Novell
exteNd
Composer

5.2 ®
‘ TANDEM CONNECT USER’S GUIDE

Novell

Legal Notices

Copyright © 2004 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied, stored on aretrieval system, or
transmitted without the express written consent of the publisher. This manual, and any portion thereof, may not be copied without the express written
permission of Novell, Inc.

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and specifically disclaims any express
or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to revise this publication and to
make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims any express or implied warranties
of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to makes changes to any and all parts of Novell
software, at any time, without any obligation to notify any person or entity of such changes.

This product may require export authorization from the U.S. Department of Commerce prior to exporting from the U.S. or Canada.

Copyright ©1997, 1998, 1999, 2000, 2001, 2002, 2003 SilverStream Software, LLC. All rights reserved.
SilverStream software products are copyrighted and all rights are reserved by SilverStream Software, LLC

Titleto the Software and its documentation, and patents, copyrights and all other property rights applicablethereto, shall at all timesremain solely and
exclusively with SilverStream and its licensors, and you shall not take any action inconsistent with such title. The Softwareis protected by copyright
laws and international treaty provisions. Y ou shall not remove any copyright notices or other proprietary notices from the Software or its
documentation, and you must reproduce such notices on all copies or extracts of the Software or its documentation. Y ou do not acquire any rights of
ownership in the Software.

Patent pending.

Novell, Inc.

404 Wyman Street, Suite 500
Waltham, MA 02451

U.S.A.

www.novell.com

exteNd Composer Tandem Connect User’s Guide
June 2004

Online Documentation: To access the online documemntation for this and other Novell products, and to get updates, see
www.novell.com/documentation.

New http://www.novell.com/documentation/

Novell Trademarks

ConsoleOne is aregistered trademark of Novell, Inc.
eDirectory isatrademark of Novell, Inc.
GroupWiseis aregistered trademark of Novell, Inc.
exteNd is atrademark of Novell, Inc.

exteNd Composer is atrademark of Novell, Inc.
exteNd Director is atrademark of Novell, Inc.
iChain is aregistered trademark of Novell, Inc.
jBroker isatrademark of Novell, Inc.

NetWare is aregistered trademark of Novell, Inc.
Novell isaregistered trademark of Novell, Inc.
Novell eGuide is atrademark of Novell, Inc.

SilverStream Trademarks
SilverStream is aregistered trademark of SilverStream Software, LLC.

Third-Party Trademarks
All third-party trademarks are the property of their respective owners.

Third-Party Software Legal Notices

The Apache Software License, Version 1.1
Copyright (c) 2000 The Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, thislist of conditions and the following disclaimer. 2. Redistributionsin binary
form must reproduce the above copyright notice, thislist of conditionsand the following disclaimer in the documentation and/or other materials
provided with the distribution. 3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment:
"This product includes software developed by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment may
appear in the softwareitself, if and wherever such third-party acknowledgments normally appear. 4. The names"Apache" and " Apache Software
Foundation" must not be used to endorse or promote products derived from this software without prior written permission. For written permission,
please contact apache@apache.org. 5. Products derived from this software may not be called "Apache", nor may "Apache" appear in their name,
without prior written permission of the Apache Software Foundation.

THIS SOFTWARE ISPROVIDED “ASIS"AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITSCONTRIBUTORSBE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSSOF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

JDOM.JAR
Copyright (C) 2000-2002 Brett McLaughlin & Jason Hunter. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, thislist of conditions, and the following disclaimer. 2. Redistributionsin
binary form must reproduce the above copyright notice, thislist of conditions, and the disclaimer that follows these conditionsin the documentation
and/or other materials provided with the distribution. 3. The name"JDOM" must not be used to endorse or promote products derived from this
software without prior written permission. For written permission, please contact license@jdom.org. 4. Products derived from this software may not
be called "JDOM", nor may "JDOM" appear in their name, without prior written permission from the JDOM Project Management (pm@jdom.org).

In addition, we request (but do not require) that you include in the end-user documentation provided with the redistribution and/or in the software
itself an acknowledgement equivalent to the following: "This product includes software developed by the IDOM Project (http://www.jdom.org/)."
Alternatively, the acknowledgment may be graphical using the logos available at http://www.jdom.org/images/logos.

THIS SOFTWARE ISPROVIDED “ASIS"' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE JDOM AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Sun

Sun Microsystems, Inc. Sun, Sun Microsystems, the Sun Logo Sun, the Sun logo, Sun Microsystems, JavaBeans, Enterprise JavaBeans, JavaServer
Pages, Java Naming and Directory Interface, JDK, JDBC, Java, HotJava, HotJavaViews, Visua Java, Solaris, NEO, Joe, Netra, NFS, ONC, ONC+,
OpenWindows, PC-NFS, SNM, SunNet Manager, Solaris sunburst design, Solstice, SunCore, SolarNet, SunWeb, Sun Workstation, The Network Is
The Computer, ToolTak, Ultra, Ultracomputing, Ultraserver, Where The Network |s Going, SunWorkShop, XView, Java WorkShop, the Java
Coffee Cup logo, Visual Java, and NetBeans are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other
countries.

Indiana University Extreme! Lab Software License
Verson1l.1.1
Copyright (c) 2002 Extreme! Lab, Indiana University. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, thislist of conditionsand the following disclaimer. 2. Redistributionsin binary
form must reproduce the above copyright notice, thislist of conditionsand the following disclaimer in the documentation and/or other materials
provided with the distribution. 3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment:
"This product includes software devel oped by the Indiana University Extreme! Lab (http://www.extreme.indiana.edu/)." Alternately, this
acknowledgment may appear in the softwareitself, if and wherever such third-party acknowledgments normally appear. 4. The names "Indiana
University" and "IndianaUniversity Extreme! Lab" must not be used to endorse or promote products derived from this software without prior written
permission. For written permission, please contact http://www.extreme.indiana.edu/. 5. Products derived from this software may not use "Indiana
University" name nor may "Indiana University" appear in their name, without prior written permission of the Indiana University.

THIS SOFTWARE ISPROVIDED "ASIS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE AUTHORS, COPYRIGHT HOLDERS OR ITSCONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Phaos

This Softwareisderived in part from the SSLavaTM Toolkit, which is Copyright ©1996-1998 by Phaos Technology Corporation. All Rights
Reserved. Customer is prohibited from accessing the functionality of the Phaos software.

wW3C
W3C® SOFTWARE NOTICE AND LICENSE

Thiswork (and included software, documentation such as READMEs, or other related items) is being provided by the copyright holders under the
following license. By obtaining, using and/or copying this work, you (the licensee) agree that you have read, understood, and will comply with the
following terms and conditions.

Permission to copy, modify, and distribute this software and its documentation, with or without modification, for any purpose and without fee or
royalty is hereby granted, provided that you include the following on ALL copies of the software and documentation or portions thereof, including
modifications: 1.Thefull text of thisNOTICE in alocation viewable to users of the redistributed or derivative work. 2.Any pre-existing intellectual
property disclaimers, notices, or terms and conditions. If none exist, the W3C Software Short Notice should be included (hypertext is preferred, text
is permitted) within the body of any redistributed or derivative code. 3. Notice of any changes or modificationsto thefiles, including the date changes
were made. (We recommend you provide URIs to the location from which the code is derived.)

THIS SOFTWARE AND DOCUMENTATION ISPROVIDED "ASI1S," AND COPYRIGHT HOLDERS MAKE NO REPRESENTATIONS OR
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS
FORANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE OR DOCUMENTATION WILL NOT INFRINGE ANY
THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

COPYRIGHT HOLDERSWILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF ANY USE OF THE SOFTWARE OR DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to the software without specific, written prior
permission. Titleto copyright in this software and any associated documentation will at al times remain with copyright holders.

Contents

ADOUL ThisS BOOK.o 7
1 Welcome to exteNd Composer and Tandem CONNEC v ottt ittt et et 9
BefOre YOU BegiN. . . .o oot e e 9
About exteNd ComPOSEr CONMECESt ottt e e e e e e e e e e 9
What Is Tandem Terminal? o e e e e e 11
About exteNd Composer's Tandem COMPONENT.ottt e e e e e e e e e 11
What Applications Can You Build Using the Tandem User Interface Component Editor? 11

2 Getting Started with the Tandem Component Editor. i e e 13
Steps Commonly Used to Create a Tandem COMPONENEottt i e e e e e 13
Creating XML Templates for Your COmMPONENt ottt e e et e e e e e e 13
Creating a Tandem CoNnNECtion RESOUICEttt ittt e et e e e e e e e e e e e e e e e 14
AbOUt CONNECHION RESOUICES ottt ettt et e 14
Code Page SUPPOI. e e 16

About Constant and Expression Driven CONNECLIONSottt e e e e e e 16

3 Creating aTandem ComMPONENtttt e e e e e e e 19
Before Creating a Tandem COMPONENL.ottt e e e e e e e e e e e e 19
About the Tandem Component Editor WINAOWo e e e 21
About the Tandem Native ENVironment Pane e e e e 22
About Tandem Keyboard SUPPOrt. 22
AboUt the SCreen OB jeCt o e e 24
N LIS . . . o e 25

HOW L WOTKS . . o e 25
Tandem-Specific BUIONS. e 25
Tandem-Specific Menu Bar 1ems e 26
Tandem-Specific ConteXt-MeNU HeMS e e e e 26
Native Environment Pane Context MENUottt e e e e 27

AcCtion Pane CoNtEXE MEBNUttt e e e e e e e e e e 27

4 Performing Tandem ACHONS. . ..ttt et e e 29
ADOUL ACHIONS. . . .ttt e e 29
About Tandem-Specific ACHONS. e e e 29

The Send Buffer ACHONo 30

How Keys Are Displayed in the Action Model e e e 31

The Check SCreen ACHION o e e e 31

Using Actions in Record MOde e 34
Tandem-Specific Expression Builder EXtENSIONSt e 34
OGN . e e e e 35

Screen Methods o 35

KBy S ot 37

Screen Selections inthe Tandem CONNECE e e e e e 37
Selecting ContinUOUS Data e 37
Selecting Rectangular REQIONS.o 38
Recording @ Tandem SeSSIONottt e e 39
Looping Over Multiple Rows in Search of Data. i e e e e e e 43

mooO w >

6

Editing a Previously Recorded Action Model e a7

Changing an EXisting ACHION 48
Adding A NEW ACHONot e e e 51
About Adding Allas ACHIONS . . . oo e e e e 53
Deleting an ACtioN e e e e 54
Testing your Tandem COMPONENTttt e e e e e e e e e e e e e e e 54
Using the ANIMation TOOIS e e e 55
Tips for Building Reliable Tandem COmMpPONENtS.o e e e e 56
Using Other Actions in the Tandem Component Editor i e e e e e 57
Handling Errors and MeSSages. v vttt ettt et e e e et e e e e 57
Finding a “Bad” ACHtON e e 59
Advanced Tandem ACLIONS e 61
Data Sets that SPan SCreENSo e e 61
Dealing with Redundant Data e e e e e e e e 62
An Example of Looping over MUltiple SCreens it e e 63
Performance CONSIAEratiOnsttt e e e 69
Logon Components, Connections, and Connection POOIS e 71
Tandem Session PerformancCe e 71
When Will I Need Logon CompPOneNntS?ot e e e et e e e e e 71
Connection POOI ArChItECIUIE oo e e e e e e e e 72
The Logon Connection’s RoIE iN POOIINGot e e e e e e e 73
How Many PooIs Do | Need? e 74
Pieces Required for POOIING. e 74
How Do | Implement POOING? e e 75
The Tandem Logon ComMPONENt.ottt et e e e e e e e e e e e e e e 75
Logon, Keep Alive, and Logoff ACtIONS e 76
LOgON ACHONS . . o e e e 76
Keep AlIVE ACHIONSo e e 78
LOgoff ACHIONS . . . e 79
Logon Component Life CyCle. 79
The Tandem CONNECHONot e e e e e e e e e e 80
Connection Pooling with @ Single Sign-On. 82
Creating @ Connection PoOl e 82
OV IV B .« . e ettt e e e e 82
Creating @ BasiC CONNECHIONt e e e e e e e e e e e e e e e e 83
Creating @ Logon COMPONENL. oottt ettt e e e e e e e e e e e e e e e e e 83
Creating a Logon Connection using a Pool CoNNECtioNt e e e e e e 84
Creating a Logon Connection using a Session CONNECHIONttt e e e e e 87
Creating a Tandem Component That Uses Pooled ConNNections. it 89
Managing PooIS 91
Connection Pool Management and Deployed ServiCest e 93
Connection Discard Behavior. e 93
ScCreen SYNChIONIZatioN e e 93
Tandem Display AttribULES e 95
Tandem Keyboard EqQUIValENtS. e 97
GlOS S ANy . oot 101
ReServed WOrdsS 103
Java Code Pageso 105
ADOUL ENCOINGS. . . ottt e e e 105

Tandem Connect User’s Guide

About This Book

Purpose

The guide describes how to use exteNd Composer Tandem Connect, referred to as the Tandem
Component Editor. The Tandem Component Editor is a separately-installed component editor in exteNd
Composer.

Audience

The audience for the guide is devel opers and system integrators using exteNd Composer to create
services and components which integrate Tandem applications.

Prerequisites

The guide assumes the reader is familiar with and has used exteNd Composer’s devel opment
environment and deployment options. You must also have an understanding of the Tandem environment
and building or using applications utilizing Tandem terminal s (e.g. Tandem 6530).

Additional documentation

For the complete set of Novell exteNd Composer documentation, see the Novell Documentation Web
Site (http://www.novell.com/documentation-index/index.j sp).

Organization

The guideis organized asfollows:

Chapter 1, Welcome to exteNd Composer and Tandem, gives a definition and overview of the Tandem
Component Editor.

Chapter 2, Getting Sarted with the Tandem Component Editor, describes the necessary preparations for
creating a Tandem component.

Chapter 3, Creating a Tandem Component, describes the parts of the component editor.

Chapter 4, Performing Tandem Actions, describes how to use the basic Tandem actions, aswell asthe
unique drag-and-drop conventions of Tandem Connect.

Chapter 5, Advanced Tandem Actions, discusses techniques for solving common Tandem computing
problems in the context of an Action Model.

Chapter 6, Logon Components, Connections, and Connection Pools, describes how to enhance
performance through use of shared connections.

Appendix A, Tandem Display Attributes, and their display significance along with adiscussion of how to
usethegetattribute ().

Appendix B, Tandem Keyboard Equivalents, provides a mapping of Tandem keyboard keysto keys or
key combinations on the standard PC keyboard.

Appendix C, isaglossary.
Appendix D, Reserved Words, lists those words used only for Tandem Connect.

Appendix E, Java Code Pages, provides reference information on character encoding conversions.

http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp

8

Conventions Used in the Guide
The guide uses the following typographical conventions.
Bold typeface within instructions indicate action items, including:

+ Menu selections
+ Form selections
+ Diaogbox items

Sans-serif bold typefaceis used for:
« Uniform Resource | dentifiers

+ Filenames
+ Directories and partial pathnames

Italic typeface indicates:

+ Variable information that you supply
+ Technical terms used for the first time
+ Title of other Novell publications

Monospaced typeface indicates:

+ Method names

+ Code examples

+ System input

+ Operating system objects

Tandem Connect User’s Guide

Before You

Welcome to exteNd Composer and Tandem
Connect

Begin

Welcome to the Tandem Connect Guide. This Guide is acompanion to the exteNd Composer User's
Guide, which details how to use all the features of exteNd Composer, except for the Connect Component
Editors. If you haven't looked at the Composer User's Guideyet, pleasefamiliarizeyourself withit before
using this Guide.

exteNd Composer provides separate Component Editors for each Connect. The special features of each
component editor are described in separate Guides like this one.

If you have been using exteNd Composer, and are familiar with the XML Map Component Editor, then
this Guide should get you started with the Tandem Component Editor.

Before you can begin working with the Tandem Connect you must have installed it into your existing
exteNd Composer. Likewise, before you can run any Services built with this Connect in the exteNd
Composer Enterprise Server environment, you must have already installed the server-side software for
this Connect into Composer Enterprise Server.

NOTE: To be successful with this Component Editor, you must be familiar with the Tandem environment
and the particular applications that you want to XML-enable.

About exteNd Composer Connects

exteNd Composer is built upon asimple hub and spoke architecture (Fig.1-1). The hub isarobust XML
transformation engine that accepts requests via XML documents, performs transformation processes on
those documents and interfaces with XML -enabled applications, and returns an XML response
document. The spokes, or Connects, are plug-in modulesthat "XML-enable" sources of datathat are not
XML aware, bringing their datainto the hub for processing as XML. These data sources can be anything
from legacy COBOL /applicationsto Message Queuesto HTML pages.

Welcome to exteNd Composer and Tandem Connect 9

10

Mainframes

/; 4 l N

XML

=]
N - T

| Databases
Enterprise

Meseaging L

Figure 1-1

exteNd Composer Connects can be categorized by the integration strategy each one employsto XML-
enable an information source. The integration strategies are areflection of the major divisions used in
modern systems designs for Internet-based computing architectures. Depending on your B2B needs and
the architecture of your legacy applications, exteNd Composer can integrate your business systems at the
User Interface, Program Logic, or Datalevels. (See below.)

User
Interface

Tandem Connect User’s Guide

What Is Tandem Terminal?

The Tandem Connect XM L-enables Tandem 6530 terminal -based applications using the User Interface
integration strategy by hooking into the terminal data stream.

Many applications have been developed for Tandem terminal based systems. These systems allow
remote execution of their interface through the Telnet protocol. Host screens can be sent to aclient and
keyed data can be accepted from the client. Thisinteraction, through aso-called “dumb” terminal, means
that all the datais processed on the host computer. Tandem terminal emulation software can be used to
make a microcomputer or PC act asif it were an Tandem-type terminal whileit is communicating with a
host computer.

Using the Tandem Connect , you can make legacy applications and their business logic available to the
internet, extranet, or intranet processes. The Tandem Connect Component Editor allowsyouto build Web
Services by simply navigating through an application asif you were at aterminal session. You will use
XML documentsto drive inquiries and updates into the screens rather than keying, use the messages
returned from appli cation screensto make the same decisions asif you were at aterminal, and move data
and responsesinto XML documentsthat can be returned to the requestor or continue to be processed. The
Tandem terminal screens appear in the Native Environment Pane of the Tandem Component Editor.

About exteNd Composer's Tandem Component

Much likethe XML Map component, the Tandem Component isdesigned to map, transform, and transfer
data between two different XML templates (i.e., request and response XML documents). However, it is
specialized to make aconnection (viaTCP/IP) to ahost application, processthe data using elementsfrom
ascreen, and then map the resultsto an output DOM. You can then act upon the output DOM in any way
that makes sense for your integration application. In essence, you're able to capture data from, or push
datato, a host system without ever having to alter the host system itself.

A Tandem Component can perform simple data manipulations, such as mapping and transferring data
from an XML document into a host program, or perform "screen scraping” of a Tandem terminal
program, putting the harvested datainto an XML document. A Tandem Component has all the
functionality of the XML Map Component and can process XSL, send mail, and post and receive XML
documents using the HTTP protocol.

What Applications Can You Build Using the Tandem User Interface
Component Editor?
exteNd Composer, and consequently the Tandem Connect, can be applied to the the following types of
applications:

+ Businessto Business Web Service interactions such as supply chain applications.

+ Consumer to Business interactions such as self-service applications from Web Browsers.

+ Enterprise Application Integrations where information from heterogeneous systemsis combined or
chained together.

Fundamentally, the Tandem Component Editor allows you to extend any XML integration you are
building to include any of your business applications that support Tandem-based terminal interactions
(See the exteNd Composer User's Guide for more information.)

Welcome to exteNd Composer and Tandem Connect 11

For example, you may have an application that retrieves a product's description, picture, price, and
inventory from regularly updated databases and displaysit in a Web browser. By using the Tandem
Component Editor, you can now get the current product information from the operational systemsand the
static information (e.g., a picture) from a database and merge the information from these separate
information sources before displaying it to a user. This provides the same current information to both

your internal and external users.

12 Tandem Connect User’s Guide

Getting Started with the Tandem Component
Editor

Steps Commonly Used to Create a Tandem Component

While there are many waysto go about creating Tandem Components, the most commonly used stepsin
creating a simple Tandem Component are as follows:

+ Create XML Template(s) for the program.

Create a Tandem Connection Resource.

Create a Tandem Component.

+ Enter Record mode and navigate to the program using terminal emulation available viathe
component editor’s Native Environment Pane.

+ Drag and drop input-document data into the screen as needed.
+ Drag and drop screen results into the output document.
+ Stop recording.

*
*

Inthischapter, we'll focus onthefirst two steps: creating XML Templatesand creating and aconfiguring
aTandem Connection Resource, whichisan essential first step in being ableto use Tandem Components.

Creating XML Templates for Your Component

Although it is not strictly necessary to do so, your Tandem Component may require you to create XML
templates so that you have sample documents for designing your component. (For more information, see
Chapter 5, “Creating XML Templates,” in the exteNd Composer User's Guide.)

In many cases, your input documents will be designed to contain datathat aterminal operator might type
into the program interactively. Likewise, the output documents are designed to receive data returned to
the screen as aresult of the operator'sinput. For example, in atypical business scenario, aterminal
operator may receive a phone request from a customer interested in the price or availability of an item.
The operator would typically query the host system via“dumb terminal” in a Tandem session by entering
information (such asapart number) into aterminal when prompted. A short time later, the host responds
by returning data to the terminal screen, and the operator relays thisinformation to the customer. This
session could be carried out by an exteNd Composer Web Service that uses a Tandem Component. The
part number (arriving viaHTTP) might be represented as adataelement in an XML input document. The
looked-up data returned from the host would appear in the component’s output document. That data
might in turn be output to aweb page, or sent to another business process as XML, etc.

NOTE: Your component design may call for any other xObject resources, such as custom scripts or Code
Table maps. If so, it is best to create these before creating the Tandem Component. For more information,
see the exteNd Composer User's Guide.

Getting Started with the Tandem Component Editor 13

Creating a Tandem Connection Resource

Once you have the XML templates in place, your next step will be to create a Connection Resource to
access the host program. If you try to create a Tandem Component in the absence of any available
Connection Resources, adialog will appear, asking if you wish to create a Connection Resource. By
answering Yesto this dialog, you will be taken to the appropriate wizard.

About Connection Resources

When you create a Connection Resource for the Tandem Component, you will have two choices: a
straight “ Tandem Connection” and a“ Tandem Logon Connection.” Generally speaking, you will usethe
straight Tandem Connection to connect to your host environment. The Logon Connection is used for
connection pooling, which will be explained in greater detail in Chapter 6 of this Guide.

You will use alive Tandem Connection to connect to a host environment of your choice. After setting up
your Connection Resource, it will be availablefor use by any number of Tandem Components that might
reguire a connection to the host in question.

> To create a Tandem Connection Resource:

1 From the Composer File menu, select New>xObject, then open the Resour ce tab and select
Tandem Connection.

NOTE: Alternatively, under Resource in the Composer window category pane, you can highlight
Connection, click the right mouse button, then select New.

The Create a New Connection Resour ce Wizard appears.

Create a New Connection Resource ﬂ

A Connection resource is used to establish communications with an Connector data source orwith a server
using HTTP authentication. You need to create connections for each type of data source or each HTTP server
youwish to communicate with. Enter a name and, optionally, a description forthis Connection. The name
will appear in the Composer Detail Pane and in choice lists when you are prompted for objects in Composer.
The name may not contain the characters: V7" == | Names are case insensitive.

Mame:

I‘Fandemoonnect

Description:

Furpose:
Input:
Cutput:
Femarks:

][Next][Cancel]

2 TypeaName for the connection object.
3 Optionally, type Description text.

14 Tandem Connect User’s Guide

4

10

11

12

13

14

15

Click Next. The second panel of the wizard appears.
x|

Specify the URL for the Tandemn host. The Tandem Port inarmally 23) needs to be setto the host's
reguirements. USERID and PASSWORD are available for mapping in ECMAScript expressions. You may
create mate than one Tanderm Connection. Checking 'Default' makes this Connection the initial selection
when creating a Tandem Component. Use the Test button to check your connection.

