Novell
exteNd

Director

5.2 ®
‘ CONTENT MANAGEMENT GUIDE

Novell

Legal Notices

Copyright © 2004 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied, stored on aretrieval system, or
transmitted without the express written consent of the publisher. This manual, and any portion thereof, may not be copied without the express written
permission of Novell, Inc.

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and specifically disclaims any express
or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to revise this publication and to
make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims any express or implied warranties
of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to makes changes to any and all parts of Novell
software, at any time, without any obligation to notify any person or entity of such changes.

This product may require export authorization from the U.S. Department of Commerce prior to exporting from the U.S. or Canada.

Copyright ©1997, 1998, 1999, 2000, 2001, 2002, 2003 SilverStream Software, LLC. All rights reserved.
SilverStream software products are copyrighted and all rights are reserved by SilverStream Software, LLC

Titleto the Software and its documentation, and patents, copyrights and all other property rights applicablethereto, shall at all timesremain solely and
exclusively with SilverStream and its licensors, and you shall not take any action inconsistent with such title. The Softwareis protected by copyright
laws and international treaty provisions. Y ou shall not remove any copyright notices or other proprietary notices from the Software or its
documentation, and you must reproduce such notices on all copies or extracts of the Software or its documentation. Y ou do not acquire any rights of
ownership in the Software.

Patent pending.

Novell, Inc.

404 Wyman Street, Suite 500
Waltham, MA 02451

U.S.A.

www.novell.com

exteNd DirectorContent Management Guide
June 2004

Online Documentation: To access the online documemntation for this and other Novell products, and to get updates, see
www.novell.com/documentation.

New http://www.novell.com/documentation/

Novell Trademarks

ConsoleOne is aregistered trademark of Novell, Inc.
eDirectory isatrademark of Novell, Inc.
GroupWiseis aregistered trademark of Novell, Inc.
exteNd is atrademark of Novell, Inc.

exteNd Composer is atrademark of Novell, Inc.
exteNd Director is atrademark of Novell, Inc.
iChain is aregistered trademark of Novell, Inc.
jBroker isatrademark of Novell, Inc.

NetWare is aregistered trademark of Novell, Inc.
Novell isaregistered trademark of Novell, Inc.
Novell eGuide is atrademark of Novell, Inc.

SilverStream Trademarks
SilverStream is aregistered trademark of SilverStream Software, LLC.

Third-Party Trademarks

All third-party trademarks are the property of their respective owners.

Third-Party Software Legal Notices

The Apache Software License, Version 1.1

Copyright (c) 2000 The Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, thislist of conditions and the following disclaimer. 2. Redistributionsin binary
form must reproduce the above copyright notice, thislist of conditionsand the following disclaimer in the documentation and/or other materials
provided with the distribution. 3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment:
"This product includes software developed by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment may
appear in the softwareitself, if and wherever such third-party acknowledgments normally appear. 4. The names"Apache" and " Apache Software
Foundation" must not be used to endorse or promote products derived from this software without prior written permission. For written permission,
please contact apache@apache.org. 5. Products derived from this software may not be called "Apache", nor may "Apache" appear in their name,
without prior written permission of the Apache Software Foundation.

THIS SOFTWARE ISPROVIDED “ASIS"' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITSCONTRIBUTORSBE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSSOF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

JDOM.JAR

Copyright (C) 2000-2002 Brett McLaughlin & Jason Hunter. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, thislist of conditions, and the following disclaimer. 2. Redistributionsin
binary form must reproduce the above copyright notice, thislist of conditions, and the disclaimer that follows these conditionsin the documentation
and/or other materials provided with the distribution. 3. The name"JDOM" must not be used to endorse or promote products derived from this
software without prior written permission. For written permission, please contact license@jdom.org. 4. Products derived from this software may not
be called "JDOM", nor may "JDOM" appear in their name, without prior written permission from the JDOM Project Management (pm@jdom.org).

In addition, we request (but do not require) that you include in the end-user documentation provided with the redistribution and/or in the software
itself an acknowledgement equivalent to the following: " This product includes software devel oped by the IDOM Project (http://www.jdom.org/)."
Alternatively, the acknowledgment may be graphical using the logos available at http://www.jdom.org/images/logos.

THIS SOFTWARE ISPROVIDED “ASIS"' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE JDOM AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Sun
Sun Microsystems, Inc. Sun, Sun Microsystems, the Sun Logo Sun, the Sun logo, Sun Microsystems, JavaBeans, Enterprise JavaBeans, JavaServer

Pages, Java Naming and Directory Interface, JDK, JDBC, Java, HotJava, HotJavaViews, Visua Java, Solaris, NEO, Joe, Netra, NFS, ONC, ONC+,
OpenWindows, PC-NFS, SNM, SunNet Manager, Solaris sunburst design, Solstice, SunCore, SolarNet, SunWeb, Sun Workstation, The Network Is
The Computer, Tool Talk, Ultra, Ultracomputing, Ultraserver, Where The Network Is Going, SunWorkShop, XView, Java WorkShop, the Java
Coffee Cup logo, Visual Java, and NetBeans are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other
countries.

Indiana University Extreme! Lab Software License

Version1.1.1

Copyright (c) 2002 Extreme! Lab, Indiana University. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, thislist of conditionsand the following disclaimer. 2. Redistributionsin binary
form must reproduce the above copyright notice, thislist of conditionsand the following disclaimer in the documentation and/or other materials
provided with the distribution. 3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment:
"This product includes software devel oped by the Indiana University Extreme! Lab (http://www.extreme.indiana.edu/)." Alternately, this
acknowledgment may appear in the softwareitself, if and wherever such third-party acknowledgments normally appear. 4. The names "Indiana
University" and "IndianaUniversity Extreme! Lab" must not be used to endorse or promote products derived from this software without prior written
permission. For written permission, please contact http://www.extreme.indiana.edu/. 5. Products derived from this software may not use "Indiana
University" name nor may "Indiana University" appear in their name, without prior written permission of the Indiana University.

THIS SOFTWARE ISPROVIDED "ASIS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE AUTHORS, COPYRIGHT HOLDERS OR ITSCONTRIBUTORSBE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Phaos

This Softwareisderived in part from the SSLavaTM Toolkit, which is Copyright ©1996-1998 by Phaos Technology Corporation. All Rights
Reserved. Customer is prohibited from accessing the functionality of the Phaos software.

W3C

W3C® SOFTWARE NOTICE AND LICENSE

Thiswork (and included software, documentation such as READMEs, or other related items) is being provided by the copyright holders under the
following license. By obtaining, using and/or copying this work, you (the licensee) agree that you have read, understood, and will comply with the
following terms and conditions.

Permission to copy, modify, and distribute this software and its documentation, with or without modification, for any purpose and without fee or
royalty is hereby granted, provided that you include the following on ALL copies of the software and documentation or portions thereof, including
modifications: 1.Thefull text of thisNOTICE in alocation viewable to users of the redistributed or derivative work. 2.Any pre-existing intellectual
property disclaimers, notices, or terms and conditions. If none exist, the W3C Software Short Notice should be included (hypertext is preferred, text
is permitted) within the body of any redistributed or derivative code. 3. Notice of any changes or modificationsto thefiles, including the date changes
were made. (We recommend you provide URIs to the location from which the code is derived.)

THIS SOFTWARE AND DOCUMENTATION ISPROVIDED "ASI1S," AND COPYRIGHT HOLDERS MAKE NO REPRESENTATIONS OR
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS
FORANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE OR DOCUMENTATION WILL NOT INFRINGE ANY
THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

COPYRIGHT HOLDERSWILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGESARISING
OUT OF ANY USE OF THE SOFTWARE OR DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to the software without specific, written prior
permission. Title to copyright in this software and any associated documentation will at al times remain with copyright holders.

Contents

ADOUL ThisS BOOK.o 11
PART | CON CEP T S .« o e e e 13
1 About the Content Management SUDSYStEM ittt e e 15
AbOoUt CONtENt MANAGEMENL. o ot e et e e e e e e e e e e e 15
ADOUL CONtENE 15

ADOUL DOCUMEBNES . . . et e e e e e e e 16

CONtENt AN PAGES .« . . vt ettt e e e e e 16
SUDSYSIEM INfraStrUCIUNE o o e e e 16
Physical INfrastrUCtUre. e 17

Logical INfrastrUCtUre. e 17
Defining content structure and layout e 18
Classifying CONENTo e e 19
Content life CYCleo 20
Checking OUt dOCUMENTS. oot et e e e e e e 20
Publishing @ doCUMENt L 20
Subsystem support fUNCHONS. 20
Integration with other SUDSYStEMS e 21

2 Developing Content Management INfrastrUCtUre ittt et e et et 23
ADOUL the CM AP . . e e 23
Getting a content manager ODJECt 23
Changing repository data e 24

About the CM subsystem INfrastruCtUre. e e e e 24
Managing flelds e 25
Adding afield e 26

Adding afield to a portlet e 26

Listing fields using different filters e 27
Managing doCUMENE By PES.ottt et et e e e e e e e e e 27
Adding a document type with associated fields e 28
Managing layout StYIES e 29
USBrl AgBNES . . ittt e e 31

Adding alayout Style e e e 31

Adding a layout document and a layout document descriptor 32
Changing a layout Style e 33
Managing folders and Categories.ot e 33
AddiNg @ CatBgONY . .. oot e e 34
Navigating the CM hierarChy e e e e 34

3 Managing DOCUMENES oottt ettt et e e e et e e e e e 37
ADOUL dOCUMEBNES. . . . oo e e e e e e e e e e e e e e e 37
Accessing the CM AP . . oo 37

AddING DOCUMBNES e e e e e e e 38
Adding @ OCUMENT e e e e 38

Adding multiple doCUMENES e e 39

Specifying field values for a docUumMeENt L 40

Getting fields for the document type e 41
Getting a field object by name e 41
Setting afield Value e e 41
Getting all fields e e 43
Getting field values for a single field 43
Specifying layout Sets for dOCUMENTS e 45
When to use a layout Set 45
Methods for managing layout SELSt 45
Creating links between doCUMENESo e e e e e e e e 46
Two types of document relationships. e 46
Hierarchical liNKing e 47
Adding a child doCUmMENt 47
Compound lINKING 48
Linking a child doCUmeNt e e 49
Updating a link with @a new doCUMENt VEISION e e e e e 49
Getting linked parent dOCUMENESt e e e 50
Getting linked child dOCUMENS 50
Modifying and publishing dOCUMENES e 51
Tracking doCUMENE SLALUSottt e e e e e e 52
Methods for source control and publishing. e 52
DiSplaying dOCUMENES. . . . oo e e e e e e e 53
HT ML CONMEENT . . e e e e e e 53
XML CONEENT . .o e e e e e e e e e e e e 54
ComPpPOoSIte dOCUMENESottt et e e e e e e et e e e e 54
SECUINNG CONTENT . . e e e e 57
ADOUL BCCESS CONMIOL.ot e e e e e e e e e e e e e 57
CM USEI GIOUPS o« v v et e et et e e e e e e e et e e e e 57
ACL-DASEA SECUNLY.ottt e e e e e e e e e e e 58
P eImMISSIONS . . . oo 58
Element types and associated permisSiONS e 58
CoNtENtAMIN GrOUP . . o oot e e e e e e e e 59
Methods for managing aCcCess CONtrol o e e 59
Accessing ACLS for existing €lements e e 59
Specifying ACLS for new elements. 60
INNENtING ACLS. . . 60
Accessing ACLS for ContentAdmMIn e 60
Restricting element access to adminiStrators.ttt 60
Examples of adding AC LS.ttt e 61
Example of handling a security eXCeption. i e e 62
MaNAgINg TasSKS . . .ot 63
AU BaSKS . . .o e 63
Installed taskso 63
CUSIOM tASKS . . . o oot 64
About how tasks are registered and configured e 64
taSKIYPES. XM . . L 64
Default_tasklist.Xml 65
SEIVICES. XM . L . e 65
Customizing aninstalled task e e 66
Creating and implementing a New task. e 67
Custom task sample Code. e e 68
NewDocumentNOtIfier e 69
PeriodicNewDocumentNoOtifier e 74
Working With task EVeNtS e 75
TaSK BV YOS . . o oot e e e 75
Registering for atask EVeNt e 76
Enabling or disabling a task eVent 76

exteNd Director Content Management Guide

6 Managing Content CaChingt e e 77
About caching iN CM . . . L e 77
Summary of CM caching information. e e 77

Caching behavior e e e 77
Caching of folders, categories, and document metadata i 78
About document content and VEISIONSt e 78
Controlling caching in the DAC e e 78

7 Importing and EXporting Content.t e 79

About importing and EXPOrtiNg. oottt e 79
Using the import/export facilitieso e e e 79
About the export facility e 79
EXPOIt PrOCESS . . . ottt e 80
About the iImport facility e 81
I PO PrOCESS . . . vttt et e e 81
Customizing IMPOrtS @nd EXPOIS ottt et e e e e e 82
Customizing the data export descriptor (DED)ttt e e e 82
Customizing the data import descriptor (DID)ttt e 82
Accessing the import and export APl e 83

8 Working with Content Management EVENTSttt e e e 85

ADOUL CIM BVENES . . o ottt et e e e e e e e e e e e e 85
CM BV BN Y DS . . o ottt ettt e 85
Registering for CM BVENTS 88
Registering for events on directory elements e 88
SPeCIfYiNg EVENT tYPESo 88
Using the event helper Class. e e e e 89
Event registration eXamplest e e 89
ENabling CM GVENTS. . . . ot e 90

PART Il WEB DAY . . e e e e 91

9 Using WebDAYV Clients with exteNd Director for Collaborative Authoring 93
What 1S WED D AV 2. . o 93

Information elements for distributed Web authoring 94
WebDAYV extensions t0 HT TP e 94
About exteNd Director's WEbBDAY SUPPOIttt e e e e e e e 94
HOW you get WEDDAY SUPPOIottt e e e e e e 95
Accessing the WEBDAY SEIVero e e e e 95
What you can do with exteNd Director and WebDAV e 96
How exteNd Director stores content from WebDAV clients. e 96
How exteNd Director secures content from WebDAV clients i 97
How exteNd Director manages versioning for WebDAV clients i 97
Supported WebDAY Methods e e 97
PUDBIC WEDDAY SEIVET . . ot e e e e e e e 98

10 Building Your Own WebDAY CHENto e e et e e e e 99
About the WebDAYV client APl e 929
Why build your own WebDAY Client? e e 100
Configuring YOUr ENVIFONMIENTttt e e e e e e e e e 100
Using the WeEbD AV Client APl e e e e e 100

WebDAYV requests and FESPONSES oottt et et e e e e e e 101
Working with resources, collections, and properties e 101
ClaSSES .« . . ottt 101
Helper Methods. e e 102
Utility Methods e e 102
Programming PracCliCesot 104
Programming practices using helper methods 104
Programming practices using utility methods 105

Issuing WebDAYV requests from a Java Client. e 108

Adding a category reference to a dOCUMENt e 108
Copying aresource or COlBCHIONt e 111
Creating a New COIlECHIONo e e e 112
Creating a new document from a custom template i 113
Deleting @ doCUMENT oo o e e 115
Getting a resource or COIBCLION e 115
Getting header information from a resource or collection. 116
Getting methods that can be called on aresource orcollection. 118
Getting properties defined on aresource or Collection. 119
LOCKINg @ dOCUMEBNL.o e e 121
Moving a resource or COllECHioN e 122
Removing a category reference from adocument e 123
Removing all category references from a document 126
Renaming a resource or COIlECHION.o u i e 128
Setting the value of a custom field ina document 129
Unlocking @ dOCUMENTE oo e e e e e e e e e e e e e 132
Updating a doCUMENE oo e e 133
11 Working With WEDDAY EVENES.ottt e e e e e e e e 135
ADOUE WEDDAY BVENTS . . . o ot e e e e e e 135
BVt DS . . oot e 135
Registering for WebDAY EVENTSot e e 136
Enabling WebDAY eVents. e 136
PART Il CMS ADMINISTRATION CONSOLE e e e e e e 137
12 About the CMS Administration CoNSOle. it e e e e e 139
What CM tasks you can do with the CMS Administration Console. e 139
How to access the CMS Administration CONSOIE e e e e 141
The main CMS Administration CoNS0le PagE.ottt e e e e e 141
INteractive CONMIOIS.o 142
13 Setting Up the Required INfrastruCture. e e et e 145
FIOW Of Operations. oo e 145
Creating folders. 145
Creating dOCUM BNt (Y PES . . . ittt ettt e e e e e e e e e e 146
Creating fields and adding them to @ dOCUMENE tyPe oottt e e 149
ADOUL fllaS . .o 149
Creating and manipulating fields e 149
Writing JavaScript for document types and fields. 152
14 Setting Up the Optional INfrastrUCtUre e e e e e e 157
FlOW Of OPEratioNS. ot e 157
Creating display Styleso e 157
AboUt display StYleS oo 157
Specifying a style sheet for a documeNt type o 161
Creating taXONOMIESottt s e et e e e e e e e 162
CreatiNg CalBgOMIES . . . v v oot ettt e e e 163
A5 Creating CoNteNt.ttt e 165
ADOUL CONEENT . . L o 165
FIoW Of Operations.o e 165
Creating dOCUMEBNESttt e e e e e et e e e e e 166
Creating a doCUMBNE e e e 167
Specifying a folder for a new doCUMENt e 170
Using Auto Create to create a doCUMENTttt e et e e e 170
Using the CMS Administration Console’'s HTML Editor e 170
Creating relationships between doCUMENTS e e 176

8 exteNd Director Content Management Guide

16

17

18

19

20

21

Maintaining CoONteNt 179
FIOW Of Operations o e 179
PreVIEWING CONEENT o e 180
Editing CONteNt. . .. e e 181
MOdiIfYINg PrOPEIIES . . o ot e 182
Assigning a document’s folder, categories, and taXxonNOMIES.ttt e 183
Modifying display Styles o 185
Editing dOCUMENt tYPES oo e 186
Editing document fields e 187
Setting document exXpiration atesttt e e 187
Deleting COMIENt.t 188
Deleting folderso 188
Deleting taxonomies and Categoriesttt it e e e 188
Deleting dOCUMEBNTSo e e 188
Deleting display Styles. e 189
Deleting doCUMENt fYPES. . . . e e e 189
Deleting and removing document fields e 190
Administering CONtENt e 193
About content adminiStration 193
FlOW Of OPEratioNS oo e e 193
Checking documents in and OUL e e e 194
What happens during Checkout. e 194
What happens during checkin. e 196
Checkin and checkout procedures e 196
Administering VErsion CONtIOL. e e e 198
SearChing CoNtENt. . ..o e 203
Setting up the CMS Administration Console search facility. e 203
Using the search facility in the CMS Administration Console e 203
SeArCh OPLIONS oo 205
Managing CoNteNt SECUIITYttt e e e e 209
ADOUL CONEENT SECUNTY ottt e e e e e e e e 209
FlOW Of OPBratioNS oo e 210
Permissions for CONtENt ACCESSttt e e e 211
User permissions required for CM Operationst e e e 211
CasCading SECUNLYttt et et e e e e e e e e 212
Setting security 0N CM ElemMENtS o e 213
Importing and EXporting Content.o e 215
About the import and export facilities. e 215
Summary of CMS Administration Console import and export behavior. 216
EXPOIrtiNg CONENT. . . . oo e e 216
Exporting from the toolbar. 217
Exporting from a Property INSPeCIOro e e 218
CUSIOMIZING EXPOIES .« .« . .ttt ettt e e e e e e e e e e e e e e 219
IMPOItING CONtENTt e e e e 219
Configuring the IMPOrt PrOCESSt e e e e e 219
Importing from the toolbar. e 219
Importing from a Property INSpeCtOro 220
Structure of the data import or eXport arChive e e 221
Best practices and PrereqUISItESttt 222
Planning for large-scale import/export Operations.ttt 222
Security CONSIAEratiONSo e e e 222
Administering Automated TasKsSt e 223
The task diSplayo e e e 223
Starting and StopPINg tasKSo 224

PART IV APPLICATIONS . . . e e e 225

22 Content QUery ApPliCatioN. . ..ot 227
ADOUL CONMEENt QUEBTY . . o ittt e e e e e e e e e e e 227
Using the Content QUEIY aCtioNttt e e e e e 227

PARTV REFERENCE e e e e e e e 231

23 Content Management Tag Library 233
Alphabetical list Of tagS oo e e 233

ChECKIN. 233
ChECKOUL . . . e 234
fINADOCUMENES e e e e 235
gEtChIldDOCUMENES e e 237
[0 =2 (@ 0] 01 =7 0| 238
[0 L= DT £=T o1 1o Y/ 239
eI EC Oy LISt . . o oo e 240
OEEDOC TP . ottt e 242
OEIDOCUMENT . . o oo e et e e e 242
getFIEldINfO . . . e e e e 243
QEtFIElOS .« . e e e 244
EtLINKEAD OCUMENESt e e e 245
eIV ISIONHISIONY . . . o e 246
PUDLISN .« e 247
UNCNECKOUL oo e e e e e e e e e 248
UPAAtEDOCUMIENT . . . o e e e 248

10 exteNd Director Content Management Guide

About This Book

Purpose

This book shows how to use the Content Management (CM) subsystem of Novell® exteNd Director™.

Audience

This book isfor anyone who creates, manages, and accesses content in the CM subsystem, whether via
the CM API or the CMS Administration Console.

Prerequisites

This book assumes you are familiar with the Java programming language, the Internet, and Web
applications.

L earning materials on these topics are readily available from avariety of public and commercia sources.

11

12 exteNd Director Content Management Guide

Concepts

Describes the fundamentals of the Content Management (CM) subsystem and API
programming

e Chapter 1, “About the Content Management Subsystem”

« Chapter 2, “Developing Content Management Infrastructure”
e Chapter 3, “Managing Documents”

e Chapter 4, “Securing Content”

e Chapter 5, “Managing Tasks”

e Chapter 6, “Managing Content Caching”

e Chapter 7, “Importing and Exporting Content”

e Chapter 8, “Working with Content Management Events”

13

14 exteNd Director Content Management Guide

About the Content Management Subsystem

This chapter provides an overview of the Content Management (CM) subsystem and includes the
following topics:

+ About content management

+ Subsystem infrastructure

+ Content life cycle

+ Subsystem support functions

+ Integration with other subsystems

About content management

About content

The CM subsystem provides arepository for documents, enabling you to create and version documents,
manage document security, search the repository, and so on. The CM subsystem provides Web CM
capabilities such as style and layout management and document publishing and expiration.

The CM API and CM S Administration console provide interfaces to the CM subsystem that assist youin
managing Web content. Other front-end applications can use the CM subsystem as a general document
management system. For example, you could use a WebDAYV application and the CM subsystem to
manage CAD filesor legal documents.

What is meant by content? Content is defined as information that is viewed or downloaded by users of
your exteNd Director application. The content managed by the CM subsystem is retrieved dynamically
for online viewing or downloading when end users access your exteNd Director application.

The CM subsystem can store any type of content that can be digitized. It might store:

+ Text documents, with XML or HTML tagging or in any word processing format
+ Imagefiles, such as GIF, JPG, QuickTime, and any other format

+ Sound files

+ Executablefiles

+ Any other type of binary data

You can also store documents that support your content, such as:

o XSL style sheets
+ XML DTDs
+ Other content resources

About the Content Management Subsystem 15

Itisup toyou to store content in formats that are appropriate to your online application. A document
doesn’t have to be acompleteitem that would be displayed asis. A document can be a piece of datathat
you want to combine with other documents before displaying it, or some code resource that allows you
to get data. For example, a document’s content could be an URL, a set of URLS, a SQL statement, a
paragraph, or animage.

About documents

The center of the CM subsystem is the document. Each document is described by a set of metadata that
isadefinition or description of data—in other words, data about data. In the CM subsystem, adocument
consists of all information required to maintain content (including the document’s metadata, content, and
versions) and all specifications for categorization, display characteristics, linked documents, access
control, and so on.

A checkout/checkin system protects documents while you are changing them, and versioning allows you
to maintain a history of content changes.

Publishing a document lets you choose a particular version of the document’s content to make public.
Once aversion is published, you can define afixed lifetime after which the version expires and can be
archived and deleted.

L) For more information, see Chapter 3, “Managing Documents”.

Content and pages

Subsystem

It isimportant to distinguish the type of content managed by the CM subsystem from the pages managed
by the Portal subsystem. Pages constitute the structure of the application, defining the graphical user
interface (GUI) that helps users navigate the site. Pages contain portlets—the building blocks of an
exteNd Director portal application. It iswithin portlets that application devel opers write code to search
for and retrieve content managed by the CM subsystem in response to rules and real-time user
interactions. Typically, pages change infrequently—while content is more dynamic.

The CM subsystem enables you to manage content structure, display style, versioning, categorization,
and security to facilitate the retrieval—and preserve the integrity—of information presented to end users
of your application. The Portal subsystem manages the actual application, including the interface and
architecture in which this content is presented.

L For more information about pages and the Portal subsystem, see the section on portal conceptsin
the Portal Guide.

infrastructure

The CM subsystem infrastructure establishes the criteriafor organizing, displaying, managing, and
securing your content. It is designed to support the basic unit of content—the document.

There aretwo levels of infrastructure: physical and logical. You must set up the physical infrastructure
before you can create documents. Optionally, you can also define alogical infrastructure anytime.

16 exteNd Director Content Management Guide

pgPartPortalConcepts.html

Physical infrastructure

The physical infrastructure organizes the storage of documentsin physical memory. This infrastructure
consists of these components:

Component Description

@ Root folder
Ed Folder
El Document

Thereisahierarchical relationship between folders and documents:

an

Caad Cad
g 5

Thetop-level container isthe root folder, which can contain one or more folders. A root folder is
essentially just a specialized type of folder, one with no parent. In turn, folders can contain one or more
documents or other folders. Each document resides in one (and only one) folder.

Logical infrastructure

Thelogical infrastructure organizes documentsinto logical groupingsthat can be used to provideauser’s
view of content. There are several elements:

Element Description Required or optional?
Field Extension metadata content that can be shared by multiple Optional
documents.

Documents can have one field, multiple fields—or none at
all.

Document The basic classification mechanism for documents. Required
type Document types act as templates and provide groupings of
fields.

Every document must be associated with a document
type.

The CM subsystem attaches a default document type to all
documents, but you can override this default.

About the Content Management Subsystem 17

Element Description Required or optional?

Display A classification for the look and feel of a document. Thisis Optional
style sometimes called a layout style.

Every document type can be associated with a display
style for which you can define application-specific XML
specifications for rendering documents uniquely for
particular user agents.

The CM subsystem attaches a default display style to all
document types, but you can override this default.

Taxonomy A classification system often used in Web portal design to
describe categories and subcategories of content found on
a Web site.

Documents do not need to be classified under a taxonomy.

Category A descriptive name used to group documents logically.

Documents do not need to be categorized.

Ll Document types, fields, and display styles define the structure and layout of documents, as
described in “ Defining content structure and layout” on page 18. Taxonomies and categories classify
documents for search and retrieval, as described in “ Classifying content” on page 19.

Defining content structure and layout

Document types

Before you create documents, the structure of the content must be defined. Before you publish
documents, thelook and feel of the content must be defined to determine how the information will appear
to users of the Web site. Typically, acontent administrator oversees these tasks by developing thefields,
document types, display styles, folders, and categories described under “Logical infrastructure” above.

Content devel opers associate document types and display styles with the documents they create by
following this pattern:

1 Create adocument type.

2 Create an instance of the document type and then create an X SL style sheet based on the content of
that document.

3 Upload this XSL style sheet into adisplay style defined for the document type.

All documents you create based on the document type will contain the content structure and layout
defined in the document type’s display style.

A content administrator can create any number of document types, which consist of fields of information
that dictate the structure of documents.

The CM subsystem provides default document types that can be accessed and modified by content
administrators. Inthe CM AP, the default document typeis called Default; inthe CMS Administration
Consolg, itiscalled PmcSystemDefault Type. These document types can be used to enforce acorporate
standard for content or to create content in the absence of any custom document types.

18 exteNd Director Content Management Guide

Display styles

The CM subsystem comes with a default display style that is applied to all document types unlessyou
override it with custom display styles.

Content administrators can define custom display stylesthat use one or more X SL style sheets developed
inexternal editorsand then uploaded to the CM S Administration Console. Each X SL style sheet specifies
how to render content for a particular user agent, such as Microsoft Internet Explorer and Netscape
Navigator.

When you have specified your display stylesappropriately, the CM subsystem automatically matchesthe
desired style to the user agent that is activein real time.

Classifying content

You can create content without classifying it; but if your exteNd Director application allows usersto
select categories of information, a content administrator may want to create categories for grouping
documentsin alogical fashion. That way portlets can more easily access the documents specified by
users as they interact with the Web site.

For example, suppose an exteNd Director application developer creates aportlet that lists URL s that link
to specific documents. If documents are classified by category, the portlet can link to all documents of a
particular category by looking for a parameter called category passed on the URL.

Thereisahierarchical relationship between categories and documents:

Thetop-level container istheroot category, which can contain one or more categories. Inturn, acategory
can contain one or more documents or other categories. A single document can be associated with any
number of categories—or with no categoriesat all.

About the Content Management Subsystem 19

Content life cycle

The CM subsystem maintains a history of all document changes. The version history for adocument
might look like this:

Version MIME

ID type Content data Size Date Modifier Comment

3 text/html [contentv3] 47K 6/16/00 bbrown New facts

2 text/html [contentv2] 45K 6/11/00 bbrown Fleshed-out
content

1 text/html [contentvl] 24K 6/10/00 ssmith Created

Checking out documents

When you check out adocument, it becomes locked; no one else can check it out until you check it in or
cancel the checkout. (Exception: the CM subsystem allows administratorsto remove | ocks on documents
if that becomes necessary.)

When you check in a document whose content has changed, a new version of that content is created. If
you change the metadata but not the content, no new version is created when you check in the document.
The metadatais updated but not versioned.

Publishing a document

Subsystem

When adocument has been approved, its content can be published asthe officially released version of the
document. When an application requests a document, the published version is the one provided.

The published version is not necessarily the latest one, however. M odifications can continue as content
developers check out the most recent version of the document. Publishing a document creates a stable
version of the document for the public.

support functions

The CM subsystem includes built-in support for these functions:

Function Description For more information see

Content caching CM function that allows you to configure caching for ~ Chapter 6, “Managing

different elements Content Caching”
Task CM function for configuring background execution Chapter 5, “Managing
management of specific operations such as publishing documents Tasks”
Content import Facilities for importing and exporting content inand Chapter 7, “Importing and
and export out of the CM subsystem Exporting Content”

20 exteNd Director Content Management Guide

Integration with other subsystems
You can integrate CM with any other exteNd Director subsystem, including:

Related

subsystem Description For more information see

Search Supports conceptual and keyword searching of Chapter on conceptual searching
document content and metadata. in the Content Search Guide

Security Used to secure access to CM subsystem elements. Chapter 4, “Securing Content”

Workflow Used to access CM documents in workflow Chapter on the Content Life
applications. Cycle application in the Workflow

Guide

About the Content Management Subsystem 21

srcConfigure.html
wfAppContent.html
wfAppContent.html

22 exteNd Director Content Management Guide

Developing Content Management
Infrastructure

This chapter describes how to set up and manage the infrastructure for the Content Management (CM)
subsystem using the CM API. It has these sections:

+ About theCM API

+ About the CM subsystem infrastructure

+ Managing fields

+ Managing document types

+ Managing layout styles

+ Managing folders and categories

+ Navigating the CM hierarchy

NOTE: This chapter describes an exteNd Director API that allows you to build your own CM application.

exteNd Director also provides the CMS Administration Console, which you can use to create, maintain,
administer, and secure all content for your exteNd Director application.

L For moreinformation, see Chapter 13, “ Setting Up the Required Infrastructure” and Chapter 14,
“Setting Up the Optional Infrastructure”.

About the CM API

You can usethe CM API to build asystem tailored to your business process. By writing portlets, you can
build a complete interface that includes such functionality as:

+ Adding and managing documents

+ Checking out documents for editing

+ Versioning documents

+ Approving document versions for publication

+ Building layout stylesfor XML content

« Providing comprehensive searching functionality of content and metadata
+ Providing security for content objects

The CM API provides complete programmatic access to the document repository.

Getting a content manager object

Methods of the Ebi ContentM gmtDelegate interface provide access to the most of the objectsin the CM
subsystem.

For all the examplesin this chapter, you must use this code somewhere in your portlet to get areference
to the content manager delegate:

Developing Content Management Infrastructure 23

Changing repository data

EbiContentMgmtDelegate defaultCmgr =
com.sssw.cm.client.EboFactory.getDefaultContentMgmtDelegate () ;

if (cmgr != null)
. // do content-related processing

else

System.out.println("Failed to get Content Manager") ;

Using delegates Delegates are objects that provide alayer of abstraction for main exteNd Director
manager objects (such as the Content Manager object). Using del egates removes the need for coding
things like local and remote access to exteNd Director services.

From abest-practices standpoint, you should always use del egates rather than accessing exteNd Director
manager objects directly.

In the simplest case, the basic procedure for working with objectsin the repository is:

1 Useaget method of EbiContentMgmtDelegate to get an object from the repository.
2 Use methods of that object to modify it.
3 Usean update method of EbiContentMgmtDelegate to put the changed object back in the

repository, or use the update method on the object itself if itisavailable.

Some objects are more complex. The rest of this chapter describes how to work with many of these
objects, with code examples.

About the CM subsystem infrastructure

Before creating documentsin the CM subsystem, you must set up the content infrastructure, which
includes the criteria by which you organize the documents. The infrastructure includes fiel ds, document
types, layout styles, folders, and categories:

24

Item

Description

For more information

Fields

A field allows you to provide application-specific information
about documents, also called extension metadata. Each
document type can have zero or more fields. Each document
may have one or more values per field, and null values are
allowed.

“Managing fields” on
page 25

Document
types

The document type is the basic classification mechanism of
the system. You would classify documents as a particular
type when they have similar formatting and subject matter. A
document type has a list of fields and a default layout style.

“Managing document
types” on page 27

Layout
styles

A document type can have a default layout style. Specific

documents can have their own layout styles or sets of styles.

“Managing layout
styles” on page 29

Folders

Folders allow you to group documents for administrative
purposes. For example, you can assign confidential
documents to a folder that has restricted access. Folders can
be nested.

“Managing folders and
categories” on
page 33

Categories

You can use categories as another way of organizing
documents. Typically, categories are the user’s view of the
content repository, organized by subject matter. Categories
can be nested.

“Managing folders and
categories” on
page 33

exteNd Director Content Management Guide

Managing fields

All documents have a basic set of metadata, such astitle, author, abstract, published version, and so on.
You can also define custom metadata fiel ds to store application-specific data for each document type.
Fieldsareappropriatefor any piece of datafor which all the documents haveavalue. For example, movie
reviews have adirector, cast, rel ease date, and rating. Books have an author, publisher, publish date, and
number of pages. Reviews of travel destinations have country, cost category, and quality rating.

Fields are also useful for finding documents. For each document type, a set of fields identify the
pertinent, searchable information for the subject matter of that document type. Fields can be searched
quickly via a database lookup, in contrast to searching the document content text.

For example, for a document type of MovieReview, you might create severa fields as shown below:

Field name Data type Sample value

Genre FT_STRING Drama, Romance

Tagline FT_STRING In a perfect world...they never would have met
User Rating FT_STRING 4.9/10 (1083 votes)

Runtime FT_STRING USA:133/ UK:132 / Finland:133 / Japan:132
Year of Release FT_INT 2000

NOTE: In this example, Genre and Runtime could have multiple values.

