Novell
exteNd
Director

50 www.novell.com

USER MANAGEMENT GUIDE

Novell

Legal Notices

Copyright © 2003 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied, stored on
a retrieval system, or transmitted without the express written consent of the publisher. This manual, and any portion
thereof, may not be copied without the express written permission of Novell, Inc.

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose. Further,
Novell, Inc. reserves the right to revise this publication and to make changes to its content, at any time, without obligation
to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims any
express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the
right to makes changes to any and all parts of Novell software, at any time, without any obligation to notify any person or
entity of such changes.

Copyright © 2000, 2001, 2002, 2003 SilverStream Software, LLC. All rights reserved.

Title to the Software and its documentation, and patents, copyrights and all other property rights applicable thereto, shall
at all times remain solely and exclusively with SilverStream and its licensors, and you shall not take any action
inconsistent with such title. The Software is protected by copyright laws and international treaty provisions. You shall not
remove any copyright notices or other proprietary notices from the Software or its documentation, and you must reproduce
such notices on all copies or extracts of the Software or its documentation. You do not acquire any rights of ownership in
the Software.

Patent pending.

Novell, Inc.
1800 South Novell Place
Provo, UT 85606

www.novell.com

exteNd Director User Management Guide
December 2003

Online Documentation: To access the online documemntation for this and other Novell products, and to get
updates, see www.novell.com/documentation.

Novell Trademarks

ConsoleOne is a registered trademark of Novell, Inc.
eDirectory is a trademark of Novell, Inc.
GroupWise is a registered trademark of Novell, Inc.
exteNd is a trademark of Novell, Inc.

exteNd Composer is a trademark of Novell, Inc.
exteNd Director is a trademark of Novell, Inc.
iChain is a registered trademark of Novell, Inc.
jBroker is a trademark of Novell, Inc.

NetWare is a registered trademark of Novell, Inc.
Novell is a registered trademark of Novell, Inc.
Novell eGuide is a trademark of Novell, Inc.

SilverStream Trademarks
SilverStream is a registered trademark of SilverStream Software, LLC.

Third-Party Trademarks

Acrobat, Adaptive Server, Adobe, AIX, Autonomy, BEA, Cloudscape, DRE, Dreamweaver, EJB, HP-UX, IBM,
Informix, iPlanet, JASS, Java, JavaBeans, JavaMail, JavaServer Pages, JDBC, JNDI, JSP, J2EE, Linux, Macromedia,
Microsoft, MySQL, Navigator, Netscape, Netscape Certificate Server, Netscape Directory Server, Oracle, PowerPoint,
RSA, RSS, SPARC, SQL, SQL Server, Sun, Sybase, Symantec, UNIX, VeriSign, Windows, Windows NT

All third-party trademarks are the property of their respective owners.

Third-Party Software Legal Notices

The Apache Software License, Version 1.1
Copyright (c) 2000 The Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment:
"This product includes software developed by the Apache Software Foundation (http://www.apache.org/)."

Alternately, this acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments
normally appear.

4. The names "Apache" and "Apache Software Foundation" must not be used to endorse or promote products derived
from this software without prior written permission. For written permission, please contact apache@apache.org.

5. Products derived from this software may not be called "Apache", nor may "Apache" appear in their name, without prior
written permission of the Apache Software Foundation.

THIS SOFTWARE IS PROVIDED ""AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. INNO EVENT SHALL THE APACHE SOFTWARE FOUNDATION
OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Autonomy
Copyright ©1996-2000 Autonomy, Inc.

Castor
Copyright 2000-2002 (C) Intalio Inc. All Rights Reserved.

Redistribution and use of this software and associated documentation ("Software"), with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain copyright statements and notices. Redistributions must also contain a copy
of this document.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

3. The name "ExoLab" must not be used to endorse or promote products derived from this Software without prior written
permission of Intalio Inc. For written permission, please contact info@exolab.org.

4. Products derived from this Software may not be called "Castor" nor may "Castor" appear in their names without prior
written permission of Intalio Inc. Exolab, Castor and Intalio are trademarks of Intalio Inc.

5. Due credit should be given to the ExoLab Project (http://www.exolab.org/).

THIS SOFTWARE IS PROVIDED BY INTALIO AND CONTRIBUTORS "AS IS" AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL INTALIO OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Indiana University Extreme! Lab Software License
Version 1.1.1
Copyright (c) 2002 Extreme! Lab, Indiana University. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment: "This
product includes software developed by the Indiana University Extreme! Lab (http://www.extreme.indiana.edu/)."

Alternately, this acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments
normally appear.

4. The names "Indiana University" and "Indiana University Extreme! Lab" must not be used to endorse or promote
products derived from this software without prior written permission. For written permission, please contact
http://www.extreme.indiana.edu/.

5. Products derived from this software may not use "Indiana University" name nor may "Indiana University" appear in
their name, without prior written permission of the Indiana University.

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS, COPYRIGHT HOLDERS
OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

JDOM.JAR
Copyright (C) 2000-2002 Brett McLaughlin & Jason Hunter. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the disclaimer that
follows these conditions in the documentation and/or other materials provided with the distribution.

3. The name "JDOM" must not be used to endorse or promote products derived from this software without prior written
permission. For written permission, please contact license@jdom.org.

4. Products derived from this software may not be called "JDOM", nor may "JDOM" appear in their name, without prior
written permission from the JDOM Project Management (pm@jdom.org).

In addition, we request (but do not require) that you include in the end-user documentation provided with the
redistribution and/or in the software itself an acknowledgement equivalent to the following: "This product includes
software developed by the JDOM Project (http://www.jdom.org/)."

Alternatively, the acknowledgment may be graphical using the logos available at http://www.jdom.org/images/logos.

THIS SOFTWARE IS PROVIDED ""AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. INNO EVENT SHALL THE JDOM AUTHORS OR THE PROJECT
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Phaos

This Software is derived in part from the SSLavaTM Toolkit, which is Copyright ©1996-1998 by Phaos Technology
Corporation. All Rights Reserved. Customer is prohibited from accessing the functionality of the Phaos software.

Sun
Sun Microsystems, Inc.

Sun, Sun Microsystems, the Sun Logo Sun, the Sun logo, Sun Microsystems, JavaBeans, Enterprise JavaBeans,
JavaServer Pages, Java Naming and Directory Interface, JDK, JDBC, Java, HotJava, HotJava Views, Visual Java, Solaris,
NEO, Joe, Netra, NFS, ONC, ONC+, OpenWindows, PC-NFS, SNM, SunNet Manager, Solaris sunburst design, Solstice,
SunCore, SolarNet, SunWeb, Sun Workstation, The Network Is The Computer, ToolTalk, Ultra, Ultracomputing,
Ultraserver, Where The Network Is Going, SunWorkShop, XView, Java WorkShop, the Java Coffee Cup logo, Visual
Java, and NetBeans are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other
countries.

W3C
W3C® SOFTWARE NOTICE AND LICENSE

This work (and included software, documentation such as READMEs, or other related items) is being provided by the
copyright holders under the following license. By obtaining, using and/or copying this work, you (the licensee) agree that
you have read, understood, and will comply with the following terms and conditions.

Permission to copy, modify, and distribute this software and its documentation, with or without modification, for any
purpose and without fee or royalty is hereby granted, provided that you include the following on ALL copies of the
software and documentation or portions thereof, including modifications:

1. The full text of this NOTICE in a location viewable to users of the redistributed or derivative work.

2. Any pre-existing intellectual property disclaimers, notices, or terms and conditions. If none exist, the W3C Software
Short Notice should be included (hypertext is preferred, text is permitted) within the body of any redistributed or
derivative code.

3. Notice of any changes or modifications to the files, including the date changes were made. (We recommend you provide
URISs to the location from which the code is derived.)

THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO,
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE
OF THE SOFTWARE OR DOCUMENTATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE SOFTWARE OR DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to the software
without specific, written prior permission. Title to copyright in this software and any associated documentation will at all
times remain with copyright holders.

Contents

AbOoUt This GUIdE.ottt i it ettt e e et et e e e aneannaananennenns 1
PART I DIRECTORY MANAGEMENT. i i i ittt ettt enananns 13
1 AboutPluggable Realmsttt iaeinaeaaea e anennenn 15
Aboutrealms e 16
Types of realms 16

Realm acCesso e 17

J2EE application serverrealms. e 17
exteNd Application Serverrealm 17

exteNd application server compatibility realm. 18

BEA WebLogicrealm e 19

IBM WebSphere realm 20

LDAP server realmst e 21
Base LDAP realm 21

LDAP application serverrealms 21
PersistManager realm 22
Writing a custom realm 22
Configuring realms 23
Configuring realms automatically 23
Configuring realms manually e 23
Configuring a different authentication provider. 23
Configuring the primary realm e 25
Configuring a customrealm e 26

2 Managing Users and GroUPSvuvuit it tnn et eae e te s tastaeeneenaenaeannenns 29
About the Directory subsystem e 29
Directory APl . . o 29
Authenticating USers 30
About the Login portlet 31
Authenticating a user 31

Adding USErs and groUPSttt 32
AdAINg @ USEro 32

AddiNg @ groUpo 33

AddiNg @ USErto agroupottt e 33
Accessing users, groups, and containers 34
User and group QUETIESottt ittt e e e 34
Dynamic groups SUPPOIt.ot e 35

Getting container principalsinatreerealm e 35

3 Using the Directory Section of the DACttt in e inninaeinnnnns 37
About the Directory section of the DAC. e 37

Search facility 37

(700 = 41
PARTII SECURITY MANAGEMENT it iiae e ianeens 43
4 Using ACL-Based Authorizationoiiiiiiiririn e nrinraennnnennns 45

About the Security subsystem. e 45

ACLs in exteNd Director 46

AcCessiNg PrinCipals 47
How ACL processing WOTKSottt e e e e e e 48
ACL subsystem administrators e 49
Restricting access to administrators usingthe API. 51
Accessing ACLS for users and groupsot vttt 52
Getting Security APl delegates. 52
Getting an element type and identifier 53
Listing the permissions associated withanelement. 53
Listing the principals with permission foranelement............ 53
Listing the elements with permissions fora principal 54
Getting the contentof an ACL 54
Assigning a principal to an ACL e 54
Accessing ACLs for containers 55
Assigning a container principal toan ACL i 55
Customizing ACL-based authorization i 56
Customizing the Security service e 56
Adding ACL-based security to a new subsystem, 57
CUStOM PEIMISSIONS o ot e e 58

B Using Security ROIES.ottt 59

About J2EE role-based authorization 59

About exteNd Director security roles. 60

Creatingasecurity role 61

Mapping a security role to a workflow process 63

Mapping a security role to a portal page layout. 63

Accessing security roles programmatically 63
6 Using the Security Section of the DAC ittt ittt i i ean s 65

Modifying administrative access 66
PART Il USERPROFILINGt i e et e e naaanannns 69
7 Managing User Profiles.ottt i i i e et i et e e eaans 71

About user profiles 71

How profiles are used. e 71
Profiles and realm configurations 72
Checking the realm configuration. 72
Checking forawritable realm e 73

Aboutthe New User portlet. e 73

Accessing profiles using the APl 74
8 exteNd Director User Management Guide

Creatinganew profile. e 74

Looking up user profiles 75
Gettinga userprofile 75

Rules and user profiling. e 76
About conditions and actions 76

8 AccessingUser Attributesottt i i e e i e e 77
About attributes e 77
Built-in attributes. 77
Attributes and non-LDAP realms 78
Attributes and LDAP realms 78
Attribute properties e 79
Display properties. o 79

Data tyPES . o 79
Accessing attributes using the API e 79
Getting a list of attributes (Nnon-LDAP) 80

Getting a list of attributes (LDAP) 81
Creating an attribute (Nnon-LDAP) 82

Setting an attribute value 82

9 Using the Profiles Section of the DACttt iieiaennnnnnn 85
About the Profiles section of the DAC 85
User profiles e 86

A bUteS . . 88
PARTIV REFERENCE. ittt it i naaee e innnnnnnens 93
10 Framework Tag Library.iiiiiiiii it i i i it i e et eaenns 95
AdAUSEITOGIOUD. . . ottt it et e e e e e e e e e e 96
CrEAtEGIOUD . o ottt et e 96
CreateUSer. . . 97
getGroupList e 98
GEtRESOUICE 100
getUserlD ... 101
getUserInfo e 101
getUserList 103
getUserPreference 104

OGN . e e 105

0T T) 1 107
FEMOVEGIOUD . .ottt ettt e et e e et e e e e e 107
removeUserFromGIoUDt e e 108
SetUSErPassWoOrd 109
USEIINGIOUD . .ttt it et e e e e 110
userLoggedin e 111

Contents

10 exteNd Director User Management Guide

About This Guide

Purpose

This book describes how to use the three Novell® exteNd Director™ subsystems
related to user management:

Subsystem Used for

Directory Realm configuration for user authentication
Security ACL-based user authorization for portal and subsystem elements
User User profiling and provisioning

Audience

This book is primarily for Java developers.

The chapters about using the Director Administration Console (DAC) are for system
administrators:

+ Chapter 3, “Using the Directory Section of the DAC”
+ Chapter 6, “Using the Security Section of the DAC”
+ Chapter 9, “Using the Profiles Section of the DAC”

11

12 exteNd Director User Management Guide

Directory Management

Provides background information, programming concepts, and code examples
for the Directory subsystem

* Chapter 1, “About Pluggable Realms”
* Chapter 2, “Managing Users and Groups”
* Chapter 3, “Using the Directory Section of the DAC”

About Pluggable Realms

This chapter summarizes the pluggable realm implementations of exteNd Director and
provides information about configuring realms. It has these sections:

*

*

*

*

*

*

About realms

J2EE application server realms
LDAP server realms
PersistManager realm

Writing a custom realm

Configuring realms

NOTE: L Forinformation about configuring realms, see the section on directory
configuration in Developing exteNd Director Applications.

15

cdConfigServicesNew.html
cdConfigServicesNew.html

About realms

A realm is an exteNd Director application’s interface to a persistent repository of users,
groups, and passwords. In an exteNd Director application, a realm is a class that
implements the interface EbiRealm or EbiWritableRealm.

Types of realms

These are the types of pluggable realms:

Realm type Description

LDAP realm Provides an interface to the Novell eDirectory LDAP server.
Typically this is a writable realm.

Support for eDirectory actually consists of several realms: a
base LDAP realm plus LDAP realms specific to the exteNd
Application Server, BEA WebLogic, and IBM WebSphere.

NOTE: You cannot use exteNd Director to add or remove
containers or custom user attributes in an LDAP realm. Those
operations require you to use the LDAP server’s own
administration interface.