Connection Type |Tandem Connection [~]
Host or IP Address I z [Default
Code Pags [150-Latin-1 [~]
User ID I

[
Telnet Port [23
Password I
Autowrap Characters
Use 8 bit Data Characters

Backspace Sends Delete [

[Back][Finish][Cancel]

Select the Tandem Connection type from the pulldown menu. The dialog changes appearance to
show just the fields necessary for creating the Tandem connection.

IntheHost or | P Addressfield, enter the physical (IP) address or hosthame alias for the machine
to which you are connecting.

Inthe Telnet Port field, enter the number of the TCP/IP port. The default port number is 23.

In the Code Page field, specify a code page (See “ Code Page Support” on page -16.

Enter aUser 1D and Passwor d. These are not actually submitted to the host during the
establishment of a connection. They are simply defined here. (The Password is encrypted.) Right-

mouse-click and choose Expression if you want to make these fields expression-driven. See
discussion further above.

NOTE: After you've entered UserID and Password info in this dialog, the ECMAScript global
variables USERID and PASSWORD will point to these values. You can then use these globals in
Send Buffer expressions (or as described under “Native Environment Pane Context Menu” on page
27).

Check Autowr ap Char actersif you want the cursor to move to thefirst position of the next line as
soon as the cursor reaches the end of the line.

Check 8-bit Data Char acter sif the communicated dataisin 8-bit character format. For 7-bit
characters, uncheck this option and the 8th bit will be truncated.

Check Backspace Send Deleteif you want the Backspace key to send adelete. If not checked, it
sends a backspace.

Check Terminal New Lineif the ENTER key should generate a carriage return/line feed
combination.

Check the Default check box if you'd like this particular Tandem connection to become the default
connection for subsequent Tandem Components.

Click Finish. The newly created resource connection object appears in the Composer Connection
Resource detail pane.

Getting Started with the Tandem Component Editor 15

Code Page Support

Code Page support in exteNd Composer Connection Resources allows you to specify which Character
Encoding scheme to use when trand ating characters sent between exteNd Composer and other host
systems. exteNd Composer data uses Unicode character encoding (the Javaand XML standard). Existing
legacy and other host systems use avariety of character encoding schemes (i.e., Code Pages) specific for
their language or usage. A mechanism is needed to translate the character encoding between these
systemsif they areto communicate with one another. Thisishandled in exteNd Composer by specifying
the Code Page used by a host system in the Connection Resource.

About Constant and Expression Driven Connections

16

You can specify Connection parameter values in one of two ways: as Constants or as Expressions. A
constant-based parameter uses the static value you supply in the Connection dialog every time the
Connection is used. An expression-based parameter allows you to set the value in question using a
programmatic expression (that is, an ECMA Script expression), which can result in adifferent value each
time the connection is used at runtime. This allows the Connection's behavior to be flexible and vary
based on runtime conditions.

For instance, one very simple use of an expression-driven parameter in a Tandem Connection would be
to define the User ID and Password as PROJECT Variables (e.g.:

PROJECT.X Path("USERCONFIG/MyDeployUser"). This way, when you deploy the project, you can
update the PROJECT Variablesin the Deployment Wizard to values appropriate for the final deployment
environment. At the other extreme, you could have a custom script that queries a Java business object in
the Application Server to determine what User ID and Password to use.

> To switch a parameter from Constant-driven to Expression-driven:

1 Click theright mouse button in the parameter field you are interested in changing.

2 Select Expression from the context menu and the editor button will appear or become enabled. See
below.

Create a New Conne 1'

Specifythe URL forthe Tandem host. The Tandem Fort (normally 23) needs to he setto the host's
requirements. USERID and PASSWORD are available for mapping in ECMAScript expressions. You may
create mare than one Tandem Connection. Checking 'Default’ makes this Connection the initial selection
when creating a Tandem Compaonent. Use the Test button to check your connection.

Connection Type |Tandem Connection |L|

Telnet Port [23 ~| [Default

Code Page [I50-Latin-1 | |_|
User ID | 24

w

Paszword I
Autowrap Characters Paste
Use 8 bit Data Characters Select All

Backspace Sends Delete [

Terminal Mew Line [

Clear All

Constant Finish Cancel

w Expression

Tandem Connect User’s Guide

3 Click onthe Expression Editor button. The Expression Editor appears.

r Send Input Expression ll

“atiahbles: Functioh=sMethocds: Opetators:
[-=> Input [+}-Custom Scripts [-Math
[+ > Output [Document [+} Relational
[+} <> _SystemFault [+} ECMAScript [+ Logical
[+ <> PROJECT [+ Extended ECMAScript [+ String
[+} << > Repeat Aliases =} Ericom
[} << > Node Aliases [#I Login
[+ Screen Methods
[+ Keys
FASSWORD)

[validate |[oK][cancel |

4 Create an expression (optionally using the pick lists in the upper portion of the window) that
evaluates to avalid parameter value at runtime. Click OK.

Getting Started with the Tandem Component Editor 17

18 Tandem Connect User’s Guide

Creating a Tandem Component

Before Creating a Tandem Component

Aswith al exteNd Composer components, the first step in creating a Tandem component—assuming a
Connection Resourceis available—isto prepare any XML templates needed by the component. (For
more information, see “ Creating aNew XML Template” in the Composer User's Guide.) During the
creation of your component, you will use thesetemplates’ sample documents to represent theinputsand
outputs processed by your component.

Also, as part of the process of creating a Tandem component, you must specify a Tandem connection for
use with the component (or you can create anew one). See the previous chapter for information on
creating Tandem Connection Resources.

> To create a new Tandem Component:
1 Seect File>New>xObject then open the Component tab and select Tandem.

NOTE: Alternatively, under Component in the Composer window category pane you can highlight
Tandem Terminal, click the right mouse button, then select New.

2 The"“Create a New Tandem Component” Wizard appears.
x|

ATandem Camponent connects to a hostvia the Tandem protocal, processes data using elements from a
DOM, and maps the results to an autput DOM. Use this wizard to create a Tandem Component. Enter a
MName and Description for this component. The name will appear in the Composer window and in choice
lists when yau are prompted for abjects of this type as you work in Composer. The Name is required, is case
sensitive, and may not contain the characters:V 7 "= = |

Mame:

handemComponent

Description:

Furpose:
Input:
Cutput:
Rermarks:

[][Next][Cancel]

3 Enter aName for the new Tandem Component.
4 Optionally, type Description text.

Creating a Tandem Component 19

20

appears.
Create a New Tandem Terminal Component

Specify one or more XML Templates to help design Input to this Component ar Weh Serice and anly one to
design Output. The sample XML Documents in each Template are design time aids to help you build Action
Madels for the component. The samples are not actually used at runtime after deployment to vour application
server. The [dentifier is fixed and represents the name used to refer to the XML Document during component
execution. Selecting Systern {ANY} allows you to use an empty template {i.e. accept any document as Inpuf).

Input Message
Part | Template Category | Template Mame
InpLt | (System} |L|| CANY}

_
=

Output Message

5 Click Next. The XML Input/Output Property Info panel of the New Tandem Component Wizard

£l

Part I Template Category I Template Mame I
Output [tsystemy [[[vy]
[Back][Next][Cancel]

6 Specify the Input and Output templates as follows.

+ Typeinanamefor the template under Part if you wish the name to appear in the DOM as

something other than “Input”.

+ SelectaTemplate Category if it is different than the default category.
+ Sdect aTemplate Namefrom thelist of XML templates in the selected Template Category.
+ Toadd additional input XML templates, click Add and choose a Template Category and

Template Name for each.

+ Toremoveaninput XML template, select an entry and click Delete.

Select an XML template for use as an Output DOM using the same steps outlined above.

NOTE: You can specify an input or output XML template that contains no structure by selecting
{System}{ANY?} as the Input or Output template. For more information, see “Creating an Output

DOM without Using a Template” in the User’s Guide.
Click Next. The Temp and Fault XML Template panel appears.

Create a New Tandem Terminal Component

Specify one ar mare Temp and Fault XML Templates to help design temporary parts and fault handling for

this Companent arWeb Service. Use Temp documents for creating intermediate results or halding values
far reference. Specify XML Templates to serve as Fault documents to be passed backto clients under errar
conditions.

Temp Message
Part I Template Category I Template Name I

Fault Message

Xl

Part I Template Category I Template Name I
_SystemFault |{System} |:\|{Fault} |:||
[Back][Mext][Cancel]

If desired, specify atemplate to be used as a scratchpad under the “ Temp Message” pane of the
dialog window. This can be useful if you need a place to hold values that will only be used
temporarily during the execution of your component or are for reference only. Select a Template
Category if it is different than the default category. Then select a Template Name from the list of

XML templatesin the selected Template Category.

Tandem Connect User’s Guide

10 Under the “Fault Message” pane, select an XML template to be used to pass back to clients when
an error condition occurs.

11 Asabove, to add additional input XML templates, click Add and choose a Template Category and
Template Name for each. Repeat as many times as desired. To remove an input XML template,
select an entry and click Delete.

12 Click Next. The Connection Info panel of the Create a New Tandem Component Wizard appears.
X

Specify which Connection youwish to use forthis Component or Service. To change any connection
parameters, you must change them in the Connection Resource object or create a new Connection
Reszource of the same type with different parameters.

Connection [gaaii]

Host or IP Address I

Code Page | |:|

User ID I

[
Telnet Port I
Pazzword I"*
Autowrap Characters
Use 8 bit Data Characters

Backspace Sends Delete

[Back][Finish][Cancel]

13 Select a Connection name from the pulldown list. For more information on the Tandem
Connection, see “ Creating a Connection Resource” in Chapter 2 of this Guide.

14 Click Finish. The component is created and the Tandem Component Editor appears.

About the Tandem Component Editor Window

The Tandem Component Editor includes all the functionality of exteNd Composer’s XML Map
Component Editor. For example, it contains mapping panes for Input and Output XML documents as
well asan Action pane.

There is one main difference, however. The Tandem Component Editor also includes a Native
Environment Pane featuring a Tandem 6530 emulator. This screen appearsblack until you either click the
Connection icon in the main toolbar or begin recording by clicking the Record button in the tool bar.
Either action establishes a Tandem emulation session inside the Native Environment Pane with the host
that you specified in the connection resource used by this Tandem component.

Creating a Tandem Component 21

¥ exteNd Composer: Tandem [Tandem Terminal: TandemComponent] . =10] x|
File Edit View Component Action Animate Took Window Help B0 -8 x
UEEE y00X 05 &2 § Novell
@ HTML E de:mmuomm‘
3 Josc B Input Data
T s = <> EricomTes!
Navigator <> usemame root

<

<> password lhp

Pane
<> datal

[hame Bit

EA Tandem Logon <>gataz Native
) Tandem Terminal <> datad Ervironment
Ch <> gatat Pane
EX Teinet Logon <> gatas
) TenetTerminal [v

B

PR-h2000 Logon 1 ol
Po-G2000 Logon 2 Bowa | ML o @EBE I
- <> use BB, CHECK SCREEN for arompt: “Hogin: *
ol Instance <>
’ ND BUFF
T Pane <> datai B BEND BUFF ER USERID
<> gataz =
<>datad [=1 Action Model seword: "
<> datad i b —
<> datals B SEND BUFFER "<cr"
G CHECK SCREEN for prompt: "8~
i [, SEND BUFFER “gamenuscr>" v
progect | Resisries < T
Wied Jun 11 09:14:48 EDT 2003 ~
| Qutput Pane I

Lo | Watch][Todo]| Find |

Ready

[Terminal: Not Connected

About the Tandem Native Environment Pane

The Tandem Native Environment Pane provides Tandem emulation of your host environment. From this
pane, you can execute a Tandem session in real time, interacting with the Native Environment Pane
exactly as you would with the screen on a“dumb terminal.” You can also do the following:

*

Use data from an Input XML document (or other available DOM) as input for a Tandem screen
field. For example, you could drag a SKU number from an input DOM into the “ part number” field
of a Tandem screen, which would then query the host and return data associated with that part
number, such as description and price.

Map the data from the returned Tandem screen and put it into an Output XML document (or other
available DOM, e.g., Temp, MyDom, etc.).

Map header and detail information (such as aform with multiple line items) from the Native
Environment Pane to an XML document using an ECM A Script expression or function.

About Tandem Keyboard Support

The Tandem Native Environment Pane supportsthe use of numerous special terminal keys. The Terminal
Keypad dialog (see below) is comprised of four Tabs: Common Keys, NumPad Keys, Control Keys and
Other Keys. Each Tab contains a group of keys with specific functionality.

22

Notethat you can also achieve the use of additional keys (such as F13 through F16) by using the picklists
in the Expression Builder dialog, Function/Methods column, under Tandem > Keys.

> How to Use the Floating Keypad:

1

Select View/Terminal Keypad from the Composer Menu. A floating Keypad appears. The
Keypad window contains a series of tabs, including the following: Common Keys, NumPad Keys,
Control Keys and Other Keys.

Click on the appropriate Tab to display the keys you wish to view on the Terminal Keypad.

Tandem Connect User’s Guide

3 Click on the key you wish to invoke. If you require help, hover the mouse over that key. Help will
display the Tandem keyboard equivalent for that key. You will see the result of the key you clicked

in the Native Environment Pane.

4 Click OK to close the keypad. In order for the keypad to redisplay, you must repeat step 1. When
you display the keypad, you will return to the last Tab that you were using.

Thefollowing pagesillustrate the four Tabs and corresponding keys that can be used to interact with

Tandem.

Common Keys: Includes directional keys, (Arrow Down, Arrow Left, Arrow Right, Arrow Up,
BackSpace, BackTab) aswell as Delete, Escape, Linefeed, Return, and Tab. The function keys, F1

through F20, are also displayed.

x
|‘ Common Keys [HumPad Keys |[Control Keys |[Other Keys |
Arrow Down Arrow Left Arrow Bight Arrow Up
EackSpace Back Tab Delete Escape
Linefeed Return Tab F1
Fz F3 F4 F3
F& F7 Fg

NumPad K eys: Includes the digits 0-9, Minus, Comma, Period and Enter keys.

[‘Common Keys | HumPad Keys | Control Keys || Other Keys |
0 1 2 3 4 5
7 8 &l Minus Comma Period

x|

&

Enter

Creating a Tandem Component 23

Control Keys: Includes 5 keys associated with specific functions. Refer to Appendix B for acomplete
listing.

Terminal Keypad E2
Comman Keys' MumPad Keys Control Keys | OtherKevsl

(o] Lon s | 1]

Other Keys: Includes keys to perform common functions for example: the Menu key.

Terminal Keppad E2

carmrman Kevsl MurmPad Kevsl Caontrol Keys Cther Keys |

MENT BRELE Help
Insert EeyEnd EeyHome
Hextich Previcn Remowve

Insert Char Delete Char Insert Line

Ielete Line Foll TUp Boll Dowm

EOF EOL So0ft Rezet

I | |
| | |
I | |

delect I Get Tab | Clear Tab |
I | |
| | |
| | |
| |

Hard Reszet Numbher Pad Tab

NOTE: The complete list of special (non-printing) keys and their ANSI equivalents is shown in Appendix
B.

About the Screen Object

The Screen Object isabyte-array representation of the emulator screen shown inthe Native Environment
Pane, with methods for manipulating the screen contents.

24 Tandem Connect User’s Guide

What it is

The Tandem component communicates with the host environment via a character-mode terminal data
stream, in a TCP/IP session. The user sends data to the host in the form of keystrokes (or XML data
mapped to cursor prompts). The host, in turn, sends the terminal a stream of datawhich may contain
anything from a single byte to awhole screen’s worth of information. The Screen Object represents the
current screen’sworth of data. For a24 x 80 terminal screen, thisis 1,920 bytes of data.

How it works

When character data arrive from the host, appropriate updates to the Native Environment Pane occur in
real time. Those updates might be anything from a simple cursor repositioning to a complete repaint of
the terminal screen. The screen content is, in this sense, highly dynamic.

When you have signaled exteNd Composer (viaa Check Screen action) that you wish to operate on the
current screen’s contents, the screen buffer is packaged into a Screen Object that is made accessible to
your component through ECMA Script.

Many times, it is not necessary for your component to “know” or understand the complete screen
contents prior to sending keystrokes back to the host or prior to mapping datainto a prompt. But when
mapping outbound from the screento aDOM, it can be useful to have programmatic accessto the Screen
Object. To make this possible, the Connect for Tandem defines a number of ECM A Script extensions for
mani pulating screen contents. These extensions are described in further detail in the next chapter. For
now, asimple example will suffice. Suppose you are interested in obtaining a string value that occurs on
the screeninrow 5 at column position 20. If the string is 10 characterslong, you could obtain its value by
using thefollowing ECM A Script expression as the Sourcein aMap action (with an output DOM or temp
DOM asthe Target):

Screen.getTextAt (5, 20, 10)

The 10 characters beginning at row 5, column 20 on the screen would be mapped to the Target of the Map
action.

For more examples (and complete API documentation for the Screen object), see the section on
“Tandem-Specific Expression Builder Extensions” in the next chapter.

Tandem-Specific Buttons

If you are familiar with exteNd Composer, you will noticeimmediately that the Tandem Connect
includes a number of Connect-specific tool icons (and/or icons with Connect-specific functionality) on
the component editor’s main toolbar. They appear as shown bel ow.

Record Button

Record icon (normal state)

®

Record icon (recording in progress)

v

Record icon (disabled)

>

Creating a Tandem Component 25

The Record button allows you to capture keyboard and screen manipulations as you interact with the
Native Environment Pane. Recorded operationsare placed in the Action Model as actions, which you can
then “play back” during testing.

Connection Button

fﬁ Connection (disconnected state)
ﬁa Connection (connected state)
ﬁ‘ Connection (connected/disabled state)

The Connection button on Composer’s main tool bar toggles the connection state of the component (using
settings you provided during the creation of the Connection Resource associated with the component).

NOTE: When you are recording or animating, a connection is automatically established, in which case
the button will be shown in the “connected/disabled” state. When you turn off recording, the connection the
button will return to the enabled state.

Create Check Screen Button

The Create Check Screen button on Composer’s main tool bar should be clicked beforethefirst

@ user interaction with any given terminal screen. ThissignalsexteNd Composer that you intend

towork with the screen data as currently shown in the Native Environment Pane. Clicking this

button causes anew Check Screen Action to be inserted into the Action Model. (See the next chapter for
adetailed discussion of this action type.)

Tandem-Specific Menu Bar Items

Component Menu

Two additional items have been added to the Component drop down menu for the Tandem Connect.
These are Start/Stop Recording and Connect/Disconnect (depending on your current status).

Sart/Stop Recor ding—This menu option manages the automatic creation of actionsasyou interact with
ahost program. Start will enable the automatic creation of actions as you interact with the screen and
Sop will end action creation.

Connect/Disconnect—This menu option allows you to control the connection to the host. When you are
recording or animating, aconnection isautomatically established (and consequently, the connectionicon
is shown in the “ connected/disabled” state). However, this button is useful if you are not recording and
you merely want to establish a connection for the purpose of navigating the Tandem environment.

Tandem-Specific Context-Menu Items

The Tandem Connect also includes context-menu items that are specific to this Connect. To view the
context menu, place your cursor in the appropriate pane (Native Environment or Action) and click the
right mouse button.

26 Tandem Connect User’s Guide

Native Environment Pane Context Menu

When you right-mouse-click in the Native Environment Pane, you will see acontextual menu. The menu
itemswill be greyed out if you are not in record mode. In record mode, the context menu has the
following appearance:

Send Buffer: LISERID
Send Buffer; PASSWORD

Check Screen

The four commands work as follows;

Send Buffer: USERI D—Automatically sends User ID information to the host, based on the value you
supplied (if any) for User ID in the Tandem Connection Resource for this component. Also creates the
corresponding Send Buffer action in the Action Model.

Send Buffer: PASSWORD—Automically transmits Password information to the host, based on the
Password you supplied (if any) in the Tandem Connection Resource for this component. Also createsthe
corresponding Send Buffer action in the Action Model.

Send Buffer—Brings up the Send Buffer dialog, allowing you to create anew Send Buffer Action. (See
the next chapter for a detailed discussion of the use of this command.)

Check Screen—Creates anew Check Screen action without bringing up adialog (sameasaclick onthe
Create Check Screen button in the toolbar).

Action Pane Context Menu

If you click the right mouse button when the mouse is|ocated anywhere in the Action pane, a context
menu appears as shown.

Send Buffer. ..
Check Screen...
Advanced 3
Data Exchange 4
Mew Action 3 Process ¥
Edit Action Repeat 1
Enable Action Comment. .. CEr+E
Toggle Breakpoint Compaonent... Ctri+T
Decision. ., Ctri+D
Cut Declare Alias...
Copy Function... Ctri+U
Log... Ctri+l
Delete Map. .. Chrl+M
Find... Send Mail..,
Find Mext Switch...
Replace. .. Todo...

Creating a Tandem Component 27

The Tandem-specific functions of the context menu items are asfollows:

Send Buffer—Allows you to create a Send Buffer action. The Send Buffer Action dialog will appear,
allowing you to enter text and/or control-key commandsthat will be sent to the Tandem host application.
(Thisdialog will also et you enter an ECMA Script expression, or an X Path fragment representing the
location of string datain your input DOM.) See the next chapter for adetailed discussion of the use of
this command.

Check Screen—This command allows you to create anew Check Screen action (to sync the component
with the host). A dialog appears, allowing you to specify various go-ahead criteria as well as a Timeout
value. See the next chapter for adetailed discussion of the Check Screen action.

28 Tandem Connect User’s Guide

Performing Tandem Actions

About Actions

An action issimilar to a programming statement in that it takes input in the form of parameters and
performs specific tasks. Please see the chapters in the Composer User's Guide devoted to Actions.

Within the Tandem Component Editor, a set of instructions for processing XML documents or
communicating with non-XML data sourcesis created as part of an Action Model. The Action Model
performs all data mapping, data transformation, data transfer between hosts and XML documents, and
datatransfer within components and services.

An Action Model is made up of alist of actions that work together. As an example, one Action Model
might read invoice data from a disk, retrieve data from a host inventory database, map the result to a
temporary XML document, make aconversion, and map the converted datato an output XML document.

The Action Model mentioned above would be composed of several actions. These actions would:

+ Open aninvoice document and perform a Tandem command to retrieve invoice data from a host
database

+ Map theresult to atemporary XML document

+ Convert anumeric code using a Code Table

+ Map theresult to an Output XML document

About Tandem-Specific Actions

The Tandem Connect includes two actions that are specific to the Tandem environment: Check Screen

and Send Buffer.
Tandem Action Description
Check Screen Allows the component to stay in sync with the host application. This action
signals the component that execution must not proceed until the screen is in a
particular state (which can be specified in the Check Screen setup dialog),
subject to a user-specified timeout value.
Send Buffer Buffers a string for transmission to the host. In Conversational and Block Mode,

Tandem Connect will act as a “dumb” terminal and might only change the internal
buffers of the screen without sending data to the host. The string is formed from
Map actions and/or from user keystrokes. (The Send Buffer action can be
created manually, but will more often be generated automatically when the user
types into the screen or maps data to the current prompt.)

The purpose of these actionsisto allow the Tandem component (running in a deployed service) to
replicate, at runtime, the terminal/host interactions that occur in aterminal session. The usage and
meanings of these actions are described in further detail below.

Performing Tandem Actions 29

The Send Buffer Action

The Send Buffer action encapsulates “keystroke data” (whether actually obtained from keystrokes, or
through a drag-and-drop mapping, or viaan ECMA Script expression built with the Expression Builder)
that will be sent to the host in a single transmission at component execution time. When the Send Buffer
action executes, the buffered data are sent to the host in the form of aproperly Tandem 6530-escaped byte
stream. Send Buffer actions should always be preceded by a Check Screen action (see next section).

