Novell
exteNd
Composer

5.2 ®
‘ ENTERPRISE SERVER USER’S GUIDE

Novell

Legal Notices

Copyright © 2004 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied, stored on aretrieval system, or
transmitted without the express written consent of the publisher. This manual, and any portion thereof, may not be copied without the express written
permission of Novell, Inc.

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and specifically disclaims any express
or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to revise this publication and to
make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims any express or implied warranties
of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to makes changes to any and all parts of Novell
software, at any time, without any obligation to notify any person or entity of such changes.

This product may require export authorization from the U.S. Department of Commerce prior to exporting from the U.S. or Canada.

Copyright ©1997, 1998, 1999, 2000, 2001, 2002, 2003 SilverStream Software, LLC. All rights reserved.
SilverStream software products are copyrighted and all rights are reserved by SilverStream Software, LLC

Titleto the Software and its documentation, and patents, copyrights and all other property rights applicablethereto, shall at all timesremain solely and
exclusively with SilverStream and its licensors, and you shall not take any action inconsistent with such title. The Softwareis protected by copyright
laws and international treaty provisions. Y ou shall not remove any copyright notices or other proprietary notices from the Software or its
documentation, and you must reproduce such notices on all copies or extracts of the Software or its documentation. Y ou do not acquire any rights of
ownership in the Software.

Patent pending.

Novell, Inc.

404 Wyman Street, Suite 500
Waltham, MA 02451

U.S.A.

www.novell.com

exteNd Composer Enterprise Server User’s Guide
June 2004

Online Documentation: To access the online documemntation for this and other Novell products, and to get updates, see
www.novell.com/documentation.

New http://www.novell.com/documentation/

Novell Trademarks

ConsoleOne is aregistered trademark of Novell, Inc.
eDirectory isatrademark of Novell, Inc.
GroupWiseis aregistered trademark of Novell, Inc.
exteNd is atrademark of Novell, Inc.

exteNd Composer is atrademark of Novell, Inc.
exteNd Director is atrademark of Novell, Inc.
iChain is aregistered trademark of Novell, Inc.
jBroker isatrademark of Novell, Inc.

NetWare is aregistered trademark of Novell, Inc.
Novell isaregistered trademark of Novell, Inc.
Novell eGuide is atrademark of Novell, Inc.

SilverStream Trademarks
SilverStream is aregistered trademark of SilverStream Software, LLC.

Third-Party Trademarks

All third-party trademarks are the property of their respective owners.

Third-Party Software Legal Notices

The Apache Software License, Version 1.1

Copyright (c) 2000 The Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, thislist of conditions and the following disclaimer. 2. Redistributionsin binary
form must reproduce the above copyright notice, thislist of conditionsand the following disclaimer in the documentation and/or other materials
provided with the distribution. 3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment:
"This product includes software developed by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment may
appear in the softwareitself, if and wherever such third-party acknowledgments normally appear. 4. The names"Apache" and " Apache Software
Foundation" must not be used to endorse or promote products derived from this software without prior written permission. For written permission,
please contact apache@apache.org. 5. Products derived from this software may not be called "Apache", nor may "Apache" appear in their name,
without prior written permission of the Apache Software Foundation.

THIS SOFTWARE ISPROVIDED “ASIS"' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITSCONTRIBUTORSBE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSSOF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

JDOM.JAR

Copyright (C) 2000-2002 Brett McLaughlin & Jason Hunter. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, thislist of conditions, and the following disclaimer. 2. Redistributionsin
binary form must reproduce the above copyright notice, thislist of conditions, and the disclaimer that follows these conditionsin the documentation
and/or other materials provided with the distribution. 3. The name"JDOM" must not be used to endorse or promote products derived from this
software without prior written permission. For written permission, please contact license@jdom.org. 4. Products derived from this software may not
be called "JDOM", nor may "JDOM" appear in their name, without prior written permission from the JDOM Project Management (pm@jdom.org).

In addition, we request (but do not require) that you include in the end-user documentation provided with the redistribution and/or in the software
itself an acknowledgement equivalent to the following: " This product includes software devel oped by the IDOM Project (http://www.jdom.org/)."
Alternatively, the acknowledgment may be graphical using the logos available at http://www.jdom.org/images/logos.

THIS SOFTWARE ISPROVIDED “ASIS"' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE JDOM AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Sun
Sun Microsystems, Inc. Sun, Sun Microsystems, the Sun Logo Sun, the Sun logo, Sun Microsystems, JavaBeans, Enterprise JavaBeans, JavaServer

Pages, Java Naming and Directory Interface, JDK, JDBC, Java, HotJava, HotJavaViews, Visua Java, Solaris, NEO, Joe, Netra, NFS, ONC, ONC+,
OpenWindows, PC-NFS, SNM, SunNet Manager, Solaris sunburst design, Solstice, SunCore, SolarNet, SunWeb, Sun Workstation, The Network Is
The Computer, Tool Talk, Ultra, Ultracomputing, Ultraserver, Where The Network Is Going, SunWorkShop, XView, Java WorkShop, the Java
Coffee Cup logo, Visual Java, and NetBeans are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other
countries.

Indiana University Extreme! Lab Software License

Version1.1.1

Copyright (c) 2002 Extreme! Lab, Indiana University. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, thislist of conditionsand the following disclaimer. 2. Redistributionsin binary
form must reproduce the above copyright notice, thislist of conditionsand the following disclaimer in the documentation and/or other materials
provided with the distribution. 3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment:
"This product includes software devel oped by the Indiana University Extreme! Lab (http://www.extreme.indiana.edu/)." Alternately, this
acknowledgment may appear in the softwareitself, if and wherever such third-party acknowledgments normally appear. 4. The names "Indiana
University" and "IndianaUniversity Extreme! Lab" must not be used to endorse or promote products derived from this software without prior written
permission. For written permission, please contact http://www.extreme.indiana.edu/. 5. Products derived from this software may not use "Indiana
University" name nor may "Indiana University" appear in their name, without prior written permission of the Indiana University.

THIS SOFTWARE ISPROVIDED "ASIS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE AUTHORS, COPYRIGHT HOLDERS OR ITSCONTRIBUTORSBE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Phaos

This Softwareisderived in part from the SSLavaTM Toolkit, which is Copyright ©1996-1998 by Phaos Technology Corporation. All Rights
Reserved. Customer is prohibited from accessing the functionality of the Phaos software.

W3C

W3C® SOFTWARE NOTICE AND LICENSE

Thiswork (and included software, documentation such as READMEs, or other related items) is being provided by the copyright holders under the
following license. By obtaining, using and/or copying this work, you (the licensee) agree that you have read, understood, and will comply with the
following terms and conditions.

Permission to copy, modify, and distribute this software and its documentation, with or without modification, for any purpose and without fee or
royalty is hereby granted, provided that you include the following on ALL copies of the software and documentation or portions thereof, including
modifications: 1.Thefull text of thisNOTICE in alocation viewable to users of the redistributed or derivative work. 2.Any pre-existing intellectual
property disclaimers, notices, or terms and conditions. If none exist, the W3C Software Short Notice should be included (hypertext is preferred, text
is permitted) within the body of any redistributed or derivative code. 3. Notice of any changes or modificationsto thefiles, including the date changes
were made. (We recommend you provide URIs to the location from which the code is derived.)

THIS SOFTWARE AND DOCUMENTATION ISPROVIDED "ASI1S," AND COPYRIGHT HOLDERS MAKE NO REPRESENTATIONS OR
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS
FORANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE OR DOCUMENTATION WILL NOT INFRINGE ANY
THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

COPYRIGHT HOLDERSWILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGESARISING
OUT OF ANY USE OF THE SOFTWARE OR DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to the software without specific, written prior
permission. Title to copyright in this software and any associated documentation will at al times remain with copyright holders.

Contents

ADOUL ThisS BOOK.o 7
1 Welcome to Novell exteNd CompoSer ENtErpriSe SEIVEIttt e e e 9
What is CompPOSer ENterpriSe SEIVeI 2 . o oo e e e e e e e 9
SUPPOIt fOr POpUIar AP SeIVEIS. . o it e e e e 10
SBIVICE T PO & . vt ittt et e 10

Y= Vo I o o = 10

2 Composer ENterpriSe SErVer OVEIVIBW . . . v o\ vt ettt e et e et e e et et e et e 13
Deployment Archive ConteNntSot e 13
Novell exteNd App Server Database RequIirement e e e e 15
Push-Model versus Pull-Model DeploymeENtt e e e 16

HOt DeploymMent. . . . 16
Removing (Undeploying) Existing Applications 16
Updating Your LICEBNSEo e e 17

3 Runtime Administration of Composer ENterpriSe SEIVErttt 19
Runtime AdmiInistration CONSOIESot e e e e 19
Real-Time Update.o e 19

How to Access the General Properties CONsole e 19

General Properties Ulo e 21
Caching and Cache AdmINiStration e e e e e e e 24
What IS Caching? e e e 24
Least-Recently-Used (LRU) Cache Algorithm. e e e e 25
Cacheable ObJECES e 25

CaChe SCOPE . . oo 25
User-Adjustable Settings. e 26
PerformanCe TUNINGt e e e e e e e 27
COoNNECHION POOIS.o 27
Database Connection POOIS e 27

Logon Components and Non-Database Connection POOIS. e 28

PrOXY SBIVEIS . . o 28
SECUINtY ROIES. . . o 29
PUblisShing XML RESOUICESttt et e e e e e e e e e e e e e 30
Publishing Java Classesttt e e e e 30
Controlling Access to JAR and Class files e 31

4 The RUNEME FrameWorK . . . oot et e e e e e e e e e e e e e e 33
Composer Runtime ArChiteCtUre L. e 33
Typical Request-Handling SCEeNArio e e e e 34
Alternative Request-Handling SCeNarios. e e e e e 35
Framework ClasSeS oottt e e 36
Where to Find the Source Files and JavaDocC. e 36
Packages of INterest 36

Static CONSIANTS e 36

What Types of Programming Needs Does the Framework Address?t e e e 37

6

High-Level ArChiteCtUre. e e e 37

Input and Data CONVEISION e e et e e e e 38
Service Names within Framework Objects. e 38
Obtaining @ ServiCe INStaNCE i e e e 38
EXECULING the SEIVICE e e 39
Delegating Service Calls Through GXSServiceComponentBean.t 39
Data-Passing OptioNso 40
SEIVICE THOOBIS . . . et ettt et e e e e e e e e e e 41
IG X S S IVICERUNNET . . o 42
GXSServiceRunner and GXSServiceRUNNEIEX.o e 43
IGXSInputConversion and IGXSEXINPULCONVEISIONt e e e 46
EJB-DepPloyed SEIVICESottt e e e e e e e e e a7
Transaction ManagemeEnt. e 51
Transaction Control in eXteNd COMPOSEr.ottt e e e e e 51
Transaction Deployment Considerations for the Novell exteNd Application Server. i, 51
Servlet Deployment Considerations.ttt e 52
EJB DeplOoyYMENt e e 52
XA-Aware Database DrVErS e 54
EJB Deployment CoNnSIiderationso e 54
JDBC Transaction Control: Allowing User Transactionsttt e 54
REIEIENCES. . . .ot 55
exteNd Application Server DEPENUENCIESottt e e 57
CONNECHIONS . . . oot e e e e e 57
Using Novell exteNd Connection POOIS e 57
Contents of Deployment ObjJeCtsS 59
DEPlOYMENt EAR .. o e e 59
PrO et JAR . . o e e 59
A R L 60
SBIVIBES . . o o 60
N 2 60
IMPOrt O e CtS. DAt e 60
RESEIVEA WOTUS . . . oo 61
SOIVEN GlOS S A . . ittt e e 63

Composer Enterprise Server User’s Guide

About This Book

Purpose

This guide describes how to use exteNd Composer Enterprise Server and its
related administrative facilities, APIs, and classes to deploy and manage
Composer applications. As such, it isan adjunct to the exteNd Composer User’s

Guide.

Audience

This guide isaimed at the application server administrator and/or persons tasked
with deployment and amanagement of Composer services.

Prerequisites

This book assumes prior familiarity with the exteNd Composer design-time
environment and Composer application-building metaphors. You should also be
familiar with Java archive formats (WAR, EAR, JAR) and J2EE deployment

conceptsin general.

Organization

This guide is organized as follows:

Chapter

Description

Chapter 1, Welcome to exteNd
Composer Enterprise Server

Gives a definition and overview of the exteNd suite of
products.

Chapter 2, Composer Enterprise
Server Overview

Briefly describes exteNd Composer Enterprise Server
specifications and the production runtime environment.

Chapter 3, Runtime Administration
of Composer Enterprise Server

Outlines the key environmental and resource-related factors
that should be considered before deploying a Composer
service.

Chapter 4, The Runtime Framework

Describes how to customize or extend the application server
framework classes for non-standard deployments. Read this
chapter if you need to use custom service triggers.

Chapter 5, Transaction
Management

Describes options for controlling the transactional aspects of
your application.

Appendix A, exteNd Application
Server Dependencies

Describes database connection-pool issues specific to
deployment in the Novell exteNd Application Server.

Appendix B, Contents of
Deployment Objects

Describes the content of the files that are installed into the
application server.

Appendix C, Reserved Words

A listing of keywords that are used by Composer and should
be avoided in your code.

Appendix D, Server Glossary

Definitions of terms used in this guide.

8

Conventions
This guide uses the following stylistic and typographical conventions.
Bold serif typeface within instructions indicate action items, including:

s+ Menu selections

+ Form selections

+ Diaogbox items

Bold sans-serif typeface indicates:

« Uniform Resource | dentifiers
+ Filenames

Italic typeface indicates:
+ Variable information that you supply

+ Technical termsused for the first time
+ Titleof other Novell publications

Monospaced typeface indicates:
+ Method names

+ Code examples

System input

Operating system objects

*

*

Additional documentation

For the complete set of Novell exteNd exteNd Director documentation, see the Novell Documentation
Web Site:

http://www.novell.com/documentati on/extend.html

Composer Enterprise Server User’s Guide

http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation/exteNd.html
http://www.novell.com/documentation/exteNd.html

Welcome to Novell exteNd Composer
Enterprise Server

Novell exteNd isasuite of web application devel opment products aimed at reducing thetime required to
develop and deploy powerful XML -enabled, portal-aware web applications for use on J2EE app servers.
The Composer suite consists of three products:

+ Composer—avisual design environment for creating B2B integration applications

+ Composer Enterprise Server—aruntime environment that executes the applications created in
exteNd Composer

+ Composer Enterpriser Connects—afamily of products that extend the capabilities of exteNd
Composer and Server to permit the XML -enablement of diverse enterprise information sources
such as databases, host applications, and Java components.

The focus of this Guide is Composer Enterprise Server., which is the app-server-resident “execution
engine” for Composer-built services. (Each of the above pieces has its own documentation, so please
refer to the exteNd Composer User’s Guide for information on the design-time Composer executable, and
refer to the variousindividual User’s Guides for the specific exteNd Composer Connects that you need
to incorporate into your applications.)

