Guide

8 Asdiscussed in “The Check Screen Action” on page -41, it isawise ideato
make sure you are on the correct screen before proceeding. To do this, drag
the cursor over the words “Thank you” in the upper left-hand corner. Notice
that the status line of the component editor window in the lower |eft corner
will indicate the row and column location where the words start and end.
Using the right mouse button in the Native Environment pane, click Check
Screen. A Check Screen action including a Screen.getText method
automatically appears, verifying that the words “ Thank you” do appear
where expected on the screen.

Check Screen x|

Screen Wait (in seconds)

T

Screen Evaluation Expression

|Screen.getTe>d(8,11,9) =="Thank you" @

ok [Cancat)

Decide whether the default Screen Wait time (in this case 60 seconds) is
going to be adequate for this Check Screen action. Careful testing of the
component should be done in order to verify that this timeout value is safe.
Click on OK to enter the Check Screen action into the Action Model.

9 The"Thank you” screen is not terribly interesting from a demonstration
standpoint, so let’smoveto the “ Sign in” screen instead. Asindicated on the
terminal screen, thisis acheived by pressing the F1 key. Make sure your
focusis on the native environment pane before you press the F1 key.
Pressing F1 with focus at any other place in Composer will bring up the
online help system. Another Send Key action is added to the model and the
screen changes to the Guest Book.

UTS Components in Action 57

58

Hiddle Imiz

PEEE=2@I0
Samplell TSComponent
n CHECK SCREEH far Expression: Screen.pet Text(23,2, 18) == “Enter your user-id"
B} SET SCREEN TEXT AT 124, 2) FROM $inpul SCREENINPUT Login
h SEND KEY TRANSMIT
B CHECK SCREEN for Expression; Screenuget Text(B,11,8) == “Thank you™

" EEEN

10 Asaways, verify that you are on the correct screen. Highlight the word
“Guest Book” and right click to select Check Screen. Click OK to add this
action to the Action Model.

@ CHECK SCREEN for Expression: Screen.getText(2,36,10) == "Guest Book™

11 Now, instead of having to type the information into the guest book, you can
use the data that already existsin your Input DOM and map it to appropriate
fieldsin the Native Environment Pane. From the input DOM, drag the
SCREENINPUT/LName node into the “Last Name:” field on the terminal
screen. Again, as you click and drag, the onscreen row/column coordinates
of the selected area are displayed in the status line and anew Set Screen Text
action appears in the model

SET SCREEM TEXT AT (8, 20) FROM $Input/SCREENINPUT/LName

12 Proceed by dragging all the remaining nodes from the Input DOM into the
appropriate fields on Guest Book screen. The Sign-in screen will begin to
look filled out, and several new Set Screen Text actions will appear in your
action model.

SET SCREEN TEXT AT (6, 20) FROM $Input/SCREENINPUT FName
SET SCREEN TEXT AT (15, 20) FROM $Input/SCREENINPUT.City
SET SCREEN TEXT AT (15, 48) FROM $Input/'SCREENINPUT State
SET SCREEN TEXT AT (15, 63) FROM $Input'SCREENINPUT Zip
SET SCREEN TEXT AT (20, 48) FROM $Input'SCREENINPUT /email

UTS Connect User’s Guide

13 After signing the guest book, proceed with the rest of the Demo by pressing

F1 again, which changes the screen and adds another Send Key Transmit

action to the model.

14 Asaways, it isagood ideato make sure you are on the expected screen, so
highlight the screen text “Background/Foreground” and right click to create
another Check Screen Action. The Screen and Action model now look like

this:

[EI SampleUTSComponent]

fore Technelegy

This roreen shows how CTtEridge displays difd
Wiers of the CTCEridge graphical irmerface deme
%o view various coler eptions. Press TL te see the next screen.

Please con. 7 (02 and Caradad,
B17-617-151L (D i - lesfcte-core, com
i1 you have any g 5 o

Bachgr ound/Tore ground
Tore

Reelog

Taxe
Technalogy

EEE2ON

Ts SEND KEY TRANSMIT

B3 CHECK SCREEN for Expression: Screen.getText(8,11,9) == “Thank you"
T SEND KEY F1

[CHECK SCREEN for Expression: Screen.getText(2,36,10) == “Guest Book™
[SET SCREEN TEXT AT (8, 20) FROM $input/SCREENINPUTALName

[SET SCREEN TEXT AT (6, 20) FROM $input/SCREENINPUT Flame

[SET SCREEN TEXT AT (15, 20) FROM $Input/SCREENINPUT City

S SET SCREEN TEXT AT (15, 48) FROM $input/SCREENINPUT State

[SET SCREEN TEXT AT (20, 48) FROM $Input/SCREENINPUT iemail

Ta SEND KEYF1

n CHECK SCREEN for Expression: Screen.getText{13,6,21) == "BackgroundForeground
O — L2}
Row 8, Col 10 Recording...

15 Next, drag some information from the screen into the Output DOM.

Highlight and drag the first paragraph on the terminal screen into the M SG1
node. Drag the second paragraph into the M SG2 node. Thefollowing actions

are added and the Output DOM now looks like this:

UTS Components in Action

59

60

@ output Jpata Bx
[} <> SCREEMINFO

<> M3SG1 This screen shows how CTCBridge displays different colors.

<> M5G2 Please contact Core Technology at 800-338-2117 (LS and Canada),

ﬁ MAP Screen.getText(5,12,219) TO $Output/SCREENINFOMSG1
ﬁ MAP Screen.getText(9,11,200) TO $Output/SCREENINFOMSG2

16 Now, use the Ctrl-Drag method to map the produts shown on the screen into
the Product node of the Output DOM. Placing the cursor on the left-most
character of the top product in thelist, hold down Ctrl and the left mouse key
and drag to the bottom, right-most character of the product list. The
following action is added to the model:

ﬁ MAP Screen.getTextFromRectangle(14,45,21,53) TO $0utput/SCREENINFO/Products

The SCREENINFO/Products Node of the output DOM will now contain the
list of products from the terminal screen.

17 Click the Record button to turn recording off.

18 Saveyour component.

If you were sucessfully able to follow all the steps outlined above, your complete
Action Model would now look like this:

=} SampleUTSComponent
@ CHECK SCREEM for Expression: Screen.getText{23,2,18) == “Enter your user-id"
SET SCREEMN TEXT AT (24, 2) FROM $Input/SCREENINPUT Login
?g SEND KEY TRAMSMIT
@ CHECK SCREEMN for Expression: Screen.getText(8,11,9) == "Thank you"
T SEND KEY F1
@ CHECK SCREEHM for Expression: Screen.getText{2,36,10) == "Guest Book™
SET SCREEMN TEXT AT (8, 20) FROM $Input/SCREENINPUT LName
SET SCREEMN TEXT AT (6, 20) FROM $Input/SCREENINPUT FName
SET SCREEMN TEXT AT {15, 20) FROM $Input/SCREENINPUT City
SET SCREEMN TEXT AT {15, 48) FROM $Input/SCREENINPUT /State
SET SCREEM TEXT AT (20, 48) FROM $Input/SCREENINPUT /email
T SEND KEY F1
[E3 CHECK SCREEN for Expression: Screen.getText(13,6,21) == “Background/Foreground™
ﬁ MAP Screen.getText{5,12,219) TO $Output/SCREENINFOMSG1
ﬁ MAP Screen.getText{9,11,209) TO $Output/SCREENINFOMSG2
ﬁ AP Screen.getTextFromRectangle(14,45,21,53) TO $0utput/SCREENINFO/Products

UTS Connect User’s Guide

Obvioudly, thisisafairly simple component.that does not accomplish much real
work. In using Composer to build UTS components, your initial recorded
component may only be a starting point. For thisreason, it isimportant to study
how to edit existing action models.

Editing a Previously Recorded Action Model

You will encounter times when you need to edit a previously recorded action
model. Unlike the situation with other components, editing a UTS Component
requires extra attention. When a UTS Component executes, it plays back a
sequence of actions that expect certain screens and datato appear at certain times
in order to work properly. So when editing a component you must be careful not
to make the action model sequence inconsistent with the host program execution
sequence you recorded earlier (i.e., don't break it!).

In general, to ensure successful edits, the following recommendations apply:

+ Exercise extreme care when using Cut, Copy, and/or Paste to delete, move,
or replicate actions in your Action Model. Actions that were created
automatically during a*“Record” session will often create data dependencies
that are easily overlooked in the editing process.

+ When you need to use drag-and-drop to add new Map actions to your Action
Model, click the Start Animation button in the Action Pane toolbar and step
to the line of interest in your Action Model; then Pause animation and turn
on Record mode. At this point, you can safely drag to and from the screen.
Following this procedure will prevent your Action Model from getting out of
sync with the host or conflicting with previously mapped DOM data.

Editing or Adding to an Existing Action

Thefollowing procedurewill explain how to change an existing action or add new
actionsto apreviously recorded session.

> To Change an existing action in a previously recorded Action Model:

1 Openthe component that includes the Action Model you'd like to edit. The
component appears in the UTS Component Editor window.

UTS Components in Action 61

62

¥ exteNd Composer: Unisys [UTS Terminak SampleUTSCompanent] =18],
File Edit Miew Component Action Animate Took Window Help B -8
DEEE $y00X70 B R S Novell
[) sampreutscomponent]
D Input Data ax
(= <> SCREENINPUT
<> Login corelfcifci
<2 LName Monroe
<> FName arityn
<> Addrl MGM Studios
<> City Hollpwood
<> Slate A
<>Zip G010
<> email nomajeanghotrmail cam
<= phone 123-555-1234
“
.~ | 3 .
v
@ output Data B x _'lfilﬁ‘?i‘ll
5} <> SCREENINFO = TR T
<> MsSG1 (This screen shows how CTCEridge displs
<>wmsG2 | Please contact Core Technology at 800-3] [y CHECK SCREEN for Expression: Screen.getText(23,2,18) ==
<> | |EILACI(805(QGPEENBEIX TBLACKBONAGR [SET SCREEN TEXT AT (24, 2) FROM $input SCREENINPUT Loy
T SEND KEY TRANSMIT
B CHECK SCREEN for Expression: Screen.getText(8,11,9) == T
T SEMND KEYF1
E CHECK SCREEN for Expression: Screen.getText(2,36,10) == 4
[SET SCREEN TEXT AT (8, 20) FROM $input/SCREENINPUT,LNa
[SET SCREEN TEXT AT (6, 20) FROM $input/SCREENINPUT FNa
[SET SCREEN TEXT AT (15, 20) FROMW Sinput SCREENINPUTCH
PP '}
agm ')

Etart of action fist

Ferminal: Connacted

2 Navigate to the action in the Action Model where you'd like to make your
edit or after which you' d like to add additional actions and highlight that

action.

SEEBEEROI

=} SampleUTSComponent

'Eg SEMD KEY TRAMSMIT

Ty SEND KEY F1

HECK SCREEM for Expression: Screen.getText{23,2,18) == "Enter your user-id"
SET SCREEN TEXT AT (24, 2) FROM $input/SCREENINPUT Login

ilay CHECK SCREEHN for Expression: Screen.getText(8,11,9) == "Thank you"

CHECK SCREEMN for Expression: Screen.getText{2,36,10) == "Guest Book"

SET SCREEN TEXT AT (8, 20) FROM $input/SCREENINPUT/LName

SET SCREEN TEXT AT (6, 20) FROM $input/’SCREENINPUT FName

SET SCREEN TEXT AT {15, 20) FROM $input/SCREENINPUT/City

[SET SCREEN TEXT AT (15, 48) FROM $Input/SCREENINPUT /State

SET SCREEN TEXT AT {20, 48) FROM $input/SCREENINPUT /email

T SEND KEY F1

CHECK SCREER for Expression: Screen.getText{13,6,21) == "Background Foreground™
ﬁ WAP Screen.getText(5,12,219) TO $Output/SCREENINFOMSG1

R MAP Krroen notTavtia 11 200 TN SOt RCRFFRINFOMSR?

UTS Connect User’s Guide

3 Click the Toggle Breakpoint button (or press F2). The highlighted action

4

5

becomes red (Animation will be discussed in further detail below).