The Send Buffer action can be created in several ways:
+ InRecord mode, just begin typing after a Check Screen action has been created. Keystrokes are

automatically captured to a new Send Buffer action.

+ Right-mouse-click anywhere in the Action Model; a contextual menu appears. Select New Action
and Send Buffer.

+ Inthe main menu bar, under Action, select New Action and Send Buffer.

To create a Send Buffer action using menu commands:

1 Right-mouse-click anywhere in the Action Model and select New Action, then Send Buffer, from
the contextual menu (or use the Action menu as described above). The Send Buffer dialog will
appear.

Send Buffer - x|
@® xPath: Jnput [v| OExpression:
rS3adminuo00a” 4
Accept Key Strokes
__Apply J[Ok][cancel]

2 Tomap aDOM element’s contents to the buffer, click the XPath radio button, then select a DOM
from the pulldown list and type the appropriate X Path node name in the text area (or click the
Expression icon at right and build the node name using the Expression Builder).

3 To specify the buffer’s contents using ECMA Script, click the Expression radio button, then use the
Expression Builder dialog to create an ECM A Script expression that evaluatesto a string.

4 To specify the contents of the buffer manually (by typing a string into the text field), first check the
Accept Key Srokes checkbox, then begin typing. The Expression radio button will become
selected automatically and every key you press will be entered into a quoted string in the text area.
Control keys (arrow keys, function keys, etc.) will automatically be translated to the appropriate
escape sequences. (See discussion below.)

5 Click OK.

Editing Text in the Send Buffer Dialog

30

When you arein “Accept Key Strokes’ mode, normal editing of text via backspacing, cut/paste, etc. is
not possible, since every keystroke is captured to the dialog as an escaped string-literal value. For
example, if you hit the F11 key, avalue of “<F11>" will be appended to the string buffer, instead of the
previous character being deleted. This may not be what you want.

To edit the buffer contents directly (using cut, paste, backspace, and so on), first uncheck the Accept Key
Strokes checkbox. Then edit your text. To return to key-capture mode, check Accept Key Strokes. Any
additional keystrokes will then be translated to escape sequences and appended to the existing text.

Tandem Connect User’s Guide

On some occasions, you may wish to enter akey sequence manually. You can do this by unchecking
Accept Key Strokes and typing the value in question anywhere in the current text string. If you don’t
know the key sequence for agiven control key or function key, you can find it by clicking the Expression
icon to theright of thetext area (which brings up the Expression Builder dialog) and then double-clicking
the appropriate control-key entry in the picklist in the upper part of the Expression Builder dialog.

If you want to know what a given key sequence meansin plain English, ssmply select (highlight) the key
sequence(s) of interest and | et the mouse hover over the selection. See below.

Send Buffer i o x|

) %Path: | [>] (®) Expression:

Tranzlated: 03031 922=111= |

Accept Key Strokes

[Apply][0K][Cancel]

A hover-help box will appear, containing the escape sequence’s plain-English translation. For example,
in the graphic above, the key sequence “03031922< F11>" has been highlighted and the mouse is
hovering over the selection. The hover-help box shows the key sequence trandates to “ 03031922<
F11>".

If agroup of key sequencesis selected, you will see (in the hover-help box) all character equivalents,
wrapped in angle brackets.

All specia (non-printing) keys and their terminal equivalents are listed in See “ Tandem Keyboard
Equivalents’ on page 97. in Appendix B.

How Keys Are Displayed in the Action Model

When a Send Buffer action is created, the keystrokes that are captured in real time are displayed in the
Action Model either as plain alphanumeric values or as a string which represents the key name in angle
brackets. For example, an up arrowwill betranslated into <up> and F7 will be translated into
<£7>. Backspace and delete keystrokes are al so represented as strings. Therefore, if you wish to correct
typosin your Send Buffer action, you may want to doubleclick the action in the Action Model (which
brings up the Send Buffer dialog) and edit the buffer string by hand.

The Check Screen Action

Because of the latency involved in terminal sessions and the possibility that screen datamay arrivein an
arbitrary, host-application-defined order, it is essential that your component can depend on the terminal
screen being in agiven state before it operates on the current screen data. The Check Screen action makes
it possible for your component to stay “in sync” with the host. You will manually create Check Screen
actions at various pointsin your Action Model so that precisely the correct screens are acted on at
precisely the right time(s).

To create anew Check Screen action, you can do one of the following:

«+ Click on the “Create Check Screen Action” button on the main toolbar, or

+ Perform aright mouse click inside the action list, then select New Action and Check Screen from
the contextual menu, or

+ Inthe component editor’s main menu bar, select Action, then New Action, then Check Screen

+ Whileyou arein Record mode, with your cursor in the Native Environment Pane, right-click then
select Check Screen.

Performing Tandem Actions 31

NOTE: You will most often use the toolbar button when you are in Record mode.

> To create a Check Screen action using a menu command:

1 Withyour cursor positioned in the Action Model on the action item after which you want your new
item to appear, perform aright mouse click. Then select New Action and Check Screen from the
contextual menu (or use the Action menu in the main menu bar as described above). The Check

Screen dialog appears.
x|
Row: Column:
() Cursor position | |
@® Prompt Jogin
() Expression | B
Timeout: {in miliseconds) Min wait: {in miliseconds)

S00 ED

avpy IOk [Cancel]

2 Click one of the three radio buttons (Cur sor position, Prompt, or Expression), depending on how
you want to specify the go-ahead (screen readiness) criterion. (The default is “Cursor position.”)
See discussion below.

3 Specify a Timeout value in milliseconds. (See discussion further below.)
4 Specify aMin wait value in milliseconds. (See discussion further below.)
5 Click OK.

Understanding the Check Screen Action

Itisimportant that the execution of actionsin your Action Model not proceed until the host application
isready, and all screen data have arrived (that is, the screen isin a known state).

Your component must have someway of “knowing” when the current screen isready. The Check Screen
Action is how you specify the readiness criteria.

The purpose of the Check Screen Action dialog istwofold:

+ Italowsyou to specify await time for program synchronization.

+ Itallowsyou to specify an expression which will be used as a criterion to judge whether the screen
isin a state of readiness at execution time.

These factors are discussed in some detail below. Be sure to read and understand the following sections
before creating your first Tandem Component.

Cursor Position

You can base readiness on the location of the terminal’s cursor. Simply enter the row and column number
of the cursor’s* prompt position.” (The values shown in the Row and Column fields of the dialog will
always automatically default to the cursor’s current position. You will normally not have to enter the

numbers manually.)

32 Tandem Connect User’s Guide

Prompt

Expression

Timeout

Min Wait

The current prompt position can be specified on the basis of the character string that immediately
precedes the cursor position in the terminal emulation window. For example, the prompt may say
“Chooseone: (A, B, C,D)". Inthisinstance, you could specify “Choose one: (A, B, C,D)”, or “(A, B, C,
D)”, or perhapssimply “)”, asthe go-ahead prompt. (The default value shown for the prompt string will
be the current screen contentsfor the lineinwhich the cursor is positioned. The default string will include
all characters from the beginning of the prompt line up to and including the last space character, if any,
preceding the cursor.)

It is possible that the prompt position or prompt text could vary dynamically at runtime. For the ultimate
flexibility in determining the go-ahead criterion, you can click the Expression radio button in the Check
Screen Action dialog and enter an ECM A Script expression in the associated text field. At runtime, if the
expression evaluates as “true,” the screen will be considered ready; but not otherwise.

Expressions are discussed in detail in the heading titled “ Tandem-Specific Expression Builder
Extensions’ below.

The timeout value (in milliseconds) represents the maximum amount of time that your component will
wait for screen datato both arrive and meet the readiness criterion specified in the top part of the dialog.
If the available screen data do not meet the readiness criteria before the specified number of milliseconds
have elapsed, an exception is thrown.

NOTE: Obviously, since the latency involved in a terminal session can vary greatly from application to
application, from connection to connection, or even from screen to screen, a great deal of discretion
should be exercised in deciding on a Timeout value. Careful testing of the component at design time as
well as on the server will be required in order to determine “safe” timeout values.

The default Timeout value will vary depending on whether you are in Record mode or you are merely
creating Actions manually. In Record mode, the default Timeout value is a calculated value based on the
actual time that elapses between the last operation and the loading of the new screen. (The value
displayed in the dialog istwice this “observed |oad time,” rounded up to the nearest full second.) When
you are creating a Check Screen action manually (not in Record mode), the default value is 1500
milliseconds.

The Min Wait time (in milliseconds) represents the amount of time your component should wait before
theinitial check of the screen buffer. For example, if you specify aMin Wait of 500, your component will
check the screen for readiness (according to the criteria you specified) after waiting 500 milliseconds. If
the go-ahead criteria are met, the screen will be rechecked after another 100 milliseconds. Only if the
second check is also good will execution of the component proceed. If not, the screen will be rechecked
at 100-millisecond intervalsuntil the Timeout value (above) has been reached. At that point, if the screen
still does not meet readiness requirements, an exception is thrown.

NOTE: Every Check Screen action checks the screen a minimum of two times. Go-ahead doesn’t occur
unless two consecutive checks are passed.

The default value for Min Wait is 50 milliseconds. But regardless of the Min Wait time, the screen will
be checked one final time at the expiration of the Timeout period, so that even if the Min Wait timeis
greater than the Timeout value, the screen will still be checked once.

Performing Tandem Actions 33

Using Actions in Record Mode

The easiest way to create an Action Model for your component isto use Record mode. When you build
an Action Model in thisway a new Send Buffer action is created for you automaticallyas soon as you
begin typing or drag an element from the Input DOM into the appropriate field onscreen. This makesit
easy to build an Action Model, since all you haveto doisclick the Check Screen button, begin typing (or
drag an element from the Input DOM into the prompt area onscreen), wait for the next screen to arrive
fromthe hogt, click Check Screen, begin typing (or dragging), etc., repeatedly. In thisfashion, asequence
of Check Screen and Send Buffer actions can be built very quickly and naturally.

When a Send Buffer action has been created automatically for you, all of your subsegquent keystrokeswill
be captured to the buffer until one of the following occurs:

+ You perform aright-mouse-click.

+ You begin to create a new action in the Action Model.

+ Youdrag datainto or out of the Native Environment Pane.

+ You toggle the Record button to the non-recording state.

Working in record mode will be discussed further below in the section entitled “Recording a Tandem
Session”.

Tandem-Specific Expression Builder Extensions

34

The Connect for Tandem exposes anumber of Tandem-specific ECMA Script global variables and object
extensions, which arevisiblein Expression Builder picklists. The Tandem-specific itemsare listed under
the node labelled “ Tandem.” There are three child nodes: Login, Screen Methods, and Keys. See
illustration below.

x|
“ariahles: FunctionsMethods: Cperatars:
[#-<> Input (#}-Custom Scripts (+}-Math
[+}-<> Output [+} Document [+ Relational
[+ <> _SystemFault [+ ECMAScript [# Logical
[+}- <> PRO.ECT [+ Extended ECMAScript [+)-String
[} < > Repeat Aliases (=} Ericom
[} <> Node Aliases [+ Login
x [+} Screen Methods

i

(Help|] (validate [0K][Cancel

picktree nodes Tandem-specific

Tandem Connect User’s Guide

Login

Tandem Connection Resources have two global variables that are accessible from Expression Builder
dialogs: the USERID and PASSWORD. These properties (available under the Login node of the
picktree) specify the User ID and Password values that may be requested by the host system when you
connect. You can map these variablesinto the terminal screen, which eliminates the need for typing user
and password information explicitly in amap action.

NOTE: You can also create a Send Buffer action where the XPath source is defined as $SPASSWORD.

Screen Methods

When an Expression Builder window is accessed from aMap or Function action in the Tandem
Component, the picklists at the top of the window expose special Tandem-specific ECMA Script
extensions, consisting of various methods of the Screen object and predefined escape sequences
corresponding to various “ specia keys’ on the virtual terminal’s keyboard.

Hover-help is available if you let the mouse loiter over agiven picktreeitem. (Seeillustration.)

x
Yariables: Functionshethaods: Operators:

[<> Input [z} Document [~] & math

[x} <> Output [z} ECMAScript ||) Relational

[+ <> _SystemFault [+ Extended ECMAScript [Logical

[+} <> PROJECT (=) Ericom [+ String

[+ < > Repeat Aliases [+ Login

[t} << > Node Aliases [=} Screen Methods

getAttribute(aRow,
getCursorColumn()
getCursorRow()
getColumnCount()
getPrompt()

gC‘ Tl AT TAY

ef String getPromgt()
9 extelld Composer extension methaod,
gelReturns text from cursor back to
getithe lett margin of the screen.

B setText(asText) [v]

<l I [2]

(Validate][OK |[Cancel |

In addition, you can obtain more complete online help by clicking Help in the lower | eft corner of the
dialog.

The Screen object offers methods with the following names, signatures, and usage conventions:
int getAttribute(nRow, nColumn)

Thismethod will return the display attribute val ue of the character at the screen position given by nRow,

nColumn. The complete set of possible display attribute valuesislisted in Appendix C. An example of
using thismethod is:

if (Screen.getAttribute(5, 20) == 1) // if character at 5, 20 is bold
// do something

int getCursorColumn(void)

This method returns the current column position of the cursor in the Tandem terminal emulator screen
(Native Environment Pane). Column positions are one-based rather than zero-based. In other words, in
24x80 mode, this method would return avalue from 1 to 80, inclusive.

Performing Tandem Actions 35

int getCursorRow(void)

This method returns the current row position of the cursor in the Tandem terminal emulator screen
(Native Environment Pane). Row positions are one-based rather than zero-based. In other words, in
24x80 mode, this method would return avalue from 1 to 24, inclusive.

int getColumnCount(void)

This method returns the native column-width dimension of the current screen. (Due to possible mode
changes in the course of host-program execution, this value can change from screen to screen. Do not
depend on this value staying constant over the life of the component.) When the program isin 24x80
mode, thismethod will return 80. Toretrieve all of the contentsof row 15 of the current screen, regardless
of its native dimensions, you could do:

var myRow = Screen.getTextAt(15, 1, Screen.getMaxColumn ());

String getPrompt(void)

The get Prompt () method returns the string representing all charactersin the cursor’s row, starting at
column 1 and continuing to, but not including, get CursorColumn () —in other words, everything from
the beginning of the line to the cursor position. (Thisisthe same as the default prompt string shown in
the Check Screen dialog.) Example:

var thePrompt = Screen.getPrompt () ;
if (thePrompt () .toLowerCase () .indexOf ("password") != -1)
Screen.setText (PASSWORD) ;

int getRowCount(void)

This method returns the native vertical dimension of the current screen. (Due to possible mode changes
in the course of host-program execution, this value can change from screen to screen. Do not depend on
this value staying constant over the life of the component.) When a program isin 24x80 mode, this

method will return 24. To loop over al rows of a screen, regardless of its native dimensions, you could
do:

for (var 1 = 1; i <= Screen.getMaxRow(); i++)
var myRow = Screen.getTextAt(i, 1, Screen.getMaxColumn());
// do something with myRow

}

String getText(nOffset, nLength)

This method returns the string of characters (of length nLength) that occursin the Screen object at the
byte offset given by nof £set. Note that the offset is one-based, not zero-based. Thus, to obtain all of a
24 x 80 screen as an ECMA Script String, you would do:

var wholeScreen = Screen.getText(1, 24 * 80);

Any attempt to obtain character data beyond the bounds of the screen buffer will result in an exception.
For example, the following call will fail:

var wholeScreen = Screen.getText(1, 1 + 24 * 80); // ERROR!

String getTextAt(nRow, nColumn, nLength)

36

This method returns an ECMA Script String that represents the sequence of characters (of length
nLength) in the current screen starting at the row and column position specified. Note that nRow and

nColumn are one-based, not zero-based. A zero valuefor either of these parameterswill cause an
exception.

To obtain all of row 20 of a 24x80 screen, you would do:

var myRow = Screen.getTextAt(20, 1, 80);

Tandem Connect User’s Guide

The getTextat () techniqueisused internally in drag-and-drop Map actions involving screen
selections created as described in “ Selecting Continuous Data” further bel ow.

String getTextFromRectangle(nStartRow, nStartColumn, nEndRow, nEndColumn)

This method returns a single String consisting of substrings (one per row) comprising all the characters
within the bounding box defined by the top left and bottom right row/column coordinates specified as
parameters. So for example, in 24x80 mode, you could obtain the upper left quarter of the screen by
doing:

var topLeftQuadrant = Screen.getTextFromRectangle(1l,1,12,40);
The getTextFromRectangle () method isused internally in drag-and-drop Map actionsinvolving

rectangular screen sel ection regions created using the Shift-selection method (see* Sel ecting Rectangular
Regions’ below).

Note that the string returned by this method contains newline (\u000a) delimiters between substrings.
That is, therewill be one newline at the end of each row’sworth of data. The overall length of thereturned
string will thus be the number of rows times the number of columns, plus the number of rows. For
example, screen.getTextFromRectangle (1,1,4,4) .length will equal 20.

void setText(String)

The setText () method alowsyou to send data to the screen (and therefore the host application)
programmatically, without explicitly creating a Send Buffer action. Example:

var myPhone = " (203) 225-1800";
if (Screen.getPrompt () .indexOf ("Phone") != -1)
Screen.setText (myPhone + "\r"); // send string + CR

Keys

The Keysnode of the Tandem-specific picktreein the Expression Builder dial og has child nodes|abelled
Common Keys, NumPad Keys, Control Keys, and Other Keys. These keyswere discussed in detail in
“About Tandem Keyboard Support” on page -22. By double-clicking the picklist items under these
categories, you can automatically generate the key string for any non-printing characters, special keys
and function keys you wish to transmit to the host. The detailed contents of these picktree items can be
found in Appendix B.

Screen Selections in the Tandem Connect

There are two main ways of selecting data on the terminal screen (in the Native Environment Pane) at
design time, for purposes of dragging out. One method selects text in a continuous stream, from one
screen-buffer offset to another; the other method selects text in an arbitrary onscreen bounding box or
region.

Selecting Continuous Data

When you drag across multiple rows of datawithout holding the Shift key down, all characters from the
initial screen offset (at the mouse-down event) to the final screen offset (at mouse-up) are selected, as
shown in the graphic below. (The selected text is “reversed out.” A partial row has been selected,
followed by three complete rows, followed by a partial row.)

Performing Tandem Actions 37

Tou searched for the AUTHOR: clancy tom CON5ULS:411 L

Record 3 of
AUTHOE. C v,
TITLE) of honor
FUBLISHER ork
LESCRIPT 760 p. ¢ 24 cm.
NOTE 11795, c.l 525.95 gift.

AUBJECT Byan, Jack (Fictitious characte® -- Fictiom.

STATUS

TATLABLE
AVAILARLE

Choosze one (1-2,B,F,B,N,&,Z,5,P,G,E, T, 4]

Asindicated in the component editor window’s statusline (lower left), the selection in the above example
actually beginsat row 5, column 26, and ends at row 9, column 35. If you were to drag this sel ection out
of the Native Environment Pane, into a DOM, a Map action would be generated as follows:

— MAP Screen.getTextAt(5,26,329) TO $OutputinguiryResponseinfo

Noticethat theget Textat () methodisused. Thismeansthe captured screen charactersform onestring,
which is mapped to Output/I nquiry/Response/l nfo. No newlines or other special charactersare
inserted into the string. (Areas of the screen shown in black are simply represented as space charactersin
the string.)

Selecting Rectangular Regions

38

Sometimes you may not want the selection behavior described above. In certain cases, screen data may
be grouped into zones with their own natural boundaries. For example, in the screen shown previously,
thereisabox two-thirds of the way down the screen containing information on the availability of agiven
book. You may want to capture (for drag-out purposes) just the data enclosed within this particular
rectangular region on the screen. To do this, first hold the Shift key down, then drag your mouse across
the portion of the screen that you want to select. The selected areais highlighted and the appropriate
row/column start and end points are displayed in the status line of the component editor’s window, as

bel ow:

Tandem Connect User’s Guide

Tou searched for the AUTHOR: clancy tom

AUTHOR

LOCATION CALL HO. STATUS
1l > CCAT Stack Lewel 5 PE3553 L24b D43 19524 AVAILARLE
2 > ZCAT Main PE3553.L245 D43 19524 AVAILARLE

Inthisinstance, when you drag the rectangular highlight region out of the Native Environment Pane, into
aDOM, the resulting Map action usesthe get Text FromRectangle () method described on page
37.Theresulting action looks like:

| — MAF Screen.getTextFromRectangle{16,2,18,67) TO $OutputinguiryResponse/Status |

This method operates in a different fashion from get Textat (), because the string returned by
getTextFromRectangle () iswrapped at the rectangle'sright edge. Newlines areinserted at thewrap
points as discussed in the API description of get Text FromRectangle (), further above.

Recording a Tandem Session

The Tandem Component differs from other componentsin that a major portion of the Action Model is
built for you automatically. This happens asyou interact with the host in the Native Environment pane as
part of alive Tandem terminal session. Composer records your interactions as a set of auto-generated
actionsin the Action Model. Typically, in other exteNd Composer components (such asaJDBC
Component), you must manually create actionsin the Action Model, which then perform the mapping,
logging, transformation, communication, and other tasks required by the component or service. By
contrast, when you create a Tandem Component, you record requests and responsesto and from the host,
which end up as actions in the Action Model. In addition, you can add standard actions (Map, Log,
Function, etc.) to the Action Model just the same as in other components.

NOTE: In order to successfully build a Tandem Component, you should be familiar with the Tandem 6530
commands and the specifics of the application you intend to use in your XML integration project.

The following example demonstrates several common tasks that you will encounter in building Tandem
Components, such as:

+ Creation of Check Screen actions

+ Automatic creation of Send Buffer actions

Drag-and-drop mapping of Input DOM elements to Tandem-screen prompts
Drag-and-drop mapping from the Native Environment Screen to the Output DOM
The use of ECM A Script expressions to manipul ate Screen object elements

*
*

*

Performing Tandem Actions 39

40

In the following example, we start with an input XML document that contains the title and author of a
book. Thegoal of our Web Serviceisto do an author search online, using theterminal app, to seeif abook
by the given title existsin thelibrary system. If so, weretrieveits ISBN (International Standard Book

Number) code in an Output DOM. Whether we succeed or not, we insert an appropriate status message
in the Output DOM.

> To record a Tandem session:
1

Create a Tandem Component per the procedure shown on page 19 of the previous chapter.
2

Once created, the Tandem Component Editor window appears, with the words “ Tandem Terminal
Emulation” in the center of the Native Environment Pane, indicating that no connection has yet

been established with a host.

¥ exteNd Composer: MyStuff [Tand em Terminal] [_[Olx]
File Edit view Component Action Animate Tools Vindow Help EE -8 x |
O=2E@8x00 %X @7 = Novell

Input Data

5 < > BOOKINQUIRY
5. > UTHOR

<> FIRSTNAME [Tom

<> LABTNAME |Clancy

>TITLE Dbt of Honor

> COMMENT

[oma

B > nguirResponse

T | @mBE S @ 0

Librandnquing ﬂ

Project | Registries :II | 1 _>|;|
' |

3 Click the Record button. You are automatically connected to the host that you selected in the

Connection Resource for the component. An input screen appears in the Native Environment pane
as shown below.