J2EE application Provides a uniform, platform-independent interface to vendor-
server realm specific authentication and user/group management APIs. Can
be a readable or writable realm.

The actual authentication mechanism can be internal or
external to the application server. From a programming
standpoint, this is entirely transparent to your application.

For example, if you are using the Novell exteNd Application
Server, you can change the authentication provider from
Windows NT to NIS+ by making only configuration changes;
no code changes are needed.

PersistManager Uses the exteNd Director database as a user/group repository
realm and does its own authentication using a user/password pairing
accessed from the database. Typically it is a a writable realm.

Compatibility Provides an interface to an internal authentication APl used in

realm previous versions of exteNd Director. Users and groups are
stored in an exteNd Director application database. Must be a
writable realm. Not recommended for new applications.

16 exteNd Director User Management Guide

Realm access

Realms can be either readable (read-only) or writable (read-write) as described below.
For details about each realm, see the section on directory configuration in Developing
exteNd Director Applications.

Realm access usage

Description

One readable
(read-only) realm

In a readable realm, the Directory subsystem cannot add
new users or groups or modify existing ones.

A readable realm is useful when you want full control over
the users and groups that can access an application. For
example, intranets often use a central administration
application to manage all users and groups.

One writable
(read-write) realm

In a writable realm, administrators can use the Directory
subsystem to add, delete, and modify users and groups.

A writable realm is useful when you want to allow
anonymous users to add themselves to the realm. For
example, Internet sites often allow users to register or create
accounts for themselves.

One readable
realm and one
writable realm

An application with two realms can use each realm for a
different purpose.

For example, an corporate portal application might use a
readable realm for employees and a writable realm for
customers.

J2EE application server realms

This section describes the pluggable realm implementations for supported J2EE
application servers (non-LDAP).

exteNd Application Server realm

This realm uses the exteNd Application Server Directory APIs and can be configured
to use LDAP, Windows NT, SilverUsers, and NIS+ security providers. The LDAP and
Windows NT security providers are read-only.

NOTE: [f you are using eDirectory on the exteNd Application Server, it is
recommended that you use the exteNd LDAP realm.

About Pluggable Realms 17

cdConfigServicesNew.html

The EbiSilverServerRealm interface provides access methods to the exteNd
Application Server realm:

Directory
subsystem

EbiSilverServerRealm

SilverServer API

—>| External realm

Readable
-NT login()
-LDAP getUsers()
-NIS+ getGroups()
-SilverUsers

. addUser()

Writable

-SilverUsers addGroup()

S

Interface:

EbiSilverServerRealm

Implementation:

EboSilverServerRealm

Authentication provider:

SilverSecurity (default)
NTSecurity

LDAPSecurity
NISPLUSSecurity

exteNd application server compatibility realm

This realm exists for compatibility with ePortal 2.x directory services or any
application that requires nested groups. It uses a set of database tables for user and
group bindings. It also uses the exteNd Application Server realm’s SilverUsers
directory as its user repository:

Interface:

EbiUserManagerRealm

Implementation:

EboUserManagerRealm

Authentication provider:

SilverUsers

18 exteNd Director User Management Guide

BEA WebLogic realm

This realm is for BEA WebLogic 6.x. It calls the underlying server API to provide
readable access to external realms (LDAP and Windows NT) and readable/writable
access to the default realm stored in the file system on the application server.

The exteNd Director EbiWebLogicRealm interface provides access methods to the
WebLogic server realm API:

EbiWebLogicRealm WebLogic realm API
login()
i getUsers() l:'>‘ External realm
Directory — Readable and getGroups()
subsystem writable
addUser() -
File realm
addGroup() —> (default
Custom realm
(implemented by
customer)
Interface: EbiWeblogicRealm
Implementation: EboWeblogicRealm

Authentication provider: WebLogic internal store

About Pluggable Realms 19

IBM WebSphere realm

20

This realm is for IBM WebSphere 4.x. exteNd Director accesses data through a custom
registry based on a relational database to provide directory services. (IBM WebSphere
does not provide a realm-access API other than authentication.) All method calls go
through the exteNd Director database.

For authentication, the exteNd Director EbiWebSphereRealm interface calls the
WebSphere authentication method, which in turn calls through to the database:

WebSphere AP|
login
9in() exteNd
Custom registry Director
DB
EbiWebSphereRealm
) tUser()
Directory > ge
getGroup()
subsystem addUser()
Interface: EbiWebsphereRealm
Implementation: EboWebsphereRealm

Authentication provider: AUTHUSERS (exteNd Director internal store)

exteNd Director User Management Guide

LDAP server realms
For writable LDAP realms, exteNd Director provides:
+ A generic base class that implements the Java Naming Service Interface (JNDI)

(JNDI is the standard way in Java to access an LDAP realm hierarchy)

+ A derived class for each supported J2EE application server to authenticate users
using a Novell eDirectory LDAP realm.Base LDAP realm

Base LDAP realm

The JNDI realm base class provides an administrator connection to the LDAP server
for retrieving groups and users. This connection is internal, and thus unauthorized
external access to data is prevented. A user’s JNDI connection is stored as part of the
user session when the user is authenticated through the realm:

EboJndiLdapRealm
(base class)
Admin & user
authenticate() connections
getUsers() ::D LDAP realm
getGroups()

Directory .)
subsystem IZD‘ authenticate() ‘I:b{ login() |

App server configuration: App Server API
EboSilverServerJndiRealm
EboWeblLogicJndiRealm
EboWebSherelJindiRealm

LDAP application server realms

The base class supports generic LDAP authentication only and does not provide
authentication through an application server. This latter is provided by a separate class
for each application server. The application server realm overrides the authenticate
method in the JNDI realm super class and uses the Application Server API for
authentication

About Pluggable Realms 21

PersistManager realm

This is a generic realm that can be used to access users and groups directly from the
exteNd Director database using the Directory subsystem API. It does not rely on any
native application server APIs:

EbiPersistMgrRealm

exteNd

Directory authUserPassword()

subsystem 4 g%?(t;soifs(g) Dirg;tar
Interface: EbiPersistMgrRealm
Implementation: EboPersistMgrRealm

Authentication provider: AUTHUSERS (exteNd Director internal store)

Writing a custom realm

You can implement your own realm to directly access a directory server—or you can
rely on an existing database structure. You can create a custom security realm by
implementing these interfaces in the com.sssw.fw.directory.api package:

Directory class Description

EbiRealm Interface that custom realms need to implement if they want to provide read-only
directory services.

The directory manager loads instances of realms that implement this interface as
well as the subinterface EbiWriteableRealm.

EbiWriteableRealm Interface that custom realms need to implement if they want to provide write access
in the directory service.

The directory manager loads instances of realms that implement this interface as
well as the superinterface EbiRealm.

EbiRealmUser The wrapper principal used by custom realms. The original principal implementation
can be used internally in order to leverage existing principal functionality and APIs.

EbiRealmGroup The wrapper group principal used by custom realms. The original principal
implementation can be used internally in order to leverage existing principal
functionality and APlIs.

[l For more information, see “Configuring a custom realm” on page 26.

22 exteNd Director User Management Guide

new ../javadoc/com/sssw/fw/directory/api/EbiRealm.html
new ../javadoc/com/sssw/fw/directory/api/EbiWriteableRealm.html
new ../javadoc/com/sssw/fw/directory/api/EbiRealmUser.html
new ../javadoc/com/sssw/fw/directory/api/EbiRealmGroup.html

Configuring realms

You can configure the realm used in an exteNd Director application automatically or
manually.

Configuring realms automatically

You can configure the realm used in an exteNd Director application in the exteNd
Director development environment using either of the following tools, which perform
exactly the same function:

+ exteNd Director Project Wizard—for new projects

[For a full description of the wizard, see the section on creating a project in
Developing exteNd Director Applications.

+ exteNd Director Configuration Tool—for existing projects

LX) For a full description of the tool, see the section on reconfiguring an
exteNd Director application in Developing exteNd Director Applications.

Configuring realms manually

Two descriptor files contain editable key/value pairs representing your application’s
realm and Directory subsystem configuration properties. The files are located in your
project tree in the DirectoryService-conf folder.

Descriptor Contents For information, see
config.xml Realm configuration The section on changing configurations in
properties Developing exteNd Director Applications

services.xml Directory subsystem
service configuration

Configuring a different authentication provider

This section applies to exteNd Application Server realms only.

The default realm for the exteNd Application Server is SilverUsers. You can
reconfigure your realm to be any of the authentication providers supported by the
exteNd Application Server, including Windows NT and NIS+.

About Pluggable Realms 23

cdConfigServicesNew.html#CreatinganexteNdDirectorproject
cdConfigServicesEdit.html
cdConfigServicesEdit.html
cdConfigServicesEdit.html#Changingtheconfiguration

> To configure a different authentication provider:

1 In exteNd Director, open config.xml for the Directory subsystem:

contig.xml |

Ci'DirectorProjects\PhaseOnelibraryiDirectory Service'Directary Service-confizonfig xml (using: file:iC:/Program FilesiSilverStreamiextencior... %)

~ Contig Entries

DirectoryServicetealmsbwritsable com.sssw fu directory api EbiSilverServerRealm

com s T directory. api ERiSilver ServerResim SilverStream

DirectoryServiceidh-load-on-startup true

DirectoryServicetest-db-on-startup WUTHGROUPS

EbalirectoryLog. Logginglevel 3

EboDirectoryLog. LogFieldSeparstor |

EbaDirectorylog LoggingProvicer com.sssw . fu log EboStandardOutLoggingProvider

com sssw. fw directory LOGIN_NBW_USERS_EMABLED true

com szsw fuy directory persist.api EbiguthUserinfo Typekey icom.ssav fuv directory persist api EbisuthUserinfo

com sssw T directory persist api EbisuthUserinfo MetaTypekey com.sssw fw directory persist jdbc api EbiauthUserinfobeta
com sssw. fw directory persist.api EbiguthUserinfo PersistTypekey com.sssyw.fw . persist jdbc.api EbiJdbcPersistenceProvider
com s fu dirsctory persist.api ERiFwGroupinfo Typekey com.sssw . fuv directory persist apl EbiPwGroupinfo

com sssw T directory persist.api ERiFwGroupinfo MetaTypekey com.sssw . faw directory persist jdbc.api ERiFwGrouginfoleta
com sz, fu directory. persist.api EbiFwGroupinfo PersistTypekey com.sszw.fw . persist jobc.api EbiddbcPersistenceProvider
com szsw fu directory persist api EbiFwBindinginto. Typekey com.sssw fu directory persist api EbiPwBindinginfo

com sssw T directory. persist.api EbiFwBindinginto MetaTypekey com.sssyw . fw directory persist jdbc.api EbiFwBindinginfohieta
com szsw. fu directory. persist.api EbiFwBindinginfo Persist Typekey com.sszw.fw . persist jdbc.api EbiddbcPersistenceProvider
com sssw fuy directory api EbiPer sisthgrRealm PersistManacer

DirectoryServicetealmsiper sisthgrfanonymous ENONYMOUS

9 add | X Delete

O Graphical View | =

2 C(Click Add.

3 For each key/value pair, double-click the Key field and the Value field and enter
these values:

For Windows NT:

+ Key: DirectoryService/realms/readable/params/PROVIDER

+ Value: NTSecurity

+ Key: DirectoryService/realms/readable/params/AUTHORITY
o Value: Your NT realm domain

For NIS+:

+ Key: DirectoryService/realms/readable/params/PROVIDER

+ Value: NISPLUSSecurity

+ Key: DirectoryService/realms/readable/params/AUTHORITY
+ Value: Your NIS+ server

NOTE: If you want to reconfigure your primary realm, see “Configuring the
primary realm” on page 25.

24 exteNd Director User Management Guide

locator cdLocator.html#Directorysubsystemconfigurationfile

4 Redeploy your project.

L For deployment information, see the chapter on deploying an exteNd
Director project in Developing exteNd Director Applications.

Configuring the primary realm

By default, the readable realm is the primary realm. For API method calls, the
Directory subsystem checks the primary realm first.

> To specify your writable realm as the primary realm:
1 In exteNd Director, open config.xml for the Directory subsystem.
2 Click Add.
3 Enter this key/value pair:
+ Key: DirectoryService/realms/primary
+ Value: DirectoryService/realms/writable

4 Open your project’s Directory service descriptor:
...\library\DirectoryService\DirectoryService-conf\services.xml

services xml |

FiDirector Projectsi\TypiCorpilibraryDirectory Service\Directory Service-confizervice...)

Service Entries

co GEr
com.sssw. fu directory api EbillzerManagerRealm
com.sssw. fuy directory api EbiSilverServerRealm
com.sssw . fu directory api EbiWehblogicRealm

com.sssw . fu directory api EbiehsphereRealm ;I
Interface: Icom zzgw fuy directory api EbiDirectoryManager
Implemerntstion Class: Icom.sssw.fw.diredory.core.EboDiredoryManager

Maximum Instances: |1 - l
Startup: Imanual - l
Mamespacing: Ifalse - l

Description: riredory Service

e add | XK Delete

| = Graphical View | = ML Source Views | &5 XML Tree View |

About Pluggable Realms 25

cdDeploy.html
cdDeploy.html
locator cdLocator.html#Directorysubsystemconfigurationfile

5 Click Add.
6 Enter the values as shown:

Form information Value

Interface com.sssw.fw.directory.api.EbiSilverServerRealm

Implementation Class com.sssw.fw.server.silverserver.realm.
EboSilverServerRealm

Maximum Instances 0

IMPORTANT: You must set Maximum Instances to
0 so that the readable realm and writable realm are
separate instances of the EboSilverServerRealm
implementation.

Startup manual

Description Any string

7 Redeploy your project.

Al For more information, see the section on deploying an exteNd Director
project in Developing exteNd Director Applications.

Configuring a custom realm

To write a custom pluggable realm, you need to implement the interface
com.sssw.fw.directory.EbiRealm (for a readable realm) or EbiWriteableRealm (for a
writable realm).

[l For more information, see “Writing a custom realm” on page 22.

> To configure a custom realm:
1 InexteNd Director, open services.xml for the Directory subsystem.
2 Click Add.

3 Enter the appropriate values:

Form information Description

Interface A key for the interface or the fully qualified name.
For example: com.acme.MyCustomRealmIinterface.

Implementation Class The fully qualified implementation class. For
example: com.acme.MyCustomRealmimpl.

26 exteNd Director User Management Guide

cdDeploy.html
cdDeploy.html
locator cdLocator.html#Directorysubsystemservicesfile

Form information Description

Maximum Instances Set this value to 1 if you are planning to use the class
as both readable and writable realm or if you are
using only one instance of the realm.