Start Animation

Toggle Breakpoint

SEEBE20I
(=} SampleUTSComponent
E CHECK SCREEM for Expression: Screen.getText{23,2,18) == "Enter your user-id"
SET SCREEMN TEXT AT (24, 2) FROM $Input/SCREENINPUT Login
?g SEND KEY TRAMSMIT
@ CHECK SCREEM for Expression: Screen.getText(8,11,9) == "Thank you"
T SEND KEY F1
@ CHECK SCREEM for Expression: Screen.getText(2,36,10) == "Guest Book"
[} SET SCREEM TEXT AT (8, 200 FROM $Input/SCREENINPUT/L Name
SET SCREEM TEXT AT (6, 20) FROM $input/SCREENINPUT FName
Ly SET SCREEM TEXT AT (15, 20) FROM $InputISCREENINPUTICily
® S T ST
[} SET SCREEM TEXT AT (2I] 48) FROM $InputISCREENINPUTIema|I
T SEND KEY F1

Click the Sart Animation button. The animation tools (in the Actions
pane's tool bar) become enabled.

Click the Sep to Breakpoint/End button. The Action Model executes all of
the actions from the beginning of the Action Model to the breakpoint you set
in step 3 above.

Step to Breakpoint/End

QEBE2OI

=} SampleUTSComponent
E CHECK SCREEM for Expression: Screen.getText{23,2,18) == "Enter your user-id"
SET SCREEN TEXT AT (24, 2) FROM $Input/SCREENINPUT Login
Ty SEMD KEY TRANSMIT
E CHECK SCREEM for Expression: Screen.getText(8,11,9) == "Thank you"
Ty SEND KEYF1
@ CHECK SCREEM for Expression: Screen.getText(2,36,10) == "Guest Book"
SET SCREEN TEXT AT (8, 20) FROM $Input/SCREENINPUT LName
SET SCREEN TEXT AT (6, 20} FROM $Input/’SCREENINPUT FName
SET SCREEM TEXT AT (15, 20) FROM $Input’SCREENINPUT /City

SET SCREEN TEXT AT (15, 48) FROM $Input/SCREENINPUT State

SET SCREEM TEXT AT (20, 48) FROM $input/'SCREENINPUT)email

UTS Components in Action 63

6 Pressthe Pause Button:

Pause

CHBE-ZOI

=} SampleUTSComponent
E CHECK SCREEM for Expression: Screen.getText{23,2,18) == "Enter your user-id"
SET SCREEN TEXT AT (24, 2) FROM $Input/SCREENINPUT Login
Ty SEMD KEY TRANSMIT
E CHECK SCREEM for Expression: Screen.getText(8,11,9) == "Thank you"
Ty SEND KEYF1
@ CHECK SCREEM for Expression: Screen.getText(2,36,10) == "Guest Book"
SET SCREEN TEXT AT (8, 20) FROM $Input/SCREENINPUT LName
SET SCREEN TEXT AT (6, 20} FROM $Input/’SCREENINPUT FName
SET SCREEM TEXT AT (15, 20) FROM $Input’SCREENINPUT /City

SET SCREEN TEXT AT (15, 48) FROM $Input/SCREENINPUT State

BN GFT SrRFFEN TRYT AT (20 ARY FROM $Innit (SCREFNINDIIT ismail

7 Inthe Component Editor tool bar, click the Record button.

Record button

¥ exieNd Composer: TestT27 [T27 Terminal: 7Compenent]

File Edit View Component Action Animal Tools Window Help IS
Je@Ex00x~708B% RS Novell
D Input Data N
B <> MARGINP

- <>L0GIN[3ALES2
&> JoBS o
&> JOBINQISALESIMARC WFL LD DRSS OERSALESE e eemmeeee
| <> HELP [TEACH ; ;
&3> RETAGHOME
€2 QUITAGEYE
Sy
Eoma Pas R XN

<> MARGOLS
L. &> gysIN{Unisys N4200:48817 COREMCP

Component
[, CHECK SCREEN fur Expression Screen.getText(1,11,4)=="MARC"
&5 WeP ScreengetText(23,2,28) TO $OUtIUUMARCOUTPUT/SYSINFO
[BE) SET SCREEN TEXT AT 21, 18] FROM "JD”

T SEND KEY TRANSMIT
(B CHECK SCREEN for Expression; Screen.getText(1,11,2)=="J0"

[BE) SET SCREEN TEXT AT (21, 18) FROM $InpUUMARCINPUT/JOBS

T SEND KEY TRANSMIT

[ER CHECK SCREEN for Expression: Screen.getText(1,11,6)=="0UTPUT"

E=3AP Screen.getText(9,35,24) TO $OuthutMARCOUTPUTICOMPLETEJOBS

// Wimile you are NOT inthe JD menu, do the Tollowing

64 UTS Connect User’s Guide

8 Edit the action to make any changes you wish to the current line by right-
clicking on the action and selecting Edit Action. Or, if you wish to add new
actions, use Composer's drag and drop features to add new Map actions that
interact with the screen. The new actionswill be added directly under the
highlighted line.

9 Turn off recording. (Toggle the Record button.)
10 Test your component.

Deleting an Action

Thefollowing procedure explainshow to delete an actionin apreviously recorded
session

> To Delete an Action to a previously recorded Action Model:

Highlight the action line that you want to delete and click on the right mouse
button. Select Delete from the menu. You may also highlight theline and pressthe
Delete button on your keyboard.

SRBERON
1|'§ SENCTEET TRANSMIT
@ CHECK SCREEMN for Expression: Screen.getText{8,11,9) == "Thank you"

T SEND KEY F1 New Action ’
@ CHECK SCREEM for Expression: Screen.getText(2,36,100=="0 . » +ion

SET SCREENM TEXT AT (8, 20) FROM $Input/SCREENINPUTANAN Disaple Action

SET SCREEM TEXT AT (6, 20) FROM $Input/SCREENINPUTIFNAN Toggle Breakpoint |
SET SCREEN TEXT AT (15, 20) FROM $Input/SCREENINPUTICIty Clear all Breakpoints
SET SCREEN TEXT AT (15, 48) FROM $Input/SCREENINPUT/Sta| cut |

[SET SCREEN TEXT AT (20, 20) FROM $Input/SCREENINPUT phol Copy

SET SCREEM TEXT AT (20, 48) FROM $Input/SCREENINPUT/em Paste

Ty SEND KEYF1 M
[CHECK SCREEN for Expression: Screen.getText(13,6,21)=="f nd-.

Find Mext

£ MAP Screen.uetTexti5.12.219) TO $Outout/'SCREENINFOMSG1
Input /SCREEMINPUT /phone Replace. ..

Looping Over Multiple Rows in Search of Data

In the example above, the goal wasto sign a guest book and place some
information from the terminal into the Output DOM.

UTS Components in Action 65

One of the items mapped was the product list. Inreal life, in order to map
something like a product list, you would want to have each product map into its
own node in an Output DOM. Thisrequires an iterative loop, for example a
Repeat/While loop, which is explained in detail in Chapter 8 of the Composer
User Guidein the section titled “ The Repeat While Action.” Often, in UTS
components you will find that you need to perform some form of looping in order
to read the values from the terminal window. Make sureyou arevery familiar with
this chapter of the User Guide.

Below is an example of acompleted Action Model containing a Repeat/While
loop that fillsin an Output DOM with several values obtained from the terminal
window. In the example above, you used drag and drop to place all the valuesfrom
the Product List into asingle pre-existing node in the Output DOM. Here, each
product has been placed in it's own node along with some sub-nodes which could
also be used as attributes.

QEEBEE2OI
@ CHECK SCREEN for Expression: Screen.getText(23,2,18) == "Enter your user-id"
SET SCREEN TEXT AT (24, 2) FROM $Input/SCREENINPUT Login
?% SEND KEY TRANSMIT
[CHECK SCREEN for Expression: Screen.getText(8,11,9) == “Thank you™
T SENDKEYF1
@ CHECK SCREEN for Expression: Screen.getText(2,36,10) == "Guest Book"
SET SCREEN TEXT AT (8, 200 FROM $input/SCREENINPUTLName
SET SCREEN TEXT AT (6, 20) FROM $input/SCREENINPUT FName
SET SCREEN TEXT AT (15, 20) FROM $Input/SCREENINPUTCity
SET SCREEN TEXT AT (15, 48) FROM $input/SCREENINPUT /'State
SET SCREEN TEXT AT (20, 48) FROM $input'SCREENINPUT /email
T SEND KEY F1
D CHECK SCREEN for Expression: Screen.getText{13,6,21) == "Background/Foreground™
&5 mAP Screen.getText(5,12,219) TO $OUtput/SCREENINFOMSG1
ﬁ MAF Screen.getText(9,11,209) TO $O0utput/SCREENINFOMSG2
g MAP Screen.getTextFromRectangle(14,45,21,53) TO $Output/SCREENINFO/Products

= G WHILE rownum=8 CREATE SCREENINFO REPRESENTING $Output/SCREENINFOPRODINFO INDEXED BY rownum

(=} Loop Action

fix) CALL var prodname = ScreengetText{rownum+14,45,9);
ﬁ MAP prodname TO $SCREENINFO/ProdName

fix) CALL var gty = Screen.getText{rownum-+14,55,3);

&5 MAP gty TO $SCREENINFO/Quantity

fix) CALL var cust = Screen.getText{rownum+14,59,16);

ﬁ MAF cust TO $SCREENINFOICustomer

Testing your UTS Component

As mentioned previously, Composer includes animation tools that allow you to
easily test your component. There is also an Execution button on the UTS
Component Editor tool bar, which allows you to execute the entire Action Model

66 UTS Connect User’s Guide

and verify that your component works as you intend. While testing, pay close
attention to your Screen Wait Time valuesin all Check Screen actions to make
sure they are appropriate and that Set Screen Text and other actions work as

intended.

» To execute a UTS Component:

1 OpenaUTS Component. The UTS Component Editor window appears.

Execute button

!" exteNd Composer: Unisys [UTS Terminal: SampleUTSComponent]

File Edit View Component Action Animate Tools Window Help

lEE +00X~0 Bs R S

=loix

EHEO -8 x

Novell

[E' SampleUTSComponenl}
B Input Data O x
(£} <> SCREEMINPLIT
<> Lagin ©ore/fiifti
<> LName Wanroe
<> FMame harilyn
<> addrl WGh Studios
<> City Hollywood
<> Stale CA
<>Zip 90210
<> email narmajean @hotrmail.com
<> phone 123-555-1234
B Output Data O x
5 <> 5CREEMINFO
<> MS61 [This screen shows how CT]]
<> MEG2 Please contact Core Techn -
<> Products BLACKBOMIGREENBOXTB F
(= <>FRODINFO ' . E>i LT;i Q il
<> prodname [BLACKBOXS
<> GQuantity 14
<>cCustomer |AMERICAN OIL CO
(=} €>PRODINFO
<>prodhame |GREEMNBOXT T\\B SEND KEY TRANSMIT
<> Quantity 2
<>customer [AMERICAN DILCO T SEND KEY F1
(£} <>PRODINFO
<>prodname |[BLACKBOX4
<> Quantity g
<>cCustomer |ARGENTINE CORP
(5 <> PRODINFO L
<>prodname [GREEMBOX4
P —

SME ¢, 8002

Pres: T1 or Enter

HECK SCREEM for Exprassion: Screen.getText(23,2,18)
SET SCREEN TEXT AT (24, 2) FROM $input/SCREENINPUT.

CHECHK SCREEN for Expression: Screen.getText(8,11,9) =

CHECK BCREEM for Expression: Screen.getText(2,36,10) =
ET SCREEN TEXT AT (8, 200 FROM $Input/SCREENINPUTA
B> SET SCREEN TEXT AT (6, 20) FROM $Input/SCREENINPUTA
SET SCREEN TEXT AT (15, 20) FROM $input/SCREENINPUT
SET SCREEN TEXT AT (15, 48) FROM SInnul!SCREENINPU]z
] B

Janimation stopped

Fermmal: Connected

2 Select the Execute button. All the actions in the Action Model execute in
order. Thisis an excellent way to determine whether the Screen Wait times
you indicated in your Check Screen Actions are accurate or if you require
additional Check Screensin your Model. If the component executes
successfully, a message appears as follows.

UTS Components in Action 67

x

Execution completed

3 Click OK.

After executing the component, you may want to double check the contents of
your DOMsto be sure all of the appropriate data mappings occurred as expected.
To make al dataelementsvisible, select Expand XML Documents from the
View menu. This expands all of the parents, children, data elements, etc. of the
DOM trees, so that you can easily see the results of execution of the component.
If your execution had a problem, you can use the Animation tools to pinpoint
where the difficulty occurred. This processis described in the next section.

Using the Animation Tools

68

In the Action Model, you'll find animation toolsthat allow you to test a particular
section of the Action Model by setting one or more breakpoints. The
Toggle/Breakpoint tool was introduced briefly in the section above, “Editing or
Adding to an Existing Action” on page -61, but all the animation tools will be
explored in more detail below. Using these tools, you can run through the actions
that work properly, stop at the actions that are giving you trouble, and then
troubleshoot the problem actions one at atime.