Data types EbiDocField defines several datatypesto be used for fields. Thistable categorizesthe
availabletypes:

Type of data Available data types defined in EbiDocField

Character data FT_CHAR, FT_STRING

Numeric FT_BIGDECIMAL
FT_DOUBLE, FT_FLOAT
FT_INT, FT_LONG, FT_SHORT

Boolean FT_BOOLEAN

Date and time FT_DATE, FT_TIME, FT_TIMESTAMP

Binary FT_BYTE, FT_BYTEARRAY

Metadata for fields You aready know that fields store metadataabout adocument. You can also store
data about the field itself. You can use this extension metadata to store a list of appropriate values, a
prompt to usein forms, an image for the field, or other information appropriate to your application. The
dataisabyte array.

Fields and document types When you create a document type, you specify the set of fieldsit uses.
You can use afield with more than one document type.

Fields and values For each document of a particular document type, all the associated fields must
have at |east one value, specified via an EbiDocExtnM etalnfo object. The value can be null. You assign
the field val ues to the document as a set via an EbiDocExtnM eta object. Ebi DocExtnMeta holds an
EbiDocExtnM etalnfo object for each field associated with the document type. You call getFieldValues()
toget anarray of valuesfor afield. Thevalues can bereturned as Strings, or they can havethefield' sdata

type.

Developing Content Management Infrastructure 25

These methods in Ebi ContentMgmtDel egate |et you add and modify fields:

Method Returns Description

addDocumentField() EbiDocField Adds a field to the CM subsystem. You specify the
name, data type, supporting data for the field, and
an ACL (access control list). The last two
arguments can be null.

getDocumentFieldByID() EbiDocField Gets a field by ID.

getDocumentFieldByName() EbiDocField Gets a field by name.

updateDocumentField() void After calling methods to modify an EbiDocField
object, updates the content repository with the
changes.

removeDocumentField() void Removes a field from the system.

getDocumentFields() and Collection of Gets a Collection of all the fields in the CM

getFilteredDocumentFields() EbiDocField subsystem. The filtered version omits fields to

which the current user has no READ access. The
unfiltered version gets all fields, regardless of
access rights.

L For information about using fields with document types, see “ Managing document types’ on
page 27.

Adding a field
This example provides a method called addField() that adds an extension metadata field:

public void addField (EbiContentMgmtDelegate cmgr, EbiContext context)
throws EboUnrecoverableSystemException, EboSecurityException,
EboItemExistenceException

{

String fieldName = "Rating";

String valueType = EbiDocField.FT STRING;

String extnMeta = "This is a Rating field...";

cmgr . addDocumentField (
context, // Context
fieldName, // Field name
valueType, // Value data type
extnMeta.getBytes (), // Extension metadata
null) ; // ACL

Adding a field to a portlet

This example shows how to add afield to a portlet’s processAction(0 method. It gets the name and data
type the user entered in an HTML form and adds afield. A message about success or failure is stored in
the context object to be displayed when the portlet content is generated.

public void processAction (ActionRequest request, ActionResponse response) {
String name = request.getParameter (FORM_NAME) ;
String datatype = request.getParameter (FORM_DATATYPE) ;
String valuelist = request.getParameter (FORM_LIST) ;

EbiContentMgmtDelegate cmgr = ...; // get content manager

try

26 exteNd Director Content Management Guide

{

cmgr .addDocumentField (context,name,datatype,valuelist,null) ;
context.setValue (

this.getPortletName () + KEY STATUS,

"Field " + name + " successfully added.");

}

catch (Exception e)
context.setValue (
this.getPortletName () + KEY STATUS,
"Field " + name + " not added.");

Listing fields using different filters

This example provides amethod called listFields() that gets existing document fiel ds by filtering the
resultsin different ways.

ThelistFields() method needs to have access to a content manager (Ebi ContentM gmtDelegate) and
context object (EbiContext), which are passed in as arguments. The context object providesinformation
about the user’s security privileges. The listFields() method passes the context object to the
getFilteredDocumentFields() method to return only those fields for which the user has READ access:

public void listFields (EbiContentMgmtDelegate cmgr, EbiContext context)

{

throws EboUnrecoverableSystemException, EboSecurityException, EboItemExistenceException

// Get all the existing fields (note: no security checking is done here)
Collection allFields = cmgr.getDocumentFields (context) ;
Iterator iterAllFields = allFields.iterator() ;
while (iterAllFields.hasNext())
{
EbiDocField field = (EbiDocField)iterAllFields.next () ;
System.out.println(field + "\n\n");

}

// Get all the fields that belong to doctype 'MovieReview'
EbiDocType docType = cmgr.getDocumentTypeByName (context, "MovieReview") ;
Collection docTypeFields = cmgr.getDocumentFields (context,docType.getDocTypeID()) ;

// Get all the fields to which the user has Read access
Collection filteredFields = cmgr.getFilteredDocumentFields (context) ;

// Get all the Read-accessible fields that belong to doctype 'MovieReview'
Collection filteredDtFields = cmgr.getFilteredDocumentFields (context, docType.getDocTypeID()) ;

Managing document types

A document type identifies a particular type of content. Typically, you create document types for groups
of documents that have similar content. The documents share the same set of fields that describe that
content and, for XML content, the same layout stylesto display the content.

After you have created a document type, you can modify its name and description. To do so, get an
EbiDocType object, call setDocTypeName() or setDescription(), then call updateDocumentType() to put
the changed type back into the content repository.

TIP: You can also associate layout styles with the document type. For information, see “Managing layout
styles” on page 29.

Developing Content Management Infrastructure 27

These methods in Ebi ContentMgmtDel egate let you add and modify document types:

Method Returns Description

addDocumentType() EbiDocType Adds a document type to the system. You specify a
name, description, and the list of metadata fields
associated with the type. The system gives the
type a numeric ID.

getDocumentType() EbiDocType Gets a document type by name or ID.

updateDocumentType() void After calling methods to modify an EbiDocType
object, updates the content repository with the
changes.

removeDocumentType() boolean Removes a document type from the system. If
documents of that type exist, you must delete them
before you can delete the type.

getDocumentTypes() and Collection of Gets a Collection of EbiDocType objects. The

getFilteredDocumentTypes() EbiDocType filtered version omits types to which the current

user has no READ access. The unfiltered version
gets all types, regardless of access rights.

These methods of EbiContentM gmtDelegate manage the association between document types and

fields:

Method Returns Description

addFieldToDocumentType() void Adds a field to the document type. For existing
documents, the values for the field are null.

removeFieldFrom- boolean Removes the association between a field and a

DocumentType() document type. Deletes the field values for
documents of that type.

getDocumentFields() and Collection of Gets the document fields for a document type.

getFilteredDocumentFields() EbiDocField The filtered version omits fields to which the
current user has no READ access. The unfiltered
version gets all fields for the type, regardless of
access rights.

getDocumentTypesWithField() Collection of Gets a Collection of all the document types that

and getFilteredDocument- EbiDocType use a particular field.

TypesWithField()

Adding a document type with associated fields

This example provides amethod called addDocType() that adds adocument type called M ovie Review
and associatesit with several existing fields. The addDocType() method needsto have accessto a content
manager (Ebi ContentM gmtDel egate) and context object (Ebi Context), which are passed in as arguments.

EbiContext context)
EboItemExistenceException

public void addDocType (EbiContentMgmtDelegate cmgr,
throws EboUnrecoverableSystemException, EboSecurityException,

{

// Get several fields by name

EbiDocField fldDir = cmgr.getDocumentFieldByName (context, "Director");
EbiDocField fldGenre = cmgr.getDocumentFieldByName (context, "Genre") ;
EbiDocField fldYear = cmgr.getDocumentFieldByName (context, "Year") ;
EbiDocField fldCast = cmgr.getDocumentFieldByName (context, "Cast");

// Get the field IDs
String[] fieldIDs = ({

28 exteNd Director Content Management Guide

fldDir.getFieldID(),
fldGenre.getFieldID(),
fldYear.getFieldID(),
fldCast.getFieldID() };

// Add the doctype
EbiDocType dt = cmgr.addDocumentType (

context, // Context

"Movie Review", // Doctype name

"Movie Review document type", // Description

fieldIDs, // Associated fields

null) ; // ACL for the doctype
System.out.println("The new doctype: " + dt);

Managing layout styles

Layouts are X SL specifications for rendering a document. The document might be XML or some other
format that can be processed by XSL. The actual layout specification is stored as the content of a
document in the repository. The CM subsystem has a document type called Document L ayout already
installed for layout documents. You can useit or add your own document types for layouts.

What you can do After you have added alayout document, you can check it out, modify it, and check
itin. That means a particular layout document can have multiple versions. You can publish one of those
Versions.

You can group several layouts together under the umbrella of alayout style. The variouslayoutsin the
layout style can handle the rendering of the document for different clients (also called user agents), such
asbrowsers, PDAs, and other display devices. The association of alayout document with auser agentis
handled by alayout document descriptor.

Layout styles and document types A layout styleis associated with a document type. When you
display adocument of that type, the system searches the layout document descriptorsin the styleto find
the one for the user agent, as specified in the portlet’s context object.

A layout style with multiple layout document descriptors can process content for various clients. When
you want to display a document of the particular document type, you call getDocumentL ayout(); the
system gets the current user agent from the context object to select the appropriate layout.

Here isthe group of objectsthat provide XSL processing for a content document:

Developing Content Management Infrastructure 29

EbiDocType
{(Classifies documents)

EbiDocLayoutStyle
{Marmes a layout style for a doc
type; ane style is the default)

EbiLayoutDocDescriptar
{Associates an X=L document
with a layout style and a user
agent)

EbiDocument
{#3L docurnents assigned tao
the Docurnent Layout doc type)

Content
Doc Type
Default
Style Pict Style Pict
on Left on Right
. PictoL- v
:I'CEOL_ Internet-
Btscape Explorer
PictoL- PictoL-
Metsc- IntEx-
®EL HSL

NOTE: In addition to layout styles for document types, you can define a layout set for a specific
document. A layout set is a custom combination of layout documents for a single content document. This
specialized functionality is appropriate for special types of documents. When you are producing many
documents of the same type, you will typically stick with layout styles for the document type. For more
information, see “Specifying layout sets for documents” on page 45.

To set up layout styles for a document type:

1 Addoneor more layout styles for the content document type.
2 Specify one of the styles as the default for that document type.

3 Add one or more layout documents whose XSL is designed for the expected content. The versions
can arrange the content differently or tailor the content for different clients.

4 Addlayout document descriptors that tie the layout documents to a client and alayout style.

These methodsin EbiContentM gmtDelegate let you add and maodify layout stylesand their associated

objects:

Method Returns Description

addDocumentLayoutStyle() EbiDoc- Adds a new Document Layout Style for the
LayoutStyle specified Document Type.

getDocumentLayoutStyle() EbiDoc- Gets the details of a particular layout style.
LayoutStyle

updateDocumentLayout- void Updates the information for a layout style in the CM

Style() subsystem.

removeDocumentLayout- boolean Removes a layout style from the system.

Style()

addLayoutDocument- EbiLayout- Adds a layout document descriptor, associating a

Descriptor() DocDescriptor layout document with a layout style and user agent.

getLayoutDocument- EbiLayout- GetS a layout document descriptor object.

Descriptor() DocDescriptor

updateLayoutDocument- void Updates a layout document descriptor with a new

Descriptor() user agent.

30

exteNd Director Content Management Guide

Method Returns Description

removelayoutDocument- boolean Removes a layout document descriptor.
Descriptor()

getLayoutDocument- Collection of Gets the layout document descriptors associated
Descriptors() EbiLayout- with a layout style.

DocDescriptor

getDocumentLayout() EbiDoc- Gets the layout document appropriate for the
Version- current document and user agent. This is the actual
Descriptor XSL you use to process the content document.

getDefaultDocument- EbiDoc- Gets the layout style that is the default for a

LayoutStyle() LayoutStyle document type.

getDocumentLayout- Collection of Gets all the layout styles associated with a

Styles() and getFiltered- EbiDoc- document type. The filtered version omits styles to

DocumentLayoutStyles() LayoutStyle which the current user has no READ access. The

User agents

unfiltered version gets all styles for the type,
regardless of access rights.

A user agent identifiesitself in the HTTP header it sends to the server. exteNd Director storesthe
identifying string in the context object. The string used by a browser varies according to the browser
version. Here are some examples:

User Agent: Mozilla/4.0 (compatible; MSIE 4.01; Windows 98)

User Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT)

User Agent: Mozilla/4.5 (Macintosh; U; PPC)

User Agent: Mozilla/4.7 [en] (WinNT; I)

User Agent: Mozilla/3.0 (compatible; Opera/3.0; Windows 95/NT) 3.1

You will need to use these strings in EbiL ayoutDocumentDescriptor objects.

L) For more information on user agents, seethe HTTP 1.1 specification.

Adding a layout style

public void addLayoutStyle (EbiContentMgmtDelegate cmgr,
throws EboUnrecoverableSystemException,

{

This example provides a method called addL ayoutStyle() that adds alayout style for adocument type
called M ovie Review. The addLayoutStyle() method needs to have access to a content manager
(EbiContentMgmtDel egate) and context object (Ebi Context), which are passed in as arguments:

EbiContext context)

EboSecurityException, EboItemExistenceException

// Get the doctype for which the style is to be added

EbiDocType dtMovieReviews =

cmgr .getDocument TypeByName (context, "Movie Review") ;

// Add the new style

EbiDocLayoutStyle style =

cmgr . addDocumentLayoutStyle (

context, // Context
dtMovieReviews.getDocTypeID(), // Doctype ID
"MovieReviewStyle-PicOnLeft", // Style name
"Layout style for movie reviews, with pic on left", // Style descr
true, // Is default style

null) ;

System.out.println("The new style:

// ACL for style
" + style);

Developing Content Management Infrastructure 31

new http://www.w3.org/Protocols

Adding a layout document and a layout document descriptor

This example provides a method called addL ayoutDocAndDescriptor () that adds alayout document
and alayout descriptor. The layout descriptor associates the layout document with the layout style from
the previous example. The addL ayoutDocAndDescriptor() method needs to have access to a content
manager (Ebi ContentMgmtDelegate), context object (Ebi Context), layout file name, and layout style,
which are passed in as arguments:

public void addLayoutDocAndDescriptor (

EbiContentMgmtDelegate cmgr, EbiContext context, String layoutFileName, String layoutStyleID)

throws

EboUnrecoverableSystemException, EboSecurityException, EboItemExistenceException,
FileNotFoundException, IOException
{

// Read in the XSL for the layout

FileInputStream fis = new FileInputStream(layoutFileName) ;

ByteArrayOutputStream baos = new ByteArrayOutputStream() ;

byte[] value = new byte[4096];

while (true)

{

int bytes = fis.read(value) ;
if (bytes < 1)
break;

baos.write(value, 0, bytes);
}
byte[] content = baos.toByteArray() ;
baos.close() ;

// Get the document layout doctype
EbiDocType dtLayout = cmgr.getDocumentTypeByName (context, "Document Layout") ;
// Get the Layouts folder
EbiDocFolder layoutFolder = (EbiDocFolder)cmgr.lookupDirectoryEntry (
context, "MyApp/Layouts", EbiDocFolder.EL_ DOC_FOLDER) ;

// Add the layout document

EbiAddDocumentParams params = cmgr.createAddDocumentParams () ;
params.setName ("ReviewLayout-POL") ;

params.setDocTypeID (dtLayout.getDocTypeID()) ;
params.setFolderID (layoutFolder.getID()) ;

params.setAuthor ("JSmith") ;

params.setTitle ("ReviewLayout-POL") ;

params.setSubtitle ("This is the layout with picture on left");
params.setMimeType ("text/xsl") ;

params.setContent (content) ;

params.setComment ("Initial revision.");

// params.setAcl(...); specify an ACL, otherwise inherit ACL of parent folder
EbiDocument layoutDoc = cmgr.addDocument (context, params) ;
System.out.println("New layout doc: " + layoutDoc) ;

// Publish the new layout document
cmgr . publishDocumentContentVersion (context, layoutDoc.getID(), 1, true, true);

// Figure out what user agent this layout is intended for
String userAgent = "User Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT)";

// Associate the new layout document with the specified layout style
EbiLayoutDocDescriptor 1dd = cmgr.addLayoutDocumentDescriptor (

context, // Context
layoutStylelD, // Layout style ID
layoutDoc.getID(), // Layout document ID
userAgent) ; // User agent

32 exteNd Director Content Management Guide

Changing a layout style

This example presents amethod called changel ayoutStyle() that gets the default style for a document
type and changesit so that it is not the default. The changel ayoutStyle() method needs to have accessto
a content manager (Ebi ContentM gmtDelegate) and context object (EbiContext), which are passed in as
arguments:

public void changeLayoutStyle (EbiContentMgmtDelegate cmgr, EbiContext context)
throws EboUnrecoverableSystemException, EboSecurityException, EboItemExistenceException

{

EbiDocType dtMovieReview = cmgr.getDocumentTypeByName (context, "MovieReview") ;

EbiDocLayoutStyle style = cmgr.getDefaultDocumentLayoutStyle (context,
dtMovieReview.getDocTypeID()) ;

style.setDefault (false) ;

cmgr . updateDocumentLayoutStyle (context, style);

Managing folders and categories

Folders and categories are ways of organizing documents. A document bel ongs to one folder and can
belong to many categories. Typically, you would use folders to group documents for administrative
purposes, such as all documentsfor a project or documents that have access restrictions. You can use
categories to organize documents as an end user might view them, typically by subject matter.

The system has aroot folder and root category aready created—called Root Folder and Root Category.
The content manager provides the getRootFolder() and getRootCategory() methodsto get EbiDocFol der
and EbiDocCategory objects for them.

The default directory type for folders and categoriesis EbiDirectory.DIR_TYPE_DEFAULT. The root
and system types apply to the root folder and root category. You can a so define your own folder types.
For information, see EbiDirectory in the API Reference.

These methods of EbiContentMgmtDelegate let you manage foldersand categories:

Method Returns Description

addFolder() EbiDocFolder Creates a new folder.
copyFolder() EbiDocFolder Copies one folder into another.
getFolder() EbiDocFolder Gets a folder by name or ID.

moveFolder()

EbiDocFolder

Moves one folder into another.

updateFolder() void Updates a folder in the content repository after
making changes to its properties via the
EbiDocFolder object.

removeFolder() boolean Removes a folder. If the folder contains documents

and subfolders, you can set the force argument to
remove them too. The user must have WRITE
permissions on all the subfolders and documents;
otherwise, a security exception is thrown. If force is
false, the folder can’t be removed until the contents
are deleted.

getRootFolder() EbiDocFolder Gets the top-level folder.
addCategory() EbiDocCategory Creates a new category.
copyCategory() EbiDocCategory Copies one category into another.

Developing Content Management Infrastructure 33

../javadoc/com/sssw/cm/api/EbiDirectory.html

Method Returns Description

getCategory() EbiDocCategory Gets a category by name or ID.
moveCategory() EbiDocCategory Moves one category into another.
updateCategory() void Updates a category in the content repository after

making changes to its properties via the
EbiDocCategory object.

removeCategory() boolean Removes a category.

getRootCategory() EbiDocCategory Gets the top-level category.

addDocument- void Adds a document to a category.
CategoryReference()

removeDocument- boolean Removes a document from the category.
CategoryReference()

getDocumentCategory- Collection of Gets the categories to which the document belongs.
References() and EbiDocCategory The filtered version omits categories to which the
getFilteredDocument- current user has no READ access. The unfiltered
CategoryReferences() version gets all categories for the document,

regardless of access rights.

Adding a category

This example presents amethod called addCategor y() that gets the information required for creating a
new category, then adds the new category as a subcategory of the specified parent. The addCategory()
method needsto access a content manager (Ebi ContentM gmtDelegate) and context object (Ebi Context),
which are passed in as arguments:

public void addCategory (EbiContentMgmtDelegate cmgr, EbiContext context)

{

throws EboUnrecoverableSystemException, EboSecurityException, EboItemExistenceException

// Locate the parent category

EbiDocCategory categParent = (EbiDocCategory)cmgr.lookupDirectoryEntry (
context, "MyApp/Shopping", EbiDocCategory.EL DOC CATEGORY) ;

EbiDocCategory categChild = cmgr.addCategory (

context, // Context

categParent, // Parent category

"Clothing", // Tew category name

EbiDirectory.DIR_TYPE DEFAULT, // type of the new category

"This is the clothing-related category", // Description

null) ; // ACL for the new category
System.out.println ("New category added: " + categChild);

Navigating the CM hierarchy

34

Once your directory hierarchy is established, you can get alisting of the contents of adirectory and
examine the properties of individual entries.

This section describes some ways to use the methods and classes that navigate the directory hierarchy.
Both categories and foldersimplement the functionality for directory manipulation found in their
superinterface EbiDirectory. Folders, categories, and documents al so implement EbiDirectoryEntry and
share methods for getting information about the contents of a directory.

exteNd Director Content Management Guide

Methods These methods are useful in navigating categories and folders:

*

+ lookupDirectoryEntry() of EbiContentMgmtDelegate gets an EbiDirectoryEntry object for a
category, folder, or document based on a path built from the names of the parent objectsin the
hierarchy.

« getEntry() of EbiContentMgmtDelegate gets an entry by name in the specified directory.

Example Thisexamplebuildsan XML DOM tree of nested categories, starting with theroot category.

getRootCategory() and getRootFolder () of EbiContentMgmtDel egate get the top of a directory

hierarchy.

getDirectoryList() and getFilteredDirectoryList() of EbiContentMgmtDelegate return a

collection of EbiDirectoryEntry objects. You can specify whether the list includes subdirectories,

documents, or both.

isDirectory() of EbiDirectoryEntry reports whether an entry is adirectory or adocument.

Theroot category is a category element within Categories; subcategories of the root and further nested
levels are category elements also. The name and ID for each category are attributes.

The code createsthe Categories container element and getsthe root category of thetree youwant to build.
It then calls addNode() to find and add its subcategories. The variable dom isthe DOM object and r oot
istheroot element of the DOM.

Element categories = dom.createElement ("Categories") ;
root .appendChild (categories) ;

EbiDocCategory category = cmgr.getRootCategory (context) ;
if (category == null)
System.out.println("root category is null");
else
{
Element rootCategory = dom.createElement ("category") ;
categories.appendChild (rootCategory) ;
rootCategory.setAttribute ("id", category.getID()) ;
rootCategory.setAttribute ("name", category.getName()) ;
addNode (rootCategory, category, dom, context,
cmgr, "category");

}

The addNode() method gets the subcategories of a particular category and adds them as child elements.
Itiscalled recursively to add additional levels of nested subcategoriesif they exist:

public void addNode (org.w3c.dom.Element element,
EbiDirectoryEntry directoryEntry, org.w3c.dom.Document document,
EbiContext context, EbiContentMgmtDelegate cmgr, String elementName)
{
try
{
Collection collection = cmgr.getFilteredDirectoryList (
context, (EbiDirectory) directoryEntry, true, false);
Enumeration list = Collections.enumeration(collection) ;
if (list != null)
{
Element child;
while (list.hasMoreElements())
{
EbiDirectoryEntry subdirEntry =
(EbiDirectoryEntry) list.nextElement () ;
child = document.createElement (elementName) ;
child.setAttribute ("id", subdirEntry.getID()) ;
child.setAttribute ("name", subdirEntry.getName ()) ;
element .appendChild (child) ;
addNode (child, subdirEntry, document,
context, cmgr, elementName) ;

Developing Content Management Infrastructure

35

}

catch (Exception e)

{
}

e.printStackTrace () ;

36 exteNd Director Content Management Guide

Managing Documents

This chapter describes how to manage documents using the Content Management (CM) API. It hasthese
sections:

+ About documents

+ Adding documents

+ Specifying field values for a document

+ Specifying layout sets for documents

+ Creating links between documents

+ Modifying and publishing documents

+ Displaying documents

NOTE: Most of the document management tasks described in this chapter can also be accomplished
using the CMS Administration Console.

L For moreinformation, see Chapter 15, “ Creating Content”. and Chapter 16, “Maintaining
Content”.

About documents

A document in the CM subsystem may represent asimple, finite piece of content such as animage, or it
may be a complex entity that comprises other documents. A document can be any data that you want to
use directly or indirectly in your exteNd Director application.

The CM subsystem uses metadata fields to describe a document. There are standard fields for every
document, such as name, title, author, and abstract. You can also associate content-related fieldswith a
document type. This extension metadata can hold additional searchable information specific to that
document type.

A document object can be associated with an EbiDocContent object that holds the text or binary data, but
adocument doesn’t need to have a content object. The metadata for the document may store all the
information you need. For ashort text document, you could store the entire text inthe abstract field. If the
document doesn’t have content, specify null for the MIME type and content.

The supplied content, if any, becomes the first version of the document. If you want to publish the
content, you can call publishDocumentContentVersion() anytime or rely on your scheduled task to
publish it. Documents without content cannot have versions (including a published version), but you
could use another field (such as status) to label adocument as publicly available.

Accessing the CM API

The EbiContentM gmtDel egate i nterface provides access to most of the document-related methodsin the
CM subsystem.

L) For information, see “ About the CM API” on page 23.

Managing Documents 37

Adding documents

To add adocument, you create an Ebi AddD ocumentParams object and set various parameters. The next
table explainsthe default valuesfor the required parameters. name, document type, folder, and extension
metadata, if any—aswell as other parameters for which the default value has a particular meaning. Any
other metadata fields that aren’t explicitly set are null:

Parameter Description and default values

Name A name for the document, used when specifying a path for the document in
the folder structure. The default name is the UUID assigned to the document
when it is added.

Document type ID The ID of the document type for this document. The default is the system’s
Default document type.

Folder ID The folder that contains this document. The default is the system’s root folder.

Extension metadata If the document belongs to a document type that has at least one associated
extension metadata field, you must call the setExtensionMetaData() method
to provide values for the fields.

L For information, see “Specifying field values for a document” on
page 40.

Publish date A timestamp specifying when the document’s current version should be
published. The default value of null means publish as soon as possible.

Expiration date A timestamp specifying when the document should be removed from the
published area. The default value of null means never expire.

Access control list An ACL specifying access rights to the document.

The ACL is null by default. In this case, the document inherits the ACL of its
folder. If the folder doesn’'t have an ACL, there are no restrictions for the
document.

Adding a document

This code example presents a method called addDocument() that illustrates how to add a document of
type M ovie Review. This method sets all required document parameters—document type, name, title,
author, and parent folder—as well as some optional parameters.

The new document does not contain extension metadata fields, nor does it have a parent document. The
addDocument() method sets the content of the new movie review document explicitly and storesit in the
byte array content.

The addDocument() method needs to access a content manager (Ebi ContentM gmtDel egate) and context
object (EbiContext), which are passed in as arguments.

Note that the addDocument() method does not set the ACL for the new document. This means that the
ACL isnull and the document inheritsthe ACL of itsfolder:

public void addDocument (EbiContentMgmtDelegate cmgr, EbiContext context)

38

{

throws EboUnrecoverableSystemException, EboSecurityException, EboItemExistenceException

// Get the doctype
EbiDocType type = cmgr.getDocumentTypeByName (context, "Movie Review") ;

// Get the folder
EbiDocFolder folder = (EbiDocFolder)cmgr.lookupDirectoryEntry (
context, "MyApp/MovieReviews/Current", EbiDocFolder.EL_DOC_FOLDER) ;

// Get the content

exteNd Director Content Management Guide

byte content[] = movieContent.getBytes() ;

EbiAddDocumentParams docParams = cmgr.createAddDocumentParams () ;
docParams.setName ("Star Trek Movie Review") ;

docParams . setDocTypelD (type.getDocTypeID()) ;
docParams.setFolderID (folder.getID()) ;
docParams.setAuthor ("Night Ghost") ;

docParams.setTitle ("Star Trek Movie Review") ;
docParams.setSubtitle ("Generations") ;
docParams.setAbstract ("This reviewer loves the movie!........ "
docParams.setMimeType ("text/xml") ;

docParams.setContent (content) ;

docParams.setComment ("Initial revision.");

// params.setAcl(...); specify an ACL, otherwise inherit ACL of parent folder
EbiDocument doc = cmgr.addDocument (context, docParams) ;
System.out.println("Added new movie review: " + doc);

// Publish the new document
cmgr . publishDocumentContentVersion (context, doc.getID(), 1, true, true);

Adding multiple documents

This code example presents amethod called addM ultipleDocuments() that converts a set of filesinto
new documents of type M ovie Review and adds them to the CM subsystem.

This method sets al required document parameters—document type, name, title, author, and parent
folder—as well as some optional parameters.

Note that the addM ultipleDocuments() method executes the following shared logic outside the for loop
for efficient processing:

+ Setsthe shared parameters author, comment, and MIME type
+ Cadlsthe getDocTypeByName() and createAddDocumentPar ams() methods

The new documents do not contain extension metadata fields, nor do they have parent documents. The
addMultipleDocuments() method reads in the content of each new moviereview from itsfile of origin
and stores the data in the byte array content.

Asfor security, the addM ulti pleDocuments() method does not set the ACL for the new documents. This
means that the ACL is null and the documents inherit the ACL of their folder.

The addM ultipleDocuments() method needs to access a content manager (Ebi ContentM gmtDel egate),
context object (EbiContext), and the directory where the files of interest are stored. All of these entities
are passed in as arguments:

public void addMultipleDocuments (
EbiContentMgmtDelegate cmgr, EbiContext context, String dirName)
throws
EboUnrecoverableSystemException, EboSecurityException, EboltemExistenceException,
FileNotFoundException, IOException

// Get the doctype
EbiDocType type = cmgr.getDocumentTypeByName (context, "Movie Review") ;

// Get the folder
EbiDocFolder folder = (EbiDocFolder)cmgr.lookupDirectoryEntry (
context, "MyApp/MovieReviews/Current", EbiDocFolder.EL_DOC_FOLDER) ;

// Instantiate a document addition parameters object
EbiAddDocumentParams docParams = cmgr.createAddDocumentParams () ;

Managing Documents 39

// Set all the String parameters to be reused

String author = "NightGhost";
String mimeType = "text/xml";
String comment = "Initial revision.";

File dir = new File (dirName) ;
File[] files = null;

if (dir.exists() && dir.isDirectory())
files = dir.listFiles() ;
else
throw new EboApplicationException(null, "Invalid directory name '" + dirName
+|ll.|l),.

// Turn each file in the specified directory into a new movie review document
for (int 1 = 0; i < files.length; i++)
{

if (files[i] .isDirectory())

continue;

FileInputStream fis = new FileInputStream(files[i]) ;

ByteArrayOutputStream baos = new ByteArrayOutputStream() ;

byte[] value = new byte[4096];

while (true)

{

int bytes = fis.read(value) ;
if (bytes < 1)
break;

baos.write(value, 0, bytes);

}

byte[] content = baos.toByteArray() ;
baos.close () ;

String name = files[i] .getName () ;

docParams . setName (name) ;
docParams.setDocTypelID (type.getDocTypeID()) ;
docParams.setFolderID (folder.getID()) ;
docParams.setAuthor (author) ;
docParams.setTitle (name) ;
docParams.setMimeType (mimeType) ;
docParams.setContent (content) ;
docParams . setComment (comment) ;
docParams.setPublishImmediately (true) ;

// params.setAcl(...); specify an ACL, otherwise inherit ACL of parent folder

EbiDocument doc = cmgr.addDocument (context, docParams) ;

Specifying field values for a document

When you add a document, you must create a set of field values that match the fields defined for the
document’s type. Each field can have one or more values, and null values are allowed. The fields and
their values are called extension metadata, in contrast to the standard metadata defined for an
EbiDocument object (such astitle, author, abstract, and status).

40 exteNd Director Content Management Guide

You manage the extension metadata via two objects:

Object Description

EbiDocExtnMeta A holder for all the extension metadata for all the fields

EbiDocExtnMetalnfo Associates a field with a set of values

After you create an EbiDocExtnM etal nfo object for a specific field, you set the values for thefield asan
array, even if thereis only one value. The type of the array must correspond to the data type of thefield.

After you' ve created an Ebi DocExtnM etal nfo object for each field and added it to the EbiDocExtnMeta
object, call setExtensionMetaData() for Ebi AddDocumentParams to associate it with the document you
are adding.

Getting fields for the document type

To find out what fieldsto specify for adocument, you can get a collection of EbiDocField objectsfor the
document type. This example presents amethod called getDocTypeFields() that gets all the document
type fields to which the user has READ access.

The getDocTypeFields() method needs to access a content manager (Ebi ContentMgmtDel egate) and
context object (Ebi Context), which are passed in as arguments:

public void getDocTypeFields (EbiContentMgmtDelegate cmgr, EbiContext context)
throws EboUnrecoverableSystemException, EboSecurityException, EboItemExistenceException

EbiDocType docType = cmgr.getDocumentTypeByName (context, "Movie Review") ;
if (docType != null)

{
Collection fields = cmgr.getFilteredDocumentFields (context, docType.getDocTypelID()) ;
System.out.println("Fields: " + fields);

Getting a field object by name

You can also get individual fields by name. This example presents a method called getField() that gets
the field named Director.

The getField() method needs to access a content manager (Ebi ContentM gmtDel egate) and context object
(EbiContext), which are passed in as arguments:

public void getField (EbiContentMgmtDelegate cmgr, EbiContext context)
throws EboUnrecoverableSystemException, EboSecurityException, EboItemExistenceException

EbiDocField fldDirector = cmgr.getDocumentFieldByName (context, "Director") ;
System.out.println("Director field: " + fldDirector);

Setting a field value
This example presents a method called setFieldValues() that performs the following tasks:

+ Creates an EbiDocExtnMeta holder and Ebi DocExtnMetal nfo objects for the Director and Genre
fields

+ Associates the EbiDocExtnM eta object with an Ebi AddDocumentParams object that it uses to add
the new document to the content respository

The valuesfor each field are passed as String arrays.

Managing Documents 41

Note that the setFieldValues() method does not set the ACL for the new document. This means that the
ACL isnull and the document inheritsthe ACL of itsfolder.

The setFiel dValues() method needsto access a content manager (Ebi ContentMgmtDel egate) and context
object (EbiContext), which are passed in as arguments:;

public void setFieldvValues (EbiContentMgmtDelegate cmgr, EbiContext context)
throws EboUnrecoverableSystemException, EboSecurityException, EboItemExistenceException

// Get the doctype
EbiDocType type = cmgr.getDocumentTypeByName (context, "Movie Review") ;
// Get the folder
EbiDocFolder folder = (EbiDocFolder)cmgr.lookupDirectoryEntry (

context, "MyApp/MovieReviews/Current", EbiDocFolder.EL DOC_FOLDER) ;
// Instantiate a document addition parameters object
EbiAddDocumentParams docParams = cmgr.createAddDocumentParams () ;

// Create the extension metadata holder object
EbiDocExtnMeta meta = cmgr.createExtnMeta () ;

// Specify the extn metadata field values for 'Director'

EbiDocField fldDirector = cmgr.getDocumentFieldByName (context, "Director") ;
EbiDocExtnMetaInfo miDirector = cmgr.createExtnMetaInfo (fldDirector) ;
String[] directors = { "Andy Wachowski", "Larry Wachowski" };
miDirector.setFieldValues (directors) ;

meta.setExtnMetaInfo (miDirector) ;

// Specify the exnt metadata field values for 'Genre'

EbiDocField fldGenre = cmgr.getDocumentFieldByName (context, "Genre") ;
EbiDocExtnMetaInfo miGenre = cmgr.createExtnMetalInfo (fldGenre) ;
String[] genres = { "Action", "Thriller", "Sci-Fi" };
miGenre.setFieldValues (genres) ;

meta.setExtnMetaInfo (miGenre) ;

// Get the content
String movieContent = "This movie has exceeded all expectations!....";
byte content[] = movieContent.getBytes() ;

// Set the extension metadata into the doc params object
docParams.setExtensionMetaData (meta) ;

docParams.setName ("The Matrix (1999)");
docParams.setDocTypeID (type.getDocTypelID()) ;
docParams.setFolderID (folder.getID()) ;
docParams.setAuthor ("Night Ghost") ;
docParams.setTitle ("The Matrix (1999)");
docParams.setMimeType ("text/xml") ;
docParams.setContent (content) ;
docParams.setComment ("Initial revision.");

// params.setAcl(...); specify an ACL, otherwise inherit ACL of parent folder
EbiDocument doc = cmgr.addDocument (context, docParams) ;

// Publish the new document
cmgr . publishDocumentContentVersion (context, doc.getID(), 1, true, true);

42 exteNd Director Content Management Guide

Getting all fields

This example presents a method called getExtnM eta() that gets all the extension metadatafieldsfor a
specified document. The method uses the EbiDocExtnM eta object as a holder for the document’sfields.
This object provides methods for getting information about the fields, such as hames and values.