¥ exteNd Composer: MyStuff [Tandem Terminal]

M= B3
File Edit View Component Action Animate Tools Window Help EEINEES
D@80 0 %@ 7RG Novell
= nput |pata
|=<>BookNauiRY

AUTHOR
~SZFIRSTNAME [Tom
= LASTNAME Clancy

> TITLE Dekst of Honor
COMMENT

in TITLE

} Ol.ﬂ.pu.‘, T "D —

B> InquinRespanse
| <>staws
| : ISER

[T B EX N

=-LibranAnguiry

[CHECKSCREEN for cursor position, where Row=21 and Column = 56

Tandem Connect User’s Guide

4 Click the Create Check Screen Action button in the toolbar. A new Check Screen action appears
inthe action list. It defaultsto a go-ahead condition based on the current cursor position (which we
assume will always be 21,56 on this screen, with every future execution of this component—an
assumption worth questioning). We will tentatively accept the default Timeout of 1500
milliseconds for this Check Screen action, since the CONSULS program has arelatively quick
response time. (Even so, careful testing of the component should be done in order to verify that this
timeout value is safe.)

5 Typetheletter A (for Author) in the input screen of the Tandem environment pane. A new Send
Buffer action appears automatically in your component’s action list. Noticethat the* A’ you typed is
aready in the action.

NOTE: Terminal commands are often case-sensitive and should generally be entered in ALL
CAPS.

In this part of this particular host application, merely typing a single character (without hitting
Enter or Return) causes a new screen to appear. The host, in other words, processes the typed
character immediately. Thisisacommon terminal idiom. You will not aways need to hit Return or
Enter to get to a new screen.

¥ cateNd Composer: MyStuff [Tandem Logon: LogonTandern]

File Edit View Component Action Animate Tools Window Help EE -8 x
U@ X|® 75
© Input |Data
=< > BODKINQUIRY
B> AITHOR
H FIRSTMAME [Tom
LASTNAME [Clancy
TITLE Debt of Honor
COMMENT

;/O;;p.ut — ‘”Da‘(a —

=) inouinResponse |
Status |
ISEN -
|8 BEE2 AN

& Libranfnguiry
. B CHECK SCREEN for cursor position, where Row = 21 and Column = 56

| =-"BSEND BUFFER A

New Send Buffer action appears here.

[Ready [Terminal: Disconnected

Inresponseto ‘A’, the host program sends the new screen shown above.

6 Because we wish to terminate the Send Buffer action and go on to interact with the new screen, you
should click the Check Screen button in the toolbar, at this point, to allow the component to “sync”
our next action with the current screen. Click the Create Check Screen Action button now. The
new Check Screen action appearsin the action list.

NOTE: Were you to simply start typing your next command at this point (without first creating a
new Check Screen action), the command would be appended to the still-active Send Buffer. In
essence, you would be creating a “type-ahead” buffer. At runtime, the buffer (containing two sets of
screen commands concatenated together) would be sent all at once. While this would work okay in
this particular program, the type-ahead technique could fail in other real-world terminal programs.
Therefore, use caution when deliberately overloading a Send Buffer action. A “best practices”
approach is to create a new Check Screen action for every new screen that appears during your
session.

7 Drag the BOOKINQUIRY/AUTHOR/LASTNAME node from the Input DOM to the cursor
position in the Native Environment Pane. “Clancy” (without quotation marks) appearsin the
prompt zone and a new Send Buffer action appears automatically in the Action Model.

Performing Tandem Actions 41

42

10

11

12

13

14

NOTE: This terminal application is expecting the author’s name to be provided as Last Name
followed by First Name (with a space in between). Hence, we dragged the LASTNAME element first.

Hit the spacebar on your keyboard. Notice that a space character is added to “Clancy” in the Native
Environment Pane. Also, a new Send Buffer action is created containing just the space character.

Drag the BOOKINQUIRY/AUTHOR/FIRSTNAME element from the Input DOM to the cursor
position in the Native Environment Pane. “ Tom” (without quotation marks) appears after “Clancy ”
in the prompt zone and anew Send Buffer action appearsin the Action Model.

Note that the terminal screen has not changed (the host has not acted on our input), because it is
waiting for Return or Enter. Press Enter to tell the host that our query string (the author’s name) is
complete. A new Send Buffer action appears, containing <enter >, and the Native Environment
Pane updates to reflect the query results.

¥ exteNd Composer: MyStuff [Tandem Logan: LagonTandem] [_ O] =]
File Edit Wiew Component Action Animate Tools Window Help [0 - # x
C2E3x00X0 7 B¢ Novell

Input Data ﬁ '
E-< > BOOKINQUIRY g |
B <> HTHOR | |
P FIRSTMAME Tom ,'j |
LASTNAME [Clancy (M 12 entries foundl entries 1-8 are: LOCATIONS i
TITLE Debt of Honor ; |

L > COMMENT E

|

|

|

Drag selected text '
to Output DOM i

Output Data

=< > hguiyResponse

LS Shaie 12 saveias £ -,,am.‘.aégwﬁ;%m%ﬂvaumﬁ«. e

Lo 5EH |
Libraryinguiry =
...... ER CHECK SCREEN for cursor position, where Row= 21 and Column = 56 |
B9 SEND BUFFER ™A™
- D CHECK BCREEN for cursor position, where Row =1 and Column = 24
..[B SEND BUFFER $InputBOOKINQUIRY/AUTHORLASTNAME |
.. |B SEND BUFFER™" |
@ SEND BUFFER $inputBOOKINQUIRY/AUTHORFIRSTHAME :
.. [B SEND BUFFER "<enter=" |
E CHECK SCREEN for cursor pasition, where Row =24 and Colurmn = 38 |
=% MAP Screen.getTextat(2,1,19) TO $OutputinquiryResponse/Status |

o d . 2

Ready / |

New action appears here

Click the Create Check Screen button in the toolbar. A new Check Screen action appears, with a
default go-ahead condition based on the cursor location of row 24, column 38. (Row 24 isthe
bottom row and column 38 is about halfway across the 80-column screen; see screenshot above.)
There is no need to change the Check Screen default in this case.

In the Native Environment Pane, select the terminal-screen text in row 2, from column 2 to column
18, by clicking and dragging the mouse.

NOTE: Notice that as you click and drag, the onscreen row/column coordinates of the selected
area are displayed in the status line of the component editor window (lower left corner).

Lift your finger off the mouse button and place the mouse over the selected text. A finger cursor
will appear. Click-drag the selection to the Output DOM I nquiryResponse/Status node. The
selected text isinserted into the DOM at the desired location, and anew Map Action isgenerated in
the Action Model automatically.

Click the Record button to turn recording off.

Tandem Connect User’s Guide

Looping Over Multiple Rows in Search of Data

Inthe example above, the goal isto find the ISBN (International Standard Book Number) information for
the book we' reinterested in and map it into the Output DOM. Therefore, when the application showsthe
result of your author search, you need to scan that screen, looking for the book titlein question. If thetitle
exists, our next action should be to send the corresponding line number, which will cause the application
to display a new screen showing detailed information (including I1SBN) for the book.

By simplevisual inspection of theterminal emulator screen (seepreviousillustration), it'seasy to seethat
Tom Clancy’s Debt of Honor islisted as line-item number 3 in the search-results screen. But thisonly
holds true for this particular search. A search on a different author/title combination might yield a hit at
adifferent line position. (Or if Tom Clancy writes more books, Debt of Honor could assume a different
listing position.) To determine the line position of the book at runtime, we should iterate through lines 4
through 11 of the terminal screen, searching for the string stored in the BOOKINQUIRY /TITLE node of
our Input DOM. The next example shows how to do this, building on the previous example.

> To search for a data item one row at a time:

1 At thebottom of the Action Model, add a new Repeat While action. (Perform a right-mouse-click,
then select New Action, Repeat, and Repeat While.) The Repeat While dialog appears.

Repeat While
Source
While:

Fowlndex = 8| [

Index Variahble:
|r0w|ndex

Target
Alias:

Representing:

{* XPath: [Input LI " Expression:
| b4
Help [OK][Cancel]

2 Inthe While text-entry box, type an expression representing the loop-termination condition you
wish to apply to thisloop. In this case, our condition involves a check of the index variable,
rowIndex. Wewill be checking 8 rows of screen datain all.

3 Inthelndex Variable text-entry area, enter the name of your index variable (in this case,
rowIndex).

4 Sincewe are only retreiving asingle value (one book) from the screen, we do not need to fill in the
optional Target portion of the dialog. Therefore, just click OK. A new Repeat While action isadded
to the component’s Action Model.

Performing Tandem Actions 43

44

5

Inthisexample, we' re looking for aspecific string within agiven row. If the string is found, we will
take several actions, then break out of the loop. We will perform our row parsing and string search
within a Decision Action. Create a new Decision Action by clicking the right mouse button and

selecting New Action > Decision from the contextual menu. The Decision Action dialog appears.

pecision x|

Decision Expression:

ar myRow = Screen. getTextAtrowindex+d, 1, @
a0y toLowerCase),

ar bookTitle =
Stringinput XPath{BOOKINQUIRYITITLE") toLowerCased;
myRovw.indexOf bookTitle) 1= -1|

[OK H Cancel]

Enter aDecision Expression. In this example, the three-line expression is:

var myRow = Screen.getTextAt (rowIndex+4, 1, 80).toLowerCase() ;

var bookTitle = String (Input.XPath ("BOOKINQUIRY/TITLE")) .toLowerCase () ;

myRow.indexOf (bookTitle) != -1
Thefirst line uses the Screen object’s get Textat () method (see page 35) to retrieve the 80
characters of data (i.e., onefull line, in a24x80 terminal screen) at rowIndex + 4. Weadd an
offset of 4 to the index variable because our search of screen data should begin at row 4 and
continue through row 11. (The index variable itself will have values from 0 to 7. The loop
terminates when rowIndex reaches 8.)

The second line of code above simply retrieves the book title as alowercase string from the Input
DOM. (Notice that because we don’t want our search to be case-sensitive, we force both strings—
the query string and the target-object string—to be lowercase.)

Thefinal line of codeisthe actual “condition check.” It relies on the core-ECMA Script String
method index0f (), which returns—1 when the argument string is not a substring of the string on
which the method is being called.

In the TRUE branch of the Decision Action, create a new Send Buffer action. (Right-mouse-click,
then choose New Action > Send Buffer from the contextual menu.) The Send Buffer dialog
appears.
Click the Expression radio button and then enter an ECMA Script expression in the text-edit area.
In this example, we' ve entered:

var item = Screen.getTextAt (rowIndex + 4, 1,10);

var regex = new RegExp ("\\d+");

item.match (regex) [0] ;
Thefirst line retrieves the first ten characters of datain the “hit” row using the get Textat ()
method. Within this string, we want the first substring of numeric characters, representing the line
number of the book (i.e., 3). One way to extract this substring is with the ECMA Script String
method, match (), which takes aregular expression object as an argument. On success, this
method returns an array, of which the zeroth item is the matched text. Our regular expression
consists of backslash-d followed by aplus sign, which means “one or more digit charactersin a
row.”

NOTE: The RegExp constructor takes a String argument, in which backslashes that are to appear
as literal backslashes “must be escaped with a backslash.”

The net result of these lines of ECMAScript is that the number preceding the book title in the target
row (namely, ‘3’) is supplied to the host application viaa Send Buffer action. No newline need
accompany the number ‘3. Upon receiving this number, the host application will immediately send
back a new screen giving detailed information about the indicated book, as shown below.

Tandem Connect User’s Guide

9

10

11

¥ou searc for the AUTHOR: clancy tom

ATTTHOR.

SUBJECT

I5EN

ANOTHEE,
ADDITIONAL opt:

Create a new Check Screen action by performing aright-mouse-click and selecting New
Action > Check Screen from the contextual menu. The Check Screen dialog appears.

Select the Expression radio button and enter “true” in the text-edit area. Set aMin wait value of
100, which (in this case) we know from experience is generous.

NOTE: The combination of “true” and 100 means we will automatically accept any screen data that
get sent within 100 milliseconds.

Create a new Function Action. (Right-mouse-click: select New Action > Function.) In this action,
we will retrieve the first ISBN number on the page, if one exists, and store it into an ECMA Script
global.

The expression we will useis:

this.isbn = "Not found"; // set up global

var screen = Screen.getText(1, 24 * 80); // fetch whole screen

if (screen.indexOf ('ISBN') != -1) // if ‘ISBN’ occurs, get it
this.isbn = 1Trim(screen.split ('ISBN') [1]).split(' ') [0];

Thefirst line above simply declares and initializes an ECMAScript global variable (which, on
success, will be overwritten with avalid ISBN value).

The second line of code retrieves the entire screen buffer asastring and placesit inalocal variable,
text. (We assume here that we're in 24x80 mode.)

The third line checks the screen buffer to seeif “ISBN” occursinit. If so, we split the buffer into an
array of substrings using “ISBN" as the delimiter. The array member at index 1 will contain the
ISBN number, trailed by a partial screen’s worth of information (and possibly containing one or
more leading space characters). The custom ECMA Script function 1Trim () isused to trimming
leading spaces, while the split method is again employed to break our string into an array of
substrings, assuming spaces to be the delimiters. The zeroth item of thisfinal array isthe ISBN
string that we' re looking for. See the series of graphics below.

Performing Tandem Actions 45

46

screen.split ('ISBN') [0]

rched for the AUTHOR: clancy tom

AUTHOR
TITLE 1) of hon om Clat
= Mutnanm'

.
Fiction.

ILAELE
AVATLABLE

ch by AUTHOR
e = DITIONAL options
R,F,B,N A, P,G,E,T,+)

screen.split ('ISBN') [1]

leading spaces

1Trim(screen.split('ISBN') [1])

v

- 1 [alk. paper) :

informat

Tandem Connect User’s Guide

(screen.split ('ISBN') [1]) .split (" ') [0]

{alk. paper) :

12 Onfinding theinformation we're looking for, we no longer need to iterate through line items.
Therefore, create a Break Action to break out of the loop. (Right-mouse-click; New Action;
Break.)

13 Create aMap action that maps this. isbn to the InquiryResponse/l SBN node of the Output
DOM.

The completed Action Model looks like this:

=8 ibrarvinguiry

....... @ CHECK SCREEN for cursar position, where Row = 21 and Column = 56
....... B SEMND BUFFER™a"
....... @ CHECK SCREEM far cursor position, where Row =1 and Column = 24
....... @ SEND BUFFER $input BOOKINQUIRY/AUTHORLASTNAME
...... @ SEMD BUFFER™ ™
...... @ SEMD BUFFER $input BOOKINQUIRY/AUTHORFIRSTHAME
...... B SEND BUFFER "<enter>"
....... @ CHECK SCREEM for cursar position, where Row = 24 and Column =38
...... — MAP Screen.getTextat(2,1,19) TO $OutputInquinResponse/Status
B @ WHILE rowindex < 8 INDEXED BY rowlindex
E| Loop Action
E|?'|:v IF war myRow = Screen.getTextAt{rowindex+4, 1, 80).toLowerCase();DOvar bookTitle = Strir
5. TRUE
..y BEND BUFFER var item = Screen.getTextat{ rowindex + 4, 1,103;0var regex = ne
@ CHECK SCREEN for Expression: true
- fix) CALL this.isbn = "Not found™;,Car 12t =Screen.getText(1,24 * 80);,05f {txt.indexOf(19
B break
FALSE
— MAP this.isbhn TO $OutputingquinyResponselSBN

Editing a Previously Recorded Action Model

You will encounter times when you need to edit a previously recorded action model. Unlike the situation
with other components, editing a Tandem Component requires extra attention. When a Tandem
Component executes, it plays back a sequence of actions that expect certain screens and datato appear at
certain timesin order to work properly. So when editing a component you must be careful not to make
the action model sequence inconsistent with the host program execution sequence you recorded earlier.

Performing Tandem Actions 47

In general, to ensure successful edits, the following recommendations apply:

+ Exercise extreme care when using Cut, Copy, and/or Paste to delete, move, or replicate actionsin
your Action Model. Actions that were created automatically during a“Record” session will often
create data dependencies that are easily overlooked in the editing process.

+ When you need to use drag-and-drop to add new Map actions to your Action Model, click the Start
Animation button in the Action Pane toolbar and step to the line of interest in your Action Model;
then Pause animation and turn on Record mode. At this point, you can safely drag to and from the
screen. Following this procedure will prevent your Action Model from getting out of sync with the
host or conflicting with previously mapped DOM data.

Changing an Existing Action

The following procedure will explain how to change an existing action in a previously recorded session.

> To Change an existing action in a previously recorded Action Model:

1 Open the component that includes the Action Model you'd like to edit. The component appearsin
the Tandem Component Editor window.

¥ exteNd Composer: MyStuff [Tandem Terminal] |_ (O] x|
File Edit Wiew Component Action Animate Tools Window Help BHO -8 x
O=B8I>00 X% ® &7 & e Novell

g € Semice =
L. 20 web Senvice
= & companent
-9 JoBC
. [Tandem Logon
[Ed) Tandern Terminal
o 3 ¥ML Map
o @ Resource
. [l Code Table
-~ g Code Table Map

e i
g" \?Vgsl:t)?_mScnpt % BE EE = G T
- & . :
B WML Template Catego™ l=

- B3 HostBridge

[oOffice Supply hd
4| | &+

i % CHECK SCREEM for cursor position, where Row =21 and Co
- @@ SEMD BUFFER"A™

CHECK SCREEM for cursor position, where Row =1 and Cold!

Marne || - B SEND BUFFER $Input BOOKINQUIRY/AUTHORALASTNAME —
S UBURN U SEMND BUFFER™ "
Tandern Connection i AFRIM ALIEE T S OIS IO AT AN NS TALA RS
Al -
— e : e m_:.l_l
Ready I‘I’erminal. Mot Connected

48 Tandem Connect User’s Guide

2 Navigate to the action in the Action Model where you'd like to make your edit and highlight the
action.

@ B3 I

=1 Libraryinguiry

..... [\ CHECK SCREEM for Expression: true

..... [ES SEND BUFFER "a"

..... E CHECK SCREEM for Expression: true

..... B8 SEND BUFFER $input/BOOKINOUIRY/AUTHORLASTNAME

..... B8 SEND BUFFER ™™

..... [E® SEND BUFFER $input BOOKINQUIRY/AUTHORFIRS THAME

..... [E8 SEND BUFFER "<enter>"

..... [EB\ CHECK SCREEM for cursar position, where Row = 24 and Column = 38
AP Screen.getTextat(2,1,19) TO $0utputinguiryResponse/Status

B 0 T b B IR PO e B

3 Click the Toggle Breakpoint button (or press F2). The highlighted action becomes red.
Start Animation

Toggle Breakpoint

) B 22 @

= Libraryinguiry

..... @ CHECK SCREEM for Expression: true

..... @ SEMD BUFFER "A"™

..... @ CHECK SCREEN for Expression: true

..... [ES) SEND BUFFER $Input BOOKINQUIRY/AUTHORLAS THAME
..... [ED SEND BUFFER ™™

..... [ES) SEND BUFFER $Input/BOOKINQUIRY/AUTHORFIRSTNAME
..... [ES SEND BUFFER “<enter>"

..... @ CHECK SCREEM for cursar position, where Row = 24 and Column =38
.,3 AP Screen.getTextAt(2,1,19) TO $OutputinguiryResponse/Status

o T T e e e e S

4 Click the Sart Animation button. The animation tools (in the Actions pane’s toolbar) become
enabled.

Step to Breakpoint/End

< B B3O I

[=]-- Libraryinguiry

..... @ CHECK SCREEM for Expression: true

..... @ SEND BUFFER ™aA"

..... @ CHECK SCREEN for Expression: true

..... @ SEND BUFFER $input/BOOKINGUIRY/AUTHORLASTNAME
..... @ SEMD BUFFER™™

..... @ SEMD BUFFER $inputBOOKINQUIRYTAUTHORFIRSTNAME
..... [ES) SEND BUFFER “<enter>"

..... @ CHECK SCREEHN for cursor position, where Row =24 and Colurmn = 38
...... SE AP Screen.getTextat(2,1,19) TO $OutputinguinyResponse/Status

o T I P P e ST

Performing Tandem Actions 49

5 Click the Sep to Breakpoint/End button. The Action Model executes all of the actions from the
beginning of the Action Model to the breakpoint you set in step 3 above.

6 Inthe Component Editor tool bar, click the Record button.

Record button

W exteNd Composer:MyStuff[Tandem Ten 1al: Libraryinguiry]

File Edit View Component Action AmVmate Tools Window Help HD - & x
ODEEE/x008 X @72 Novell
12 Input Data
<> BOOKINQUIRY

<> AUTHOR

| <> FIRSTMAME [Aquinas
L LASTHAME |[Thomas
L3> EOMMENT,

@Oumut Data C 55 L—EE ‘95 Q “

=]

@ CHECK SCREEN for Expression: true

B9 SEND BUFFER A"

m CHECK SCREEM for Expression: true

-[EB SEND BUFFER $input/BOOKINQUIRYIAUTHORILASTHAME

B sEND BUFFER™ "

@ SEND BUFFER $input BOOKINQUIRY/AUTHORFIRSTNAME

B SEND BUFFER "<enter>"

@ CHECK SCREEN for cursor position, where Row =24 and Column =38

g AP Screen.getTextAt(2,1,19) TO $OutputinquinyResponsesStatus
#4100

4|

7 Perform any additional drag-and-drop (or other) actions that you'd like to make to the Action
Model.

8 Turn off recording. (Toggle the Record button.)
9 Test your component.

50 Tandem Connect User’s Guide

Adding A New Action

The following procedure explains how to add a new action in a previously recorded session.

> To Add a Action to a previously recorded Action Model:

1 Openthe component that includes the Action Model you'd like to add an action in. The component
appears in the Tandem Component Editor window.

File Edit View Component Action Animate Tools Window Help BAD -8 x
ODE@E8»008 X% @7 R2eS Novell
) Senice =

; 25 Weh Serice
- & Component

..... 29 JoBC

..... [ER Tandem Logon
..... [Ed) Tandem Terminal

- @@ Resource

..... Bl code Table

..... g Code Table Map

..... 5 :
<> ¥ML Schema

----- Custom Script
L7 cwemzert |) [0@ (@ @ @ I
----- &) —
= XML Template Catego ™ || sk =
[2 HostBridge B CHECK SCREEM for cursor position, where Row =21 and Co
[oOffice Supply B SEND BUFFER "A"
I @ CHECK SCREEM far cursar position, where Row =1 and Call

g+ SEMD BUFFER $input BOOKINQUIRY/AUTHORLASTHAME —
B SEMD BUFFER™™

3

MName ||

L LIBLIRM L

Tandern Connection 0 e CTRIT CIEE T e s AW OLAIREAL IR T |nnr|nc‘1||nllrJ
4 »
-
. T TR LA I B T T L T AR
Praject i | 3|
Ready I‘I’erminal: Mot Connected

2 Navigate to the action in the Action Model where you'd like to make your addition and highlight
the action.

«! e <& @ Il

=] Libranydnguiry

..... @. CHECK SCREEHM for Expression: true

..... @ SEMD BUFFER "A™

..... @. CHECK SCREEM for Expression: true

..... @ SEMD BUFFER $input BOOKINQUIRY/AUTHORLASTNAME
..... B8 SEND BUFFER ™™

..... @ SEMD BUFFER $input BOOKINQUIRY/AUTHORFIRSTHAME
_____ B SEND BUFFER "<enter>"

..... @ CHECK SCREERM for cursar position, where Row =24 and Column =38
...... E;s AP Screen.getTextAt(2,1,19) TO $OutputInguinResponseiStatus

[BT T TV P TP P

Performing Tandem Actions 51

52

3 Click the Toggle Breakpoint button (or press F2). The highlighted action becomes red.

Start Animation

Toggle Breakpoint

& 3@ N

[=]--Libraryinguiry

..... @. CHECK SCREEM for Expression: true

..... ES SEND BUFFER "A"

..... lﬂ CHECK SCREEM for Expression: true

..... B SEND BUFFER $input BOOKINQUIRY/AUTHORALASTNAME
..... BS SEND BUFFER ™"

..... @ SEMD BUFFER $input BOOKINQUIRY/AUTHORTFIRSTHAME
..... [ES SEND BUFFER "<enter>"

..... lﬂ CHECK SCREEM for cursor position, where Row =24 and Column =38
...... Q AP Screen.getTextat(2,1,19) TO $OutputInguiryResponse/Status

[ST T P Py

4 Click the Sart Animation button. The animation tools (in the Actions pane’s toolbar) become

enabled.
Step to Breakpoint/End

9 B EE2O I

[=]-- Libraryinguiry

..... @ CHECK SCREEM for Expression: true

..... B8 SEND BUFFER "A"

..... lﬂ CHECK SCREEN for Expression: true

..... B8 SEND BUFFER $input/BOOKINQUIRY/AUTHORLASTNAME
..... B8 SEND BUFFER™ ™

..... @ SEMD BUFFER $inputBOOKINQUIRYTAUTHORFIRSTNAME
..... B SEND BUFFER "<enter>"

..... lﬂ CHECK SCREEHN for cursor position, where Row =24 and Colurmn = 38
...... SE AP Screen.getTextat(2,1,19) TO $OutputinguinyResponse/Status

o T I P P e ST

5 Click the Step to Breakpoint/End button. The Action Model executes all of the actions from the

beginning of the Action Model to the breakpoint you set in step 3 above.