The following procedureis a brief example of the functionality of the animation
tools. For acomplete description of all the animation tools and their functionality,
please refer to the exteNd Composer User's Guide.

» TorunaUTS Component using Animation Tools:

1 OpenaUTS Component. The component appears in the UTS Component
Editor window.

NOTE: Animation and Recording are mutually exclusive modes in the
component. In order to record during animation, you must either pause, or
stop animation and then turn on record mode.

2 Click the Sart Animation button in the Action Model tool bar, or press F5
on the keyboard. All of the tools on the tool bar become active, and a
connection is established with the host. The Native Environment Pane makes
the terminal connection..

3 Click the Sep Into button. The first Check Screen action becomes
highlighted.

UTS Connect User’s Guide

SEARE=O U

= ponent

@ HECK SCREEH for Expression: Screen.getText{23,2,18) == "Enter your user-id"
SET SCREEN TEXT AT (24, 2) FROM $input/SCREENINPUT Login

1?§ SEND KEY TRAMSMIT

@ CHECK SCREEM far Expression: Screen.getText(®,11,9) == "Thank you"
T SEMD KEY F1

@ CHECK SCREEM for Expression: Screen.getText{2,36,10) == "Guest Book"
SET SCREEN TEXT AT (8, 20) FROM $Iinput/SCREENINPUT LName

SET SCREEN TEXT AT (6, 20) FROM $Input/SCREENINPUT FName

[SET SCREEM TEXT AT (15, 200 FROM $inout/SCREENINPUT (it

Click the Sep Intoicon again. The Check Screen action (above) executes
and the next action becomes highlighted.

Click the Sep Into button repeatedly to execute actions one-by-one.

Click other buttons (Step Over, Run To Breakpoint, Pause, etc.) asdesired to
control the execution of the component. Note that you can set abreakpoint at
any time during execution by clicking the mouse on an action line and
hitting F2 or using the Set Breakpoint button.

Once animation is complete, the following message appears.

Animation campleted.

Ok

Data Sets that Span Screens

UTS-based computing differs from other types of computing (including other
terminal-based interactions) in the following ways:

*

Retrieval of data sets may require repeated roundtrip communications with
the Unisys host. One query may bring many screens' worth of data, which
must be captured through multiple “page forward” commands, etc.

Information that spans screens may be (and often is) partially duplicated on
the final screen.

These factors can make automating a UTS interaction (viaan Action Model)
challenging. Suggestions on how to deal with these issues are given below.

UTS Components in Action 69

Multiple Screens

A common requirement in UTS computing is to capture adata set that spans
multiple screens. It is not always obvious how many screens’ worth of data there
may be. In cases where the screen contains aline that says something like “ Page 1
of 4,” it'sastraightforward matter to inspect the screen at the point wherethisline
occurs (using one of the ECM A Script Screen-object methods described earlier, in
the section titled “ UTS-Specific Expression Builder Extensions’ on page-43) and
construct aloop that iterates through all available screens. But sometimesit’s not
obvious how many screens’ worth of data there may be. In some cases, the only
cluethat you have may bethe presence of a“More” command (for example) at the
top or bottom of the screen, which changesto “Back” (or “End,” or some other
message) when you reach the final screen. In other cases, you may be told how
many total records exist, and you may be able to determine (by visual inspection)
how many records are displayed per screen; hence, you can calcul ate the total
number of screens of information awaiting you. There may be the presence of a
the + signinthe Action field which changesto “ Return” when you reach the final
screen.

Thepoint isthat if your query resultsin (potentially) more than one screen’sworth
of information, you must be prepared to iterate through all available screensusing
aRepeat/While action, and stop when no additional screensareavailable. You will
have to supply your own custom logic for deciding when to stop iterating. Your
logic might depend on one or more of the following strategies:

+ Determine the total number of screensto visit by “scraping” that
information, if available, off the first screen.

+ Divide“total records’ (if thisinformation is available) by the number of
records per screen (if thisis known in advance), and add one.

+ Visit screens one-by-one and break when ablank record is detected.

+ Visit screens one-by-one until aspecia string (such as“End” or “Go Back™)
is detected.

+ Visit screens one-by-one until two consecutive identical screens have been
encountered.

Obviously, the strategy you usewill depend on theimplementation specifics of the
host application in question.

Dealing with Redundant Data

In UTS host applications, it's common for the final screen of a multiscreen result
set to be “ padded” with datafrom the previous screen. In thisway, the appearance
of afull screenis maintained.

70 UTS Connect User’s Guide

Consider the following two screen shots. The top one showsthe first screen’s
worth of information after transmitting a command that returns two screens of
information. Noticethe + signinthe Action field of thefirst screen indicating that
thereis more data to follow.

Core Technology ST 4, 1803

Pressing the Transmit Key (or Enter), brings up the second screen. There are
several things to notice about this second (and, in this case, final) screen:

+ The+signinthe Action: field has been replaced by the word “ REturn”.
Sending the Transmit Key here would return you to the Job and Task Display
Menu.

+ Thesecond screen shows exactly the same records as the first one, except for
job number 2111/2111, which drops off to make room for four of the 1621
jobs because the second screenislimited to listing 17 lines of jobs. (Thefirst
screen had only 14 lines of data, because there were three lines worth of
header information). The majority of this screen is showing us redundant
data.

+ Another + sign appears on the screen, this timein marking the fourth-to-last
job on the screen. The system provides us with a convenient way to see
where the list splits and where the data ceases to be redundant.

UTS Components in Action 71

Core Tecknology

In most cases, you will not want to capture this sort of redundant data. Fortunately,
the demo system used here hasmadeit fairly simpleto detect and reject redundant
records by placing the + sign at thefirst columnto theleftinthelist wherethe data
begins to be new. This can be used along with ECM A Script as an easy and
convenient way of maintaining unduplicated lists. Thebasic stepsto do thiswould
be:

+ Enter aRepeat/While loop checking the name of the screen.

+ Create a Switch Statement depending on whether the screen is continued or
not.

+ Within each case of the Switch Statement, enter a Repeat While loop and
fetch each record to place it into a variable as shown in the example above.

+ Aftertheloopis complete, send a Transmit Key to go on to the next screen.

Tips for Building Reliable UTS Components

72

The following tips may be helpful to you in building reliable UTS Components.

+ Alwaysfollow a Set Screen Text Action with a Send Key Action.
+ Alwaysfollow your Send Key Actions with a Check Screen Action.

+ Remember that the default Screen Wait values used in Check Screen actions
are set when you initialy created your Connection resource. To change the
default Screen Wait time, you must change the property of the Connection
Resource.

+ Remember also that Screen Wait timeout values may need to be increased,
for load-sensitive applications. Careful testing will reveal these sorts of
problems.

UTS Connect User’s Guide

+ Becareful when editing a previously recorded Action Model. Deleting or
modifying a single Set Screen Text Action can (and will!) throw your entire
Action Model off course.

Using Other Actions in the UTS Component Editor

In addition to the Set Screen Text, Send Key and Check Screen actions, you have
all the standard Basic and Advanced Composer actions at your disposal aswell.
The completelisting of Basic Composer Actions can be found in Chapter 7 of the
Composer User’s Guide. Chapter 8 contains a listing of the more Advanced
Actions available to you.

Handling Errors and Messages

In testing a UTS Component, you may encounter errors relating to Set Screen
Text, Send Key and/or Check Screen actions. Theresult isadialog similar to the

following:

Errar executing component: Unisys Component Exception {0}

dtI0Z001

oK

This section discusses possible error conditions and how to deal with errorslike
these.

Check Screen Errors

Most of the errors you are likely to encounter at execution time will be related to
Check Screen actions. Generally speaking, your Check Screen errorswill be
timeout errors which means that the go-ahead criteria you specified in the Check
Screen setup dialog were not met within the Screen Wait imeout period. Clicking
on Details in the error dialog will verify this. Therefore, you should first try to
determine whether slow host response might be the real problem (in which case,
the solution is to increase the Screen Wait time for the Check Screen actionin
question). If the error still occurs after the Screen Wait time has been increased,
then you can be sure the error is due to an incorrect or inappropriate go-ahead
condition in your Check Screen action.

UTS Components in Action 73

“Screen Check Expression {0} was evaluated as false”

This error happens when the ECM A Script expression you used for your Check
Screen go-ahead happens to eval uate as fal se at execution time. Once again, it's
important to realize that this sort of error can be triggered simply on the basis of
slow host response (timeout). When the host is slow to respond, it meansthat your
ECMA Script expression will be evaluated on the basis of whatever isinthe screen
buffer as of the moment of timeout. If no data (or insufficient data) have arrived,
the expression is bound to evaluate as fal se.

To fix this sort of problem, either increase the Screen Wait time for this Check
Screen action (if you suspect that the problem ishost latency) or try modifying the
logic in your ECM A Script expression.

Set Screen Text Errors

Errors generated by Composer from Set Screen Text action will, in general, be
rare. Thisis because you are given agreat deal of leeway in your ability to send
whatever you like to the screen. Where you will more often run into trouble is on
the application side. Unisys hosts are very particular about the input they will
accept. If the text you send in your Set Screen Text action is not what the host
expects, you will receive host-side errors and the rest of your Composer Action
model will not proceed as expected. The way to avoid problems here isto make
sure that for every Set Screen Text/Send Key action combination, thereis always
acorresponding Check Screen action.

Finding a “Bad” Action

74

When you have alarge Action Model (containing dozens or hundreds of Set
Screen Text, Send Key and Check Screen actions), simply locating the action
that’sresponsiblefor an error can be achallenge. Oneway to find the problematic
actionisto:

1 Select and Copy some of the text in the error dialog. (Click the Details
button if need be, to expose the full error description. Highlight the rel evant
text, such as cursor coordinates. Then use Control-C to Copy.)

Click inside the Action Model.
Use Control-F to initiate a search.

Paste the error text into the search dialog.

o » W N

Execute the search.

UTS Connect User’s Guide

Of coursg, if you have multiple Check Screen actions that are based on identical
go-ahead criteria, the foregoing technique won’'t necessarily be helpful. If that's
the case, set a breakpoint at the midpoint of your Action Model, and run the
component. If the error doesn’t occur, move the breakpoint to a spot halfway
between the original breakpoint and the end of the action list. (Otherwise, if the
error does happen, set the breakpoint at a spot one quarter of the way down from
the top of the action list.) Run the component again. Keep relocating the
breakpoint, each time halving the distance between the last breakpoint or the top
or bottom of the action list, as appropriate. In this way, you can quickly narrow
down thelocation of the problematic action. (Using this“binary search” strategy,
you should be able to debug an Action Model containing 128 actionsin just 7
tries.)

Performance Considerations

You can perform second-based timing of your Action Model’s actions by
wrapping individual actions (or block of actions) in timing calls.

> To time an Action:

1 Click intothe Action Model and place anew Function Action immediately
before the action you wish to time. (Right-mouse-click, then New Action >
Function.)

2 Inthe Function Action, enter an ECMA Script expression of the form:
startTime = Number (new Dat e)
3 Insert anew Function Action immediately after the action you wish to time.
4 Inthe Function Action, enter an ECMA Script expression of the form:
endTi ne = Nunber (new Dat e)

5 CreateaMap Action that mapsendTi ne — st art Ti ne to atemporary
DOM element. (Right-mouse-click, New Action > Map.)

6 Runthe Component. (Click the Execute button in the main toolbar.)

If you do extensive profiling of your Action Model, you will probably find that the
overwhelming majority of execution timeis spent in Check Screen actions. Two
implications of thisworth considering are:

+ ECMAScript expressions (in Map and/or Function actions) will seldom, if
ever, be a performance consideration for the component as awhole.

+ Overall component performance rests on careful tuning of Screen Wait
timeout values in Check Screen actions.

UTS Components in Action 75

Finally, remember that testing is not truly complete until the deployed service has
been tested (and proven reliable) on the app server.

For additional performance optimization through the use of shared connections,
be sure to read the next chapter on Logon Components.

76 UTS Connect User’s Guide

Logon Components, Connections,
and Connection Pools

This section discusses certain features available in the UTS Connect designed to
maximize performance of deployed services.

About UTS Terminal Session Performance

The overall performance of any service that uses back-end connectivity isusually
dependent on thetime it takes to establish a connection and begin interacting with
the host. Obtaining the connection is “expensive” in terms of wait time. One
strategy for dealing with thisis connection pooling, a scheme whereby an
intermediary process (whether the app server itself, or some memory-resident
background process not associated with the server) maintains a set number of
preestablished, pre-authenticated connections, and oversees the “ sharing out” of
these connections among client apps or end users.