What is Composer Enterprise Server?

Novell exteNd Composer Enterprise Server (or Composer Server, for short) isthe runtime environment
for applications devel oped with exteNd Composer. It is a Java application that runsin its own thread on
a J2EE-compliant enterprise application server. It starts up when the app server starts up and shuts down
when the server shuts down.

Composer Enterprise Server provides both the runtime execution engine for Composer-built services
(interpreting and processing the XML metadata deployed from Composer), and an application-server
tailored framework that providesintegration with services provided by an application server (e.g., thread
management, connection pooling, load balancing, failover, security, transaction control).

Runtime capabilities provided by Composer Enterprise Server include:

+ Deployment assistance

+ XML parsing

+ XSL and XForms processing

+ Instantiation and execution of Connect objects viainstallable factories
+ Interpretation of XML application object metadata

+ Mediation of SOAP-related interactions with the app server

+ Maediation of various other container-level app server interactions

+ Connection pooling and caching

Welcome to Novell exteNd Composer Enterprise Server 9

Support for Popular App Servers

Composer Enterprise Server is available for (and is tested against) various popular application servers,
including not only the Novell exteNd Application Server but IBM’s WebSphere, BEA WebL ogic, and
Apache Tomcat, running on various operating systems. (For the latest support matrix, go to
http://www.novell.com/documentation/exteNd.html.)

The application framework consists partly of base classes that are environment-independent, and partly
of classestailored to the specific application server within which exteNd Composer Enterprise Server
executes. Classes that are application-server-specific include classes responsible for:

+ Logging
+ Connection pooling
+ Transaction control (Enterprise Edition only)

Service Types

Composer applications are organized into deployable units of work called services. The services consist
of actions stored in components. (For a more precise definition of these terms, please consult the
Composer User’s Guide.) All of the action-model logic, connection info, and miscellaneous resources
that make up the componentsinside aservice, aswell asthe service wrapper itself, are packaged as XML
metadata. (In other words, a Composer service is not compiled bytecode.) This means, among other
things, that you can examine any individual component of a Composer service using an ordinary text
editor.

Composer Enterprise Server isthe runtime piece that invokes or instanti ates services based on incoming
requests; executes the instructions (actions) contained in the service and its components; manages
caching and connection pooling; and provides for other runtime needs of executing services.

Composer Enterprise Server handles service-invocation requests from a number of sources:

+ Servlet-based trigger objects (see below)

+ EJB objects

+ JSPsthat invoke a service via custom tags that, in turn, reference the Composer tag library
+ Direct programmatic invocation by Java objects

Service Triggers

10

A Composer service encapsulates the logic, connection information, and resources needed to execute a
unit of work. The service does not encapsul ate any triggering mechanism; invocation is abstracted out, to
another type of object, known as a service trigger.

The service trigger isresponsible for:

+ Dealing with any transport-related issues

+ Dataacquisition (marshalling/unmarshalling)

+ Instantiation of the target service

+ Passing properly formatted data to the target service

In most cases, the trigger object is aconventional HTTP servlet. But there are other possihilities, to

handle non-HT TP requests. Some of the other kinds of events that can trigger a Composer service
include:

Composer Enterprise Server User’s Guide

http://www.novell.com/documentation/exteNd.html

+ Arrival of amessage at a (JMS) message queue/topic. (Thiskind of event is monitored by aJMS
MessageL.istener.) A service that responds to this kind of triggering is known in Composer as a
JMS Service. Thisfunctionality is available only when the IMS Connect product isinstalled (asin
the Enterprise Edition of the exteNd suite).

+ Thefiring of an SAP function that has been designed to use a BAPI process to trigger a Composer
servlet. Thisfunctionality is available only when the SAP Connect product isinstalled (asin the
Enterprise Edition of the exteNd suite).

o A disk-1/0O “write” operation in agiven path location on a storage device. (A File Trigger causes a
Composer service to start up when a new file appearsin agiven location.)

o Arrival of eemail in aparticular mailbox at a given mail server.

+ Direct invocation by a“scheduled task” daemon. (Composer supports something called a Timer
trigger.)

Itis possible to assign more than one trigger type to a given service. The trigger merely acquires and

forwards data to the service (after instantiating the service).

Servicetriggers will be discussed in additional detail in alater section.

Welcome to Novell exteNd Composer Enterprise Server 11

12 Composer Enterprise Server User’s Guide

Composer Enterprise Server Overview

This chapter introduces some basic runtime issues you will need to know about if you intend to deploy
projects to Composer Enterprise Server and administer them at runtime. Those issues include:

+ Deployment Archive Contents

+ Push-Modé versus Pull-Model Deployment

+ Hot Deployment

+ Removing (Undeploying) Existing Applications
+ Updating Your License

Cache management and other administrative issues are discussed in the next chapter.

NOTE: This chapter assumes that you are familiar with EAR, JAR, and WAR packaging concepts, as well
as other J2EE deployment idioms. You should also be familiar with runtime and deployment concepts
applicable to the particular app server you will be targeting (Novell exteNd, IBM WebSphere, BEA
WebLogic, Apache Tomcat).

Deployment Archive Contents

Composer follows a standard J2EE deployment model, using the EAR (Enterprise ARchive) filetype as
the deployment object.

The deployment EAR wrappers all of the project-level resources and components you’ ve chosen to
deploy. The EAR is scoped to asingle project (.spf) file. The EAR encapsulates all servicesthat existin
your project, and the resources they use.

You can create your deployment EAR either with Composer (design time) or Director. If you are using
Composer Enterprise Edition (or the Enterprise Edition exteNd suite), you can use Composer’s design-
time deployment wizard to deploy projects straight to the app server (or to a staging area of your
choosing). In this scenario, Composer does all the packaging for you, automatically, and putsthe
resulting EAR on the app server. The EAR isimmediately “live,” with no need to restart the server.

The other way of creating deployment archivesisto use Director’s native J2EE packaging facilities.

NOTE: Director-native deployment is covered in the Director documentation. Likewise, Composer
Enterprise Edition deployment procedures are covered in the Composer User’s Guide. See the
appropriate guide for more information. The following discussion centers on low-level descriptions of
deployment artifacts.

Composer Enterprise Server Overview 13

A Composer deployment EAR contains the following types of objects:

Object

Use

Notes:

Project JAR File

Contains the services,
components and resources of
the project, in XML form.

The Components and other
xObjects that comprise your
services are stored in metadata
form (not Java class files).
Composer Enterprise Server
uses these files to create your
runtime objects on the app
server.

NOTE: This file is always
generated, and is always
packaged into the deployment
EAR.

EJB Service Trigger class files

Allows services to be invoked
through EJBs (potentially front-
ended by JSPs), which in turn
means Container services (for
transaction control, etc.) are
available..

EJB triggers are required for
standalone use of Composer
services as part of local
business applications..

WAR file Contains manifest.mf file Required if Servlets or EJBs
(listing the JAR resources for are created. Produced by
this deployment) and web.xml Composer automatically.
(see below).

web.xml file Describes information Created automatically and

necessary to install Service
Trigger Java classes into the
application server. The URI
associated with the Servlet
based Service Triggers and
JNDI name for EJBs are
described in these.

stored in a WAR file within the
deployment EAR.

SilverCmd batch file called
ImportObjects.bat

Contains SilverCmd utility calls
to install the deployment
objects into the Novell exteNd
application server.

Created automatically. (And
invoked automatically, if you
choose the “Yes” radio button
on the final screen of the
Composer deployment wizard.)
This artifact is created only for
the Novell exteNd Application
Server.

xc_deployment_info.xml

Contains the deployment profile
from the last time the
Deployment Wizard was
executed.

Created automatically. Allows
exteNd to restore the previous
deployment information the
next time a deployment is
performed.

Composer Enterprise Server User’s Guide

The following diagram summarizes the containment hierarchy of a deployment EAR.

Deployment EAR Contents (typical)

' Deployment EAR |

(optional)
Project WAR | " Project JAR | | EJB JAR |
Manifest.mf XML (xObject metadata) Manifest.mf
web.xmlt X5D (schemas) ejb-jar.xml
WSDL (web service Java class files

descriptions)

(For amore detailed description of the contents of these objects, see the appendix.)

Novell exteNd App Server Database Requirement

Many J2EE application servers use ordinary disk storage as the “backing store” for app-server content.
By contrast, the Novell exteNd Application Server (up through and including version 5.1) uses a
database.

NOTE: For a list of supported databases and drivers, see the Novell exteNd Application Server release
notes and documentation.

The app server stores itsown internal classes and runtime artifacts in a default database called
SilverMaster (or SilverMaster50; the name always contains the version number in the final two
characters). You can deploy your own projects (your Composer and Director EAR and WAR files)
directly to SilverMaster, if you wish. But for better encapsulation and easier management, you may want
to create individual databases for each project. The deployment process, in this case, involvesthe
following steps:
+ Create adatabase and make it available to the app server (using the client-side smc.exe (Server
Management Console) application that comes with Novell exteNd app server)

+ Specify that database’s name in the Server Profile corresponding to the deployment you wish to
perform (in Director or Composer, use Tools > Prafiles. . . to access the dialog where you can
create or edit Server Profiles; and specify the target database there)

+ Deploy to the app server

The deployment database for your project need only be created and installed once. You can then deploy
and redeploy your project into that database as many times as needed.

NOTE: A visual Ul for managing databases and drivers installed on the app server is available in the
smc.exe (Server Management Console) app that ships with the app server. Consult the Novell exteNd
Application Server documentation for details.

Composer Enterprise Server Overview 15

Push-Model versus Pull-Model Deployment

Deployment of Composer servicesisusually initiated from within a Composer or Director design-time
environment. Director offers avariety of wizards and tools for creating and packaging deployment
artifacts, including those needed to deploy Composer services. (See the Director documentation for
details.) Composer Enterprise Edition hasits own wizards and tool sto enable direct deployment from the
Composer design-time environment. (See the separate Composer User’s Guide for details.) Composer
cando alivedeploy straight to atarget app server, or a“ packaging only” deploy to astaging areaon disk.

Composer supports a push model aswell as a pull model for deployment. The push model isthe case
described above, where you initiate deployment from the design side. In the pull model, deployment is
initiated from a browser consol e on the server. (See the next chapter.)

Hot Deployment

You can deploy aproject to the app server while the app server isrunning, even if an earlier version of
your project already exists on the server. (The old deployment EAR issimply overwritten.) Thereisno
need to undepl oy an existing EAR before deploying anew one. However, you should clear the cache (see
“Clearing the Cache” in the next chapter) before running the newly deployed project, because it's always
possible that old objects from the previous deployment are still in memory.

Removing (Undeploying) Existing Applications

16

Various app-server vendors offer varioustools for managing deployed web applications. With the Novell
exteNd Application Server, you can use the following procedure to undeploy an already deployed object
(which isto say, removeit from its host database, without removing the database itself). To undeploy a
deployed Composer project:

1 Withthe app server running, launch the Server Management Console (smc.exe) application.
2 Inthetoolbar at the top of the main window, click the Deployment button (as shown below).

5, Movell exteNd Application Server Management Console - USEFR

File Wiew Help

‘!-33" "glu g 3| Ceployment | E’ $ @

LA

| Display server deployment information |

a lacalhost:80 Deployed Objects JHDI Tree

Deploved Objects:
] a Silvertasterso

3 Inthe main window under Deployed Objects, locate the database that contains the deployed
project you wish to undeploy. (All databaseswill belisted in tree view.) Toggle the plussign next to
the database “ parent node” to exposeits children. The child (or leaf) nodes of the tree represent
deployed archives.

Composer Enterprise Server User’s Guide

4 Single-click (select) the deployed archive you wish to remove. (Seeillustration below.)

CAUTION: If your deployment database is SilverMaster, be careful not to select the Director EAR
nor the exteNd Composer EAR. These EARs contain runtime executables for Director and Composer.

!, Novell exteNd Application Server Management Console - USER: Anonymao — |EI|1|
File “iew Help
2 & & 38 | & » @ | & @ Novell
ﬁ localhost JHDI Tree Manage URLs Resource Adapters
Deployed Objects:
= a SilverMastersn
g Directorso
g exteNdComposer_ear
%’ Helloorld_ear
gmainest_ear %
Efiahle Disahie SHUTHET Undeploy
T I

5 Click the Undeploy button in the lower right corner of the window. The EAR or WAR in question
will disappear from tree view and will no longer exist on the app server.

NOTE: You cannot undeploy individual Composer services one at a time. The entire project EAR will be
undeployed as a unit.

For information on how to undeploy EAR and WAR filesfrom other app servers, consult the appropriate
vendor’s product documentation.

Updating Your License

You can update licenses manually by means of one of the administration consoles (the License Manager
page). Consult the discussion of the License Manager in the chapter on administration.

Composer Enterprise Server Overview 17

18 Composer Enterprise Server User’s Guide

Runtime Administration of Composer
Enterprise Server

This chapter discusses subjects of importance to anyone who needs to administer deployed Composer
services. Those subjectsinclude;

+ Thevarious consoles available for managing deployed Composer services, and how to use them
+ How toinspect and/or edit license-string info for Composer server-side products

+ Cache management and performance-tuning issues

+ Security roles

+ How to publish (and control the visibility of) JAR files and custom Java classes

Runtime Administration Consoles

You can manage various aspects of Composer Enterprise Server’s runtime operation through browser-
based (JSP-powered) consoles. In addition to a General Properties console page where you can exercise
control over settings of more-or-lessglobal scope, thereareindividual consolesfor the various Composer
Connects (such as JDBC, LDAP, Telnet, and so on), which expose Connect-specific settings. The GUI
allows easy navigation back and forth between and among the various console.

NOTE: The consoles depend, in part, for their functionality on JavaScript, so be sure scripting is enabled
in your browser. Your browser should also be HTML 4.0 compliant and CSS-aware. No Java applets are
used, however, so there is no need to have a Java-plugin-enabled browser.

Inaddition to offering aGUI for adjusting important runtime settings, the General Properties panel of the
main administrative console lets you inspect and/or update your product license(s). Thisis discussed
below.

Real-Time Update

Any console settings you wish to change or experiment with will be updated onthe server inreal time, as
you adjust them, so that you do not have to restart the server. Changes to cache settings, pool settings,
etc., take effect immediately.

How to Access the General Properties Console

You can use the administrative console(s) at any time after the app server is running. The entry point is
the General Properties page.

> To access the General Properties page:

1 Besurethe application server isrunning, with Composer Enterprise Server installed and
operational.

2 Launch your web browser.

Runtime Administration of Composer Enterprise Server 19

3 If thetarget server isNovell exteNd Appl

and port (for example, http:\localhost:80.)

ication Server: Navigate to the default host address
A master console window similar to the following will

appear, with alist of links. Click the exteNdComposer link.