Tandem Connect User’s Guide

6 Inthe Component Editor tool bar, click the Record button.

Record button

W exteNd Composer:MyStuff [Tandem Ten+al: Libraryinguiry]

File Edit View Component Action Arfnate Tools Window Help HD - & x
DR800 X @72 Novell
{2 Input Data
<> BOOKINQUIRY

B> AUTHOR

| = > FIRSTMAME [Aquinas
L€ > L ASTNAME [Thomas
L > DOMMENT

@Oumut Data . Bﬁ [EE ‘Qﬁ 0 "

B

ECHECK SCREEN for Expression: true

B SEND BUFFER ™A™

J§ CHECK SCREEN for Expression: true

B SEND BUFFER $Input/BOOKINQUIRY/AUTHORILAS TNAME

@ SEMD BUFFER ™™

B SEND BUFFER $input BOOKINQUIRYIAUTHOR/FIRSTHAME

B9 SEND BUFFER "<enter>"

J§ CHECK SCREEN far cursar position, where Row =24 and Column =38

53 IAP Screen.getTextat(2,1,19) TO $OutputinguirnyResponseiStatus
#3510 TS

7 Use Composer's drag and drop features to add new Map actions that interact with the screen. The
new action will be added directly under the highlighted line.

8 Turn off recording. (Toggle the Record button.)
9 Test your component.

About Adding Alias Actions

If you are adding Map Actionsin aloop that are alias perform the following steps:

> To Add an Alias Action to a previously recorded Action Model:
1 Open acomponent.
2 Fromthe Action menu, select New Action, then Map. The Map Action dialog box displays.

Map x|

Source

() XPath: | |_| (@) Expression:

|Screen.getTemt(rowCounter+4,10,56) @

Options

ol 0Ol ol |

Target

® ¥Path: Filelist [~] () Expression:

}AuthorName @

[Apply][0K][Cancel]

Select the Expression for Source, and the dropdown box is grayed out.

Either type in the information, or click the Expression Builder button and create a new expression.
Create an X Path to be represented by the alias. Click from the dropdown list for the alias.

Click OK.

o 00 b W

Performing Tandem Actions 53

7 Thenew actionisinserted below theline you select. (New lineis highlighted in the screen below to
show it was inserted.

B!
........ B SEND BUFFER "A<enter>"

........ @ CHECK SCREEM for prompt: ™ AUTHOR ™

........ @ SEMD BUFFER “Heiner<enter="

........ @ CHECK SCREEM for cursar position, where Row =24 and Column =38

[_]c YWHILE rowCounter < 4 CREATE Filelist REPRESEMNTING $Output/AuthorListidat

- Loop Action

Deleting an Action

The following procedure explains how to delete an action in a previously recorded session

> To Delete an Action to a previously recorded Action Model:

Highlight the action line that you want to delete and click on the RMB and select Delete from the menu.
You may also highlight the line and press the Del ete button on your keyboard.

[E3, CHECKSCREEN for cursor position, where Row = 22 and Column = 3¢

/' Simple Repeat\hile LoopforM — e Oriented Mc
MNew Action »
C WWHILE rowCounter < 13 CREAT Edit Action $0utput/Best
O EXETD Disable Action
i AP SCrEen.getTextatira Toggle Breakpoint plistMo
[EENAAP Screen.getTextAt(rg cut tFilelistName
i AP SCrEen.getTextatirg Cy lelist/Titles
.. CALL rowCounter+s+ Paste
o o
57 LOG Input TO Systerm Output E—
Find Mext
Replace...

Testing your Tandem Component

54

Composer includes animation tools that allow you to easily test your component. On the Tandem
Component Editor tool bar you'll find the Execute button, which allows you to execute the entire Action
Model and verify that your component works as you intend. It isimportant to test anewly created
Tandem Component to be sure that Timeout valuesin all Check Screen actions are appropriate and that
Send Buffer and other actions work as intended.

Tandem Connect User’s Guide

> To execute a Tandem Component:
1 Open aTandem Component. The Tandem Component Editor window appears.

Execute button

" exteNd Composer- MyStuff[Tandem Tenminal]

File Edit ¥iew Component Action Animate Tools Window Help HO -&F x
ODEEBE 100X 7 R=e Novell
o € Sewice =

L P8 Wieh Service
o- @ Component
U4 Joec
A Tandem Logon
[E@) Tandem Terrinal
34 XML Map
= ‘ Resource
Bl codeTable
g Code Table Map
&% Connection!
< ¥ML Schema

B’ Custarn Script @ |:r>§ E‘? ,‘.g Q “
@ wsoL
=] WML Ternplate Categn™ =
... [J HostBridge o By CHECHK SCREEM for cursor position, where Row=21 and Co
... E3 Office Supply _'_v| i g@H» SEND BUFFER A"
4] | » CHECK SCREEN for cursor position, where Row= 1 and Coll
Marme ” g SEMD BUFFER $input BOOKINQUIRYAUTHORLASTNAME — —
W i @@ SEMD BUFFER™™
Tandem Connection _il P T TR 1 ml......‘nnl\ulunlllrvv/nl|1'||nnr|nl:"rnnllr_’|
Praject I Registries “:T"W — 1| f

Ready I‘Fermma\.NUlCumecled

2 Select the Execute button. The actionsin the Action Model execute. If the component executes
successfully, a message appears as follows.

M

Execution completed

3 Click OK.

After executing the component, you may want to doublecheck the contents of your DOMsto be sure all
of the appropriate datamappings occurred as expected. To make all dataelementsvisible, select Expand
XML Documents from the View menu. This expands all of the parents, children, data elements, etc. of
the DOM trees, so that you can easily see the results of execution of the component.

Using the Animation Tools

In the Action Model, you'll find animation tools that allow you to test a particular section of the Action
Model by setting one or more breakpoints. Using these tools, you can run through the actions that work

properly, stop at the actionsthat are giving you trouble, and then troubleshoot the problem actions one at
atime.

Thefollowing procedureis a brief example of the functionality of the animation tools. For a complete

description of all the animation tools and their functionality, please refer to the exteNd Composer User's
Guide.

Performing Tandem Actions 55

> To run a Tandem Component using Animation Tools:

1

1.0pen a Tandem Component. The component appears in the Tandem Component Editor window.

NOTE: Animation and Recording are mutually exclusive modes in the component. In order to
record during animation, you must either pause, or stop animation and then turn on record mode.
Click the Sart Animation button in the Action Model tool bar, or press F5 on the keyboard. All of

the tools on the tool bar become active, and a connection is established with the host. The Native
Environment Pane becomes active.

Click the Sep Into button. The first Check Screen action becomes highlighted.
D B2 @ 0

EEultiRow ir:nted Mode - less than 1 screen

- /' WMake sure that Input FILELISTFindFileSpec = *1xt so only a couple of

. /7 Make sure we have a login prompt, then a Password prompt, and final

IE. CHECK SCREEM for praompt: "login: ™

IE SEMD BUFFER “S3admin<enter="

IE CHECZK SCREENM for prompt: "Password: ™

@ SEMD BUFFER “S3admin<enter="

-.JEB) CHECK SCREEN for prompt: "$ *

. /f Check the Screen Mode...

ﬁ MAFP ScreengetMaxColumns() TO $0utputFILELIST/Screen/Columns

ﬁ MAP ScreengetMaxRows) TO $0utputFILELIST ScreenRows

. /¥ Switch to the file test directony... _I_"I
»

Kl |
Click the Sep Into button again. The Check Screen action (above) executes and the next action
becomes highlighted.

Click the Sep Into button repeatedly to execute actions one-by-one.

Click other buttons (Step Over, Run To Breakpoint, Pause, etc.) as desired to control the execution
of the component. Note that you can set a breakpoint at any time during execution by clicking the
mouse on an action line and hitting F2 or using the Set Breakpoint button.

Once execution is compl ete, the following message appears.

M

Animation completed.

Tips for Building Reliable Tandem Components
The following tips may be helpful to you in building reliable Tandem Components.

56

*

*

*

Always precede a Send Buffer action with a Check Screen action.
Aways follow a Send Buffer action with a Check Screen action.

In Check Screen actions, accept the default go-ahead condition (based on cursor position) only
when you are certain that the absolute cursor position will always be constant for the given screen.
Many times, it is safer to write a custom expression.

Tandem Connect User’s Guide

+ A fadt, accurate way to create a prompt-based Check Screen action during recording is to highlight
(select) the characters of interest immediately preceding the cursor (up to but not including the
cursor position), then click the right mouse button and select Check Screen. This automatically
creates a Check Screen action based on the prompt you highlighted.

+ When typing a custom prompt string under Prompt (in the Check Screen dialog), remember to
escape any quotation marks that might appear within the prompt string.

+ Avoid using Check Screen go-ahead criteria based on variable information, such as dates, times,
etc.

+ Avoid Check Screensthat do nothing but wait a specified period of time using the Min Wait setting.
While this technique may work, it can create significant performance bottlenecks.

+ Remember that the default Timeout values used in Check Screen actions are cal culated from actual
response times during the design session. This has a couple of implications. First, the default
Timeout value may need to be increased, for |oad-sensitive applications. Secondly, deleting a
Check Screen action may cause synchronization timeouts on subsequent executions. Careful testing
will reveal these sorts of problems.

+ When digjoint go-ahead criteria come into play, such as when the middle of a screen remains
constant during arepaint but the first and last lines change, you may want to create two Check
Screen actions then combine them into one action that’s based on an expression.

Using Other Actions in the Tandem Component Editor

In addition to the Check Screen and Send Buffer actions, you have all the standard Basic and Advanced
Composer actions at your disposal aswell. The completelisting of Basic Composer Actions can befound
in Chapter 7 of the Composer User’s Guide. Chapter 8 contains a listing of the more Advanced Actions
availableto you.

Handling Errors and Messages

In testing a Tandem Component, you may encounter errors relating to Check Screen and/or Send Buffer
actions. Theresult isadialog similar to the following:

warning x|

Error executing component: Timeout. Screen Check Expression
Screen.getTextst(3, 26,250 == "MNavell QA Mnu - HP-B2000" was
evaluated as falze

dt0032001

Details >= || OK

This section discusses possible error conditions and how to deal with them.

Performing Tandem Actions 57

Check Screen Errors

Most of the errors you are likely to encounter at execution time will be related to Check Screen actions.
Itisimportant to realize that every one of the Check Screen errors discussed below is atimeout error. If
one of the errors described below occurs, it means that the go-ahead criteria you specified in the Check
Screen setup dialog were not met within the Timeout period. Therefore, you should first try to determine
whether slow host response might be the real problem (in which case, the solution is to increase the
Timeout value for the Check Screen action in question). If the error still occurs after the Timeout value
has been increased, then you can be sure the error is due to an incorrect or inappropriate go-ahead
condition in your Check Screen action.

The following paragraphs describe typical error messages and their meanings.

“Expected cursor position (Row = {0}, Column = {1}) was not established”

This error means that the Check Screen failed because the cursor was not at the expected location at the
expiration of the Timeout period. Perhaps the host application changed, or the prompt line may be
varying dynamically in some way that you weren’t anticipating, etc. It's also possible, as explained
above, that the Check Screen simply “timed out” for reasons having to do with heavy host load or abad
connection. Try increasing the Timeout value for the given Check Screen action. If that doesn’'t help (or
if you suspect that the problem involves an inappropriate choice of go-ahead criteria), try rewriting the
Check Screen go-ahead condition based on something other than fixed cursor coordinates. For example,
specify a prompt string, or use an Expression to validate the screen contents in some way.

“Expected prompt text {0} was not established”

This error means that the Check Screen failed because the prompt was not identical to the specified
(expected) prompt string prior to the expiration of the Timeout period. The prompt line may be varying
dynamically in some way that you weren't anticipating. Or (as explained above) the host response time
may simply have increased unexpectedly due to heavy load or other factors. If you suspect that host
latency isaproblem, try increasing the Timeout value for the Check Screen action. Otherwise, rewrite
your Check Screen go-ahead criteriato be based on something other than a hard-coded prompt value. For
example, specify an Expression that validates the prompt in some way.

“Screen Check Expression {0} was evaluated as false”

Send Buffer Errors

58

This error happens when the Check Screen go-ahead is based on an ECM A Script expression and the
expression happens to evaluate as fal se at execution time. Once again, it's important to realize that this
sort of error can be triggered simply on the basis of slow host response (timeout). When the host is slow
to respond, it means that your ECM A Script expression will be evaluated on the basis of whatever isin
the screen buffer as of the moment of timeout. If no data (or insufficient data) have arrived, the expression
is bound to evaluate asfalse.

To fix this sort of problem, either increase the Timeout value for this Check Screen action (if you suspect
that the problem is host latency) or try modifying the logic in your ECM A Script expression.

Send Buffer errorswill, in general, be rare. Be on guard, however, for Send Buffers that contain more
than one screen’sworth of commands (so-called “type-ahead” buffering). Such actions are easy to create
accidentally. An Action Model with overloaded Send Buffers may work correctly asyou step through
actions at animation time, but can fail when the component-as-a-whole is executed, due to screen
synchronization problems. The way to avoid problems hereisto make sure that for every Send Buffer
action, there is always be a corresponding Check Screen action.

Tandem Connect User’s Guide

Errors Involving Connections

If connection pooling is used, and there has been an attempt to log on with abad UserI D or Password,
that connection instance will not be usable and that member of the pool will be skipped over in
subsequent connection requests. An error message will be sent to the server log saying “Logon
connection in pool <Pool name> wasdiscarded for User ID <User ID>.” You should check for messages
of this sort during preproduction testing and/or any time performance issues arise.

Finding a “Bad” Action

When you have alarge Action Model (containing dozens or hundreds of Check Screen and Send Buffer
actions), simply locating the action that’s responsiblefor an error can be achallenge. Oneway to find the
problematic action isto:

1 Select and Copy thetext after “Expected” in the error dialog. (Click the Details button if need be, to
expose the full error description. Highlight the relevant text, such as cursor coordinates. Then use
Control-C to Copy.)

2 Click inside the Action Model.

3 UseControl-F to initiate a search.

4 Pastethe error text into the search dialog.
5 Execute the search.

Of coursg, if you have multiple Check Screen actions that are based on identical go-ahead criteria, the
foregoing technique won't necessarily be helpful. If that’s the case, set a breakpoint at the midpoint of
your Action Model, and run the component. If the error doesn’t occur, move the breakpoint to a spot
halfway between the original breakpoint and the end of the action list. (Otherwise, if the error does
happen, set the breakpoint at a spot one quarter of the way down from the top of the action list.) Run the
component again. Keep relocating the breakpoint, each time halving the distance between the |ast
breakpoint or the top or bottom of the action list, as appropriate. In this way, you can quickly narrow
down the location of the problematic action. (Using this “binary search” strategy, you should be able to
debug an Action Model containing 128 actionsin just 7 tries.)

Performing Tandem Actions 59

60 Tandem Connect User’s Guide

Advanced Tandem Actions

Terminal-based computing differs from other types of computing (including other IBM terminal-based
interactions) in anumber of important ways:

+ Dataarrive acharacter at atime, rather than in chunks.
+ Thereisno obvious structure to arriving data; and the data may arrive in an arbitrary order.

+ Screen updates may involve just a portion of the screen (perhaps a single character) or the whole
screen.

+ Retrieval of data sets may require repeated roundtrip communications with the host. (One query
may bring many screens’ worth of data, which must be captured through multiple “ page forward”
commands, etc.)

+ Information that spans screens may be (and often is) partially duplicated on the final screen.

These factors can make automating a terminal interaction (viaan Action Model) challenging. The goal
of this chapter isto suggest some strategies for dealing with common (yet potentially problematic)
terminal-computing situationsin the context of an eXtend Action Model.

To get the most out of this chapter, you should already have read Chapter 4, “Performing Tandem
Actions’ and you should be familiar with Action Model programming constructs (such aslooping viathe
Repeat While action). In addition, you should have some experience using ECMA Script.

Data Sets that Span Screens

A common requirement in terminal computing isto capture a data set that spans multiple screens. In
caseswherethe screen contains aline that says something like“ Page 1 of 4,” it'sastraightforward matter
to inspect the screen at the point where this line occurs (using one of the ECM A Script Screen-object
methods described earlier, in the section titled “ Tandem-Specific Expression Builder Extensions’) and
construct aloop that iterates through al available screens. But sometimesit’s not obvious how many
screens’ worth of datathere may be. In some cases, the only clue that you have may be the presence of a
“More” command (for example) at the top or bottom of the screen, which changesto “Back” (or “End,”
or some other message) when you reach the final screen. In other cases, you may be told how many total
records exist, and you may be able to determine (by visual inspection) how many records are displayed
per screen; hence, you can calculate the total number of screens of information awaiting you.

The point isthat if your query resultsin (potentially) more than one screen’s worth of information, you
must be prepared to iterate through all available screens using a Repeat/\While action, and stop when no
additional screensareavailable. Youwill haveto supply your own customlogic for deciding whento stop
iterating. Your logic might depend on one or more of the following strategies:

+ Determine the total number of screensto visit by “scraping” that information, if available, off the
first screen.

+ Divide“total records’ (if thisinformation is available) by the number of records per screen (if this
isknown in advance), and add one.

+ Visit screens one-by-one and break when a blank record is detected.
+ Visit screens one-by-one until a specia string (such as“End” or “Go Back”) is detected.
« Visit screens one-by-one until two consecutive identical screens have been encountered.

Advanced Tandem Actions 61

Obviously, the strategy or strategies you should use will depend on the implementation specifics of the
terminal application in question. For some applications, iterating through screens until ablank record is
encountered would be appropriate, whereas for others, it wouldn't be.

An example of an Action Model that combines two of these strategies will be discussed in detail further
below.

Dealing with Redundant Data

62

Interminal applications, it'scommon for the final screen of amultiscreen result set to be “padded” with
data from the previous screen. In this way, the appearance of afull screen is maintained.

Consider the following two screen shots. The top one shows the next-to-last screen’s worth of
information in aquery that returned six screens of information. Notice that the reversed-out statusline
(row 2 from the top) says“43 entriesfound, entries 33-40 are:”, followed by line entries. Sincethereare
43 recordsin the overall data set, and the next-to-last screen ends with record number 40, you' d expect
the next (and final) screen to show records 41 through 43. Instead, the final screen looks like the one at
the bottom of the next page. Notice that it shows records 36 through 43—that is, it contains five records
(36 through 40) from the previous screen. In most cases, you will not want to capture this redundant data.
The question is: How can you detect and reject redundant records of this sort?

ECMA Script offers an easy and convenient way of maintaining unduplicated lists. Thetrick isto create
abare (uninitialized) Object, then attach record names as properties. Since no object can ever have two
properties with identical names, assigning record names as property names means the object’s property
listisan unduplicated list of record names.

Fou searched for the AUTHOR: thomas aquinas CONSULS: A1l Locations

43 entries found, entries 33 LOCATIONS

Thowas Acquinas SJaint 1225 1274
33 Summa contra gentiles.
34 Sumwa contra gentiles.

35 The Summa contra gentiles of Saint Thomas Aquinas,

36 Summa theologiae @ a concise translation
37 Summa theologica
38 Summa theologica.
39 Sumwa theologica.
40 Summa theologica.

Lor T T o T o O B T T I

Pleazse type the NUMEER of the item you want to see, OR

F > Go FORWARD A4 > ANOTHER Search by AUTHOR + > ADDITIONAL options
B > Go BACEWARD P = PRINT

N > NEW Zearch L » LIMIT this 3Zearch

Choose one (33-40,F,B,N,4,P,L,0,E, ¥, X, +) I

Tandem Connect User’s Guide

You searched for the AUTHOR: thowas acquinas COWNSULS: A1l Locations
43 entries found, entries 3 are: LOCATIONS
Thowas Aquinas Saint 1225 1274
36 Summa theologiae @ a concise translation E
37 Bumma theologica C
35 Summa theologica. C, 3, W
39 Summa theologica. C
40 Summa theologica. C
41 Humma theologica. Prima secundae. Quaestio 90-37. 3
42 The teacher : The mind : Truth, questions X, XI C
43 The teacher, The mind (Truth, gquestions X, XI) 3
Please type the NUMBER of the item vou want to see, OR
E > Go BACEWARD P = PRINT
N > NEW Zearch L » LIMIT this Zearch
& > ANOTHER Search by AUTHOR + > ADDITIONAL cptions
Choose one (36-43,B,N,4,P,L,J,E, ¥, X +) I

A short examplewill makethisclearer. Supposeyou have an array of itemsin which someitemsarelisted
more than once:

var myArray = new Array("Tom","Amy","Greg", "Tom", "Amy") ;

To unduplicate this array, you could assign properties to a bare object, where the property names equal
the array values:

var myObject = new Object(); // create a bare object

for (var i = 0; i < myArray.length; i++) // loop over array

{
var arrayMember = myArray[i]; // fetch array member
myObject [arrayMember] = true; // create the property

// Now obtain all property names
// in a new, unduplicated array:
var uniqueValues = new Array () ;
var n = 0; // counter
for (var propertyName in myObject) // enumerate property names
uniqueValues [n++] = propertyName;

// Now ’uniqueValues’ contains just "Tom","Amy", "Greg"

We will usethistrick to our advantage in the terminal application example discussed below.

An Example of Looping over Multiple Screens

Let'slook at a sample Tandem component that combines several of the strategies we' ve been talking
about. The host applicationisauniversity library system’sbook locator service. In thisexample, we have
an input document that specifies an author’s name. Based on that name, we want to query the library for
all available book titles by that author and capture the results to an output DOM. We want the output
document to contain an unduplicated list of titles.

Advanced Tandem Actions 63

This example will demonstrate:

*

*

*

*

How to "scrape” data from multiple screens, without knowing in advance how many screens there
are.

How to reject duplicate records as they are encountered.
How to create Output DOM nodes programmatically.
Breaking out of the main loop if a blank record is encountered or the final screen has been reached.

Thelogic for our Action Model’s main loop can be summarized (in pseudocode) as follows:

Initial Actions

64

Determine the number of records-per-screen
While (true) // enter a "forever" loop
Fetch a record
IF Record is Valid // i.e., not blank
Write data to Output DOM
IF Screen has been completely processed
IF this is not the final screen
Fetch next screen
ELSE BREAK // final screen processed
ELSE BREAK // blank record reached

Theinitial portion of the Action Model for this example looks exactly like the actions created in the
earlier example (in the "Tandem Actions' chapter) under “Recording a Tandem Session”, except that in
this case our author is Thomas Aquinas. Theinitial actions are simply the Check Screen and Send Buffer
actions necessary to conduct an Author search on "Thomas Aquinas.”

Theinitial screen of our result set looks like:

You searched for the AUTHOR: thomas aquinas CONSULS:41]1 Locations
43 entries found, entries 1-8 are: LOCATIONS
Thomas Amuinas Saint 1225 1274

1 An Afquinas reader k]

Amquinas Scripture series. 1966 --3> Zee THOMAS, AQUINAS, SAINT, l12252-1
Amquinas: selected political writings. k]

Commentatry on Aristotle's Physics. -

De regno, ad regem Cypri.