Otherwise, set it to 0 (for multiple instances).

Startup If you want the class instantiated on server startup,
select automatic. Otherwise, select manual.

Description Any string.

In exteNd Director, open services.xml for the Directory subsystem.

If your realm is readable-only, enter a key/value pair that matches the value you
entered in services.xml:

+ Key: DirectoryService/realms/readable

Value: Your readable realm interface. For example:
com.acme.MyCustomRealmInterface

If the custom realm is readable/writable, add the same value with this key:
+ Key: DirectoryService/realms/writable

Value: Your readable/writable realm interface. For example:
com.acme.MyCustomRealmInterface

Redeploy your project.

I For more information, see the section on deploying an exteNd Director
project in Developing exteNd Director Applications.

About Pluggable Realms 27

cdDeploy.html
cdDeploy.html
locator cdLocator.html#Directorysubsystemservicesfile

28 exteNd Director User Management Guide

Managing Users and Groups

This chapter describes how to manage realm users, groups, and LDAP containers. It
has these sections:

+ About the Directory subsystem

+ Authenticating users

+ Adding users and groups

+ Accessing users, groups, and containers

About the Directory subsystem

Directory API

The Directory subsystem is used to manage readable and writable realms that you have
configured using the exteNd Director Project Wizard. To facilitate authorization and
other user-based operations within a realm, the Directory subsystem supports the
concepts of users and groups. In the case of an LDAP realm, the Directory subsystem
also supports the concept of containers and subcontainers.

The Directory API provides complete programmatic access to users, groups, and
containers. Users, groups, and containers are associated with java.security.Principal. A
principal is used to authorize access to application resources.

L For more information, see Chapter 4, “Using ACL-Based Authorization”.

29

These are the key Directory subsystem classes:

Directory class

Package Contents

EbiDirectoryDelegate com.sssw.fw.directory.api Methods for adding users and groups and

accessing user and group principals

EbiRealmContainerDelegate com.sssw.fw.directory.api Methods for accessing realm container
principals

EbiRealmGroup com.sssw.fw.directory.api Methods for adding and accessing group
members

EbiDirectoryUsersQuery com.sssw.fw.directory.api Methods for getting filtered lists of users

EbiDirectoryGroupsQuery com.sssw.fw.directory.api Methods for getting filtered lists of groups

EboDirectoryHelper

com.sssw.fw.directory.client Directory helper methods for accessing
users and security principals

EboFactory

com.sssw.fw.directory.client ~ Methods for getting delegates and realm
provider objects

Authenticating users

Authentication is performed by obtaining a user name and password and checking
them against a list of registered users in a directory realm. Knowledge of a registered
user ID and the corresponding password is assumed to guarantee that a user is
authentic.

Each user registers initially (or is registered by an administrator), using an assigned or
self-declared user ID and password. On each subsequent use the user must use the
previously declared user ID and password.

When a user of an exteNd Director application successfully authenticates, exteNd
Director obtains the list of group and LDAP container memberships for that user and
keeps the list available for the duration of the user’s session. The list is used for the
purpose of authorization when the user attempts to access a protected resource.

30 exteNd Director User Management Guide

new ../javadoc/com/sssw/fw/directory/api/EbiRealmGroup.html
new ../javadoc/com/sssw/fw/directory/api/EbiRealmContainerDelegate.html
new ../javadoc/com/sssw/fw/directory/api/EbiDirectoryUsersQuery.html
new ../javadoc/com/sssw/fw/directory/api/EbiDirectoryGroupsQuery.html
new ../javadoc/com/sssw/fw/directory/client/EboDirectoryHelper.html
new ../javadoc/com/sssw/fw/directory/client/EboFactory.html
new ../javadoc/com/sssw/fw/directory/api/EbiDirectoryDelegate.html

About the Login portlet

The Portal subsystem provides a core portlet (Portal Login) for the purpose of user
authentication. Custom Web applications generated by the Project Wizard use this
portlet by default

Allows registered users to authenticate. Requires users to
provide a user ID and password in order to access
protected resources.

Novells exteNd™
Director

s login

Usermame: Password:
| I |

5 Mew Lser?

N Glogn)

In your Portal application, you can:

+ Customize PortalLogin in your project to meet your own requirements
+ Use the PortalLogin portlet as a template for your own authentication portlet
+ Write your own authentication portlet using the same basic algorithms

The sources for this portlet are located in your exteNd installation directory at:
Director/templates/TemplateResources/portal-core-resource.

Authenticating a user

This code shows how to authenticate a user:

// Get a directory delegate.

EbiDirectoryDelegate dirService =
com.sssw.fw.directory.client.EboFactory.getDirectoryDelegate () ;
// Initialize principal object.

java.security.Principal prin = null;

try {
// Attempt to authenticate the user ID and password.

Managing Users and Groups 31

prin = dirService.authUserPassword (context, uid, pwd) ;
} catch (Exception ex) {}

Adding users and groups

Adding a user

This section describes how to use the Directory API to add users and groups to a
configured realm. Adding users and groups automatically adds the associated principal
object for assigning security ACLs.

Adding containers You cannot add LDAP containers from the Directory API. Use
your native LDAP realm tools for this purpose. However, you can access existing
containers; see “Accessing users, groups, and containers” on page 34.

Adding users and groups using the DAC You can also use the Director
Administration Console (DAC) to add new users and groups. For more information,
see Chapter 3, “Using the Directory Section of the DAC”.

Adding users using the New User portlet The Portal subsystem provides a core
portlet called New User that allows anonymous users to register themselves. Custom
Web applications generated by the Project Wizard use this portlet by default, and the
DAC and CMS Administration Console both use customized versions of the New User
portlet.

Ll For more information, see “About the New User portlet” on page 73.

To add a user, use the addUser() method on the EbiDirectoryDelegate object. You can
also use methods on EboDirectoryHelper to get information about the user, as shown
in the example that follows.

Example: checking the self-registration key This code determines whether or
not users are allowed to self-register:

m_isLoginNewUsersEnabled = EboDirectoryHelper.isLoginNewUsersEnabled () ;

<property>

The property is set in the Directory subsystem config.xml file:

<key>com.sssw.fw.directory.LOGIN NEW USERS ENABLED</key>
<values>true</value>

</propertys>

32 exteNd Director User Management Guide

Example: adding the user to the realm This code shows how to register a new

user:

// Get the context. Use this method or one of the others
// available on the factory object.
EbiContext.context = com.sssw.fw.factory.getDirectoryDelegate ()
// Get directory delegate.
EbiDirectoryDelegate delegate =
com.sssw.fw.directory.client.EboFactory.getDirectoryDelegate () ;
// Add the user.

delegate.addUser (context, user, pwd) ;
1

Adding LDAP users For a writable LDAP realm you can specify the fully
qualified name (Distinguished Name) or the common name. The API relies on the
LDAP config parameters specified in the Project Wizard.

Al For more information, see LDAP realm configuration in Developing exteNd
Director Applications.

NOTE: ltis best to use the fully qualified name whenever possible. This avoids
potential conflicts with users having identical IDs in separate containers.

Adding a group

To add a group to the writable realm, use the addGroup() method on the directory
delegate:

EbiDirectoryDelegate delegate =
com.sssw.fw.directory.client.EboFactory.getDirectoryDelegate () ;
// Add the user.

delegate.addGroup (context, groupName) ;
}

Adding a user to a group

To add a user to a group, use the addMember() method on a Group object:

try {
EbiDirectoryDelegate delegate =

com.sssw.fw.directory.client.EboFactory.getDirectoryDelegate () ;
Group group = delegate.getGroup() ;

Principal user = delegate.getUser (context, username) ;
group .addMember (user) ;

return true;

1
catch (Exception e) { }
return false;

Managing Users and Groups

33

cdConfigServicesNew.html#LDAPrealmconfiguration

Accessing users, groups, and containers

The directory delegate provides several methods for retrieving users and groups. See
the getUsers() and get Groups() methods in EbiDirectoryDelegate. The realm
container delegate has methods for accessing containers in tree realms like LDAP. See
EbiRealmContainerDelegate.

Most of the methods described in this section return principals associated with the user,
group, or container. This allows you to set security ACLs using the Security API.

LY For more information, see Chapter 4, “Using ACL-Based Authorization”.

User and group queries

The Directory API supports user and group queries for supported realm configurations.
This feature allows you to include query strings to get filtered lists of users and groups.
Using queries provides performance benefits, especially with large directories. The

Directory API includes two classes to support queries:

+ EbiDirectoryUsersQuery
+ EbiDirectoryGroupsQuery

Some usage examples follow:

Example: user query

// Get a directory delegate.
EbiDirectoryDelegate delegate =
com.sssw.fw.directory.client.EboFactory.getDirectoryDelegate () ;

// Get the query object.
EbiDirectoryUsersQuery query =EboFactory.getDirectoryUsersQuery() ;

// Specify a query string.
query.whereUserIDStartsWith (search str);

if (!EboStringMisc.isEmpty (myRealm))query.whereRealmName (myRealm) ;
if (!EboStringMisc.isEmpty (myGroup))query.whereGroupID (myGroup) ;

// Get collection of EbiRealmUsers.
Collection users =delegate.getUsers (context, query);
// EbiRealmUser objects are returned.

Example: group query

// Get a directory delegate.
EbiDirectoryDelegate delegate =
com.sssw.fw.directory.client.EboFactory.getDirectoryDelegate () ;

// Specify query strings.

EbiDirectoryGroupsQuery query = getDirectoryGroupsQuery () ;
query.whereGroupIDStartsWith (search str);

34 exteNd Director User Management Guide

new ../javadoc/com/sssw/fw/directory/api/EbiDirectoryDelegate.html
new ../javadoc/com/sssw/fw/directory/api/EbiRealmContainerDelegate.html
new ../javadoc/com/sssw/fw/directory/api/EbiDirectoryUsersQuery.html
new ../javadoc/com/sssw/fw/directory/api/EbiDirectoryGroupsQuery.html

// To retrieve children of "root" groups only.
query.whereParentGroupID (EbiDirectoryConstants.DIRECTORY_ ROOT_ GROUP) ;
if (!EboStringMisc.isEmpty (myRealm))query.whereRealmName (myRealm) ;

// Get a collection of EbiRealmGroups.
Collection groups = delegate.getGroups (context, query);
// EbiRealmGroup objects are returned.

Dynamic groups support

The Directory subsystem supports accessing existing dynamic groups in eDirectory
realms. Dynamic groups are an LDAP realm feature that allows groups to be defined
dynamically by a query.

NOTE: exteNd Director does not support the creation or modification of dynamic
groups. Use your LDAP client tool for this purpose.

You need to configure your exteNd Director project to access dynamic groups.For
more information, see the section on LDAP realm configuration in Developing exteNd
Director Applications.

To access a dynamic group, use one of the getGroup() methods on
EbiDirectoryDelegate. The delegate also has this method for determining dynamic
group realm status:

public boolean isDynamicGroupSupported(String realm)
D For more information about dynamic groups in eDirectory, go to:

http://developer.novell.com/research/appnotes/2002/april/05/a0204054 .htm

Getting container principals in a tree realm

You can use container delegate methods to access container principals in an LDAP or
similar tree-type realm.

NOTE: Setting ACLs on a container principal allows you to apply security inheritance
to users in the container hierarchy. For more information, see “Accessing ACLs for
containers” on page 55.

This example shows how to get a root container and its descendants:

// Intialize Java container object.

Collection availContainers = null;

// Get container delegate.

EbiRealmContainerDelegate conDelegate =
com.sssw.fw.directory.client.EboFactory.getRealmContainerDelegate () ;
// Get the root (top) container.

EbiRealmContainer root = conDelegate.getRootContainer (context) ;

// Get Collection of EbiRealmPrincipals.

Managing Users and Groups 35

cdConfigServicesNew.html#LDAPrealmconfiguration
http://developer.novell.com/research/appnotes/2002/april/05/a0204054.htm

EbiRealmContainer's and/or EbiRealmUser's)

if (root != null) {
availContainers = conDelegate.getDescendants (context, root, true, false);
if (availContainers != null) {

availContainers.add (root) ;

}

else {
availContainers = new ArrayList () ;
availContainers.add (root) ;

return availContainers;

36 exteNd Director User Management Guide

Using the Directory Section of the DAC

This chapter describes how to manage the Directory subsystem using the Director
Administration Console (DAC). It contains the following sections:

+ About the Directory section of the DAC

o Users

+ Groups

Ll For information about how to access the DAC, see the section on accessing the
DAC in Developing exteNd Director Applications.

About the Directory section of the DAC

Search facility

The Directory section of the DAC allows you to view information about the security
realm of a deployed exteNd Director application. In the case of a writable realm, you
can also change the information.

The Directory section has the following pages:

o Users
+ Groups

The Directory section provides a search facility for querying users and groups. This is
helpful when dealing with large directory structures. A Search dialog appears at
appropriate places in the User and Group pages.

37

cdAppAdmin.html#AccessingtheDAC
cdAppAdmin.html#AccessingtheDAC

> To search for a user or group:

+ Enter one or more characters that start the user or group name, then click Go.

For example:

Users Groups
Realm MName:
Iextel\ld Server vl
Search for User
starting with:

E:| G0

M Show &l
Users

38 exteNd Director User Management Guide

Users

The Users page allows authorized users to add and remove users from the
authentication realm.

The left side of the page shows a list of users. The user list from an LDAP realm looks
like this:

Users Groups
Realm MName: |LDAPReaIm vl
Search for User starting with:

Ia G0

M Show All Users

ch=a,ou=Portal,o=administration
ch=Admin,o=administration
ch=as,o=administration

P E Remave

2B Flush Cache

The Realm Name dropdown list is useful only if you have configured separate
readable and writable realms.

The Flush Cache button updates the user list to match the realm. This is useful if user

data can be concurrently modified by another user. This function also applies to servers
running in a cluster.

> To change a password:
1 Select one of the users listed in the left panel.

2 In the right panel, click Modify Password:

User ID: |admin

Modify Password
New Password: |

Confirm Password: |

u Save

3 Type the new password twice.

Using the Directory Section of the DAC 39

40

4

Click Save.

> To add a new user:

1

w

Click Add.

Add New User
User ID:* |

Password: |

* Required fields

& save xcancel
Enter the user ID.
Enter a Password.
Click Save.

> To remove a nonadministrative user:

1
2

Select the user.

Click Remove.

> To remove an administrative user:

1

()

(-]

Make sure that at least one user will remain in each administrative group.
Otherwise, administrative security for that group will become open to everyone.

Go to the Groups page in the Directory section of the DAC.
Remove the user from all administrative groups.