2 Directory of SilverMasterS0
J File Edit Wiew Favorites Tools Help

J@Backv@ﬁ-}v

SilverMaster50

Directorso
extendcomposer
HelloworTd
mailtest
robots. txt
SilverMasterso
silverstream

]

[| | |BEvrocalintranet 4

[

Other app servers: Enter the default host |

P address, port, and “ exteNdComposer/Consol€e” in

your browser window and hit Go. (The URL should look something like
http://localhost/exteNdComposer/Console.)

The General Properties console screen will

appear:

a exteNd Composer Server Console - Microsoft Internet Explorer
| Ble Edt ¥ew Favortes Todls Help |JL|nks @] TestDirector7 5 4] 125E1 4.1 »
J “mBack v (2 7ol = - |J Address I@_“l http:,f;’localhost,iexteNdcj “ [E1Snaglt
=]l Novell.
(el TIE General Properties and Settings i
About Products: Wi Free Memony: 158 Wb
Log Level:
3270 & 5
Apply Log Level
5250
CICSRPC Cache Status
i Expressions Cached: 33
— ¥Path Modes Cached: 0
I Functions/Code Tables Cached: 0
- Component Types Cached: 2
HP3000 Total Components Cached: 2
Clear Cache
HTML =
JDBC Cache Tuning
JMS Expression / ¥Path Caching: & on O 0ff
Component Cache Expinyg: 720
LDAP P P
Total Component Cache Size: 280 po
EROGESY Ll Apply Cache Tuning j

i€

[[[EFodmwae

Composer Enterprise Server User’s Guide

General Properties Ul

Navigator Frame

Toolbar

The General Properties page (shown above) has atoolbar at the top, a navigator frame on the left, and a
content frame with various text fields and buttons.

The navigator frame contains links for each of the Composer Enterprise Connect products that you have
installed (including eval versions). Clicking any link will take you to a product-specific license-info page
for the Connect in question. If the Connect in question is capable of using connection pooling, there will
be a pushbutton on the license page labeled “ Console.”

NOTE: An exception to this rule is the JDBC Connect, whose pooling is handled by the app server rather
than by Composer Enterprise Server.

Novell®exteNd" Composer

| Yersion 5

Hovell® exteNd™ Composer
Enterprize Server

TELHET Connect

Wersion 5.0 (B1)

@ 1996-2003 Silveritream Software LLC

Licenze key: B1420327E000000001

| Console |

If you press the Console button, a new browser window will open, containing a console screen with
information about connection pooling. (Consult the documentation for the individual Connectsto learn
more about the use of these connection-pooling consoles.) You can also open the connection-pooling
console window(s) by use of the toolbar buttons, as described below.

At the top of the page, you'll find arow of buttons on atoolbar. The exact number and kind of buttons
will depend on the number and type of Composer Enterprise Connect products you currently have
installed on the server. Thetoolbar configuration for Composer Enterprise Edition is shown below:

2 MConsale

o BREREE R
M

Each button has a hover-tip associated with it. Thetip appears above the button. In the illustration above,
the cursor is hovering over the button corresponding to the 3270 Connect product. (The tooltip says
“3270 Console.”) Clicking the button will result in a new browser window opening, with the 3270
console showing init.

The very first button on the far left of the toolbar isalink to the General Properties page. This buttonis
present on all Composer console pages.

Runtime Administration of Composer Enterprise Server 21

The button next to the General Properties button isthe Exit button. It closes the browser window.

Thebutton at thefar right of thetool bar isthe Server-Based Deployment button. This button will takeyou
to aseries of deployment screensthat you can useto locate and deploy apreexisting EAR, WAR, or JAR
filethat is ready to beretrieved from a staging areaon a network drive. (In other words, this button will
initiate a“ pull-style” deployment.) To perform this kind of deployment requires that a deploy-ready
archive (e.g., EAR) aready exist somewhere on disk.

General Properties and Settings

22

The main frame of the General Properties page contains controls for inspecting and adjusting various
runtime parameters on the fly.

General Properties and Settings

Wi Free Memony: 29 Mb
Log Level: IE
Apply Log Level |

Cache Status
Expressions Cached: 43
Functions/Code Tables Cached:
Component Types Cached:
Total Components Cached:

Clear Cache |

jmm o o

Cache Tuning

Expression Caching: & 0n O 0ff
Component Cache Expiny: 720
Total Component. Cache Size: 250
Apply Cache Tuning|

If you want to change the log-message threshold for your Composer project(s), enter anumber from 1 to
10intheLog Level field and click the Apply L og L evel button. (The lower the number, the more
verbose the logging.) Changes take place immediately.

Click the Clear Cache button if you want to purge all objects from the in-memory cache immediately.
(See additional discussion below.)

You can enter new cache settings as desired (again, see discussion below), then click the Apply Cache
Settings button to make your new settings take effect immediately.

Composer Enterprise Server User’s Guide

License Manager

The exteNd Composer logo in the top left corner of the General Properties pageisitself abutton. The
cursor changes to a hand when you allow the mouse to linger over the words “ exteNd Composer.”

a exteNd Composer Server Console - Microsoft Internf

J File Edit ‘iew Faworites Tools Help

J@Backv@ﬁ@*

exteMNd CDTT'I%)SEF YersionALicense |
—— =1l E
= [Click. For License information

=
General Properties o

TS iy

If you click the mouse when it is over the Composer logo, you will see the content area of the browser
window change appearance:

Novell*exteNd" Composer

| Yersion 9

Hovell® exteNd™ Composer
Enterprize Server

Yersion 5.0 (1065)

@ 1995-2003 SilverStream Software LLC
Licenze key: B1420324 2400000001
Licensed to: Default Company
License davs left: Unlimited

Licenze CPU count: Unlimited

Licenses.

This screen displays the current license key, product version and build number, and other important
information. You may be asked for this information when and if you need to contact Customer Support.

At the bottom of the license summary page, thereisalicenses. . . button. If you click thisbutton, anew
browser window will open:

Runtime Administration of Composer Enterprise Server 23

/J Manage Licenses - Microsoft Internet Explorer 10l =|
exteNd Composer
(=] Novell.
Installed Component License Information |
Name License Status
Core Product |B142032424DDDDDDD1
Cannot get build for:
com.sssw,b2b, ee.zap, it GHNYSAPXObjectFactory,
exteMd Composzer S4P Connect is designed to
integrate with the SAP environment through the SAP
Sap IRBFE@DDLSEBC@ABC@ Java Connector [JCo] libraries. Therefare, to install
exteMd Compozer S4P Connect, vou must have the
S4P JCo installed, Please see the section entitled
"Installing S4P Jawa Connector (JCo)" in the exteld
Composer 54P Connect Release Notes,
ShPSenice IRBFE@DDLSEBC@ABC@ Cannot get build for:
com.sssw, b2b, ee.zap. b GHNYSAP ServiceXObjectFactory
3270 IB1420324CSDDDDDDD1 Loaded
3270logon IB1420324CSDDDDDDD1 Loaded
ii?ﬁﬂ |R142n32RRRNNNNANNT | naded | _ILI
4 3
|:Bj Daone ’_’_’_ E Local intranet: 4

This page gives adetailed listing of license information, including Status info that may be useful for
troubleshooting. In the above picture, for example, the entry for SAP Connect has a detailed status
message explaining why the connector did not load. Likewise, the entry for SAP Service contains a
message mentioning a specific class name. Again, you may be asked for this information when
contacting Customer Support.

Caching and Cache Administration

The General Properties page of the Composer Enterprise Server console gives you the ability to inspect
cache statistics aswell as adjust caching parameters. This section, and the sections that follow, address
the variousissues you need to know about in order to use this portion of the console to best advantage.

What Is Caching?

Caching refers to temporary storage of in-memory objects that might be costly to create over and over
again. It's atechnique for achieving runtime-object reuse.

The goal of caching isto enable higher performance: more units of work per second. When objects are
aready availablein memory and don’t haveto be created from scratch, applicationstakelesstimeto run.
Thetrick isknowing which objectsto cache, and how to manage the cache so asto minimize RAM usage,
data-copying, garbage collection overhead, etc. These are nontrivial issues, especially in a container
process that manages a heterogeneous,compl ex, fast-changing execution environment. Fortunately,
Composer Enterprise Server does most of the hard work for you.

The down side to caching, in general, isthe need for extramemaory to store cached objects. Beyond this,
there isthe potential for performance degradation if cache-management overhead becomes great. The
cost of managing a cache can become significant if the cache contains large numbers of objects, or if
conditions are so dynamic that new objects are being “turned over” quickly.

24 Composer Enterprise Server User’s Guide

Ideally, a cache should contain only frequently accessed items, and/or items that are costly to create. But
it's not always obvious which items meet these criteria. The cache hasto “know” how to identify (and
retain) high-demand objects while removing infrequently accessed objects that are only taking up
valuable memory.

Least-Recently-Used (LRU) Cache Algorithm

Composer Enterprise Server handles cache management automatically, viaaleast-recently-used (LRU)
algorithm.

LRU meansthat cacheable objects, once they exist, are kept in memory until some predetermined
number of cached objects has been reached or exceeded, at which point the least recently used objects
will beremoved if it is necessary to add new objects. The* predetermined number” is something you can
set yourself, using the Total Component Cache Size control on the Composer Enterprise Server main
console. Entering alarge number in thisfield tells Composer Enterprise Server to maintain alarge
number of objectsin memory, at the expense of available free Virtual Machine memory. Setting alow
number means relatively few objects will be retained in memory, freeing up RAM. The default valueis
250.

NOTE: A large value does not guarantee better performance: For example, routine JVM garbage
collection (compaction and purging of memory) becomes more timeconsuming if the cache is large, and
LRU analysis (and pruning) of the cache is more costly as well. You will have to experiment with different
cache settings to find the “sweet spot” for your particular production environment.

Cacheable Objects

Cache Scope

Composer can cache the following types of objects:

+ Components (XML Map, JDBC, LDAP, Telnet, and other components)
+ Actions(Log, Map, Function, Decision, etc.)

« User-scripted functions in Custom Script resources

+ Code Table resources

Composer does not cache:

+ Resource XObjects other than Code Table: For example, thereis no caching of WSDL Resources,
Form Resources, Images, JARS, XSD, etc.

o XML Templates
+ User objects (custom Java objects)

Of course, CPUs, operating systems, and JVMs all have their own caching mechanisms. It's possible
(indeed likely) that objects not cached by Composer will reside in a cache of one kind or another at
runtime.

Composer Enterprise Server provides runtime services for all Composer-built executables deployed on
the app server, regardless of which EAR, WAR, or JAR file(s) the executables come from. Accordingly,
caching operates across a scope that encompasses any and all Composer deployments on agiven server.
This means that any time you change cache parametersin the console, you are potentially affecting all
deployed services.

Runtime Administration of Composer Enterprise Server 25

For example, if you' ve deployed five projects, with three services each, and those 15 total services
contain agrand total of 400 cacheable objects, Composer Enterprise Server will cache the 250 most
recently used objects (no matter what type they are or which project they came from), assuming you' ve
kept the default Total Component Cache Size setting of 250. If you adjust the cache size up or down,
Composer Enterprise Server will add to or prune the cache as appropriate, again according to LRU only,
with no regard for which object came from which deployed app.

User-Adjustable Settings

The user-adjustabl e caching parameters available on the General Properties console screen include:

+ Expression Caching on/off—Thisradio button tells Composer Enterprise Server whether to include
Actions (such asMap, Decision, Function, etc.) in the cache. (Actions are considered “ expressions’
at runtime.) If you are using a generous Total Component Cache Size (see below) but are not seeing
any performance improvement under load, try turning Expression Caching off.

+ Component Cache Expiry—This setting allows you to put a maximum limit (in minutes) on the
lifetime of inactive (but still cached) objects. The default is 720 minutes (12 hours), which means
no inactive item will stay in memory longer than 12 hours. (The key intuition here isthat if an
object has been in memory for 12 hours and hasn’t been used, it probably doesn’'t need to bein
memory any longer.)

+ Total Component Cache Size—Thisisthe maximum number of objects (of all types) that will be
stored in the cache at runtime. The default is 250.

The cache-expiry and total size limits are enforced via adaemon process—a cache pruner—that runsin
its own thread. Every ten seconds, the pruner inspects the cache to seeif any objects have “ expired”
(reached their inactivity time limit, or “ Expiry,” as discussed above), in which case those objects are
summarily purged from the cache, regardless of whether the cacheisfull.

IMPORTANT: The console contains a button called Apply Cache Tuning. This button applies the
changes you've made (if any) to cache settings and refreshes the console. Don't forget to click this button
after you've edited any cache settings.

Clearing the Cache

26

The General Properties and Settings console contains a button called “ Clear Cache.” This button does
just what it says: It immediately removes all stored objects from cache memory. The console's Cache
Status numberswill updatein real time to reflect this.

You will typically use the Clear Cache button when redeploying (“hot” deploying) a project after
modifying it. If old, unmodified objectsfrom the previous deployment are still in the cache, you may not
see your new project’s changes take effect until the cacheis cleared.

NOTE: Undeploying a project (using the app-server’s own utilities for removing deployed objects) does
not obviate the need for clearing the cache. See “Removing (Undeploying) Existing Applications” in the
previous chapter.

The Clear Cache button is often useful in testing. For example, if you are running in-house benchmark
tests to determine which of various cache settings is optimal for a given set of conditions, you would
probably want to zero out the cache between runs.

Composer Enterprise Server User’s Guide

Performance Tuning

Performance optimization is a complex subject because of the many variablesinvolved and the non-
obviousinteractions between them. Therearefew hard-and-fast rules. Someissuesto be aware of include
the following:

+ Larger cache sizes may improve application performance, but those gains can be offset by the
larger amount of time spent in garbage collection (which is under control of the VM, not
Composer).

+ InanLRU-governed system, larger cache sizes may not have adramatic effect if the VM isaready
using generational garbage collection (asis the case on the HotSpot server VM by default).

+ Incremental (as opposed to generational) garbage collection can be turned on viaaVM param. You
may want to test performance with and without incremental GC enabled.

+ Always be sure the same VM is used on production machines and performance-test machines. If
you tune against a particular VM and then redeploy to a different VM, performance may not be
what you expected.

+ Besurethe VM command-line params used in testing are exactly the same as those on the final
target machine.

+ Garbage-collection algorithms generally change with each new release of aVVM, so be sureto retest
every time anew VM release comes out.

+ Tuning requirements will differ significantly depending on whether your applications are 1/O
bound, compute-intensive, or memory-intensive. Deploying a new project into a set of existing
projects may alter the mix of dependencies and change the performance of other apps, because the
newly deployed services may be 1/0O-bound, whereas the preexisting services might be compute-
intensive.

The only way to know which cache and pool settings are best for agiven set of appsisto test.

Connection Pools

In aclient/server system, one of the most resource consumptive operations is connection management.
Allowing each transaction to open and close a connection for each request usually introduces significant
overhead. To minimize this overhead, Composer Enterprise Server allows you to exploit the connection
pooling features of your application server.