Connection pooling overcomes the latency involved in opening a connection and
authenticating to a host. But in terminal-based applications, a considerable
amount of time can be spent “drilling down” through menu selections and
navigating setup screens in order to get to the first bonafide application screen of
the session. So even when connections are reused through pooling, session-prolog
overhead can be a serious obstacle to performance.

Composer addresses these issues by providing connection pooling, managed by a
special kind of component (called alogon component) that can maintain an open
connection at a particular “drill-down” point in aterminal session, so that clients
can begin transactions immediately at the proper point in the session.

When Will | Need Logon Components?

Logon Components are useful in several types of situations:

Logon Components, Connections, and Connection Pools 77

+ When you have aneed for multipletiers of pooling based on multiple
security challenges within your system. (For example, users may need one
set of logon credentials to get into the network, another to get into the
mainframe, and another to get into database.) Serial 10g-in requirements may
dictate the use of multiple logon components.

+ When your service needs stateful “session-based” connections.

+ When you need the performance advantages available through connection
pooling.

If performance under load is not a high-priority issue and your connectivity needs
are relatively uncomplicated, you may not need to use Logon Components at all.
But thereisno way to know if performanceis adequate merely by testing services
at design time, on adesktop machine.

Components and services built with the UTS Component Editor may appear to
execute quickly at design time (in Animation Mode, for example). But in real-
world conditions—which isto say under load, with dozens or even hundreds of
requests per second arriving at the server—session overhead can be a significant
factor in overall transaction time. The only way to know whether you need to use
the special performance enhancement features described in this chapter isto do
load testing on a server, under test conditionsthat mimic real-world “ wor st case”
conditions.

Connection Pool Architecture

78

When you install the Connect for UTS, three types of Connection Resources are
added to the Connection creation wizard:

+ UTSConnection
+ aUTS MultiBridge Connection

+ UTS Logon Connection (henceforth referred to as a Logon Connection)

The UTS MultiBridge Connection is a server version that minimizes the number
of connections going back to the host and also contains added security. The UTS
Connectionisatrue terminal connection and (when used by a UTS component)
can establish a session with a host system. Thisis the connection-type that has
been throughout this Guide.

UTS Connect User’s Guide

uTS uUTS Maint e

Terminal »| Connection —» -
Component Resource

Component Connection Host

The UTS connection resource is designed to make an individual connection to the
host on an as-needed basis. The connection is made just-in-time and discarded as
soon asthe client isdone. It is not reused in any way.

The Logon Connection, on the other hand, is different. It defines a pool of User
IDs and passwords, each of which can make its own connection. The Logon
Connection aso serves as an indirection layer to alow clients to connect to the
host at exactly the point in the host program (exactly the screen) where the client
needs to start. This entry-point-location behavior is made possible by the Logon
Component. (A Logon Connection always uses a L ogon Component to get to the
actual connection.) The architecture is shown in the graphic below.

uTsS
Component

Logon
Connection

Logon
Component

Connection
Resource

Logon Components, Connections, and Connection Pools 79

A Connection Resourceis awaysrequired in order to get to the host. (Thisistrue
for any Composer service that uses UTS components.) For simplicity, this
diagram shows the Connection Resource going directly to the host; in the real
world, there may be intervening delegation layers for security purposes.

The Logon Component contains Actions (an action model) designed to find a
particular screen of interest in the host program. This drill-down location is the
effective entry point of the transaction for any upstream process that uses this
Logon Component. You can think of the Logon Component as a go-between
between the physical connection (represented by the Connection Resource) and
the logic layer (represented by the UTS Component itself.

In order for aUTS Component (at the top of the diagram) to use aL ogon
Component, it needsto enlist the aid of a Logon Connection resource. The Logon
Connection is the bridge between the UTS Component and the Logon
Component.

The kinds and responsibilities of the various objects discussed above are
summarized in the following table.

Object Role

UTS Connection Allows a connection to be established with a
Resource host system.

Logon Component Specialized type of component in which the

action model contains Logon, Keep Alive, and
Logoff action blocks. This component can
maintain a connection at a particular launch
screen in a host program.

Logon Connection Specialized type of Connection Resource that
associates a pool of UserIDs and passwords
with a given Logon Component type. At
runtime, connections are established for client
processes on demand (and reused), with one
Logon Component instance per connection.
Every connection in the pool provides ready
access to a given point (a particular launch
screen) in the host program, thanks to the
associated Logon Component (see above).

UTS Terminal Contains the action model that comprises the
Component business logic for a particular UTS interaction
(or transaction).

80 UTS Connect User’s Guide

The Logon Connection’s Role in Pooling

The Logon Connection differs from the ordinary “host-direct” connection
resource in that it manages pooling (the sharing of connection instances and
Logon Component instances at runtime).

In the context of a Composer service, pooling not only allows reuse of (open)
connections at runtime, it also increases the effective bandwidth of a deployed
service. Consider the smple case where you' ve designed a UTS component that
uses aregular connection resource. In creating the connection resource, you will
have specified a UserID and password for the resource to use so that at runtime,
the component can log in to the host. When an actual running instance of your
component isusing that connection, no other instance of the component canlogin
to the host using that same set of credentials. The bandwidth of your serviceis
limited to one connected instance at atime.

With a Logon Connection, on the other hand, numerous host connections can be
maintained in a“live’ state so that multiple instances of your component can
access the host (each on its own connection) without waiting. Throughput is
dramatically increased.

The diagram below shows one possible runtime case where three component
instances (two instance of UTS Terminal Component A and oneinstance of UTS
Terminal Component B) are executing on the server. Instance 1 of Component A
isusing UserID ‘E’ to obtain a connection. This component has its own dedicated
instances of Logon Component M and Connection S.

Terminal Component B hasjust finished executing and is relinquishing its
connection (established through credentials defined by UID ‘F'). Note that
because connection pooling isin effect, Component B’s downstream resources (its
Logon Component instance, M2, and its Connection instance, S2) are not simply
discarded; they remain live. Asaresult, Terminal Component A2 isableto obtain
(reuse) the M2/S2 resource instances that were previously held by Terminal

Component B.
LTS Terminal
Logon T

Component &, | g, Connection D c"":ﬁg."}“ 51

Connection Foal
LTS Terminal
ComponentB |opgpe

Connection S,
U0 G Inactive Host

UTSTerminal |Reuse UID H Inactive
Component &; ['UIDF \g

Logon Components, Connections, and Connection Pools 81

Inthisdiagram, Logon Connection D isassociated with four connections based on
four UIDs (user IDs or credentials: A-thru-F). Oneisin use; another (UID ‘F') is
alive but not being used; and two are inactive but available (i.e., valid UIDs have
been assigned, so these two connections can be made live at any time).

How Many Pools Do | Need?

It's possible for several different UTS components to draw from the same
connection pool. It's also possiblefor different componentsto draw from different
pooals. This means different Logon Connections.

Animportant factor in deciding how many L ogon Connection resources (in effect,
how many pools) your service needs is the number of different start screens (or
entry point screens) needed by the various componentsin your project. Suppose
Terminal Component A needsto beginitswork at a particular starting screenina
host application, but you’ ve aso designed another component—Terminal
Component B—that needsto start on adifferent screen. Components A and B will
need separate L ogon Connections, and the separate L ogon Connectionswill point
to separate L ogon Components. (In any given connection pool, Composer objects
are shared in such away that every user of the pool must start at the same screen.)

Pieces Required for Pooling

82

The combination of aL ogon Connection, aL ogon Component, and its Connection
Resource form the basis of a connection pool. Starting from the host layer and
working up the chain:

+ The Connection Resource defines the most basic parameters necessary for
establishing a connection with the Unisys host. When connection pooling is
in effect, runtime instances of this object are kept alive and reused.

+ TheLogon Component defines the set of steps (actions) necessary to getto a
particular entry point in the host program. (At runtime, an instance of this
component will actually carry out those steps in order to arrive at, and
maintain ready-to-use, a particular screen location in the host program.)
When connection pooling isin effect, instances of this object are kept alive
and reused.

+ TheLogon Connection isa special type of resource that contains all the
informati on needed to define a connection pool. Thisresource is designed to
encapsul ate pool-management info and does not establish host connections
directly; instead, it delegates those responsibilities to the Logon Connection
(which delegates them, in turn, to the appropriate Connection Resource).

UTS Connect User’s Guide

How Do | Implement Pooling?

To create the various pieces required for pooling, you'll go through the following
basic steps (each of which will be discussed in greater detail in the sectionsto
follow):

1 First, you'll create abasic UTS connection resource, as demonstrated in
Chapter 2 of this Guide.

2 Next, you'll create a Logon Component that uses the connection resource
defined in Step 1. As part of this process, you'll create an action model
designed to navigate to a certain point in the host program.

3 You will create a Logon Connection resource, which is a specialized type of
connection resource that relies on a Logon Component (from Step 2) to
make the basic connection (through the resource defined in Step 1).

4 Findly, you'll create a UTS Terminal Component and associate it with the
Logon Connection resource of Step 3.

These steps are described in detail starting with the discussion in “ Creating a
Connection Pool” further below. Before going to that section, however, you
should become familiar with the design principles behind the Logon Component
(and also the Logon Connection). We' Il start with the Logon Component, sinceit’s
impossible to create a Logon Connection without using a Logon Component.

The UTS Logon Component

The L ogon Component isaspecial type of component: It hasan Action Model, yet
can be used as a connection resource aswell. The Action Model of thistype of
component is designed to manage a connection that will be used by multiple UTS
Terminal Components. In most respects, the Logon Component isthe same asa
UTS Terminal component. The differences are:

1 InaLlogon Component, the Action Model is organized around connection-
management tasks. Those tasks are implemented via specia actions:. the
Logon Action, KeepAlive Action, and Logoff Action.

2 A Logon Component is not invoked directly by another component or
service. Itsinvocation is under the control of aLogon Connection.

NOTE: A Logon Component must and can only be used in conjunction with
a Logon Connection.

Logon Components, Connections, and Connection Pools 83

Instead of calling the Logon Component directly, using (for example) a
Component Action, you will associate the Logon Component with a special
connection resource called a Logon Connection. When your UTS Terminal
Component executes, it executes viathe Logon Connection, whichin turn
executes the Logon Component.

Logon, Keep Alive, and Logoff Actions

84

The Logon Component provides several screen-management capabilitiesthat are
important factorsin overall performance. These capabilities are implemented in
terms of Logon, Keep Alive, and Logoff actions:

+ Logon Actions—These actions navigate through the host environment and
park at adesired launch screen in the host system. The connectionis
activated using UserlDs from the pool. The UTS Terminal components that
subsequently reuse the connection have the performance benefit of already
being at the launch screen and won't incur the overhead of navigating to the
launch screen as if they had come in under their own new session.

+ Keep Alive Actions—These actions do two important tasks. First, they
prevent the host from dropping a connection if it is not used within a
standard timeout period defined by the host. Second, these actions must
insure that the connection is always positioned at the “launch screen in the
host, even after performing the Keep Alive actions needed to prevent the
connection from dropping (the first important task).

+ Logoff Actions—These actions exit the host environment in a manner you
prescribe for all the connections made by User I Ds from the pool, when a
connection is being terminated.

These actions and their meanings will be discussed in greater detail below. For
now, it's enough to know that these three action groupings are created for you
automatically whenyou first create aL ogon Component. Notethe (empty) Logon,
Keep Alive, and Logoff action blocks in the action model shown below:

- UTSLogon

(=) -y LOGOMN
(-3} KEEF ALIWE

Keep Alve Actions
=) @ LOGOFF

Log Off Actions

UTS Connect User’s Guide

LOGON Actions

Actionsyou place in the LOGON group are primarily concerned with signing
into the host security screen and then navigating through the host menu system to
alaunch screen where each UTS component's Action Model will start. Itis
important that any UTS component using a Logon component be able to start
execution at the same common screen. Otherwise, the performance gains of
avoiding navigation overhead won't be realized and more importantly, the odd
UTS component won't work.

You can create actions under the L ogon Actions block the same way as you would
inan ordinary UTS Terminal Component—namely by using the Record feature to
create (in rea time) whatever actions are necessary in order to enter sign-on info
such as User | D and Password (aswell asyour initial menu choicesto arrive at the
launch screen).