If necessary, remove the user from all administrative ACLs:

4a Go to the Security section of the DAC.

4b Remove the user from all admin types and permissions.
Go back to the Users page in the Directory section of the DAC.
Select the user.

Click Remove.

exteNd Director User Management Guide

Groups

The Directory section’s Groups page in the DAC allows authorized users to add and

remove groups from the authentication directory and add and remove users from these
groups.

The left side of the page shows a list of groups. The user list from an LDAP realm looks
like this:

Users Groups
Realm MName: |LDAPReaIm vl
Search for Group starting with:

I G0

¥ Show &ll Groups

ch=dynamicGroupl,ou=Portal,o=administration
ch=dynamicGroup2,ou=Portal,o=administration
ch=gl,0=administration
ch=g2,0=administration
ch=gagroup,o=administration

P E Remave

2B Flush Cache

The Realm Name dropdown list is useful only if you have configured separate
readable and writable realms.

The Flush Cache button updates the group list to match the realm. This is useful if

group data can be concurrently modified by another user. This function also applies to
servers running in a cluster.

Using the Directory Section of the DAC 41

> To modify a group:
1 Select the group.

Group Name |Cn:g1,0:administrati0n

Search for User |—¢
starting with E e

Users available (Search
Users selected Results)

LDAPRealmych=as,o=Administration LDAPRealmych=a,ou=Portal,o=administration
LDAPRealmychn=linda,o=Administration <| LDAPRealmych=admin,o=administration

|
Save

2 Select the users in the right panel:

+ To select multiple users: click the first user, then Ctrl-click each additional
user.

+ Toselect a range of users: click and drag from the first user to the last user.

Use the ﬂ button to add members to the group and the ﬂ button to remove
members from the group.

3 Click Save.

> To add a group:
1 Click +Add.

Add New Group

Group I
Name*

* Required fields

& save xcancel

2 Enter a name for the group.
3 Click Save.

> To remove a group:
1 Select a group.
2 C(Click Remove.

TIP: The users in the group are not removed; only the group itself it removed.

42 exteNd Director User Management Guide

Security Management

Provides background information, programming concepts, and code examples
for the Security subsystem

. Chapter 4, “Using ACL-Based Authorization”
* Chapter 5, “Using Security Roles”
* Chapter 6, “Using the Security Section of the DAC”

Using ACL-Based Authorization

This chapter describes how to use ACLs (access control lists) in exteNd Director. It has
these sections:

+ About the Security subsystem

+ ACLs in exteNd Director

+ ACL subsystem administrators

+ Accessing ACLs for users and groups
+ Accessing ACLs for containers

+ Customizing ACL-based authorization

About the Security subsystem

The purpose of the Security subsystem is authorization, the process of restricting
access to application resources. The Security subsystem is built on top of the standard
J2EE security API.

The Security subsystem depends on the Directory subsystem for authentication—in
other words, the Security subsystem assumes that requests for protected application
resources can only be made by authenticated users.

Authorization is performed by verifying that a user or group (represented by a
principal) has sufficient permission to perform the operation requested. Principals can
be defined using Access Control Lists (ACLs) or mapped to resources using security
roles.

L For information about role-based security, see Chapter 5, “Using Security
Roles”.

45

ACLs in exteNd Director

ACL-based authorization protects subsystem administrative functions and application
resource objects that persist across multiple deployments, such as portlets, documents,
folders, group pages, user pages, and profiles.

46

The following terms define exteNd Director’s support for ACL-based authorization:

Term

Definition

ACL

Access control list. A list of entries that restricts access to a specific
element or element type. Each ACL entry associates a principal
with a set of permissions.

If no ACL is associated with an element or with the element type to
which it belongs, access is unrestricted.

Element

A uniquely identified, persistent resource artifact that is managed
by an exteNd Director subsystem. For example, documents and
folders in the Content Management subsystem are elements.
exteNd Director applications can set and get permissions for
securable elements.

Elements persist across the lifetime of the application server; they
are not affected by redeploying the exteNd Director project.

Element type

A string used to define a group of objects with similar functionality
or behavior (framework elements such as EbiFolder, EbiDocument,
and so on). You can apply ACLs to element types as well as to
individual elements.

The Security subsystem provides a set of built-in element types for
different subsystems. Each element type has a list of permissions it
supports.

Principal

An authenticated user, group, or container. In exteNd Director, a
principal is implemented as a class that extends the Java 2
standard interface java.security.Principal.

exteNd Director User Management Guide

Term

Definition

Permission

A type of access to an element. exteNd Director includes a set of
built-in permissions: CREATE, DELETE, EXECUTE, LIST,
PROTECT, PUBLISH, READ, SELECT, UPDATE, and WRITE.

Built-in permissions are hardcoded and cannot be modified using
the Security API.

NOTE: Negative permissions are not supported in exteNd
Director.

Each ACL subsystem uses a subset of these built-in permissions.
Each permission can have a different meaning in each subsystem.

L For information about permissions in the Portal subsystem,
see in the section on assigning pages to users and groups in the
Portal Guide.

L) For information about permissions in the Content
Management subsystem, see in the chapter on securing content in
the Content Management Guide.

Accessing principals

In exteNd Director, a principal is implemented as a class that extends the Java 2
standard interface java.security.Principal. A principal can be used to represent any
entity, such as an individual, a corporation, and a login ID.

There are three types of principals defined in exteNd Director:

*

*

*

user—Individual users

group—Groups of users

container—Organizational units within an LDAP-based directory service such
as eDirectory. This principal allows you to set ACLs on user containers for
security inheritance. See “Accessing ACLs for containers” on page 55.

Principals are represented in the Directory API as interfaces in the
com.sssw.fw.directory.api package:

public interface EbiRealmUser extends Principal
public interface EbiRealmGroup extends Group
public interface EbiRealmContainer extends Principal

Using ACL-Based Authorization 47

pgAdministrator.html#Assigningpagestousersandgroups
cmgSecurity.html

You can instantiate the principal interface directly in your code, or use one of the
following API methods:

Principal type How to access

user To access a single principal, use this method in the
com.sssw.fw.directory.client package:

EboDirectoryHelper.getEbiRealmUser ()
To get a Collection of principals for a group:

EbiRealmGroup.getUserMembers ()

group Use methods on EbiRealmGroup. For example:
To get the Java principal for this EbiRealmGroup:
EbiRealmGroup.getGroup ()

To get a Collection of group principals, use one of the methods on
EbiRealmGroup:

EbiRealmGroup.getChildGroups ()

container Use methods on EbiRealmContainer. For example:
To get the parent container for this EbiContainer:
EbiContainer.getParentContainer ()
To get a Collection of descendants for this container:

EbiContainer.getDescendants ()

How ACL processing works

Whenever a user attempts to access an element, the Security subsystem checks whether
the user has the permission to perform the specified action. If an element has an ACL,
exteNd Director checks whether the user has been granted the specified permission.

Situations These situations can occur:

Situation Access outcome

The object doesn’t have an ACL. The action proceeds
The object has an ACL but the user is not included by Access is denied;
name or by group. EboSecurityException

48 exteNd Director User Management Guide

Situation

Access outcome

The user is in the ACL for the Locksmith user or for a
subsystem admin group with permission for the particular
type of access (permissions for admin groups override
permissions on individual elements).

L For more information, see “ACL subsystem
administrators” on page 49.

The action proceeds

The object has an ACL that includes the user (by ID or
group), and the user has permission for the particular
type of access.

The action proceeds

The object has an ACL that includes the user (by ID or
group), and the user has been denied the particular type
of access.

Access is denied;
EboSecurityException

Process The Security subsystem determines in three steps whether the user has

permission to access an element:

1 Does the element have an ACL?
+ No—Allow access
+ Yes—Go to Step 2

2 Does the user have permission in the element’s ACL?

o Yes—Allow access
¢ No—Go to Step 3

3 Is the user a Locksmith user or a subsystem administrator with the appropriate

permission for this subsystem element?
¢ Yes—Allow access

+ No—Deny access; throw EboSecurityException

ACL subsystem administrators

exteNd Director includes a set of built-in groups that define administrative access to
each subsystem using ACLs. You can add and remove users for each permission using
the Director Administration Console (see Chapter 6, “Using the Security Section of the

DAC™).

Using ACL-Based Authorization 49

Here is a general description of access rights for each subsystem administrator group:

Admin element

type Permission Authorizes users to
ContentAdmin READ Get subsystem elements (folders, categories,
and documents) in the Content Management
subsystem.
WRITE Add subsystem elements to the Content

Management subsystem.

PROTECT Set ACLs for the ContentAdmin type.

GeneralAdmin PROTECT A generic Admin type that can be applied to
any exteNd Director subsystem.

(Reserved for custom subsystem
implementation)

LocksmithElement PROTECT Access all exteNd Director application and
Type ACL subsystem objects, regardless of granted
authority.

After the Locksmith user is authenticated, the
exteNd Director security subsystem adds the
user to the admin ACL for each ACL
subsystem. The Locksmith can then add
individual users to each subsystem ACL.

When you first configure your project, the
Locksmith user is set to Anonymous by default.
This allows any user to access a secure server
to redeploy the project, which is convenient in
a development environment.

IMPORTANT: For production deployment,
you should change the Locksmith user to a
user known to exist in your authentication
realm.

PortalAdmin PROTECT Access the DAC and portal-related functions.

NOTE: This permission by itself does not
include access to the User, Directory, and
Security functions in the DAC.

SearchAdmin READ Get existing searchable repositories.

WRITE Add, remove, clear, reinitialize, and reset
searchable repositories.

PROTECT Set ACLs for the SearchAdmin type.

50 exteNd Director User Management Guide

Admin element

type Permission Authorizes users to
SecurityAdmin PROTECT Set ACLs for any Admin type except
Locksmith.

UserAdmin CREATE Add users, groups, and group profiles.
READ View information about profile users.
DELETE Remove profile users.
UPDATE Update profile user records.
PROTECT Set ACLs for the UserAdmin type.

Restricting access to administrators using the API

You can restrict access to portal and content management elements using the
EbiSecurityManager.setRestricted Access() method. For example, if you restrict access
to a document folder for the WRITE permission, only members of the ContentAdmin
group have WRITE access to the element.

NOTE: The restricted access right takes precedence over any other ACL associated

with the restricted element.

Here are the related methods on the EbiSecurityManager interface:

Method Returns

Description

setRestrictedAccess() boolean for Restricts specified access for an element

Success

to system administrators

check boolean
RestrictedAccess()

Checks whether an element has
restricted access

Using ACL-Based Authorization 51

../javadoc/com/sssw/fw/security/api/EbiSecurityManager.html

Accessing ACLs for users and groups

This section shows some techniques for using exteNd Director’s Directory and
Security APIs. The main points of access for ACL security objects are the following
delegate interfaces:

Security delegate Provides access to

EbiSecurityAclDelegate Security ACLs

EbiSecurityMetaDelegate ACL-based security metadata

EbiSecurityDelegate Runtime ACL-based security or role-based security

EbiRealmContainerDelegate Container principals

EbiDirectoryDelegate User and group principals

X For background information on delegates, see the section on accessing
subsystem services in Developing exteNd Director Applications.

Accessing ACLs using the DAC You can also use the Director Administration
Console (DAC) to access ACLs.

X For more information, see Chapter 6, “Using the Security Section of the DAC”.

Getting Security APl delegates

This example shows how to get the delegate objects used in the other Security API
examples that follow:

import com.sssw.fw.security.api.*;

// Getting delegate objects from a factory --
// must be done within a try block.
try {
// Get a metadata delegate.
EbiSecurityMetaDelegate smd =
com.sssw.fw.security.client.EboFactory.getSecurityMetaDelegate () ;
// Get an ACL delegate.
EbiSecurityAclDelegate ad =
com.sssw.fw.security.client.EboFactory.getSecurityAclDelegate() ;
// Use the delegate objects.
1
catch (EboFactoryException e) ({

sb.append(e.getMessage());

}

52 exteNd Director User Management Guide

cdAccessServices.html#Accessingsubsystemservices

Getting an element type and identifier

This example shows how to get an element type and UUID. It is used in the other
examples:

// Get delegates. See “Getting Security API delegates” on page 52.
// Get the element type metadata from the EbiSecurityMetaDelegate.
EbiElementTypeMeta typeMeta = smd.getElementTypeMeta (context) ;

// This example uses the PortalAdmin element.

String portalSubSystem =
EbiSecurityConstants.SUBSYSTEM PORTAL_ SERVICE;

String adminType = typeMeta.getAdminType (portalSubSystem) ;

String adminID = typeMeta.getAdminID (portalSubSystem) ;

NOTE: Element type names are defined as constants in subinterfaces of
EbiFrameworkElement. For example, a document in the Content Management
subsystem is defined in com.sssw.cm.api.EbiDocument.EL_DOCUMENT.

Listing the permissions associated with an element

This example shows how to get a list of the permissions that can be granted to an
element:

// Get delegates. See “Getting Security API delegates” on page 52.
// Get the element type. See “Getting an element type and identifier” on page 53.
// Get the EbiAccessRightMeta object for the element type.
EbiAccessRightMeta meta = smd.getAccessRightMeta (context,adminType) ;
// Retrieve the list of permissions.
String[] rights = meta.getPermissionNames () ;
for (int i = 0; i < rights.length; i++) ({
sb.append(rights[i]);

Listing the principals with permission for an element

This example shows how to get a list of principals that have a specific permission for
an element. It gets a list of principals assigned to the PROTECT permission for the
PortalAdmin element:

import java.security.*;

// Get delegates. See “Getting Security API delegates” on page 52.
// Get the element type. See “Getting an element type and identifier” on page 53.
// Get the principals for a specific permission type.
Principal [] prins = null;
prins = ad.getPrincipalsFromAcl (context, adminID, adminType, EbiPermission.PROTECT) ;
for (int i = 0; i < prins.length; i++) {
sb.append(prins[i].toString());

Using ACL-Based Authorization 53

Listing the elements with permissions for a principal

Use this method (available from the EbiSecurityManager) to enumerate all the
accessible resources (elements) of a certain type that are accessible to the principal in
the session context:

/**

Returns a Collection of elements accessible to the userwhose context is passed in.
@param context context

@param elType framework element type, tells the method which
element type to determine accessibility for

@param rights a list of access right permissions to be
checked, e.g. EbiPermission.READ, EbiPermission.WRITE,
EbiPermission.EXECUTE, etc.; note that if multiple

rights are specified, the method will treat the list

as a Boolean OR and will attempt to find elements that

have either READ or WRITE or EXECUTE etc. for the user
@return a Collection of accessible framework elements of the
specified type; the Collection is empty if no accessible
elements of the type are found

E R S I R N N S

~

public Collection getAccessibleElements (EbiContext context, String elType, Stringl]
rights)
throws EboUnrecoverableSystemException

Getting the content of an ACL

This code shows how to get the string representation of an ACL:

import java.security.*;

// Get delegates. See “Getting Security API delegates” on page 52.
// Get the element type;

// see “Getting an element type and identifier” on page 53.