It'simportant to make a distinction between database connection pooling and other types of connection
pooling. In general, database connection pooling is under the control of the app server, whereas other
types of pooled connections (such as 3270 connection pools) are under the direct control of Composer. In
the database case, you should consult the documentation for your app server for information of amore
detailed nature than will be presented here. (The different app servers, such asNovell exteNd, WebL ogic,
WebSphere, etc., have different setup and administrative capabilities for managing and creating database
connection pools.)

Database Connection Pools

Inthe Novell exteNd Application Server, database connection pools areidentified by database name. To
take advantage of the server’s connection pooling, the Connection Resource for the target database must
have the pool name specified. You will want to coordinate with your app server administrator on this at
design time, when setting up Connection Resources for your JDBC components.

Runtime Administration of Composer Enterprise Server 27

Logon Components and Non-Database Connection Pools

Proxy Servers

For connections to non-database resources, Composer Enterprise Server provides connection pooling
capabilities that augment those of the application server. Composer Enterprise Server’s connector-
specific connection pools are configurabl e and manageabl e through separate console pages.

Some of the Composer connectors (chiefly those that emul ate terminal sessions: 3270, 5250, Telnet, etc.)
offer the ability not only to pool connections, per se, but to log in to a particular “ start page” of an
application or system (which sometimes involves navigating past several screens). The ability to pool
properly pre-positioned (by “ start page”) connectionsis afforded by so-called Logon Components, which
you build as part of your project in Composer at design time.

In order for Logon components to work properly, their existence needs to be made known to the
application server aswell asto Composer Enterprise Server. If your project uses L ogon Components, you
should do the following after deploying your project to the server:

To enable the use of Logon Components:

1 Locate the Composer deployment JAR that contains your Logon Components. Thiswill be aJJAR
file (bearing the name of your project) located in the \ar chives folder of your staging area’s main
output folder.

2 Manualy copy the JAR file to the app server’s\lib folder.
3 Follow the app-server vendor’s recommendation for putting the JAR file in your server’s classpath.

NOTE: If you're using Novell exteNd Application Server, you can add appropriate $SS_LIB entries
in agjars.conf after copying the JAR files to the lib directory of the app server

4 Restart the server.

If you want to go ahead and initialize the logon components (thus opening all pool connections and
bringing them to the proper startup screen), continue to the next two steps. Otherwise, if you are
okay with letting connections and logons happen in real time as they are needed (and taking the
onetime performance hit associated with that), you can skip the next two steps.

5 Navigate to the Composer runtime console (using your web browser) and click into the console for
the particular Connect product in question.

6 Click theInitialize Connection Pool button. (This step needs to be done every time you start the
server, if you want connections to be set up before going live. Otherwise, there will be a onetime
speed hit asindividual logon connections “ start up” one by one, on demand.)

The architectural and other particul ars of various types of pools differ somewhat depending on the type
of back-end system involved. Theseissues arediscussed in greater detail in the variousindividual User’s
Guides for the various Composer Connect products (e.g., 3270, 5250, CICS RPC, IMS). Seethe
appropriate guide for more information.

If your service will be running inside a proxy server, you will need to inspect (and possibly hand-edit)
certain settings in your xconfig.xml file.

NOTE: There are two xconfig.xml files: One for design time, and another one on the server. The design-
time file can be found under Composer\Designer\bin. The server-side file can be found under
AppServer\Composer\lib. Be sure Composer is not running when you make hand edits to the design-
time file. (Composer overwrites the file on shutdown.) Likewise, make edits to the server-side version of
this file when the server is stopped. Then restart the server.

At design time, you can modify a project’s proxy-server settings in exteNd Composer viathe Designer
tab onthe Tools> Preferencesdial og. (Seethe Composer User’s Guidefor details.) When you shut down
Composer, xconfig.xml is updated for you with respect to proxy-server settings that you made in Tools
> Preferences.

28 Composer Enterprise Server User’s Guide

Security Roles

On the server, you need to inspectand/or edit xconfig.xml manually in order to “sync up” the runtime
proxy server parameters with those you used at design time. Simple go to your
AppServer\Composer\lib folder and open xconfig.xml file with atext editor. Look for the

PROXY SERVERINFO tag. The child elementsunder thistag allow you to fine-tune your proxy settings.
Edit them as necessary (with the server shut down), then restart the server.

NOTE: Be sure the USEPROXYSERVER elementis set to “ON” if your app will be running inside a proxy
server at runtime.

Here is an example of what the relevant section of xconfig.xml looks like:

<PROXYSERVERINFO>

<USEPROXYSERVER Desgc="If on, the additional PROXY options are enabled (valid
values are on \ off) ">on</USEPROXYSERVER>

<HTTPPROXYHOST Desc=" For Doc I/O, HTTP Actions etc., if network uses a
proxy enter name here."></HTTPPROXYHOST>

<HTTPPROXYPORT Desc="Port number HTTPPROXYHOST listens
on.">80</HTTPPROXYPORT>

<HTTPNONPROXYHOSTS Desc="List of hosts that do not require a Proxy. Each
hostname must be seperated by a pipe ' |'.">localhost</HTTPNONPROXYHOSTS>

<FTPPROXYHOST Desc=" For Doc I/O, HTTP Actions etc., if network uses a proxy
enter name here."></FTPPROXYHOST>

<FTPPROXYPORT Desc="Port number FTPPROXYHOST listens on.">80</FTPPROXYPORT>

<!-- Note: The following section applies only if you are
in a Windows NT Lan Manager (NTLM) security environment -->
<NTLMCREDENTIALS>

<NTLMUSER>MyUserName</NTLMUSER>
<NTLMPWD>aEPUQn2YTUV+s0y/AXHwBA==
</NTLMPWD>
<NTLMDOMAIN/ >
<PROXYNTLMPROTECTED>on</PROXYNTLMPROTECTED>
</NTLMCREDENTIALS>
</PROXYSERVERINFO>

Note that if your proxy server requires the use of NTLM Authentication, you will need to copy the
NTLMCREDENTIALS portion of the PROXY SERVERINFO block (see above) from your design-time
xconfig.xml file to your server-side xconfig.xml file. Thisblock will exist in your design-time
xconfig.xml fileif and only if you have set your NTLM credentialsin the dialog at Tools > Preferences
> Designer > Advanced > Setup. (You may have to exit Composer in order to see the changes show up
in xconfig.)

Security Roles (a J2EE feature supported by most app servers) provide a highly granular, inheritance-
based mechanism by which you can set and enforce access privileges to deployed services that use
connections and connection pools. With security roles, constraints can be placed on HTTP actions for
particular URL patterns. Roles are also common in database connection pool scenarios.

Security Roles for container-scoped objects are created and administered at the application-server level
(rather than in Composer). You should consult your app server documentation for detailed information
on how to set up and manage roles on your particular server. In Composer, you use role namesto identify
aparticular service with arole so that when the service acts as aclient (to obtain connections, invoke
beans, etc.) it can identify itself appropriately.

Most of the service-trigger property sheetsin Composer’s design-time environment have afieldinwhich
you can specify the Role required in order to run the servlet/trigger in question.

NOTE: Service-trigger property sheets are visible only in Composer Enterprise Edition.

Runtime Administration of Composer Enterprise Server 29

When you specify aRole namein atrigger property sheet, you are essentially limiting access to the
Composer service. Therole of the caller must match the Role required by the service, or it must inherit
from arole with appropriate access rights, in order for the caller to invoke the target service. In this
scenario, the Composer serviceisthetarget of the request and uses the role mechani sm to decide whether
the caller isqualified to trigger the service.

You can also specify a“Run As’ role for Composer services that will execute other services. In this
scenario, the Composer serviceistheclient, rather than thetarget. The” Run As’ role givesthe Composer
service aRole (an identity for security purposes) to be known by when it calls other services.

Publishing XML Resources

When establishing a business-to-business process, you may need to publish (or expose) certain files that
arerequired by other services, or perhaps by your business partners. Examples of thesefilesinclude X SL
style sheets for rendering an invoice and DTD/schemafiles for validating documents sent by your site.

For management and maintenance purposes, it isusually more effectiveto prepare thesefilesin their own
dedicated JAR and deploy them to the application server. A URI can then be associated with the JAR and
its contents published .

The use of special-purpose JARS can al so be an effective strategy for resource files needed by your
services, since they allow you to deploy and maintain ancillary files (and the services that use them)
separately. In creating special-purpose JARS, you need to plan ahead and indirect all referencesto these
resources through exteNd Project Variables.

Publishing Java Classes

30

You may find it convenient or necessary to use non-Composer-built Java classes or JARsin your service.
If you do require additional Java classesin your application, you must make them available (visible) to
Composer Enterprise Servce and/or the app server.

If your JARs or classes need to be visible to Composer Enterprise Server, you can edit or create <JAR>
elements under the <RUNTIME> block of xconfig.xml. (You can locate the xconfig.xml file for the
runtime environment in Composer Enterprise Server’s\lib directory. On the design-time side, look in
Composer’s\bin directory.)

NOTE: You must do this when the server is not running, since Composer overwrites xconfig.xml at
shutdown.

If JARs need to be visible to the app server, and you' reusing Novell exteNd Application Server, you can
add appropriate $SS_L IB entriesin agjars.conf and copy the JAR filesto the lib directory of the app
server; or you can add classes directly to the server’s application database.

Other application servers have their own classpath exposure points, generally involving .bat or .sh files
and/or config files and/or custom environment variables. You can read about these in the appropriate
vendor’s documentation.

For devel opment purposes, you can always set the system environment classpath variableto point to your
classes or JARS, using operating-system utilities. This should be done only for devel opment work,
however. In a production environment, you should limit the scope of JAR/class accessto just the
applications that need access.

Composer Enterprise Server User’s Guide

Controlling Access to JAR and Class files

In J2EE, there are five waysin which JARs and/or classes can beinstalled such that they can be found by
client processes within an app-server environment:

*

Asindividual classes within aweb archive’'s WEB-INF/classes folder. These classes are visible
only to processes that live within the same archive. If the classes are general-purpose utility classes,
this may not be the best location because the classes might not be functionally related to the archive
that contains them. A higher-level scope might be more appropriate so that the classes do not need
to be put inside multiple WARs that need them.

AsaJAR filewithin aweb archive’'s WEB-INF/lib folder. Again, thisis agood placeto put utility
classesfunctionally related to the applications in the WAR. But since these JAR fileswill bevisible
only from within the WAR, thisis not a good place for utility JARs that might be needed by
multiple modules. You could end up putting multiple copies of the JAR inside numerous WARS,
creating a maintainability nightmare.
Asindividual classes within an EJB module. Although the classes are visible from other modules
that use a manifest file, thisis not something you should strive for, because the utility classes may
not be functionally related to other code in the EJB module.
AsaJAR stored within the enterprise application archive (the deployment EAR). The classes are
then visible to any module within the application that has avalid manifest file. Thisisusually a
good solution, asit keeps the classes neatly packaged in their own JAR file, which is usable by any
services in the EAR. In Composer, the easiest way to accomplish thiskind of JAR-within-EAR
packaging isto bring a JAR into your project at design time using the JAR Resource wizard. (See
the chapter on Resources in the Composer User’s Guide.) From that point on, the JAR gets
deployed with your project automatically.
AsJARsor individual classes on the application server’s global classpath. Thisisby far the easiest
solution, since it makes classes visible to any applications running on the server. But from a design
standpoint, it's abad idea, for the following reasons.
+ Portability issues: Because the classes live outside of the EAR or WAR, they represent files
that must be copied aong with the project. (The project is ho longer self-contained.) It also
means changing the global classpath of each server to which the project or JAR is deployed.

+ Compatibility and Maintainability issues: It forcesall client processes running on the server
to use the same version of the classes. If the external classes are updated, all client applications
must be upgraded and/or retested.

+ Vighility issues: Theclassesarevisibleto all applications running on the server. Thisisusually
not what you want.

The classpath mechanism is a high-level, coarse-granularity mechanism for controlling class and
package visibilities. If the goal is to restrict runtime access to code rather than design- and runtime
visibility of code packages, it may be appropriate to consider using the programmatic and/or declarative
role-based security models available for EJBs and WARSs. (WAR security isa J2EE 1.3 concept.) If
remote method invocation is an option, many access-control models are available.

Theissue of how best to share “shared code” isanotoriously difficult one, regardless of the control
mechanism(s) available. Aswith performance tuning, there are no hard and fast rules that apply for all
situations.

Runtime Administration of Composer Enterprise Server 31

32 Composer Enterprise Server User’s Guide

The Runtime Framework

Most of thetime, you will find Composer’s native depl oyment facilities and packaging options morethan
adequate to meet the architectural requirements of your business applications. But if your devel opment
needs are such that it's essential to be able to manipulate Composer-built services on a programmatic
level, you will need to know how to write code that leverages Composer’s Framework API for low-level
Javaintegration.

The Composer framework is a set of classes (in source code form) for working with, or extending,
Composer runtime objects. Its features are discussed in some detail |ater in this chapter.

In many cases, you can create your own custom service-trigger objects without hand-writing any “ setup”
code. Novell exteNd Director has code-generati on wizardsthat can create servlet, EJB, JSP, and Javastub
filesfor you, which you can then customize. (See the Deployment chapter of the main Composer User’s
Guide for more detailed information on how to use these wizards.) But to fully understand the generated
skel-code, you need to be familiar with the basic architectural assumptions and APl requirements of
Composer’s runtime layer. The information in this chapter will give you the essential background info
you need in order to create classes that interact with Composer runtime objects.

NOTE: This chapter is aimed at intermediate-level (or higher) Java programmers who are interested in
understanding the application programming interface for code-level access to Composer runtime objects.
To benefit from this chapter, you should be thoroughly familiar with servlet and bean programming, and
J2EE app server runtime idioms in general.

This chapter will be of help to you if you need to:

+ Invoke Composer services programmatically from your own Java classes

+ Augment existing Composer “datainput” functionality by providing your own support for
transports, protocols, or data formats not natively supported by Composer

+ Create service triggers that respond to events not natively supported by Composer’s existing trigger
types

+ Obtain direct access to a service's output art runtime so that you can perform custom post-
processing of data or do some kind of custom dispatching of data, etc.

NOTE: The following discussion deals with runtime issues only. A software development kit (SDK) for
creating your own pluggable design-time artifacts in Composer is available by special request through the
Novell exteNd marketing organization.

Composer Runtime Architecture

The core functionality of Composer Enterprise Server is provided by the classesin xcs-all jar (in
Composer’s\lib directory, under the app server install path), plus the three dozen or so accompanying
technology-specific JAR filesin the\lib directory. The classesin xcs-all.jar provide all of the essential
“core services’ your deployed Composer apps need in order to run on the server, including:

+ Instantiation of service objects
+ Dataconversion (preprocessing) in advance of service execution
« Actual execution of servicelogic

The Runtime Framework 33

+ Basic support functions, like XML parsing, XSL processing, €etc.
+ Access to app-server services

+ Support for various kinds of connectivity (LDAP, JDBC, etc.)