2

3

4

5 Commentary on the De anima of Aristotle

3

7

8 An introduction to the metaphysics of 3t. Thomas Agquina

C
C
Concerning being and essence (De ente et essentia) E
3
E

Pleaze type the NUMEER of the item you want to see, OR

F > Go FORWARD P > PRINT
N » MNEW Search L > LINIT this Search
4 = AWNOTHER Search by AUTHOR + = ADDITIONAL options

Choose one (1-8,F N, &4,P,L,J,E, Y, X, +] I

At the very beginning of the second row, we're told how many records ("entries") were found. We can
capture this information by using a Function Action:

Tandem Connect User’s Guide

Function x|
Function Expression:
war line2 = Screen.geiTexttt2 1,800 74
var totalHits = ITrimdline),
totalHits = totalHits. split’ ')[D];|

[Apply][OK][Cancel]

Thisthree-line script obtains all of Row 2 inalocal variable called 1ine2, trimsleading spaces off the
line, and splits the line on space characters (capturing the zeroth member of the resulting array into a
variable, totalHits). After this, it's asimple matter to write the "total hits' number into the Output
DOM using aMap Action.

At this point, we could use the "total hits' number as the basisfor our main loop. But for illustration
purposes, we're going to bypass that tactic, because not every Tandem host reports "total hits"
information on the first response screen. We will, however, take advantage of the fact that this particular
application reportsthe number of records per screen (in row two). Here again, though, it’s possible—with
clever ECMA Script programming—to determine "records-per-screen” information dynamically, at
runtime. Alternatively, you can just hard-code this value after visually inspecting the screen.

NOTE: At some point, you will have to decide whether (and under what circumstances) it makes sense
to hard-code something like the number of records per screen, as opposed to applying runtime logic. With
terminal applications, it's rare that you can count on being able to determine every important screen
characteristic dynamically. Some fore-knowledge of the host application’s behavior will almost always be
implicit in the final Action Model.

We will store the records-per-screen number in an ECMAScript variable, booksPersScreen. Inthis
example, there are eight records per screen.

Setting Up the Main Loop

Before creating our main loop, we need to set up an index variable that will be used when creating nodes
in our Output DOM. Thisindex (called bookNumbexr) will start at one and will be incremented once for
every book title we capture to Output. The reason thisindex starts at one instead of zero isthat DOM
nodes use one-based indexing. We will be using bookNumber to index our nodes.

We alsowill usean ECMA Script expression (in aFunction Action) to create ablank ECM A Script object:
var bookTable = new Object () ;

By storing book titles as property names on this object, we can keep an unduplicated list of records, as
explained further above (see “ Dealing with Redundant Data”).

To create the loop, we place a Repeat While action in the Action Model. (Right-mouse-click, then select
New Action > Repeat > Repeat While.) The dialog settings for thislook like:

Advanced Tandem Actions 65

Screen Caching

The Main Loop

First Half

Repeat While
Saource
Yiihile:

Itrue @

Index Yariable:

Target

Aliag:

|
Representing:

& HPath: Jnput |

|)4

" Expression:

][Cancel]

Help [oK

By setting the While condition to true, we are—in effect—creating an infinite loop. The exit conditions
for thisloop are twofold:

+ If ablank record (all space characters) is encountered, the loop is terminated.
« If thecurrent screen isidentical to the previous one, the loop is terminated.

The latter condition provides a suitably robust way to break out of our infinite loop.What's more, it's
generally applicable to awide range of terminal applications—not just the library-query application.

The index variable i, which cycles from zero to bookspPerScreen - 1, Servestwo roles:

+ Itletsusknow whenit's time to fetch anew screen (namely, when the value reaches
booksPerScreen - 1), and

+ Itservesasthe basisfor our row offset when fetching records.

One additional bit of pre-loop setup code involves caching the current screen. We include the following
Function Action statement immediately before beginning the loop:

previousScreen = Screen.getTextAt (1,1, Screen.getColumnCount () *
Screen.getRowCount ()) ;

Thevariable previousScreen cachesthe contents of the last-looked-at screen so that we can check
newly obtained screens againgt it. If anewly obtained screen has exactly the same content as the screen
we just processed, thisis a hint that we have reached the final screen (and we should therefore terminate
the loop).

We're now in aposition to look at what our Action Model’s main loop actually does.

Consider thefirst portion of the loop as shown below. Thisiswhere most of the real work takes place.

66 Tandem Connect User’s Guide

Second Half

B- G WHILE true INDEXED BYi
5. Loop Actions
..... f(x) CALL war bookTitle = rTrim{Screen.getTextAt{ 4 +i,9,53)) // fetch current record
& TRUE
EI e IF bookTable[hookTitle] == null /i title not encountered before?
& TRUE
: f{x) CALL hookTable[bookTitle] =true [/ tally it as encountered
_; AP hookNumber TO Output.createXPath("Inguinfesponse Books[$hookNumber]Ho")
== WAP bookTitle TO Output.createXPath{"InquirvResponseBooks] $hookNumber] Title™)

.FALSE
=--FALSE
g break

Thefirst action inside theloop isaFunction Action, which fetches the 53 characters beginning at column
9ofrow 4 + i.Therowswe'reinterested ininclude rows 4 through 11, inclusive; thisisthe zonein
which the host reports our lineitems. Since i cyclesfrom zeroto 7, wecanuse "4 +i" asarow offset in
our code.

Once we' ve obtained a record, we do a validation check before proceeding. Only if the zone that the
record came from is non-empty will we continue with theloop. We use aDecision Action with adecision
expression of:

Screen.getTextAt(4 + i, 9, 53) != (new Array(53)).join(" ")

The statement on the right side of the expression means "create a new, empty array of length 53, and
convert it to a String by joining the array members together, using a single space character asthe
delimiter." Since each array member is null, this essentially forms a String consisting of 53 space
charactersin arow. We can compare this String with the onscreen string to determine if ablank record
was encountered.

Inthe TRUE branch of our Decision Action, weimmediately check to seeif the book title wejust fetched
has already been encountered. (We don’t want duplicates.) Since we' ve been using the tactic of keeping
book titles as property names on the bookTab1le object (see discussion further above), all we haveto do
to check for prior existence of the book is execute a Decision Action against the expression:

bookTable[bookTitle] == null

If this statement istrue, it meansthe bookTable object has no property whose name matches the String
inbookTitle. Whenthisisthe case, it meanswe can go ahead and do our mapping operations.
(Otherwise, wefall through and keep iterating.)

In the TRUE branch of this decision, we mark bookTable [bookTitle] astrue; thisassignsanew,
non-null property to bookTable. Wethen map an index number aswell asthe book titleto new nodesin
our Output DOM. By applying atarget expression of

Output.createXPath ("InquiryResponse/Books [$bookNumber] /Title")

for mapping, we are able to use the running index in bookNumber to create anew node instance under
I nquiryResponse/Books with element name Title.

Finally, we increment bookNumber.

In the final portion of our loop, we check to see if it'stime to fetch anew screen. If so, we execute the
necessary Send Buffer command to tell the host we want to page forward to the next screen.

Advanced Tandem Actions 67

...... /¥ Isittime tofetch a new screen?
EI?Tv IF i == hooksPerScreen - 1
& TRUE
......... BS SENDBUFFER™F"
......... @ CHECK SCREEHM far Expression: true
...... f(x) ZALL war thisScreen = Screen.getTextAt{1,1,Screen.getColumnCount{) * Screen.getRowCount() J;
|:_:|"-<§ IF thisScreen == previousScreen

Notice that as soon as we' ve fetched the new screen, we capture its contents into a String variable,
thisScreen. Then we execute a Decision Action in which we simply compare thisScreen to
previousScreen. If thetwo are equal, we use a Break Action to break out of the loop. Otherwise we
fall through and continue executing.

NOTE: Use care when deciding a Min Wait time for the Check Screen action shown above. If the Min
Wait is short and the go-ahead condition is true, it's possible you could unintentionally skip a screen and
break out of the loop prematurely.

If we're still executing, wereset i (the row index variable) and stuff thisScreen into
previousScreen in preparation for the next round.

The Output DOM resulting from our loop ends up looking something like this:

| = Qutput ||Data

B 2 InquiryResponse
- 2 TotalTitle s 43

[»

- 2 Books
> N 1
L = Title An Aguinas reader
- > Books
2
Anuinas Scripture serieg
- > Books
...... < >Mo 3
b > Title Aguinas: selected politic
- > Books
...... < >Mo 4
b > Title Commentary an Aristotlg
- > Books
b = g 5

= = Title Commentary onthe De 4
E-*= > Hooks
L= Na B
L = Title Concerming being and e

The DOM lists al the titles found for this author, numbered sequentially. And even though the final
screen’sworth of data containsasignificant amount of information duplicated from the preceding screen,
our DOM contains no duplicate titles.

68 Tandem Connect User’s Guide

Performance Considerations

You can perform millisecond-based timing of your Action Model’s actions by wrapping individual
actions (or block of actions) in timing calls.

> To time an Action:
1 Click into the Action Model and place a new Function Action immediately before the action you
wish to time. (Right-mouse-click, then New Action > Function.)
2 Inthe Function Action, enter an ECMA Script expression of the form:
startTime = Number (new Date)
3 Insert anew Function Action immediately after the action you wish to time.
4 Inthe Function Action, enter an ECM A Script expression of the form:
endTime = Number (new Date)
5 CreateaMap Action that maps endTime - startTime to atemporary DOM element. (Right-
mouse-click, New Action > Map.)
6 Runthe Component. (Click the Execute button in the main toolbar.)

If you do extensive profiling of your Action Model, you will probably find that the overwhelming
majority of execution timeisspent in Check Screen actions. (You will seldom, if ever, encounter a Check
Screen that executes in less than 150 milliseconds.) Two implications of thisworth considering are:

+ ECMAScript expressions (in Map and/or Function actions) will seldom, if ever, be a performance
consideration for the component as awhole.

+ Overal component performance rests on careful tuning of Min Wait and Timeout values in Check
Screen actions.

Finally, remember that testing is not truly complete until the deployed service has been tested (and proven
reliable) on the app server.

For additional performance optimization through the use of shared connections, be sure to read the next
chapter, on Logon Components.

Advanced Tandem Actions 69

70 Tandem Connect User’s Guide

Logon Components, Connections, and
Connection Pools

Tandem Session Performance

The overall performance of any service that uses back-end connectivity isusually dependent on thetime
it takes to establish a connection and begin interacting with the host. Obtaining the connectioniis
“expensive’ interms of wait time. One strategy for dealing with thisis connection pooling, a scheme
whereby an intermediary process (whether the app server itself, or some memory-resident background
process not associated with the server) maintains a set number of preestablished, pre-authenticated
connections, and oversees the “ sharing out” of these connections among client apps or end users.

Connection pooling overcomesthelatency involved in opening aconnection and authenticating to ahost.
But in terminal-based applications, a considerable amount of time can be spent “drilling down” through
menu sel ections and navigating setup screensin order to get to the first bonafide application screen of the
session. So even when connections are reused through pooling, session-prolog overhead can be a serious
obstacle to performance.

Composer addresses these issues by providing connection pooling, managed by a special kind of
component (called alogon component) that can maintain an open connection at aparticular “drill-down”
point in aterminal session, so that clients can begin transactions immediately at the proper point in the
session.

When Will | Need Logon Components?
Logon Components are useful in several types of situations:

+ When you have aneed for multiple tiers of pooling based on multiple security challenges within
your system. (For example, users may need one set of logon credentials to get into the network,
another to get into the mainframe, and another to get into database.) Serial log-in requirements may
dictate the use of multiple logon components.

+ When your service needs stateful “session-based” connections.

+ When you need the performance advantages available through connection pooling.

If performance under load is not a high-priority issue and your connectivity needs are relatively
uncomplicated, you may not need to use L ogon Components at all. But there is no way to know if
performance is adequate merely by testing services at design time, on adesktop machine.

Components and services built with the Tandem Component Editor may appear to execute quickly at
designtime (in Animation Mode, for example). But in real-world conditions—which isto say under load,
with dozens or even hundreds of requests per second arriving at the server—session overhead can be a
significant factor in overall transaction time. The only way to know whether you need to use the special
performance enhancement features described in this chapter isto do load testing on a server, under test
conditions that mimic real-world “ worst case” conditions.

Logon Components, Connections, and Connection Pools 71

Connection Pool Architecture

72

When you install the Connect for Tandem, two types of Connection Resources are added to the
Connection creation wizard:

+ aTandem Connection

+ Tandem Logon Connection (henceforth referred to as a Logon Connection)

The Tandem Connection is atrue terminal connection and (when used by a Tandem component) can

establish a session with a host system. Thisis the connection-type we have been using throughout this
Guide.

Connecti
Tandem mnA on
Component » .
ozt £
A Term: Tanderm G530
L=erlD: admin
Component Connection Host

The Tandem connection resource is designed to make an individual connection to the host on an as-
needed basis. The connection is made just-in-time and discarded as soon as the client is done. It is not
reused in any way.

The Logon Connection, on the other hand, isdifferent. It definesapool of User IDs and passwords, each
of which can make its own connection. The Logon Connection also servesasan indirection layer to allow
clientsto connect to the host at exactly the point in the host program (exactly the screen) where the client
needsto start. This entry-point-location behavior is made possible by the Logon Component. (A Logon
Connection always uses a L ogon Component to get to the actual connection.) The architecture is shown
in the graphic below.

Tandem
Component

Logon
Connection

Logon
Component

Connection
Resource
-l

Tandem Connect User’s Guide

A Connection Resource is always required in order to get to the host. (Thisistrue for any Composer
service that uses Tandem components.) For simplicity, this diagram shows the Connection Resource
going directly to the host; in the real world, there may be intervening delegation layers for security
purposes.

The Logon Component contains Actions (an action model) designed to find a particul ar screen of interest
in the host program. This drill-down location is the effective entry point of the transaction for any
upstream process that uses this Logon Component. You can think of the Logon Component as a go-
between between the physical connection (represented by the Connection Resource) and the logic layer
(represented by the Tandem Component itself.

In order for aTandem Component (at the top of the diagram) to use aL.ogon Component, it needsto enlist
the aid of a Logon Connection resource. The Logon Connection is the bridge between the Tandem
Component and the Logon Component.

The kinds and responsibilities of the various objects discussed above are summarized in the following

table.

Object Role

Tandem Connection Allows a connection to be established with a host system.

Resource

Logon Component Specialized type of component in which the action model contains Logon,
Keep Alive, and Logoff action blocks. This component can maintain a
connection at a particular launch screen in a host program.

Logon Connection Specialized type of Connection Resource that associates a pool of
UserlDs and passwords with a given Logon Component type. At runtime,
connections are established for client processes on demand (and reused),
with one Logon Component instance per connection. Every connection in
the pool provides ready access to a given point (a particular launch
screen) in the host program, thanks to the associated Logon Component
(see above).

Tandem Terminal Contains the action model that comprises the business logic for a

Component particular Tandem interaction (or transaction).

The Logon Connection’s Role in Pooling

The Logon Connection differs from the ordinary “host-direct” connection resource in that it manages
pooling (the sharing of connection instances and L ogon Component instances at runtime).

In the context of a Composer service, pooling not only allows reuse of (open) connections at runtime, it
also increases the effective bandwidth of a deployed service. Consider the simple case where you' ve
designed a Tandem component that uses aregular connection resource. In creating the connection
resource, you will have specified a Userl D and password for the resource to use so that at runtime, the
component can log in to the host. When an actual running instance of your component is using that
connection, no other instance of the component can log in to the host using that same set of credentials.
The bandwidth of your service islimited to one connected instance at atime.

With a Logon Connection, on the other hand, numerous host connections can be maintained in a“live”
state so that multiple instances of your component can access the host (each on its own connection)
without waiting. Throughput is dramatically increased.

The diagram below shows one possibl e runtime case where three component instances (two instance of
Tandem Terminal Component A and one instance of Tandem Terminal Component B) are executing on
the server. Instance 1 of Component A isusing UserID ‘E’ to obtain a connection. This component has
its own dedicated instances of Logon Component M and Connection S.

Logon Components, Connections, and Connection Pools 73

Terminal Component B has just finished executing and is relinquishing its connection (established
through credentials defined by UID ‘F'). Note that because connection pooling isin effect, Component
B’s downstream resources (its L ogon Component instance, M2, and its Connection instance, S2) are not
simply discarded; they remain live. As aresult, Terminal Component A2 is ableto obtain (reuse) the

M 2/S2 resource instances that were previously held by Terminal Component B.

Component Logon
: Connection 5,
Al Busy Connection D e
Connection Fool
Cane ~
Connection §;
U0 G In=ctive Host 7
Component |Reuse UID H Inactive
A2 UDF | > |

In this diagram, Logon Connection D is associated with four connections based on four UIDs (user IDs
or credentias: A-thru-F). Oneisinuse; another (UID ‘F') isalive but not being used; and two areinactive
but available (i.e., valid UIDs have been assigned, so these two connections can be made live at any
time).

How Many Pools Do | Need?

It's possible for several different Tandem components to draw from the same connection pool. It's also
possiblefor different componentsto draw from different pools. Thismeans different L ogon Connections.

Animportant factor in deciding how many L ogon Connection resources (in effect, how many pools) your
service needsis the number of different start screens (or entry point screens) needed by the various

componentsin your project. Suppose Terminal Component A needs to begin itswork at a particular

starting screen in ahost application, but you' ve al so designed another component—Terminal Component
B—that needsto start on adifferent screen. Components A and B will need separate L ogon Connections,
and the separate L ogon Connections will point to separate L ogon Components. (In any given connection
pool, Composer objectsare shared in such away that every user of the pool must start at the same screen.)

Pieces Required for Pooling

74

The combination of aLogon Connection, a Logon Component, and its Connection Resource form the
basis of a connection pool. Starting from the host layer and working up the chain:

+ The Connection Resource defines the most basic parameters necessary for establishing a
connection with the host. When connection pooling isin effect, runtimeinstances of this object are
kept alive and reused.

+ The Logon Component defines the set of steps (actions) necessary to get to a particular entry point
in the host program. (At runtime, an instance of this component will actually carry out those steps
in order to arrive at, and maintain ready-to-use, a particular screen location in the host program.)
When connection pooling isin effect, instances of this object are kept alive and reused.

+ TheLogon Connection is a specia type of resource that contains all the information needed to
define a connection pool. This resource is designed to encapsulate pool-management info and does
not establish host connections directly; instead, it delegates those responsibilities to the Logon
Connection (which delegates them, in turn, to the appropriate Connection Resource).

Tandem Connect User’s Guide

How Do | Implement Pooling?

To create the various pieces required for pooling, you'll go through the following basic steps (each of
which will be discussed in greater detail in the sectionsto follow):

1 First, you'll create a basic Tandem connection resource, as demonstrated in “To create a Tandem
Connection Resource:” on page -14 of this Guide.

2 Next, you'll create alL ogon Component that uses the connection resource defined in Step 1. As part
of this process, you'll create an action model designed to navigate to a certain point in the host
program.

3 You will create aLogon Connection resource, which is a specialized type of connection resource
that relies on a Logon Component (from Step 2) to make the basic connection (through the resource
defined in Step 1).

4 Finaly, you'll create a Tandem Terminal Component and associate it with the Logon Connection
resource of Step 3.

These steps are described in detail starting with the discussion in “Creating a Connection Pool” further
below. Before going to that section, however, you should become familiar with the design principles
behind the Logon Component (and also the Logon Connection). We'll start with the Logon Component,
sinceit’'simpossible to create a L ogon Connection without using a Logon Component.

The Tandem Logon Component

The Logon Component is aspecial type of component: it hasan Action Model, yet can be used asa
connection resource aswell. The Action Moddl of thistype of component is designed to manage a
connection that will be used by multiple Tandem terminal components. In most respects, the Logon
Component is the same as a Tandem Terminal component. The differences are:

+ Inalogon Component, the Action Model is organized around connection-management tasks.
Those tasks are implemented via specia actions: the Logon Action, Keep Alive Action, and L ogoff
Action.

+ A Logon Component is not invoked directly by another component or service. Itsinvocation is
under the control of a Logon Connection.

NOTE: A Logon Component must and can only be used in conjunction with a Logon Connection.
Instead of calling the Logon Component directly, using (for example) a Component Action, you will
associate the Logon Component with a special connection resource called a Logon Connection. When

your Tandem Terminal Component executes, it executes viathe Logon Connection, which in turn
executes the Logon Component.

Logon Components, Connections, and Connection Pools 75

Logon, Keep Alive, and Logoff Actions

Logon Actions

The Logon Component provides several screen-management capabilities that are important factorsin
overall performance. These capabilities are implemented in terms of Logon, Keep Alive, and L ogoff
actions:

+ Logon Actions - These actions navigate through the host environment and park at adesired launch
screen in the host system. The connection is activated using User I Ds from the pool. The Tandem
components that subsequently reuse the connection have the performance benefit of already being
at the launch screen and won't incur the overhead of navigating to the launch screen asif they had
come in under their own new session.

+ Keep Alive Actions - These actions do two important tasks. First, they prevent the host from
dropping a connection if it is not used within a standard timeout period defined by the host.
Second, these actions must insure that the connection is always positioned at the “launch screen in
the host, even after performing the Keep Alive actions needed to prevent the connection from
dropping (the first important task).

+ Logoff Actions - These actions exit the host environment in a manner you prescribe for all the
connections made by User | Ds from the pool, when a connection is being terminated.

These actions and their meanings will be discussed in greater detail below. For now, it’'s enough to know
that these three action groupings are created for you automatically when you first create aLogon
Component. Note the (empty) Logon, Keep Alive, and Logoff action blocksin the action model shown
below:

DEEE2Q I
(=} TandemLogon
o) amE LOGON
- [Ed) KEEP ALIVE
Keep Alive Actions
[- @mg LOGOFF
Log Off Actions

Actionsyou place in the Logon group are primarily concerned with signing into the host security screen
and then navigating through the host menu system to alaunch screen where each Tandem component's
Action Model will start. It isimportant that any Tandem component using a L ogon component be able to
start execution at the same common screen. Otherwise, the performance gains of avoiding navigation
overhead won't be realized and more importantly, the odd Tandem component won't work.

You can create actions under the Logon Actions block the same way asyou would in an ordinary Tandem
Terminal Component—namely by using the Record feature to create (in real time) whatever actions are
necessary in order to enter sign-oninfo such as User ID and Password (as well as your initial menu
choicesto arrive at the launch screen).

NOTE: Remember to use the User IDs and Passwords from the Logon Connection Pool. (See the
discussion in “Creating a Logon Connection using a Pool Connection” on page -84.) To do this, you need
to map the two special system variables called USERID and PASSWORD to the appropriate fields on the
screen. By specifying these two variables, you make it possible for exteNd Composer to automatically
locate and use values from the next active and free Pool slot.

76 Tandem Connect User’s Guide

The launch screen is acommon point of execution for all the Tandem Terminal Components that use the
User ID pool provided by aLogon Connection. The Logon actionsin aLogon Component (which are
executed only once when a new connection is established) |et the calling component—your Tandem
Terminal Component—begin execution at agiven screen in the host program.

Maximizing Performance with the Logon Component

The Logon Actions must be structured properly and therefore always begin and end with a Check Screen
Action as shown in the screen below.

o & @B LOGON

_____ @. CHECK SCREEN for cursor position, where Row =7 and Column =8

..... @ SEMD BUFFER USERID

..... @ SEMD BUFFER "<enter="

..... @ ZHECK SCREER far cursar positian, where Row =21 and Caolumn=1
----- B SEND BUFFER "<enters"

..... @. CHECK SCREEHR far cursar positian, where Row =22 and Caolumn = 49

Thefinal Check Screen action in the Logon block guaranteesthat control isnot turned over to the Tandem
Component before the screen of interest has arrived in the connection. Without this, the Tandem
Component could start at an invalid screen, throw an exception, and possibly corrupt a transaction.