// Get the contents of the ACL in the form of a string.

Acl adacl = ad.getAcl (context, adminID, adminType) ;

String adaclcontent = adacl.toString() ;

sb.append(adaclcontent) ;

Assigning a principal to an ACL

This code shows how to add a principal to an ACL for an Admin element:

import com.sssw.fw.directory.api.*;
import java.security.*;

// Get delegates. See “Getting Security API delegates” on page 52.

// Get the element type. See “Getting an element type and identifier” on page 53.

// Get a Directory delegate.

EbiDirectoryDelegate dd = com.sssw.fw.directory.client.EboFactory.getDirectoryDelegate () ;

54 exteNd Director User Management Guide

// Get a principal. Must be a valid realm user.
Principal user = dd.getUser (context, "SomeUser") ;
// Add the principal to the ACL.
Principal [] prins = new Principal[l];
prins[0] = user;
ad.addPrincipalsToAcl (context, adminID, adminType,
EbiPermission.PROTECT,
prins) ;
sb.append("Added " + user.toString() + " PROTECT");

NOTE: This example requires your code to handle the following exceptions in addition
to EboFactoryException:

catch (EboSecurityException e)
sb.append(e.getMessage());
}

catch (EboException e) ({
sb.append(e.getMessage());
}

Accessing ACLs for containers

The principal type container represents an organizational unit within an LDAP tree.
The container principal allows you to set ACLs on an LDAP directory container (or
similar tree directory structure) and have the ACLs apply to all users in the specified
tree hierarchy. This capability is known as security inheritance. In exteNd Director,
security inheritance is available in applications that are configured for a hierarchical
LDAP realm—such as Novell eDirectory.

The Directory API allows:

+ Traversal of the LDAP hierarchy from the root all the way down to leaf nodes
+ Direct navigation to a specific node within the hierarchy

The following interfaces are provided in the com. sssw. fw.directory.api package:

public interface EbiTreeRealm
public interface EbiRealmContainerDelegate

NOTE: You cannot add containers to an LDAP realm from exteNd Director. Use your
native LDAP tools for this purpose.

Assigning a container principal to an ACL

This code is based on the preceding example (“Assigning a principal to an ACL” on
page 54). It shows how to add a container principal to an ACL for an Admin element:

import com.sssw.fw.directory.api.*;
import java.security.*;

Using ACL-Based Authorization 55

// Get delegates. See “Getting Security API delegates” on page 52.
// Get the element type;

// see “Getting an element type and identifier” on page 53.

// Get a new Container delegate.

EbiRealmContainerDelegate rcd = new EbiRealmContainerDelegate () ;

// Get Container principal. Must be a valid realm container.

Principal container =
rcd.getEbiRealmContainer (context, "cn=sample, o=users") ;

// Add the principal to the ACL.

Principal [] prins = new Principall[1l];

prins[0] = container;

ad.addPrincipalsToAcl (context, adminID, adminType,

EbiPermission.PROTECT,

prins) ;

NOTE: The container principal object is accessible in the API and in the section of the
Director Administration Console (DAC) that controls shared and group pages in the
Portal. However, you cannot use the DAC to assign administrative access nor Content
Management element access to a container principal.

Customizing ACL-based authorization

Customizing the Security service

56

There are three ways to customize ACL security:

+ Write a class that extends the EboSecurityManager class to override the
runtime ACL validation logic. For example, you could modify the Locksmith
ACL metadata to allow additional permissions such as PROTECT, READ, and
WRITE.

+ Completely reimplement EbiSecurityManager. Then change services.xml in:

XWB/DirectorTemplate/Director/library/SecurityService/
SecurityService-conf

exteNd Director User Management Guide

*

The service definition looks like this:

<service>
<interface>com.sssw.fw.security.api.EbiSecurityManager
</interface>
<impl-class>com.sssw.fw.security.core.EboSecurityManager
</impl-class>
<description>Security manager that provides authentication

and permission validation

</descriptions>
<max-instances>l</max-instances>
<startup>M</startup>

</services

Replace EboSecurityManager with the name of your own class.

Add a subsystem to provide a different security API, as described next.

Adding ACL-based security to a new subsystem

Adding a new subsystem may be necessary when you are trying to integrate exteNd
Director with a third-party security service.

NOTE: This topic goes beyond the scope of this guide. The procedure is merely
outlined here. For detailed information, contact Novell Technical Support.

*

Add metadata information for the subsystem into the existing subsystem element
type metadata:

com.sssw.fw.security.api.EbiElementTypeMeta, singleton
Call security meta delegate to modify the metadata persistently:
com.sssw.fw.security.api.EbiSecurityMetaDelegate

Create a new access right meta for the administrator type and for any element
type that is defined in the subsystem element type metadata.

An access right meta object is an API object used to define metadata for
associating permissions with a specific element type (or admin type):

com.sssw.fw.security.api.EbiAccessRightMeta
Call security meta delegate to store the metadata object(s) persistently.

Write a custom Ul to allow setting ACLs based on the newly created subsystem’s
admin type and element types by calling the security ACL delegate:

com.sssw.fw.security.api.EbiSecurityAclDelegate

Add runtime ACL validation logic in your new subsystem by calling the security
delegate:

com.sssw.fw.security.api.EbiSecurityDelegate
Check administrator access:
userHasAccessRight (context, right, adminID, adminType)
(Note that Locksmith is checked internally.)
Check element level access (if any):
userHasAccessRight (context, right, elementUUID, elementType)

Using ACL-Based Authorization 57

Custom permissions

exteNd Director allows you to define your own custom permissions using the Security
API. See EbiPermissionMeta in Javadoc.

Custom permissions provide a way to use ACL-based authorization on any level of
granularity in your application. For example, you can create a set of custom
permissions, each of which permits access to a specific method in your application
code.

Custom permissions are stored as XML files in the application database. Do not edit
the XML files directly—use the Security API.

58 exteNd Director User Management Guide

../javadoc/com/sssw/fw/security/api/EbiPermissionMeta.html

Using Security Roles

This chapter describes how to use exteNd Director security roles in your applications.
It has these sections:

*

*

About J2EE role-based authorization

About exteNd Director security roles

Creating a security role

Mapping a security role to a workflow process
Mapping a security role to a portal page layout
Accessing security roles programmatically

About J2EE role-based authorization

The exteNd Director Security subsystem supports declarative security in the form of
role-based authorization. Role-base authorization applies to portlets as defined in the
Servlet and Portlet specifications.

The steps for implementing J2EE-compliant roles for portlets are:

1

Define the roles in your portlet deployment descriptor (portlet.xml).

Ll For details, see the portlet.xml schema descriptor, included with your
installation at Director install dir/Common/SchemaCatalog/portal-app 1 o0.xsd

Define the same roles in your EAR or WAR application descriptor.

) For information about defining roles for a project, see the chapter on the
Deployment Descriptor Editor in Utility Tools.

59

utoolsDeployDescEditor.html

3 Map the roles to users in your directory realm. The role-mapping process is
distinct for each application server type.

L For information about mapping roles for deployment to the exteNd
Application Server, see the chapter on the Deployment Plan Editor in Utility
Tools.

About exteNd Director security roles

exteNd Director also provides its own role-based authorization in the form of security
roles. A security role is an XML descriptor that defines user and/or group principals
that can be mapped to access rights for certain exteNd Director application objects.
exteNd Director security roles can be used outside of the J2EE context, for example,
with a custom realm.

The Security subsystem defines declarative role mapping for workflow processes and
for portal layouts. For all other application objects, the Security subsystem uses ACL-
based authorization, as described in Chapter 4, “Using ACL-Based Authorization”.

60 exteNd Director User Management Guide

utoolsDeployPlanEditor.html

Creating a security role

> Tocreate a security role using the graphical view:

1 In the exteNd Director development environment, go to
File>New>Portal>Security Role.
The graphical view of a new role descriptor displays.
+ Ifyou prefer to edit the source directly choose the XML Source View tab at
the bottom of the form.

|' a, untitled-SecurityRole, xml |z|]

Drisplay name: I

Description:

|' Users | Groups |

Users

| Ch Graphical View L XML Source View |L?;E XML Tree \c"iewJ

Using Security Roles 61

62

2 Use the editor to enter the XML data:

XML attribute What you enter

display-name (Optional) The display name of the access group. This can be
any string.

description (Optional) A description that matches the display name. This
can be any string.

User To add each user:
+ Choose the User tab and click Add.

+ Double-click the new user field and enter name of a valid
user defined in your directory realm:

If you are accessing an LDAP realm you need to specify the
distinguished name, for example: cn=sample,o=acme.

NOTE: Roles do not support LDAP container elements.

Group To add each group:
+ Choose the Group tab and click Add.

+ Double-click the new group field and enter name of a valid
group defined in your directory realm:

If you are accessing an LDAP realm you need to specify the
distinguished name, for example: cn=Administrators,o=acme.

NOTE: Roles do not support LDAP container elements

Here is an example of a security role in the source view:

<security-rolex>
<display-name>System Administrator</display-name>
<description>Administers Portal Applications</descriptions>
<user-map>
<principal>jdoe</principal>
<principal>jsmith</principals>
</user-map>
<group-map>
<principal>administrators</principals>
</group-map>
</security-role>

3 Choose File>Save.

The role is saved in your exteNd Director project’s resource set. For information
about the file location click here: security role descriptor location.

exteNd Director User Management Guide

cdLocator.html#Securityroledescriptor

Mapping a security role to a workflow process

The workflow process descriptor defines role mappings for user access to workflow
processes. The access-role-map element determines the user and group principals who
are authorized to start new process instances. Here is how the role map element is
defined in the workflow process dtd.

<!-- Access Role-Map Definition -->
<!ELEMENT access-role-map (role-name*) >
<!ELEMENT role-name (#PCDATA) >

<!-- Description Definition -->
<!ELEMENT description (#PCDATA) >

You can use the Workflow Modeler to map roles to the a workflow process. For details,
see in the section on process properties in the Workflow Guide.

Mapping a security role to a portal page layout

The portal layout descriptor defines role mappings for list and run access to portal
layouts. Here is an example showing list and run access mapped to a role named
myRole.xml:

<run-role-map>

<role-name> myRole </role-name>
</run-role-map>
<list-role-map>

<role-name> myRole </role-names>
</list-role-map>

L For information about mapping roles to a portal layout, see the section on
creating a layout descriptor in the Portal Guide.

Accessing security roles programmatically

After you set up roles and role mappings, you can access role information using the
EbiSecurityDelegate interface. This example shows how to check whether a user is
included in a specified role.

// Variable to hold the name of the security role
// descriptor, without the “.xml” ext

String mapfile = "mysecurityXML";
// Get a security manager
try {

com.sssw.fw.security.api.EbiSecurityDelegate sd =
com.sssw.fw.security.client.EboFactory.getSecurityDelegate () ;
// Check if user is in this role
if (sd.isUserInRole (context, mapfile));

Using Security Roles 63

wfDesigner.html#Processproperties
pgCustomLayouts.html#Creatinga layoutdescriptor
../javadoc/com/sssw/fw/security/api/EbiSecurityDelegate.html

// get a document, else display "no access" message

}

catch (com.sssw.fw.exception.EboFactoryException e)

{
}

// display message

64 exteNd Director User Management Guide

Using the Security Section of the DAC

This chapter describes how to use the Director Administration Console (DAC) to
control user access to ACL subsystem administrative functions.

This chapter includes one section:
+ Modifying administrative access

) For information about how to access the DAC, see the section on accessing the
DAC in Developing exteNd Director Applications.

65

cdAppAdmin.html#AccessingtheDAC
cdAppAdmin.html#AccessingtheDAC

Modifying administrative access

The Security section allows you to view the members of each pairing of a subsystem
administrator type and a permission, as shown below:

Admin type; |Useradmin =
Permission:
Search for
User starting |a B Go
with
Users selected Users available (Search Results)
LDAPRealmych=admin,o=administration <| LDAPRealmych=a,ou=Portal,o=administration

LDAPRealmych=admin,o=administration
LDAPRealmycn=as,o=administration

]

Search for

Group starting |a B Go

with

Groups selected Groups available (Search Results)

Mo groups selected il Mo groups found

Save

> To assign users and groups:
1 Select an Admin type from the dropdown list:

Useradmin ;I
Partaladmin
workflowAdmin
GroupPageadmin
LocksmithElementType
Securityadmin
Generaladmin
Searchadmin
ContentaAdmin
0] i

L For a description of the Admin types, see “ACL subsystem administrators”
on page 49.

66 exteNd Director User Management Guide

Select a Permission from the dropdown list.

The list of permissions depends on the Admin type you selected.

PROTECT vl

DELETE

Al For a description of the permissions for each type, see “ACL subsystem
administrators” on page 49.

After you select a permission, lists of users and groups for the selected ACL
appear in the Users selected and Groups selected lists.

Select users or groups from the users available and groups available lists:

+ To select multiple users or groups: click the first, then Ctrl-click each
additional.

o To select a range of users or groups: click and drag from the first to the last.

Use the ﬂ button to add items, and the ﬂ button to remove items.
Click Save.
NOTE: If you need to remove an administrative user from the realm:

Make sure there will be at least one user remaining in each administrative group.
Otherwise, anyone will be able to administer the subsystem.

Remove the user from all administrative groups and, if necessary, from all
administrative ACLs.

Using the Security Section of the DAC 67

68 exteNd Director User Management Guide

User Profiling

Provides background information, programming concepts, and code examples
for the User subsystem

* Chapter 7, “Managing User Profiles”
. Chapter 8, “Accessing User Attributes”
. Chapter 9, “Using the Profiles Section of the DAC”

Managing User Profiles

This chapter describes how to manage user profiles. It contains the following sections:

+ About user profiles

+ Profiles and realm configurations
+ About the New User portlet

+ Accessing profiles using the API
+ Rules and user profiling

About user profiles

The purpose of the User subsystem is the profiling of Web application users. User
profiles are persistent collections of data associated with individual users of a Web
application. Individual data items within a user profile are called attributes. Your
exteNd Director application can obtain attributes and store the information in a profile.
Later it can retrieve, act upon, and analyze the information.

L For more information, see Chapter 8, “Accessing User Attributes”.