+ Caching and cache management

Instantiation and execution of service objectsis done through decoding and deserialization of the
metadata stored in your deployment archives. When you create a service or component in Composer
(design time), you are actually creating an XML file that wrappers the actionsin your service or
component’s Action Model. If you' ve ever examined the contents of a Composer-created deployment
archive, you will probably have noticed that it contains no compiled classes (except if the deployment
involves EJBS).

Instead of bytecode, each action in each component’s Action Model consists of a metadata description.
Composer Enterprise Server understands how to convert that description into executable code at runtime.
The classes that do this are opague: They are not exposed in the Framework API (see bel ow), except for
the main execute() method of cxsserviceComponent.

Invocation of a Composer service typically occurs through a servlet. But (again) you'll notice there are
no servletsin your deployment WAR or EAR. Invocation is handled by a“ master servlet” already
residing on the server. Your deployment archive contains only a metadata description of how to call the
server-resident “trigger servlet.” (That description isin the web.xml file in the WAR.) The metadata
description contains initialization parameters for the servlet. Those parameters include the name of the
service that needs to be run, the name of the “ converter class’ that should be used for preprocessing
arriving data, whether to instantiate the service as an EJB, etc.

Typical Request-Handling Scenario

34

From Composer Enterprise Server’s point of view, the events that typically accompany invocation of a
Composer service include the following:

request
1 /
GXSServiceRunnerEkx

(derives from HttpServlet)

3). 2

\ GXSServiceFactory
Converter Class
(e.g. GXSInputFromHttpParams)

-2l GXSServiceComponent

1 A request arrives at the app server: e.g., XML arrivesviaHTTP POST. The server notifiesthe
appropriate servlet, in this case GXSServiceRunner Ex (apre-installed, always-present Composer
Enterprise Server class that handles most servlet-based requests for Composer services).

2 Theservice-runner servlet uses Composer Enterprise Server’s GX SSer viceFactory class to obtain
an instance of the desired kind of service (represented by the GX SServiceComponent shown
above).

Composer Enterprise Server User’s Guide

3 Theservice runner calls on the appropriate converter class (one of several core Composer Server
utility classes) to fetch arriving data and put it in String or String-array format. Converter classes
are discussed in more detail below.

4 Finally, the service runner callsthe service component’s execute() method. In the typical case, this
method returns a Java String containing the XML output of the service. (Various overloaded
versions of the method exist, each with its own return type.)

Oncethe service hasfinished executing, the servlet performs any necessary post-processing on the output
data (for example, last-minute X SL transformations), in its processResponse() method.

There are many possible variations on the scheme just described. The above diagram describes one
common scenario, involving servletsand HTTP requests. It isintended to illustrate important Composer
architectural idioms, such as:

+ Theuseof a“servicerunner” object (in this case, a servlet) to run a Composer service

+ Theuse of afactory to obtain the instantiated service. Delegation through a factory object makes it
possible for Composer to do behind-the-scenes housekeeping (including things like cache
management) in away that’s transparent to the service runner. It also simplifies working with EJB
deployments, since the service factory can obtain a service as aregular Java object or as an EJB,
based on the request parameters.

+ The separation of data-prefetch logic from service invocation logic by means of converter classes
(which handle the details of collecting XML input from various kinds of HTTP payloads)

Obvioudly, not all datatravelsby HTTPR, and it's not always convenient to invoke servicesfrom a servlet.
Other scenarios need to be taken into account.

Alternative Request-Handling Scenarios

One useful variation on the above invocation scheme is afforded by the GXSServiceComponentBean
class, wherein a bean implements the | GXSServiceRunner interface. The GXSServiceComponentBean
provides extraisolation between the client/request layer and the invocation-target layer, so that it
becomes possible for asingle type of Java object (the bean) to field requests from many potential types
of client objects (servlets, JSPs, arbitrary Java objects). Experienced devel opers will recognize features
of the well-known Proxy and Facade design patterns in this approach.

Remote accessto Composer services can also occur through EJBs. The GXSEJIBServiceComponent class
implements javax.gjb.Enter priseBean, | GXSServiceRunner, java.io.Serializable, and
javax.ejb.SessionBean. Likewise, thereisan EJB equivalent of GXSServiceComponent, called
GXSEJBService. Enterprise Java Beans make possible the use of any number of well-known design
patterns.

In addition to the familiar “request-response” paradigm, of course, it's possible to enlist Composer
services in other operational flows. For example, you might have a Composer service that startsup in
response to a scheduling daemon of some kind and executes at regular timed intervals. It might not use
any input data; it may or may not produce any output. Perhaps it performs a recurring maintenance
function. Thistype of specialized invocation scenario can be supported through the use of a custom
trigger object (your own, or derived from aframework object) that implements the | GXSServiceRunner
interface.

Source code for many of the classes and interfaces just mentioned can be found in the Composer
Enterprise Server framework distribution archive, xcs-src.jar (see next section). The main classes are
discussed in more depth below, but for definitive information you should consult the source code or the
Javadoc.

The Runtime Framework 35

Framework Classes

To facilitate working with Composer deployment and runtime objects, Novell provides a set of
framework classes that can be used to create custom Service Triggers for Composer services, alter the
Composer JSP tag library, change the way datais passed, etc. Thisframework comprises aruntime API
for working with Composer services.

Where to Find the Source Files and JavaDoc

You will find the framework filesin the AppSer ver\Compaoser\lib path under your main\exteNd install
directory. Look for these two files:

*

*

api-xs.zip: Thisarchive contains the JavaDoc files (HTML) for the framework API.

xcs-sre.jar: This archive contains Java source code for the approximately 130 classes that make up
the framework. (Included in this set of files are the sources for the custom JSP tag library that
comes with Composer. For a description of the tag library, see the appendix in the main Composer
User's Guide.)

Packages of Interest

Unless you have unusually far-reaching requirements, it's unlikely that you will work with more than a
handful of the 130+ classesin xcs-src.jar. Nevertheless, agreat deal of useful example code can befound
there for working with Composer services using servlet technology, EJB technology, SOAP, JSP taglib,
transaction managers, etc.

Some of the more interesting packages include:

*

Static Constants

36

com.sssw.b2b.xs.deploy.wl70: Helper classes to install J2EE components into the WeblL ogic
Server 7.0, utilizing capabilities of the Deployer RuntimeMBean class.

com.sssw.b2b.xs.deploy.ws50: Support classes for deploying to WebSphere, utilizing
AppManager features.

com.sssw.b2b.xs.bean: This package contains Java beans that can instantiate and utilize a
deployed Composer service. The classes provide for separation of input conversion from
component execution.

com.sssw.b2b.xs.g b: This package provides an EJB session bean classfor obtaining remote access
to Composer service components, aswell as home and remote interfaces for same.

com.sssw.b2b.xs.service.conversion: Contains various helper classes for obtaining XML data by
way of various transports and packagings. (These classes will be discussed in further detail below.)

com.sssw.b2b.xs.mail: Contains classes that make an entry point from SMTP/MIME/POP3 to
deployed services.

com.sssw.b2b.xs.tl: JSP custom tag library implementation.

com.sssw.b2b.xs.deploy2.tc4: Deploy handlers for Tomcat 4.1 platform.

com.sssw.b2b.xs.soap: Provides an implementation of a service trigger that responds to SOAP
reguests, utilizing Novell exteNd WSSDK technol ogy.

com.sssw.b2b.xs.util: A grabbag of utility classes, including classes to manipulate JARs, avulture
class that watches a certain directory for incoming files, a class to represent the manifest.mf file
found in Java archives, and classes with miscellaneous static convenience methods.

Seethefile called constant-values.html in xcs-src.jar for acomprehensive list of constants used in the
framework classes.

Composer Enterprise Server User’s Guide

What Types of Programming Needs Does the Framework

Address?

The framework allows you to use your own objects to instantiate and execute Composer services. This
capability can be important for many development scenarios. For example:

*

You can use your own objects to perform custom pre-processing of data (perhaps converting non-
XML datato XML) before passing it to a Composer service.

You can post-process a service's output in some custom fashion, perhaps altering its mime-type.

The framework makes it easy to augment Composer’s invocation layer. For example, you might
have legacy CGl scripts (in Python or PHP, say) that need to be able to call Composer services
directly.

If your development efforts involve operating-system-level calls, you may have C++/Java
crossover points that require direct access to Composer services.

The framework also makes it easier to customize your deployments to take advantage of special
app-server services. This can sometimes be important if you' re deploying to a platform that’s not
currently supported by Novell, or you need to “bridge across’ to a non-J2EE server API of some
kind.

For performance profiling, you may want to create test routines that can call Composer services
directly (eliminating servlet-engine and network-stack overhead) so that you can benchmark
different cache configurations, for example, without clouding the results with non-cache-related
issues (browser/router/proxy latencies and such).

If you need to implement certain design patterns in your J2EE projects, it might be necessary (or
convenient) to extend various framework classes.

High-Level Architecture

The framework affords a great deal of flexibility in choosing how to invoke a service. A few of the
possible choices are depicted in the diagram bel ow.

GXSServiceRunner -

Possible Invocation Architectures

arbitrary service-)
Java Object —* rtl:nner — |GXSServiceComponent
ean

—» |GXSServiceComponent
serviet

service-

servlet/JSP —| runner
bean

—» |GXSServiceComponent

Service Factory

—E.JB Container
(any of the above) = (any of the above) = —
GXSEJBServiceComponent

The choice of how to set up your invocation layer will probably be dictated by architectural concerns
related to:

*

*

Whether you are composing large, distributed web apps with reusable components, or small, “low-
cost” appsthat are self-contained

Whether you need to support remote invocation across machines (via RMI rather than SOAP)

The Runtime Framework 37

+ Whether your datawill mostly arrive by HTTP as opposed to other transports

+ Theneed to implement certain J2EE design patterns

+ Possible enlistment of servicesin transactions

+ Your persona programming style

Theinvocation patterns shown in the foregoing diagram are al supported, in one way or another, by the
design-time deployment options of Director and Composer. If you are using the framework, it's

presumably because you need to customize some aspect of theinvocation layer (by extending one or
more of the classes shown). That's what this discussion will focus on.

Input and Data Conversion

Most (but not all) Composer services operate on input data of some kind. Composer services expect to
receive input data (if any) in one of the following forms:

+ XML string (java.lang.String containing raw XML)

o A Javaarray of XML strings

+ A DOM abject (of type org.w3c.dom.Document)

+ Anarray of DOM objects

+ A pair of String arrays: one representing SOAP body parts, another representing SOAP header
parts.

If your input data will be arriving viaHTTR, you may find it convenient to use or extend one of the
framework’s existing converter classes, which are designed to handle the most common HT TP transport
scenarios. (See the Javadoc and/or source code for the com.sssw.b2b.xs.ser vice.conver sion framework

package.)
Whether your input data arrive by HTTP or not, and whether you choose to use the framework converter

classes or not, your code must be prepared to pass input datato your service in one of the formats
described above.

Service Names within Framework Objects

When referring to a service name within aframework object (such as a service runner servlet), you
should use only the full-context name of your service: That isto say, you should combine the deployment
context with the service component name.

Thefollowing is an example of afully qualified service name:
com.yourcompany.composer.ProductInquiry
Where:

e com.yourcompany.composer iSthe deployment context specified during deployment
¢ ProductInquiry isthe Composer service component name

NOTE: Novell recommends, as a best practice, that you include “composer” in the deployment context
of every Composer-created artifact, and “director” in the context of every Director-built artifact. This is not
only to provide namespace separation of artifacts that might be built by different development team
members working remotely, but to make debugging easier. (At stack-trace time, it's valuable to be able to
see, at a glance, which product the artifact was created in.)

Obtaining a Service Instance

You will generally use the static createService() method of the GXSServiceFactory object to obtain a
reference to a so-called service component This overloaded methods comesin three flavors, with
signatures asfollows:

38 Composer Enterprise Server User’s Guide

IGXSServiceComponent createService(java.lang.String fullServiceName)
IGXSServiceComponent createService (IGXSServiceRunner aOriginator)

IGXSServiceComponent createService(javax.naming.InitialContext aContext,
java.lang.String aJNDIName)

Thefirst caseissimplest: You can obtain a (non-EJB) service by name. In the second case, the caller (an
| GXSServiceRunner) passes areference to itself; the factory inspects the caller’s properties to abtain
initialization parameters, then instantiates and configures the service.

The third method produces a service component as an EJB (assuming the service was deployed that way
to begin with). The factory needsto know theinitial INDI context and INDI Name of the service’s home
interfacein order to obtain areferenceto the EJB (or itsaccessor object). After that, the factory takes care
of any communication with the EJB container.

Executing the Service

The code for executing aservice directly is straightforward. First, obtain an instance of the desired
service by means of a service factory object. Then call the execute() method of the service object. The
execute method returns the service's output document(s) as native XML in String form.

Codefor calling aservice can be assimple as:

String inputDoc =

“<?xml version=\"1.0\" encoding=\"UTF-8\"?><root/>";
String outputDoc = ““;
String serviceName = "com.acme.composer.ProductInquiry";

try {
// Obtain an instance of the desired service:

IGXSServiceComponent myService =
GXSServiceFactory.createService(serviceName) ;

// Execute the service:
outputDoc = myService.execute(inputDoc) ;

}

catch(GXSException gxsEx)

{

}

Using thiskind of code, you caninvoke a Composer service from any kind of custom Javaobject (not just
aservlet). Of course, it'sthe caller’sjob to obtain theinput datafor the service, soit can be passed directly
in the execute method. In the bare-minimal code shown above, you are passing a single input document
asanative-XML string. If you need to pass more than one document, perhaps asa DOM object (i.e., an
object of type org.w3c.dom.Document), you can call one of the other variants of execute() or
executeEx(); see the discussion under “ Data-Passing Options’ below.

// Do something with exception

Delegating Service Calls Through GXSServiceComponentBean

Instead of calling execute() on afactory-obtained service instance, you might find that a more flexible
and architecturally robust way of doing thingsisto delegate service operations through an accessor
object: namely, abean. (Not an EJB, but aregular Javabean.) In this strategy, you instantiate a general -
purpose bean directly, use the bean’s setter methods to specify the desired service name, input
document(s), and other parameters, then call execute() on the bean. (The bean then delegatesthe call to
the service.)

The framework provides a utility bean for this purpose, in a class called GXSServiceComponentBean.
Code for utilizing this bean typically looks similar to that shown below.

The Runtime Framework 39

private static final String SERVICE NAME =
"com.composer.MyService";

// Legal values here are “Normal” or “EJB”:
private static final String SERVICE _TYPE = "Normal";

// Instantiate the bean
GXSServiceComponentBean lService =
new GXSServiceComponentBean() ;

// Configure it

l1Service.setInputXMLDoc (aXML) ;
1Service.setServiceName (SERVICE NAME) ;
1Service.setServiceType (SERVICE_TYPE) ;

// Now execute the service:
try {

}

catch (GXSException e)
System.out.println(e);
}

lService.execute() ;

// Obtain the service’s output:
String myOutput = lService.getOutputXMLDoc () ;

The bean mechanism offers a great deal of flexibility. The bean itself is generic: It can be “configured”
dynamically to bind to any service. It implements the IGXSServiceRunner interface, which means that
through avariety of setter methods, you can specify X SL resource info, converter class name, and other
config parametersfor the service beforeinvoking it. Likewise, you can use awide variety of “getters’ to
obtain information back from the service after it executes. In addition, the GXSServiceComponentBean
class has utility methods, such as getXPath() and findDocByPartName(), that can be helpful in
mani pul ating output data.