The getExtnMeta() method needs to access a content manager (Ebi ContentM gmtDel egate), context
object (EbiContext), and the document of interest—all of which are passed in as arguments:

public void getExtnMeta (EbiContentMgmtDelegate cmgr, EbiContext context, String docID)

{

throws EboUnrecoverableSystemException, EboSecurityException, EboItemExistenceException
// Get the extension metadata holder for the document
EbiDocExtnMeta extnMetaData = cmgr.getDocumentExtnMeta (context, docID) ;

System.out.println ("Extension metadata: " + extnMetaData) ;

// Enumerate the field names

Iterator fieldNames = extnMetaData.getFieldNames () .iterator () ;
while (fieldNames.hasNext())
System.out.println("Field: " + (String)fieldNames.next()) ;

// For each extension meta info

for (int i = 0; 1 < extnMetaData.size(); 1i++)
EbiDocExtnMetaInfo mi = extnMetaData.getExtnMetaInfoByIndex (i) ;
System.out.println("MetaInfo " + 1 + ": " + mi);

String fieldName = mi.getFieldName () ;
System.out.println("Field name: " + fieldName) ;

Collection fieldvalues = mi.getFieldValues (false) ;
System.out.println("Values: " + fieldvalues);

Getting field values for a single field

This example presents a method called getExtnM eta() that gets an EbiDocExtnMetal nfo object for a
singlefield.

The getExtnMeta() method needs to access a content manager (Ebi ContentM gmtDel egate), context
object (EbiContext), and the document and field of interest—all of which are passed in as arguments:

public void getExtnMeta (

EbiContentMgmtDelegate cmgr, EbiContext context,

String docID, String fieldID)

throws EboUnrecoverableSystemException, EboSecurityException,
EboItemExistenceException

{

EbiDocExtnMetaInfo info = cmgr.getDocumentExtnMetalInfo (
context, docID, fieldID);
System.out.println("Meta Info: " + info);

}

From the EbiDocExtnM etal nfo object you can get a Collection of the values for the field (the values of
the array that set the field). A boolean argument lets you specify whether the data type of the returned
valuesis String or the actual datatype of the field.

This statement gets the values of the EbiDocExtnMetalnfo object as Strings:

Collection valueStrings = info.getFieldValues (true) ;

Managing Documents 43

Methods for managing documents

Thistable lists methods that let you manage documents, edit the metadata, and get documents:

Method Returns Description

createAddDocument EbiAdd- Creates an empty object to hold the data

Params() DocumentParams needed to add a document, including
metadata, extension metadata, content, and
ACL. You use the EbiAddDocumentParams
object with the addDocument() method.

addDocument() EbiDocument Adds a document to the content repository.
Content for the document is optional.

copyDocument() EbiDocument Copies a document to a folder or to a parent
document.

getDocument() EbiDocument Gets a document object for a specified
document ID.

moveDocument() EbiDocument Moves a document to a folder or to a parent
document.

updateDocument() void Updates the information about a document in
the content repository using changes made to
EbiDocument.

removeDocument() boolean Removes a document and all its versions from
the system.

addDocumentCategory- void Adds a document to a category. A document

Reference() can belong to many categories.

removeDocument boolean Removes a document from a category.

Category-Reference()

getDocumentExtnMeta()

EbiDocExtnMeta

Gets a holder for the extension metadata
objects associated with each field of the
document. Its methods let you get the values
for individual fields.

getDocumentExtnMeta- EbiDocExtnMeta Gets the extension metadata object for a field
Info() Info of the document.
getDocumentsByType() Collection of Gets a collection of the documents of a

and getFilteredDocuments-

ByType()

EbiDocument

particular document type. The filtered version
omits documents to which the current user
has no READ access. The unfiltered version
gets all documents for the type, regardless of
access rights.

getLatestDocumentContent-

EbiDocVersion

Gets the most recent version of a document.

Version()

getDocumentContent- EbiDocVersion Gets a version of a document.
Version()

getDocumentContent- Collection of Gets all the versions of a document.
Versions() EbiDocContent

publishDocumentContent-
Version()

void

Publishes a version of a document.

getContent()

EbiDocContent

Gets the published content for a document. If
the document is not published, returns null.

exteNd Director Content Management Guide

Method Returns Description

unpublishDocumentContent() boolean Removes a document’s content from the
published area.

The content for all document versions remains
intact.

Specifying layout sets for documents

Typically, thelayout styles associated with the document type are adequate for displaying your document
(asdescribed in “Managing layout styles’ on page 29). When you have hundreds of documents (news
stories, pressreleases, editorials, reviews), you don’'t want to design custom XSL for each one. One
design or afew alternative designs are enough; you can associate one or more layout styles with a
document type.

When to use a layout set

When you want to lock in aparticular layout for an individual document, you can specify alayout set for
that document. A layout set uses a specific layout style, selected from the ones that are valid for the
document’stype. The layout set uses one or more of the layout document descriptors associated with that
style. In the set you can use whatever version of the layout document is currently published or you can
select aspecific version. The set needsto includes layout document descriptors for whatever clientswill
view the content. The XSL in the layout documents associated with the descriptors render the document.

What a layout set is good for A layout set is meant for locking in a presentation so that the
document always looks the same. Aslayout styles for adocument type evolve with new versions, the
presentation of an individual document will change. Usealayout set when it isimportant to preservethe
original presentation.

What a layout set is less appropriate for Thelayout setislessappropriatefor giving adocument a
unique look. It may be more appropriate to add a new document type. However, you can also add a
custom style to the document type in order to make a special layout available for the document. If you
don’t want to be constrained to stylesfor the document type, you could design your application to locate
style documents another way—for example, viaa custom field. However, you would want to make sure
your custom system has the flexibility for getting different XSL for different clients.

Methods for managing layout sets
These methods of EbiContentM gmtDelegate manage layout sets:

Method Returns Description

createDocLayoutSet() EbiDocLayoutSet Creates an empty layout set. It is associated
with a document when you call addDocument().

getDocumentLayoutSet() EbiDocLayoutSet Gets the layout set for a document.
removeDocumentLayoutSet() boolean Removes the layout set from the document.
updateDocumentLayoutSet() void Updates the layout set with new layout style

and layout style descriptor information.

To associate alayout set with anew document, call the setl ayoutSet() method of
Ebi AddDocumentParams.

Managing Documents 45

To change the XSL documents in the layout set of an existing document, call getDocumentL ayoutSet(),
call methods of EbiDocLayoutSet to make changes, and then call updateDocumentL ayoutSet().

NOTE: Currently, you cannot add a layout set to a document if it didn’t have one when it was added.

Creating links between documents

You can specify relationships between documents by specifying that one document isachild of another.

This section includes these topics:

*

*
*

*

Two types of document rel ationships
Hierarchical linking

Adding a child document

Compound linking

Linking a child document

Updating alink with a new document version
Getting linked parent documents

Getting linked child documents

Two types of document relationships

46

The content repository supports two types of document rel ationships—hierarchical and compound

Document

relationship Description

Hierarchical Where each document in the hierarchy stores the ID of its parent document. A
document has only one parent. The value —1 identifies the top document in a chain
of links. The chain can be an indefinite number of levels deep.
Hierarchical linking is designed for a threaded discussion and similar structures.

Compound Where a link object identifies the originator of the link (parent) and the target of the

link (child). A parent can have many child documents, and a child can have many
parents.

Compound linking is designed for building composite documents, where many
pieces of content are brought together in a single presentation page. For example,
child documents might include sections of a report, a list of cross-references that is
appended to a document, or images to be displayed in a page.

You can use linked documentsin many ways. A parent document might serve as a container of child
documents, where each subsection of the document is produced by a different author. Documents could
belinked in a chain to identify amessage thread. Links could point to nontext documents that are stored
separately, such asimages or sound files.

CAUTION: When specifying either hierarchical or compound links, you are not prevented from creating
circular links, where a parent document is also a child of its child document. If you do this, proceed with
caution: circularity may confuse both programmer and end user. It is up to you to understand the link
structure of your repository when you process the content.

exteNd Director Content Management Guide

Hierarchical linking

Hierarchical linking lets you create a threaded discussion. The following diagram shows two views of a
threaded discussion. Each reply has one parent, and each message can be the parent of several replies.
The top message in each chain has no parent.

When a user submits areply, the application usesthe ID of the original message as the parent of the new
reply document:

Top message 1

Reply 1 M1 M2
Reply Za
Reply 2b — Rt
Reply 4
Reply 3 __{RZa — 2
Top message 2 R2b R3

Reply 1
Reply 2 L R3a

Reply 3
Reply 3a Ra

Methods for hierarchical linking

These methods of EbiContentM gmtDelegate are useful in managing hierarchical links:

Method Returns Description

addDocument() EbiDocument ~ When adding a document, you can make it a child
document by specifying a parent ID. If the parent ID is -1,
the document has no parent.

getChildDocuments() Collection of Gets child documents that have a parent ID of the specified

and getFilteredChild- EbiDocument document. The filtered version omits documents to which

Documents() the current user has no READ access. The unfiltered
version gets all child documents, regardless of access
rights.

In addition, when you have an EbiDocument object, you can get and change the parent document 1D, via
getParentDocl D() and setParentDocl D(). After changing the ID, call updateDocument() to put the
changesin the repository.

Adding a child document

This example presents amethod called addChildDocument() that creates achild document asareply in
amessage thread. Inside awhile loop, the method navigates the thread to the top message, and then uses
itstitle to construct the name and subtitle of the reply.

The addChildDocument() method needs to access a content manager (Ebi ContentM gmtDel egate), the
context object (Ebi Context), the parent document, a message subject, and areply—all of which are
passed in as arguments:

public void addChildDocument (
EbiContentMgmtDelegate cmgr, EbiContext context, String folderID,
String parentID, String subject, String reply)
throws EboUnrecoverableSystemException, EboSecurityException,
EboItemExistenceException

{

EbiAddDocumentParams params = cmgr.createAddDocumentParams () ;

Managing Documents 47

params.setName ("Reply to " + threadTitle) ;
EbiDocType doctype = cmgr.getDocumentTypeByName (context, "Discussion") ;
if (doctype != null)

params.setDocTypeID (doctype.getDocTypeID()) ;
params.setFolderID (folderID) ;
params.setAuthor (context.getUserID()) ;
params.setTitle (subject) ;
params.setSubtitle (threadTitle) ;
params.setMimeType ("text/plain") ;
params.setContent (reply.getBytes()) ;
params.setParentID (parentID) ;
cmgr . addDocument (context, params) ;

Compound linking

48

Compound linking lets you create a network of interrelated documents. You might useit to create a
composite document out of many contributed pieces, such as sections (written by different authors),
images, cross-references, and other information.

L For more information, see “ Composite documents” on page 54.

The following diagram shows a network of documents that are used by two different parent documents;
some of the material is shared by both:

Docl Dacz
Picl Logo Paral Paraz
Picz Pic3 Para3

Access to documents you want to link To create alink, you must check out both the parent and
child documents, add the link, and then check in both documents.

XML for composite documents Itiseasy to program the display of acomposite document when the
content typeis XML. Your portlet inserts each child document as anode in the DOM with an appropriate
element name. An XSL style sheet specifies how those elements are displayed. You don’'t have to insert
the child documentsinto existing content in any particular order. The order is determined by the style
sheet. By selecting different style sheets, you can change the way the different elementsare displayed and
whether they areincluded at all.

L) For information about style sheets for document types, see “Managing layout styles’ on page 29.
To specify stylesfor individual documents, see “ Specifying layout sets for documents” on page 45.

For example, suppose you have a Movie Review document type and the paragraphs of the review are its
content. Child documents for the review could include an image from the movie and biographies of the
cast. Inthe displayed HTML, the biographies could be displayed on the same page or they could be links
to another HTML page. You could have different style sheets that determine which way to display the
biographies and whether the image is on the | eft or the right.

exteNd Director Content Management Guide

Methods for compound linking

NOTE: When adding, removing, and changing links, you must check out the parent and child documents.

These methods of EbiContentM gmtDelegate are useful in managing compound links:

Method Returns Description

addDocumentLink() EbiDocLink Adds a link between two documents. For the child
version ID argument, you can specify a specific
version or —1 to use the published version.

getDocumentLink() EbiDocLink Gets a link object, given the parent and child IDs.

removeDocumentLink() boolean Removes a link.

updateDocumentLink() void Allows you to change the version of the child
document the link uses.

getLinkChildDocuments() Collection of Gets the link objects for the child documents that are

and getFilteredLinkChild- EbiDocument linked to the specified parent document. The filtered

Documents() version omits documents to which the current user

has no READ access. The unfiltered version gets all
documents regardless of access rights.

getLinkParentDocuments() Collection of Gets the document objects for the parent documents

and getFilteredLinkParent- EbiDocument to which the specified child document is linked. The

Documents() filtered version omits documents to which the current
user has no READ access. The unfiltered version
gets all documents regardless of access rights.

Linking a child document

This example presents amethod called addDocL ink() that adds alink between a parent document and a
child document.

The addDocL ink() method needs to access a content manager (Ebi ContentM gmtDel egate), the context
object (EbiContext), the parent and child documents, and the child document version—all of which are
passed in as arguments.

public void addDocLink (
EbiContentMgmtDelegate cmgr, EbiContext context,
String linkParentDocID, String linkChildDocID, int linkChildVersionID)
throws EboUnrecoverableSystemException, EboSecurityException,
EboItemExistenceException

{

EbiDocLink 1lnk = cmgr.addDocumentLink (
context, linkParentDocID, linkChildDocID, linkChildVersionID) ;

Updating a link with a new document version

This example presents amethod called updateDocumentContentAndL ink () that creates and publishes
anew version of a child document, then updates the link from the parent to point to the new version.

If anew version of the child document is published later, thislink continuesto point to the old version. A
link between parent and child must exist. If not, you need to use addDocumentL ink() instead of
updateDocumentLink().

The updateDocumentContentAndLink() method needs to access a content manager
(EbiContentM gmtDel egate), the context object (Ebi Context), the parent and child documents, document
content, and aMIME type—all of which are passed in as arguments:

Managing Documents 49

public void updateDocumentContentAndLink (

EbiContentMgmtDelegate cmgr, EbiContext context,

String linkParentDocID, String linkChildDocID,

byte[] linkChildDocContent, String linkChildDocMimeType)

throws EboUnrecoverableSystemException, EboSecurityException,
EboItemExistenceException

{
// Create a new version of the link child document
int newVersionID = cmgr.checkinDocument (

context, // Context

linkChildDocID, // Docid of link child
linkChildDocMimeType, // Mime type

linkChildDocContent, // New content

"new version", // Check-in comment

false) ; // Whether to keep doc checked out

// Publish it
cmgr . publishDocumentContentVersion (
context, linkChildDocID, newVersionID, true, true);

// Now update the link to point to the new version
cmgr . updateDocumentLink (

context, // Context
linkParentDocID, // Link parent docid
linkChildDocID, // Link child docid
newVersionID) ; // New version id

Getting linked parent documents

This example presents amethod called getL ink ParentDocuments() that gets the parent documents that
are linked to a specified child.

By calling getFilteredL inkParentDocuments(), the code retrieves only documents to which the user has
READ access.

The getLinkParentDocuments() method needs to access a content manager (Ebi ContentM gmtDelegate),
the context object (EbiContext), and the child document of interest—all of which are passed in as
arguments:

public void getLinkParentDocuments (

EbiContentMgmtDelegate cmgr, EbiContext context,

String linkChildDocID)

throws EboUnrecoverableSystemException, EboSecurityException,
EboItemExistenceException

{

Collection linkParentDocs = cmgr.getFilteredLinkParentDocuments (context,
1linkChildDocID) ;
System.out.println("Parent docs: " + linkParentDocs) ;

}

Getting linked child documents

Thisexample presentsamethod called getL ink ChildDocuments() that getsthe child documentsthat are
linked to a specified parent.

By calling getFilteredL inkChildDocuments(), the code retrieves only documents to which the user has
READ access.

The getLinkChildDocuments() method needs to access a content manager (Ebi ContentM gmtDel egate),
the context object (EbiContext), and the parent document of interest—all of which are passed in as
arguments.

50 exteNd Director Content Management Guide

public void getLinkChildDocuments (

EbiContentMgmtDelegate cmgr, EbiContext context,

String linkParentDocID)

throws EboUnrecoverableSystemException, EboSecurityException,
EboItemExistenceException

{

Collection linkChildDocs = cmgr.getFilteredLinkChildDocuments (context,
linkParentDocID) ;
System.out.println("Child docs: " + linkChildDocs) ;

}

Modifying and publishing documents
The CM subsystem includes functionality that supports checkout, checkin, versioning, and publishing.

Much of the information in the CM subsystem is data about documents. However, when you start using
the checkout and checkin methods, you also get multiple versions of document content. Each time a
document is checked in, anew version is created. When adocument is published, thereis also areleased
version of the content, which comes from the set of versions. You can continue creating new versions,
while the publicly available version remains stable.

The diagram that follows shows the rel ationship between an EbiDocument object, which holds the
document metadata, and its version objects. The content for each version is stored in an EbiDocVersion
object. When you select aversion for publishing, that version’s content is copied to an EbiDocContent

object.
EbiDocurnent Metadata
EbiDocContent E EbiDiocversion

Fublished content Content

NOTE: Itis important to remember that only the content has multiple versions. There is only one version
of the document’s metadata.

You might program portlets for source control and publishing to accomplish tasks like these:

Task Information

Add a new document to the If the document is added with accompanying content, the system
system creates a first version.

Check out a document When a user checks out the document, your portlet copies the

content to an appropriate editing environment.

Check in a document When the user checks in the document, the system creates a new
version.
Publish documents You might have a scheduled task that checks publish dates and

calls publishDocumentContentVersion() when a document’s publish
date is passed.

Managing Documents 51

Task Information

Unpublish documents You might have a scheduled task that removes a published version
when the expiration date has passed. The task might move the
document to an archive folder, purge it from the system, or set its
publish date so another version can be published later.

Review the checkincomments —
for a document’s versions.

Tracking document status

Tofind out if adocument is published, you call the EbiDocument method getPublishStatus(). If it returns
null, then the document has no published content.

A publish date does not automatically reflect the time the document was published. It just indicates when
it should be published; for example, a publish date of null means publish immediately. However, your
publishing portlet can set the publish date if you want to track the date a document became available.

The document’s status field is available for your own document tracking. You can establish your own
application-specific set of status values and update the document’s status field to reflect its progress
through your document processing procedures. For example, you could specify submitted, reviewed,
approved, rejected, published, unpublished, archived, and purged as status values for your application.

Setting document status Thisexample presents amethod called setDocumentStatusToRej ected()
that sets a document’s status to r gj ected—perhaps to indicate that the document has been rejected by a
content administrator and requires further changes before it can be published. Note that after setting
status, you must call the updateDocument() method for the change to take effect.

The setDocumentStatusToRejected() method needs to access a content manager
(EbiContentM gmtDel egate), the context object (Ebi Context), and the document of interest—all of which
are passed in as arguments:

public void setDocumentStatusToRejected (
EbiContentMgmtDelegate cmgr, EbiContext context, String docID)
throws EboUnrecoverableSystemException, EboSecurityException,
EboItemExistenceException
{
EbiDocument doc = cmgr.getDocument (context, docID) ;
doc.setStatus ("rejected") ;
cmgr . updateDocument (context, doc) ;

Methods for source control and publishing

52

These methods of EbiContentM gmtDelegate are available for source control and publishing:

Method Returns Description

checkoutDocument() boolean Checks out a document to the current user (specified in
the context argument). This method locks the
document. To get the content for editing, use other
methods—such as getDocumentContentVersion().

checkinDocument() int Checks in a new version of the document with data for
the content. Only the user who checked out the
document can check it in. The user is implicit in the
context argument.

uncheckoutDocument() boolean Releases the lock set by the current user.

exteNd Director Content Management Guide

Method Returns Description

unlockDocument() boolean An administrative method that allows you to release a
document lock that was set by any user.

rollbackDocument- void Rolls document content from the latest version back to

Content() the specified one.

publishDocument- void Publishes a specific version of the specified document.

ContentVersion()

getContent() EbiDocContent Gets the published content object for a document. You
can choose whether it includes the actual data. If it
does, get the byte array of data by calling getData() of
EbiDocContent.

getDocumentContent- EbiDocVersion Gets a version of a document. You can choose whether

Version() it includes the actual data. If it does, get the byte array

of data by calling getData() of EbiDocVersion.

unpublishDocument- boolean

Content()

Removes the published content for a document.

Displaying documents

Portletsin your online application get adocument’s metadata and content, retrieve linked content, and
use the associated layout stylesto display the document to the user.

HTML content

If the content type of adocumentisHTML and it has no linked documents, the portlet might simply get

and set the content, as shown below:

EbiContentMgmtDelegate cm = null;

try {
cm =

com.sssw.cm.client.EboFactory.getDefaultContentMgmtDelegate () ;

} catch (EboFactoryException ebfe)

{

throw new EboUnrecoverableSystemException (ebfe,

"Unable to get ContentManager") ;

}

try {
EbiDocument doc = (EbiDocument)
cm. lookupDirectoryEntry (context, "MyFolder/TDBDocl",
EbiDocument .EL_DOCUMENT) ;
EbiDocContent content = cm.getContent (context, doc.getID(), true);

if (content != null)

{

PrintWriter writer = response.getWriter();
byte [] html = content.getDatal() ;
String shtml = new String(html) ;

writer.print (shtml) ;

}

} catch (EboItemExistenceException eiee)

throw new EboUnrecoverableSystemException(eiee,

"Unable to get Content");

} catch (EboSecurityException ese)

throw new EboUnrecoverableSystemException (ese,

"Security exception") ;

Managing Documents 53

XML content

If the content of a document isan XML String and it has no linked documents, the portlet could get the
content and the document layout (also asan XML String) and use the layout X SL to transform the XML.

This concept isillustrated in the displayContent() example method shown below. In this example,
methodsin com.sssw.fw.util.EboXmlHel per convert a StringtoaDOM and apply an X SL transformation
to aDOM. The displayContent() method accesses a content manager (Ebi ContentMgmtDelegate), the
context object (Ebi Context), and the document of interest—all of which are passed as arguments:

public void displayContent (
EbiContentMgmtDelegate cmgr, EbiPortalContext context, String docID)
throws EboUnrecoverableSystemException, EboSecurityException, EboItemExistenceException

EbiDocument doc = (EbiDocument)cmgr.lookupDirectoryEntry (
context, "MyFolder/TDBDocl", EbiDocument.EL DOCUMENT) ;
EbiDocContent doccnt = cmgr.getContent (context, doc.getID(), true);
if (doccnt != null)
{
byte[] xml = doccnt.getDatal() ;
EbiDocVersionDescriptor layoutver = cmgr.getDocumentLayout (
context, docID, EbiContentMgmtDelegate.COMPARE ALL, true);
EbiDocVersion layoutcnt = cmgr.getDocumentContentVersion (
context, layoutver.getDocumentID(), layoutver.getDocumentVersionID(), true);
byte[] xsl = layoutcnt.getDatal() ;
String sxml = new String(xml) ;
String sxsl = new String(xsl);

String content = EboXmlHelper.processXML (
EboXmlHelper.getDOM (sxml) , EboXmlHelper.getDOM (sxsl)) ;

// Set type according to results of xsl transformation

response.setContentType (EbiPortletConstants.MIME_TYPE HTML) ;

// Use a PrintWriter to render

writer.print (content) ;

Composite documents

A composite document could be constructed in many different ways. It isup to your portlet to gather the
pieces and put them together in an appropriate way. Typically, you would build an XML DOM for the
composite document and add elements for each piece. For asimpler composite document where the
pieces are HTML fragments, you might concatenate them into alarger HTML fragment.

Toillustrate the process of building an XML DOM, suppose you are displaying amovie review, a
document of type Movie Review. The content of the movie review document isthetext paragraphs of the
review. The document’s metadata provides the title, author, and other information specific to the Movie
Review type, such as genre, director, year of release, and cast. Child documents refer to an image of the
movie and cast biographies. To display al the data, the portlet buildsan XML DOM of the pieces and
provides an X SL style sheet for display specifications.

You will want to plan an XML structurefor defining the XSL and building the DOM in the portlet’s code.
You may want to formalize that structurein aDTD. The XML structure might look like this (shown
without closing tags):

<REVIEW>
<TITLE>
<AUTHOR>
<GENRE>
<DIRECTOR>
<CAST>
<CASTMEMBER >
<CASTPICTURE>

54 exteNd Director Content Management Guide

<BIO>
</CASTMEMBER >
<CASTMEMBER>
<CASTPICTURE>
<BIO>
</CASTMEMBER >
</CAST>
<CONTENT >
</REVIEW>

The coding steps might be:

1
2

Get the EbiDocument object.

Get the metadata you want displayed (such as title, author, director, and genre) and add elements

for each one. Element names might be TITLE, AUTHOR, and so on. The data values could be

attributes or text nodes of the elements.

Get the cast metadata and add a CAST element, with child CASTMEMBER elementsfor each one.

Get the content data. Add a CONTENT element for the review paragraphs (the document content)

and add the content data as a text node of the element.

Call getLinkChildDocuments() to get the linked child documents.

For each linked document, get the MIME type and other information to determine the document’s

purpose:

+ Foranimagefromthefilm, add aMOVIEPICTURE element whose attributes haveinformation
needed by the XSL to build animage link.

+ For acast biography, find the corresponding CASTMEMBER element and add a child BIO
element. Depending on the page design, you could insert information to build alink or include
the paragraphs.

+ For apicture of acast member, find the CASTMEMBER element and add a CASTPICTURE
element with information to build an image link.

When the XML DOM is complete, call methods of the context object to set the MIME type and the
content.

Managing Documents 55

56 exteNd Director Content Management Guide

Securing Content

This chapter describes how to use A CL-based security to authorize accessto Content M anagement (CM)
subsystem elements. It has these sections:

+ About access control

¢ ACL-based security

+ Methods for managing access control

+ Examplesof adding ACLs

+ Example of handling a security exception

NOTE: Most of the security tasks described in this chapter can also be accomplished using the CMS
Administration Console.

L) For more information, see Chapter 19, “Managing Content Security”.

About access control

The CM subsystem supports ACL -based security, asdescribed in “ ACL -based security” on page 58. You
can specify access restrictions based on user |D or group membership on most objectsin the CM
subsystem. You can use access restrictionsto:

+ Prevent changes after your infrastructure of document types, folders, and categories has been set up
+ Prevent inadvertent deletion of objects

+ Protect documents or other objects from being seen by unauthorized users

CM user groups

A comprehensive security policy must set different permissions for different user roles. Typical rolesin
the CM subsystem are:

Role Description

Author Has read and write access for documents; has read, write, and list access for
folders and categories.

Publisher Has publish access for documents; has list access for folders and categories.

Administrator Has all access rights to all objects. Users are considered administrators when the
ACL assigned to the EbiContentAdmin interface gives them at least one of the
permissions. See “ContentAdmin group” on page 59.

When setting up users and groups for exteNd Director, you will want to consider how your usersfall into
these roles and create appropriate groups. You can use those user IDs and groups to create ACL s that
implement your security. You might create amaster ACL that you can get and reuse throughout the CM
subsystem.

Securing Content 57

You can set up users and groups using the Director Administration Console (DAC).

L) For more information, see the chapter on using the Directory section of the DAC in the User
Management Guide.

ACL-based security

You specify access restrictions on CM objects by using an access control list (ACL). To provide support
for ACLs, exteNd Director implementsthejava.security.acl.Acl interface. Each of the securable elements
has a set of supported access right types, or permissions. The supported permissions are defined as String
constants in each object’sinterface.

This section describes using ACL s to specify access restrictions on CM objects.

L) For general information about using ACLsin exteNd Director applications, see the chapter on
ACL-based security in the User Management Guide

Permissions

The permissions defined for the CM subsystem include:

Permission Description

PROTECT Allows the users and groups in the ACL to change permissions on the object.

READ Allows the users and groups in the ACL to view the object or get the metadata for an
object.
WRITE Allows the users and groups in the ACL to make changes to the object, by updating the

object programmatically or by checking in a new version of a document. A user who
has been denied WRITE access cannot check out a document.

LIST Allows the users and groups in the ACL to view a list of the objects that this object
contains. This includes the documents and subfolders of a folder, the documents and
subcategories of a category, and the documents associated with a document type.

PUBLISH For documents, allows the users and groups in the ACL to change the published status
of the document. They can publish it and remove it from the published area.

Element types and associated permissions

The table that follows lists the subsystem securable element types (not including some securable
superinterfaces) and permissions they support:

Object Access right types

EbiContentAdmin PROTECT, READ, WRITE
EbiDocType PROTECT, READ, WRITE, LIST
EbiDocField PROTECT, READ, WRITE
EbiDocCategory PROTECT, READ, WRITE, LIST
EbiDocFolder PROTECT, READ, WRITE, LIST
EbiDocument PROTECT, READ, WRITE, PUBLISH
EbiDocLayoutStyle PROTECT, READ, WRITE

58 exteNd Director Content Management Guide

usSecurityACL.html
usPACDirectory.html

Object Access right types

EbiLayoutDocDescriptor PROTECT, READ, WRITE

ContentAdmin group

The EbiContentAdmin interface represents the built-in content administrator group. Users added to this
group have specified access to subsystem management and administration. Here are the available

permissions:

Permission Description

PROTECT Set ACLs for the ContentAdmin type.

READ Get subsystem elements (folders, categories and documents) in the CM subsystem

WRITE Add subsystem elements to the

CM subsystem

Methods for managing access control
The EbiContentM gmtDel egate interface provides access to most of the security-related methods in the

CM subsystem.

Accessing ACLs for existing elements

These methods of EbiContentMgmtDelegate let you set security for objects:

Method Returns Description

getAcl() java.security.acl.-Acl Gets the ACL for a securable element: category, field,
folder, layout style, layout document descriptor,
document type, or document.

setAcl() void Assigns an ACL to a securable element.

removeAcl() boolean for success Removes the ACL currently set for an element.

isAuthorized() boolean Checks whether the user identified in the context
object is authorized for the specified type of access
for an object.

getAllAccessible() Collection From a list of securable elements, filters out the ones

that are accessible to the user whose context is
passed in.

getAdminElement() EbiContentAdmin

Gets the Content Admin element holding the ACL that
identifies the users and groups that have
administrator access to content objects.

See “Accessing ACLs for ContentAdmin” on
page 60.

hasAdminAccess() boolean

This is a shortcut for isAuthorized() and is invoked
with a reference to the Content Admin element.

Securing Content 59

../javadoc/com/sssw/cm/api/EbiContentMgmtDelegate.html

Specifying ACLs for new elements

For securable elements, you can specify an ACL when you create the object. It is an argument of the
object’s add method on the Ebi ContentM gmtDel egate — addDocument(), addFolder(), and so on.

L) For acode example, see “ Examples of adding ACLS" on page 61.

Inheriting ACLs

For thefollowing objects: if you don’t specify an ACL when you create them, the settings of their
containers are copied to the new object:

New Copy the ACL of their
Folders Parent folder
Documents Folder

Layout descriptors Layout style

After the object iscreated, thereisno further connection to the container’s ACL . Changesto acontainer’s
ACL have no effect on the contained objects.

For other object types: if you don't specify an ACL, they have an empty ACL.

Accessing ACLs for ContentAdmin

These methods on EbiContentAdmin alow you to access ACL s for the ContentAdmin group:

Method Returns Description

getAcl() java.security.acl.-Acl Gets the ACL currently set for the ContentAdmin
element.

setAcl() void Assigns an ACL to the Content Admin element.

removeAcl() boolean for success Removes the ACL currently set for the Content Admin
element.

isUserAuthorized() boolean Checks if the current user is listed in the Content
Admin ACL.

Restricting element access to administrators

You can restrict access for any CM element to Content Admin users using the setRestrictedA ccess()
method. Specify the permission you want to restrict. For example, if you restrict accessto afolder for the
WRITE permission, only members of the ContentAdmin group have WRITE accessto the element.

NOTE: The restricted access right takes precedence over any other ACL associated with the restricted
element.

Here are the related methods on the Ebi SecurityManager interface:

Method Returns Description

setRestrictedAccess() boolean for Restricts specified access for an element to system
success administrators

check RestrictedAccess() boolean Checks whether an element has restricted access

60 exteNd Director Content Management Guide

../javadoc/com/sssw/cm/api/EbiContentAdmin.html
../javadoc/com/sssw/fw/security/api/EbiSecurityManager.html

Examples of adding ACLs

This example presents amethod called demonstrateSecurity() that illustrates the following techniques:

+ Adding READ access to the ContentAdmin element associated with a principal (the identity
assigned to a user as aresult of authentication)

+ Adding afolder with an ACL

+ Adding afolder with no ACL
NOTE: In this case the folder inherits the ACL from its parent.

+ Adding an ACL to an existing folder

The demonstrateSecurity() method needs to access a content manager (Ebi ContentM gmtDel egate), the
context object (EbiContext), and a principal—all of which are passed in as arguments:

public void demonstrateSecurity (

EbiContentMgmtDelegate cmgr, EbiContext context,
Principal principal)
throws
EboUnrecoverableSystemException, EboSecurityException, EboltemExistenceException,

EboFactoryException, NotOwnerException

{

EboPermission readPerm = EboPermission.getPermission (

context.getEbiSession(), EboPermission.READ) ;
EboPermission writePerm = EboPermission.getPermission (
context.getEbiSession(), EboPermission.WRITE) ;

// Add READ access to the Content Admin element to the passed-in principal
EbiContentAdmin adminElement = cmgr.getAdminElement (context) ;

Acl admAcl = cmgr.getAcl (context, adminElement) ;

AclEntry aclEntry = com.sssw.fw.factory.EboFactory.getAclEntry () ;
aclEntry.setPrincipal (principal) ;

aclEntry.addPermission (readPerm) ;

admAcl.addEntry (principal, aclEntry) ;

cmgr.setAcl (context, adminElement, admAcl) ;

// Add a folder with an ACL
Acl acl = com.sssw.fw.factory.EboFactory.getAcl() ;
aclEntry = com.sssw.fw.factory.EboFactory.getAclEntry () ;
aclEntry.setPrincipal (principal) ;
aclEntry.addPermission (readPerm) ;
aclEntry.addPermission (writePerm) ;
cmgr . addFolder (

context,

cmgr .getRootFolder (context) ,

"Movie Reviews",

EbiDocFolder.DIR _TYPE DEFAULT,

"Folder for movie reviews",

acl) ;

// Add a folder with no ACL -- it will inherit the ACL
// from its parent folder (if there is an ACL set on the parent)
EbiDocFolder frFolder = cmgr.addFolder (

context,

cmgr .getRootFolder (context) ,

"Financial Reports",

EbiDocFolder.DIR_TYPE DEFAULT,

"Folder for financial reports",

null) ;

// This code adds an ACL to an existing folder.
cmgr.setAcl (context, frFolder, acl);

Securing Content 61

Example of handling a security exception

This exampl e presents amethod called demonstr ateH andleExceptions() that illustrates how to handle
a security exception (and other exceptions as well).