NOTE: You may notice when animating a Logon Component that the ending Check Screen is skipped.
This is normal design-time behavior. In a production environment , the actions in a Logon Component
always execute in an interleaved manner with an Tandem Terminal Component. Animating a Logon
Component from start to finish actually creates an abnormal sequence of events that would result in two
Check Screens being processed in succession, which is not allowed.

The performance benefit comesinto play asaresult not only of connection reuse but launch-screen reuse.
For example, if aUser ID pool of three entriesisfully used and (ultimately) reused by the execution of a
component fifteen times, the overhead of navigating to a menu item that executes the transaction of
interest will occur only three times. Likewise, there will only be three logons to the host because the
Logon actions at the top of aLogon Component are executed only once—when a new connection is
activated (not when it isreused). Thisiskey to obtaining maximum performance in a high-transaction-
volume production settings.

NOTE: When possible, use the Try/On Error action to trap potential logon errors that may be
recoverable. Otherwise, the UserlD trying to establish the failed logon will be discarded from the pool,
decreasing the potential pool size. The pool size will remain smaller until you manually reset the discarded
connections using the exteNd Composer Enterprise Server Console for Tandem. See the Managing Pools
Sections in this Chapter for more details.

Logon Components, Connections, and Connection Pools 77

Keep Alive Actions

The Keep Alive block is where you will place actions that “ ping the host” in whatever way necessary to
keep the connection alive so that it can be reused.

Keep Alive actions usually involve sending akey like <ENTER>, to the host at some specified interval.
However, if after sending the key the screen changes to some screen that is different than the launch
screen, you must be sure to return the Logon Component to the launch screen in the Keep Alive section.
Failure to do so will leave the next component at an incorrect screen, causing it to fail.

KEEF ALIVE
... Keep Alve Actions

... |BB) CHECK SCREEN for cursor position, where Row = 22 and Colurn = 49
...| By SEMND BUFFER "1<bagkspace="

i...[B® CHECK SCREEN far cursor position, where Row = 22 and Columnn = 49

This key sequence corresponds
to “1” and “Backspace.”

The Pool Info dialog of a Logon Connection (see discussion in “ Creating a Logon Connection using a
Pool Connection” on page -84) iswhere you control how often the Keep Alive actions will execute. If
you specify in your Logon Connection pool that you would like to keep afree connection active for 5
minutes, but the host will normally drop a connection after two minutes of activity, you can specify
keyboard actionsto let the host know the connection is still active such as sending an <ENTER>key.

Pool Info =

Fool size specifies the total number of cannections that can he established. Keep
Alive, Inactivity and Entry wait parameters setthe timings associated with each
connection. Selecting "Override UID/IPWD" allows you to specify different logons. The
userid and password from the base connection will be used if no override is
specified. Specify Reuse Cannection ta verify that the proper Screen state is present
hefore & connection can be reused.

Pool size |1

Keep Alive (minutes) |2

Inactivity Lifetime (minutes) IED k k

Entry wait (seconds) ISD

User I | \ \

Password I

Override UID/PWD [| |
Use Sequential Connections [

Reuse connection only
if expression is true

[sereen.getTextati4, 5, 263=\Novell GAMen [EZ

\

interaction every

2 minutes
active connection for
60 minutes

Keep Alive actions may be executed multiple times, but after the Keep Alive Time Period defined on the
Pool Info dialog of the Logon Connection.

78 Tandem Connect User’s Guide

NOTE: The execution of the Keep Alive actions does not cause the Inactivity Lifetime clock to reset in
the Logon Connection. Only a Tandem Component'’s execution will reset the Inactivity Lifetime.

Maximizing Performance with Keep Alive Actions

Logoff Actions

Check Screens must also be processed at the beginning and end of the Keep Alive section. Not only does
the keep Alive section prevent the connection from closing, but it must make sure that the launch screen
is present when the execution is completed. The beginning Check Screen checksto make sure that during
thetimethe connection wasavailable but not in use, that an unexpected screen didn’t arrivefrom the host.
And again, the ending Check Screen prevents rel easing the connection to the next Tandem Component
prematurely after executing the Keep Alive actions. See the following screen.

Ed) KEEP ALME

Keep Alive Actions

@ CHECK SCREEM for cursor position, where Row =22 and Column =49
.. B SEND BUFFER "<backspace>"

@ CHECK SCREEM far cursar positian, where Row = 22 and Calumn = 49

L ogoff actions essentially navigate the User ID properly out of the host system. Logoff actions execute
only once for aconnection and only when a connection times out (i.e. the Inactivity Lifetime expires) or
screen expression criteriais not met, or the connection is closed via the Tandem Server Console.

L ogoff actions execute only once for a connection and only when a connection times out (i.e. the
Inactivity Lifetime expires) or screen expression criteriais not met, or the connectionis closed viathe
Tandem Server Console.

Ina“best practices” sense, it’svitally important to make Logoff Actions bulletproof. If an exception
occurs during execution of the L ogoff actions, exteNd Composer will break its connection with the host,
freeing the UserI D in the pool. But the UserID may still be active on the host. Until the host kills the
UserID (from inactivity), a subsequent attempt by the pool to log on with that UserID may fail, unless
you’ ve coded your logon to handle the situation. Logon failures cause the UserI D to be discarded from
the pool, reducing the potential pool size and performance overall. Aswith Logon and Keep Alive
actions, the way to guarantee you are on the proper screen at the end of the logoff isto end with a Check
Screen.

Logon Component Life Cycle

Eachtime aUser ID is activated from the Logon Connection Pool, an instance of the corresponding
Logon Component is created and associated with that User ID. Then the L ogon actions are executed until
the desired launch screen is reached. At this point the Tandem Terminal component execution begins.
When it isfinished another Tandem Terminal component using the same Logon Connection may begin
executing, starting at the same launch screen.

If no other component requests the connection, then the connection-instance in question enters an active
but free state (an “idle state”) defined by the Inactivity Lifetime and Keep Alive settings on the Pool Info
dialog of the Logon Connection. If the Keep Alive period (e.g., 2 minutes) is shorter than the Inactivity
Lifetime (e.g., 60 minutes), then at appropriate (2-minute) intervals, the Keep Alive actions will be
executed, preventing a host timeout and dropped connection; and the Keep Alive Period begins anew.

Logon Components, Connections, and Connection Pools 79

A Logon Component’s execution lifetimeis dependent on the activity of the Logon Connection that uses
it. Aslong as one entry in the Logon Connection poal is active, then one instance of the Logon
Component will bein memory in alive state. A Logon Component instance will go out of scope (cease
executing) when the last remaining pool entry expires due to inactivity. The only other way to stop
execution of aLogon Component is through the Tandem Console on the Server.

NOTE: If a connection attempt involves a bad User ID or Password, that connection instance will not be
usable and that member of the pool will be skipped over in subsequent connection requests. An error
message will be sent to the server log saying “Logon connection in pool <Pool name> was discarded for
User ID <User ID>."

The Tandem Connection

80

The Logon Connection is not atrue connection object like a Tandem Connection Resource, but a pointer
to aLogon Component (which in turn connects to a host either through a conventional Connection
Resource or yet more intervening Logon Connection/Logon Component pairs). The Logon Connection
encapsul ates information needed to describe a pool of connections. That includes User IDs and
passwords, plus pool settings involving the time interval between retries on discarded connections, etc.
Another function of the Logon Connection isthat it ensures the use of different instances of the same
Logon Component for all the User I Ds for which connections are made.

Thedialogsyou'll usein setting up apool of User IDsfor aL ogon Connection are shownin thefollowing
set of illustrations. Arrows denote the buttons that lead to continuation dialogs.

Tandem Connect User’s Guide

Creaste a New Connection Resource

. x|
Select a Tandam Logon Component for each pool entry's connaction. Each Tandam Component using this
Logon Connection will use a previously established connection or create a new connection based on pool
infarrration specifed in Pool Info dialog. Checking Tefaull’ makes this Conngction e nitial $eleclion when
raquesting a Tandem Logon Compaonent

Cannection Type [Taeiem Ligon Cornection [v]
comect v [EEEERT A - Ooetan
Pool Comnecters @ | Post nfo... |

Fool size specifies the total number of connections that can be established. Keep
Alive, Inactivity and Entry wail parameters et the imings associated with each
connection. Selecting "Cvemide UIDWPWI© allows you to specify differant logons. The
userid and password from the base confection will be used if no ovenide is
specified. Specify Reuse Connection fo verify that the proper Screen state is present
before a connection can be reused.

¢
=

Pool size II

Kewp Alive (minutes) iE

Inactivity Lifatime iminutes) bl.’l

Entry wait (seconds) hl]

Uker 1D |

Password I
Crverride UID/PWD

e Comem wiribind " nruetiane [

Set Pool Userids and Passwords ll
| User D | Password |
f g Fenen
g T
3 :que mumnnnan
I Help? Fings F
[ok [cancel |

Every Logon Connection is associated with a given Logon Component. |n addition, the Logon

Connection provides the following User 1D pool functionality:

1 It alowsthe specification of multiple User IDs in advance ensuring that clients are able to secure a

connection when oneis needed

N

authentications and disconnects

It keeps a connection active to prevent host timeouts during inactive periods
It lets you specify when to remove a connection from the active pool

N o 0o b~ W

Logon Connection

It allows the reuse of a User I|D/connection onceit is established to eliminate repeated user

It allowsasingle User ID to use multiple connectionsiif thisis supported by the host system

It sets atimeout period to use for afully active pool to provide afree connection
It lets you specify error handling dependent on the state of the Logon Component used by the

Logon Components, Connections, and Connection Pools

Many-to-One Mapping of Components to Logons

In order for multiple instances of a Tandem component or different Tandem components to use the same
Logon Connection, the following conditions must be met:

1 All the Tandem components must use the same Connection Resource (thereby sharing the Tandem
Host, Port and Terminal type).

2 All the Tandem components must have a common launch screen in the host system from which
they can begin execution (see “ The Tandem Logon Component” above for more detail).

Connection Pooling with a Single Sign-On

If your host system security supports multipleloginsfrom asingle user D, you may have circumstances
where you wish to pool the single User ID. This can be accomplished by performing the following steps:

+ Specify aUser ID/Password in the Connection Resource used by the Logon Component

+ Onthe Pool Info dialog of the Logon Connection, specify a Pool Size greater than one

+ Do NOT check the Override the UID/PWD setting in the Pool Info dialog of the Logon
Connection.

These stepswill cause each pool slot to usethe User ID and Password contained in the Connection object
and not use and User | Ds from the pool.

Creating a Connection Pool

Overview

When creating a Tandem component, you must first create the Connection object it needsfirst. Similarly,
when creating the object comprising a Connection Pool, you must create the needed objectsfirst, which
implies starting at the host and working your way backwards to the Tandem Component that will access
the host.

A typical sequence of steps for creating a Connection Pool is outlined in the diagram below:

Step One:

Create a basic host
Connection Resource \

Step Two:

Create Logon Component
that uses basic Connection \

Step Three:

Create Logon Connection
that uses Logon Component \

Step Four:
Create standard Components
using Logon Connection

82 Tandem Connect User’s Guide

Creating a Basic Connection

This step issimple. Create anew Connection Resource as described in “ To create a Tandem Connection
Resource:” on page -14 of this Guide. Even though you will be using User IDs and Passwords defined in
the Logon Connection later, you should still define one in the Connection aswell. Thiswill be needed
when you define the Logon Component in the next step. Alternatively, you can simply use an existing
Connection Resource.

Creating a Logon Component

> To create a Tandem Logon Component:

1 From the Composer File menu, select New> xObject, then open the Component tab and select
Tandem L ogon.

The Header Info panel of the New xObject Wizard appears.

Create a New Tandem Logon Component ll
A Tandem Logon Component connects to a hostvia the Tandem protocol, processes data using elements
from a DOM, and maps the results to an output DOM. Use this wizard to create a Tandem Logon
Component. Enter a Mame and Description for this component. The name will appear in the Composer
window and in choice lists when you are prompted for ohjects of this type as you work in Composer. The
Mame is required, is case sensitive, and may not contain the characters: V7% "= = |
MHame:
ITandemLugon
Description:
Furpose:
Input:
Output
Remarks:
J[_Next][Cancel]

2 TypeaName for the connection object.
Optionally, type Description text.
4 Click Next and the Connection Info panel appears.

Create a New Tandem Logon Component 1[

Specify which Connection you wish to use for this Component or Service. To change any connection
parameters, you must change thern in the Connection Resource object ar create a new Connection
Resource of the same type with different parameters.

w

LTy T sl TanclemConnection

-

[>]

Host or IP Address I

Telnet Port I

Code Page | | |

User ID I

Password I"*’"‘“‘*

Autowrap Characters

Use & bit Data Characters

Backspace Sends Delete

[~]

[Back][Finish][Cancel]
5 Select aConnection from the drop down list. (Thiswill be the basic connection, not the logon
connection.)

Logon Components, Connections, and Connection Pools 83

6 Click Finish and the Logon Component Editor appears.

NOTE: Recording actions follows a series of steps. The cursor must be positioned over LOGON;
then turn Record on, and when you are done, turn Record off. Position the cursor to Keep Alive, turn
Record on, and when you are done, turn Record off. Position the cursor to LOGOFF, turn Record on,
then when you are done, turn Record off.

7 Record Logon Actionsfor logging into the host and navigating to the launch screen using the same
Recording techniques described in Chapter 4 of this Guide.

8 Edit the Logon Map actions that enter a User ID and Password to instead use the special USERID
and PASSWORD variables described in the section titled “ Tandem-Specific Expression Builder
Extensions’ in Chapter 4 of this Guide.

9 Create the needed Send Buffer actionsin the Keep Alive section of the Action Model (a quick way
isto copy an existing SEND key action, Paste it, and then modify the key code sent).

x
() ¥Path: | |_| (®) Expression:
|"c<cr:="| 74

[Accept Key Strokes

)L o I et

10 Record LOGOFF actions for properly exiting the host
11 Save and close the logon Component.

Creating a Logon Connection using a Pool Connection

84

> To create a Tandem Logon Connection:

1 Fromthe Composer File menu, select New>xObject, then open the Resour ce tab and select
Connection, or you can click on the icon.

The Header Info panel of the New xObject Wizard appears.
x|

A Connection resource is used to establish communications with an Connector data source or with a server
using HTTP authentication. You need to create connections far each type of data source or each HTTP server
you wish to communicate with. Enter a name and, optionally, a description for this Connection. The name
will appear in the Composer Detail Pane and in choice lists when you are prompted for objects in Composer.
The name may not contain the characters:\/: 7" == | Names are case insensitive.

Mame:

ITandemConnect

Description:

FPurpose:
Input:
Output:
Remarks:

][Next][Cancel]

2 TypeaName for the connection object.
3 Optionally, type Description text.

Tandem Connect User’s Guide

4

5
6
7

10

Click Next and the Connection Info panel appears.

x|
Select a Tandem Logon Component for each pool entry's connection. Each Tandem Caomponent using this
Logon Cannection will use a previously established connection or create a new connection based on pool
information specified in Poal Info dialog. Checking 'Default' makes this Connection the initial selection when
requesting a Tandem Logon Component.
Connection Type |Tandem Logon Connection [~]
pel L ANER Tondemlogon | [Default
Pool Connections ®
Session Connections () | |
[Back][Finish][Cancel]

For the Connection Type select "Tandem Logon Connection™ from the drop down list.
In the Logon Via control, select the Logon Component you just created.
Click on the Pool I nfo button and the Pool Info dialog appears.

Pool Info x|

Fool size specifies the total number of connections that can be established. Keep
Alive, Inactivity and Entry wait parameters set the timings associated with each
connection. Selecting "Override UIDIPWD" allows you to specify different logons. The
userid and password from the base connection will be used if no averride is
specified. Specify Reuse Connection to verify thatthe proper Screen state is present
before a connection can be reused

Pool size |1

Keep Alive (minutes) |2

Inactivity Lifetime (minutes) ISD

Entry wait (seconds) ISD

User ID I

Password I
Override UID/PWD (]|
Use Sequential Connections []

Reuse connection only
if expression is true

[ereen.aetrextat,6,26)=="Novell oA Men| (B

Enter a Pool Size number. This represents the total number of connections you wish to make
availablein this pool. For each connection, you will be expected to supply a Userl D/Password
combination later.

Enter aKeep Alive time period. This number represents (in minutes) how often you wish to
execute the Keep Alive actions in the associated L ogon Component whenever the connection is
active but free (i.e. not being used by a Tandem component). The number you enter here should be
less than the Timeout period defined on the host for an inactive connection.

Enter an I nactivity Lifetime. This number represents (in minutes) how long you wish to keep an
active free connection available before closing out the connection and returning it to the inactive
portion of the connection pool. Remember, that once the connection is returned to itsinactive state
in the pool, it will incur the overhead of logging in and navigating host screenswhen it isre-
activated.

Logon Components, Connections, and Connection Pools 85

86

11 Enter an Entry Wait time in seconds. This time represents how long a Tandem component will
wait for afree connection when all the pool entries are active and in use. If thistime period is
reached, an Exception will be thrown to the Application Server.

12 Checking Override Ul D/PWD means you wish to specify User ID/Password combinations for use
in the connection pool. When checked, this activates the Set USERID/PASSWORD button. Click
on the button to display the Set USERIDs and PASSWORDS dial og.

x|
—-gh = 0
User ID Passwaord I
1 John faares
2 Baﬂ aaaaaaaaa
Del ete 3 George s
rd Ringo T
Paste
ok cancel]

On the Toolbar there are three icons: Add which adds an empty row, Delete, which del etes a highlighted
row and Paste which allows you to copy/paste information from a spreadsheet into the table. For more
on this, see the following Note.

NOTE: Alternate and faster ways to enter data are to copy data from a spread sheet and paste it into the
table. Make sure your selection contains at least two columns, UserlD and Password. The first and second
column must contain data, all other columns will be disregarded. The first number column you see in the
screen is automatically generated. Open the spreadsheet, copy the two columns and as many rows as
needed. Open the table and immediately press the Paste button. You can also copy data from tables in a
Microsoft Word® document using the same technique.

13 Enter as many USERID/PASSWORD combinations until you reach the size of the pool you
specified and click OK. Pool size will be adjusted depending upon how many rows you entered.

14 Click OK to dismissthe “Set User IDs and Passwords’ dialog and return to the Pool Info dialog.

15 Optionally check the Use Sequential Connections control if you want Composer to establish
connections in the same order that User IDs were listed in the “ Set User IDs and Passwords’
dialog. Connections will be made in numerical sequence.

16 Optionally check the Reuse connection only if expression istrue control. This control allowsyou
to enter an ECMA Script expression that evaluates to true or false based on some test of the launch
screen. The purpose of the expression is to check to make sure the launch screen is the proper one
each time anew Tandem Component is about to reuse an active free connection. Under
circumstances unrelated to your Composer service, it’'s possible that the launch screen will be
replaced by the host with a different screen. For instance, if thereis a system ABEND on the host,
the launch screen in the Logon Component may be replaced by a System Message screen.

The following ais a sample Custom Script used to see if a particular screen is present. If it isnot,
the script writes a message to the consol e stating that the screen is bad and the logon connection is
being released. This function is called from the “ Reuse connect only if expression istrue” control
on the Pool Info dialog.

Tandem Connect User’s Guide

function checkValidLaunchScreen(ScreenDoc)

{
var screenText = ScreenDoc. XPath("SCREEN").item(0).text
if((screenText.indexOf("MENU") != -1 || screenText.indexOf("APLS") I=-1) &&
(screenText.indexOf("COMMAND UNRECOGNIZED") == -1 ||
screenText.indexOf("UNSUPPORTED FUNCTION") == -1))

{

return true;

else

{
java.lang.System.out.printin(“"Warning - Releasing logon connection at bad screen");
java.lang.System.err.printin("Warning - Releasing logon connection at bad screen”);
return false;

}
}

17 Click OK to return to the Connection Info panel.
18 Click on Finish and the Logon Connection is saved.

Maximizing Performance of Tandem Logon Connection

To prevent Tandem Components from beginning execution on a connection that may have been left on
an invalid screen by a previous Tandem component, the Logon Connection Resource allows the
connection itself to check for the presence of thelaunch screen. Thisisaccomplished by using the option
titled “ Reuse connection only if expressionistrue” onthe Pool Info dialog of the Logon Connection. The
screen test you specify hereis executed each time a Tandem Component compl etes execution. If the test
fails, exteNd Composer will immediately disconnect from the host, possibly leaving adangling UserlD
on the host. As noted before, the host will eventually kill the user, but the UserID may be discarded from
the pool if it is accessed again before being killed, thereby reducing the pool size and consequently
overall performance.

Another reason to use the “ Reuse connection only if true” option isthat you can perform very detailed
tests against the screen to make sure it is your launch screen. While Map Screen actions do perform a
screen check, they only look at the number of fieldsin the terminal data stream. In most cases, thisis
sufficient. However, it is possible two different screens can have the same number of fieldsin which case
the expression based test that examines the content of the screen will produce more rigorous results. A
best practices approach mandates that you use this feature all the time.

Static versus Dynamically Created Documents/Elements

In some Composer applications, users have aneed to place various control, auditing, and/or meta-datain
an XML document. Thisdocument may or may not bein addition to the actual elements/documentsbeing
processed (i.e. created from an information source). If this document structure and datais dynamically
created by multiple Map actions (i.e. over 100) performance of the component and therefore the entire
service may suffer. To boost performance, create the portion of the document structure without the
dynamic content ahead of time, then load it into the Service at runtime viaan XML Interchange action
and retain the Map actions for dynamic content. This can boost performance as much as 30% in some
Cases.

Creating a Logon Connection using a Session Connection

Sometimes, you may want the extralevel of control over session parameters that a Logon Connection
affords, without necessarily wanting to use pooling. In this case, you can follow the procedure outlined
below.

Logon Components, Connections, and Connection Pools 87

> To create a Tandem Logon Connection:

1 From the Composer File menu, select New>xObj ect, then open the Resource tab and select
Connection, or you can click on the icon.

The Header Info panel of the New xObject Wizard appears.
X

A Connection resource is used o establish communications with an Connector data source or with a server
using HTTP authentication. You need to create connections for each type of data source or each HTTP server
yau wish to communicate with. Enter a name and, optionally, a description for this Connection. The name
will appear inthe Compaser Detail Pane and in choice lists when you are prompted for objects in Compoaser.
The name may not contain the characters: V7 ?" == | Names are case insensitive.

Mame:

ITandemConnect

Description:

Furpose:
Input:
Cutput:
Remarks:

][Next][Cancel

2 TypeaName for the connection object.
Optionally, type Description text.
4 Click Next and the Connection I nfo panel appears.
X

Select a Tandem Logon Component for each pool entry's connection. Each Tandem Component using this
Logon Connection will use a previously established connection or create a new connection hased on pool
infarmation specified in Pool Info dialog. Checking 'Default' makes this Connection the initial selection when
regquesting a Tandem Logon Component

w

Connection Type |Tandem Logon Connection ‘Ll

Connect Via |TandEmLDgDn |~ [Default

Pool Connections () |—|

[Back][Finish][Cancel]

5 For the Connection Type select “ Tandem Logon Connection” from the drop down list.
6 Inthe Connect Via control, select the Logon Component you just created.

88 Tandem Connect User’s Guide

7

10

Click the Session Connections radio button and then on Session Info.
SessionInfo x|

Keep Alive sets the interval after which Keep Alive action will be executed an
connection, while it's sitting idle. Inactivity lifetime sets the time limit for connection to
be idle. Specify Reuse Connection to verify that the proper ScreenDoc state i=
present before a cannection can he reused.