How profiles are used
Typically, profiles are used for two general purposes:

+ Allowing users to personalize Web applications
+ Tracking user behavior

A portal application might rely on the information in the user profile to determine what
content can or should be delivered to a given user or what operations can be performed.

71

Profiles and realm configurations

In a retail business, for example, a profile for a customer could contain:

+ Account information such as shipping and billing address, e-mail address, age,
gender, occupation, credit card information, and so on

+ User-specified areas of interest, such as product categories

+ Feature and page layout preferences other than those provided by the Portal

subsystem

+ Login history, pages viewed, links and buttons clicked, and transactions made

(items bought and processes started)

Profiles are stored differently depending on whether you are using a non-LDAP or an
LDAP realm. Here are the main differences:

Non-LDAP realms

LDAP realms

Profile information is stored in the
application database, which is also
used to store ACL-based security
information.

Profile information is stored within the
LDAP directory; the application database
is used for ACL-based security
information.

The profile database exists
independently from the
authentication realm.

Profile information and authentication
information are stored in the same user
record.

exteNd Director applications use the
JDBC persistence provider to access
the database.

exteNd Director uses the JNDI
persistence provider to access the LDAP
directory.

Checking the realm configuration

72

exteNd Director allows you to reconfigure an application to use a different
authentication realm. If you need this kind of flexibility, you can write code that is
general enough to work with both LDAP and non-LDAP realms.

To find out whether or not your application is configured for an LDAP realm, use:

EboUserHelper.getUserDataStore ()

This method returns a string value indicating whether the User subsystem uses JNDI
(LDAP directory) or JDBC (application database).

exteNd Director User Management Guide

Checking for a writable realm

To find out whether or not your application is configured for a writable realm, use:
EboUserHelper.isReadOnlyUserSchema ()

This method returns a boolean value indicating whether or not the User service schema
is modifiable. A JDBC schema can be readable or writable, but a JNDI schema is not
modifiable within exteNd Director.

About the New User portlet

The New User portlet is one of the core portlets used in the custom Web application. It
allows anonymous users to add themselves to the writable realm and automatically
creates a profile for each new user.

The New User portlet is provided as a template for your application. You can copy and
customize it or design a new one:

Novells exteNd™
Director

» New User

UserlD:
Fassword:

Confirm Password:
First Mame:

Last Name:

Email:

Cancel

Allfields are required

Managing User Profiles 73

The New User portlet does the following:

+ Adds a user name and password to the writable realm (if enabled)

+ Creates a user profile identified by the combination of the user’s realm name and
an automatically generated 32-bit UUID

+ Adds some default attributes to the profile

The sources for this portlet are located in your exteNd installation directory at:
Director/templates/TemplateResources/portal-core-resource.

Accessing profiles using the API

The User API provides methods to create profiles, find profiles, and store and retrieve
user-specific information. These are the key classes for user profiling:

User subsystem class Provides access to

EbiUserDelegate Methods for creating and accessing user profiles

EbiUserlInfo User attributes

EbiUserQuery Methods for querying users based on attributes and other
criteria

EboUserHelper Convenience methods for accessing user information

EboFactory Methods for instantiating the user delegate and related
objects

Accessing profiles using the DAC You can also use the Director Administration
Console (DAC) to access user attributes. For more information, see Chapter 9, “Using
the Profiles Section of the DAC”.

Creating a new profile

74

This code shows how the New User portlet adds a user profile:

//
// Get a profile delegate from the user service.
//
EbiUserDelegate userDelegate =
com.sssw.fw.usermgr.client .EboFactory.getUserDelegate () ;

//

// Instantiate an empty profile object for this user.

//

EbiUserInfo userInfo = (EbiUserInfo)userDelegate.createUserInfol() ;
//

// Add profile info (default attributes) for the user.

exteNd Director User Management Guide

../javadoc/com/sssw/fw/usermgr/api/EbiUserDelegate.html
../javadoc/com/sssw/fw/usermgr/api/EbiUserInfo.html
../javadoc/com/sssw/fw/usermgr/api/EbiUserQuery.html
../javadoc/com/sssw/fw/usermgr/client/EboUserHelper.html
../javadoc/com/sssw/fw/usermgr/client/EboFactory.html

//

userInfo.setUserID(m uid) ;

userInfo.setUserFirstName (m_firstName) ;

userInfo.setUserLastName (m_lastName) ;

userInfo.setUserEmailAddress (m_email) ;

userInfo.setUserAuthenticatedRealmName
(dirService.getPrimaryRealmName ()) ;

//
// Add the new profile.

//

boolean status = userDelegate.createUser (context, userInfo);

Looking up user profiles

The User API includes user query and user metadata query classes that you can
implement to retrieve a list of user profiles that meet certain criteria.

Ll For more information, see EbiUserQuery and EbiJndiQuery in the API
Reference.

Getting a user profile

This code shows how to obtain and display a user profile:

import com.sssw.fw.usermgr.api.*;
import com.sssw.fw.usermgr.client.*;

try {
// Get the user identifier.
String userUUID = EboUserHelper.getUserUUID (context) ;
// Get a user delegate object from the factory.

EbiUserDelegate userDelegate = EboFactory.getUserDelegate () ;
//
// Get a user info object.
//
EbiUserInfo userInfo =
(EbiUserInfo)userDelegate.
getUserInfoByUserUUID (context,userUUID) ;

//
// Get the registration info and add to output buffer.
//
sb.append ("UserID: " + userInfo.getUserID() + "
");
sb.append ("UserUUID: " + userInfo.getUserUUID() + "
");
sb.append ("UserFirstName: " +
userInfo.getUserFirstName () + "
");
sb.append ("UserLastName: " +
userInfo.getUserLastName () + "
");

Managing User Profiles 75

../javadoc/com/sssw/fw/usermgr/api/EbiUserQuery.html
../javadoc/com/sssw/fw/usermgr/api/EbiUserQuery.html

sb.append ("UserEmailAddress: " +

userInfo.getUserEmailAddress () + "
");
}
catch (EboFactoryException e) { sb.append(e.getMessage()); }
catch (EboSecurityException e) { sb.append(e.getMessage()); }

Rules and user profiling

If you are developing an application that implements profiling extensively, you should
consider using exteNd Director’s Rule subsystem. The following scenario suggests
how rules can be applied to user profiling.

Suppose you have a retail Web site where you want to track the total amounts of
customers’ Web purchases and specify a threshold amount that triggers a special
discount. Here is how you could use rules to develop this application:

1 Add a user attribute to track the amount—AllPurchasesAmt, for example.

2 In the Rule Editor, create a rule using the built-in CheckWhiteboard condition
that allows you to check user profiles (through the “attributename syntax). Enter
a threshold amount and give it a key value—such as “threshold. For the action
section you can return a boolean or appropriate content.

3 Inyour code:
+ Get the purchase amount for a completed transaction.
+ Get the attribute value, add the purchase amount, and update the total.

+ Set the value on the session whiteboard using the EbiContext.setValue()
method. Give it the keyname you defined in the rule.

« Fire the rule and handle the result.

About conditions and actions

76

Conditions and actions are available in the exteNd Director rules engine to interact
with the User and Content Management subsystems (through the Content Query
Action). This means you can easily implement personalization rules like this:

If "UserAge" > 35

AND "PortfolioTotal" > 30,000

Then Select Investing Documents Level 3
AND set "FinanceLevel" to "Gold"

Through exteNd Director’s easy-to-use API, custom tag library, and rules engine
conditions and actions, you can quickly deliver personalization services to users.

Al For more information about rules, see the chapter on how to use rules in the
Rules Guide.

exteNd Director User Management Guide

reRulesPipeDev.html

Accessing User Attributes

This chapter discusses profiling with user attributes and has these sections:

+ About attributes
+ Attribute properties
+ Accessing attributes using the API

L For background information, see Chapter 7, “Managing User Profiles”.

About attributes

Attributes are individual data items within a user profile. Each attribute corresponds to
a column or field (in database terminology).

Attributes can be any data that you want to associate with a user. The User subsystem
has a set of built-in attributes and you can create and use your own user attributes for
user profiling.

Built-in attributes

The following built-in string attributes are present in each user profile regardless of
realm configuration:

o UserID

o User UUID

+ First name

+ Lastname

+ E-mail address

77

The values of the User ID and User UUID attributes are used by many of the exteNd
Director API packages to identify users.

New User portlet The New User portlet is a core portlet used in the custom Web
application in exteNd Director projects. It allows anonymous users to add themselves
to the writable realm and automatically creates a profile for each new user. This profile
includes the built-in attributes.

Ll For more information, see “About the New User portlet” on page 73.

Attributes and non-LDAP realms

Applications that use a writable non-LDAP realm use the application database to store
profile information. By default, the profiles in the database contain only built-in
attributes. These applications can create custom attributes as needed.

) Foran example, see “Creating an attribute (non-LDAP)” on page 82.

Attributes and LDAP realms

78

Applications that use an LDAP realm use the LDAP directory to store profile
information. LDAP provides a rich set of attributes that are intended to be sufficient to
meet the requirements of most Web applications. Use the LDAP administration
console to add new (custom) attributes to the directory.

NOTE: You cannot add custom attributes to an LDAP directory from an exteNd
Director application.

The User API provides a way for an application to retrieve a list of all available LDAP
attributes. The User LDAP Options panel in the EAR Wizard allows you to make
specific attributes available to the User API and to exclude others. It also allows you to
exclude certain syntax definitions.

Ll For more information, see the section on LDAP user options in Developing
exteNd Director Applications.

exteNd Director User Management Guide

cdConfigServicesNew.html#LDAPuseroptions

Attribute properties

Each attribute has a name, a description, a display property, and a data type.

Display properties

Data types

Each attribute has a display property that can have either of two values:

Attribute usage Description

Displayable Information you collect directly from a user, such as personal
data or preferences. The user typically specifies this information
on a registration form.

Hidden Information you store that is not explicitly provided by the user—
for example, buying patterns or click stream counts.

There are two types of attribute data values:

+ String values up to 255 characters long
+ BLOB (Binary Large OBject) as defined in JDBC 2.0

BLOB attributes are used to store binary data (such as large documents and images) in
the form of a byte array. Separate API methods are provided for using BLOB
attributes.

NOTE: The User API supports multivalued attributes for applications that use an
LDAP realm. The Director Administration Console (DAC) also allows the display and
modification of existing values for these attributes.

Accessing attributes using the API

You can define whatever attributes you need and use them in your code to personalize
content. This section describes how to access attributes and how to create and set
custom attributes.

Ll For an overview of the User APL see “Accessing profiles using the API” on
page 74.

Accessing attributes using the DAC You can also use the Director
Administration Console (DAC) to access user attributes.

LY For more information, see Chapter 9, “Using the Profiles Section of the DAC”.

Accessing User Attributes 79

Getting a list of attributes (non-LDAP)

This code shows how to obtain a user profile and display all the custom attributes. Note
that the EbiUserInfo object has a specific method for each built-in attribute:

import com.sssw.fw.usermgr.api.*;
import com.sssw.fw.usermgr.client.*;

try {
//
// Get the user identifier.
//
String userUUID = EboUserHelper.getUserUUID (context) ;

// Get a user delegate object from the factory.

EbiUserDelegate userDelegate = EboFactory.getUserDelegate () ;
//
// Get a user info object.
//
EbiUserInfo userInfo =
(EbiUserInfo)userDelegate.
getUserInfoByUserUUID (context,userUUID) ;

//

// Get the registration info and add to output buffer.

!/

sb.append ("UserID: " + userInfo.getUserID() + "
");

sb.append ("UserUUID: " + userInfo.getUserUUID() + "
");

sb.append ("UserFirstName: " +
userInfo.getUserFirstName () + "
");

sb.append ("UserLastName: " +
userInfo.getUserLastName () + "
");

sb.append ("UserEmailAddress: " +
userInfo.getUserEmailAddress () + "
");

//

// Get a user metadelegate object from the factory.

//

EbiUserMetaDelegate userMetaDelegate =
EboFactory.getUserMetaDelegate () ;

//

// Get the current user's metadata.

//

EbiUserMeta userMeta = userMetaDelegate.getUserMeta (context) ;

if (userMeta == null) {
userMeta = userMetaDelegate.createUserMetal() ;
userMetaDelegate.addUserMeta (context, userMeta) ;

1

else {

//
// Get all custom attribute names and values.
// Add to output buffer.

//
String[] attributes = userMeta.getUserAttributes();
if (attributes == null) {

80 exteNd Director User Management Guide

sb.append ("No attributes - string array is null");

1
else {
for (int i=0;i<attributes.length;i++) {
String attributeValue =
userInfo.getAttributeValue (context,attributes[i]) ;
sb.append (attributes[i] + ": " +
attributevValue + "
");

}
}

catch (EboFactoryException e) { sb.append(e.getMessage()); }
catch (EboSecurityException e) { sb.append(e.getMessage()); }

NOTE: When you run this on a profile that has no custom attributes, the EbiUserMeta
object is null.

Getting a list of attributes (LDAP)

To retrieve specific attribute values directly from an LDAP directory, use:

EboUserHelper.getDirectoryUserAttributes (context, userdn, Stringl]
names)

This method inputs the context, the user DN string, and an array of strings naming the
attributes for which to return values. The return value is a Map (object array)
containing values for each requested user attribute.

NOTE: This method returns only the first value of a multivalued attribute.

Identifying multivalued attributes

When using an LDAP directory, attributes can have multiple values. To check for this
type of attribute, use:

EbiUserMeta.isUserAttributeSingleValued (attrname)

This method returns a boolean value indicating whether or not the specified attribute is
limited to a single value.

Accessing User Attributes 81

Creating an attribute (non-LDAP)

This code adds a custom attribute to a user profile:

import com.sssw.fw.usermgr.api.*;

try {

//

// Get a user metadelegate object from the factory.

//

EbiUserMetaDelegate userMetaDelegate =
com.sssw.fw.usermgr.client.

EboFactory.getUserMetaDelegate () ;

//

// Get a writable copy of the user metadata.

//

EbiUserMeta userMeta =
userMetaDelegate.getClonedUserMeta (context) ;

//
// Add a custom attribute.
//
String attrib name = "Employer";
userMeta.addUserAttribute (attrib_name, "Name of employer",true);
//
// Save the modified metadata including the new attribute.
//
userMetaDelegate.modifyUserMeta (context,userMeta) ;
!/
// Return the attribute name and value.
//
sb.append ("Added attribute: " + attrib name) ;
1
catch (EboFactoryException e) { sb.append(e.getMessage()); }
catch (EboSecurityException e) { sb.append(e.getMessage()); }

Setting an attribute value

This code sets the value of a custom attribute:

import com.sssw.fw.usermgr.api.*;

try {

//

// Get a user delegate object from the factory.