This code publishes version 2 of a document whose ID is assigned to the variable docid. The
publishDocumentContentVersion() method will throw an EboSecurityException if the user is not
allowed to publish the specified document. This example handles the exception by adding an error
message to the context object. The portlet can then include the error message in its generated content so
the user knows what went wrong.

The demonstrateHandl eExceptions() method needs to access a content manager
(Ebi ContentM gmtDel egate), the context object (Ebi Context), and the document of interest—all of which
are passed in as arguments.

public void demonstrateHandleExceptions (
EbiContentMgmtDelegate cmgr, EbiContext context, String docID)

try

{
}

catch (EboSecurityException se)

{

cmgr . publishDocumentContentVersion (context, docID, 2, true, true);

se.printStackTrace () ;
String msg = "Security violation: " + se.toString();
context.setValue ("error", "User does not have access. " + msg);

}

catch (EboUnrecoverableSystemException use)
use.printStackTrace () ;
String msg = "Unrecoverable exception: " + use.toString() ;
context.setValue ("error", msg) ;

}

catch (EboItemExistenceException iee)

{

iee.printStackTrace () ;
String msg = "Item existence exception: " + iee.toString();
context.setValue ("error", msg) ;

62 exteNd Director Content Management Guide

About tasks

Installed tasks

Managing Tasks

This chapter describes how tasks work in the Content Management (CM) subsystem and explains how to
reconfigure installed tasks and write and implement custom tasks. It contains the following sections:

+ About tasks

+ About how tasks are registered and configured
o Customizing an installed task

+ Creating and implementing a new task

+ Custom task sample code

+ Working with task events

L You also can use the CM'S Administration Console to manage tasks. For more information, see
Chapter 21, “Administering Automated Tasks”.

An exteNd Director task is abackground job or process that you can configure to run at a specified time
or specified times. Typically, atask carries out a specific CM operation, such as publishing documents.

Using tasks A task must be enabled before it can be used in a deployed exteNd Director application.
A list of enabled tasks appearsin the Task section of the CM'S Administration Console. You can start and
stop the tasks that appear in thislist while an application is running

Types of tasks There are two types of exteNd Director tasks: periodic and scheduled. Periodic tasks

are configured to run at regular intervals (specified in milliseconds). Scheduled tasks are configured to
run at specific dates and times. A task can be scheduled, periodic, or both.

The following tasks are installed with the CM subsystem:

Task name Description

publish Publishes a specified set of documents.

expire Expires a specified set of documents.

janitor Removes a specified set of documents.

synch Synchronizes CM data with the Search subsystem engine, which by default is based on
the Autonomy Dynamic Reasoning Engine (DRE); updates to CM data are propagated
to the DRE.

NOTE: The synch task appears in the Task section only when the CM subsystem’s
Search synchronization mode is set to batch. In immediate synchronization mode, the
CM subsystem automatically performs search synchronization operations.

Managing Tasks 63

Custom tasks

Task name Description

default For debugging and demonstration purposes. This task is not automatically implemented
in a deployed application.

Configurability Theseinstalled tasksare highly configurable (in a set of three XML files) and can be
adjusted to meet the specific needs of your application. For example, you might provide atask such as
the publisher or the janitor with a query that defines the scope of its operation. Such a query would
specify the set of documents on which the task was to operate.

L) For information on which files you need to edit to reconfigure an installed task, see “ About how
tasks areregistered and configured” on page 64. For an example, see“ Customizing an installed task” on
page 66.

You may not be able to meet the needs of some applications just by reconfiguring the installed tasks. In
such cases you can also create new, application-specific tasks.

When you create atask, you:

+ Register itstype, name, description, and configuration information
+ Create Java classes to provide the task’s functionality and register these classes.

L) For information on thefiles you need to edit to register and configure anew task—and register the
Java classes you create for it, see “ About how tasks are registered and configured” next.

About how tasks are registered and configured

tasktypes.xml

Tasks—and the Java classes associated with them—are registered and configured in three XML filesin
your project’s library/ContentM gmtService/ ContentM gmtServi ce.spf/ContentM gmt Servi ce-conf
directory:

XML file What it does

tasktypes.xml Establishes the names and descriptions of tasks and identifies them as
periodic or scheduled

Default_tasklist.xml Configures tasks

services.xml Associates tasks (and other exteNd Director functions) with their respective
Java classes

The entriesin tasktypes.xml establish the name and description of each task and identify each task as
either periodic or scheduled (or both). The structure of this file must conform to framewor k-task-
type 3 0.dtd inyour project’s library/FrameworkService/FrameworkService.spf/DTD directory.

Here is an excerpt from tasktypes.xml, showing how the fileis structured and how the default, synch,
and publish installed tasks are initially defined:

<framework-task-types>
<!-- PERIODIC TASK TYPES -->
<periodic>
<task-type>
<type-name>default</type-name>

64 exteNd Director Content Management Guide

<type-descr>The Default Periodic Task</type-descr>
</task-type>
<task-type>
<type-names>synch</type-name>
<type-descr>Periodic CM/Search Engine Synchronization Task</type-descr>
</task-type>
<task-type>
<type-names>publish</type-name>
<type-descr>Periodic Document Publish Task</type-descrs>
</task-type>

</periodic>
<!-- SCHEDULED TASK TYPES -->
<scheduled>

</scheduled>
</framework-task-types>

Default_tasklist.xml

The entriesin Default_tasklist.xml configure each task in conformance with contentmgmt-task-
list_ 3 0.dtd inyour project’s library/ContentM gmtService/ContentM gmtService.spf/DTD directory.

Hereisan excerpt from Default_tasklist.xml showing how thefileis structured and how the periodic-
publish task is configured:

<contentmgmt-task-list>

<periodic-publish>
<task-name>Default Repository Document Publish</task-name>
<description>The Default Repository Document Publish Task</descriptions
<since-last>false</since-last>
<enabled>true</enabled>
<intervals>
<millis>86400000</millis>
<exact>false</exacts>
</intervals>
<do-all-not-yet-published>false</do-all-not-yet-publisheds>
<do-all-unpublished>false</do-all-unpublished>
<do-all-ready>false</do-all-ready>
<force-publish>false</force-publish>
</periodic-publish>

</contentmgmt-task-list>

Naming convention Notethat the tag name for the periodic-publish task is constructed from itstype
(periodic) and its name (publish) as defined in tasktypes.xml, connected by ahyphen. Thisisarequired
naming convention for the Default_tasklist.xml file.

Enabling or disabling atask Notethat to enable atask, you set the content of the <enabled> tagto
true. To disable atask, you set thisvalue to false.

services.xml

Theservices.xml fileincludes entriesthat associate tasks (and other exteNd Director functions) with their
respective Java classes. The structure of thisfile must conformto framework-services 3 0.dtd inyour
project’s library/Framework Service/FrameworkService.spf/DTD directory.

Hereis an excerpt from services.xml showing how the periodic-publish task is handled:

<services>
<interface>com.sssw.cm.periodic-publish</interface>

Managing Tasks 65

<impl-class>com.sssw.cm.task.impl.EboDocPeriodicPublishTask</impl-class>
<description>Periodic CM Document Publish Task</descriptions>
<max-instances>0</max-instancess>

<startup>M</startup>

<namespaced>false</namespaceds>

</service>

Graphical view exteNd Director also provides agraphical view of thisfile where you can add new
entries.

New tasks only You will need to add new entriesto services.xml only if you create new tasks.

Customizing an installed task

66

You customize an installed task by editing its configuration in the Default_tasklist.xml file.

Inthefollowing example, adocument query has been added to the definition of the periodic-publish task.
The query is specifiedinthe <content-search> element.

The added code (shown in bold) configures the periodic-publish task to publish all documents whose
STATUS has been set to Reviewed:

<periodic-publishs>
<task-name>Default Repository Document Publish</task-name>
<description>The Default Repository Document Publish Task</descriptions
<since-last>false</since-last>
<enabled>true</enabled>
<intervals>
<millis>86400000</millis>
<exact>false</exact>
</intervals>
<do-all-not-yet-published>false</do-all-not-yet-published>
<do-all-unpublished>false</do-all-unpublisheds>
<do-all-ready>false</do-all-ready>
<force-publish>false</force-publish>
<content-search>
<where-clause>
<eqg>
<var>STATUS</var>
<val>Reviewed</val>
</eq>
</where-clause>
</content-search>
</periodic-publish>

L] For acomplete description of the elements and values you can use to construct a document query
within atask’s definition, see the definition of the <content -search> element in contentmgmt-task-
list 4 _0.dtd.

Need to redeploy You must redeploy your application EAR for any task configuration changes to
take effect.

exteNd Director Content Management Guide

Creating and implementing a new task

The following procedure is based on the example of creating a new task named new-doc-notifier that
checks for new documents and notifiesalist of recipients about the new documents by e-mail.

> To create and implement a new task:
1 Register your task type.

To do so, madify the tasktypes.xml file. You can register the task as scheduled, periodic, or both
scheduled and periodic. In this example, the new task is periodic:

<periodic>
<task-type>
<type-name>new-doc-notifier</type-name>
<type-descr>Periodic CM task for notifying of any new documents.</type-
descr>
</task-type>

2 Register your task in the tasklist.
To do so, add a new element to the Default_tasklist.xml file:

<periodic-new-doc-notifiers>

<task-name>New Document Notifier</task-name>

<description> Periodic CM task for notifying of any new
documents.</description>

<since-last>false</since-last>

<enabled>true</enabled>

<intervals>

<millis>86400000</millis>
<exact>false</exact>

</intervals>

<!-- any other XML that is specific to the custom task goes here... -->

<!-- for instance, there may be a node here defining the list of email
recipients. -->

<recipientss>

<recipient>user@emyco.com</recipient>

<recipient>user2@myco.com</recipient>

<recipient>user3@myco.com</recipients>

</recipients>

<mail-smtp-host>smtp host@myco.com</mail-smtp-host>

<subject>New documents have been added</subject>

<text>The following new documents have been added:</text>

</periodic-new-doc-notifiers>

Naming convention Note that the name of the XML tag surrounding the task definition
(<periodic-new-doc-notifiers) must be constructed from the task’s type (periodic or
scheduled) and the task’s name in Default_tasklist.xml. This naming convention is required.

3 Write Javaclasses for the new task.

The generic exteNd Director task management API is provided in the com.sssw.fw.task.api
package. This package contains very general interfaces for tasks, task types, and task management:

+ EbiTask

+ EbiScheduledTask
+ EbiPeriodicTask

+ EbiTaskType

+ EbiTaskManager

The CM subsystem subclasses those interfaces in its own task management package
(com.sssw.cm.task.api). It provides its own EbiTask and Ebi TaskManager along with

Ebi TaskMgmtDelegate, all three of which should be used for managing tasks. This package also
contains generic interfaces for document publishing, expiration, removal, and synchronization
between the CM subsystem and the Search subsystem engine.

Managing Tasks 67

When writing your own custom task, you should implement one of the following interfaces:

« com.sssw.fw.task.api.EbiPeriodicTask

o com.sssw.fw.task.api.Ebi ScheduledTask

In the code for the new-doc-notifier example, the NewDocumentNotifier class extends
com.sssw.cm.task.impl.EboTask and encapsulates the details of the task’s duties and how they are

carried out. The PeriodicNewDocumentNotifier classis the periodic subclass of the
NewDocumentNotifier class.

L For acomplete listing of the Java code for the new-doc-notifier example, see “ Custom task
sample code’ on page 68.

4 Register the new task’s Java class.
To do so, add an entry to the services.xml fileunder <1 -- Task management related objects
-—=>.

<!-- Periodic tasks -->

<services
<interfaces>com.myco.cmtask.api.periodic-new-doc-notifier</interfaces
<impl-class>com.myco.cmtask.impl.PeriodicNewDocumentNotifier</impl-class>
<description>The periodic new document notifier class.</descriptions>
<max-instances>0</max-instances>
<startup>M</startup>

</services>

Naming convention Note that in order for the object to be factoried and instantiated correctly,
the interface naming should correspond to the task kind and type. For example, periodic and new-
doc-notifier map to periodic-new-doc-notifier inthe <interface> node value.

5 Prepare for your custom task to be loaded and instantiated correctly:
5a Place your custom task class or classesinto a separate JAR.
5b Add the JAR to your exteNd Director EAR.

5¢ Inthe PMC WAR of your application, add the custom class JAR to the Class-Path section of
the META-INF/MANIFEST.MF file.

This ensures that class |oading works correctly and that users can manage the custom tasksin
the Task section of the CM'S Administration Console.

6 Build and deploy your application.

7 Start thetask:
7a Inabrowser window, launch the CM S Administration Console and log in.
7b Click the Tasks button to enter Tasks mode.
7c Inthe Tasks Pane, click to select your task and then click the Sart button.
TIP: To stop atask, click the Stop button.

Custom task sample code

68

This section provides alisting of the Java code for the NewDocumentNotifier classdiscussed in Step 3
above.

This section also includes the code for the PeriodicNewDocumentNotifier class, which isthe periodic
subclass of the NewDocumentNotifier class.

exteNd Director Content Management Guide

NewDocumentNotifier

package com.myco.cmtask.impl;

// Java imports

import
import
import
import
import
import

java.io.*;
java.sqgl.Timestamp;
java.util.x*;
javax.mail.*;
javax.mail.internet.*;
javax.activation.*;

// FW imports

import
import
import
import
import

fw.
sssw. fw.
fw.
fw.
fw.

com.SSsSw. api.*;
exception.*;

log.*;

com.

com.sssw

com.sSssw.

com.SSSw. util.*;

// CM imports

import
import
import
import

com.
com.

sSssw.cm.

cm.

api.*;
factory.*;
task.api.*;

SSSw.

com.sssw.cm.

com.sSssw.cm

// Other imports
import org.w3c.dom.*;

task.exception.

* .
7

.task.impl.EboTask;

abstract public class NewDocumentNotifier extends EboTask

{

New Document Notifier task.";

protected static final String DEFAULT SUBJECT = "New documents have been
added" ;

protected static final String DEFAULT TEXT = "The following documents have
been added:";

protected static final String DEFAULT SENDER = "notifier@myco.com";

protected static final String LOCATION = "Location: ";

protected static final String TITLE = "Title: ";

protected static final String AUTHOR = "Author: ";

//

// Member variables

!/

protected EbilLog m_log; // Our log

protected ArrayList m recipients; // Notification recipients

protected String m_smtpHost; // SMTP host

protected String m_subject; // Message subject

protected String m_text; // Message text

protected String m_sender; // Sender

protected String m_lineSep; // Line separator

/7

// Constants
//

final
final
final
final
final
final
final
final
final

static String
String
String
String
String
String
String
String
String

protected
protected
protected
protected
protected
protected
protected
protected
protected

static
static
static
static
static
static
static
static

// These actually belong in a
protected static final String

RECIPIENTS = "recipients";
RECIPIENT = "recipient";

SMTP_HOST = "mail-smtp-host";
SUBJECT = "subject";

TEXT = "text";

SENDER = "sender";

NEWLINE = "\n";

MAIL_SMTP_HOST = "mail.smtp.host";

LINE_SEPARATOR = "line.separator";

resource bundle. ..
ERROR =

Managing Tasks

"An error occurred while executing the

69

70

// Constructor
public NewDocumentNotifier ()
{
// Use the CM log
m_log = EboLogFactory.getLog(EboLogFactory.CM) ;

m_recipients = new ArrayList();
m_subject = DEFAULT_ SUBJECT;
m_text = DEFAULT_ TEXT;

m_sender = DEFAULT SENDER;

// Initialization from XML

public void fromXML (Node node)

{
// Rely on the superclass to get all the general task
// settings
super . fromXML (node) ;

try
{
NodeList nodes = node.getChildNodes () ;
if (nodes != null)
{
// Process the nodes
for (int i = 0; i < nodes.getLength(); i++)
{
Node child = nodes.item(1i) ;
String nodeName = child.getNodeName () ;

if (child.getNodeType () == Node.ELEMENT NODE)
{
// Recipient list
if (RECIPIENTS.equals (nodeName))
processRecipientList (child) ;

// SMTP host
else if (SMTP_HOST.equals (nodeName))
m_smtpHost = getElementValue (child) ;

// Message subject
else if (SUBJECT.equals (nodeName))
m_subject = getElementValue(child) ;

// Base message text
else if (TEXT.equals (nodeName))
m_text = getElementValue(child) ;

// Sender
else if (SENDER.equals (nodeName))
m_sender = getElementValue (child);

}

} // End for each node

}

catch (Exception ex)

{

EboExceptionHelper.handleException (

ex, // The exception
m_log, // Our log to write exception into
false, // Don’'t print stack trace to console

exteNd Director Content Management Guide

false) ; // Don’t rethrow as a runtime exception

// Process the list of recipients provided in the XML task definition
protected void processRecipientList (Node node)
{
NodeList nodes = node.getChildNodes () ;
if (nodes != null)
{
// Process the nodes
for (int i = 0; i < nodes.getLength(); i++)

{

Node child = nodes.item (i) ;

if (child.getNodeType () == Node.ELEMENT NODE)
{
String nodeName = child.getNodeName () ;
if (RECIPIENT.equals (nodeName))
{
String recipient = getElementValue (child);
if (!EboStringMisc.isEmpty (recipient))
m_recipients.add(recipient) ;

// Extract a node value from a Node

public static String getElementValue (Node node)

{
// Entities are often considered separate text nodes;
// for example, Jim's wagon is represented by three
// text nodes "Jim", "'",and "s wagon". Thus all
// children need to be concatenated in order to retrieve
// the proper text node value.

String nodeValue;
if (node.hasChildNodes())
{
Node curNode = node.getFirstChild() ;
nodeValue = EboStringMisc.m_ emptyStr;
while (curNode != null)
{
nodeValue = nodeValue + curNode.getNodeValue() ;
curNode = curNode.getNextSibling() ;

}

else
nodeValue = EboStringMisc.m_emptyStr;
return nodeValue;

}

// Carry out the task
public void doTask () throws EboTaskException

{

try

{
super .doTask () ;
EbiContentManager cmgr = EboFactory.getDefaultContentManager () ;
EbiDocQuery query =
(EbiDocQuery) cmgr.createQuery (EbiDocQuery.DOC_QUERY) ;

// If we're to only get the data that's changed since

Managing Tasks

// The time that the task was last run

if (getSincelast())
// Figure out the start of the interval
Timestamp fromTime = getFromTime () ;

// Figure out the end of the interval
Timestamp toTime = new Timestamp ((new Date()) .getTime()) ;

EbiQueryExpression expr = null;
EbiQueryExpression expr2 = null;

// Augment the where clause with the time interval
if (fromTime != null)
expr = query.whereCreateDate (fromTime,
EbiDocQuery.ROP_GREATER, false);
if (toTime != null)
expr2 = query.whereCreateDate (toTime, EbiDocQuery.ROP_LEQ,
false) ;

// Set the augmented where clause into the query
if (expr != null && expr2 != null)
{
expr .andExpression (expr2) ;
query.setWhere (expr) ;
}
}

// Otherwise, we'll process all the documents

// Get the list of documents
Collection documents = cmgr.findElementsFiltered(m_context, query);

// Send the e-mail notifications
sendNotifications (documents) ;

}

catch (Exception ex)

{
}

throw new com.sssw.fw.task.exception.EboTaskException (ex, ERROR) ;

// Send the e-mail notifications to our recipients
protected void sendNotifications (Collection documents)
throws EboUnrecoverableSystemException, EboSecurityException,
MessagingException

if (!documents.isEmpty())
{

String msgText = getEmailMessageBody (documents) ;

// For each recipient

for (int i = 0; 1 < m_recipients.size(); 1++)
{
String recipient = (String)m recipients.get (i) ;
send (
m_sender, // From
recipient, // To
m_smtpHost, // Host
m_subject, // Subject
msgText) ; // Yext

// Generate an e-mail
// "The following documents have been added:

72 exteNd Director Content Management Guide

!/
// <doc 1>
// <doc 2>
/] e
// <doc N>"
protected String getEmailMessageBody (Collection documents)
throws EboUnrecoverableSystemException, EboSecurityException
{
String lineSeparator = getLineSeparator();
StringBuffer buf = new StringBuffer (m_text);
buf .append (lineSeparator) ;
buf .append (lineSeparator) ;

Iterator iter = documents.iterator() ;
while (iter.hasNext())
{
EbiDocument doc = (EbiDocument)iter.next () ;
buf .append (getDocumentDescriptor (doc)) ;
buf .append (lineSeparator) ;
buf .append(lineSeparator) ;

return buf.toString() ;

// Send an e-mail
protected static void send(
String from,
String to,
String host,
String subject,
String msgText)
throws MessagingException

Properties props = System.getProperties() ;
props.put (MAIL_SMTP_HOST, host);
Session session = Session.getDefaultInstance (props, null);

// Create a message

Message msg = new MimeMessage (session) ;

msg.setFrom(new InternetAddress (from)) ;
InternetAddress[] address = { new InternetAddress(to) };
msg.setRecipients (Message.RecipientType.TO, address) ;
msg.setSubject (subject) ;

msg.setSentDate (new Date()) ;

msg.setText (msgText) ;

Transport.send (msg) ;

// Generate a document descriptor
// Location: <...>
// Title: <...>
// BAuthor: <...>
protected String getDocumentDescriptor (EbiDocument doc)
throws EboUnrecoverableSystemException, EboSecurityException
{
String lineSeparator = getLineSeparator();
StringBuffer buf = new StringBuffer (LOCATION) ;
buf.append(doc.getURL (false)) ;
buf .append(lineSeparator) ;
buf .append (TITLE) ;
buf .append (doc.getTitle()) ;
buf .append (lineSeparator) ;
buf .append (AUTHOR) ;
buf.append (doc.getAuthor()) ;
return buf.toString() ;

Managing Tasks

73

// Figure out the line separator to use
protected String getLineSeparator ()

if (m_lineSep == null)
m_lineSep = System.getProperty (LINE SEPARATOR, NEWLINE) ;
return m_lineSep;

abstract protected Timestamp getFromTime () ;

PeriodicNewDocumentNotifier

package com.myco.cmtask.impl;

// Java imports
import java.sqgl.Timestamp;

// Framework imports
import com.sssw.fw.task.api.*;
import com.sssw.fw.task.impl.*;

// CM imports
import com.sssw.cm.api.*;
import com.sssw.cm.task.api.*;

// Other imports
import org.w3c.dom.*;

public class PeriodicNewDocumentNotifier
extends NewDocumentNotifier
implements EbiPeriodicTask

/7

// Protected data

/7

protected long m_interval; // Interval, if any
protected boolean m_exact; // Run asap or x millis after
// current time

/7

// Constructor

!/

public PeriodicNewDocumentNotifier ()

{
}

public boolean isExact ()

{
}

return m_exact;

public long getInterval ()

{
}

return m_interval;

public void setExact (boolean exact)

{
}

m_exact = exact;

74 exteNd Director Content Management Guide

public void setInterval (long millis)

{
}

m_interval = millis;

public void fromXML (Node node)

{

super . fromXML (node) ;
EboTaskHelper.getPeriodicDataFromXML (this, node) ;

}

public String toString()

{

return super.toString() +
", Interval (millis)=" + m_interval +
", Exact=" + m_exact;

}

protected Timestamp getFromTime ()

{
// For an interval-based task, the 'from' time is 'none' if
// the task has not run once yet; otherwise it's
// task_first scheduled time + interval*times task ran
return (m_timesRan < 1) ? null :
new Timestamp (
m_launchTime.getTime () + m_interval * (m_timesRan - 1));

Working with task events

Task events are an extension of the exteNd Director event model framework, consisting of state change
events, event producers, and event listeners (including vetoable listeners). This section includes these
topics:

+ Task event types

+ Registering for atask event

+ Enabling or disabling a task event

This section assumes familiarity with exteNd Director event model and event handling. For more
information, see the section on working with eventsin Devel oping exteNd Director Applications.

Task event types

The API defines a set of state change events related to task management operations. Event IDs are
exposed on the individual event classes as well as on the com.sssw.fw.task.event.api.Ebi Constants

interface:
Task operation Event ID constant
Task added EVENT_ID_TASK_ADDED

Task completed ~ EVENT_ID_TASK_COMPLETED

Task disabled EVENT_ID_TASK_DISABLED
Task enabled EVENT_ID_TASK_ENABLED
Task failed EVENT_ID_TASK_FAILED
Task started EVENT_ID_TASK_STARTED

Managing Tasks 75

cdEventHandling.html

Task operation Event ID constant

Task stopped EVENT_ID_TASK_STOPPED

Tasks listed EVENT_ID_TASKS_LISTED

Generic state change events Inaddition, there are generic state change constants representing
types of changes defined in com.sssw.fw.event.api.EboStateChangeEvent.

Registering for a task event

> To register a task event listener:

*

Use either the addStateChangel istener() or the addVetoableStateChangel istener method on the
task manager object (com.sssw.cm.task.api.Ebi TaskM gmtDelegate).

You can register for aspecified type or types of events using this version of addStateChangel istener():

public boolean addStateChangeListener (
BitSet events, EbiStateChangelListener listener)

where eventsisabit set of event IDs.

Use the event I Ds specified in com.sssw.fw.event.api.Ebi Constants. For example, this code registers for
the task started, stopped, and completed operations:

EbiTaskMgmtDelegate tmgr = new EbiTaskMgmtDelegate () ;
EbiStateChangelistener listener = new EbiStateChangeListener() ;
// Instantiate a Java BitSet and populate it

BitSet events = new BitSet () ;

events.set (EbiConstants.EVENT ID TASK STARTED) ;

events.set (EbiConstants.EVENT ID TASK STOPPED) ;

events.set (EbiConstants.EVENT ID TASK COMPLETED) ;

// add listener

tmgr.addStateChangelListener (events, listener);

Enabling or disabling a task event

> To enable or disable task events:

1
2

Open the config.xml for the Framework subsystem in your exteNd Director project.
Find this property:
com.sssw.fw.task.events.enable
Set the value to true for enable or false for disable.
Redeploy your project.

76 exteNd Director Content Management Guide

locator cdLocator.html#Frameworksubsystemconfiguration file

Managing Content Caching

This chapter describes caching in the Content Management (CM) subsystem and includes these topics:

+ About cachingin CM
+ Summary of CM caching information
+ Controlling caching in the DAC

About caching in CM

Several CM elements are cached by default while an exteNd Director application isrunning. Caching can
increase the efficiency of an application (because the application makes fewer SQL queries of the
database).

For most of these elements, you can configure your exteNd Director EAR to override the default settings
for caching.

NOTE: If you make any changes to the caching settings, you must redeploy your exteNd Director EAR
for the changes to take effect.

Summary of CM caching information

Caching behavior

The table below provides the following information on caching behavior for several elements of
documentsin the CM subsystem:

+ Element—The name of the CM element

+ CM API object name—The com.sssw.cm.api interface name that corresponds to the CM element
+ CM cache holder used—The name of the cache holder used for the element

+ Default behavior—The default caching behavior for the element

+ Settingin the CM config.xml file—The setting to change to alter the default behavior

Managing Content Caching 77

L) For information, see the section on reconfiguring your EAR project in Devel oping exteNd
Director Applications.

CM API object Default
Element name CM cache holder used behavior Setting in CM config.xml
Extension metadata EbiDocField ContentMgmtService/- Cached com.sssw.cm.cacheFields
fields CacheHolder/Fields
Document types EbiDocType ContentMgmtService/- Cached com.sssw.cm.cacheDocTypes
CacheHolder/DocTypes
Folders EbiDocFolder ContentMgmtService/- Cached com.sssw.cm.cacheFolders
CacheHolder/Folders
Categories EbiDocCategory = ContentMgmtService/- Cached com.sssw.cm.cacheCategories

CacheHolder/Categories

Document metadata

EbiDocument

ContentMgmtService/-
CacheHolder/Documents

Always cached

None

Document contents

EbiDocContent

None

Never cached

None

Document content

versions

EbiDocVersion

None

Never cached

None

Caching of folders, categories, and document metadata

Folders, categories, and document metadata, when cached, are cached by both UUID and URL.

Document metadata is always cached.

About document content and versions

Controlling

Document contents and versions of document content are not cached, because some cached content
might require excessively large amounts of memory.

caching in the DAC

Another place you can control the caching processison the Cachetab of the Configuration section of the
DAC. For example, you can flush asingle cache or all caches at once. This can be helpful when you are
doing diagnostic work on arunning exteNd Director application.

L) For more information on controlling caching in the DAC, see the discussion of the Cachetab in
Developing exteNd Director Applications.

78 exteNd Director Content Management Guide

cdConfigServicesNew.html
cdConfigServicesEdit.html

Importing and Exporting Content

This chapter describes the import and export facilities provided with the exteNd Director Content
Management (CM) subsystem. It has these sections:

+ About importing and exporting

+ About the export facility

+ About the import facility

o Customizing imports and exports

About importing and exporting

The CM subsystem includes facilities for importing and exporting data between databases or within a
single database.

Uses for the import and export facilities include:

+ Moving or copying folders, categories, and documents within arepository
+ Moving CM data between different stages of devel opment

Integrating with third-party vendors

Backing up and restoring CM data

+ Debugging and data analysis

*
*
This chapter describes how the import and export functions work and how you can customize them.

Using the import/export facilities

L) You can use the import/export facilitiesin the CMS Administration Console to import and export
content.

L) For more information, see Chapter 20, “Importing and Exporting Content”

About the export facility

The export facility comprises these elements:

Export facility element Description

Export component(s) A portal portlet (or other Ul element) that gets the data export descriptor
(DED) selected by the user and lets the user save the CM archive
generated by the EbiExporter object.

NOTE: This function is provided in the CMS Administration Console.

Importing and Exporting Content 79

Export facility element Description

Data export descriptor An XML descriptor that defines the export data selected by the user.

DED . . - .
() For more information, see “Customizing the data export descriptor
(DED)” on page 82.

EbiExporter Contains the API for exporting CM data. This object queries the CM
repository for data based on the scope specified in the DED and then
packages the result into a CM archive.

CM export servlet Provides a connection between the EbiExporter object and the exporter
portlet. This object passes the DED from the portlet to the exporter API
and then gets the CM archive from the exporter and returns it to the portlet.

CM archive A ZIP file that contains the CM export data and a default data import
descriptor (DID) for subsequent use with the import facility.

For a description of the archive contents, see “Structure of the data
import or export archive” on page 221.

Export process

Here is how the export process works:

1 2

Export CM export 5 | EbiExporter API [4

components 6 servlet
<,':: — =

I

File system

exteNd
Director DB

1 Theexport process begins when a portlet gets the selected DED and passes it to the CM export
serviet.

2 Theexport servlet forwards the DED to an object that implements the EbiExporter API.

NOTE: The servlet provides remote access to the EbiExporter API; however, the portlet could call
the API directly.

3 The CM exporter API usesthe DED to create a query representing all data and infrastructure the
user has identified and executes the query against the CM database.

4 The CM database responds to the query by returning araw result set.

5 TheCM exporter API formats the raw query result into a structured ZIP archive file containing the
content and data descriptors and returns the archive to the export servlet.

6 Theexport servlet returns the ZIP file to the portlet as bytes of content with a MIME type of
application/zip.

7 Theexport portlet getsthe ZIP file and savesit in adisk location specified by the user.

80 exteNd Director Content Management Guide

About the import facility

Theimport facility is made up of these elements:

Import facility element

Description

Import component(s)

A portal portlet (or other Ul element) that provides the Ul for the user to
select import data. This import function is provided in the CMS
Administration Console.

Data import descriptor

An XML descriptor based on the contents of the CM archive generated by

(DID) the exporter.
L) For more information, see “Customizing the data import descriptor
(DID)” on page 82.

Ebilmporter Contains the API for importing CM data. It extracts the DID from the CM

archive and uses it to insert data into the target database.

CM import servlet

Provides a connection between the Ebilmporter and the CMS
Administration Console. This object passes the CM archive to the importer
API and creates an XML document that enumerates any warnings and
failures encountered in the import process.

Import process

Here is how the import process works:

Import CM import

components 1 7 serylet

3
G Ebilmporter 4F] 5
<::I Director DB

I

File systern

1 Theimport process begins when a portlet allows the user to select the CM archive containing the

DID.

The CM archiveis generated by the export facility.
2 Theimport portlet posts the ZIP file to the CM import servlet viaHTTP.

NOTE: The servlet provides remote access to the Ebilmporter API; however, the portlet could call

the API directly.

3 Theimport servlet passes the ZIP file to the CM importer as an input stream.

4 The CM importer extractsthe DID from the ZIP and usesiit to transfer the data from the ZIP file to
the underlying content repository.

5 The CM importer returns a summary of its execution to the CM import servlet.

6 Theimport servlet creates an XML document that represents successes, warnings, and failures that
were encountered during the import process.

7 Theimport servlet returns the XML document to the portlet, which generates areport for the user.

Importing and Exporting Content 81

Customizing imports and exports

You can customize data imports and exports several ways:

Operation Customizing option
For an export Providing a custom DED file before executing an export
For an import Editing the generated DID before executing an import

Adding or deleting items from the CM archive before executing an import

For an exportoran Providing your own logic by implementing the import and export APIs
import

Customizing the data export descriptor (DED)
The data export descriptor (DED) isan XML file you can use to:
+ Set configuration options for data export

+ Specify what CM datawill be placed in your export archive

Format for entries The entriesin your DED must conform to the DTDs in your project’s
library/ContentM gmtService/ContentM gmtService.spf/DTD directory.

Sample DED files Thereare several sample DED filesin your project’s
library/ContentM gmtService/ContentM gmtService.spf/DTD directory. Each of these samplesrepresents
atypical export scenario:

Sample file Demonstrates how to

contentmgmt-export- « Export all data out of the CM system

descr_5_0_sample.xml | gpecify options for the operation

contentmgmt-export- + Export specific infrastructural data out of the CM system
descr_5 0_sample2.xml

contentmgmt-export- « Export specific infrastructural data out of the CM system

descr_5_0_sample3.xml | gynort dependent items in the element hierarchy

contentmgmt-export- + Export all documents and supporting infrastructure using default
descr_5_0_sampled.xml configuration options

contentmgmt-export- « Export certain elements of documents that satisfy a query conforming to
descr_5_0_sample5.xml contentmgmt-docmeta-search_5_0.dtd

Customizing the data import descriptor (DID)
The dataimport descriptor (DID) isan XML file you can use to:

+ Set configuration options for dataimport
+ Set overwrite options for each type of CM data
+ Specify thetarget folder for the import

Format for entries Theentriesin your DID must conform to contentmgmt-import-descr_5 0.dtd
in your project’s library/ContentM gmtService/ContentM gmtService.spf/DTD directory.

82 exteNd Director Content Management Guide

Sample DID file Thereisasample DID filein your project’s
library/ContentM gmtService/ContentM gmtService.spf/DTD directory that shows how to set al
available import options:

+ contentmgmt-import-descr_5 0 samplexml

Accessing the import and export API

In most cases, editing the descriptors or the CM archive should provide most of the flexibility you need.
However you can access the import and export API directly for tasks ranging from ad hoc imports and
exports to writing your own facility.

Potential uses of the functionality provided by Ebilmporter and EbiExporter include;

+ Importing pre-existing documentsinto anew exteNd Director CM system
+ Backing up and restoring CM data

+ Replicating data between two CM systems

+ Moving and copying data within asingle CM system

L) For more information, see the online APl documentation for EbiExporter and Ebilmporter.