NOTE: Remember to use the User IDs and Passwords from the Logon
Connection Pool. (See the discussion in “Creating a Logon Connection using a
Pool Connection” below.) To do this, you need to map the two special system
variables called USERID and PASSWORD to the appropriate fields on the screen.
By specifying these two variables, you make it possible for exteNd Composer to
automatically locate and use values from the next active and free Pool slot.

The launch screen is acommon point of execution for all the UTS Terminal
Components that use the User ID pool provided by aLogon Connection. The
Logon actionsin aLogon Component (which are executed only once when anew
connection is established) let the calling component—your UTS Terminal
Component—begin execution at a given screen in the host program.

Maximizing Performance with the Logon Component

The Logon Actions must be structured properly and therefore always begin and
end with a Check Screen Action as shown in the screen below.

Q@EBE2OI
(= UTSLogon
(=) amsfy LOGOM

(=} Log On Actions

@ CHECK SCREEM for Expression: Screen.getText{23,2,18) == "Enter your user-id"

SET SCREEN TEXT AT (24, 2) FROM “corefcifci”

'Eg SEND KEY TRANMSMIT

@ HECHK SCREEN for Expression: Screen.getText(8,11,9) == "Thank you™

Logon Components, Connections, and Connection Pools 85

Thefinal Check Screen action in the Logon block guarantees that control is not
turned over to the UTS Component before the screen of interest has arrived in the
connection. Without this, the UTS Component could start at an invalid screen,
throw an exception, and possibly corrupt atransaction.

NOTE: You may notice when animating a Logon Component that the ending
Check Screen is skipped. This is normal design-time behavior. In a production
environment , the actions in a Logon Component always execute in an interleaved
manner with a UTS Terminal Component. Animating a Logon Component from
start to finish actually creates an abnormal sequence of events that would result in
two Check Screens being processed in succession, which is not allowed.

The performance benefit comesinto play as aresult not only of connection reuse
but launch-screen reuse. For example, if aUser ID pool of three entriesisfully
used and (ultimately) reused by the execution of acomponent fifteen times, the
overhead of navigating to amenu item that executes the transaction of interest will
occuro nly threetimes. Likewise, there will only be three logons to the host
because the Logon actions at the top of a Logon Component are executed only
once—when a new connection is activated (not when it is reused). Thisiskey to
obtaining maximum performance in a high-transaction-volume production
settings.

NOTE: When possible, use the Try/On Error action to trap potential logon errors
that may be recoverable. Otherwise, the UserID trying to establish the failed logon
will be discarded from the pool, decreasing the potential pool size. The pool size
will remain smaller until you manually reset the discarded connections using the
exteNd Composer Enterprise Server Console for UTS. Refer to “Managing Pools”
in this Chapter for more details.

Keep Alive Actions

86

The KEEP ALIVE block iswhere you will place actions that “ ping the host” in
whatever way necessary to keep the connection alive so that it can be reused.

Keep Alive actionsusually involve sending an Attention key, such as<Transmit>,
to the host at some specified interval. However, if after sending the Attention key
the screen changes to some screen that is different than the launch screen, you
must be sure to return the Logon Component to the launch screen in the Keep
Alive section. Failure to do so will leave the next component at an incorrect
screen, causing it to fail.

UTS Connect User’s Guide

The Poal Info dialog of the Logon Connection setup dialog (see discussionin
“Creating a Logon Connection using a Pool Connection” below) is where you
control how often the Keep Alive actions will execute. If you specify in your
Logon Connection pool that you would like to keep a free connection active for
three minutes, but the host will normally drop a connection after two minutes of
inactivity, you can specify keyboard actionsto take place at 30-second intervalsto
let the host know the connection is still active.

Pool size specifies the total number of connections that can be established. Keep
Alive, Inactivity and Enlrywail parameters setthe imings associated with each
connection. Selacting “Overmde LIDPYWD" allows you to specify differant logons. The
userid and password from the base connection will be used if no overide is
speciied. Specify Reuse Connaction in warfs that tha nransr Serean stale is prasent

before a connecion can be reuzed. Keep Alive (minutes) I

= i

Kesp Alive (minutes) |2

Inactivity Lifetime (minutes) |EEJ

Entry wait (seconds) |3U
User ID |

Password [
Overrids UID/PWD [#)
Peal Hest Cannsction 1Ds ()
Lise Secuential Connections [

Rewrse cornection only [
if expression is true

ok J(cancel]

Keep Alive actions will be executed multiple times, at intervals defined by the
Keep Alive parameter defined on the Pool Info dialog of the Logon Connection.

Thelnactivity Lifetime parameter (just below Keep Alive on the Pool Info dialog)
tells Composer how long it should wait, in the event the connection is not actually
used by aUTS Terminal Component, before relinquishing the connection.

NOTE: The execution of the Keep Alive actions of a Logon Component will not
cause the Inactivity Lifetime clock to reset in the Logon Connection. Only a UTS
Terminal component’s execution will reset the Inactivity Lifetime. In other words, if
a live connection is never actually used (but is merely kept alive by “Keep Alive”
actions), then it will time out according to the Inactivity Lifetime value in the Pool
Info dialog. But if the connection is used (by a UTS component) before it times out,
the timer is reset at that point.

Logon Components, Connections, and Connection Pools 87

Thelast action inside a Keep Alive block should be an empty but “enabled”
navigation action. If a user disables thislast action, animation will not work
properly dueto two consecutive empty navigation actionsoccurring. For example,
if an action in Logon and thefirst action in Keep Alive are disabled, an error
occurs.

Maximizing Performance with Keep Alive Actions

Logoff Actions

Check Screen actions must occur at the beginning and end of the Keep Alive
section.

Not only must the Keep Alive section prevent the connection from closing, but it
must make sure that the proper launch screen is present when the execution is
completed. Therefore, the first Check Screen checks to make sure that during the
time the connection was available but not in use, an unexpected screen didn’t
arrive from the host. The ending Check Screen prevents the premature rel ease of
the connection to the next UTS Component. See below for atypical Keep Alive
block.

= [E3) KEEP ALIVE
(=} Keep Alive Actions

f_,f In case an unexpected screen arrived during the Keep Alive Sleep time,
f_,/ check for the logo before executing the keep alive action.
[cHECK SCREEN for Expression: Screen.getText(2,5,15) == “Core Technology™
Fg SEND KEY TRAMSMIT
J¥ Do another check screen to make sure we are still in the right place
,f,/ This is skipped during run-time to prevent two check screens in a row
@ CHECK SCREEHN for Expression: Screen.getText(2,5,15) == "Core Technology™

Logoff actions essentially navigate the User ID properly out of the host system
after atimeout.

Logoff actions execute once for a given connection, and only when a connection
timesout (i.e. the Inactivity Lifetime expires) or the connection is closed viathe
UTS Server console.

88 UTS Connect User’s Guide

Ina“best practices’ sense, it's vitally important to make Logoff Actions
bulletproof. If an exception occurs during execution of the Logoff actions, exteNd
Composer will break its connection with the host, freeing the UserID in the pool.
But the UserID may still be active on the host. Until the host killsthe UserID (from
inactivity), a subsequent attempt by the pool to log on with that UserID may fail,
unless you' ve coded your logon to handle the situation. Logon failures cause the
UserlD to be discarded from the pool, reducing the potential pool size and
performance overall. Aswith Logon and Keep Alive actions, theway to guarantee
you are on the proper screen at the end of the logoff isto end with a Check Screen.

Logon Component Life Cycle

Eachtime aUser ID isactivated from the L ogon Connection Pool, an instance of
the corresponding L ogon Component is created and associated with that User ID.
Then the Logon actions are executed until the desired launch screen isreached. At
this point the UTS Terminal component execution begins. When it is finished
another UTS Terminal component using the same Logon Connection may begin
executing, starting at the same launch screen.

If no other component requests the connection, then the connection-instance in
guestion enters an active but free state (an “idle state”) defined by the Inactivity
Lifetime and KeepAlive settings on the Pool Info dial og of the L ogon Connection.
If the Keep Alive period (e.g., 2 minutes) is shorter than the I nactivity Lifetime
(e.g., 120 minutes), then at appropriate (2-minute) intervals, the Keep Alive
actions will be executed, preventing a host timeout and dropped connection; and
the Keep Alive Period begins anew.

A Logon Component’s execution lifetime is dependent on the activity of the
Logon Connection that usesit. Aslong as one entry in the Logon Connection pool
is active, then one instance of the Logon Component will be in memory in alive
state. A Logon Component instance will go out of scope (cease executing) when
the last remaining pool entry expires dueto inactivity. The only other way to stop
execution of aLogon Component isthrough the UTS Console on the Server.

Logon Components, Connections, and Connection Pools 89

About the UTS Logon Connection

The Logon Connection is not atrue connection object like aUTS Connection
Resource, but a pointer to a Logon Component (which in turn connects to a host
either through a conventional Connection Resource or yet more intervening
Logon Connection/L.ogon Component pairs). The Logon Connection
encapsulates information needed to describe a pool of connections. That includes
User IDs and passwords, plus pool settingsinvolving the time interval between
retries on discarded connections, etc. Another function of the Logon Connection
isthat it ensures the use of different instances of the same Logon Component for
all the User IDsfor which connections are made.

Thediaogsyou'll usein setting up apool of User IDsfor aL.ogon Connection are
shown in the following set of illustrations. Arrows denote the buttons that lead to
continuation dialogs.

i

Select a UTS Logon Component for ea<h pool entry's connection. Each UTS Component using s Logon
CONNecion will USe a Previcusly e5tabiished CONMACEON O CTOabE 3 NEW CONNECEON based on pool
informabon speciied in Pool Inf diaiog Checking Defaull makes this Connecban the inflial s election when
requesting & UTS Logon Componsnt

oot T - G=)

Connect Via [UTELogon > O oetaur:

Poct Connections. ® | ok Ins]

B £ 0! Tnfo

x|

Pool size speciies fe total number of fions that can be ished. Keep
Alive, Inactivity and Bniry wait parameters setthe limings associated with each
connection. Sele “Owerride UIDWPYWE" allows you to specify different logons. The
userid and pas: from the hase connection will be used if no ovemide is
specified. Specify Reuse Conneaction to verify that the proper Screen state is prasent
before a connection can be reused.

Lielp

Pool size |U

Keep Alive (minutes) |2

Inactivity Lifetime (minutes) |ElJ

Entry wait {seconds) |3lJ
User ID |

Passward [

Owerride UID/PWD

(LR R et Pool Userid i and Passwords x|
Use Sequential Connections (] o o a
Reusa ion only () | User D Password |
if expression is true ! prohn
Pl
3 [George
n [Ringo
ok) comest)

90 UTS Connect User’s Guide

Every Logon Connection is associated with a given Logon Component. In
addition, the Logon Connection provides the following User ID pool
functionality:

1 It alowsthe specification of multiple User IDs in advance ensuring that
clients are able to secure a connection when one is needed

2 ltalowsthereuse of aUser ID/connection onceit is established to €liminate
repeated user authentications and disconnects

3 Italowsasingle User ID to use multiple connections if thisis supported by
the host system

4 It keeps a connection active to prevent host timeouts during inactive periods
5 It letsyou specify when to remove a connection from the active pool

6 Itsetsatimeout period to use for afully active pool to provide afree
connection

7 Itletsyou specify error handling dependent on the state of the Logon
Component used by the Logon Connection

Many-to-One Mapping of Components to Logons

In order for multiple instances of aUTS Terminal component or different UTS
Terminal components to use a the same Logon Connection, the following
conditions must be met:

1 Allthe UTS Terminal components must use the same Connection Resource
(thereby sharing the Unisys Host, Port and data encoding parameters)

2 All the UTS Terminal components must have acommon launch screeninthe
host system from which they can begin execution (see “Creating a Logon
Component” below for more detail).

Connection Pooling with a Single Sign-On

If your host system security supports multiple logins from asingle user ID, you
may have circumstances where you wish to pool the single User ID. This can be
accomplished by performing the following steps:

+ Specify aUser ID/Password in the Connection Resource used by the Logon
Component.

+ Onthe Pool Info dialog of the Logon Connection, specify aPool Size greater
than 1.

+ Do NOT check the Override the UID/PWD setting in the Pool Info dialog
of the logon Connection.

Logon Components, Connections, and Connection Pools 91

These steps will cause each pool slot to use the User ID and Password contained
in the Connection object and not use the user 1Ds from the pooal.

Creating a Connection Pool

Overview

When creating a UTS Terminal component, you normally first create the
Connection object it needsfirst. Similarly, when creating the objects comprising a
Connection Pool, you must create certain objects first, starting (in essence) at the
host and working your way backwards to the UTS Terminal Component that will
access the host.