The service-runner bean (GXSServiceComponentBean) allows you to specify, via setServiceType(),
whether to use EJB access to obtain and execute the target service (assuming it was deployed in EJB
fashion), or non-EJB (“Normal”) access. This hides some of the complexity of working with services
deployed as EJBs.

The custom tag library used in Director-generated (and Composer-generated) JSP codeis built around
usage of the GXSServiceComponentBean object. (Source code for the tag library itself is part of the
framework.)

NOTE: The GXSServiceComponentBean class inherits from a utility class called
GXSServiceComponentBase (which in turn implements the service-runner interface). Consult the source
code and/or Javadoc for these two classes to learn more about the numerous setter, getter, and utility
methods they offer.

Data-Passing Options

40

The execute() method on GXSServiceComponent is overloaded to allow you to pass and receive XML
datain various ways. Variants of this method exist to allow passing more than one input document (as
either a String array or an array of DOM abjects), or passing input as ajava.io.Reader. In each case, the
return type mimics the input type.

Thereis also an overloaded method called executeEx() that differs from execute() in that it returns a
GXSExResponse object, which is alightweight wrapper object for responses from SOAP services that
might involve one or more output parts and/or header parts.

The various signatures of execute() and executeEx() are shown below, along with a brief description of
the intended usage..

Composer Enterprise Server User’s Guide

java.lang.String execute ()
Executes a Composer service that does not expect an input document.
org.w3c.dom.Document execute (org.w3c.dom.Document aInputDoc)
Executes the Composer service using the supplied DOM.
org.w3c.dom.Document execute (org.w3c.dom.Document [] aInputDocs)
Executes the Composer service using the supplied mulitple DOMs.
java.io.Reader execute(java.io.Reader xmlIn)
Executes the Composer service using the supplied XML Reader.
java.lang.String execute(java.lang.String xmlIn)
Executes the Composer service using the supplied XML string.
java.lang.String execute(java.lang.String[] aInpDocs)
Executes the Composer service using the supplied XML strings.
GXSExResponse executeEx(java.lang.String[] aInpDocs)
Executes the Composer service using the supplied XML strings.

GXSExResponse executeEx(java.lang.String[] alInpDocs, java.lang.Stringl]
aInpHdrDocs)

Executes the Composer service using the supplied XML strings.

Service Triggers

A servicetrigger, broadly speaking, is any object responsible for obtaining a service instance and
executing it. In the framework, the principal trigger objects are GXSServiceRunnerand
GXSServiceComponentBean. The former is aservlet; the latter is a general-purpose bean.

The GXSServiceRunner class inherits from javax.serviet.http.HttpServiet and implements the
| GXSServiceRunner interface (aswell asjava.io.Serializable). The GXSServiceRunnerEx class differs
from GXSServiceRunner in its ability to deal with one or more input documents.

GXSServiceComponentBean inherits from GXSServiceComponentBase. Both implement

| GXSServiceRunner aswell asjava.io.Serializable. The parent class, GXSServiceComponentBase, has
many getter and setter methods, allowing you to fine-tune its functionality dynamically. It is not limited
to handling HTTP requests.

If you areimplementing atrigger that handles dataarriving viaHT TP, a convenient starting point may be
GXSServiceRunner or GXSServiceRunnerEx.

Of coursg, strictly speaking, it is not necessary for you to extend any of the framework’s preexisting
service-runner classesin order to executeaservice. Infact, it'snot even necessary for your custom trigger
object to implement | GXSServiceRunner. (See “ Executing the Service” for example code that neither
extends nor implements framework classes.) Even so, you should understand how these classes and
interfaces work.

The Runtime Framework 41

IGXSServiceRunner

42

Theinterfacethat all framework service-runner objectsimplement is1GXSServiceRunner. Thisinterface
has two methods, called getServiceProperty() and getClassLoader(), plus numerous predefined
public/static properties (Strings) that are used for parameter discovery at runtime. The
getServiceProperty() method takes a String as an argument; the String should match one of the static
property strings defined on 1GXSServiceRunner. The getServiceProperty() method uses the String
passed to it as akey to look up information about the service environment.

For example, one of the propertiesis called SERVICE_NAME. The hard-coded (final) value of
| GXSServiceRunner. SERVICE_NAME is"servicename." If your service-runner object receivesthisvalue
inacall to getServiceProperty(), the method should return the name of the service that will be called.

The getServiceProperty() method is called by various objects that, from time to time, might receive a
reference to your service-runner and might need to look up information about the service your runner
intends to run. For example, the GXSServiceFactory object has an overloaded method called
createService(). One of the createService() methods takes an | GXSServiceRunner argument. Using the
passed-in service-runner reference, the factory object can inspect properties on the caller to determine
how to configure a service instance before returning it to the caller. This same mechanism is used by
various data-converter objects in the framework.

Asit turns out, your service runner does not need to define lookup values (nor “get” methods) for all of
the String propertiesin the | GXSServiceRunner interface. Some of the properties arerelevant only in
specialized scenarios involving (for example) digitally signed XML in SOAP transactions. For most
common scenarios, the only “ discovery” properties you must make available before every call to a
service factory’s createService() method are the SERVICE_NAME and SERVICE_TYPE properties.
(The latter allows the factory or converter object to discover whether the caller is expecting an EJB, or
non-EJB service.)

A bare-minimal implementation of |GXSServiceRunner is shown below:

class MyServiceRunner implements IGXSServiceRunner

{

private String mFullServiceName;

MyServiceRunner (String fullServiceName)

{
}

mFullServiceName = fullServiceName;

public String getServiceProperty(String aName)

{

if (aName == IGXSServiceRunner.SERVICE NAME)
return mFullServiceName;

else if (aName == IGXSServiceRunner.SERVICE TYPE)
return IGXSServiceRunner.SERVICE TYPE NORMAL;

else
return null;

}

public ClassLoader getClassLoader ()

{
}

return Thread.currentThread () .getContextClassLoader () ;

}

Notethat if getServiceProperty() is called with an argument other than SERVICE_NAME or
SERVICE_TYPE, the method returns null. It isimportant to return null here, because the Composer
runtime objects that call getServiceProperty() implement default behaviors of various kinds based on a
null return value being encountered. If you return adummy value (such as“Not supported”), you will get
unpredictable results.

Composer Enterprise Server User’s Guide

In addition to getServiceProperty(), your service runner needs to provide an implementation of
getClassLoader() for use by factory objects. Theimplementation shown in aboveisappropriate for most
Cases.

GXSServiceRunner and GXSServiceRunnerEx

If your codewill be handling HT TP requests, you might want to extend GXSServiceRunner Ex. Thisisthe
framework’s all-purpose servlet for triggering Composer services.

Thefollowing code shows how to extend GXSServiceRunnerEx. It implementsacustom Javaclasscalled
MyComposer ServiceRunner.

package com.composer;

import javax.servlet.x*;

import javax.servlet.http.*;

import java.io.*;

import java.util.*;

import com.sssw.b2b.xs.*;

import com.sssw.b2b.xs.service.GXSServiceRunnerEx;

public class MyComposerServiceRunner extends GXSServiceRunnerEx

{

static final String CONTENT TYPE = "text/html";

// Overload the following method if you want to
// override the default converter class architecture

protected String[] processRequestEx (HttpServletRequest aReq)
throws ServletException

{
}

return super.processRequestEx(aReq) ;

// Overload the following method if you want to
// override default response architecture

public void processResponse(String xmlOut,
HttpServletRequest req,
HttpServletResponse res)
throws GXSException

super.processResponse (xmlOut, req, res);

}

The processRequestEx() and processResponse() methods offer convenient hooksfor implementing your
own special data pre- and post-processing logic. The above code merely delegates execution to the
parent’s default implementations of these methods. Remove the “super” calls and insert your own code
to take over control of pre- and post-processing.

The example class shown above inherits from GXSServiceRunner, which in turn inherits from
HttpServiet. Normal servlet control flow applies. In GXSServiceRunner, the following flow occurs:

*

*

doGet(), if invoked, calls doPost()

The doPost() method calls initService(), which obtains the desired service via
GXSServiceFactory.createService(this).

Also within doPost(), a method named performProcessRequest() is called.
performProcessRequest() calls processRequest(), which in turn obtains the input data for the
service. (To obtain the data, a GXS nputConverterBean is instantiated. The bean, in turn, inspects
the CONVERTER_CLASS NAME property of the service runner to determine which converter
classto use.) The service's execute() method is then called.

The Runtime Framework 43

+ When processRequest() returns, the method processResponse() executes. Thisis where data post-
processing can be performed. It is also where any OutputStreams that are opened from the
HttpServletResponse should be closed.

NOTE: The default implementation of processResponse() contains code for converting XML to
HTML (using server-side XSL transformation), based on the value of the HTML_INDICATOR
property set by the service runner. Study the source code for GXSServiceRunner if you want to see
how this kind of data post-processing can be done.

Initialization Parameters

It'simportant to understand that the default implementation of GXSServiceRunner depends on
framework methods (specifically, methods belonging to GXSServiceFactory and

GXS nputConverter Bean) in which the service runner itself is an argument to the method. When a
reference to the service runner is passed this way, it's because the factory object needs accessto the
caller’s properties. The propertiesin question usually involve configuration parameters of some kind.

For example, when GXSServiceRunner calls the GXSServiceFactory method createService(), passing
‘this’ as an argument, the factory uses the servlet reference to find out the name of the service to obtain
and the type of service (EJB or non-EJB). These pieces of information ultimately comefromtheservlet's
initialization parameters (in particular, the params called “ servicename” and “xcs_servicetype’). The
initialization parameters, in turn, are specified in the web.xml file in the servlet’s WAR module.

The following listing shows what the web.xml servlet entry for the MyComposer ServiceRunner class
might look like. This example assumesthat the target Composer serviceiscalled HelloWorld and that the
framework-supplied GXS nputFromHttpParams converter classwill be used to obtain data from the
HTTP request.

<servlet>

<servlet-name>
MyComposerServiceRunner

</servlet-name>
<display-name />
<servlet-class>
com. composer.MyComposerServiceRunner
</servlet-class>
<init-param>
<param-name>servicename</param-names>
<param-value>com.composer.HelloWorld</param-value>
</init-param>

<init-param>
<param-name>Xcs_servicetype</param-name>
<param-value>NORMAL</param-value>
</init-param>

<init-param>
<param-name>transform into_html</param-namex>
<param-value>false</param-value>
</init-param>

<init-param>
<param-name>rootname</param-names>
<param-values>greeting</param-value>
</init-param>

<init-param>
<param-name>converterclassname</param-name>
<param-value>

com.sssw.b2b.xs.service.conversion.GXSInputFromHttpParams

</param-value>
</init-param>

</servlet>

Note that the “servicename” init param specifies the compl ete (full-context) name of the target service,
in this case com.composer.Helloworld.

44 Composer Enterprise Server User’s Guide

Other parameters are supplied aswell, such as*rootname” (to specify the root element name of the XML
document that the converter classwill create asinput to the service), a“transform_into_html” flag to
indicate to GXSServiceRunner whether to attempt X SL transformation of the output datain
processResponse(), and so on.

The important point to noteisthat if you intend to extend GXSServiceRunner or GXSServiceRunner EX,
you should ensure that the web.xml file for your servlet class specifies, at aminimum, theinit params
“servicename”, “xcs_servicetype”, and “ converterclassname” (and valid values for them), as shown

above. The other initialization parameters are optional .

Theframework factories“ understand” alarge number of possibleinit parameter types. seethe properties
defined on the |GXSServiceRunner interface for afull list. Some of the more commonly used params are

shown in the following table. (Required params are in bold.)

IGXSServiceRunner Initialization

Property Name Description Parameter GXSServiceRunner method

SERVICE_NAME The name of the Composer service servicename getServiceName()
component.

ROOT_NAME The root node that is expected as the input rootname getRootName()
document.

JNDI_NAME The JNDI name of the EJB home interface, jndiname getIndiServiceName()
for the Composer service component.

CONVERTER_ The class that should be used to convertthe converterclassname getConverterClassName()

CLASS_NAME HTTP request into an XML document.

PARAM_NAME The name of the parameter that contains the xcs_paramname getxcsParamName()
input XML document.

SERVICE_TYPE Whether the service component reference is Xxcs_servicetype getServiceType()

an EJB or NORMAL.

PROVIDER_PARAM

The JNDI provider URI.

providerURI

CONTEXT_FACTORY

The JNDI context factory.

contextfactory

HTML_INDICATOR

An indicator used to specify whether the
output document will be rendered as HTML.

transform_into_html

getOutputHTMLIndicator()

OUTPUT_XSL

If the output document is being transformed

output_xsl_URI

getOutputXSL()

into HTML, this will give the URI of the style
sheet. This is only necessary if the XSL
processing instruction has not been
embedded in the output XML document.

If your servlet classwill be used in an environment where the web.xml init-param mechanism can’'t be
relied upon, you should provide custom implementations of the following methods:

¢ getServiceName () tobind the servlet to the Composer service component (mandatory in all
cases)

¢ getRootName () to returnthe name of the root element to be used if the converter class will be
GXS nputFromHttpParams (otherwise “root” will be used by default)

s+ getServiceType () should return astring value of “NORMAL” or “EJB”, indicating the type of
service component that will be invoked (mandatory in all cases)

s+ getConverterClassName () should return the name of a class that implements the
IGXSInputConversion interface (not mandatory in every case, but recommended as a best
practice)

e getOutputHTMLIndicator () should return trueif the output of the service will be transformed
into HTML using the default implementation of processResponse(); falseif it will be XML.
(Again, (not mandatory in every case, but recommended as a best practice.)

The Runtime Framework 45

IGXSInputConversion and IGXSExInputConversion

The framework’s servlet-based service runner class (GXSServiceRunner Ex) makes use of so-called
converter classesto obtain data arriving via HTTP. These classes are intended to provide a clean
separation of “data marshalling and unmarshalling” logic from service invocation logic.

The converter classesin the framework implement the | GXSExInputConversion interface (which in turn
extends | GXS nputConversion). This interface has only one method:

String[] processMultipleRequests (HttpServletRequest aReq)

Asyou can see, this method essentially converts a servlet request to an array of XML strings.

NOTE: Since you cannotimplement the IGXSExInputConversion interface if your custom service runner
class does not use (or cannot supply) a HttpServletRequest object, this discussion applies only if you are
extending GXSServiceRunnerEx (or if you are implementing a custom servlet that will eventually get
passed to factory objects). If your trigger class does not inherit from HttpServlet, you can implement your
own scheme for fetching data, and simply pass the data to the service’s execute() method.