//

EbiUserDelegate userDelegate =
com.sssw.fw.usermgr.client.EboFactory.getUserDelegate () ;

//

// Get a user info object from the factory.

//

EbiUserInfo userInfo =
com.sssw.fw.usermgr.client.EboUserHelper.

getUserInfo (context) ;

82 exteNd Director User Management Guide

//

// Set the value of the attribute to Novell.

//

String attrib name = "Employer";
userInfo.setAttributeValue (context, attrib name, "Novell");
//

// Write the new value into the user info object.
//
userDelegate.modifyUser (context,userInfo) ;
//
// Get the new attribute value and append to output buffer.
//
sb.append (attrib_name + ": " +
userInfo.getAttributeValue (context, attrib_name)) ;
1
catch (EboFactoryException e) { sb.append(e.getMessage()); }
catch (EboSecurityException e) { sb.append(e.getMessage()); }

Accessing User Attributes 83

84 exteNd Director User Management Guide

Using the Profiles Section of the DAC

This chapter describes how to use the Director Administration Console (DAC) to
manage users and user attributes in the user profile directory. It has these sections:

+ About the Profiles section of the DAC
+ User profiles
+ Attributes

Ll For information about how to access the DAC, see the section on accessing the
DAC in Developing exteNd Director Applications.

About the Profiles section of the DAC

The Profiles section of the DAC allows you to view user profiles in a deployed exteNd
Director application. In the case of a writable non-LDAP realm, you can also change
the information.

The Profiles section has two pages:

+ User profiles
+ Attributes

85

cdAppAdmin.html#AccessingtheDAC
cdAppAdmin.html#AccessingtheDAC

User profiles

The User Profiles page allows authorized users to add and remove user profiles by
selecting from a list. In a non-LDAP realm, profiles are stored in the application
database and thus do not necessarily have a one-to-one correspondence with users. In
an LDAP realm, however, each user record is the user profile.

The left side of the page shows a list of profiles:

User Profiles | Attributes

Realm Name;
Iextel\ld Server vl

Search for User
Profile starting
with:

Ia G0

M Show &l
Users

P E Remave

> To modify a profile:

1 Select the writable realm from the Realm Name list.

2 Select a user from the list to view profile data.

86 exteNd Director User Management Guide

3 Click General:

User Profiles | Attributes

Fealm MName: General Defaults
[extend Server <] User ID: [acmin

Search for User
Profile starting

First Name: |

with: Last Name: |
[o Email: [
M Show All

Users Save

Rl E Remave

4 Change the User ID, First Name, Last Name, and Email data as needed; these
fields are the same in both non-LDAP and LDAP realms.

TIP: The other attributes vary according to realm type and are discussed in
“Attributes” next.
5 Click Defaults to view user profile defaults:
General Defaults
WAR Context: IExpressPDrtaI vl
Default User Page: dan =
Default Theme: |Titanium =
Save

6 Change the defaults as needed.
7 Click Save.

Using the Profiles Section of the DAC 87

> Toadda profile:
1 Click +Add:

Create User Profiles
Select User: l—_,
(Directaory Users) admin

User ID:* |admin

First Name: |

Last Name: |

Email: |
* Required fields

& save xcancel

2 Seclect a user from the Select User dropdown list, or enter the user name in the
User ID field.
3 Fill in the information.

4 Click Save.

Attributes

The DAC allows authorized users to view and modify attribute data.

NOTE: In an LDAP realm, users cannot modify their own attributes because of
security restrictions in eDirectory. By default, users have rights only to read their own
attributes; they do not have modify rights. The eDirectory administrator can grant rights
to modify attributes to any user.

88 exteNd Director User Management Guide

The User Profiles page allows you to manage the attribute values associated with a
user profile:

User Profiles | Attributes

Fealm MName: General Defaults
[extend Server <] User ID: [acmin

Search for User
Profile starting

First Name: |

with: Last Name: |
[o Email: [
M Show All

Users Save

Rl E Remave

The Attributes page also allows you to view the attributes that exist within a realm.
The non-built-in attributes vary according to realm type, as follows.

o Inanon-LDAP realm, authorized users can add, remove, and edit attributes:

User Profiles Attributes
User Profile attributes (shows only displayvable attributes)

Name Show Type Description
The

employeeType yes non-blob employee remove edit
type name

Mo blob user profile attributes are set

Rl

+ Inan LDAP realm, you cannot manage attributes using the DAC. You must use

the LDAP directory server’s administration console, such as ConsoleOne in
Novell eDirectory, to add or remove attributes.

Using the Profiles Section of the DAC 89

> To modify an attribute:

1

4

5

1

Click edit:

Uzer Profiles | Attributes
Edit attribute (Employer)

Name* |Emp|0yer

Show v

Description |Name of employer

* Required fields

Save xcancel

Specify the Name (required) you will use to identify the attribute in your
application code.

TIP: Changing the name of an attribute invalidates any code you have written
that uses the previous name.

Check the Show box to make the attribute visible to users; uncheck the Show
box for tracking, usage statistics, and so on.

Specify the Description. This field is searchable using methods on the
EbiUserInfo class (see EbiUserQuery in the API Reference).

Click Save.

> To add an attribute:

Click add:

Add User Attribute

Name* |
Show v

% Mon-blob attribute € Blob attribute

Description |

* Required fields

& save xcancel

Specify the Name (required) you will use to identify the attribute in your
application code.

Check the Show box to make the attribute visible to users; uncheck the Show box
for tracking, usage statistics, and so on.

Specify the attribute value type as Non-blob or Blob (see “Attribute properties”
on page 79).

exteNd Director User Management Guide

5 Specifiy the Description. This field is searchable using methods on the
EbiUserInfo class (see EbiUserQuery in the API Reference).

6 Click Save to add the attribute to the profile directory.

> To remove an attribute:

+ Click remove next to the attribute.

Using the Profiles Section of the DAC 91

new ../javadoc/com/sssw/fw/usermgr/api/EbiUserQuery.html

92 exteNd Director User Management Guide

Reference

Describes the JSP tag library for user management functions

* Chapter 10, “Framework Tag Library”

Framework Tag Library

This chapter provides reference information about the user management framework
tags (FrameworkTag.jar).

s

libraries in Developing exteNd Director Applications.

*

*

For background information, see the chapter on using the exteNd Director tag

addUserToGroup
createGroup
createUser
getGroupList
getResource
getUserID
getUserInfo
getUserList
getUserPreference
login

logoff
removeGroup
removeUserFromGroup
setUserPassword
userInGroup
userLoggedIn

95

cdUsingTagLib.html
cdUsingTagLib.html

addUserToGroup

Description Adds a specified user to a group.

Wrapping This tag wraps the addMember() method on the
EbiRealmGroupDelegate interface.

Syntax <prefix:addUserToGroup id="ID" userid="userid" groupid="groupid" />

Request-time
expression
values
Attribute Required? supported? Description

id No No Specifies the name of the variable that
will be used to store the result of the
operation. If the operation is successful,
this variable holds a value of true. If the
operation fails, this variable holds a value
of false.

If no value is specified, a default ID of
addedusertogroup is used.

userid Yes Yes Specifies the ID for the user to add.

groupid Yes Yes Specifies the ID for the group to which
the user will be added.

Example <% taglib uri="/fw" prefix="fw" %>
p

<fw:addUserToGroup id="result" userid="Userl" groupid="Groupl" />

o

<%=pageContext.getAttribute ("result") %>

createGroup

Description Creates a new group.

Wrapping This tag wraps the addGroup() method on the EboDirectoryManager
interface.

96 exteNd Director User Management Guide

Syntax

Example

createUser

Description

<prefix:createGroup id="ID" groupid="groupid" />

Request-time

expression
values
Attribute Required? supported? Description
id No No Specifies the name of the variable that
will be used to store the result of the
operation. If the operation is successful,
this variable holds a value of true. If the
operation fails, this variable holds the
string Group already exists.
If no value is specified, a default ID of
addedgroup is used.
groupid Yes Yes Specifies the ID for the new group.

<% taglib uri="/fw" prefix="fw" %>

<fw:createGroup id="result" groupid="Groupl" />
<%=pageContext.getAttribute ("result") %>

Creates a new user and a new default profile for that user. This tag creates the new user

in the realm that was specified in the configuration for the Directory subsystem.

Wrapping This tag wraps the createUser() method on the EbiUserDelegate
interface.

Framework Tag Library

97

S}vﬂax <prefix:createUser id="ID" userid="userid" password="password"

firstname="firstname" lastname="lastname" emailaddress="emailaddress"/>

Request-time

expression
values

Attribute Required? supported? Description

id No No Specifies the name of the variable
that will be used to store the result
of the operation. If the operation is
successful, this variable holds a
value of true. If the operation fails,
an exception is thrown.
If no value is specified, a default ID
of addeduser is used.

userid Yes Yes Specifies the ID for the new user.

password Yes Yes Specifies the password for the new
user.

firstname No No Specifies the first name for the new
user.

lastname No No Specifies the last name for the new
user.

emailaddress No No Specifies the e-mail address for the
new user.

EXanuﬂe <% taglib uri="/fw" prefix="fw" %>

<fw:createUser id="result" userid="Userl" password="MyPassword"
firstname="John" lastname="Smith"/>

<%=pageContext.getAttribute ("result") %>

getGroupList

Description Returns a list of groups for the framework. The objects returned are of type
java.security.acl.Group. They can be cast to Group objects, or a more specific subclass

if necessary.

Wrapping This tag wraps the getGroups() method on the EbiDirectoryManager

interface.

98 exteNd Director User Management Guide

Synhax <prefix:getGroupList id="ID" iterate="iterate" />

Request-time
expression
values

Attribute Required? supported? Description

id

No No Specifies the name of the variable that
will be used to store the list of groups.

If no value is specified, a default ID of
grouplist is used.

iterate Yes No Specifies a boolean value (true or false)

that indicates whether this tag will
operate as a body tag so that each row
can be processed separately.

If the iterate attribute is set to true, the
following value can be accessed from
within the getGroupList tag:

+ groupid

This is the group name as referenced in
EbiRealmGroup.

The variable groupid has a scope of
NESTED.

If the iterate attribute is set to false, this
tag will operate as a nonbody tag that
returns an object of type List that
contains a list of objects of type
EbiGrouplnfo.

Examples This example shows how to use the getGroupList tag with the iterate attribute set to
true:

°

<%@ taglib uri="/fw" prefix="fw" %>
<html>

<head>

</head>

<body>

<fw:login userid="admin" password="admin"/>
<fw:getGroupList iterate="true">
Group Name = <%=groupid%s>

<p/>

</fw:getGroupList>

<fw:logoff />

</body>

</html>

Framework Tag Library 99

This example shows how to use the getGroupList tag with the iterate attribute set to
false:

<%@ taglib uri="/fw" prefix="fw" %>

<htmls>

<head>

</heads>

<body>

<fw:login userid="admin" password="admin"/>
<fw:getGroupList iterate="false"/>

<%= ((java.util.List)pageContext.getAttribute ("grouplist")) .size()
%> = the size of the list...
<fw:logoff />
</body>
</html>
getResource
Description Retrieves resource set objects by string path. If the id attribute is not set, the resource

will be assumed to be a string and returned inline. If the id attribute is set, the returned
object will be returned via the variable named in the id attribute.

Ebﬂﬁax <prefix:getResource resourcePath="resourcePath" returnType="returnType"
id="I1D" />

Request-time

expression

values
Attribute Required? supported? Description
resourcePath Yes Yes The path to a resource.
returnType No No Specifies the data type for the

requested resource. If the id
attribute is set, the return type must
be set to one of the following values:

+ document (when the return type
is an org.w3c.dom.Document)

« string (when the return type is
String)

+ bytes (when the return type is
byte[])

If the id attribute is not set, the
resource will be assumed to be a
string and returned inline.

100 exteNd Director User Management Guide

Request-time

expression
values
Attribute Required? supported? Description
id No No Specifies the name of the variable
that will be used to store the object.
If no value is specified, a default id
of resource is used.
getUseriD
Description Retrieves the user ID for the current user. If the current user is not logged in, the tag

returns anonymous.

Wrapping This tag wraps the getUserID() method on the EboDirectoryHelper class.

Synhax <prefix:getUserID id="ID" />

Request-time
expression
values
Attribute Required? supported? Description

id No No Specifies the name of the variable that
will be used to store the user ID.

If no value is specified, a default id of
userid is used.

Example <% taglib uri="/fw" prefix="fw" %>

<fw:getUserID id="user" />
<%=pageContext.getAttribute ("user") %>

getUserinfo

Description Retrieves information about a particular user. The object returned is of type
EbiUserInfo. If you don’t need the object, you can access some commonly used
attributes directly from the page context.

Framework Tag Library 101

Wrapping This tag wraps the getUserInfoByUserID() method on the
EbiUserDelegate interface.

Syvnax <prefix:getUserID id="ID" userid="userid" />

Request-time

expression
values
Attribute Required? supported? Description
id No No Specifies the name of the variable that
will be used to store the user
information object.
If no value is specified, a default ID of
userinfo is used.
userid Yes No Specifies the ID of a user.
userid No Yes Gets the user ID from the context.
firstname No Yes Gets the user firstname from the
context (if not null).
lastname No Yes Gets the user lastname from the
context (if not null).
emailadd No Yes Gets the user emailaddress from the
ress context (if not null).
Examples This example shows how to get an attribute from the EbiUserInfo object:

<% taglib uri="/fw" prefix="fw" %>

<fw:getUserInfo userid="Userl" />
<%=pageContext.getAttribute ("userinfo") %>

Hello, <%=
((com.sssw.fw.usermgr.api.EbiUserInfo)pageContext.getAttribute ("use
rinfo")) .getUserFirstName () %>

This example shows how to access attributes from the context:

o

<% taglib uri="/fw" prefix="fw" %>

<fw:getUserInfo userid="Userl" />
<%=pageContext.getAttribute ("userid") %>
<%=pageContext.getAttribute ("firstname")

o
5>

(
<%=pageContext.getAttribute ("lastname") %>
<%=pageContext.getAttribute ("emailaddress") %>

102 exteNd Director User Management Guide

getUserList

Description

Syntax

Examples

Returns a list of users for the framework. The objects returned are of type EbiUserInfo.

Wrapping This tag wraps the getUsers() method on the EbiDirectoryDelegate
interface.