Keep Alive (minutes) |2

Inactivity Lifetime iminutes) IED

Reuse connection only [
if expression is true

[OK][Cancel]

The Keep Alive (minutes) number represents (in minutes) how often you wish to execute the Keep
Alive actionsin the associated L ogon Component whenever the connection is active but free (i.e.
not being used by a Tandem Terminal component). The number you enter here should be less than
the Timeout period defined on the host for an inactive connection.

The Inactivity Lifetime (minutes) number represents (in minutes) how long you wish to keep an
active free connection available before closing out the connection and returning it to the inactive
portion of the connection pool. Remember, that once the connection is returned to itsinactive state
in the pool, it will incur the overhead of logging in and navigating host screenswhen it isre-
activated.

Click in the checkmark box if you want to Reuse connection only if expression istrue. If you
choose to do so, the expression field automatically displays and you can click on the expression
icon to display theif the expression is true dialog.

Creating a Tandem Component That Uses Pooled Connections

At this point, you are ready to create a Tandem Component that can use the Connection Pool. For the
most part, you will build the component as you would a normal Tandem component, the only difference
being the Connection you specify on the New xObject Wizard.(You'll specify a L ogon Connection
instead of aregular Tandem Connection.)

Logon Components, Connections, and Connection Pools 89

> To create a Tandem Component:

1 From the Composer File menu, select New>xObject, then open the Component tab and select
Tandem.

The Header Info panel of the New xObject Wizard appears.
x

A Tandem Camponent connects to a hostvia the Tandem protocol, processes data using elements from a
DoOM, and maps the results to an output DOM. Use this wizard to create a Tandem Component. Enter a
MName and Description for this component. The name will appear in the Composerwindow and in choice
lists when you are prompted for objects ofthis type as you work in Campaoser. The Mame is required, is case
sensitive, and may not contain the characters: V7% "= = |

Hame:

rTandemCDmponent

Description:

Furpose:
Input
Cutput
Remarks:

][Next][Cancel I

Type a Name for the component.

Optionally, type Description text.

Click Next and the XML Property Info panel appears.

Select the necessary | nput and Output Templates for your component.

Click Next. The Connection Info panel appears.

Select the Logon Connection you created and click on Next. The Component editor appears.

Build the component as described in “To create a new Tandem Component:” on page -19 of this
Guide.

0o N b~ WN

Maximizing Performance of Tandem Terminal Components

Once the launch screen is obtained by the logon Component’slogon actions, it is handed to the Tandem
Terminal Component that uses the connection. Then the Tandem Terminal component (when finished
executing) leaves the screen handler back at the launch screen. If the Tandem Component finishes
without being on the launch screen,(i.e. it rel eases the connection back to the pool with aninvalid screen)
thenit ispossiblethat all subsequent Tandem Componentsthat use the connection may throw exceptions
rendering the connection useless. It also will degrade overall performance and possibly cause data
integrity problems within the component processing.

Once again, ensure that the launch screen is present, the last action to execute in a Tandem Component

must be a Check Screen that checksfor the launch screen. This can betricky if your component has many
decision paths that may independently end component execution. You must be sure that each path ends
with a Check Screen action.

90 Tandem Connect User’s Guide

Managing Pools

Connections pools can be managed through the Tandem Console Screen.

> How to Access the Console
1 If youareusing the Novell exteNd Application Server, log on to your Server viayour web browser
using http://localhost/Silver M aster 50 (or whatever is appropriate for the version in use). In this
example, Novell exteNd App Server 5.0 is used.

SilverMasters0

extelNdComposer
robots. Lt
ZilwverMasterso
Silwver3tream

NOTE: If you are not using the exteNd app server, enter a URL of this form:
http://<hostname>:<port>/exteNdComposer/Console
2 Click on the exteNd Composer link and alist of installed Connects displays to the |eft of the main

console page.
exteMNd Composer
=1 Loglewel |5
General Properties
Apply Log Level
About Products:
3270 Cache Status
Expressions Cached: 2
) ¥Path Nodes Cached: 0
Functions/Code Tables Cached: 0
CICSRPC Component Types Cached: 1
Total Components Cached: 2
DG
Clear Cache
EDI
HP 3000 Cache Tuning
HTML Expression £ XPath Caching: & 0n O 0ff
Component Cache Expiny: 720
JDBC
Total Component Cache Size: 250
JMS Apply Cache Tuning
PROCESS | OB SikerStream Software LLC 20006110 10230
[

Logon Components, Connections, and Connection Pools 91

92

3 Click onthe Tandem link in the left (nav) frame and the Tandem General Properties Screen will
come into view.

4} enteNd Composer Server Console - Microsoft Internet Explorer 3] x|
File Edit VYiew Favorites Tools Help ﬁ
GBak ~ = - (D ﬁ| Qhsearch [GFavorites EfMedia ¢4 | BN S - 2
Address I@;‘l http:flocalhostfexteNdCompaser/Cansole j @Go Links **| B015naglt

exteNd Composer
oI SIS T
=] =) ™
= Novell exteNd Composer _
| Version 5 -

CICSRPC

DG Hovell® exteMd™ Composer

EDI Enterprise Server

HP3000 Tandem Connect

HTML YWersion 5.0 {12)

JDBC = @ 1996-2003 SilverStream Software LLC

License key: E4F11749F800000001

JMS

PROCESS

127 K| | 2]
|®j ’_’_’_ E Local intranet 4

4 Click on Console. displays. A browser popup window (the Tandem Connection Pool Management

Screen) should appear.

exteNd Composer

Novell.

exteNd Compeoser Tandem Connection Pool Manager

Pool Name Description Max InUse Avail Discarded Pool Actions
WY Library Pool Tandem Logaon Connection 3 0 0 1 Reset Discarded| Reset| Refill
Tandem - Poal Tandem Logon Connection 3 0 2 1 Reset Discarded| Reset| Refill
Refresh Console

To initialize a Logon Connection Pool, enter it's deployment context,
"connection", and connection name in the field below. ..
<deployment context:>/connection/<connection names>

|e.g comftesticonnection/myLogoninixxml Initialize Pool

5 Toinitialize aLogon Connection Pool, enter its deployment context, the word "connection”, and
the actual connection name in the text field near the bottom of the screen. (See illustration above.)
Then click the I nitialize Pool button.

NOTE: Refer to the appropriate Composer Enterprise Server guide for more information.
6 Optionaly click the Refresh Console button to update the view.

Tandem Connect User’s Guide

Connection Pool Management and Deployed Services

The Connection Pool Management Screen displays the current state of the connection(s) with the
Tandem Connect. The screen contains a table listing the Pool Name, Description of the connection, the
maximum number of connectionsin the pooal, the number of connections in use, the number of
connectionsavailable, the number of connectionsdiscarded. It also contains several buttonsallowing you
to perform various actions related to connection pooling, which are outlined in the table bel ow.

Button Name Action

Reset Discarded Resets the Discarded connections which are then reflected in the table

Reset (Pool) Resets the Available and Discarded connections which are then reflected in
the table

Refill (Pool) Refills the pool with the maximum number of connections

Additional Buttons on Tandem Connection Pool Manager Console

Refresh Console Shows the current status of the connection pool

Initialize Pool Initializes a Logon Connection Pool by entering a relative path to the
deployed lib directory. This will not work unless the deployed jar is extracted.
Click on the SUBMIT button when finished.

Connection Discard Behavior

The performance benefits of connection pooling are based on the ability of more than one user to access
aresource, or set of resources, at once. The way a connection is established begins with the logon
component picking the User ID and Password from the table. If the connection fails, then it is discarded
for this User 1D and Password and tries another until a connection is established. The failure of one
connection doesn’t prevent a successful connection to be established.

The Connect for Tandem addresses the “ one bad apple” problem by discarding any connection that can’t
be established (for whatever reason: bad user 1D, timed-out password, etc.) and reusing the others. When
aconnection is determined to be unusable, the Connect for Tandem will write a message to the system
log that says. “Logon connection in pool <Pool name> was discarded for User ID <User ID>.”

Screen Synchronization

Screen synchronization has special ramifications for users of pools. If asituation arises in which a user
leaves a connection without the screen returning to its original state, the next user will begin a session
with the screen in an unexpected state and an error will occur. To prevent this, we have a screen
expression which the user can specify in the connection pool. It isimportant that the last actionina
Tandem Component be a correct Send Attention Key action that will result in the session ending with the
correct logon screen active.

NOTE: The last action should be an empty Check Screen action so that the Tandem Terminal component
waits until the launch screen arrives before giving up the connection.

If you want to check, at runtime, for the presence of abad screen at the end of a user session, include a
Function action at the end of your component’s action model that executes a function similar to the one
shown below:

Logon Components, Connections, and Connection Pools 93

function checkValidReleaseScreen (ScreenDoc)

{

var screenText = ScreenDoc.XPath("SCREEN") .item(0) .text
if ((screenText.indexOf ("MENU") != -1 || screenText.indexOf ("APLS") != -1)
&&
(screenText .indexOf ("COMMAND UNRECOGNIZED") == -1 ||
screenText .indexOf ("UNSUPPORTED FUNCTION") == -1))
return true;
else // Write error messages to
// System.out and System.err:
java.lang.System.out.println("Warning - Releasing logon connection at bad
screen") ;
java.lang.System.err.println("Warning - Releasing logon connection at bad
screen") ;

return false;

}

This function checks the screen text and returns false if the final screen isnot correct. The check returns
trueif the screen contains“MENU” or “APLS’" and doesnot contain “COMMAND UNRECOGNIZED”
nor “UNSUPPORTED FUNCTION.”

94 Tandem Connect User’s Guide

Tandem Display Attributes

The screen.getattribute () method will return one of the values shown bel ow, representing the
current attribute state of the onscreen character at the given location.

Number Attribute

normal display

bold on

faint

standout

underline (mono only)

blink on

reverse video on

0 (I N[O | S~ W[IN]|F|O

nondisplayed (invisible)

Viewing All Character Attributes at Once

Using the screen.getAttribute () method, you can easily write afunction that captures all
attributes (at all screen locations) at once. Thefollowing ECM A Script function, for example, can be used
at design time to display screen attributesin an alert dial og.

function showAttributes(myScreen)

{

var attribs = new String(); // create empty string

// Iterate over all rows and columns:
for (var i = 1; i <= myScreen.getRowCount(); i++, attribs += "\n")
for (var k = 1; k <= myScreen.getColumnCount (); k++)
attribs += myScreen.getAttribute (i, k) ;
// display the results:
alert (attribs);

}

Thefollowing illustrations show a Tandem screen and the result of applying the showattributes ()
function to the screen:

Tandem Display Attributes 95

96

Public Library's LEO

Library

Entrance

Online

Eg_;,aEcmaSt:lipl Alert

000
M1 1111111111111 1111111111 111111111111111111111111100000000000000000
000
000
T 111111111111 111 1444444444444444444444411000000000000000000000000000
T 111111111111 111 1444444444444444444444411000000000000000000000000000
T 111111111111 111 1444444444444444444444411000000000000000000000000000
T 1111111 11111111111444444444444444444444411000000000000000000000000000
T 11111111 11111111444444444444444444444411000000000000000000000000000
T 11111111 11111111444444444444444444444411000000000000000000000000000
T 1111111111111 111111144 4444444 444444444444411000000000000000000000000000
T 11111114444 44444444444444444411000000000000000000000000000
T 11111114444 44444444444444444411000000000000000000000000000
TTTTTITTTT 1111111111 11111111444444444444444444444411000000000000000000000000000
T 111111111111 111 1444444444444444444444411000000000000000000000000000
T 111111111111 111 1444444444444444444444411000000000000000000000000000
000
000
T 111111111 1111111 1111 1111111111111 11111111111111111111110000000000000
T 11111111 1111111 111 11111111111 11111111111111111111111000000000000000
000
000
000

Tandem Connect User’s Guide

Tandem Keyboard Equivalents

Tandem Common Keys Keyboard Equivalent

Arrow Down Arrow Down
Arrow Left Arrow Left
Arrow Right Arrow Right
Arrow Up Arrow Up
BackSpace BackSpace
Back Tab Back Tab
Delete Delete
Escape Escape
Linefeed Linefeed
Return Return

Tab Tab

F1 F1

F2 F2

F3 F3

F4 F4

F5 F5

F6 F6

F7 F7

F8 F8

F9 F9

F10 F10

F11 F11

F12 F12

F13 F13

F14 F14

F15 F15

F16 F16

Tandem Keyboard Equivalents 97

98

Tandem NumPad Keys

Keyboard Equivalent

0 Numpad 0
1 Numpad 1
2 Numpad 2
3 Numpad 3
4 Numpad 4
5 Numpad 5
6 Numpad 6
7 Numpad 7
8 Numpad 8
9 Numpad 9
Minus Numpad -
Comma Numpad ,
Period Numpad .
Enter Numpad Enter

Tandem Control Keys

Keyboard Equivalent

BS CTRL+H
CR CTRL+M
ESC CTRL+
HT CTRL+
LF CTRL+J

Tandem Connect User’s Guide

Tandem Other Keys

MENU No Keyboard Equivalent
BREAK No Keyboard Equivalent
Help No Keyboard Equivalent
Insert Insert

KeyEnd End

Key Home Home

NextScn Page Down

PrevScn Page Up

Remove No Keyboard Equivalent
Select No Keyboard Equivalent
Set Tab No Keyboard Equivalent
Clear Tab No Keyboard Equivalent
Insert Char No Keyboard Equivalent
Delete Char No Keyboard Equivalent
Insert Line No Keyboard Equivalent
Delete Line No Keyboard Equivalent
Roll Up No Keyboard Equivalent
Roll Down No Keyboard Equivalent
EOP No Keyboard Equivalent
EOL No Keyboard Equivalent
Soft Reset No Keyboard Equivalent
Hard Reset No Keyboard Equivalent

Number Pad Tab

No Keyboard Equivalent

Tandem Keyboard Equivalents

99

100 Tandem Connect User’s Guide

Glossary

ANSI American National Standards I nstitute.

Check Screen An action that action signals the component that execution must not proceed until the
screenisin aparticular state, subject to a user-specified timeout value.

Dumb Terminal A computer terminal that has no onboard CPU, memory, or storage devices, beyond
the minimum necessary to communicate with amore powerful host machine.

ECMAScript Any JavaScript-like language that conforms to European Computer Manufacturers
Association standard No. 262.

Tandem 6530 The Tandem 6530 is a desktop display termina device manufactured by Tandem
Computer Corporation (now part of the Hewlett-Packard Company).

Native Environment Pane A pane in the Tandem Component Editor that provides an emulation of
an actual Tandem terminal session.

Screen Object A special DOM in the Tandem component editor window representing the current
Tandem screen display as an XML document.

Send Buffer Anaction that appearsinthe Action Model whenever athereis map to the screen or keys
entered on the screen.

TCP/IP Abbreviation for Transmission Control Protocol/Internet Protocol

Type-ahead A technique for preloading a keyboard buffer with more than one screen’s worth of
commands.

Terminal Emulation A technique for imitating the runtime behavior of a“dumb terminal” on a
desktop (or other) machine.

Glossary 101

102 Tandem Connect User’s Guide

Reserved Words

Thefollowing terms are reserved wordsin exteNd Composer Tandem Connect and should not be used as
labels for any user-created variables, methods, or objects.

+ USERID

+ PASSWORD
+ PROJCT

+ Screen

+ QetAttribute
+ getCursorColumn
+ getColumnCount

+ getPrompt

+ getRowCount

o QetText

* QgetTextAt

+ getTextFromRectangle
o SefText

Reserved Words 103

104 Tandem Connect User’s Guide

Java Code Pages

About Encodings

exteNd Composer’s ability to perform character encoding conversionsistied directly to the JavaVM in
use. The supported encodings vary between different implementations of the Java 2 platform. Sun's Java
2 Software Development Kit, Standard Edition, v. 1.2.2 for Windows or Solaris and the Java 2 Runtime
Environment, Standard Edition, v. 1.2.2 for Solaris support. The encodings can be found at the Sun web

page:
http://java.sun.com/products/jdk/1.2/docs/guide/inter nat/encoding.doc.html

Sun's Java 2 Runtime Environment, Standard Edition, v. 1.2.2 for Windows comes in two different
versions. US-only and international. Theinternational version (which includes the lib\i18n.jar file)
supports al encodingsin both tables.

Java Code Pages 105

106 Tandem Connect User’s Guide

Index

Symbols

$PASSWORD 35

A

About Adding Alias Actions 53
Accept Key Strokes 30
actions, editing 47
Adding A New Action 51
Animation 49, 52

tools 56
animation 56
applications 11
array, unduplicating an 63
attributes, screen 95

B

binary search technique 59
blank record 66
breakpoint 59

breakpoints 50, 52, 56
buttons, toolbar 25

C

caching screens 66
calculated Timeout 33
Changing an Existing Action 48
Check Screen Action 31
purpose of 32
Clancy, Tom 41
Code Pages
encodings 105
support 16
Common Keys 23
comparing screens 66
Connection Discard Behavior 93
Connection Pool Architecture 72

Connection Pool Console, refreshing 93
Connection Pool Management and Deployed Services 93
Connection Pooling with a Single Sign-On 82

Connection Pools
implementing 75

Connection Resource 13
constant-driven 16
expression-based 16
how to create 17

ConnectionPools
status 93

Connections
resetting discarded 93

context menus 26

Control Keys 24

control keys (also see Appendix B) 31

coordinates, onscreen 42

Create Check Screen button 26
createX Path() method 67
Creating a Connection 83
Creating a Connection Pool 82
Creating aLogon Connection 84
Cursor Position 32
Cutting/Copying actions 48

D

debugging 58

Decision Action 44
default Min Wait time 33
default Timeout value 33
Deleting an Action 54
DOM 22

drag and drop 37, 48
dumb terminal 22

E

ECMA Script
DG-specific methods 34
unduplicating data with 62
editing an Action Model 47
errors and error messages 58
exceptions 33, 58
Expression Builder
picklistsin 35
Expression Editor 17

107

F M

F13 through F16 22 Managing Pools 91

final screen, detecting 62 Maximizing Performance of DG Logon Connection 87
Floating Keypad 22 Maximizing Performance of DG Terminal Components 90
Function Action 64 Maximizing Performance with KEEP ALIVE Actions 79

Maximizing Performance with the Logon Component 77

G

getAttribute() 35
getColumnCount() 36
getCursorColumn() 35
getCursorRow() 36
getPrompt() 36

getRowCount() 36

getText() 36

getTextAt() 36, 38
getTextFromRectangle() 37, 39

H

hard-coded values 65
Host or IP Address 15
hover-help box, escape codes and 31

|

Inactivity Lifetime 79, 85
index variables 65

indexOf() 44, 45

infinite loop 66

Initialize Pool 93

Insert Char and Delete Char 22
ISBN 40, 43, 45

iterating through screens 62

J
join() method 67

K

KeepAlive Actions 75
keepalive actions 76
key sequence value 31

L

latency 33

LOGOFF Actions 79

logoff actions 76

logon actions 76

Logon Component 75

Logon Connection 72

Logon Connections 14

looping over multiple screens 63
ITrim() 45

108

millisecond timing 69
Min Wait 32
default of 50ms 33
multiple screens, grabbing datafrom 61

N

Native Environment Pane 21

newlines, in rectangular screen selections 39
non-printing characters 37

non-printing keys 24

NumPad Keys 22, 23

O

Other Keys

24
Output DOM notes, creating 64
Override the UID/PWD 82
Override UID/PWD 86

P

padded screens 62
PASSWORD global 35
performance tuning 69
picklists 35
Pool Info dialog 78
pool size 85
pools
checking status 93
implementing 75
initializing 93
refilling 93
resetting 93
Port 15
profiling 69
PROJECT Variables 16
Prompt 33
prompt string 57
property names 65
pseudocode 64

R

recording 26, 39

rectangular onscreen selections 38
redundant data, dealing with 62
Refill Pool 93

Refresh Consolel 93

RegEXxp constructor 44
RegExp() 44

regular expressions 44
rejection of duplicates 62
Repeat While action 65

Reset Discarded 93

Reset Pool 93

S
scraping data 61
scraping data from multiple screens 64
screen caching 66
Screen Object 24
API for all methods 35
screen scraping 11
Screen Selections 37
Screen Synchronization 93
screens, comparing 66
selecting onscreen data 37
Send Buffer
PASSWORD 27
USERID 27
Send Buffer Action 30
creating 30
exiting 34
hover helpindialog 31
Record Mode and 34
setText() 37
Shift key down, dragging with 38
shift-drag selection technique 38
split() 45
Static versus Dynamically Created Documents/Elements 87
Step to Breakpoint 50, 52
strategies for loop termination 61

T

Temp XML Document 20

testing 54

Thomas Aquinas 64

Timeout 32, 33

Tipsfor building DG Components 56

To create an DG Component
90

To create an DG Logon Connection
84

Toggle Breakpoint 49, 52

toolbar buttons 25

troubleshooting 58

type-ahead 41, 58

U

unduplicating records 62
Unicode 16
USERID global 35

W

While (Repeat-While action) 43

X

XML Templates 13
XPath 30

XSL 11

109

110

	About This Book
	1 Welcome to exteNd Composer and Tandem Connect
	Before You Begin
	About exteNd Composer Connects
	What Is Tandem Terminal?
	About exteNd Composer's Tandem Component
	What Applications Can You Build Using the Tandem User Interface Component Editor?

	2 Getting Started with the Tandem Component Editor
	Steps Commonly Used to Create a Tandem Component
	Creating XML Templates for Your Component
	Creating a Tandem Connection Resource
	About Connection Resources
	Code Page Support

	About Constant and Expression Driven Connections

	3 Creating a Tandem Component
	Before Creating a Tandem Component
	About the Tandem Component Editor Window
	About the Tandem Native Environment Pane
	About Tandem Keyboard Support
	About the Screen Object
	What it is
	How it works

	Tandem-Specific Buttons
	Tandem-Specific Menu Bar Items
	Tandem-Specific Context-Menu Items
	Native Environment Pane Context Menu
	Action Pane Context Menu

	4 Performing Tandem Actions
	About Actions
	About Tandem-Specific Actions
	The Send Buffer Action
	How Keys Are Displayed in the Action Model
	The Check Screen Action
	Using Actions in Record Mode

	Tandem-Specific Expression Builder Extensions
	Login
	Screen Methods
	Keys

	Screen Selections in the Tandem Connect
	Selecting Continuous Data
	Selecting Rectangular Regions

	Recording a Tandem Session
	Looping Over Multiple Rows in Search of Data
	Editing a Previously Recorded Action Model
	Changing an Existing Action
	Adding A New Action
	About Adding Alias Actions
	Deleting an Action

	Testing your Tandem Component
	Using the Animation Tools
	Tips for Building Reliable Tandem Components
	Using Other Actions in the Tandem Component Editor
	Handling Errors and Messages
	Finding a “Bad” Action

	5 Advanced Tandem Actions
	Data Sets that Span Screens
	Dealing with Redundant Data
	An Example of Looping over Multiple Screens
	Performance Considerations

	6 Logon Components, Connections, and Connection Pools
	Tandem Session Performance
	When Will I Need Logon Components?

	Connection Pool Architecture
	The Logon Connection’s Role in Pooling
	How Many Pools Do I Need?
	Pieces Required for Pooling

	How Do I Implement Pooling?
	The Tandem Logon Component
	Logon, Keep Alive, and Logoff Actions
	Logon Actions

	Keep Alive Actions
	Logoff Actions
	Logon Component Life Cycle

	The Tandem Connection
	Connection Pooling with a Single Sign-On

	Creating a Connection Pool
	Overview

	Creating a Basic Connection
	Creating a Logon Component
	Creating a Logon Connection using a Pool Connection
	Creating a Logon Connection using a Session Connection
	Creating a Tandem Component That Uses Pooled Connections
	Managing Pools
	Connection Pool Management and Deployed Services
	Connection Discard Behavior
	Screen Synchronization

	A Tandem Display Attributes
	B Tandem Keyboard Equivalents
	C Glossary
	D Reserved Words
	E Java Code Pages
	About Encodings

	Index