Most of the framework’s converter classes implement a constructor that takes a | GXSServiceRunner
argument so that the converter can obtain initialization parameters (or other information) from the caller.
Study the source code for the framework converter classesif you want to see examples of thistechnique
inuse.

Framework-Supplied Converter Classes

46

The framework contains anumber of predefined converter classes (that is, classes that implement the
| GXSExInputConversion interface). The names of these classes can be specifiedin servlet init-params, or
supplied to the setConverter ClassName() method of GXSServiceComponentBase.

Converter classes available in the framework include:

+ GXSlInputFromHttpContent — Obtains XML directly from the request’s InputStream

+ GXSlInputFromHttpMultiPartRequest — Obtains XML from multipart form data

+ GXSConvertHttpM PRegNonBuff — Same as above, but uses a non-buffered MultipartRequest.
(Note: The MultipartRequest classis defined in the framework. See the relevant Javadoc and/or
source code for details.)

+ GXSInputFromHttpParams — Obtains XML by parsing query parameters off the tail end of the
URL inan HTTP GET. Those params are assembled into an XML document on the fly.

+ GXSInputFromHttpSpecificParam — Assumesthat aform has been POSTed, with afield called
‘xmifile’ that contains XML.

+ GXSInputFromJavaObject — Thisisactually a convenience object for use by Composer JSP
taglib methods. It is constructed using a reference to a GXSServiceComponentBean. The bean
needs to be able to point to a XML String whose variable nameislocated in an init param called
‘xmldoc’. See source code for details.

+ GXSInputFromSoapContent — Obtains XML strings from elements under the BODY element
of a SOAP request. Every element is accumulated into a String[].

You should study the source code for these classesto see how they work beforeimplementing any but the
most trivial of custom converter classes. Depending on what kinds of data conversion you need to do, you
may be able to extend an existing converter class (and save yourself alot of coding).

A custom converter classwill look something like this.

public class MyConverterClass implements IGXSInputConversion
// Attribute that holds the service

// runner for querying parameters.
IGXSServiceRunner mRunner = null;

// Constructor to take the IGXSServiceRunner
// so that the class can retrieve params

Composer Enterprise Server User’s Guide

public MyConverterClass(IGXSServiceRunner aRunner)

{
}

mRunner = aRunner;

// the processRequest method should take

// an HttpServletRequest as

// a parameter and return an XML doc as a String:

public String processRequest (HttpServletRequest aReq)
throws GXSConversionException

{

String lsExpandedDoc = null;
// (create or obtain XML . . .)
return lsExpandedDoc;
}

}

EJB-Deployed Services

The Enterprise Java Bean (EJB) APl implements a container architecture designed to facilitate clean
separation of logic, data-access, and presentation layers while also providing connection pooling,
transaction management, persistence, access control (viaRoles), “naming services’ (JNDI), and remote
invocation mechanisms, so as to free applications from having to implement or manage such features
individually.

Composer services can be deployed as EJBs. In Composer Enterprise Edition, asimple drag-and-drop Ul
exists for designating EJB associations at design time (see the separate Composer User’s Guide), such
that when you choose a service to deploy as an EJB session bean, you can specify whether it isto be
Stateful or Statel ess, the transaction participation level (Mandatory, Never, Supports, etc.), and the INDI
name of the service.

Since EJBs cannot beinstantiated directly by use of constructors, you must usethe GXSServiceFactory’'s
static createService() method to obtain areferenceto aservice. The signature of the method in question
is:

public static IGXSServiceComponent createService (javax.naming.InitialContext
aContext,
java.lang.String aJdJNDIName)
throws GXSException

The returned service object isof type | GXSServiceComponent, which meansit supportsall of the various
execute() overloaded signatures discussed previously.

An alternative to using the GXSServiceFactory isto utilize the GXSServiceComponentBean class, which
can act asakind of “proxy object” for interacting with Composer services. Example code for using this
JavaBean was given earlier (under “ Delegating Service Calls Through GX SServiceComponentBean”).
To use this bean as an EJB-service accessor, follow the procedure discussed before, but specify “EJB” in
setServiceType(), and in addition to calling setServiceName() with the name of the deployed service, use
setJIndi ServiceName() to specify the INDI name that you supplied for the service at deployment time. If
you areimplementing the | GXSServiceRunner interface yourself, you should provide animplementation
of getIndiServiceName() in your service runner and vector to it from getServiceProperty() when the
latter gets arequest for INDI_NAME.

The Runtime Framework 47

Getting the EJB Home and Remote Interfaces

The EJB remote interface, called IGXSEJBServiceComponent, is located in the com.sssw.b2b.xs.ejb
package. When deploying an Composer service as an EJB, you will assign aJNDI nametothe EJB. Itis
thisname rather than the qualified Composer service namethat will be used to get areferenceto the EJBs
home interface. The name of the EJB home interface for creating the IGXSEJBServiceComponent is
IGXSEJBServiceHome.

When specifying the INDI name for an EJBs home interface remember that, for the Novell exteNd
Application Server, the string “ sssw://host/RM /" needs to be prepended. For example, if you were
deploying an EJB into an Application Server called main.server, and the INDI namefor the EJB happens
to be com/acme/inventory/Productinquiry, then the fully qualified INDI name would be
sssw://main.server/RMIl/com/acme/inventory/Productinquiry.

Once the home interface has been retrieved, much like the GXSServiceFactory'screateService ()
method, a method called create () can beinvoked which will return the remote interface of the EJB.
(Thisisthe closest thing to “instantiating” an EJB that existsin the EJB world.) The remote interface
contains several execute methods, as described below:

java.lang.String execute ()
Method to execute a Composer service that does not expect an input document.
java.lang.String execute(java.lang.String inXML)
Method to execute the Composer service against asingle XML document.
java.lang.String execute(java.lang.String[] asInputStrs)
Method to execute the Composer service component using multiple input documents.
GXSExResponse executeEx(java.lang.String[] asInputStrs)
Executes the Composer service using the supplied XML strings.

GXSExResponse executeEx(java.lang.String[] alInpDocs, java.lang.Stringl]
aInpHdrDocs)

Executes the composer service component using the supplied XML strings as inputs and headers.

You will notice that the Reader or Document versions of execute() available in the
IGXSServiceComponent are not availablein the EJB remoteinterface. Thisis because neither Reader
nor Document is serializable and thus neither one is able to appear in aremote method.

48 Composer Enterprise Server User’s Guide

Factory to Obtain EJB Home Interfaces

If you want low-level control over EJB access, you will want to know about a factory class called
GXSEJBAccessor, located in the com.sssw.b2b.xs.sssw package. It contains two methodsto obtain an
EJB’s home interface from a Novell exteNd Application Server.

One method can be used within a server that does not require authentication; the second provides two
extra parameters for username and password.

When using the factory, thereisno need to fully qualify the INDI name assigned to the EJB. The factory
creates the fully qualified hostname with the supplied parameters. In the following example, the INDI
name of the EJB iscom/acmelinventory/Productinquiry, the Novell exteNd Application Server name
ismain.server and the ports are at their installation default of 80 for HTTP and 54890 for RMI.

import com.sssw.b2b.xs.ejb;

import com.sssw.b2b.xs.sssw.GXSEJBAccessor;

public void doSomeEJBStuff () throws java.rmi.RemoteException

{

IGXSEJBServiceHome srvcHome = GXSEJBAccessor.getHomeBean (
“com.sssw.b2b.xs.ejb.IGXSEJBServiceHome” ,

“com/acme/inventory/ProductInquiry”, “main.server”,
80, 54890);
IGXSEJBServiceComponent ejbSrvc = srvcHome.create() ;

// Do something with the service component

The Runtime Framework 49

50 Composer Enterprise Server User’s Guide

Transaction Management

Composer applicationsthat perform transactions require special planning and deployment. Runtime and
deployment issues associated with transaction management are covered in this chapter. For adiscussion
of design-time issues, such as how to use the Transaction Action, see the chapter on Advanced Actions
in the Composer User’s Guide.

NOTE: JTA and XA -resource transaction features (including Composer’s Transaction Action as
described below) are not supported in the version of Composer that comes with exteNd 5 Suite
Professional Edition. Full transaction support is available in the Enterprise Edition version of Composer.

Transaction Control in exteNd Composer

In Composer Enterprise Edition, the Transaction action can call any of the defined Java Transaction API
(JTA) server-side transaction commands. For example:

+ Thebegin, commit, and rollback commands are available for use in projects that will be deployed
as servlets or EJBs with bean-managed transaction behavior.

+ The Set Rollback Only command is available for use in projects that will be deployed as container-
managed EJBs.

These choices, appropriately enabled/disabled, are available from the Transaction dialog (see below),
which appears when you create a new Transaction Action in Composer.

Trangaction [x|

Designer Transaction Emulation Mode For The Project

|Senrlet ar Bean Managed

¥ Begin Transaction
' Commit Transaction
 Rollback Transaction

c

Help oK Cancel

Transaction Deployment Considerations for the Novell exteNd
Application Server

Asdescribed in an earlier chapter, Composer services can be front-ended by servlets, EJBs, or arbitrary
Java classes. Each mechanism has important implications for transaction control, as aresult of the way
transactions are defined in the Java Transaction APl (JTA).

Transaction Management 51

Servlet Deployment Considerations

Servlet deployment using JDBC connection pools are recommended when complex transactional
behavior is not required, such asinquiry-only services. The primary limitations of Servlet deployments
are

+ Declarative transaction control is not allowed. If thisis arequirement, use an EJB deployment
instead.

+ JDBC connections from the connection pool destined for a Servlet are by default set with auto-
commit turned on. This meansthat after each Update, Delete, or Insert statement, the transaction is
automatically committed to the database. Subsequent rollbacks will have no effect. There are two
ways to change this behavior:

1. Issue a Begin Transaction command (using a Transaction action), and utilize a subsequent
Commit or Rollback command as appropriate.

2. Check the “Allow SQL Transactions’ checkbox for the connection. See “JDBC Transaction
Contral: Allowing User Transactions” on page 54 for further details.

NOTE: Nested transactions are not allowed, but sequential ones are.

EJB Deployment

52

Deploying Composer services as EJBs gives the maximum transaction management flexibility. EJBsare
the recommended deployment choice if your application requires a distributed transaction environment
where data has to be updated in a number of back end systems. Before examining exteNd specifics for
EJB Deployment, it isworthwhile to review the deployment options regarding transactions as indicated
in the EJB specification. The following definitions are helpful:

Application isthe user of the transaction services, normally the EJB.

Container isthe application server provided context in which an EJB is deployed to and executes.
Resource Manager isthe interface to the back end system, such as a database or a message queue.
Resour ce Adapter istheinterface to the Resource manager, such as a JDBC driver.

Transaction Manager isan application server provided object that controls the flow of the transaction,
setting up the transaction between al players. Thisnormally involves mapping the high level callsto low
level transaction calls to the standard X/Open XA protocoal.

See the accompanying illustration.

Transaction

EJB Bean-manages
Manager

Container-managed

Container Resource | | Resource
Adaptor Manager

L Back-end
Application Server data source

All container-managed transactions are on amethod call basis, while stateful Bean-managed transactions
may span method calls. The EJB literature sometimesimpliesthat with EJBs, all transaction management
isdone behind the scenesand is of no concern to the application devel oper. Although complex two-phase
commit logicis, in fact, performed automatically (and rollbacks will automatically occur if exceptions
arethrown), devel opers till need to have an understanding of how EJB transactions are managed in order
to ensure desired application results.

Composer Enterprise Server User’s Guide

Bean Managed Transaction Demarcation

When an EJB is deployed as a Bean-managed transaction, it is expected to communicate with the
transaction manager indirectly viaasimplified transaction interface called User Transaction.
UserTransaction provides transactional commands such as begin, commit, and rollback. These
commands are only available to the Bean if it is deployed as Bean-managed. If they are issued when the
EJB is deployed as Container-managed, an |1legal StateException is thrown. Consequently, devel opers
need to know in advance how the Bean is going to be deployed.

Container-Managed Transaction Demarcation

Container-managed Transaction demarcation, also known as declarative transaction support, isa
powerful and flexible means for transaction support. The application assembler is free to determine the
EJB’stransactional behavior post construction. Container-managed transactions are most useful in cases
where EJBs utilize other EJBsto get work done. The classic example of this case is a statel ess Session
Bean calling several Entity Beans to update various tables in a database. Linking their transaction via
declarative transaction management greatly reduces the complexity of the code, as any failure in any of
the components can automatically roll back the transaction.

EJBs support six different Container-managed transaction types. The most important differentiator
among the six isthe notion of transaction propagation. If one EJB with an ongoing transaction calls
another, the transaction may or may not be passed along to the second EJB. If it is passed, and the
transactionissubsequently rolled back, then all work donein all EJBswithin the scope of that transaction
arerolled back.

Container-managed transaction typesinclude:

Transaction type Behavior

Not Supported No transaction support is available.

Required If called with a transaction, it will join, else it will create one.

Supports If called with a transaction, it will use, otherwise it will run without one.

Requires New Always creates a new transaction. The callers transaction is suspended until
this one completes.

Mandatory If called with a transaction, it will use, otherwise it throws an exception.

Never If called with a transaction, it will throw an exception.

In Container-managed transactions, there is no way to call any type of commit. The user can initiate a
rollback by calling the setRol1lbackonly () method onthe EJB context. Thiscall isonly appropriate
in certain situations, however. If the application is deployed as a Bean-managed EJB, or a Container-
managed EJB without Transaction support, acall to setRollbackonly () will resultina
java.lang.IllegalStateException.

Container-managed transactions are a very powerful mechanism to perform complex transaction
management in a heterogeneous environment. Such acomplex distributed environment requires support
from the back end resource manager, the middleware drivers, and the application server.

NOTE: At this time, the Novell exteNd Application Server supports distributed transaction management
across connections from a single connection pool. Check with the appropriate vendor’s documentation if
you are using a server other than Novell exteNd Application Server.

Transaction Management 53

XA-Aware Database Drivers

Check that you are using an X A-enabled database driver before using transactionsinvolving database
access. Most vendors provide XA and non-XA version of their drivers. If you are not able to use an X A-
awaredriver, you may still beableto enlist JDBC componentsin transactions, but you should commence
the transaction before opening the database connection (i.e., before calling the JIDBC component). You
should test this scenario, obviously, before relying on it.

EJB Deployment Considerations

EJB deployment is recommended in situations where complex transactional behavior isrequired. By
default, the Deployment Wizard bases the depl oyment-mode choice on the current Transaction
Emulation Mode (as set in Tools > Prefer ences, using the Designer tab). If the emulation mode you've
chosen indicates a bean-managed EJB deployment, the Deployment Wizard will create this type of
deployment. Otherwise, it will default to a Container-managed, “ Transaction Not Supported”
deployment. (One can easily change from Not Supported to Mandatory, Supports, Requires New, or any
of the other valid choices for bean or Container-managed transactions using the pull-down menuin the
Transaction Attribute field of the EJB-Based Service Triggers Panel of the Deployment Wizard.)