Importing and Exporting Content 83

new ../javadoc/com/sssw/cm/api/EbiExporter.html
new ../javadoc/com/sssw/cm/api/EbiImporter.html

84 exteNd Director Content Management Guide

Working with Content Management Events

This chapter describes how to handle eventsrelated to Content M anagement (CM) subsystem operations
and activities. It has these sections:

+ About CM events

+ Registering for CM events

+ Enabling CM events

L This chapter assumes familiarity with exteNd Director event model and event handling. For more
information, see the chapter on working with eventsin Developing exteNd Director Applications.

About CM events

CM event types

CM events are an extension of the exteNd Director event model framework, consisting of state change
events, event producers, and event listeners (including vetoable listeners). The API for CM eventsis
defined in these packages:

* COM.SSSw.cm.event.api
s Com.sssw.cm.event.util

The API defines a set of state change eventsrelated to CM operations on documents, folders, and other
elements—as well as general activitieslike dataimport/export. Event IDs are exposed on the individual
event classes aswell as on the com.sssw.cm.event.api .EbiConstantsinterface. In addition, there are state
change constants defined in com.sssw.fw.event.api.EboStateChangeEvent.

Hereisalist of events defined for the CM subsystem:

Event type Operation Event constant
Category added EVENT_ID_CATEGORY_ADDED
contents listed EVENT_ID_CATEGORY_CONTENTS_LISTED
copied EVENT_ID_CATEGORY_COPIED
moved EVENT_ID_CATEGORY_MOVED
removed EVENT_ID_CATEGORY_REMOVED
document removed EVENT_ID_DOC_REMOVED_FROM_CATEGORY
metadata retrieved EVENT_ID_CATEGORY_RETRIEVED
metadata updated EVENT_ID_CATEGORY_UPDATED

Working with Content Management Events 85

cdEventHandling.html

Event type Operation Event constant

Data export/import data exported EVENT_ID_DATA_EXPORTED
data imported EVENT_ID_DATA_IMPORTED
Document added EVENT_ID_DOC_ADDED
added to category EVENT_ID_DOC_ADDED_TO_CATEGORY
checked in EVENT_ID_DOC_CHECKED_IN
checked out EVENT_ID_DOC_CHECKED_OUT
copied EVENT_ID_DOC_COPIED
moved EVENT_ID_DOC_MOVED
published EVENT_ID_DOC_PUBLISHED
removed EVENT_ID_DOC_REMOVED
retrieved EVENT_ID_DOC_RETRIEVED
rolled back EVENT_ID_DOC_ROLLED_BACK
unchecked out EVENT_ID_DOC_UNCHECKED_OUT
unlocked EVENT_ID_DOC_UNLOCKED
unpublished EVENT_ID_DOC_UNPUBLISHED
updated EVENT_ID_DOC_UPDATED
link added EVENT_ID_DOC_LINK_ADDED
link removed EVENT_ID_DOC_LINK_REMOVED
link retrieved EVENT_ID_DOC_LINK_RETRIEVED
link updated EVENT_ID_DOC_LINK_UPDATED
links listed EVENT_ID_DOC_LINKS_LISTED
Document type added EVENT_ID_DOC_TYPE_ADDED
removed EVENT_ID_DOC_TYPE_REMOVED
retrieved EVENT_ID_DOC_TYPE_RETRIEVED
updated EVENT_ID_DOC_TYPE_UPDATED
listed EVENT_ID_DOC_TYPES_LISTED
fields listed EVENT_ID_DOC_TYPE_FIELDS_LISTED
Field added EVENT_ID_DOC_FIELD_ADDED
added to document type EVENT_ID_DOC_FIELD_ADDED_TO_TYPE
listed EVENT_ID_DOC_FIELDS_LISTED
removed EVENT_ID_DOC_FIELD_REMOVED
removed from document type EVENT_ID_DOC_FIELD_REMOVED_FROM_TYPE
retrieved EVENT_ID_DOC_FIELD_RETRIEVED
updated EVENT_ID_DOC_FIELD_UPDATED

86 exteNd Director Content Management Guide

Event type

Operation

Event constant

Folder

added

EVENT_ID_FOLDER_ADDED

contents listed

EVENT_ID_FOLDER_CONTENTS_LISTED

copied EVENT_ID_FOLDER_COPIED
moved EVENT_ID_FOLDER_MOVED
removed EVENT_ID_FOLDER_REMOVED
retrieved EVENT_ID_FOLDER_RETRIEVED
updated EVENT_ID_FOLDER_UPDATED

Layout document added EVENT_ID_LLD_ADDED

descriptor listed for a style EVENT_ID_LLDS_LISTED
removed EVENT_ID_LLD_REMOVED
retrieved EVENT_ID_LLD_RETRIEVED
updated EVENT_ID_LLD_UPDATED

Layout style added EVENT_ID_DOC_LAYOUT_STYLE_ADDED
removed EVENT_ID_DOC_LAYOUT_STYLE_REMOVED
retrieved EVENT_ID_DOC_LAYOUT_STYLE_RETRIEVED
updated EVENT_ID_DOC_LAYOUT_STYLE_UPDATED
styles listed EVENT_ID_DOC_LAYOUT_STYLES_LISTED

Directory entry lookup

by absolute path (URL)

EVENT_ID_LOOKUP_BY_ABSOLUTE

by ancestor and relative path

EVENT_ID_LOOKUP_BY_RELATIVE

CM repository added EVENT_ID_REPOSITORY_ADDED

listed EVENT_ID_REPOSITORIES_LISTED

removed EVENT_ID_REPOSITORY_REMOVED

retrieved EVENT_ID_REPOSITORY_RETRIEVED

updated EVENT_ID_REPOSITORY_UPDATED
Query/search document query executed EVENT_ID_DOC_QUERY_EXECUTED

document search query executed EVENT_ID_DOC_SEARCH_QUERY_EXECUTED
Security access checked EVENT_ID_ACCESS_CHECKED

admin access checked

EVENT_ID_ADMIN_ACCESS_CHECKED

access removed

EVENT_ID_SECURITY_REMOVED

access retrieved

EVENT_ID_SECURITY_RETRIEVED

access set

EVENT_ID_SECURITY_SET

Working with Content Management Events

87

Registering for CM events
This section includes these sections:

+ Registering for events on directory elements
+ Specifying event types

+ Using the event helper class

+ Event registration examples

Registering for events on directory elements

Event support in the CM subsystem provides convenience methods for registration of listeners based on
CM categories, folders, and documents. The methods are available on an EbiContentM gmtDelegate

object:
Listener convenience method What it subscribes to
addCategoryStateChangeListener() All category events
addDocumentStateChangeListener() All document events
addFolderStateChangeListener() All folder events
addVetoableCategoryStateChangeListener() All category events, with ability to veto operation

addVetoableDocumentStateChangeListener() Subscribes to all document events, with ability to
veto operation

addVetoableFolderStateChangeListener() Subscribes to all folder events, with ability to veto
operation

For example, here is how to subscribe to all eventsthat relate to folder operations:

EbiContentMgmtDelegate cmgr =
com.sssw.cm.client.EboFactory.getDefaultContentMgmtDelegate () ;
cmgr. addFolderStateChangelListener (myStateChangeListener) ;

Specifying event types

You can register for specified type(s) of events using the framework version of
addStateChangeL istener(), avail able on Ebi ContentM gmtDel egate:

public boolean addStateChangeListener (
BitSet events, EbiStateChangelListener listener)

where eventsisabit set of event IDs. The CM API provides some hel per methodsfor specifying abit set,
asdescribed in “Using the event helper class’ next.

You can also filter eventsthat occur on either a specific directory entry or adirectory and entries
underneath it (recursively). In order to register for eventsthat occur within a certain directory entry
scope, add the listener using this method:

88 exteNd Director Content Management Guide

public boolean addStateChangeListener (
BitSet events, EbiDirectoryEntry entry, int depth,

EbiStateChangelListener listener)

Method

parameter What it means

events Bit set of event IDs

entry Directory entry (a folder, a category, or a document)

depth How deep event tracking should go:
+ 0 means that state changes that occur only on the entry itself
« 1 means that state changes that occur to the entry and its children
+ -1 means that state changes that occur to the entry and any of its descendant
Any other depth specifies that state changes that occur on the entry and its
descendants to that depth in the entry hierarchy are to be tracked

listener A new listener object

Using the event helper class

The com.sssw.cm.event.util.EboEventHel per class provides utilities for managing event sets. It includes

these methods:
Event helper method What it does
getFullEventIDSet() Returns a bit set containing the full set of CM events exposed on all

CM element types

getEventIDSet(String elType) Returns a bit set containing the full set of CM events exposed on a
specified CM element type

getEventIDSet(int Returns a bit set for all events that map to a given state change type
stateChangelD)

adjustEventIDSet() Given a hit set for event IDs, turns on or off the bits for CM events of
the specified state change type

Event registration examples
Listen on one event for all elements Thisexample adds alistener for the “create” state change
event on all elements:

EbiContentMgmtDelegate cmgr =
com.sssw.cm.client.EboFactory.getDefaultContentMgmtDelegate () ;

BitSet events = EboEventHelper.getEventIDSet (

com.sssw.fw.event.api.EboStateChangeEvent.SC_CREATE) ;
cmgr.addStateChangelListener (events, MyListener) ;

Listen on all events for two element types Thisexample adds alistener for all changes on
document types and fields only; note the use of adjustEventl DSet():

Working with Content Management Events 89

EbiContentMgmtDelegate cmgr =
com.sssw.cm.client.EboFactory.getDefaultContentMgmtDelegate () ;

BitSet events =
EboEventHelper.getEventIDSet (EbiDocType.EL_DOC_TYPE) ;
EboEventHelper.adjustEventIDSet (events,
EbiDocField.EL_DOC_FIELD, true);
cmgr .addStateChangelListener (events, Mylistener) ;

Listen on multiple events for all elements This example adds event types by instantiating a new
bit set; thisisthe technique to use for specifying multiple sets of events:

EbiContentMgmtDelegate cmgr =
com.sssw.cm.client.EboFactory.getDefaultContentMgmtDelegate () ;

BitSet events = new BitSet () ;

events.set (com.sssw.cm.event.api.EbiConstants.
EVENT_ID ACCESS_CHECKED) ;

events.set (com.sssw.cm.event.api.EbiConstants.
EVENT_ID ADMIN ACCESS CHECKED) ;

events.set (com.sssw.cm.event.api.EbiConstants.
EVENT_ID SECUIRTY RETRIEVED) ;

cmgr . addStateChangelListener (events, Mylistener);

Listen on all events except for a specified element type Thisexample shows how to use the
boolean argument on adjustEvent! DSet() to turn off an event set:

EbiContentMgmtDelegate cmgr =
com.sssw.cm.client.EboFactory.getDefaultContentMgmtDelegate () ;

BitSet events = EboEventHelper.getFullEventIDSet () ;
EboEventHelper.adjustEventIDSet (events, EbiDocType.EL_DOC_TYPE, false);
cmgr .addStateChangelListener (events, Mylistener) ;

Enabling CM events

> To enable or disable CM events:
1 Open config.xml for CM your exteNd Director project.
2 Find this property:
com.sssw.cm.events.enable.Default
3 Setthevalueto truefor enable or false for disable.
4 Redeploy your project.

20 exteNd Director Content Management Guide

locator cdLocator.html#ContentManagementsubsystemconfiguration files

WebDav

Describes how to set up and use a WebDav client with the Content Management (CM)
subsystem

e Chapter 9, “Using WebDAV Clients with exteNd Director for Collaborative Authoring”
e Chapter 10, “Building Your Own WebDAV Client”
e Chapter 11, “Working with WebDAV Events”

91

92 exteNd Director Content Management Guide

Using WebDAYV Clients with exteNd Director for
Collaborative Authoring

This chapter describesthe exteNd Director support for the the Web Distributed Authoring and Versioning
(WebDAV) communications protocol . Using this protocol allows you to access server-side content in the
exteNd Director Content Management (CM) subsystem from third-party or custom WebDAV client
applications.

This chapter includes the following topics:

o What is WebDAV?

+ About exteNd Director’s WebDAV support
+ Supported WebDAV methods

+ Public WebDAV server

What is WebDAV?

The WebDAV protocol extends the Hypertext Transfer Protocol (HTTP) to support asynchronous
collaborative authoring on the Web.

Asthe standard protocol that allows Web browsers to communicate with Web servers, HTTP has
transformed the Web into a readable medium by allowing users to view and download individual static
documents as read-only information. However, HTTP falls short of supporting write operations such as
simultaneous editing of multiple resources on the Web.

WebDAV goes the next step by providing extensionsto HTTP that create a distributed writable Web
environment. Using WebDAV, multiple users can create content locally or remotely using WebDAV-
enabled authoring tools, then save content directly to an URL on an HTTP server.

This section provides a brief overview of WebDAV.

L) For more detailed information on WebDAYV, search on the Web for r fc2518—the WebDAV
specification. The following URL provided helpful information at the time this chapter was published:

o http://asg.web.cmu.edu/rfc/rfc2518.html

Using WebDAV Clients with exteNd Director for Collaborative Authoring 93

new http://asg.web.cmu.edu/rfc/rfc2518.html

Information elements for distributed Web authoring

The WebDAV protocol provides methods that act on Web resources, collections, and properties—key
information elements used in distributed Web authoring:

Element Definition Examples

Resource Any piece of information that is stored on a Web serverand ~ Web pages, documents,
whose location is described by an URL and bitmap images

Collection A resource that serves as a container for other resources, Folders and directories
including other collections. Collections provide a paradigm
for grouping and searching resources

Property Descriptive information that is associated with Web
(metadata) resources but not stored as part of their content

Author, title, publication
date, and expiration date

WebDAYV extensions to HTTP

The WebDAV protocol provides extensionsto HT TP through a set of open standards that can be used by
any distributed authoring tool. These extensions support the following key requirementsfor collaborative
authoring on the Web:

Authoring requirement

How WebDAV meets the requirement

Overwrite protection

Mediates concurrent access to content by multiple authors by providing
resource locking for write operations

Properties

Provides methods for creating, modifying, reading, and deleting
properties

Namespace manipulation

Supports copying and moving multiple Web resources by manipulating
names and directories within the namespaces of URLs

Collections

Provides methods for creating and deleting collections, adding members

to a collection, removing members from a collection, and listing members
of a collection

Version management Supports the storage of resource revisions for later retrieval, automatic

versioning records successive modifications to a resource

Access control Limits the access rights of a particular authenticated principal to a given

resource

About exteNd Director’s WebDAV support

exteNd Director’'s WebDAV support isdesigned to work with any WebDAV-compliant client application.

Works with WebDAV-compliant authoring tools You can create content in your preferred
WebDAV-compliant authoring tool and still take advantage of the standard document management
capabilities of the exteNd Director CM subsystem on your server—functions such as checkin, checkout,
and versioning.

Includes WebDAV client APl While most third-party WebDAV clients support these standard
document management functions, they do not support the more sophisticated features of the CM
subsystem, such as categorization and document creation using custom templates. To bridge this gap,
exteNd Director subsystem also includes aWebDAV client API that provides classes and methods for
accessing these custom features from your own client applications.

94 exteNd Director Content Management Guide

L) For more information about the WebDAV client API, see Chapter 10, “Building Your Own
WebDAV Client”.

How you get WebDAYV support

WebDAV support isadded, by default, when you create an exteNd Director project. The default WebDAV
support includes these settings:

Parameter Description Default

Servlet Path The WebDAV servlet in the Portal WAR. WebDAV

Property settingsin the config.xml file in the (in WEB-INF/conf) include:

Property Description

com.sssw.webdav.cdata Specifies whether the server should wrap user data in WebDAV
responses in CDATA tags.

When true (the default), you are unable to use Microsoft clients. It
is required by other client types when valid xml markup is
contained in the user data (for example, a folder named "Jack &
Jil")

com.sssw.webdav.reqchkout When true (the default), requires files to be checked out and
locked before they are moved, copied, or deleted. Locking
preserves data consistency when multiple users update data.

Disable this parameter if your WebDAV client does not support a
locking mechanism. In particular, Microsoft File Explorer does not
support locking of WebFolders.

For more information, see Changing default settings

com.sssw.webdav.events.enable Enables events to be generated when WebDAVis used to
manipulate the Content Management subsystem.

If you opt for Custom setup, you must explicitly specify that WebDAV support be included.

Changing default settings You can change the project’s default settings by editing the config.xml
filedirectly.

Accessing the WebDAV server

After you deploy the exteNd Director project containing WebDAV support, you can connect a WebDAV-
enabled client to the exteNd Director content repository. To establish this connection, you must provide
the following parameters to the client:

+ User ID and password that are valid for exteNd Director (not a server user ID and password)

+ URL that references the directory on the WebDAV server you want to connect to. The structure of
the URL for the Novell WebDAV server is:

http://server/context/WebDAV
For example:

http://localhost/ExpressPortal/WebDAV

L Tolearn how to provide these parameters and connect to asite (in this case the exteNd Director
content repository) using the WebDAV protocol, consult client documentation.

Using WebDAV Clients with exteNd Director for Collaborative Authoring 95

What you can do with exteNd Director and WebDAV

exteNd Director allows you to perform the following functions remotely from your WebDAV client
application:

+ Saveyour content in the content repository

+ Get thelatest version of your content from the content repository for editing

+ Lock content for editing in the content repository and know that your changes will not be
overwritten by another author

« Unlock content so that it is available to other authors for editing

+ Copy and move content across collections within the hierarchical physical infrastructure of the
content repository

+ Delete content from the content repository

+ Make new collectionsin the content repository

+ Retrieve resources and collections from the server

+ Upload resources and collections from the client to the server

WebDAV-enabled clients implement these functionsin different ways. Consult your client
documentation to learn how to use specific third-party tools with the WebDAV protocol.

L) For more information about the WebDAV methods exteNd Director supports, see “ Supported
WebDAV methods’ on page 97.

How exteNd Director stores content from WebDAYV clients

96

When you save content created using a third-party WebDAV client to the exteNd Director content
repository, the content is stored as a system resource. The repository handles system resources by storing
adefault set of properties (or metadata) al ong with content. The following table describes these
properties and how default values are assigned:

Property Default value

Name Name of file (with extension if provided)

NOTE: Some WebDAV clients require you to specify extensions for files to
indicate the appropriate content editor

Author Identifier of user who is logged in

Date created Date uploaded

Abstract None

Publish date Null, which means publish as soon as possible

Expiration date Null, which means never expire

Checked out by None

You can change or assign values to these properties in the exteNd Director CM subsystem
programmatically or using the CM S Administration Console. Some WebDAV-enabled authoring tools
also alow you to edit property values on the client side.

L) For more information about using the CM S Administration Console, see Chapter 12, “ About the
CMS Administration Console”.

When content is stored as a system resource, it cannot be associated with any custom document types or
categoriesthat have been defined in the CM subsystem. To create content that is more tightly integrated
with these CM subsystem features, you can:

exteNd Director Content Management Guide

+ Build your own WebDAV client application using a client API provided with exteNd Director.

L) For more information about the WebDAV client API, see Chapter 10, “Building Your Own
WebDAV Client”.

¢+ Usethe CM API or the CMS Administration Console to create a document of a particular typein
the CM subsystem on the server. You can then edit this content inside a WebDAV-compliant client,
preserving the original document type.

How exteNd Director secures content from WebDAYV clients

exteNd Director requires thayou provide avalid user ID and password to the WebDAV client. These
values are used to authenticate your access privileges when you attempt to access secure content in the
content repository from your WebDAV client.

Users do not see resources for which they do not have read access.

L For more information, see “Accessing the WebDAV server” on page 95.

How exteNd Director manages versioning for WebDAYV clients

When a WebDAV client requests a resource from the server, exteNd Director returns the latest version
from the content repository—though not necessarily the published version. For example, a WebDAV
client cannot retrieve the published version of content if it is not the latest version.

When the WebDAV client uploads and checksin aresource, the exteNd Director creates anew version
and publishesit in the content repository.

Supported WebDAV methods

exteNd Director supportsthefollowing WebDAV methods. To learn how to perform these functionsfrom
your WebDAV-enabled authoring tool, consult client documentation:

Method Description

PROPFIND Retrieves properties on resources and collections from the server. This action is
generally transparent to the user; WebDAV client tools use this method to get and
display properties such as name, type (of resource), date modified, and checked
out by.

PROPPATCH Sets and/or removes properties on server-side resources and collections identified
by the Request-URI. This action is generally transparent to the user; WebDAV client
tools use this method to modify properties such as name, type (of resource), date
modified, and checked out by.

COPY Copies resources and collections on the server—along with their properties—
without causing name conflicts. When you copy a collection, all of its members are
also copied.

DELETE Deletes resources or collections on the server.

GET Retrieves resources and collections from the server, as identified by the Request-

URI. Some WebDAV-enabled clients automatically check out resources for you
before downloading them from the server; other clients require you to perform two
separate operations—first check out the resource, then get it.

HEAD Functions like GET, but retrieves only header information (without a response
message body).

Using WebDAV Clients with exteNd Director for Collaborative Authoring 97

Method Description

LOCK Creates a lock specified by the lockinfo XML element on the Request-URI. The
lockinfo element specifies the scope, type, and owner of the lock. The exteNd
Director CM subsystem uses just one type of lock—the exclusive lock, to enforce
pessimistic concurrency.

The scope of a lock spans the entire state of the resource, including its body and
associated properties.

Some WebDAV-enabled clients automatically lock resources before you check them
out; other clients require you to explicitly lock a resource as a separate operation.

UNLOCK Removes the lock identified in the Lock-Token request header of the Request-URI.
This action unlocks all resources included in the lock.

Some WebDAV-enabled clients automatically unlock resources after you check
them in; other clients require you to explicitly unlock a resource as a separate

operation.
MKCOL Creates collections on the server.
MOVE Moves resources and collections on the server without creating name conflicts.
PUT Uploads resources and collections from the client to the server.
OPTIONS Returns all methods that can be called on resources and collections specified in the

Request-URI. For example, if the resource is a document, OPTIONS returns LOCK,
UNLOCK, OPTIONS, GET, PUT, MOVE, DELETE, COPY, PROPFIND, and
PROPPATCH.

Public WebDAYV server

Novell provides a WebDAV server—deployed and publicly avail able—against which you can test your
WebDAV clients. This server provides the features of the Novell WebDAV implementation.

CAUTION: Do not use this server for production applications. Novell cannot be responsible for content
uploaded by anonymous users, and periodically purges user data.

> To access the Novell public WebDAYV server (general steps):
1 Accessthe server from your WebDAV client using this URL:

http://webdav.silverstream.com/Director/WebDAVService/main

2 When prompted, provide these credentials:

Credential Value

User ID devcenter

Password rocks

98 exteNd Director Content Management Guide

Building Your Own WebDAYV Client

This chapter describes an API provided with the exteNd Director WebDAV service for developing a
custom WebDAV client that takes advantage of the specialized features of the exteNd Director Content
Management (CM) subsystem to create and administer content.

The chapter coversthe following topics:

+ About the WebDAV client API

+ Why build your own WebDAV client?

+ Configuring your environment

+ Using the WebDAV client API

+ Programming practices using helper methods
+ Programming practices using utility methods
o Issuing WebDAV reguests from a Java client

About the WebDAYV client API

The WebDAV client API is based on the Jakarta Slide content management framework and is designed
to work with the exteNd Director CM subsystem. Slideis alow-level framework that can be used to
develop a consistent interface for manipulating binary content in avariety of data stores using the
WebDAV protocol.

Java client applications can access the Slide content management framework directly through a set of
Java classes that implement WebDAV methods and other low-level logic in these functional areas:

+ Managing the namespace (for creating, moving, copying, and deleting content)

+ Updating content and metadata

+ Locking and unlocking content

« Securing content

The exteNd Director WebDAV client API adds alevel of abstraction by providing wrapper classes
around the Slide client API. These classes contain hel per and utility methods that encapsulate the low-
level Slide methods and add logic that tightly integrates with the specialized capabilities of the exteNd
Director CM subsystem. For example, you can build aWebDAYV client that assigns categoriesto

documents, associates custom metadata with content, and creates content using custom templates called
document types as defined in the CM subsystem.

L) For more information about Slide, see the Jakarta Slide project Web site. The following URL was
valid at the time this chapter was published:

http://jakarta.apache.org/slide/

Building Your Own WebDAV Client 99

new http://jakarta.apache.org/slide/

Why build your own WebDAYV client?

With so many commercial and open source WebDAV client applications now available—and more onthe
way—why build your own WebDAV client to work with the exteNd Director CM subsystem?

Hereis akey reason: to tailor an application to your unique authoring needs in terms of creating,
updating, and managing content using the exteNd Director CM subsystem. With this objectivein mind,
the WebDAV client API allows you to develop applications that are more robust than most commercial
and open-source WebDAV clients, because it provides:

+ Simplified accessto all WebDAV methods, including PROPPATCH

+ Aninterface to the comprehensive content management features of the CM subsystem, including
the ability to create documents using custom templates and manipul ate custom metadata separately
from content

Configuring your environment

To usethe WebDAV client API, you must add the following JAR filesto your project classpath:

JAR file Description

WebDAV_slide.jar Contains relevant Slide client API classes

WebDAVClient.jar Contains exteNd Director WebDAV client API classes

These JAR files are installed with exteNd Director in the following location in the exteNd Director
Utilities\Client directory:

Torun a WebDAV client, you must add the following JAR filesto your client’s classpath at runtime:

JAR file Directory Location
WebDAVClient.jar exteNd Director installation directory \utilities\Client
WebDAV_slide.jar \utilities\Client
xerces.jar \lib

xalan.jar \lib
FrameworkService.jar \lib

servlet.jar Novell installation directory \lib

Using the WebDAV client API

100

You use the WebDAV client API to design a custom authoring tool with WebDAV access to the exteNd
Director CM subsystem for managing collaborative interactions with your content.

You need to build your own user interface, but the API provides the logical underpinnings for invoking
key CM functions from your client:

+ Creating documents using custom templates

Categorizing documents

Deleting, copying, moving, and renaming resources and collections
+ Locking and unlocking documents

+ Making collections

*
*

exteNd Director Content Management Guide

+ Updating documents
+ Getting and setting custom metadata values in a document

WebDAV requests and responses

TheWebDAV client API provides methodsthat invoke CM functions by sending WebDAV requests. The
result of each request isreturned asaWebDAV response that includes a status code to indicate success or
the reason for failure.

A WebDAV reguest consists of a header and a body. The request header contains the method, target
resource, HTTP version, and a sequence of key/value pairs containing parameters for the method. The
reguest body defines additional—and perhaps more complex—parametersif necessary.

Similarly, aWebDAV response contains a header and optional body. The response header contains
information about the response, such asthe HTTP version used by the server, along with status codes and
messages. The response body generally contains the result of method execution—such as a document.

Classesin the WebDAV client API provide methods for easily constructing and sending specific
WebDAV requests and processing responses.

L For more information about WebDAV, search on the Web for rfc2518—the WebDAV
specification.

Working with resources, collections, and properties

Classes

WebDAV requests act on Web resources, collections, and properties as described in “Information
elements for distributed Web authoring” on page 94. When you issue a WebDAV request, you need to
pass along areferenceto the element of interest. Thisreference should beaURI, relativeto the element’s
server in this format:

/database name/WebDAVService/main/path relative to default (root) folder

For example, assume your exteNd Director databaseis called Director. For adocument called
MyDocument that residesin afolder called Test in the default (root) folder, the URI looks like this:

/Director/WebDAVService/main/Test/MyDocument

The WebDAV client API consists of these key classes:

Class Description

EboDAVSwitch Constructs WebDAV requests and fetches WebDAV responses

EboDAVException Defines WebDAV exceptions

EboDAVStatus Indicates the status code associated with WebDAV exceptions

EboDAVSwitch—the heart of the matter The EboDAV Switch object is the heart of the WebDAV
client API, containing most of the functionality for communicating with the CM subsystem.

EboDAV Switch provides helper methods and utility methods that encapsul ate much of the low-level
Slide code required for transmitting WebDAV requests and responses.

Building Your Own WebDAV Client 101

cmgWebDAVClient.html#Helpermethods
../javadoc/com/sssw/webdav/client/EboDAVSwitch.html
cmgWebDAVClient.html#Utilitymethods

Helper methods

Utility methods

102

The EboDAYV Switch object provides a set of helper methods for constructing WebDAV requests. Each
hel per method allows you to send a complete request in asingle line of code.

Hereislist of supported WebDAV requests that have associated hel per methods. Click on thelinksin the
table to get more information about how to code specific WebDAV requestsin a Java client program.

Request

Helper method

Adding a category reference to a document

addCategoryToDocument

Deleting a document

copyElement

Creating a new collection

makeCollection

Creating a new document from a custom template

createNewDocument

Deleting a document

deleteDocument

Locking a document

lockDocument

Moving a resource or collection

moveElement

Removing a category reference from a document

removeCategoryFromDocument

Removing all category references from a document

removeAllCategoriesFromDocument

Renaming a resource or collection

moveElement

Setting the value of a custom field in a document

setFieldValueForDocument

Unlocking a document

unlockDocument

Updating a document

putDocument

Some WebDAV requests do not have associated helper methods and can beissued only by using Slide

classes and utility methods, described next.

L) For information on how to use these helper methodsin WebDAYV client applications, see
“Programming practices using helper methods’ on page 104.

All WebDAV requests can be invoked using utility methods. Compared to helper methods, utility
methods expose more of the Slide API than hel per methods. The tradeoff isthat while you gain accessto
the additional functionality offered by the Slide API, you' Il have to write more lines of code to send a

WebDAV request.

Utility methods also provide a mechanism for issuing WebDAV requests that do not have associated

helper methods.

exteNd Director Content Management Guide

cmgWebDAVClient.html#Utilitymethods

Utility methods that wrap Slide functions

Hereislist of commonly used utility methods that wrap Slide functions for constructing and issuing
WebDAV requests:

Utility method What it does

createCredentials Creates credentials

NOTE: The credentials object is a Slide object that is used for
authenticating users

createWebDAVmethod Creates the method you want to execute as part of your WebDAV request

endSession Ends a WebDAV client session
executeCommand Issues the WebDAV request
getState Gets state

NOTE: The state object is a Slide object; you call the Slide method
setAuthenticateToken on the state object to indicate how you are going to
authenticate users

setCredentials Sets credentials on the EboDAVSwitch object
setState Sets state with your authentication token
startSession Starts a WebDAV client session

L) For information about how to use these utility methods in WebDAV client applications, see
“Programming practices using utility methods” on page 105.

Associated Slide API classes
When you work with utility methods, you need to use several Slide API classes:

* Credentials
* State

Specific WebDAV method classes:
CopyMethod
DeleteMethod
GetMethod
HeadMethod
LockMethod
MoveMethod
OptionsMethod
PostMethod
PropFindMethod
PropPatchMethod
PutMethod
UnlockMethod

L 2R R R R K 2R 2K JER R R 2R 2

L) For more information about these classes, see the Slide WebDAV client JavaDoc, available at this
URL (valid at the time this chapter was published):

http://jakarta.apache.org/slide/clientjavadoc/index.html

Building Your Own WebDAV Client 103

new http://jakarta.apache.org/slide/clientjavadoc/index.html

WebDAV requests that have no helper methods

Hereislist of WebDAV requests that have no associated exteNd Director helper methods and therefore
can be implemented only by using Slide classes and exteNd Director utility methods. Click on the links
in the table to get more information about how to code these WebDAV requestsin a Java client program:

WebDAV request Associated WebDAV method
Getting a resource or collection GET
Getting header information from a resource or collection HEAD

Getting methods that can be called on a resource or collection OPTIONS

Getting properties defined on a resource or collection PROPFIND

Programming practices

This section describes best practices for using the client API to issue WebDAV requests and process
WebDAV responses in custom Java client programs. The logic varies depending on whether you use
hel per methods or utility methods.

Programming practices using helper methods

Recommended steps
Here are the steps for using hel per methods to issue WebDAV reguests:
1 Instantiate an EboDAV Switch object.
Start a session on the EboDAV Switch object.
Call the helper method on the EboDAV Switch object in atry/catch block.
Get the response and process the results if necessary.
End the session.

a A W N

Code example: deleting a document using a helper method

Here is sample code showing how to use the hel per method deleteDocument() in aWebDAV client. In
this example, assume server URL = |ocalhost and port = 80. The document to be deleted is passed asan
argument to the method.

Note that an EboDAV Status object is also instantiated. This object is used to check the status of the
reguest and inform the user of success or failure.

/**

deleteADocument

*/

import com.sssw.webdav.client.*;
public class deleteADocument {
private static boolean m_debug = false;

public void deleteADocument (String document)

{

//Define variables

104 exteNd Director Content Management Guide

cmgWebDAVClient.html#Helpermethods
cmgWebDAVClient.html#Utilitymethods

int statuscode = 0;

String user = "contentadmin";
String password = "contentadmin";
String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";

//Instantiate an EboDAVSwitch object
EboDAVSwitch dav = new EboDAVSwitch() ;

//Instantiate an EboDAVStatus object
EboDAVStatus status = new EboDAVStatus() ;

//Start a session
dav.startSession("localhost", 80);

try

//Lock document before trying to delete
statuscode = dav.lockDocument (user, password, realm, document) ;
if (statuscode==EboDAVStatus.SC_NO_ CONTENT)
System.out.println (“*Request succeeded: The document is now
locked”) ;
else
System.out.println(“*Request failed: ™ +
status.getStatusText (statuscode)) ;

//Send the WebDAV request to delete document
statuscode = dav.deleteDocument (user, password, realm, document) ;
if (statuscode==EboDAVStatus.SC OK)
System.out.println("Request succeeded: The document was deleted.");
else
System.out.println("Request failed: " +
status.getStatusText (statuscode)) ;

}

catch (EboDAVException e) {
if (m_debug)
e.printStackTrace () ;
else
System.out.println(e.getMessage()) ;

//End session
dav.endSession () ;

To learn how to issue the same WebDAYV request using utility methods, see “ Code example:
deleting a document using utility methods” on page 106.

Programming practices using utility methods

Recommended steps
Here are the steps for using utility methods to issue WebDAV requests:

1 Instantiate an EboDAV Switch object.

Start a session on the EboDAV Switch object.

Create and set credentials on the EboDAV Switch object.

Get and set the state of the EboDAV Switch object and the authentication realm.
Construct the WebDAV method.

o~ W N

Building Your Own WebDAV Client 105

6 Execute the WebDAV method.
7 End the session.

Constructing WebDAV requests that use Proppatch

The WebDAV Proppatch method is used with exteNd Director utility methods to issue a variety of
WebDAV reguests:

+ Adding a category reference to a document

+ Removing a category reference from a document

+ Removing all category references from a document

+ Setting the value of a custom field in a document

For each of these requests, you must instantiate a Slide PropPatchM ethod object, then call the
addProperty ToSet() method on the PropPatchM ethod object using this signature:

addPropertyToSet (String property name, String property value, String namespace-
abbr, String namespace)

Here are descriptions of the arguments to addProperty ToSet():

Argument Description

property name The name or UUID of the property to be updated

property value The value of the property to be updated
If property name is a UUID, then property value must be null

namespace-abbr An arbitrary string that must be unique within the PropPatch method request

namespace Type of request issued using the PropPatch method
These requests are defined as fields of the EboWebdavConstants class:
+ EboWebdavConstants. PROPPATCH_SETFIELDVALUE
+ EboWebdavConstants. PROPPATCH_ADDCATEGORY
+ EboWebdavConstants.PROPPATCH_REMOVECATEGORY

+ EboWebdavConstants. PROPPATCH_REMOVEALL
CATEGORIES

Setting values of standard fields You can also usethe WebDAV Proppatch method to set values of
standard fields—such astitle and author—in a document. In this case, call addProperty ToSet() without
the namespace-abbr and namespace arguments.