A typical sequence of steps for creating a Connection Pool is:

Step One:
Create a basic host
Connection Resource

Step Two:
Create Logon Component
that uses basic Connection

Step Three:
Create Logon Connection
that uses Logon Component

Step Four:
Create standard Components
using Logon Connection

Creating a Basic UTS Connection

Thisstep issimple. Create anew Connection Resource as described in “ Creating
aBasic UTS Connection” on page -92. Even though you will be using User IDs
and Passwords defined in the Logon Connection later, you should till define one
in the Connection as well. Thiswill be needed when you define the Logon
Component in the next step. Alternatively, you can simply use an existing
Connection Resource.

92 UTS Connect User’s Guide

Creating a Logon Component

» To create a UTS Logon Component:

1 From the Composer File menu, select New>xODbject, then open the
Component tab and select UTS L ogon.

The Header Info panel of the New xObject Wizard appears.

Create a New LTS Logon Component x|

AUTS Logon Component connects to a hostvia the UTS protocol, processes data using elements fram a
DO, and maps the results to an output DOM. Use this wizard to create a UTS Component. Enter a Name
and Description for this UTS camponent. The name will appear in the Composerwindaw and in choice lists
when you are prompted far objects of this type as you woark in Composer. The Mame is reguired and may not
contain the characters: L /1 ? " = =, | Mames are case insensitive.

Hame:

‘UTSLogon

Description:

Purpose:
Input:
Output:
Remarks

][MNext][Cancel

2 TypeaName for the connection object.
3 Optionaly, type Description text.
4 Click Next and the Connection Info panel appears.

Logon Components, Connections, and Connection Pools 93

Create a New UTS Logon Component

Specify which Connection you wish to use for this Component or Service. To change any connection
parameters, you must change them in the Cannection Resource abject or create a new Connection
Resource of the same type with different parameters.

Connection (I8 ! v

Host or IP Address I

uts Port |

Host Connection D I

Session MName I

Host App Mame I

csuip |

Screen wait (seconds) I

Screen Rows I

[Back][Finish][Cancel

5 Select aConnection from the drop down list.
6 Click Finish and the Logon Component Editor appears.

20/ UTS Logon: UTSLogon
® PROJECT Data

=} <> USERCONFIG
[<> PROJECT_CO

UTS Terminal

SEABE2S I
= UTSLogon
(o} @mf LOGON
=) KEEF ALIVE
Keep Alive Actions
=) @@ LOGOFF
Log Off Actions

94 UTS Connect User’s Guide

NOTE: Recording actions follows a series of steps. The cursor must be
positioned over LOGON; turn Record on, and when you are done, turn
Record off. Position the cursor to KEEP ALIVE, turn Record on, and when
you are done, turn Record off. Position the cursor to LOGOFF, turn Record
on, then when you are done, turn Record off.

7 Record Logon Actions for logging into the host and navigating to the launch
screen using the same Recording techniques described in Chapter 5 of this
Guide.

8 Edit the Logon Map actionsthat enter a User 1D and Password to instead use
the special USERID and PASSWORD variables described in the section
titled “UTS-Specific Expression Builder Extensions’ on page -43 of this
Guide.

9 Create the needed Check Screen and Send Key actionsin the KEEPALIVE
section of the Action Model (a quick way to do thisisto copy an existing
action, highlight the appropriate action, paste, and then modify if necessary).

10 Record LOGOFF actions for properly exiting the host

11 Save and close the logon Component.

Creating a Logon Connection using a Pool Connection

» To create a UTS Logon Connection:

1 From the Composer File menu, select New>xODbject, then open the
Resour ce tab and select Connection, or you can click on theicon. The
Header Info panel of the New xObject Wizard appears.

Create a New Connection Resource x|

AGonnection resaurce is used to establish communications with an Connectar data source orwith a server
using HTTP authentication. You need to create connections for each type of data source or each HTTP server
you wish to communicate with. Enter a name and, optionally, a description for this Connection. The name
will appear in the Cormposer Detail Pane and in choice lists when you are prompted for objects in Cormposer.
The name may not contain the characters:Vi: 7" <= | Names are case insensitive.

Mame:

UTSLogDnCn)c]

Description:

Purpoge:
Input
Output:
Remarks

][Next][Cancel]

Logon Components, Connections, and Connection Pools 95

2 TypeaName for the connection object.

w

Optionally, type Description text.
4 Click Next and the Connection Info panel appears.

Create a New Connection Resource 5'

Selecta UTS Logan Component for each pool entry's connection. Each UTS Component using this Logon
Connection will use a previously established connection or create a new connection based on pool
information specified in Pool Info dialog. Checking 'Default' makes this Connection the initial selection when
reguesting a UTS Logon Component.

Connection Type (IR Rl WeTygtle ey} v |
Connect Via |UTSLOgDn [Defautt

Pool Connections (#) Poal Infa...

Session Connections () | |

[Back][Finish][Cancel]

5 For the Connection Type select "UTS Logon Connection” from the drop
down ligt.

6 IntheLogon Via control, select the Logon Component you just created.
7 Click on the Pool Info button and the Pool Info dialog appears.

96 UTS Connect User’s Guide

10

11

12

Pool Info x|

Fool size specifies the total number of connections that can he estahlished. Keep
Alive, Inactivity and Entry wait parameters setthe timings associated with each
cannection. Selecting "Override LIDIFYWD" allows you ta specify different logons. The
userid and passward from the base connection will be used ifno override is
specified. Specify Reuse Connection to verify that the proper Screen state is present
hefore a connection can he reused.

Pool size |1

Keep Alive (minutes) |2

Inactivity Lifetime (minutes) IED

Entry wait (seconds) ISD

User ID I

Password I

Override UID/PWD [|

Pool Host Connection 1Ds] |

Use Sequential Connections [
Reuse connection only

if expression is true
bcreen.getText(E,Sj 5)=="Core Technolog: @

Enter a Pool Size number. This represents the total number of connections
you wish to make available in this pool. For each connection, you will be
expected to supply a UserlD/Password combination later.

Enter a K eepAlive time period. This number represents (in minutes) how
often you wish to execute the Keep Alive actions in the associated L ogon
Component whenever the connection is active but free (i.e. not being used
by a UTS component). The number you enter here should be less than the
Screen Wait Timeout period defined on the host for an inactive connection.

Enter an I nactivity Lifetime. This number represents (in minutes) how long
you wish to keep an active free connection available before closing out the
connection and returning it to the inactive portion of the connection pool.
Remember, that once the connection is returned to its inactive statein the
pooal, it will incur the overhead of logging in and navigating host screens
when it is re-activated.

Enter an Entry Wait timein seconds. This time represents how long aUTS
component will wait for afree connection when al the pool entries are
active and in use. If thistime period is reached, an Exception will be thrown
to the Application Server.

Enter a Userid and Password if desired.

Logon Components, Connections, and Connection Pools 97

98

13 Checking Override UID/PWD means you wish to specify User
I D/Password combinations for use in the connection pool. When checked,
this activates the Set Userids button. Click on the button to display the Set
USERIDs and PASSWORDS dialog.

Add— e o= B
Uszer|D FPassword

1 JDh,[JI/ EEEEEEEET
Del ete 2 Paul ek EEE

3 Gearge EEEET

e Ringo EEEEEd
Paste

Help OK Cancel

Onthe Toolbar there arethreeicons. Add which adds an empty row, Delete, which
deletes a highlighted row and Paste which allows you to copy/paste information
from a spreadsheet into the table. For more on this, see the following Note.

NOTE: Alternate and faster ways to enter data are to copy data from a spread
sheet and paste it into the table. Make sure your selection contains two columns.
The first column must contain UserID; the second Password. Open the
spreadsheet, copy the two columns and as many rows as needed. Open the table
and immediately press the Paste icon located on the toolbar. You can also copy
data from tables in a Microsoft Word® document using the same technique.

14 Enter as many USERID/PASSWORD combinations until you reach the size
of the pool you specified and click OK. Pool size will be adjusted depending
upon how many rows you entered.

15 Click OK to dismissthe“Set User IDs and Passwords’ dialog and return to
the Pool Info dialog.

16 Optionally click the Pool Host Connection | Ds checkbox in the Pool Info
dialog if you intend to manage terminals by identifier strings. When
checked, this activates the Set Host Connection |Ds button. Click on the
button to display the dialog.

UTS Connect User’s Guide

Set Host Connection IDs x|
qF o= Bl
Host Connection ID |
1 COMMO1
2 COMMOZ
3 OMMOS

On the Toolbar there are three icons: Add which adds an empty row, Delete,
which deletes a highlighted row and Paste which allows you to copy/paste
information from a spreadsheet into the table.

17 Enter asmany Terminal 1Ds as needed in the dialog and click OK when
complete.

18 Optionally click the Use Sequential Connections checkbox if you want
Composer to establish connections in the same order that User IDs were
listed in the“ Set User IDs and Passwords” dialog. Connectionswill be made
in numerical sequence.

19 Optionally check the Reuse connection only if expression istrue control.
Thiscontrol allows you to enter an ECM A Script expression that evaluatesto
true or false based on some test of the launch screen. The purpose of the
expression isto check to make sure the launch screen is the proper one each
time anew UTS Component is about to reuse an active free connection.
Under circumstances unrelated to your Composer service, it's possible that
the launch screen will be replaced by the host with a different screen. For
instance, if there is a system ABEND on the host, the launch screen in the
Logon Component may be replaced by a System Message screen.

NOTE: For instructions on how to create this expression, see the discussion on
“Handling Errors and Messages” on page -73 of this Guide. Also refer to
“Maximizing Performance of UTS Logon Connection” on page -100 below.

Thefollowing ais a sample Custom Script used to seeif aparticular screenis
present. If itisnot, the script writes amessage to the consol e stating that the screen
isbad and the logon connection isbeing released. Thisfunctionis called fromthe
“Reuse connect only if expressionistrue’ control on the Pool Info dialog.

Logon Components, Connections, and Connection Pools 99

function checkValidLaunchScreen(ScreenDoc)
{
var screenText = ScreenDoc. XPath("SCREEN").item(0).text
if((screenText.indexOf("MENU") I= -1 || screenText.indexOf("APLS") I=-1) &&
(screenText.indexOf("COMMAND UNRECOGNIZED") == -1 ||
screenText.indexOf("UNSUPPORTED FUNCTION") == -1))
{

}

else

{

return true;

java.lang.System.out.printin("Warning - Releasing logon connection at bad screen");
java.lang.System.err.printin("Warning - Releasing logon connection at bad screen”);
return false;

}

20 Click OK to return to the Connection Info panel.
21 Click on Finish and the Logon Connection is saved.

Maximizing Performance of UTS Logon Connection

To prevent UTS Components from beginning execution on a connection that may
have been left on an invalid screen by a previous UTS component, the Logon
Connection Resource allowsthe connection itself to check for the presence of the
launch screen. Thisis accomplished by using the option titled “ Reuse connection
only if expressionistrue” on the Pool Info dialog of the Logon Connection. The
screen test you specify here is executed each time a UTS Component completes
execution. If the test fails, exteNd Composer will immediately disconnect from
the host, possibly leaving adangling Userl D on the host. As noted before, the host
will eventually kill the user, but the UserlD may be discarded from the pool if it is
accessed again before being killed, thereby reducing the pool size and
conseguently overall performance.

Another reason to use the “ Reuse connection only if true” option isthat you can
perform very detail ed tests against the screen to make sureit isyour launch screen.
While Map Screen actions do perform a screen check, they only look at the
number of fieldsin the terminal data stream. In most cases, thisis sufficient.
However, it is possible two different screens can have the same number of fields
inwhich case the expression based test that examinesthe content of the screen will
produce more rigorous results. A best practices approach mandates that you use
thisfeature all the time.

100 UTS Connect User’s Guide

Static versus Dynamically Created Documents/Elements

In some Composer applications, users have aneed to place various control,
auditing, and/or meta-datain an XML document. This document may or may not
bein addition to the actual elements/documentsbeing processed (i.e. created from
aninformation source). If this document structure and datais dynamically created
by multiple Map actions (i.e. over 100) performance of the component and
thereforethe entire service may suffer. To boost performance, create the portion of
the document structure without the dynamic content ahead of time, then load it
into the Service at runtime viaan XML Interchange action and retain the Map
actionsfor dynamic content. This can boost performance as much as 30% in some
Cases.

Creating a Logon Connection using a Session
Connection

Sometimes, you may want the extralevel of control over session parameters that
aLogon Connection affords, without necessarily wanting to use pooling. In this
case, you can follow the procedure outlined below.