<prefix:getUserList id="ID" iterate="iterate" />

Request-time

expression
values

Attribute Required? supported? Description

id No No Specifies the name of the variable
that will be used to store the list of
users.
If no value is specified, a default id
of userlist is used.

iterate Yes No Specifies a boolean value (true or
false) that indicates whether this tag
will operate as a body tag so that
each row can be processed
separately.
If the iterate attribute is set to true,
the following values can be
accessed from within the
getUserList tag:
+ userid
« uuid
Each of these variables has a scope
of NESTED.
If the iterate attribute is set to false,
this tag will operate as a nonbody
tag that returns an object of type List
that contains a list of objects of type
EbiUserlnfo.

realmName No No Specifies a directory realm.

If no value is specified, the default
primary realm is used.

This example shows how to use the getUserList tag with the iterate attribute set to true:

<%@ taglib uri="/fw" prefix="fw" %>
<html>

Framework Tag Library 103

<head>

</head>

<body>

<fw:login userid="admin" password="admin"/>
<fw:getUserList iterate="true">
UserID = <%=userid%>

UUID = <%=uuid%>

<p/>

</fw:getUserList>

<fw:logoff />

</body>

</html>

This example shows how to use the getUserList tag with the iterate attribute set to
false:

<%@ taglib uri="/fw" prefix="fw" %>

<html>

<head>

</head>

<body>

<fw:login userid="admin" password="admin"/>
<fw:getUserList iterate="false"/>

<%= ((java.util.List)pageContext.getAttribute ("userlist")) .size()
> = the size of the list...

<fw:logoff />

</body>

</html>

getUserPreference

Description Retrieves the user preference object for the ID passed in or the current user if no ID is
provided. This tag is for getting and setting custom preferences. Preferences for portal
objects should be done through the portal manager and the tags that support those
functions such as getUserComponentInfoTag.

Wrapping This tag wraps the getUserPreference() method on the
EbiUserPreferenceDelegate interface.

S}vﬂax <prefix:getUserProfile profilename="profilename" userid="userid"
id="ID" />

Request-time

expression
values
Attribute Required? supported? Description
elementType Yes Yes Specifies an element type.

104 exteNd Director User Management Guide

login

Description

Syntax

Request-time

expression
values

Attribute Required? supported? Description

elementID Yes Yes Specifies an element ID.

id No No Specifies the name of the variable
that will be used to store the user
preference object. This object is of
type EbiUserPreferencelnfo.

If no value is specified, a default id
of userPreference is used.
userllD No Yes Specifies the UUID for a particular

user.

Logs a user in to exteNd Director.

Wrapping This tag wraps the authUserPassword() method on the
EbiDirectoryDelegate interface.

<prefix:login userid="userid" password="password" id="ID" />

Request-time

expression
values
Attribute Required? supported? Description
userid Yes Yes Specifies the ID for the user logging
in.
password Yes Yes Specifies the password for the user

logging in.

Framework Tag Library 105

Request-time
expression
values
Attribute Required? supported? Description

id No No Specifies the name of the variable that
will be used to store the result of the
operation. If the login attempt is
successful, this variable holds a value
of true. If the login attempt fails, this
variable holds a value of false. A login
may fail for the following reasons:

« A user has already been logged in
to the current session

«+ The user ID is not recognized

+ The user ID/password combination
is not valid

If no value is specified, a default id of
success is used.

Example <% taglib uri="/fw" prefix="fw" %>

<fw:login userid="admin" password="admin" id="result" />
<%=pageContext.getAttribute ("result") %> = the result of the login...

106 exteNd Director User Management Guide

logoff

Description Logs off the current exteNd Director user.

Wrapping This tag wraps the logoff() method on the EbiSession interface.

S}vﬁax <prefix:logoff id="ID" />

Request-time
expression
values
Attribute Required? supported? Description

id No No Specifies the name of the variable that
will be used to store the result of the
operation. If the logoff attempt is
successful, this variable holds a value of
true. If the logoff attempt fails, this
variable holds a value of false.

If no value is specified, a default id of
logoff is used.

EXanuﬂe <% taglib uri="/fw" prefix="fw" %>

<fw:logoff id="result" />
<%=pageContext.getAttribute ("result") %> = the result of the logoff...

removeGroup

Description Deletes a group.

Wrapping This tag wraps the removeGroup() method on the EbiDirectoryManager

interface.
S}vﬁax <prefix:removeGroup groupid="groupid" id="ID" />
Request-time
expression
values
Attribute Required? supported? Description
groupid Yes Yes Specifies the ID of the group you want to

delete.

Framework Tag Library 107

Request-time

expression
values
Attribute Required? supported? Description
id No No Specifies the name of the variable that
will be used to store the result of the
operation. If the operation is successful,
this variable holds a value of true.
Otherwise, an exception is thrown.
If no value is specified, a default id of
deletedgroup is used.
Example This example shows how to use the removeGroup tag:
<%@ taglib uri="/fw" prefix="fw" %>
<html>
<head>
</head>
<body>

<fw:login userid="admin" password="admin"/>
<fw:removeGroup groupid="Groupl"/>
<fw:logoff />

</body>

</html>

removeUserFromGroup

Description Removes a specified user from a group.

Wrapping This tag wraps the removeMember() method on the
EbiRealmGroupDelegate interface.

108 exteNd Director User Management Guide

Syntax <prefix:removeUserFromGroup id="ID" userid="userid" groupid=
"groupid" />

Request-time
expression
values
Attribute Required? supported? Description

id No No Specifies the name of the variable that
will be used to store the result of the
operation. If the operation is successful,
this variable holds a value of true. If the
operation fails, this variable holds a value
of false.

If no value is specified, a default id of
removeduserfromgroup is used.

userid Yes Yes Specifies the ID for the user to remove.

groupid Yes Yes Specifies the ID for the group from which
the user will be removed.

Example <% taglib uri="/fw" prefix="fw" %>

<fw:removeUserFromGroup id="result" userid="Userl" groupid="Groupl" />

o

<%=pageContext.getAttribute ("result") %>

setUserPassword

Description Changes the password for a specified user.

Wrapping This tag wraps the modifyUser() method on the EbiUserDelegate
interface.

Framework Tag Library 109

Syntax

<prefix:setUserPassword id="ID" userid="userid" passowrd="password" />

Request-time

expression
values
Attribute Required? supported? Description
id No No Specifies the name of the variable that
will be used to store the result of the
operation. If the operation is successful,
this variable holds a value of true.
Otherwise, an exception is thrown.
If no value is specified, a default id of
setpassword is used.
userid Yes Yes Specifies the ID for the user whose
password will be modified.
password Yes Yes Specifies the new password.
Example <% taglib uri="/fw" prefix="fw" %>
<fw:setUserPassword id="result" userid="Userl" password="MyPassword" />
<%=pageContext.getAttribute ("result") %>
userinGroup
Description Determines whether a specified user is in a particular group.
Wrapping This tag wraps the isMember() method on the EbiRealmGroupDelegate
interface.
Syvﬁax <prefix:userInGroup groupid="groupid" userid="userid" id="ID" />

Request-time

expression

values
Attribute Required? supported? Description
groupid Yes No Specifies the ID of a group.
userid Yes No Specifies the ID of a user.

110 exteNd Director User Management Guide

Request-time

expression
values
Attribute Required? supported? Description
id No No Specifies the name of the variable that

will be used to store the result of the
operation. If the user is in the specified
group, this variable holds a value of true.
If the user is not in the group, this
variable holds a value of false.

If no value is specified, a default id of
useringroup is used.

EXanuﬂe <% taglib uri="/fw" prefix="fw" %>
Is in group...
<fw:userInGroup groupid="ContentAdmins" userid="JSmith" id="result" />
<%=pageContext.getAttribute ("result") %>

userLoggedin

Description Determines whether the current user is logged in to the session.
Wrapping This tag wraps the isAnonymous() method on the EboDirectoryHelper
class.

S}vﬁax <prefix:userLoggedIn id="ID" />

Request-time

expression
values
Attribute Required? supported? Description
id No No Specifies the name of the variable that

will be used to store the result of the
operation. If the current user is already
logged in, this variable holds a value of
true. If the user has not yet logged in, this
variable holds a value of false.

If no value is specified, a default id of
loggedin is used.

Framework Tag Library 111

<% taglib uri="/fw" prefix="fw" %>
Example % lib uri="/fw" prefix="fw" %
Is logged in...

<fw:userLoggedIn />
<%=pageContext.getAttribute ("loggedin") $>

112 exteNd Director User Management Guide

Index

A

access
restricting 51

ACL processing
about 48
in the Content Management subsystem 48
subsystem administrators and 49

ACLs
adding principals to 54
customizing 56
listing principals for 53

addUserToGroup tag 96

administrators
for exteNd Director subsystems 49
setting up access 52

authentication 29

authorization 45

BEA WebLogic
realm 19

BEA WebLogic server
realm 16

C

container
principal 55
containers
accessing ACLs for 55
accessing in the API 34
querying 35
ContentAdmin Admin type 50
createGroup tag 96
createUser tag 97
custom tags
addUserToGroup 96
createGroup 96
createUser 97
getGroupList 98
getResource 100

getUserID 101
getUserInfo 101
getUserList 103
getUserPreference 104
login 105

logoff 107
removeGroup 107
removeUserFromGroup 108
setUserPassword 109
userlnGroup 110
userLoggedIn 111

DAC (Director Administration Console)
managing groups 41
managing security 65
managing users 39
Directory subsystem
API 29
dynamic groups
support for in exteNd Director 35

EbiUserDelegate 74
EbiUserlnfo 74
getting 82
exteNd Application Server
see Novell exteNd Application Server

G

General Admin Admin type 50
getGroupList tag 98
getlUserPreference tag 104
getResource tag 100
getUserID tag 101
getUserInfo tag 101
getUserListtag 103

113

groups pluggable realms

accessing in the API 34 see realms

adding using the API 33 PortalAdmin Admin type 50
dynamic groups 35 principal

managing in the DAC 41 container 55

querying 34 profiles

source code for creating 74

IBM WebSphere server R
about 16 realms
realm 20 BEA WebLogic 19

custom 22,26
IBM WebSphere 20

J Novell exteNd Application Server 17
PersistManager 22

I2EE . pluggable 15
security API 45 readable 17
JSP pages types 17

custom tag libraries for 95 types of configurations

writable 17
removeGroup tag 107

L removeUserFromGroup tag 108
LDAP realms restricted access

about 16, 55 in Content Management subsystem 51

and user attributes 78 subsystem administrators and 51
LocksmithElementType Admin type 50 roles
logintag 105 accessing programmatically 63
logofftag 107 J2EE security and 59

security roles in exteNd Director 60
rules

N and user profiling 76
New User portlet

about 32,73 s

Novell exteNd Application Server))
compatibility realm 18 SearchAdmm Admin type 50
custom realm configurations 23 security

pluggable realm 17 about 45
managing using the DAC 65

SecurityAdmin Admin type 51

security roles
P creating 61
page layout in exteNd Director 60
mapping a security roleto 63 mapping to a page layout 63
PersistManager realm 22 mapping to workflow process 63
personalization Security subsystem
profiling 71 using APIs 52

setUserPassword tag 109

114 exteNd Director User Management Guide

subsystems
User 71

T

tag libraries

Framework tag library 95
tracking

profiling 71

U

UserAdmin Admin type 51
user attributes
about 77
and LDAP realms 78
managing 79
properties 79
userInGroup tag 110
userLoggedIntag 111
user profiles
adding and removing 86
managing using the DAC 85
users
accesssing in the API 34
adding to a group (API) 33
adding using the API 32
managing using the DAC 39
querying 34
User subsystem
about 71

WebLogic

see BEA WebLogic server
WebSphere

see IBM WebSphere server
workflow process

mapping a security roleto 63

Index

115

116 exteNd Director User Management Guide

	User Management Guide
	About This Guide
	Directory Management
	About Pluggable Realms
	About realms
	Types of realms
	Realm access

	J2EE application server realms
	exteNd Application Server realm
	exteNd application server compatibility realm
	BEA WebLogic realm
	IBM WebSphere realm

	LDAP server realms
	Base LDAP realm
	LDAP application server realms

	PersistManager realm
	Writing a custom realm
	Configuring realms
	Configuring realms automatically
	Configuring realms manually
	Configuring a different authentication provider
	Configuring the primary realm
	Configuring a custom realm

	Managing Users and Groups
	About the Directory subsystem
	Directory API

	Authenticating users
	About the Login portlet
	Authenticating a user

	Adding users and groups
	Adding a user
	Adding a group
	Adding a user to a group

	Accessing users, groups, and containers
	User and group queries
	Dynamic groups support
	Getting container principals in a tree realm

	Using the Directory Section of the DAC
	About the Directory section of the DAC
	Search facility

	Users
	Groups

	Security Management
	Using ACL-Based Authorization
	About the Security subsystem
	ACLs in exteNd Director
	Accessing principals
	How ACL processing works

	ACL subsystem administrators
	Restricting access to administrators using the API

	Accessing ACLs for users and groups
	Getting Security API delegates
	Getting an element type and identifier
	Listing the permissions associated with an element
	Listing the principals with permission for an element
	Listing the elements with permissions for a principal
	Getting the content of an ACL
	Assigning a principal to an ACL

	Accessing ACLs for containers
	Assigning a container principal to an ACL

	Customizing ACL-based authorization
	Customizing the Security service
	Adding ACL-based security to a new subsystem
	Custom permissions

	Using Security Roles
	About J2EE role-based authorization
	About exteNd Director security roles
	Creating a security role
	Mapping a security role to a workflow process
	Mapping a security role to a portal page layout
	Accessing security roles programmatically

	Using the Security Section of the DAC
	Modifying administrative access

	User Profiling
	Managing User Profiles
	About user profiles
	How profiles are used

	Profiles and realm configurations
	Checking the realm configuration
	Checking for a writable realm

	About the New User portlet
	Accessing profiles using the API
	Creating a new profile
	Looking up user profiles
	Getting a user profile

	Rules and user profiling
	About conditions and actions

	Accessing User Attributes
	About attributes
	Built-in attributes
	Attributes and non-LDAP realms
	Attributes and LDAP realms

	Attribute properties
	Display properties
	Data types

	Accessing attributes using the API
	Getting a list of attributes (non-LDAP)
	Getting a list of attributes (LDAP)
	Creating an attribute (non-LDAP)
	Setting an attribute value

	Using the Profiles Section of the DAC
	About the Profiles section of the DAC
	User profiles
	Attributes

	Reference
	Framework Tag Library
	addUserToGroup
	createGroup
	createUser
	getGroupList
	getResource
	getUserID
	getUserInfo
	getUserList
	getUserPreference
	login
	logoff
	removeGroup
	removeUserFromGroup
	setUserPassword
	userInGroup
	userLoggedIn

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