Code example: deleting a document using utility methods

/**

Hereissample codeillustrating how to use utility methodswith Slide classesin aWebDAV client to send
arequest to delete a document. In this example, assume server URL = localhost and port = 80. The
example uses the following Slide classes:

+ Credentials

+ State
+ DeeteMethod

deleteTheDocument

*/

import
import
import

106

com.sssw.webdav.client.*;
org.apache.webdav.lib.*;
org.apache.webdav.lib.methods. *;

exteNd Director Content Management Guide

public class deleteTheDocument

{

private static boolean m_debug = false;

public void deleteTheDocument (String document)

{

//Define variables

int statuscode = 0;

String user = "contentadmin";

String password = "contentadmin";

String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";

//Instantiate an EboDAVSwitch object
EboDAVSwitch dav = new EboDAVSwitch() ;

//Instantiate an EboDAVStatus object
EboDAVStatus status = new EboDAVStatus() ;

//Start a session
dav.startSession("localhost", 80);

//Get and set credentials
Credentials credentials = dav.createCredentials (user, password) ;
dav.setCredentials (credentials) ;

//Get and set state and authentication realm
State state = dav.getState() ;
state.setAuthenticateToken (realm) ;
dav.setState (state) ;

try

//Create the WebDAV method object LockMethod
LockMethod 1m = (LockMethod)dav.createWebdavMethod (dav.LOCK METHOD, document) ;

//Set the owner
lm.setOwner (user) ;

//Execute LockMethod
dav.executeCommand (1m) ;
statuscode = lm.getStatusCode() ;
if (statuscode == (EboDAVStatus.SC_NO_ CONTENT))
System.out.println (“*Request succeeded: The document was locked.”);
else
System.out.println (“*Request failed: “ + status.getStatusText (statuscode)) ;

//Create the WebDAV method object DeleteMethod
DeleteMethod dm = (DeleteMethod)dav.createWebdavMethod (dav.DELETE_ METHOD, document) ;

//Execute DeleteMethod (send the WebDAV request to delete document)
dav.executeCommand (dm) ;
statuscode = dm.getStatusCode () ;
if (statuscode == (EboDAVStatus.SC OK))
System.out.println ("Request succeeded: The document was deleted.");
else
System.out.println("Request failed: " + status.getStatusText (statuscode)) ;

}

catch (EboDAVException e)
{
if (m_debug)
e.printStackTrace() ;
else
System.out.println(e.getMessage()) ;

Building Your Own WebDAV Client

107

catch (java.net.MalformedURLException murle)

{
if (m_debug)
murle.printStackTrace () ;
else
System.out.println(murle.getMessage()) ;
}

catch (java.io.IOException ioce)

{
if (m_debug)
ioe.printStackTrace () ;
else
System.out.println(ioe.getMessage()) ;
}

//End session
dav.endSession () ;

L) Tolearn how to issue the same WebDAV request using helper methods, see “ Code example:
deleting a document using a hel per method” on page 104.

Issuing WebDAV requests from a Java client

This section describes how to issue WebDAV requests from a Java client application. The following
functions are covered:

+ Adding acategory reference to a document

Copying aresource or collection

Creating a new collection

Creating a new document from a custom template
Deleting a document

Getting aresource or collection

Getting header information from a resource or collection
Getting methods that can be called on aresource or collection
Getting properties defined on aresource or collection
Locking a document

Moving aresource or collection

Removing a category reference from a document
Removing all category references from a document
Renaming aresource or collection

Setting the value of a custom field in a document
Unlocking a document

+ Updating a document

*
*

® 6 6 4 6 6 6 0 0 0 0

*

Adding a category reference to a document
The following code examples show how to add a category reference to a document. A category isa
descriptive name used to group documents logically in the CM subsystem.

Code example: adding a category reference using a helper method

This exampl e uses the helper method addCategoryToDocument():

108 exteNd Director Content Management Guide

/**

addCategoryReferenceToDocument

*/

import com.sssw.webdav.client.*;
public class addCategoryReferenceToDocument {
private static boolean m_debug = false;

public void addCategoryReferenceToDocument (String document, String categoryUUID)

{

//Define variables

int statuscode = 0;

String user = "contentadmin";

String password = "contentadmin";

String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";

//Instantiate an EboDAVSwitch object
EboDAVSwitch dav = new EboDAVSwitch() ;

//Instantiate an EboDAVStatus object
EboDAVStatus status = new EboDAVStatus() ;

//Start a session
dav.startSession("localhost", 80);

try

//Lock the document
statuscode = dav.lockDocument (user, password, realm, document) ;

if (statuscode == EboDAVStatus.SC NO_ CONTENT)

System.out.println (“Request succeeded: The category was added to “ + document) ;
else

System.out.println(“Request failed: “ + status.getStatusText (statuscode)) ;

//Send the WebDAV request to add a category reference
statuscode = dav.addCategoryToDocument (user, password, realm, document, categoryUUID) ;
if (statuscode==EboDAVStatus.SC_MULTI_STATUS)

System.out.println("Request succeeded: The category was added to " + document) ;
else

System.out.println("Request failed: " + status.getStatusText (statuscode)) ;

//Unlock the document
statuscode = dav.unlockDocument (user, password, realm, document) ;

if (statuscode == EboDAVStatus.SC NO_ CONTENT)
System.out.println(“Request succeeded: The document was unlocked.”);
else
System.out.println(“Request failed: “ + status.getStatusText (statuscode)) ;

}

catch (EboDAVException e)
{
if (m_debug)
e.printStackTrace () ;
else
System.out.println(e.getMessage()) ;

//End session
dav.endSession () ;

Building Your Own WebDAV Client 109

Code example: adding a category reference using utility methods

This example uses the Slide PropPatchM ethod class and the exteNd Director utility methods
startSession(), createCredentials(), setCredentials(), getState(), setState(), and
createWebDAVM ethod().

The method that adds the category reference is addProperty ToSet(), called on the PropPatchM ethod
object. Natice that the second argument—property value—is null (because the category UUID is passed
asthe first argument—property name). For more information about addProperty ToSet() and its
arguments, see “Constructing WebDAV requests that use Proppatch” on page 106.

/**

addCategoryReference

*/

import com.sssw.webdav.client.*;

import com.sssw.webdav.common.EboWebdavConstants;
import org.apache.webdav.lib.*;

import org.apache.webdav.lib.methods.*;

public class addCategoryReference

{

private static boolean m_debug = false;

public void addCategoryReference (String document, String categoryUUID)

{

//Define variables

int statuscode = 0;

String user = "contentadmin";

String password = "contentadmin";

String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";
String namespace-abbr = "AC";

//Instantiate an EboDAVSwitch object
EboDAVSwitch dav = new EboDAVSwitch() ;

//Instantiate an EboDAVStatus object
EboDAVStatus status = new EboDAVStatus() ;

//Start a session
dav.startSession("localhost", 80);

//Get and set credentials
Credentials credentials = dav.createCredentials (user, password) ;
dav.setCredentials (credentials) ;

//Get and set state and authentication realm
State state = dav.getState();
state.setAuthenticateToken (realm) ;
dav.setState (state) ;

try

{

//Lock the document
//Create the WebDAV method object LockMethod
LockMethod 1m = (LockMethod)dav.createWebdavMethod (dav.LOCK _METHOD, document) ;

//Set the owner
1m.setOwner (user) ;

//Execute the command
dav.executeCommand (1m)
statuscode = lm.getStatusCode () ;
if (statuscode == (EboDAVStatus.SC_NO_CONTENT))
System.out.println (“*Request succeeded: The document was locked.”);

110 exteNd Director Content Management Guide

else

System.out.println (“*Request failed: “ + status.getStatusText (statuscode)) ;

//Create the WebDAV method object PropPatchMethod
PropPatchMethod ppm = (PropPatchMethod)dav.createWebdavMethod (dav.PROPPATCH METHOD, document) ;

ppm.addPropertyToSet (categoryUUID,
EboWebdavConstants.PROPPATCH ADDCATEGORY) ;

null, namespace-abbr,

//Execute PropPatchMethod (send the WebDAV request to add category reference)

dav.executeCommand (ppm) ;
statuscode = ppm.getStatusCode() ;

if (statuscode == (EboDAVStatus.SC_MULTI_STATUS))

System.out.println ("Request succeeded: The category was added to " + document + ".
else

System.out.println("Request failed: " + status.getStatusText (statuscode)) ;

//Create the WebDAV method object UnlockMethod

UnlockMethod ulm = (UnlockMethod)dav.createWebdavMethod (dav.UNLOCK_METHOD, document) ;

//Execute UnlockMethod
dav.executeCommand (ulm) ;
statuscode = ulm.getStatusCode() ;

if (statuscode == (EboDAVStatus.SC_NO_ CONTENT))
System.out.println (“Request succeeded: The document was unlocked.”);
else
System.out.println (“*Request failed: “ + status.getStatusText (statuscode)) ;

}

catch (EboDAVException e)
{
if (m_debug)
e.printStackTrace () ;
else

System.out.println(e.getMessage()) ;

}

catch (java.net.MalformedURLException murle)

{
if (m_debug)
murle.printStackTrace () ;
else

System.out.println (murle.getMessage()) ;

}

catch (java.io.IOException ioe)
{
if (m_debug)
ioe.printStackTrace() ;
else

System.out.println(ioe.getMessage()) ;

//End session
dav.endSession () ;

Copying aresource or collection

")

The following code shows how to copy adocument from a source path to adestination path. In this case
the source path points to a document. To copy other types of resources or collections, make sure the
source path points to the element of interest.

Code example: copying a document using a helper method

The example uses the hel per method copyElement():

Building Your Own WebDAV Client

111

/**

copyADocument

*/

import com.sssw.webdav.client.*;
public class copyADocument {
private static boolean m_debug = false;

public void copyADocument (String docsourcepath, String docdestinationpath)

{

//Define variables

int statuscode = 0;

String user = "contentadmin";

String password = "contentadmin";

String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";

boolean overwrite = true; //Overwrite an existing document of the same name in the
docdestinationpath
boolean autogen = true; //Generate folders in the docdestinationpath if they don't exist

//Instantiate an EboDAVSwitch object
EboDAVSwitch dav = new EboDAVSwitch() ;

//Instantiate an EboDAVStatus object
EboDAVStatus status = new EboDAVStatus() ;

//Start a session
dav.startSession("localhost", 80);

//Send the WebDAV request to copy document
try
statuscode = dav.copyElement (user, password, realm, docsourcepath, docdestinationpath,
overwrite, autogen) ;
if (statuscode==EboDAVStatus.SC_ CREATED)

System.out.println ("Request succeeded: The document " + docsourcepath + "was copied to " +
docdestinationpath) ;
else
System.out.println ("Request failed: " + status.getStatusText (statuscode)) ;

}

catch (EboDAVException e)

{
if (m_debug)
e.printStackTrace () ;
else
System.out.println(e.getMessage()) ;

}

//End session
dav.endSession () ;

L) You can also copy aresource or collection using the Slide CopyM ethod class and exteNd Director
utility methods. See “Programming practices using utility methods” on page 105.

Creating a new collection

Thefollowing code shows how to create anew collection. Recall that a collection isacontainer for other
resources and collections. A folder isaan example of a collection.

112 exteNd Director Content Management Guide

Code example: creating a collection using a helper method

/**

*/

This exampl e uses the helper method makeCollection():

makeACollection

import com.sssw.webdav.client.*;

public class makeACollection

private static boolean m_debug = false;

public void makeACollection (String parent folder, String folder name)

{

//Define variables

int statuscode = 0;

String user = "contentadmin";

String password = "contentadmin";

String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";

//Instantiate an EboDAVSwitch object
EboDAVSwitch dav = new EboDAVSwitch() ;

//Instantiate an EboDAVStatus object
EboDAVStatus status = new EboDAVStatus() ;

//Start a session
dav.startSession("localhost", 80);

//Send the WebDAV request to make a collection
try
statuscode = dav.makeCollection(user, password, realm, parent folder, folder name, true);
if (statuscode==EboDAVStatus.SC_CREATED)
System.out.println("Request succeeded: The collection " + parent folder + "/" + folder name +

"was created.");

else
System.out.println("Request failed: " + status.getStatusText (statuscode)) ;

}

catch (EboDAVException e)

{
if (m_debug)
e.printStackTrace () ;
else
System.out.println(e.getMessage()) ;

}

//End session
dav.endSession () ;

}

You can also make a hew collection using the Slide M kcolM ethod class and exteNd Director utility
methods. See “Programming practices using utility methods” on page 105.

Creating a new document from a custom template

The following code shows how to create a new document from a custom template. Custom templates are
document types that you define in the exteNd Director CM subsystem using the CM APl or CMS
Administration Console.

Building Your Own WebDAV Client 113

The document that is created contains the content “Hello world!” along with any custom fields defined
in the document type.

Code example: creating a document using a helper method

/**

This exampl e uses the helper method createNewDocument(). The document typeis passed as an
argument to createNewDocument, along with the user name, password, realm, containing folder, and
content:

createADocument

*/

import com.sssw.webdav.client.*;

public class createADocument {

private static boolean m_debug = false;

public void createADocument (String document, String folder, String documentType)

{

//Define variables

int statuscode = 0;

String user = "contentadmin";

String password = "contentadmin";

String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";
String sourcetext = "Hello world!";

byte [] content = sourcetext.getBytes() ;

//Instantiate an EboDAVSwitch object
EboDAVSwitch dav = new EboDAVSwitch() ;

//Instantiate an EboDAVStatus object
EboDAVStatus status = new EboDAVStatus() ;

//Start a session
dav.startSession("localhost", 80);

//Send the WebDAV request to create a document
try

{

statuscode = dav.createNewDocument (user, password, realm, folder, document, documentType,

content) ;

114

if (statuscode==EboDAVStatus.SC_CREATED)

System.out.println ("Request succeeded: The document " + document + "was created.");
else

System.out.println("Request failed: " + status.getStatusText (statuscode)) ;

}

catch (EboDAVException e)
{
if (m_debug)
e.printStackTrace() ;
else
System.out.println(e.getMessage()) ;

}

//End session
dav.endSession () ;

exteNd Director Content Management Guide

Deleting a document

L) For examples of how to delete adocument from a WebDAV client, see “ Code example: deleting a
document using a helper method” on page 104 and “Code example: deleting a document using utility
methods” on page 106.

Getting a resource or collection

The following code shows how to get the content of a document stored in the CM subsystem. The
document is referenced as the second argument of the createWebDAV Method() utility method. To get
other types of resources or collections, modify this argument to point to the element of interest.

Code example: getting a document using utility methods

This example uses the Slide GetM ethod class and the exteNd Director utility methods star t Session(),
createCredentials(), setCredentials(), getSate(), setSate(), and createWebDAV M ethod().

By calling the getDataA sString() method on the GetM ethod class, the client application retrieves the
content of the document in HTML format.

Thereis no helper method for getting a resource or collection:
/* *

getTheDocument

*/

import com.sssw.webdav.client.*;

import org.apache.webdav.lib.*;

import org.apache.webdav.lib.methods. *;

public class getTheDocument

{

private static boolean m _debug = false;

public void getTheDocument (String document)

{

//Define variables

int statuscode = 0;

String user = "contentadmin";

String password = "contentadmin";

String realm = "Basic realm = \"SSSW_WEBDAV_ AUTHENTICATION\"";

//Instantiate an EboDAVSwitch object
EboDAVSwitch dav = new EboDAVSwitch() ;

//Instantiate an EboDAVStatus object
EboDAVStatus status = new EboDAVStatus() ;

//Start a session
dav.startSession("localhost", 80);

//Get and set credentials
Credentials credentials = dav.createCredentials (user, password) ;
dav.setCredentials (credentials) ;

//Get and set state and authentication realm
State state = dav.getState();
state.setAuthenticateToken (realm) ;
dav.setState (state) ;

//Create the WebDAV method object GetMethod
GetMethod gm = (GetMethod)dav.createWebdavMethod (dav.GET_ METHOD, document) ;

Building Your Own WebDAV Client 115

//Execute GetMethod (send the WebDAV request to get document)
try
dav.executeCommand (gm) ;
statuscode = gm.getStatusCode () ;
if (statuscode == (EboDAVStatus.SC OK))
String html = gm.getDataAsString() ;
System.out.println("Request succeeded: Got the document and its content as html.");

}

else
System.out.println("Request failed: " + status.getStatusText (statuscode)) ;

}

catch (EboDAVException e)

{
if (m_debug)
e.printStackTrace() ;
else
System.out.println(e.getMessage()) ;

}

catch (java.net.MalformedURLException murle)

{
if (m_debug)
murle.printStackTrace () ;
else
System.out.println (murle.getMessage()) ;

}

catch (java.io.IOException ioce)

{
if (m_debug)
ioe.printStackTrace () ;
else
System.out.println(ioe.getMessage()) ;

//End session
dav.endSession () ;

}

Thereis no exteNd Director hel per method for getting a resource or collection.

Getting header information from a resource or collection

Thefollowing code shows how to get the header information of adocument stored in the CM subsystem.
The document is referenced as the second argument of the createWebDAV Method() utility method. To
get other types of resources or collections, modify this argument to point to the element of interest.

Code example: getting header information using utility methods

This example usesthe Slide HeadM ethod class and the exteNd Director utility methods startSession(),
createCredentials(), setCredentials(), getState(), setState(), and createWebDAVM ethod().

Thereis no helper method for getting a resource or collection:
/* *

getDocumentHeader

*/

import com.sssw.webdav.client.*;

import org.apache.webdav.lib.*;

import org.apache.webdav.lib.methods. *;

116 exteNd Director Content Management Guide

public class getDocumentHeader

{

private static boolean m _debug = false;

public void getDocumentHeader (String document)

{

//Define variables

int statuscode = 0;

String user = "contentadmin";

String password = "contentadmin";

String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";

String authtype = ““;

//Instantiate an EboDAVSwitch object
EboDAVSwitch dav = new EboDAVSwitch() ;

//Instantiate an EboDAVStatus object
EboDAVStatus status = new EboDAVStatus() ;

//Start a session
dav.startSession("localhost", 80);

//Get and set credentials
Credentials credentials = dav.createCredentials (user, password) ;
dav.setCredentials (credentials) ;

//Get
State
state

and set state and authentication realm
state = dav.getState() ;

.setAuthenticateToken (realm) ;

dav.setState (state) ;

//Create the WebDAV method object HeadMethod
HeadMethod hm = (HeadMethod)dav.createWebdavMethod (dav.HEAD METHOD, document) ;

//Execute HeadMethod

try

{

dav.executeCommand (hm) ;
statuscode = hm.getStatusCode () ;

if

{

(statuscode == (EboDAVStatus.SC_OK))

//Get authorization type from header
authtype = hm.getHeader (“authorization”) .toString() ;

(send the WebDAV request to get document header)

System.out.println ("Request succeeded: Got the document header. Authorization type is “ +
authtype) ;
else
System.out.println("Request failed: " + status.getStatusText (statuscode)) ;
catch (EboDAVException e)
if (m_debug)

e.printStackTrace () ;

else

}

catch

{

if

System.out.println(e.getMessage()) ;
(java.net .MalformedURLException murle)

(m_debug)
murle.printStackTrace () ;

else

}

catch

System.out.println (murle.getMessage()) ;

(java.io.IOException ioe)

Building Your Own WebDAV Client

117

if (m_debug)
ioe.printStackTrace() ;

else
System.out.println(ioe.getMessage()) ;

//End session
dav.endSession () ;

}

Thereis no exteNd Director helper method for getting header information from a resource or collection.

Getting methods that can be called on aresource or collection

The following code shows how to get the methods that can be called on a document stored in the CM
subsystem. The document is referenced as the second argument of the createWebDAV Method() utility
method. To get other types of resources or collections, modify this argument to point to the element of
interest.

Code example: getting allowed methods using utility methods

This example uses the Slide OptionsM ethod class and the exteNd Director utility methods
startSession(), createCredentials(), setCredentials(), getState(), settate(), and

createWebDAV M ethod().
There is no helper method for getting allowed methods on a resource or collection:
Jxx
getAllowedMethods
*/

import com.sssw.webdav.client.*;

import org.apache.webdav.lib.*;

import org.apache.webdav.lib.methods.*;
import java.util.*;

public class getAllowedMethods

{

private static boolean m _debug = false;

public void getAllowedMethods (String document)

{

//Define variables

int statuscode = 0;

String user = "contentadmin";

String password = "contentadmin";

String realm = "Basic realm = \"SSSW_WEBDAV_ AUTHENTICATION\"";

//Instantiate an EboDAVSwitch object
EboDAVSwitch dav = new EboDAVSwitch() ;

//Instantiate an EboDAVStatus object
EboDAVStatus status = new EboDAVStatus() ;

//Start a session
dav.startSession("localhost", 80);

//Get and set credentials

Credentials credentials = dav.createCredentials (user, password) ;
dav.setCredentials (credentials) ;

118 exteNd Director Content Management Guide

//Get and set state and authentication realm
State state = dav.getState();
state.setAuthenticateToken (realm) ;
dav.setState (state) ;

//Create the WebDAV method object HeadMethod
OptionsMethod om = (OptionsMethod)dav.createWebdavMethod (dav.OPTIONS, document) ;

//Execute OptionsMethod (send the WebDAV request to get the allowed methods on
//the document)
try
{
dav.executeCommand (om) ;
statuscode = om.getStatusCode () ;
if (statuscode == (EboDAVStatus.SC OK))
{
System.out.println("Request succeeded: Got the document header.\n") ;
System.out.println("The allowed methods on " + document + " are:\n");

Enumeration methods = om.getAllowedMethods () ;
while (methods.hasMoreElements()) {
System.out.println(methods.nextElement () .toString() + "\n");
}
}
else
System.out.println("Request failed: " + status.getStatusText (statuscode)) ;

}

catch (EboDAVException e)
{
if (m_debug)
e.printStackTrace () ;
else
System.out.println(e.getMessage()) ;

}

catch (java.net.MalformedURLException murle)

{
if (m_debug)
murle.printStackTrace () ;
else
System.out.println (murle.getMessage()) ;

}

catch (java.io.IOException ioe)

{
if (m_debug)
ioe.printStackTrace() ;
else
System.out.println(ioe.getMessage()) ;

//End session
dav.endSession () ;

}

Thereis no exteNd Director helper method for getting methods that can be called on aresource or
collection.

Getting properties defined on aresource or collection

Thefollowing code shows how to get properties defined on a document stored in the CM subsystem. The
document is referenced as the second argument of the createWebDAV Method() utility method. To get
other types of resources or collections, modify this argument to point to the element of interest.

Building Your Own WebDAV Client 119

Code example: getting properties using utility methods

This example uses the Slide PropFindM ethod class and the exteNd Director utility methods
startSession(), createCredentials(), setCredentials(), getState(), setState(), and
createWebDAVM ethod().

There is no helper method for getting properties defined on aresource or collection:
/* *

getProperties

*/

import com.sssw.webdav.client.*;

import org.apache.webdav.lib.*;

import org.apache.webdav.lib.methods. *;
import java.util.*;

public class getProperties

{

private static boolean m_debug = false;

public void getProperties (String document)

{

//Define variables

int statuscode = 0;

String user = "contentadmin";

String password = "contentadmin";

String realm = "Basic realm = \"SSSW_WEBDAV_ AUTHENTICATION\"";

//Instantiate an EboDAVSwitch object
EboDAVSwitch dav = new EboDAVSwitch() ;

//Instantiate an EboDAVStatus object
EboDAVStatus status = new EboDAVStatus() ;

//Start a session
dav.startSession("localhost", 80);

//Get and set credentials
Credentials credentials = dav.createCredentials (user, password) ;
dav.setCredentials (credentials) ;

//Get and set state and authentication realm
State state = dav.getState();
state.setAuthenticateToken (realm) ;
dav.setState (state) ;

//Create the WebDAV method object PropFindMethod
PropFindMethod pfm = (PropFindMethod)dav.createWebdavMethod (dav.PROPFIND METHOD, document) ;

//Execute PropFindMethod (send the WebDAV request to get the properties defined on
//the document)
try
{
dav.executeCommand (pfm) ;
statuscode = pfm.getStatusCode() ;
if (statuscode == (EboDAVStatus.SC_MULTI_STATUS))
{
System.out.println ("Request succeeded: Got the properties.\n");
System.out.println("The properties defined on " + document + " are:\n");
Enumeration props = pfm.getResponseProperties (document) ;

while (props.hasMoreElements()) {
System.out.println(props.nextElement () .toString() + "\n");
}
}
else
System.out.println ("Request failed: " + status.getStatusText (statuscode)) ;

120 exteNd Director Content Management Guide

}

catch (EboDAVException e)

{
if (m_debug)
e.printStackTrace() ;
else
System.out.println(e.getMessage()) ;

}

catch (java.net.MalformedURLException murle)

{
if (m_debug)
murle.printStackTrace () ;
else
System.out.println (murle.getMessage()) ;

}

catch (java.io.IOException ioce)

{
if (m_debug)
ioe.printStackTrace () ;
else
System.out.println(ioe.getMessage()) ;

//End session
dav.endSession () ;

}

Thereis no exteNd Director helper method for getting methods that can be called on aresource or
collection.

Locking a document

The following code shows how to lock a document for exclusive access in a collaborative environment.
You might invoke this function in your WebDAV client application when a user checks out a document.

Code example: locking a document using a helper method

The exampl e uses the hel per method |ock Document(). This method throws an exceptionif the document
of interest isalready locked. To explicitly check for this condition, the code calls the checkL ock Token()
method:

/**

lockADocument

*/

import com.sssw.webdav.client.*;
public class lockADocument {
private static boolean m _debug = false;

public void lockADocument (String document)

{

//Define variables

int statuscode = 0;

String user = "contentadmin";

String password = "contentadmin";

String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";

//Instantiate an EboDAVSwitch object

Building Your Own WebDAV Client 121

EboDAVSwitch dav = new EboDAVSwitch() ;

//Instantiate an EboDAVStatus object
EboDAVStatus status = new EboDAVStatus() ;

//Start a session
dav.startSession("localhost", 80);
try
//If document not already locked, send the WebDAV request to lock the document
if (dav.checkLockToken (document) == null)
statuscode = dav.lockDocument (user, password, realm, document) ;
if (statuscode==EboDAVStatus.SC_NO_ CONTENT)

System.out.println ("Request succeeded: The document " + document + "was locked.");
else
System.out.println("Request failed: " + status.getStatusText (statuscode)) ;

}

else
System.out.println (“Document is already locked.”);

}

catch (EboDAVException e)

{
if (m_debug)
e.printStackTrace () ;
else
System.out.println(e.getMessage()) ;

}

//End session
dav.endSession () ;

}

You can also lock adocument using the Slide L ockM ethod class and exteNd Director utility methods.
See “Programming practices using utility methods’ on page 105.

Moving a resource or collection

Thefollowing code shows how to move afolder from a source path to adestination path. In this case, the
source path pointsto afolder. To move other types of resources or collections, make sure the source path
points to the element of interest.

Code example: moving a folder using a helper method
The example uses the hel per method moveElement():
/**

moveAFolder

*/

import com.sssw.webdav.client.*;
public class moveAFolder ({
private static boolean m _debug = false;

public void moveAFolder (String foldersourcepath, String folderdestinationpath)

{

//Define variables
int statuscode = 0;
String user = "contentadmin";

122 exteNd Director Content Management Guide

String password = "contentadmin";
String realm = "Basic realm = \"SSSW_WEBDAV_ AUTHENTICATION\"";
boolean autogen = true; //Generate folders in the folderdestinationpath if they don't exist

//Instantiate an EboDAVSwitch object
EboDAVSwitch dav = new EboDAVSwitch() ;

//Instantiate an EboDAVStatus object
EboDAVStatus status = new EboDAVStatus() ;

//Start a session
dav.startSession("localhost", 80);

//Send the WebDAV request to move folder
try
{
statuscode = dav.moveElement (user, password, realm, foldersourcepath, folderdestinationpath,
autogen) ;
if (statuscode==EboDAVStatus.SC CREATED)
System.out.println ("Request succeeded: The folder " + foldersourcepath + "was moved to " +
folderdestinationpath) ;
else
System.out.println ("Request failed: " + status.getStatusText (statuscode)) ;

}

catch (EboDAVException e)

{
if (m_debug)
e.printStackTrace () ;
else
System.out.println(e.getMessage()) ;

}

//End session
dav.endSession () ;

}

You can also move aresource or collection using the Slide M oveM ethod class and exteNd Director
utility methods. See “Programming practices using utility methods” on page 105.

Removing a category reference from a document

The following code examples show how to remove a category reference from adocument. A category is

a descriptive name used to group documents logically in the CM subsystem.

Code example: removing a category reference using a helper method
This exampl e uses the helper method removeCategor yFromDocument():

/**

removeCategoryReferenceFromDocument

*/

import com.sssw.webdav.client.*;
public class removeCategoryReferenceFromDocument {
private static boolean m_debug = false;

public void removeCategoryReferenceFromDocument (String document, String categoryUUID)

{

//Define variables

Building Your Own WebDAV Client 123

int
Str
Str
Str

//T
Ebo

//T
Ebo

//s

dav

//8
try

{

}

cat

{

}

statuscode = 0;

ing user = "contentadmin";

ing password = "contentadmin";

ing realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";

nstantiate an EboDAVSwitch object
DAVSwitch dav = new EboDAVSwitch() ;

nstantiate an EboDAVStatus object
DAVStatus status = new EboDAVStatus() ;

tart a session
.startSession("localhost", 80);

end the WebDAV request to remove a category reference

statuscode = dav.removeCategoryFromDocument (user, password, realm, document, categoryUUID) ;
if (statuscode==EboDAVStatus.SC_MULTI_ STATUS)

System.out.println ("Request succeeded: The category was removed from " + document) ;
else

System.out.println ("Request failed: " + status.getStatusText (statuscode)) ;

ch (EboDAVException e)

if (m_debug)
e.printStackTrace () ;

else
System.out.println(e.getMessage()) ;

//End session

dav

}

.endSession() ;

Code example: removing a category reference using utility methods

/**

This example uses the Slide PropPatchM ethod class and the exteNd Director utility methods
startSession(), createCredentials(), setCredentials(), getState(), settate(), and
createWebDAVM ethod().

The method that removes the category reference is addProperty ToSet(), called on the PropPatchM ethod
object. Notice that the second argument—jproperty value—is null because the category UUID is passed
asthe first argument—property name. For more information about addProperty ToSet() and its
arguments, see “ Constructing WebDAV requests that use Proppatch” on page 106.

removeCategoryReference

*/

import
import
import
import

public

{

com.sssw.webdav.client.*;

com. sssw.webdav.common . EboWebdavConstants;
org.apache.webdav.lib.*;
org.apache.webdav.lib.methods. *;

class removeCategoryReference

private static boolean m_debug = false;

public void removeCategoryReference (String document, String categoryUUID)

{

//Define variables

int

124

statuscode = 0;

exteNd Director Content Management Guide

String user = "contentadmin";

String password = "contentadmin";
String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";
String namespace-abbr = "RC";

//Instantiate an EboDAVSwitch object
EboDAVSwitch dav = new EboDAVSwitch() ;

//Instantiate an EboDAVStatus object
EboDAVStatus status = new EboDAVStatus() ;

//Start a session
dav.startSession("localhost", 80);

//Get and set credentials
Credentials credentials = dav.createCredentials (user, password) ;
dav.setCredentials (credentials) ;

//Get and set state and authentication realm
State state = dav.getState();
state.setAuthenticateToken (realm) ;
dav.setState (state) ;

//Create the WebDAV method object PropPatchMethod
PropPatchMethod ppm = (PropPatchMethod)dav.createWebdavMethod (dav.PROPPATCH METHOD, document) ;
ppm.addPropertyToSet (categoryUUID, null, namespace-abbr,

EboWebdavConstants.PROPPATCH _REMOVECATEGORY) ;

//Execute PropPatchMethod (send the WebDAV request to remove category reference)
try

dav.executeCommand (ppm) ;

statuscode = ppm.getStatusCode () ;

if (statuscode == (EboDAVStatus.MULTI_STATUS))

System.out.println("Request succeeded: The category was removed from " + document + ".");
else

System.out.println("Request failed: " + status.getStatusText (statuscode)) ;

}

catch (EboDAVException e)
{
if (m_debug)
e.printStackTrace () ;
else
System.out.println(e.getMessage()) ;

}

catch (java.net.MalformedURLException murle)
{
if (m_debug)
murle.printStackTrace () ;
else
System.out.println (murle.getMessage()) ;

}

catch (java.io.IOException ioe)
{
if (m_debug)
ioe.printStackTrace() ;
else
System.out.println(ioe.getMessage()) ;

//End session
dav.endSession () ;

}

Building Your Own WebDAV Client 125

Removing all category references from a document

Thefollowing code examples show how to remove all category references from adocument. A category
is a descriptive name used to group documentslogically in the CM subsystem.

Code example: removing all category references using a helper method
This example uses the helper method removeAllCategoriesFromDocument():

/**

removeAllCategoryReferencesFromDocument

*/

import com.sssw.webdav.client.*;
public class removeAllCategoryReferencesFromDocument {
private static boolean m _debug = false;

public void removeAllCategoryReferencesFromDocument (String document)

{

//Define variables

int statuscode = 0;

String user = "contentadmin";

String password = "contentadmin";

String realm = "Basic realm = \"SSSW_WEBDAV_ AUTHENTICATION\"";

//Instantiate an EboDAVSwitch object
EboDAVSwitch dav = new EboDAVSwitch() ;
//Instantiate an EboDAVStatus object
EboDAVStatus status = new EboDAVStatus() ;

//Start a session
dav.startSession("localhost", 80);

//Send the WebDAV request to remove all category references from the document
try
{
statuscode = dav.removeAllCategoriesFromDocument (user, password, realm, document) ;
if (statuscode==EboDAVStatus.MULTI_ STATUS)
System.out.println ("Request succeeded: All categories were removed from " + document) ;
else
System.out.println ("Request failed: " + status.getStatusText (statuscode)) ;

}

catch (EboDAVException e)
{
if (m_debug)
e.printStackTrace () ;
else
System.out.println(e.getMessage()) ;

}

//End session
dav.endSession () ;

}

126 exteNd Director Content Management Guide

Code example: removing all category references using utility methods

This example uses the Slide PropPatchM ethod class and the exteNd Director utility methods
startSession(), createCredentials(), setCredentials(), getState(), setState(), and
createWebDAVM ethod().

The method that removes all category referencesis addProperty ToSet(), called on the PropPatchM ethod
object. Notice that the second argument—property value—is null because the document UUID is passed
asthe first argument—property name. For more information about addProperty ToSet() and its
arguments, see “Constructing WebDAV requests that use Proppatch” on page 106.