» To create a UTS Logon Connection:

1 From the Composer File menu, select New>xODbject, then open the
Resour ce tab and select Connection, or you can click on theicon. The
Header Info panel of the New xObject Wizard appears.
x|

A Connection resource is used to establish communications with an Connector data source or with a server
using HTTP authentication. ¥ou need to create connections far each type of data source ar each HTTP server
ywou wish to communicate with. Enter a name and, optionally, a description for this Connection. The name
will appear in the Composer Detail Pane and in chaice lists when you are prompted far ohjects in Composer.
The name may not cantain the characters:\J: ?" = = | Names are case insensitive.

Mame:

UTSLogonCn)d

Description:

Furpose:
Input:
Cutput:
Remarks:

l[Mext][Cancel

2 TypeaName for the connection object.

Logon Components, Connections, and Connection Pools 101

102

3 Optionaly, type Description text.
4 Click Next and the Connection Info panel appears.

Create a New Connection Resource x|

Selecta UTS Logon Component for each pool entry's connection. Each UTS Component using this Logon
Caonnection will use a previously established connection ar create a new connection based an poal
infarmation specified in Pool Info dialog. Checking 'Default' makes this Connection the initial selection when
requesting a UTS Logon Component

Connection Type |UTS Logon Connection [v]
Connect Via |UTSLDgDn [~] [Default

Pool Connections () |—|

[Back][Finish][Cancel]

5 For the Connection Type select “UTS Logon Connection” from the drop
down list.

In the Connect Via control, select the Logon Component you just created.
Click the Session Connections radio button and then on Session Info button.
[Sessiontnfo]

Keep Alive sets the interval after which Keep Alive action will he executed an
connection, while it's sitting idle. Inactivity lifetime sets the time limit for connection to
beidle. Specify Reuse Cannection ta verify that the proper ScreenDoc state is
present before a connection can be reused.

Keep Alive (minutes) |2

Inactivity Lifetime (minutes) IGD

Reuse connection only
if expression is true

IScreen.getText(2,5,15)=="Core Technalog @

8 TheKeep Alive (minutes) number represents (in minutes) how often you
wish to execute the Keep Alive actions in the associated L ogon Component
whenever the connection is active but free (i.e. not being used by aUTS
Terminal component). The number you enter here should be less than the
Timeout period defined on the host for an inactive connection.

UTS Connect User’s Guide

9 Thelnactivity Lifetime (minutes) number represents (in minutes) how long
you wish to keep an active free connection available before closing out the
connection and returning it to the inactive portion of the connection pool.
Remember, that once the connection isreturned to itsinactive state in the
pooal, it will incur the overhead of logging in and navigating host screens
when it isre-activated.

10 Click in the checkmark box if you want to Reuse connection only if
expression istrue. If you choose to do so, the expression field automatically
displays and you can click on the expression icon to display the if the
expression istrue dialog.

Creating a UTS Component That Uses Pooled
Connections

At this point, you are ready to create a UTS Component that can use the Connec-
tion Pool. For the most part, you will build the component as you would a normal
UTS component, the only difference being the Connection you specify on the
connection panel of the New Component Wizard. (You' Il specify aLogon Con-
nection instead of aregular UTS Connection.)

» To create a UTS Com ponent:

1 From the Composer File menu, select New>xObject, then open the
Component tab and select UTS. The Header Info panel of the New xObject
Wizard appears.

Create a New UTS Terminal Component 1'

AUTS Terminal Component cannects to a hastvia the UTS pratocol, processes data using elements fram a
DM, and maps the results to an output DOM. Use this wizard to create a UTS Component. Enter a Name
and Description for this UTS companent. The name will appear in the Composer window and in chaoice lists
whenyou are praompted for objects ofthis type as you wark in Caomposer. The Mame is required and may not
contain the characters:\ /27 " = = . | Mames are case insensitive.

Marne:

LTSSample

Description

Purpose:
Input:
Cutput
Remarks:

Help @ | Mext Cancel

2 TypeaNamefor the component.

Logon Components, Connections, and Connection Pools 103

Optionally, type Description text.
Click Next and the XML Property Info panel appears.
Select the necessary | nput and Output Templates for your component.

Click Next and the Connection Info panel appears.

N~ o 0o b~ W

Select the Logon Connection you created and click on Next. The Component
editor appears.

8 Build the component as described in “ To create a new UTS Component:” on
page -25.

Maximizing Performance of UTS Terminal Components

Once the launch screen is obtained by the logon Component’slogon actions, it is
handed to the UTS Terminal Component that uses the connection. Then the UTS
Terminal component (when finished executing) leaves the screen handler back at
the launch screen. If the UTS Component finishes without being on the launch
screen,(i.e. it rel eases the connection back to the pool with an invalid screen) then
it ispossible that al subsequent UTS Components that use the connection may
throw exceptions rendering the connection useless. It also will degrade overall
performance and possibly cause data integrity problems within the component
processing.

Once again, to ensure that the launch screen is present, the last action to execute
in a UTS Component must be a Check Screen that checks for the launch screen.
This can betricky if your component has many decision paths that may
independently end component execution. You must be sure that each path ends
with a Check Screen action.

Managing Pools

Using the exteNd Composer Console

104

UTS Connection Pools can by managed through the UTS Console Screen.

> How to Access the Console

1 If youareusing the Novell exteNd Application Server, log on to your Server
viayour web browser using http://localhost/Silver M aster 50 (or whatever
is appropriate for the version in use). In this example, Novell exteNd App
Server 5.0 is used.

UTS Connect User’s Guide

A Directory of SilverMaster50 - Micro: =a]x|
File Edit Wiew Favorites Tools Help |
GBack = - (D fat | ‘Qisearch [lFavorites »
Address I@ http:,l’,l’\ocal}j @G0 |Linl@ **| i Snaglt

SilverMasters0

extelNdComposer
robots. tXt

SilverMasterSo
SilverStream

E

=

=] | http:fflocalhostiexte l_ l_ ’_ E Lacal intranet v

NOTE: If you are not using the exteNd app server, enter a URL of this form:

http://<hostname>:<port>/exteNdComposer/Console

2 Click on the exteNd Composer link. You should see the main console page:

Logon Components, Connections, and Connection Pools

105

106

a exteNd Composer Server Console - Microsoft Internet Explorer

—loj x|

File Edit ‘iew Favorites Tools Help |
SBack - = -) Zat | {Qsearch Gl Favorkes Media 4% | By S - &
Address I@ hittp:fflocalhostexteNdComposer/Consale j ran |Links *| @snaglt
exteNd Composer
[
EDI Al N
General Properties and Settings
HP3000
WA Free Memony: 10 b
LTAE Log Level: |5
JDBC Apply Log Level
JMS
Cache Status
L EDEES Expresszions Cached: 2
T27 ¥Path Modes Cached: 0
- Functions/Code Tables Cached:]
Component Types Cached: 1
TELNET Total Components Cached: 2
Tandem Clear Cache
uTs
Cache Tuning
UTSlogon
Expression / ¥Path Caching: = 0 © Off
sssw_ldap Component Cache Expiny 720
z Total Component Cache Size: 250

D

|

1€

l_ l_ l_ E Local intranet 4

3 Click onthe UTSIink in the left (nav) frame and the UTS Console Genera

Properties Screen will come into view.

UTS Connect User’s Guide

exteNd Composer - Abaut info

Ll

03|) e e R A

E=E d (=] T
Novell'exteNd Composer
HP3000 | Yersion 5
HTML
™
JDBC Hovell® exteNd™ Composer
Enterprise Server
JMS
UTSlogon Connect
PROCESS
Wersion 4.2 {-1)
127
@ 199-2003 SilverStream Software LLC
TELNET
Licensze key: E4F1173C3400000001
Tandem
urs
UTSlogon

Pool Management Screen) should appear.

exteNd Composer

[=][0¥] Novell

Click the Console icon. A browser popup window (the UTS Connection

UTS Connection Pool Manager

Pool Description Max In Avail Discarded Pool Actions
Name Use

uts UTS Logon Reset Discarded| Reset
pooled Connection Z ! !) ese il [
Refresh Console

Pool Initialization

To initialize a Logon Connection Pool, enter its deployment context, "connection”,
znd connection name in the field below.
<deployment context>/connection/<connection name>

Ie.g. comytesticonnection/myLogonlUnicxm|

Initialize Pool

Logon Components, Connections, and Connection Pools

107

5 Toinitialize aLogon Connection Pool, enter its deployment context, the
word "connection”, and the actual connection namein the text field near the
bottom of the screen. (Seeillustration above.) Then click the Initialize Pool
button.

NOTE: Refer to the appropriate Composer Enterprise Server guide for more
information.

6 Optionaly click the Refresh Console button to update the view.

Connection Pool Management and Deployed Services

The Connection Pool Management Screen displays the current state of the
connection(s) with the UTS Connect. The screen contains atable listing the Pool
Name, Description of the connection, the maximum number of connectionsin the
pool, the number of connectionsin use, the number of connections available, the
number of connections discarded. It also contains several buttons allowing you to
perform various actions related to connection pooling, which are outlined in the
table below.

Table 1-2:

Button Name Action

Reset Discarded Resets the Discarded connections which are then
reflected in the table

Reset (Pool) Resets the Available and Discarded connections
which are then reflected in the table

Refill (Pool) Refills the pool with the maximum number of
connections

Additional Buttons on UTS Connection Pool Manager Console

Refresh Shows the current status of the connection pool
Console
Initialize Pool Initializes a Logon Connection Pool by entering a

relative path to the deployed lib directory. Thiswill
not work unless the deployed jar is extracted. Click
on the SUBMIT button when finished.

108 UTS Connect User’s Guide

Connection Discard Behavior

The performance benefits of connection pooling are based on the ability of more
than one user to access aresource, or set of resources, at once. The way a
connection is established begins with the logon component picking the User ID
and Password from the table. If the connection fails, then it is discarded for this
User ID and Password and tries another until a connection is established. The
failure of oneconnection doesn't necessarily prevent asuccessful connection from
being established.

The Connect for UTS addresses the “ one bad apple” problem by discarding any
connection that can’t be established (for whatever reason: bad user 1D, timed-out
password, etc.) and reusing the others. When a connection is determined to be
unusable, the Connect for UTS will write a message to the system log that says:
“Logon connection in pool <Pool name> was discarded for User ID <User ID>.”

Screen Synchronization

Screen synchronization has special ramifications for users of pools. If asituation
arisesin which a user |eaves a connection without the screen returning to its
original state, the next user will begin a session with the screen in an unexpected
stateand an error will occur. To prevent this, thereisascreen expression which the
user can specify in the connection pooal. It isimportant that thelast actioninaUTS
Component be a Send Key action that will result in the session ending with the
correct logon screen active.

NOTE: The last action should be an empty Check Screen action so that the UTS
Terminal component waits until the launch screen arrives before giving up the
connection. (This should happen automatically, when you create the Send Key
action, but nevertheless, the last action should be the Check Screen.)

If you want to check, at runtime, for the presence of abad screen at the end of a
user session, include a Function Action at the end of your component’s action
model that executes afunction similar to the one shown below:

i f((Screen.getText(1,11,5)== "Login" ||
Screen. get Text(2,5,10) == "Data Entry") &&

(Screen. get Text FronmRect angl e(1, 1, 24, 80) . i ndexCf (" COMVAND

UNRECOGNI ZED') == -1 ||
Scr een. get Text FronRect angl e(1, 1, 24, 80) . i ndexOf (" UNSUPPOR
TED FUNCTI ON') == -1))

{

java.lang. Systemout.println("OK to
exit");

Logon Components, Connections, and Connection Pools 109

110

// OQtherwise, wite error nessages to Sys.out
el se

{
java.l ang. System out. println("Warni ng -
Rel easi ng | ogon connection at bad screen");

}

In this particular example, this function checks the screen text for either the
“Login” header or the “Data Entry” field and also makes sure it doesn't see the
words“COMMAND UNRECOGNIZED” or “UNSUPPORTED FUNCTION.”
If thisisthe case, it will write an error to thelog.

UTS Connect User’s Guide

Glossary

ANSI

American National Standards Institute.

Check Screen

An action that action signals the component that execution must not proceed until the screenisina
particular state, subject to a user-specified timeout value.

Connection Pooling

An arrangement whereby an intermediary process (whether the app server itself, or some memory-
resident background process not associated with the server) maintains aset number of preestablished,
pre-authenti cated connections, and overseesthe “ sharing out” of these connectionsamong client apps
or end users.

Dumb Terminal

A computer terminal that has no onboard CPU, memory, or storage devices, beyond the minimum
necessary to communicate with amore powerful host machine.