JDBC Transaction Control: Allowing User Transactions

54

Manual control of transactions is sometimes required. For such situations, exteNd Composer has a
special checkbox on the JIDBC connection component that allows user-controlled SQL transactions.

NOTE: This is an advanced option, and should only be used if you are comfortable with the details of
SQL programming.

Create a New JDBC Component E

Specify which Connection you wish to use far this Component ar Service. To change any connection
parameters, you must change them in the Connection Resource ohject or create a new Connection
Resource of the same type with different parameters.

Connection |Inventory8ystem ;l Test |

JOBC Driver |f.:-:||'|'|_5: widbc.mss.odbe AgOdbeDriver
JDBC URL [idb
UserlD |

dbeHCTutarial

Password |

Deployed Pool Mame |
Allow SQL Transactions [

|Ifchecked, user may use SQL Commit and Rollback verbs to manage transactions.

Help Next Cancel

Checking the Allow SQL Transactions box does the following:

+ It turns auto-commit off for the IDBC driver
« lttrandatesal SQL commit and rollback commands to the equivalent JDBC connection calls

+ It causes exteNd Composer Enterprise Server to perform arollback on the JDBC connection if the
last Execute SQL Action in the JDBC component was not a commit or a rollback.

Composer Enterprise Server User’s Guide

References

NOTE: This behavior is important if connection pools are used. When you return a connection to
the pool, the pool manager expects to be handed a “clean” connection. If you return a dirty
connection (a connection with uncommitted changes on it), undesirable results, such as table
locking and transaction scope mismatches, can occur. To prevent this, Composer detects a dirty
connection, and attempts to clean it by issuing a rollback, unless the user has explicitly commanded
a commit. Bottom line: It is vitally important that you explicitly issue a commit (with a Transaction
Action) at the end of the JDBC component action model, after all database operations have
completed, if your transactionable logic executed without error.

+ Itrestoresthe state of the autocommit flag at the end of the transaction immediately before
returning the connection back to the pool

If you check the Allow SQL Transactions box, Novell recommends that you deploy your Composer
service either as a conventional servlet-triggered service, or as an EJB in the Container-managed, “ Not
Supported” transaction mode. In addition, we strongly recommend that you issue a commit or arollback
asthelast SQL statement in your JDBC component. A “best practice” would beto wrap the entire JDBC
component action model in a Try/On Fault block to catch any exceptions.

NOTE: As database drivers may react differently, be sure to test your application in a deployed state to
verify the desired transactional behavior.

EJB home page: http://java.sun.com/products/ejb

JTA home page: http://java.sun.com/products/jta

Transaction Management 55

56 Composer Enterprise Server User’s Guide

exteNd Application Server Dependencies

Connections

Using Novell exteNd Connection Pools

When specifying the connection pool name in the exteNd JDBC connection panel, make sure that it is
specified using the Novell exteNd naming convention. Any database that has been added to the server is
availablefor use with a connection pool. The naming convention for a database pool is

Databases/appDBName/DataSource whereappDBName isthe name of the exteNd Application Server
database that will be used for connection pooling.

For example, if aexteNd Application Server had a database attached called ProductionDB, the correct
qualified name for the pool would be

Databases/ProductionDB/DataSource

exteNd Application Server Dependencies 57

58 Composer Enterprise Server User’s Guide

Contents of Deployment Objects

If you look in your staging directory after deploying, you will see anumber of files. This appendix
describes those files.

Deployment EAR

Thisisthefinal packaging of your project into adeployable object: It iswhat’s deployed, ultimately, to
theapp server. Thisfile, like WAR and JAR archives, can be opened with any .zip-file viewer. If you open
it, you will see aproject JAR, aWAR file, and optionally an EJB JAR and application.xml file.

Project JAR

Deploying aproject resultsin the creation of aJAR file (the* Project JAR”) that contains all the xObjects
(aswell as other XML files, such as schemas and WSDL) used in your project’s deployed services. The
xObjects are encoded as metadatain individual XML files (one per xObject). The xObject XML files
have a context associated with them in the JAR. The context follows anaming convention that consists
of atwo-part path prefixed to the name of the xObject file.

Thefirst path part, which you create, is a unique name called the deployment context. This can be any
name of your choosing. (You specify thisvaluein the first panel of the Composer deployment wizard.)
The deployment context isused to distinguish two Composer servicesfrom each other that are named the
samein different Composer projectsresiding in the same application server database. (In other words, the
deployment context provides namespace separation.)

The second path part, which exteNd creates automatically, mirrors the same directory structure as the
origina Composer project on the hard disk. The directory structure for a Composer project consists of a
root directory whose name is the name for the project, with subdirectories for each xObject type created
(i.e., IDBC, Map, Connections, Functions, Script, Service, Code Tables etc.). Consider a Composer
project called Tutorial, with a JDBC component named Lookuplinventory. The disk directory / file
structure would contain the following:

{parent directory of project}\Tutoria\JDBC\LookupInventory.XML.
Thefina part of the path is the name of the xObject.
Example:
com.yourcompany.project . jdbc . LookupInventory
Where:

+ com.yourcompany.project isthe deployment context
+ jdbc isthe object type (and directory name)
+ Lookupinventory isthe xObject

Contents of Deployment Objects 59

WAR

Servlets

EJBs

The WAR fileinside your deployment EAR contains a manifest as well as aweb.xml file. The manifest
filetells the app server about the JARs in your project. The web.xml file contains servlet/URL/classfile
associations and related information, so that at runtime the app server knows how to invoke the trigger
servletsthat (in turn) invoke your services.

For each Servlet that the Deployment Wizard generates, an entry ismadein the web.xml file of the WAR
file. The WAR file, in turn, is stored inside the deployment EAR.

For each EJB that the Deployment Wizard generates, an entry is created in the manifest file for the EJB
deployment JAR, called meta-inf/ejb-jar.xml, which contains the type of EJB (i.e., session or entity),
environment settings for each EJB, and the classes that make up the EJB. An entry isaso made in the
BuildEJBs. XML descriptor file that specifies the EJBsto build and their INDI names.

The EJB Jar is named using the JAR filename that was specified in the Deployment Wizard. The name
of the deployment EJB JAR file and the remote interface EJB JAR, both of which are built onthe Novell
exteNd Application Server during the deployment, are also based upon the project JAR filename. The
naming conventions for the three JAR filenames are:

+ EJIB JAR - EJB-xxxx

+ EJB deployment JAR — EJBDeployxxxx

+ EJB Remote interface JAR — EJBStub-xxxx

(where xxxx isthe name of the Project JAR file)
In the following example the Project JAR filenameis Production.jar

+ EJIB JAR: EJB-Production. jar
+ EJB Deployment/built JAR: EJBDeployProduction.jar
+ EJB Remoteinterface JAR: EJBStub-Production.jar

ImportObjects.bat

This batch utility contains al of the SilverCmd calls to import and deploy the various artifacts
(deployment files) that were created by the Deployment Wizard. See the Novell exteNd Application
Server documentation for detailed information about this utility.

60 Composer Enterprise Server User’s Guide

Reserved Words

Avoid using Java-language keywords in your deployment-context strings. The following table lists Java

keywords.

Java Keywords

abstract boolean break
byte case catch
char class const
continue default do
double else extends
final finally float

for goto if
implements import instanceof
int interface long
native new package
private protected public
return short static
strictfp super switch
synchronized this throw
throws transient try

void volatile while

Reserved Words

61

62 Composer Enterprise Server User’s Guide

Server Glossary

Bean Managed Transactions An Enterprise Java Bean that demarcates its own transaction
boundariesis said to exercise bean-managed transaction control. (The alternative is Container-
managed transactions.) The bean-managed model allows the programmer to exert low-level control
over transaction logic, but at the expense of extra code and program compl exity.

Connection Pool A group of database connections that can be shared among processes, under the
control of amanagement process (typically the application server). Since opening and closing
database connections can becostly from a performance standpoint, it makes sense for a server to
cache connections.

Container-Managed Transactions Also known as declarative transaction control, the Container-
managed transaction model shifts transaction management responsibilities out of the EJB and into
its Container. EJBs that use this transaction model need not be “transaction aware” at the internal
codelevel. Instead, the bean’s transaction attributes can be set in adescriptor, and the Container will
ensure that appropriate control is exercised over transactionsin which the bean may play apart. The
Container-managed model can greatly reduce code complexity whileincreasing reliability.

Deployment Context The deployment context is a name string (whose el ements are separated by
periods) that can be used to prevent namespace collisions between services with like-named
components.

JNDI JavaNaming and Directory Interface. A standard extension to the Java platform, providing a
unified interface to multiple naming and directory schemes that might exist acrossfile systems and
server domains.

JTA JavaTransactions API. A standard Javainterface between the transaction manager and parties
involved in adistributed transaction system. Bean-managed transactions rely on this API.

Params (URL/Form) One of the four canonical Composer service trigger types. This Servlet type
builds an in-memory XML document using HTTP URI form parameters as the names of nodes and
their valuesastext. Multiplevaluesfor aparameter can be handled, but multipleinput documentsare
not created.

Service Triggers A Service Trigger isaJava Servlet or Enterprise Java Bean created when deploying
aproject from Composer. It submitsa Serviceto exteNd.Server for execution. A Service Trigger is
also associated with an URI and convertsinbound datainto XML documents as input to the service
it triggers.

SOAP (Simple Object Access Protocol) A platform-independent protocol for remoteinvocation of
objects using HTTP as the transport layer and XML to represent the payload.

XML (HTML form field) One of the four canonical Composer service trigger types. This Servlet type
extracts a service' sinput document from a POSTed form's field. The Servlet expectsthe field name
containing the XML fileto be called ‘xmifile’ and it uses the first occurrence of this parameter for
the extraction.

Server Glossary 63

XML (HTTP POST) One of the four canonical Composer service trigger types. Thistype of trigger
Servlet extractsan XML document sent viaan HTTP POST method. Thisdiffersfrom HTML Form
POSTsthat contain parameter name| value pairs. The payload of thiskind of HTTPtransmissionis,
in fact, theraw XML document. It is a convenient method for exchanging XML documents with
trading partners.

XML Metadata All exteNd objects created in Composer are themselves stored as XML files. The
object data and processing instructions in these files are referred to as XML metadata. The exteNd
runtime engine processes this metadata to perform XML Integration services.

XML (MIME multipart) Another of the four canonical Composer service trigger types. This Servlet
type extracts a service's input document from a multipart encoded form containing afield with an
input type of file. The Servlet expects the field name containing the XML fileto be caled ‘ xmlfile
and it uses the first occurrence of this parameter for the extraction.

64 Composer Enterprise Server User’s Guide

Index

A

agjars.conf 28, 30
Allow SQL Transactions 54
application server
transaction deployment considerations 51
auto-commit 54

C

connection pool 53
connection pools 27

using Novell exteNd connection pools 57
container-managed transaction demarcation 53
Container-managed transaction types 54
container-managed transaction types 53
context 38

D

dependencies, server 57
deployment

context 38

EJB 52, 54

servlet considerations 52
deployment context 38, 59
deployment objects

contents 59

EJBs 60

ImportObjects.bat 60

project JAR 59

servlets 60

EJB
application 52
container 52
container-managed transaction demarcation 53
container-managed transaction types 53
deployment 52
deployment considerations 54
factory to obtain EJB home interfaces 49
getting the home and remote interfaces 48
resource manager 52
transaction manager 52

EJB deployment 52, 54
EJB servicetriggers panel 54

|GX SEJBServiceComponent 48
IGX SEJBServiceHome 48
ImportObjects.bat 60

J

JAR files 30

Javaclasses
adding 30

Java Transaction APl 51

JDBC transaction control 54
allowing user transactions 54

N

Novell exteNd application server
transaction deployment considerations 51
Novell exteNd connection pools 57

P

pools, connection 57

Project JAR 14

project JAR 59

Project Variables 30

proxy server 28

PROXY SERVERINFO 29
publishing XML resources 30

R

resources, publishing XML 30
Roles 29

rollback 53

S

Server
about 9
overview 13
what itis 9
server dependencies 57
connections 57
servicetriggers
definition of 63
SQL, transaction control using 54

T

Transaction action 51
transaction management
servlet deployment considerations 52
transaction deployment considerations for the Novell exteNd
application server 51
transaction manager 51
transactions
Container-managed 54
declarative 53
propagation 53
SQL control of 55

U

USEPROXY SERVER 29

X

xconfig.xml 28, 29
XML metadata, definition of 64

66

	About This Book
	1 Welcome to Novell exteNd Composer Enterprise Server
	What is Composer Enterprise Server?
	Support for Popular App Servers
	Service Types
	Service Triggers

	2 Composer Enterprise Server Overview
	Deployment Archive Contents
	Novell exteNd App Server Database Requirement

	Push-Model versus Pull-Model Deployment
	Hot Deployment
	Removing (Undeploying) Existing Applications
	Updating Your License

	3 Runtime Administration of Composer Enterprise Server
	Runtime Administration Consoles
	Real-Time Update
	How to Access the General Properties Console
	General Properties UI

	Caching and Cache Administration
	What Is Caching?
	Least-Recently-Used (LRU) Cache Algorithm
	Cacheable Objects
	Cache Scope
	User-Adjustable Settings

	Performance Tuning
	Connection Pools
	Database Connection Pools
	Logon Components and Non-Database Connection Pools
	Proxy Servers
	Security Roles

	Publishing XML Resources
	Publishing Java Classes
	Controlling Access to JAR and Class files

	4 The Runtime Framework
	Composer Runtime Architecture
	Typical Request-Handling Scenario
	Alternative Request-Handling Scenarios

	Framework Classes
	Where to Find the Source Files and JavaDoc
	Packages of Interest
	Static Constants

	What Types of Programming Needs Does the Framework Address?
	High-Level Architecture
	Input and Data Conversion
	Service Names within Framework Objects
	Obtaining a Service Instance
	Executing the Service
	Delegating Service Calls Through GXSServiceComponentBean
	Data-Passing Options

	Service Triggers
	IGXSServiceRunner
	GXSServiceRunner and GXSServiceRunnerEx
	IGXSInputConversion and IGXSExInputConversion

	EJB-Deployed Services

	5 Transaction Management
	Transaction Control in exteNd Composer
	Transaction Deployment Considerations for the Novell exteNd Application Server
	Servlet Deployment Considerations
	EJB Deployment
	XA-Aware Database Drivers
	EJB Deployment Considerations
	JDBC Transaction Control: Allowing User Transactions
	References

	A exteNd Application Server Dependencies
	Connections
	Using Novell exteNd Connection Pools

	B Contents of Deployment Objects
	Deployment EAR
	Project JAR
	WAR
	Servlets
	EJBs
	ImportObjects.bat

	C Reserved Words
	D Server Glossary
	Index