/**

removeAllCategoryReferences

*/

import com.sssw.webdav.client.*;

import com.sssw.webdav.common.EboWebdavConstants;
import org.apache.webdav.lib.*;

import org.apache.webdav.lib.methods.*;

public class removeAllCategoryReferences

{

private static boolean m_debug = false;

public void removeAllCategoryReferences (String documentUUID)

{

//Define variables

int statuscode = 0;

String user = "contentadmin";

String password = "contentadmin";

String realm = "Basic realm = \"SSSW_WEBDAV_ AUTHENTICATION\"";
String namespace-abbr = "RAC";

//Instantiate an EboDAVSwitch object
EboDAVSwitch dav = new EboDAVSwitch() ;

//Instantiate an EboDAVStatus object
EboDAVStatus status = new EboDAVStatus() ;

//Start a session
dav.startSession("localhost", 80);

//Get and set credentials
Credentials credentials = dav.createCredentials (user, password) ;
dav.setCredentials (credentials) ;

//Get and set state and authentication realm
State state = dav.getState();
state.setAuthenticateToken (realm) ;
dav.setState (state) ;

//Create the WebDAV method object PropPatchMethod
PropPatchMethod ppm = (PropPatchMethod)dav.createWebdavMethod (dav.PROPPATCH_METHOD, document) ;
ppm.addPropertyToSet (documentUUID, null, namespace-abbr,

EboWebdavConstants.PROPPATCH REMOVEALLCATEGORIES) ;

//Execute PropPatchMethod (send the WebDAV request to remove all category references)
try

dav.executeCommand (ppm) ;

statuscode = ppm.getStatusCode () ;

if (statuscode == (EboDAVStatus.SC OK))

System.out.println("Request succeeded: All categories were removed.");
else

System.out.println("Request failed: " + status.getStatusText (statuscode)) ;

Building Your Own WebDAV Client 127

}

catch (EboDAVException e)

{
if (m_debug)
e.printStackTrace () ;
else
System.out.println(e.getMessage()) ;

}

catch (java.net.MalformedURLException murle)

{
if (m_debug)
murle.printStackTrace () ;
else
System.out.println (murle.getMessage()) ;

}

catch (java.io.IOException ioce)

{
if (m_debug)
ioe.printStackTrace () ;
else
System.out.println(ioe.getMessage()) ;

}

//End session
dav.endSession () ;

}

Renaming a resource or collection

Thefollowing code shows how to rename adocument. In this case, the source path pointsto adocument.
The destination path isidentical to the source path, except for a different document name.

To rename other types of resources or collections, make sure the source path pointsto the element of
interest and the destination path points to the same element, but with a different name.

Code example: renaming a document using a helper method
The example uses the hel per method moveElement():

//**

renameADocument

*/

import com.sssw.webdav.client.*;
public class renameADocument {
private static boolean m _debug = false;

public void renameADocument (String docsourcepath, String docdestinationpath)

{

//Define variables

int statuscode = 0;

String user = "contentadmin";

String password = "contentadmin";

String realm = "Basic realm = \"SSSW_WEBDAV_ AUTHENTICATION\"";

boolean autogen = false; //Do not generate folders in the docdestinationpath if they don't exist

//Instantiate an EboDAVSwitch object
EboDAVSwitch dav = new EboDAVSwitch() ;

//Instantiate an EboDAVStatus object

128 exteNd Director Content Management Guide

EboDAVStatus status = new EboDAVStatus() ;

//Start a session
dav.startSession("localhost", 80);

//Send the WebDAV request to rename the document

try
statuscode = dav.moveElement (user, password, realm, docsourcepath, docdestinationpath, autogen) ;
if (statuscode==EboDAVStatus.SC CREATED)

System.out.println ("Request succeeded: The document " + docsourcepath + "was renamed to " +
docdestinationpath) ;
else
System.out.println ("Request failed: " + status.getStatusText (statuscode)) ;

}

catch (EboDAVException e)

{
if (m_debug)
e.printStackTrace () ;
else
System.out.println(e.getMessage()) ;

}

//End session
dav.endSession () ;

}

You can also rename aresource or collection using the Slide M oveM ethod class and exteNd Director
utility methods. See “Programming practices using utility methods” on page 105.

Setting the value of a custom field in a document

The following code examples show how to update the custom metadata in a document by setting the
value of acustomfield. Customfields arefieldsthat you define as part of acustom document type created
in the CM subsystem using the CM API or the CMS Administration Console.

To update standard metadata in a document, use the addProperty ToSet() method on a Proppatch method
object, as described in “ Constructing WebDAV requests that use Proppatch” on page 106.

Code example: setting a field value using a helper method

This example uses the helper method setFieldValueFor Document(). This method overwrites existing
values of custom fields:

/**
setFieldvValueOfADocument

*/

import com.sssw.webdav.client.*;
public class setFieldvalueOfADocument {
private static boolean m_debug = false;

public void setFieldvValueOfADocument (String document, String field name, String field value)

{

//Define variables

int statuscode = 0;

String user = "contentadmin";

String password = "contentadmin";

String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";

Building Your Own WebDAV Client 129

//Instantiate an EboDAVSwitch object
EboDAVSwitch dav = new EboDAVSwitch() ;

//Instantiate an EboDAVStatus object
EboDAVStatus status = new EboDAVStatus() ;

//Start a session
dav.startSession("localhost", 80);

//Send the WebDAV request to update the custom field
try
statuscode = dav.setFieldValueForDocument (user, password, realm, document, field name,
field value) ;
if (statuscode==EboDAVStatus.SC_MULTI_ STATUS)

System.out.println("Request succeeded: The field " + field name + " of document " + document +
"was changed to " + field value);
else
System.out.println("Request failed: " + status.getStatusText (statuscode)) ;

}

catch (EboDAVException e)
{
if (m_debug)
e.printStackTrace () ;
else
System.out.println(e.getMessage()) ;

}

//End session
dav.endSession () ;

}

Code example: setting a field value using utility methods

This example uses the Slide PropPatchM ethod class and the exteNd Director utility methods
startSession(), createCredentials(), setCredentials(), getState(), setState(), and
createWebDAVM ethod():

/**
setTheFieldvValue

*/

import com.sssw.webdav.client.*;

import com.sssw.webdav.common.EboWebdavConstants;
import org.apache.webdav.lib.*;

import org.apache.webdav.lib.methods.*;

public class setTheFieldvalue

{

private static boolean m _debug = false;

public void setTheFieldValue (String document)

{

//Define variables

int statuscode = 0;

String user = "contentadmin";

String password = "contentadmin";

String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";
String fieldname = "Department";

String fieldvalue = "Human Resources";

String namespace-abbr = "SFV";

//Instantiate an EboDAVSwitch object

130 exteNd Director Content Management Guide

EboDAVSwitch dav = new EboDAVSwitch() ;

//Instantiate an EboDAVStatus object
EboDAVStatus status = new EboDAVStatus() ;

//Start a session
dav.startSession("localhost", 80);

//Get and set credentials

Credentials credentials = dav.createCredentials (user,

dav.setCredentials (credentials) ;

//Get and set state and authentication realm
State state = dav.getState();
state.setAuthenticateToken (realm) ;
dav.setState (state) ;

//Create the WebDAV method object PropPatchMethod

password) ;

PropPatchMethod ppm = (PropPatchMethod)dav.createWebdavMethod (dav.PROPPATCH METHOD, document) ;
ppm.addPropertyToSet (fieldname, fieldvalue, namespace-abbr,
EboWebdavConstants.PROPPATCH SETFIELDVALUE) ;

//Execute PropPatchMethod (send the WebDAV request to set field value)

try
dav.executeCommand (ppm) ;
statuscode = ppm.getStatusCode () ;
if (statuscode == (EboDAVStatus.SC_MULTI_STATUS))

System.out.println ("Request succeeded: The field " + fieldname + " was set to " + fieldvalue +

else

System.out.println ("Request failed: " + status.getStatusText (statuscode)) ;

}

catch (EboDAVException e)
{
if (m_debug)
e.printStackTrace () ;
else
System.out.println(e.getMessage()) ;

}

catch (java.net.MalformedURLException murle)
{
if (m_debug)
murle.printStackTrace () ;
else
System.out.println (murle.getMessage()) ;

}

catch (java.io.IOException ioce)
{
if (m_debug)
ioe.printStackTrace () ;
else
System.out.println(ioe.getMessage()) ;

//End session
dav.endSession () ;

}

Building Your Own WebDAV Client

131

Unlocking a document

The following code shows how to unlock a document, making it available to other authorsin a
collaborative environment. You might invoke this function in your WebDAV client application when a
user checksin a document.

Code example: unlocking a document using a helper method

The example uses the hel per method unlock Document (). This method throws an exception if the
document of interest is already unlocked. To explicitly check for this condition, the code callsthe
checkL ockToken() method:

/**

unlockADocument

*/

import com.sssw.webdav.client.*;
public class unlockADocument {
private static boolean m _debug = false;

public void unlockADocument (String document)

{

//Define variables

int statuscode = 0;

String user = "contentadmin";

String password = "contentadmin";

String realm = "Basic realm = \"SSSW_WEBDAV_ AUTHENTICATION\"";

//Instantiate an EboDAVSwitch object
EboDAVSwitch dav = new EboDAVSwitch() ;

//Instantiate an EboDAVStatus object
EboDAVStatus status = new EboDAVStatus() ;

//Start a session
dav.startSession("localhost", 80);

try

//If document is locked, unlock it

if (dav.checkLockToken (document) != null)
//Send the WebDAV request to unlock the document
statuscode = dav.unlockDocument (user, password, realm, document) ;
if (statuscode==EboDAVStatus.SC_NO_ CONTENT)

System.out.println("Request succeeded: The document " + document + "was unlocked.");
else
System.out.println("Request failed: " + status.getStatusText (statuscode)) ;

}

else

{

}
}

catch (EboDAVException e)

{

System.out.println (“*The document is already unlocked.”);

if (m_debug)
e.printStackTrace () ;

else
System.out.println(e.getMessage()) ;

132 exteNd Director Content Management Guide

//End session
dav.endSession () ;

You can also unlock adocument using the Slide UnlockM ethod class and exteNd Director utility
methods. See “Programming practices using utility methods” on page 105.

Updating a document

The following code exampl e shows how to update the content of a document.

Code example: updating a document using a helper method

The example uses the hel per method putDocument(). This method updates the content—not the
metadata—of a document by creating and publishing a new version. To update document metadata, see
“ Setting the value of a custom field in adocument” on page 129.

/**

updateADocument

*/

import com.sssw.webdav.client.*;
public class updateADocument {
private static boolean m _debug = false;

public void updateADocument (String document)

{

//Define variables

int statuscode = 0;

String user = "contentadmin";

String password = "contentadmin";

String realm = "Basic realm = \"SSSW_WEBDAV_ AUTHENTICATION\"";
String updatetext = "Hello earth!";

byte [] newcontent = updatetext.getBytes() ;

//Instantiate an EboDAVSwitch object
EboDAVSwitch dav = new EboDAVSwitch() ;

//Instantiate an EboDAVStatus object
EboDAVStatus status = new EboDAVStatus() ;

//Start a session
dav.startSession("localhost", 80);

//Send the WebDAV request to update the document

try
statuscode = dav.putDocument (user, password, realm, document, newcontent) ;
if (statuscode==EboDAVStatus.SC OK)

System.out.println ("Request succeeded: The document " + document + "was updated.");
else
System.out.println("Request failed: " + status.getStatusText (statuscode)) ;

}

catch (EboDAVException e)
{
if (m_debug)
e.printStackTrace() ;
else
System.out.println(e.getMessage()) ;

Building Your Own WebDAV Client 133

}

//End session
dav.endSession () ;

}

}
You can also update adocument or create a new document using the Slide PutM ethod class and exteNd

Director utility methods. See “ Programming practices using utility methods’ on page 105.

134 exteNd Director Content Management Guide

Working with WebDAV Events

This chapter describes how to handle events related to WebDAV operations and activities. It has these

sections:

+ About WebDAV events
+ Registering for WebDAV events
+ Enabling WebDAV events

Ll This chapter assumes familiarity with the exteNd Director event model and event handling. For
more information, see the chapter on working with eventsin Developing exteNd Director Applications.

About WebDAYV events

The WebDAV API events are an extension of the base exteNd Director event model framework,
consisting of state change events, event producers, and event listeners (including vetoabl e listeners). The
API for WebDAV eventsis defined in the com.sssw.webdav.event.api package.

Event types

The API defines a set of state changed events related to WebDAV operations. Event |Ds are exposed on
theindividual event classes aswell as on the com.sssw.webdav.event.api.Ebi Constants interface. There
are also generic state change events defined in com.sssw.fw.event.api.EbiotateChangeEvent.

Below isalist of event | Ds defined in com.sssw.webdav.event.api.EbiConstants:

L) For moreinformation about WebDAV operations, see “ Supported WebDAV methods’ on page 97.

WebDAV operation

Event ID constant

Copy collections and resources

COPY_EVENT_ID

Delete collections or resources

DELETE_EVENT_ID

Retrieve collections or resources

GET_EVENT_ID

Retrieve header only

HEAD_EVENT_ID

Create a lock specified by the lockinfo XML element on the Request-
URI.

LOCK_EVENT_ID

Create collection

MKCOL_EVENT_ID

Move resources or collections

MOVE_EVENT_ID

Return methods that can be called on resources and collections

OPTIONS_EVENT_ID

Download resources and collections from the client

POST_EVENT_ID

Retrieve properties on resources and collections

PROPFIND_EVENT_ID

Working with WebDAV Events

135

cdEventHandling.html

WebDAV operation Event ID constant

Set and/or remove properties on server-side resources and PROPPATCH_EVENT_ID
collections

Upload resources and collections from the client PUT_EVENT_ID

Remove a lock identified in the Lock-Token request header of the UNLOCK_EVENT_ID
Request-URI.

Registering for WebDAYV events

> To subscribe to WebDAV events:

+ Usethe addStateChangeL.istener() or add VetoableStateChangel istener method available on the
Ebi StateChangeProducer interface.

You can register for aspecified type or types of events using this version of addStateChangel istener():

public

boolean addStateChangelListener (

BitSet events, EbiStateChangelListener listener)

where eventsisabit set of event IDs.

Usetheevent |Ds specified in com.sssw.webdav.event.api.Ebi Constants. For example, thiscoderegisters
for create, delete and move operations on collections and resources:

EbiStateChangeProducer producer = new EbiStateChangeProducer ()
// Instantiate a Java BitSet and populate it

BitSet

events.
events.
events.

// Add

events = new BitSet();

set (EbiConstants.MKCOL_EVENT ID ID);
set (EbiConstants.DELETE_EVENT_ID) ;
set (EbiConstants.MOVE_EVENT 1ID) ;
listener

producer.addStateChangelListener (events, Mylistener) ;

Enabling WebDAYV events

> To enable or disable WebDAYV events:

1 Open config.xml in your exteNd Director project.
2 Find this property:

com.sssw.webdav.events.enable.Default
3 Setthevaueto truefor enable or false for disable.
4 Redeploy your project.

136 exteNd Director Content Management Guide

CMS Administration Console

Describes how to use the CMS Administration Console, a graphical user interface for
developing and managing a content management scheme

e Chapter 12, “About the CMS Administration Console”
e Chapter 13, “Setting Up the Required Infrastructure”
e Chapter 14, “Setting Up the Optional Infrastructure”

e Chapter 15, “Creating Content”

e Chapter 16, “Maintaining Content”

e Chapter 17, “Administering Content”

e Chapter 18, “Searching Content”

e Chapter 19, “Managing Content Security”

e Chapter 20, “Importing and Exporting Content”

e Chapter 21, “Administering Automated Tasks”

137

138 exteNd Director Content Management Guide

About the CMS Administration Console

This chapter describes what tasks you can perform with the Content Management Subsystem
Administration Console, or CMS Administration Console. It has these sections:

+ What CM tasksyou can do with the CM S Administration Console
+ How to access the CM S Administration Console
¢ Theman CMS Administration Console page

IMPORTANT: Along with exteNd Director, you must have Microsoft Internet Explorer Version 5.5 or
higher installed for running the CMS Administration Console.

What CM tasks you can do with the CMS Administration Console

You can use the CM S Administration Console to perform all tasks related to managing content
throughout its dynamic life cycle in the exteNd Director application.

The following diagram presents the recommended order and interaction of these tasks during atypical
CMS Administration Console session:

About the CMS Administration Console 139

140

Create falders
Create document types
Create and rodify fields for document types

O Create display style for document type
O Create X5L style sheet based on content
O Upload BSL style sheet to display type

c

Categarize™fes))
: O Create tasonomies and categories

Create dacuments with metadata, fields, and dynamic content
Crazte relationships between documents

Create content

oo

docurnent type

Praview and edit contant

Madify praperties

Change document's folder and categories
Modify display styles

Set document expiration dates

Delete content

v

O Preview document

oooooo

Administer
content

O <heck out document
O Edit document
O «<heckinnew version

Madify
content?

O Publish document

O Control access to content elements

Ll For more information on how to perform these tasks with the CMS Administration Console, see

these sections:

o Chapter 13, “Setting Up the Required Infrastructure”
+ Chapter 14, “ Setting Up the Optional Infrastructure”
+ Chapter 15, “Creating Content”

+ Chapter 16, “Maintaining Content”

+ Chapter 17, “ Administering Content”

+ Chapter 19, “Managing Content Security”

Importing and exporting documents In addition to the CM tasks shown in the diagram above, the
CMS Administration Console allows you to import and export documents.

L) For more information on how to import and export documents using the CMS Administration
Console, see Chapter 20, “Importing and Exporting Content”.

exteNd Director Content Management Guide

How to access the CMS Administration Console

You can access the CM S Administration Console by selecting Content M anagement from the Director
Administration Console (DAC).

L For information about how to accessthe DAC, see the section on accessing the DAC in Devel oping
exteNd Director Applications.

You are prompted to log in. Do so by entering your user name and password and then clicking OK ..
NOTE: Check with your administrator to make sure you have the necessary user privileges for
performing the CM tasks assigned to you. For more information, see Chapter 19, “Managing Content
Security”.

The main CMS Administration Console page opensin your browser, as described in the next section.

The main CMS Administration Console page

When you start the CM'S Administration Console, the main page appears—asin this example;

Content tree view: Toolbar: Allows you to create Content list : Displays
Displays folder structure content and assign tasks contents of selected folder

4} Portal Management Console - Content Managernent - Microsoft Internet Explorer =10 x|
File Edit View Favorites Tools Help ﬁ
GBack + = - (D at | Qhsearch [GelFavprites GPMedia &4 | S H
Address I@:[http: fflocalhost IntraTutorial/PME fmainfpages/PrmcFolders . html j @Go | Links **
Portal Management Console 2

...... Bl Novell.

Folder View | Category View | Check-OutsView | SearchView |

Mame Descriptior Author Crested Publish Date Expiration Date Checked-out By
@ @ Defaut

Property Inspector

Click on a Folder within the tree to the left
Click on a Document within the list above

] Mew Folder ZI
|®j Daone ’_’_’_ Local intranet: 4
Task bar: Displays tasks you can Property Inspector: Displays content
perform in the current mode and view metadata that you have permission to see

The CMS Administration Console has several views and modes that you control viainteractive
controls—as follows.

About the CMS Administration Console 141

cdAppAdmin.html#AccessingtheDAC

Interactive controls
The CM S Administration Console consists of the following interactive controls:

+ Toolbar

+ Content view tabs

+ Content tree view

+ Content list

+ Context-sensitive toolbar
+ Property Inspector

Toolbar—switch between modes

To switch between modes:

Mode Icon What authorized users can do
Content B Set up content infrastructure, and administer and secure content, search for
documents

By default, the CMS Administration Console opens in content mode,
displaying your content by container in the content tree view and by
document in the document list.

Templates m Define document types, display styles, and fields—and create content
based on these specifications

Tasks View, start, and stop automated tasks

Import % Import content infrastructure, documents, document types, display styles,
and fields

Export @ Export content infrastructure, documents, document types, display styles,
and fields

Content view tabs—display views of content infrastructure

To display views of the content infrastructure;

View Displays
Folder Physical content infrastructure as a tree view of folders
Category Logical content infrastructure as a tree view of taxonomies and categories

Check-Outs Documents checked out, by either the current user or other users

Search Search dialogs and documents found by the most recent search

L] For moreinformation about fol ders and categories, see Subsystem infrastructure” on page 16. For
information about checking out documents, see “ Checking documentsin and out” on page 194. For
information about finding documents with the Search facility, see Chapter 18, “ Searching Content”.

142 exteNd Director Content Management Guide

Content tree view

Displays:
+ Thephysical infrastructure in folder view
+ Thelogical infrastructurein category view.

Content list

Displaysthelist of documentsin the selected folder, along with identifying information such as name,
author, description, create date, expiration date, publish date, and checkout status.

Context-sensitive toolbar

Provides functions based on the current mode and view.

Property Inspector
Displays properties for selected documents, folders, taxonomies, and categories.

The Property Inspector is context-sensitive and permission-sensitive. It displaysinteractive controls and
tabbed panes of information based on the object you select and the permissions associated with your user
ID.

For example: if you do not have WRITE permission, you cannot edit documents and the Property
Inspector will not display Check-1n and Check-Out contrals; if you do not have PROTECT permission,
you cannot set security on content and the Property Inspector will not display a Security tab.

About the CMS Administration Console 143

144 exteNd Director Content Management Guide

Setting Up the Required Infrastructure

This chapter describes the order of tasks required for setting up the required parts of the infrastructure,
along with associated procedures. It has these sections:

Flow of operations

Creating folders

Creating document types

Creating fields and adding them to a document type
Writing JavaScript for document types and fields

NOTE: Before creating documents for your exteNd Director application, you must define the content
infrastructure, as described in “Subsystem infrastructure” on page 16.

Flow of operations

Hereisaworkflow that illustrates the recommended order of operationsfor setting up the required parts
of the Content Management (CM) subsystem infrastructure:

Set up required
infrastructure

O Create falders
O <Create document types
O <Create and madify fields for document types

Generally, the task of building thisinfrastructure is assigned to a system administrator or content
administrator who has READ, WRITE, and LIST permissions. For more information about managing
security, see Chapter 19, “Managing Content Security”.

Creating folders

Thefolder isakey part of the CM subsystem. Every document must reside in one (and only one) folder,
although a single folder can store one or more documents as well as other folders.

> To create a folder:

1
2

Enter Content mode by clicking the Content button in the toolbar.

Select the Folder View tab.

Your existing folders appear in the content tree view.

Select the folder that will house your folder by clicking the name.

The name appears highlighted.

Click the New Folder icon, located in the bottom-|eft panel of the CM'S Administration Console.
An Untitled folder appears in the content tree view.

Setting Up the Required Infrastructure 145

You may have to expand the parent folder in the content tree view to make the new folder visiblein

that view.
5 Click Untitled to open the Property Inspector for the new folder.
6 Fill inthe Name and Description text boxes in the Property Inspector, then click Save.

The other General fields arefilled in automatically by the CMS Administration Console. You

cannot edit them.

7 Select the Security tab in the Property Inspector and set security for the folder, as described in

Chapter 19, “Managing Content Security”.
8 Click Save to preserve your settings.
9 Select the folder in the content tree view.

Your new folder should appear in the content tree view as well asin the content list along with the

description, author, and date created.
Here is an example showing information about a PSAT folder:

Folder View J Cateqory View J Check-OutsView]
Maime: Descrigtion Author Crested Publish Date Expirstion Date Checked-out By
3 @ ocetaut _ _
psAT! TestQuestion J.Smith 2001-10-02 dha
5 [PSaT
m O sa7 E peaT? TestQuestion JSmith 2001-10-04
@ Folder Property Inspector
General } Security. I
Matne Crested by Diate Crested
[psat ik fz001-10-01 16:26:43.369
Descrigtion hacdified by Diate hadified
Questions for Preiminary Scholasic— &| [iba fz001-10-m 1:26:43 369
i Test (PEAT) Bytes Creste Document of Type
j |115 |ChooseaType j
u Save x Delste
& Mew Folder
o
@ Done r r@ Lacal intrangt 4

Creating document types

A document type is the basic definition of adocument. Every document is associated with a document

146

type in the CM S Administration Console.

The document type is atemplate that specifieslayout styles, fields of information, and document

management options—such aswhether or not the CM'S Administration Console automatically checksin

adocument after it is edited.

exteNd Director Content Management Guide

> To create a document type:
1 Enter Templates mode by clicking the Templates button in the toolbar.
A panel appears listing any document types that have been defined.
2 Click the Add button that appears under the Document Types list.
The Create A New Document Type window appears:

a http:/ /localhost/Director/CM/PMC /main/pages/PmcTemplate

Create A New Document Type

Hame: I

Auto-Checkin: I
If checked, documents will be sutomstically checked in when they are edited.
Auto-Publish: -

If checked, the content of the document will be automatically published in
when i iz edited.

Default Content: I Choice * l

- Choice -- The user can choose which mode of content they use.
- Binary -- Content iz uploaded
- HTML -- Cortert i created via the HTML editar

Extended Options

Create Mew Documernt Type |

3 Specify the basic options, including:

Option Effect

Auto-Checkin If selected, CMS Administration Console checks in documents automatically
after they are edited.

If not selected, CMS Administration Console does not check in documents
automatically after they are edited

Auto-Publish If selected, CMS Administration Console publishes the latest version of the
content of a document automatically after that document is edited.

If not selected, CMS Administration Console does not publish documents
automatically after they are edited

Default Content If you select:

HTML: CMS Administration Console will always enter content as HTML for
documents of this type.

Binary: CMS Administration Console will always upload content from an
external source for documents of this type.

Choice: You want to decide at content creation time whether to enter
content as HTML or upload content from an external source.

4 Click Extended Optionsto specify additional document type behavior.
The Create A New Document Type window expands:

Setting Up the Required Infrastructure 147

148

a http:/ /localhost/Director/CM,/PMC/main/pages/PmcTemplates

Create A New Document Type

Hame: I

Auto-Checkin: -

If checked, documents will be sutomstically checked in when they are edited.

Auto-Publish: -

If checked, the content of the document will be automatically published in when it is

edited.

Default Content: IChoice vl

- Choice -- The user can choose which mode of content they use.
- Binary -- Content iz uploaded
- HTML -- Cortert i created via the HTML editar

Hide Extended Options

Hetault Eolders No Foler Selected | _ Clear Folder | =

If you select & default folder for this document type, each time you create
& document, this folder will automstically be selected.

Force Folder: -

If checked, the folder selected as the default for this document type will
not be editable during document crestion.

Default Categories: Mo Categories Selected J Clear Categoties |

If you select default categories for this document type, each time you
creste a document, these categories will automatically be selected.

Force Categories: -

If checked, the categories selected as the defaults for this document type
will not ke editable during document creation.

Clean Up Data: I

If checked, when a field iz remaoved from the Document Type, all data that
waz entered in that field for each document will be removed.

User Data: |

Create Mew Documernt Type

5 Specify extended options, including:

Option

Effect

Default Folder

When the CMS Administration Console creates documents of this type, this
folder is specified as the parent folder. You can change the folder when
creating the new document.

Force Folder

If selected, the folder specified under Default Folder cannot be changed
when creating a new document of this type.

Default Categories

When the CMS Administration Console creates documents of this type, this
category is specified as the parent category. You can change the category
when creating the new document.

Force Categories

If selected, the category specified under Default Category cannot be
changed when creating a new document of this type.

Clean Up Data

If selected, when you remove a field from a document type (but leave it
available for later use), the CMS Administration Console deletes the field
from legacy documents of that type.

If not selected, when you remove a field from a document type (but leave it
available for later use), the CMS Administration Console preserves the field
in legacy documents of that type but does not allow you to edit the field.

User Data

You can use the text box to store additional metadata about the document
type (such as notes, procedural instructions, and so on).

6 Click the Create New

Document Type button.

Your new document type is added to the list.

exteNd Director Content Management Guide

Creating fields and adding them to a document type

About fields

Fields are application-specific metadata that you define as part of a document type.

You can create custom fields using the CM'S Administration Console or programmatically using the CM
API.

NOTE: You must be a member of the SearchAdmin group to create fields. For more information about
users and groups, see the chapter on using the Directory section of the DAC in the User Management
Guide.

You assign each field a control type. The control type you select should reflect the way you'd like the
content devel oper to enter information in the document type template. Each control type requiresitsown
set of parameters, which you can specify in the Property Inspector. When fields are created, they are
added to a pool of available fields that are shared by multiple document types.

When you add afield to adocument type, an equivalent blank field is added to documents of that type
that you have already created in the CMS Administration Console.

Creating and manipulating fields

This section explains how to create fields, add existing fields to document types, and specify which fields
todisplay in the Available Fields list.

> To create afield:

1 Makesureyou are amember of the SearchAdmin group.
L) For information, see the procedures described in the chapter on using the Directory section of
the DAC in the User Management Guide.

2 Enter templates mode by clicking the Templates button in the toolbar.
A panel appears listing the document types that have been defined.

3 Click the document type for which you are going to create afield.

NOTE: If you want to create a new document type first, see “Creating document types” on
page 146.

Setting Up the Required Infrastructure 149

usPACDirectory.html
usPACDirectory.html
usPACDirectory.html

A Content Types panel appears displaying the currently defined fields in the document type and
providing controls for creating new fields or adding existing fields:

Document Types:

Caontent Types] HEL Style Sheets] Advanced]

__PmcSystembDefaultType
Detautt Fields: Available Fields:

Documert Layout
TestQuestion Hame Control Type Hame

AuestionTesxt Textfield 'I E' MultipleChoice -- System Field
TrueOtFalse? Radio Buttan vl < E GQuestionText (TestQuestion)

E TrugrFalze? (TestQuestion)

P @ Properties [l Save x Delete Shaw Fields in Document Type.. ;I

Property Inspector

» Double Click an Entry from the Fields list above
Click an Entry from the Fields list above and then click the 'Properties' button.

odd P et ¢F Use
@ sutocreate 14 Edit

-

|@ ’_ ’_ E Local intranet

4 Click Add in the Content Types panel.

An Untitled field appears in the Fields pane for the selected document type, and the Property
Inspector opens allowing you to specify properties for the new field:

Content Types] HSL Style Sheets] Advanced]
Fields: Available Fields:
Hame Control Type Hame

GuestionText ITe>dfieId 'l El huttipleChaice -- System Field
TrueCrFalse? IRadio Button vl < El GuestionText (Test@uestion)
Untitled ITe>dfieId vl El TruerFalze? (TestGuestion)

e add @ Properties [Save X Celete Show Fields in Document Type... LI

Hame: l—
Width: I—

JavaScript Events: IonElIur LI I 0 Ayailable Functions

EfUpdate

5 Inthe Fields pane, select the control type you want for your field. Choicesinclude Textfield,
Checkbox, Radio Button, and so on.
The Property Inspector refreshes to display options appropriate for the control type you select.
These control types represent HTML control types, and the display options represent the attributes
for those contral types.

6 Inthe Property Inspector, enter an informative name for your field and fill in the other parameters.

150 exteNd Director Content Management Guide

7 Click Update.

The new field appearsin the Fields pane for the selected document type and in the Available Fields
pane for other document typesto use.

8 Repeat these steps for as many fields as you want to create and add to the document type.
9 Click Saveinthe Fields pane to save the fields in the current document type.

> To add an existing field to a document type:
1 Enter templates mode by clicking the Templates button in the toolbar.
A panel appearslisting all document types that are currently defined.
2 Click the document type for which you want to add afield.

NOTE: If you want to create a new document type first, see “Creating document types” on
page 146.

The Content Types panel appears displaying a pane of available fields:

Document Types: =
Content Types] REL Style Sheets] Advanced]
_ PmcSystemDetaut Type
Default Fields: Available Fields:
[Document Layout
TestQuestion Hame Control Type Hame

GuestionText ITE:)dfieId vl Et GuestionText (TestQuestion)
TruedrFalse IRadio Buiton vl (E TrugtrFalze (TestQuastion)

i
sy 0 Properties [l Save x Delete Show Figlds in Documert Type... j
Fs
Hame: ITrueOrFaIse
Group Entries: ! - {Double Clicking an entry in
Dizplay List items: Value: the List wil remave)
True 1
Wallg
Falze 0
HD Ack tem
fadd Koeete (Fuse
JavaSeript Events: |onB\ur j | e Ayaiteble Functions
@ autocreste [t ‘
EfUpdate]
g 5
|@ |- |—|— E Local intranet

3 Add fieldsto the document type using one of these methods:
+ Double-click the field namein the Available Fieldslist.
OR
+ Select afield inthe Available Fields list and click the Add Field button:

<

OR
+ Dragthefield icon from the Available Fieldslist to the Fieldslist:

=

Setting Up the Required Infrastructure 151

> To change the Available Fields display:

1 Click the down arrow of the dropdown menu labeled Show Fields in Document Type, located
under the Available Fieldslist. A menu appears allowing you to display thefields available for only

a particular document type or for all document types:

Content Types] HSL Style Sheets] Advanced]
Fields: Available Fields:

Hame Control Type Hame

Texthres ITe>dfieId 'l El Copyrighthotice (LegalMatices)

True or Falze IRadio Button vl < El huttipleChaice -- System Field

El Textires (Test@uestion)
} El True or Falze (Test@uestion)
-

Fadd) Properties fad Save 2 peete Shiow Fielis in Documert Type... x|

Showe Fields in Document Type. ..

Property Inspector

Double Click an Entry from the Fields list above.
Click an Entry from the Fields list above and then click the 'Properties' butto

‘2l Documert Types

_ PmcSystemDefault Type
Default

Document Layout
LegalMotices
TestGuestion

2 Select amenu option.

The Available Fields list refreshes to reflect your choice.

Writing JavaScript for document types and fields

152

The CMS Administration Consol e enables you to specify JavaScript code for document typesand fields.

You can specify JavaScript that runs when:

+ A content pageisloaded

+ AnHTML form on a page is submitted

+ Afield on apage gainsor loses focus, or is clicked
+ Thecontent of afield is changed

If you code JavaScript for aparticular document type, you can access that code when defining JavaScript
if you define afunction for the document type,
you can call that function on a JavaScript event for afield, such as gaining focus or clicking.

for individual fieldsin that document type. For example,

CAUTION: The CMS Administration Console does not verify JavaScript code. You are responsible for
verifying that JavaScript written for a document type or field is designed and coded correctly.

> To specify JavaScript for a document type:

1 Enter templates mode by clicking the Templates button in the toolbar.
A panel appears listing all document types currently defined.
2 Click the document type for which you want to specify JavaScript code.

exteNd Director Content Management Guide

NOTE: If you want to create a new document type first, see “Creating document types” on

page 146.
3 Click the Advanced tab.
The Advanced Properties window displays:

Content Types] HSL Style Sheets] Advanced]

Advanced Properties:

“iewy Document Type XML |

JavaScript Event: IElefore Page = Loaded VI

Document Creation Style Sheet:

Ehvielbeetbiled I Browse... Choose Existing Document
Ho Current Setting

Style Sheet Folder: Mo Folder Selected J

Do Hot Use Style Sheet: [

u Save

JavaScript Code: IS ;I
* This is code that will get placed in the <HEAD> section
* of the document. It iz & good place to write JavalScript
* functions.
*

o i

4 Under JavaScript Event, specify when you want the JavaScript to run during the life cycle of the

document. Choices include:
+ Before PagelsLoaded
+ After Page|s Loaded

+ Form Submitted

If you want the JavaScript code to be available to fields in the document type (for example, if you
want to define functions that will be called by individual fields), specify Before Page |I's L oaded.

5 Under JavaScript Code, insert the code.

Setting Up the Required Infrastructure

153

154

For example, here is some JavaScript code containing two function definitions that isto run before
the page is loaded:

Content Types] HSL Style Sheets] Advanced]

Advanced Properties:

“iewy Document Type XML |

JavaScript Event: IElefore Page = Loaded VI

JavaScript Code: IS ;I
* This is code that will get placed in the <HEAD> section
* of the document. It iz & good place to write JavalScript

* functions.

*

function addTwoNunbers (a, bl |
return a + hb;

i

function subtractTwoNunbers (a, hb) |
return a - hb;

}

o i

Document Creation Style Sheet:

Ehvielbeetbiled I Browse... Choose Existing Document |
Ho Current Setting

Style Sheet Folder: Mo Folder Selected J

Do Hot Use Style Sheet: [

u Save

6 Click Saveto save the JavaScript specification in the current document type.

To code additional JavaScript for other events, repeat this procedure specifying the alternate event(s) in
Step 4 and codein Step 5.