ECMAScript

Any JavaScript-like language that conforms to European Computer Manufacturers Association
standard No. 262.

Native Environment Pane

A paneinthe UTS Component Editor that provides an emulation of an actual UTS terminal session.

Screen Object
Represents the current UTS screen display

Send Key

An action that represents pressing a UT S-specific attention or function key.

Glossary 111

112

Set Screen Text

An action that appearsin the Action Model whenever thereis map to the screen or keys entered on the
screen.

UTS

A terminal originally developed by the Burroughs Corporation, later purchased by Unisys. Used to
interact with mainframe computers including the ClearPath 1 X, 1100 and 2200.

Terminal Emulation

A program that allows a personal computer to act like a (particular brand of) terminal, e.g.
aUTS. The computer thus appears as a terminal to the mainframe (host) computer and
accepts the same escape sequences and other attention keys for functions such as cursor
positioning and clearing the screen.

Unisys

Designers, manufacturers and marketers of computer-based information systems and
related products and services. The UTS mainframe terminal was originally devel oped by
Burroughs Corporation, which became part of Unisysin 1986. Mainframe computer
models, including the A Series, V Series, and ClearPath™ NX run UTSterminal emulation

UTS Connect User’s Guide

UTS Display Attributes

TheScreen. get Attri but e() method will return one of the values shown

bel ow, representing the current attribute state of the onscreen character at the
given location. The attributes listed below are just the most common and any
combination of what is stated bel ow could, theoretically occur. Basically,

underlined, bold, blinking and reverse charactersreturn astandard integer. Thisis

then added to the hexadecimal number indicating whether the field is secure,

protected, selected and/or vertical.

Number Attribute

0 standard (can type into - e.g., entry field)
16 (0X10) secure (can type into - e.g., passwords)
32 (0X20) protected (cannot type into)

33 (0X20)+1

protected and underlined

34 (0X20)+2

protected and bold

36 (0X20)+4

protected and blinking

40 (0X20)+8

protected and reverse

48 (0X10)+(0X20)

secure and protected

64 (0X40)

selected

80 (0X40) + (0X10)

selected and secure

96 (0X20)+(0X40)

selected and protected

98 (0X20)+(0X40)+2

selected, protected and bold

0X100

vertical

UTS Display Attributes

113

Viewing All Character Attributes at Once

Using the Scr een. get At t ri but e() method, you can easily write afunction
that captures all attributes (at all screen locations) at once. The following custom
script, for example, can be used at design time to display screen attributesin an

alert dialog.
function showAttributes(nmyScreen)
{

var attribs = new String(); // create enpty string

/] lterate over all rows and col ums:

for (var i =1; i <= nyScreen.getRows(); i++, attribs += "\n")

for (var k = 1; k <= nyScreen. getCol s(); k++)
attribs += " " + myScreen.getAttribute(i,k);

}

In your Action Model, you would include a function action with the following
ECMA Script expression to call the script.:

al ert (showAttributes(Screen));

Thefollowing illustration shows a UTS screen:

Core Tackmol oqr

[TLEridge displays differen

or mzed technical -

Imtenzityr Froduct Qe Custome T

Hommial

Lo

Fress Tl or Enter

114 UTS Connect User’s Guide

Theillustration below shows the result of applying theshowAt t ri but es()
function to the screen (theillustration had to be cropped as the right/left margin
would have gone outside the boundaries of the page):

32323232323232323232 3232323232 32
323232323232323232323232323233333333333332
32
3232320323232 32 32
323232323232 323232323232323232323232323232323532532532323232323232323232323232323232
32
32
323232323232 32
323232323232 323232323232323232323232323232323532532532323232323232323232323232323232
32
32
333333333333 333333 333333333333 33
323232323232 323232323232 32323232 32323232 333333333333 3333333333333333333333333333
32
32
323232323232 323232323232 323232 323232323232 323232323232323232323232323232323232 32
3232323232 32 32 1056 1056 1056 1056 1056 1056 1056 1056 1056 1056 32 32 323232323232 32 323232323232
32
32323232323232363636363636 3636 36 36 3232323232 323232323232323232323232323232323232
323232323232 323232323232 323232 323232323232 323232323232323232323232323232323232 32
323232323232 323232323232323232323232323232323532532532323232323232323232323232323232
32
3232320323232 32 32
4032 32 40 40 40 40 40 40 32 32 40 40 40 40 40 40 32 32 40 40 40 40 40 40 32 32 40 40 40 40 40 40 32 32 40 40 40 40 40

UTS Display Attributes 115

116 UTS Connect User’s Guide

Reserved Words

The following terms are reserved words in exteNd Composer for UTS Connect

and should not be used as labels for any user-created variables, methods, or

objects.

-USERID
+PASSWORD
+PROJECT

«Screen

-getAttribute

-getCols

+getCursorCol
-getCursorRow
«getNextM essage
-getPrompt

-getRows
-getStatusLine

«getText
-getTextFromRectangle
-hasMoreM essages
-putString
-putStringinField

+setM essageCaptureOff
+setM essageCaptureOn
«typeKeys

Reserved Words

117

118 UTS Connect User’s Guide

Index

A

Action

Check Screen 36
Action Model

examples 60, 61

teting 66, 68
Action pane context menu 36
Actions

deleting 65

SendKey 34

Set Screen Text 33, 36
Animation

starting 68

stepinto 68

toggle breakpoint 63
Animation Tools 68
applications 18
Architecture 15

connection pool 78

C

Check Screen Action 35
errorsrelatedto 73
performance 104
tips 72

Check Screen Actions 36

Component Editor Window 28

Components
executing 67
selecting aConnection 28
stepsincreating 19, 25
teting 66
tipsfor building 72

Connecting 33
and disconnecting 34

Connection Button 33

Connection Discard Behavior 109

Connection Pool
stepsfor creating 92

Connection Pool Architecture 78

Connection Pool Console, refreshing 108

Connection Pools
implementing 83
stepsincreating 92
ConnectionPools
status 108
Connection Resource 78, 92
creating 20
stepsincreating 20
Connections
logon 90
maximum 108
resetting discarded 108
constant-based 39
constant-based parameters 22
context menuitems 34
Control key down, dragging with 51
Create Check Screen Button 34
Creating a Connection Pool 92
Creating aLogon Connection 95
Creating a Logon Connection using a Pool
Connection 95
Creating aLogon Connection using a Session
Connection 101
csuld 22

D

deleting an action 65
Dragging and droppingto DOMs 56

E

ECMAScript 22, 75
Entry Wait, pools 97
errors 73
connection 108
Executing acomponent 67
expression-based parameters 22

F
Floating Keypad 30

119

G

getTextFromRectangle() 51

H

Host App Name 22
Host ConnectionID 22, 98

|
Inactivity Lifetime

pools 97

session connection 103
Initialize Pool 108

K

KEEPALIVE 86
Keep Alive 102
session connection 102
KeepAlive
pools 97
KEEPALIVE Actions
recording 95
KeepAlive Actions 83
Keyboard 30
keypad 30

L

launch screen 84
Logoff action 84
LOGOFF Actions
recording 95
Logonaction 84
LOGON Actions
recording 95
Logon Actions 85
L ogon Component
definition 83
L ogon Components
creating 93
Logon Connections 20, 78
session connections 101

120

M

Managing Pools 104

Maximizing Performance with KEEP ALIVE
Actions 88

Maximizing Performance with the Logon
Component 85

MultiBridge Connection 20

N

Native Environment Pane 28
newlines, in rectangular screen selections 51

@)

Overridethe UID/PWD 91

P

parameters, constant vs expression-based 22
Password 22
Set Screen Text automatically 35
Performance 75, 77, 104
logon connection and pools 100
Pool Infodialog 96
pools 96
checking status 108
implementing 83
initializing 108
managing 104
maximum connections 108
refilling 108
resetting 108
Pool Size 97

R

Record Button 33

Recording 33,53
adding to apreviousrecording 61
and animating 68
editing after recording 61
start/stop 34
turning off 60

rectangular onscreen selections 51 record 33

Redundant Data, dealing with 70 Send Key button 34
Refill Pool 108 Set Screen Text 33
Refresh Consolel 108 toolbar buttons 32
Reset Discarded 108
Reset Pool 108
row/column placement 57 U
Unisys mainframes 17
Userid
S Set Screen Text automatically 35
screen, T27 terminal 31 USERID/PASSWORD 98
Screen Object, definitionof 31 Userids 22
Screen Synchronization 109
Screen Wait time 22, 57, 72
Send Key Action \V}

tips 72
Send Key Button 34
Session Connections 101
Session Name 22
Set Screen Text 35
Set Screen Text Action 35, 36
errorsrelatedto 74
tips 72
Set Screen Text Button 33
shift-drag selection technique 51
Single Sign-On and connection pools 91
Start Animation 68
Static versus Dynamically Created
Documents/Elements 101
statusline, in Native Environment Pane 47
status line, marking row/column placement 57
StepInto 68

variables, Userid and Password 22

T

T27, definitionof 17
T27 Connectiontypes 78
T27 terminal screen 31
Temp XML Document 27
Terminal Keypad 30
Toggle Breakpoint 63
toolbar

connection 33

Create Check Screen Button

Actions
Create Check Screen 34

121

122

	Contents
	Welcome to exteNd Composer and UTS Connect
	Before You Begin
	About exteNd Composer Connects
	What is the UTS Connect?
	About exteNd Composer's UTS Component
	What Applications Can You Build Using the UTS Connect?

	Getting Started with the UTS Component Editor
	Steps Commonly Used to Create a UTS Component
	Creating XML Templates for Your Component
	Creating a UTS Connection Resource
	Connection Resources
	Constant and Expression Driven Connections

	Creating a UTS Component
	Creating a UTS Component
	About the UTS Component Editor Window
	About the UTS Native Environment Pane
	UTS Keyboard Support
	About the Screen Object
	What it is
	How it works

	UTS-Specific Toolbar Buttons
	Record Button
	Connection Button
	Set Screen Text Button
	Send Key Button
	Create Check Screen Button

	UTS-Specific Menu Bar Items
	UTS-Specific Context-Menu Items
	Native Environment Pane Context Menu
	Action Pane Context Menu

	Performing Basic UTS Actions
	About Actions
	About UTS-Specific Actions
	The Set Screen Text Action
	The Send Key Action
	The Check Screen Action
	Understanding the Check Screen Action

	Using Actions in Record Mode

	UTS-Specific Expression Builder Extensions
	Login
	Screen Methods

	Multi-row Screen Selections in the UTS Connect
	Selecting Continuous Data
	Selecting Rectangular Regions

	UTS Components in Action
	The Sample Transaction
	Recording a UTS Session
	Editing a Previously Recorded Action Model
	Editing or Adding to an Existing Action
	Deleting an Action
	Looping Over Multiple Rows in Search of Data

	Testing your UTS Component
	Using the Animation Tools
	Data Sets that Span Screens
	Multiple Screens

	Dealing with Redundant Data
	Tips for Building Reliable UTS Components
	Using Other Actions in the UTS Component Editor
	Handling Errors and Messages
	Check Screen Errors
	Set Screen Text Errors

	Finding a “Bad” Action
	Performance Considerations

	Logon Components, Connections, and Connection Pools
	About UTS Terminal Session Performance
	When Will I Need Logon Components?

	Connection Pool Architecture
	The Logon Connection’s Role in Pooling
	How Many Pools Do I Need?
	Pieces Required for Pooling

	How Do I Implement Pooling?
	The UTS Logon Component
	Logon, Keep Alive, and Logoff Actions
	LOGON Actions
	Maximizing Performance with the Logon Component

	Keep Alive Actions
	Maximizing Performance with Keep Alive Actions

	Logoff Actions
	Logon Component Life Cycle

	About the UTS Logon Connection
	Many-to-One Mapping of Components to Logons
	Connection Pooling with a Single Sign-On

	Creating a Connection Pool
	Overview

	Creating a Basic UTS Connection
	Creating a Logon Component
	Creating a Logon Connection using a Pool Connection
	Maximizing Performance of UTS Logon Connection
	Static versus Dynamically Created Documents/Elements

	Creating a Logon Connection using a Session Connection
	Creating a UTS Component That Uses Pooled Connections
	Maximizing Performance of UTS Terminal Components

	Managing Pools
	Using the exteNd Composer Console

	Connection Pool Management and Deployed Services
	Connection Discard Behavior
	Screen Synchronization

	Glossary
	UTS Display Attributes
	Viewing All Character Attributes at Once

	Reserved Words
	Index