> To specify JavaScript for a field:

1

Enter templates mode by clicking the Templates button in the toolbar.
A panel appears listing all document types that are currently defined.

Click the document type that contains the field for which you want to specify JavaScript code. A
list of the fields defined for that type appears.

NOTE: If you want to create a new document type first, see “Creating document types” on
page 146.

Double-click the field for which you want to specify JavaScript to access the field properties.

Under JavaScript Events, specify when you want the JavaScript to run. Depending on the kind of
field (text field, check box, text area, and so on) selected, one or more of these events might be
avalable:

+ oOnBlur
+ onFocus
«+ onClick

+ onChange
You can specify different JavaScript code for different events.
In the text box next to the JavaScript Events selection box, type your JavaScript code.

exteNd Director Content Management Guide

If any functions for the document type that contains the field have been defined, you can click
Available Functions to select from the list of predefined functions:

Hame: ITrueOrFaIse
Group Entries: ; P [Double Clicking an entry in
Displary: | List tems: Value: the List will remove it)
True 1
Walue: I

Falze 1]
D acidd Item

JavaScript Events: IonCIick LI

EfUpdate

k 0 Ayailable Functions

addTwoklumbers (3, k)
|subtract Twaoblumbers (a, b

A template for the function isinserted into the text box. You can then edit the text box.

L) For information about defining JavaScript functions for a document type, see “ To specify
JavaScript for adocument type:” above.

6 Click Updateto save your field properties.

To code additional JavaScript for other field events, repeat this procedure specifying the alternate
event(s) in Step 4 and codein Step 5.

CAUTION: Ifyou create a field that references a function defined in a particular document type and then
use that field in another document type, you must redefine the function in the second document type
before that function can work.

Setting Up the Required Infrastructure 155

156 exteNd Director Content Management Guide

Setting Up the Optional Infrastructure

In addition to the required infrastructure such as document types and folders, you can create optional
parts of the CM subsystem infrastructure that define display styles and assign categoriesto content. This
chapter has these sections:

+ Flow of operations

+ Creating display styles

+ Specifying astyle sheet for a document type

+ Creating taxonomies

+ Creating categories

Flow of operations

Hereisaworkflow that illustrates the recommended order of operations for setting up the optional CM
subsystem infrastructure;

Custom™, yes |0 Create display style for document type

O Create X5L style sheet based on content
A Categorizeén, Ves
documents 3

Creating display styles

e

O Create tagonomies and categories

About display styles

Display styles specify how to display content for individual document types. The CMS Administration
comes with adefault display style that it automatically appliesto all content unlessyou override it by
creating custom display stylesfor document types.

For each display style, you can add one or more XSL style sheets that specify how to render content for
particular user agents, such as Microsoft Internet Explorer and Netscape Navigator. You must create the
XSL specificationsin an external XSL editor, then upload the XSL file to adisplay style.

The CMS Administration Console treats XSL style sheets like documents—by:

+ Storing each XSL style sheet in one (and only one) folder, identifying it as a system resource
+ Storing each update to an XSL style sheet as anew version

+ Requiring authorized users to publish the version of the XSL style sheet they want to apply to
content

Setting Up the Optional Infrastructure 157

158

Before you create display styles Beforeyou can create display styles, the following elements of
the content infrastructure must be in place:

Infrastructure element For information see

Folder for physically storing XSL style sheets “Creating folders” on page 145

Document type for defining content structure “Creating document types” on page 146 and

“Creating fields and adding them to a document
type” on page 149

Instances of the document type(s) for which “Creating documents” on page 166
you want to create a display style

Creation procedure After you complete these tasks, you are ready to:

*

*

*

Create an XSL style sheet in an external editor based on existing content
Create adisplay style
Upload the XSL style sheet to the display style

> To create an XSL style sheet based on existing content:

1
2

7
8

Enter content mode by clicking the Content button in the tool bar.
Select the Folder View tab.

Your existing folders appear in the content tree view. You may need to expand some of these
containers to see the compl ete view.

Click to select the folder that contains the content of interest.
A list of documents appears in the content list.

Select the document of interest to open its Property Inspector.
Click Preview in the Property Inspector.

The content opens in a Content Reader window:

Author Title Abstract QuestionText field

/} Content Reader - Microsoft Internet Explorer

PSAT Question 1

by J. Srmith

First zample PSAT guestion with answer

GuestionText: Tomatoes are

TrueQrFalze?: Falze
Attachments:
Children:

Note to testers: Level of difficulty is 1.

Wiew Xhil

| | |
Dynamic Attachments and TrueOrFalse? field
content children listing

Click View XM L.

The Content Reader refreshes to display the XML code that underlies your content, along with a
Show Styled Document button that allows you to redisplay the rendered content.

Copy the XML and paste it into an XSL editor and develop an XSL style sheet for the content.
Save the XSL style sheet in an XSL file on your local file system or designated network directory.

Now you are ready to create adisplay style that will use the X SL style sheet you just created.

exteNd Director Content Management Guide

> To create adisplay style:
1 Enter templates mode by clicking the Templates button in the toolbar.
A panel appears listing the document types that have been defined.
2 Select the document type for which you are going to define a display style.
TIP: If you want to create a new document type first, see “Creating document types” on page 146.
3 Clickthe XSL Style Sheetstab.

Two panes appear. The Default Display Styles pane lists any display styles that have already been
created for the document type, and the Properties pane displays the properties of a selected display
style. In the following example, no display styles have been created:

Document Types:

Content Types J XL Style Sheets J Arvanced]
__PmcSystemDetaut Type
Defaut Default Display Styles: Properties:
Document Layout
Legahidtices Hame:
TestQuestion
%B Set As Default CreateDisplay Style [ﬁ Upload @ save x Delete

oot R oeete s

Q AutoCreste BEN!

|@ ’— ’— @ Local intranet 4
4 Click Create Display Style.
The Create Display Style window opens.

3 style sheet Maintenance - Microsoft Inl:errif (=]]

Create Display Style for the "TestQuestion"
Document Type
Display Style I—
Hame:
Display Style I
Description:

Create The Display Style | Reset |

[
5 Enter aname for the new display style and (optionally) a description, then click Create The
Display Style.
The new display style is added to the Default Display Styles pane.

6 If you want to designate the display style as the default for the selected document type, select the
display stylein the Default Display Styles pane and click Set As Default.

Setting Up the Optional Infrastructure 159

160

> To upload an XSL style sheet to a display style:

Before performing this procedure, you must create an XSL style sheet in an external editor and store the
specification as an XSL file on your network.

1

6

7

Enter Templates mode by clicking the Templates button in the toolbar.
A panel appearslisting al document types that have been defined.
Select the document type that contains the display style of interest.
The document type Property Inspector appears.

Click the XSL Style Sheetstab.

Two panes appear. The Default Display Styles pane lists any display styles that have been created
for the document type, and the Properties pane displays the properties of a selected display style.

In the Default Display Styles pane, select the display style for which you want to add an XSL style
sheet.

Click Upload in the Properties pane to upload the X SL style sheet you created externally.
The Upload Style Sheet window opens:

/ style sheet Maintenance - Microsoft Internet Explorer : 10l =|
=l
Upload Style Sheet for the TestGQuestion' Document Type

Document Hame: I

Target Browser: IChoose & Target Browser LI

Folder: Mo Falder Selectsd J

%SL File: I Browse... | Choose Existing Document

Current setting: ‘none’
Upload The Style Shest | Resst |

=l

Fill in the text boxes as follows:

Option What to enter

Document Name Name that identifies the XSL style sheet in the CMS Administration Console

NOTE: The CMS Administration Console uses this name to display the XSL
style sheet as a document in folder view

Target Browser A user agent from the dropdown list

NOTE: The CMS Administration Console uses this value to determine
which XSL style sheet should render content for specific user agents

Folder Folder where the XSL style sheet should be stored

XSL File XSL style sheet you created for this display style. You can:
+ Browse the network for an external file
OR

+ Select Choose Existing Document to search for an XSL file that has
already been uploaded to the CMS Administration Console

Click Upload The Style Sheset.

The XSL style sheet is uploaded to the display style. If you expand the display style in the Default
Display Styles pane, you will seeitslist of associated XSL style sheets.

The XSL style sheet is also uploaded as a system resource to the folder you specified in Step 6.

exteNd Director Content Management Guide

Specifying a style sheet for a document type

The properties of adocument type can include an X SL style sheet that you can specify on the Advanced
tab of the document type properties. Thisstyle sheet designationisincludedinthe XML of all documents
of thistypethat you create.

The CMS Administration Console content creation code uses this style sheet to render the data for that
document type.

This style sheet designation is distinct from the styles and style sheets you can specify inthe XSL Style
Sheets tab (as described under “ Creating display styles” on page 157). Those styles are used when
displaying portlets of the document type in the Content Reader.

> To specify a style sheet for the document type:
1 Enter templates mode by clicking the Templates button in the toolbar.
A panel appearslisting al document types that have been defined.
2 Select the document type that contains the display style of interest.
A document type Property Inspector appears.
3 Click the Advanced tab.
4 To specify astyle sheet document that currently existsin the CMS Administration Console:
4a Click Choose Existing Document.
The Search For A Resource window opens.

4b Search for a document by name, title, or author by selecting the appropriate radio button,
entering identifying information, and clicking the Sear ch button.

=10l x|
Search For A Resource
By Hame: % By Title: ¢ By Author:

Resource Hame: Iﬂ
Search | Resetl

Search By Hame Results ("PC"):

/} Document Picker - Microsoft

| v

E PCIE(2001-10-22 14:44:11.303)

E PCHetscape{2001-10-22 14:44:37.24)

Cloze Window | B
=

This example shows a search for all resources that contain PC in their names.
4c Select the document from the search results.
Your choice isreflected under Style Sheet File.
4d Click Close Window to exit the Search For A Resource window.
5 To specify an externa style sheet:
5a Click Browse.
A file selection dialog opens.
5b Browse to the appropriate style sheet and select it.
Your choice isreflected under Style Sheet File.
5¢ Nextto Style Sheet Folder, click the élipsis.
The Folder Selection dialog appears.

5d Navigate to the CMS Administration Console folder where you want to install the style sheet
and click Done.

Your choice isreflected next to Style Sheet Folder.

Setting Up the Optional Infrastructure 161

6 Click Saveto apply the style sheet specification to the document type properties.

> Toremove a style sheet specification from the document type properties:
1 Enter templates mode by clicking the Templates button in the toolbar.
A panel appearslisting al document types that have been defined.
2 Select the document type that contains the display style of interest.
A document type Property Inspector appears.
3 Click the Advanced tab.
Under Document Creation Style Sheet, click Do Not Use Style Sheet.
5 Click Save to remove the style sheet specification from the document type properties.

N

Creating taxonomies

If you plan to set up multiple categories for classifying documents, you may want to group themina
meaningful taxonomy.

L) For more information, see “Classifying content” on page 19.

> To create a taxonomy:
1 Enter content mode by clicking the Content button in the toolbar.
2 Select the Category View tab.

Your existing taxonomies and categories appear in the content tree view. (You may have to expand
the Default root category.)

3 Click the New Taxonomy icon, located in the bottom-left panel of the CMS Administration
Console.

An Untitled taxonomy appearsin the content tree view.
4 Click Untitled to open the Property Inspector for the new taxonomy:

Folder Yiew] Category View] Check-OulsV\ewJ

Mame Description Authar Crested Publish Date Expiration Date Checked-out By

& A vefaut

2 {gf untitied

& Taxonomy Property Inspector

General I Security 1
Mame Create Document of Type

|ummeu ChooseaType =

Description

e unttle taxonomy ﬂ

u Save x Delete

.
d Mew Taxonomy ud Mew Category

‘a r|— @ Local intranet 4

162 exteNd Director Content Management Guide

Fill inthe Name and Description text boxes in the Property Inspector, then click Save.
The name of the taxonomy is updated in the content tree view.

Select the Security tab in the Property Inspector and set security for the taxonomy, as described in
Chapter 19, “Managing Content Security”.

Click Save to preserve your settings.

Creating categories

You can create one or more categories for classifying documents within a taxonomy.

AR

For more information, see “ Classifying content” on page 19.

> To create a category:

1
2

Enter content mode by clicking the Content button in the toolbar.

Select the Category View tab.

Your existing taxonomies and categories appear in the content tree view.

Click the name of the taxonomy that will store your category.

The name appears highlighted.

Click the New Category icon in the bottom-left panel of the CM S Administration Console.
An Untitled category appears in the content tree view within the selected taxonomy.

Click Untitled to open the Property Inspector for the new category:

Folder Yiew] Category View] Check-OulsV\ewJ

Mame Description Authar Crested Publish Date Expiration Date Checked-out By

& G vefaut
=] H BusinessGeneration
4 Untitled

@l Category Property Inspector

General I S&Dutﬁv}
Mame Creste Document of Type

|ummeu ChooseaType v

Description

Meve unttled category d

u Save x Delete

.
d Mew Taxzonomy a Mew Category

‘a Dane

E
r |— @ Local intranet 4
Fill inthe Name and Description fieldsin the Property Inspector, then click Save.
The name of the category is updated in the content tree view.

Select the Security tab in the Property Inspector and set security for the category, as described in
Chapter 19, “Managing Content Security”.

Click Save to preserve your settings.

Setting Up the Optional Infrastructure 163

164 exteNd Director Content Management Guide

Creating Content

This chapter describes how to create content using the CM'S Administration Console. It has these
sections:

+ About content

+ Flow of operations

+ Creating documents

+ Creating relationships between documents

About content

What content is Content is defined asinformation that is viewed or downloaded by users of your
exteNd Director application. Content is managed in the CM S Administration Console. (It isimportant to
distinguish content from pages, which are managed in the DAC and present the graphical interface that
hel ps users navigate the Web site.)

L For more information about content, see Chapter 1, “ About the Content M anagement Subsystem”.

The CMS Administration Consol e supports content in any format that can be digitized, including HTML
and binary content imported from other applications.

Before you create content Before you can create content for your exteNd Director application, the
following elements of the content infrastructure must be in place:

Element For information see

Folder for physically storing the content “Creating folders” on page 145

Document type for defining content “Creating document types” on page 146 and “Creating
structure fields and adding them to a document type” on page 149

Within thisinfrastructure, you will be able to create content that conforms to the standards your
organization has set for structure.

Flow of operations
Here isthe basic task required to create content in the CMS Administration Console;

O Create documents with retadata, fields, and dynamic content
O Create relationships between documents

Creating Content 165

First you create content as documents based on a document type; then you can set up relationships
between documents by adding child documents and attachments to a parent document. You can also set
up relationships between documents by adding child documents and attachments to a parent document.

This section describes procedures for:

+ Creating documents
+ Creating relationships between documents
After the content hasbeen devel oped, authorized users can add optional parts of the content infrastructure

as needed—such as custom display styles, taxonomies, and categories. These procedures are covered in
Chapter 14, “ Setting Up the Optional Infrastructure”.

Creating documents

166

With the CM'S Administration Console, content devel opers create content in the form of documents that
reside in folders. Each document is stored in one (and only one) folder.

When you create documents, you must specify three types of information:

1 Identifying information—or metadata:

Identifying information Details

Name of document Identifies the document in the content list)
Title of content Appears in the user view of the document)
Subtitle (Optional)

Author —

Folder Where document is stored)

Categories (Optional)

Abstract (Optional)

Status (Optional)

Expiration date (Optional)

Publish date (Optional)

+ Name of document (identifies the document in the CM S Administration Console content list)
+ Titleof content (appearsin the user view of the document)
+ Subtitle (optional)
« Author
+ Folder (where document is stored)
+ Categories (optional)
o Abstract (optional)
+ Status(optional)
+ Expiration date (optional)
+ Publish date (optional)
2 Information required by the fields that are part of the document type

3 Dynamic content that can be entered either asHTML directly in the CMS Administration Console,
or uploaded from external files

exteNd Director Content Management Guide

Each time you edit the content of adocument, the CM'S Administration Consol e creates anew version of
the document content. The CM S Administration Console does not create a new version of the document
content if you change only the metadata or custom field values but not the content.

If you want to create adocument for the purpose of testing your style sheets, you can usethe CMS
Administration Console's Auto Create utility, which automatically fillsin boilerplate content for you.

This section describes how to:

+ Creating adocument

+ Specifying afolder for a new document

+ Using Auto Create to create a document

+ Using the CMS Administration Console's HTML Editor

Creating a document

> To create adocument:

1 Enter templates mode by clicking the Templates button in the toolbar.
A panel appearslisting all document types that have been defined.

2 Select adocument type from the list and click Use.
The Create A New Document window opens with the General tab open.
This tab contains the basic document metadata, such as name, title, author, folder that contains the
document, any categories that contain the document, and so on:;

J Create Content - Microsoft Internet Explorer

Create A New Document of Type: "TestQuestion™

Custom Fields Attachments Child Documents

* Hame:

* Title:

Subtitle:

Status:

Publish Date:

|
|
|
* Author: |
|
|
|

Expiration Date:

* Folder: Mo Folder Selected J
Categories: Mo Categories Selected J

Abstract: Abstract here...

* Required Fields

3 Enter datainto any required fieldsin the General tab.

TIP: Any fields marked with an asterisk are required fields and must be filled in before you can
create the document.

Creating Content 167

168

4 Click Custom Fields and enter data for any fields defined for the document type.

Some exampl e custom fields are shown below:

a Create Content - Microsoft Internet Explorer

Create A New Document of Type: "Test Question™

custonres | ! l

Question ITomatoes are
Text:

© True
@ False

TIP: Custom fields are in some sense required fields in that you must fill in any empty fields before
you can create the document. In the example above, you must fill in the Question Text field and select
one of the buttons before the CMS Administration Console can create the document.

exteNd Director Content Management Guide

5 Click the Content tab and specify the dynamic content for the document:

a Create Content - Microsoft Internet Explorer

Custom Figlds Attachments Child Documents

Create A New Document of Type: "Test Questio

Content:
¥ Create Contert € Upload Contert

||Paragraph =l Font = |size =] | I view HTML source | Hide Command Bar

yJAIB I U TH E=E=EEEZE I

Note to Testers: Level of difficulty is 1.

The options for entering content depend on the Default Content setting of the document type (as
specified under “Creating document types’ on page 146):

*

If Default Content = Binary, content devel opers upload content from an external file on the
network.

If Default Content=HTM L, content devel opersusethe CM S Administration Console sSsHTML
Editor to enter content by typing directly in the edit area or by pastingin HTML source from an
external editor.

If Default Content = Choice, content devel opers can choose the way they enter content, as
follows:

To Do this

Create content in 1 Select the Create Content radio button.

the HTML Editor 5 ype or paste content in the CMS Administration Console’s HTML
Editor, using the command bar buttons to format text, create
hyperlinks, and insert images.

Upload content 1 Select the Upload Content radio button.
from an external
source

Enter a path to a file, or click Browse to navigate to a file on the
network.

TIP: Users with appropriate privileges can modify the Default Content setting in the document
type to restrict the type of content users can enter.

) Tolearn how to work with the CMS Administration Console’'s HTML Editor, see“Using
the CMS Administration Console sHTML Editor” on page 170.

6 Click Add the Content at the bottom of the Create A New Document window.

Creating Content 169

The document is created in the folder you specified in the General tab.
To view the content you just created, see “ Previewing content” on page 180.

Specifying a folder for a new document

> To specify a folder for a new document:
1 Enter templates mode by clicking the Templates button in the toolbar.
A panel appearslisting al document types that have been defined.
2 Select adocument type from the list and click Use.
The Create A New Document window opens.
3 Click the élipsis next to the Folder field.
The Folder Selector window opens:

/J Folder Selector - Microsoﬂ:}if 10l =l
-

o [Defaut
@ B3 psat
m B3 sar

Done |

4 Navigateto the folder you want, click the folder name, and click Done.
The name of the selected folder appearsin the Folder field of the Create Content window.
5 Enter other content as needed and click Update the Content.

Using Auto Create to create a document

> To use Auto Create to create a document:
1 Enter templates mode by clicking the Templates button in the toolbar.
A panel appearslisting al document types that have been defined.
2 Select adocument type from the list and click Auto Create.
The Create Content window opens, with most required metadata and fields filled in.
3 Specify afolder for the document.
4 Fill in any other content as desired and click Add the Content.
The document is created in the specified folder.

Using the CMS Administration Console’s HTML Editor
Content devel opers can enter content asHTML using the CMS Administration Console’ sHTML Editor.

Theonly prerequisiteisthat you must set the Default Content optionto HTM L or Choice when creating
the document type.

L) For more information about specifying document type options, see “ Creating document types” on
page 146.

When you create or edit content using a document type with one of these Default Content settings
(Binary, HTML, or Choice), the HTML Editor appearsin the Content tab of the Create A New
Document or Edit Document window:

170 exteNd Director Content Management Guide

Edit Document: "PSAT1"
[cortent]|

% Create Contert € Upload Contert

Note to Testers: Level of difficulty is 1.

With the CM S Administration Console's HTML Editor you can:

+ Cut, copy, and paste text

+ Format text

+ Toggle editing mode between HTML code and rendered text

+ Create hyperlinks

+ Insert images

You can use the HTML Editor to edit the portion of the HTML code that would appear in the <BODY >

section—not the entire HTML document. For example, you cannot use the HTML Editor to modify
HTML code that would appear in the <HEAD> section of the document.

This section describes how to access and use the CM'S Administration Console’ sHTML Editor.

> To access the CMS Administration Console’s HTML Editor when creating a new document:
1 Enter templates mode by clicking the Templates button in the tool bar.
A panel appearslisting al document types that have been defined.
2 Select adocument type whose Default Content field equals HTM L or Choice.
3 Click Use
The Create A New Document window opens.

Creating Content 171

4 Click Content to accessthe HTML Editor:
J Create Content - Microsoft Internet Explorer

Create A New Document of Type: "TestQuestion™

T | l

Content:

% Create Contert € Upload Contert

| | r—| e
» = oty B : o

> To access the CMS Administration Console’s HTML Editor when editing an existing document:
1 Enter content mode by clicking the Content button in the toolbar.
2 Select the Folder View tab.

Your existing folders appear in the content tree view. You may need to expand some of these
containers to see the complete view.

3 Navigate to the document of interest and select it to open its Property Inspector.
4 Inthe Property Inspector, select the General tab and click Check-Out.

The CM S Administration Console checks out the latest version of the document.
5 Click the Edit button.

The Edit Document window appears.

172 exteNd Director Content Management Guide

6 Click Content to accessthe HTML Editor:

2} Create Content - Microsoft Internet Explorer
Edit Document: "PSAT1"
!

Content:
% Create Contert € Upload Contert

s |5 || a

Note to Testers: Level of difficulty is 1.

For more information about checking documentsin and out, see “ Checking documentsin and out”
on page 194.

> Tocut, copy, paste, and format text:
+ Select the appropriate buttons from the tool bar.

> To show HTML code:
¢ Check View HTML source.
Enabling this option:
+ ExposesHTML tagsin existing text (entered while this setting was disabled)
+ Allowsthe HTML Editor to interpret HTML tags as code when typed in directly or pasted in
from an outside source

NOTE: If you enter HTML tags when this option is disabled, the tags are not interpreted as
code and instead are converted to text.

> To show rendered text:
o Desdect View HTML sourceto hide HTML tags and show rendered text.

Creating Content 173

174

> To create a hyperlink:

1 Position the cursor in the HTML Editor where you want to insert the link.
2 Click the Create Hyperlink button:

&

The Create A Link window opens:

Create A Link

' External & Internal

Dizplay: I

Ho Current Setting
A The: Link

I

3 Choose the type of link you want to create:

Type of link Description

Internal Link to content that you created in or uploaded to the CMS Administration Console

External Link to external content

4 To
4a

4b

4c

4d

create an internal link:
Select the I nter nal radio button.
The Search For A Resource window opens:

=]
Search For A Resource
By Hame: % By Title: ¢ By Author:

Resource Hame: I
Search | Resetl

Cloze Window |

/} Document Picker - Microsoft

-]

Search for internal content by name, title, or author by selecting the appropriate radio button,
entering the appropriate identifying information, and clicking the Sear ch button.

Select the resource from the search results and click the Close \Window button at the bottom of
the window.

A text string linking to the resource appearsin the Create A Link window. You can click on the
text string to view the resource.

Back in the Create A Link window, enter the display text for the link in the Display field and
click Add TheLink.

5 Tocreate an external link:

5a
5b
5c

5d

Select the External radio button.
Enter the display text for the link in the Display field.
Enter the URL of the external content in the URL field.

NOTE: You can enter an URL that invokes a servlet to serve up content to your exteNd
Director application.

Click Add TheLink.

exteNd Director Content Management Guide

> To insert an image:

1
2

3 Choose the type of image you want to insert:

Position the cursor in the HTML Editor area where you want to insert the image.

Click the Insert I mage button:

Laal

The Insert An Image window opens:

Insert An Image

& External ' nternal

Tite: |
UL |

Inzert The Image |

I/

Type of image Description

Internal Image that you created in or uploaded to the CMS Administration Console

External Image created outside the CMS Administration Console

4 Toinsert aninternal image:

4a Select the Internal radio button.

The Search For A Resource window opens:

/} Document Picker - Microsoft

Search For A Resource
By Hame: % By Title: ¢ By Author:

Resource Hame: I
Search | Resetl

Cloze Window |

I =10l x|

-]

4b Search for an internal image by name, title, or author by selecting the appropriate radio button,

entering the appropriate identifying information, and clicking the Sear ch button.

4c Select the image from the search results and click the Close Window button at the bottom of

the window.

A text string identifying the image target appears in the Insert An Image window.
4d Back in the Insert An Image window, enter atitle for theimage in the Title field.
Thetitle isthe hover text that will appear as the cursor moves over the image.

4e Click Insert Thelmage.
To insert an external image:
5a Select the External radio button.

5b Enter atitlefor theimagein the Titlefield.
Thetitle isthe hover text that will appear as the cursor moves over the image.
5¢ Enter the URL of the external image in the URL field.

5d Click Insert The Image.

Creating Content

175

Creating relationships between documents
The CMS Administration Console alows you to create two types of relationships between documents:

Relationship type Description

Parent/child In this relationship, a parent document can have one or more child documents.
This is a one-to-many relationship: each child document can have only one
parent, but each parent can have multiple child documents. A typical application
of the parent/child relationship is for a discussion thread in which one question
can have multiple responses but each response relates to only one parent
question.

Parent/attachment In this relationship, a parent document can have one or more attached
documents. This is a many-to-many relationship: each parent document can
have more than one attachment, while each attachment can be shared with
multiple other parents. A typical application of the parent/attachment
relationship is an online bookstore that attaches author documents to its book
lists, where multiple books can have the same author.

Thedefinition of document includes not only documents created inthe CM S Administration Console, but
also documents that are uploaded to the CM'S Administration Console, such asimages and binary files.

This section describes how to add child documents and attachments to a parent document, and how to
remove these rel ationships.

> To add a child document:

Userswith READ and WRITE permissions can add children to a document. You can add internal child
documents or upload external documents.

1 Enter content mode by clicking the Content button in the toolbar.

2 Sdlect the Folder View tab.

Your folders appear in the content tree view. You may need to expand some of these containers to
see the compl ete view.

3 Click to select the folder that contains the content of interest.
A list of documents appears in the content list.
4 Select the document of interest.
A Child Docs tab appears in the document’s Property Inspector.
5 Click Check-Out to check out your document and then select the Child Docs tab.
6 Select adocument, using one of these methods:

To Do this
Add an internal 1 Click Add in the Child Docs pane.
document

The Search For A Resource window opens.

2 Search for a document by name, title, or author by selecting the
appropriate radio button, entering identifying information, and clicking
the Search button.

3 Select the document from the search results.

BN

Upload an external
document

Click Upload in the Child Docs pane.

The Upload A File Attachment window opens.
Browse to the document of interest and select it.
Click Upload.

176 exteNd Director Content Management Guide

7
(A

The document you select appears as a child of your document in the Property Inspector.
Check your document back in by selecting the General tab, then clicking Check-In.

For moreinformation about checking documentsin and out, see “ Checking documentsin and out”

on page 194.

> To add an attachment:

Userswith READ and WRITE permissions can add attachments to adocument. You can attach internal
documents or upload external documents.

1 Enter content mode by clicking the Content button in the toolbar.
2 Select the Folder View tab.
Your folders appear in the content tree view. You may need to expand some of these containers to
see the compl ete view.
3 Click to select the folder that contains the content of interest.
A list of documents appears in the content list.
4 Select the document of interest.
An Attachments tab appears in the document’s Property Inspector.
5 Click Check-Out to check out your document and then select the Attachments tab.
6 To attach an internal document (one that has been created in or uploaded to the CMS
Administration Console):
6a Click Add inthe Attachments pane.
The Search For A Resource window opens.
6b Search for a document by name, title, or author by selecting the appropriate radio button,
entering identifying information, and clicking the Search button.
6c Select the document from the search results.
The Attachment Properties window opens.
6d (Optional) In the Description text area, enter text about the relationship between the parent
document and its attachment.
This text appears in the XML generated by the CM S Administration Console Content Reader.
6e Click Add.
The document you selected appears as an attachment to your document in the Property
Inspector.
7 To attach an exter nal document:
7a Click Upload inthe Child Docs pane.
The Upload A File Attachment window opens.
7b Browse to the document of interest and select it.
7c (Optional) In the Description text area, enter text about the relationship between the parent
document and its attachment.
This text appears in the XML generated by the CM S Administration Console Content Reader.
7d Click Upload.
The document you select appears as an attachment to your document in the Property Inspector.
8 Check your document back in by selecting the General tab, then clicking Check-In.
L) For moreinformation about checking documentsin and out, see “ Checking documentsin and out”
on page 194.

Creating Content 177

> To remove relationships between documents:

To remove the relationship between a parent document and its child or attachment, you need READ,
WRITE, and LIST permissions.

1 Enter content mode by clicking the Content button in the toolbar.

2 Select the Folder View tab.

Your folders appear in the content tree view. You may need to expand some of these containers to
see the compl ete view.

3 Click to select the folder that contains the content of interest.
A list of documents appears in the content list.
4 Select the parent document of interest to open its Property Inspector.
5 Check out the parent document by clicking Check-Out in its Property Inspector.

6 Check out the attachment or child document of interest by selecting it in the content list and
clicking Check-Out in its Property Inspector.

7 Select the parent document again and then choose the Attachments or Child Docstab in its
Property Inspector.

8 Sdlect the attachment or child document of interest in the parent’s Property Inspector.
The Property Inspector refreshes to provide a Remove Relationship button.
9 Click the Remove Relationship button.

The attachment or child document disappears from the parent’s Property Inspector, but remainsin
its CMS Administration Console folder.

10 Check the parent and child (or attachment) back in by selecting the General tab, then clicking
Check-In.

NOTE: The parent and child (or attachment) must both be checked out to sever the relationship.
Otherwise, the Remove Relationship button will not appear. Even after you sever the relationship, the
attached file or child document remains in the CMS Administration Console.

L) For moreinformation about checking documentsin and out, see “ Checking documentsin and out”
on page 194.

178 exteNd Director Content Management Guide

Maintaining Content

This chapter describes variouswaysto access and update existing content using the CM'S Administration
Console. It has these sections:

*

*

Flow of operations

Previewing content

Editing content

Modifying properties

Assigning a document’s folder, categories, and taxonomies
Modifying display styles

Editing document types

Editing document fields

Setting document expiration dates

Deleting content

Flow of operations

Hereisaworkflow that showsthe variety of operationsavailabl e to authorized userswho areresponsible
for maintaining content in the CM'S Administration Consol e

Previaw and edit content

Modify properties

Change docurent's folder and categories
Modify display styles

Set docurment expiration dates

Delete content

oooooo

This section presents procedures for:

Previewing content

Editing content

Modifying properties

Assigning a document’s folder, categories, and taxonomies
Modifying display styles

Editing document types

Editing document fields

Setting document expiration dates

Deleting content

Maintaining Content 179

Previewing content

Userswith READ permission can preview documents to get aview of how content will appear to users
of the Web site. Using the preview function, document reviewers verify the accuracy, structure, and
layout of content beforeit is published.

> To preview the latest version of content:
1 Enter content mode by clicking the Content button in the toolbar.
2 Selectthe Folder View tab.

Your folders appear in the content tree view. You may need to expand some of these containers to
see the compl ete view.

3 Click to select the folder that contains the content of interest.
A list of documents appears in the content list.
4 Select the document of interest to open its Property |nspector.
5 Click the Preview button.
The latest version of the document’s content opens in the Content Reader window:

Author Title Abstract QuestionText field

/} Content Reader - Microsoft Internet Explorer

PSAT Question 1

by J. Srmith

First zample PSAT guestion with answer

GuestionText: Tomatoes are

TrueQrFalze?: Falze
Attachments:
Children:

Note to testers: Level of difficulty is 1.

Wiew Xhil

| | |
Dynamic Attachments and TrueOrFalse? field
content children listing

> To preview a specific version of content:
1 Enter content mode by clicking the Content button in the toolbar.
2 Sdlect the Folder View tab.

Your folders appear in the content tree view. You may need to expand some of these containers to
see the compl ete view.

3 Click to select the folder that contains the content of interest.
A list of documents appears in the content list.
4 Select the document of interest to open its Property Inspector.
5 Select the Versionstab.
A list of content versions appears, ordered from most recent to earliest.
The currently published version of content appears with the published-version icon:

El

If no version has been published, all versions appear with the default document icon:

El

6 Click to select aversion.
The version name appears highlighted.

180 exteNd Director Content Management Guide

7

Click the Preview button.
The selected version of the document’s content opens in the Content Reader window:

Author Title Abstract QuestionText field

2} Content Reader - Microsoft Internet Explorer

PSAT Question 1

by J. Srmith

First zample PSAT guestion with answer

GuestionText: Tomatoes are

TrueQrFalze?: Falze
Attachments:
Children:

Note to testers: Level of difficulty is 1.

Wiew Xhil

| | |
Dynamic Attachments and TrueOrFalse? field
content children listing

NOTE: If no version of this document has been published, no dynamic content appears in the
Content Reader. Instead, a message appears at the bottom of the Content Reader window
indicating that there is no currently published content for the document. For information about
publishing content, see “Administering version control” on page 198.

Editing content

Userswith READ and WRITE permission can edit content. Documents must be checked out before they
can be modified. The CM'S Administration Console applies edits to the |atest version of adocument and
saves the modifications as anew (later) version.

> To edit content:

1 Enter content mode by clicking the Content button in the toolbar.
2 Select the Folder View tab.
Your folders appear in the content tree view. You may need to expand some of these containers to
see the compl ete view.
3 Click to select the folder that contains the content of interest.
A list of documents appears in the content list.
4 Select the document of interest to open its Property Inspector.
5 Click the Check-Out button.
6 Click the Edit button.
An edit window appears in which metadata, fields, and dynamic content can be modified.
7 Edit the content, then click Update The Content.
NOTE: To undo your edits, click the Reset button to return the document to its original state.
The updated content is saved in a new version of the document.
8 Check the document back in by clicking Check-In.
L For moreinformation about checking documentsin and out, see “ Checking documentsin and out”
on page 194.

Maintaining Content 181

Modifying properties

Userswith READ, WRITE, and LIST permissions can modify the properties of the following CM
elementsin the CMS Administration Console:

+ Folders
+ Taxonomies
+ Categories

+ Documents
+ Values of document fields

> To modify properties:
1 Select the CM element of interest and open its Property |nspector.
Here's how to access the Property Inspector for each element:

CM element How to access

Click the Content button.
Select the Folder View tab.
Select the folder of interest.

Folder

Taxonomy and category Click the Content button.
Select the Category View tab.

Select the taxonomy or category of interest.

Click the Content button.
Select the Folder View tab.
Expand the folder that contains the document of interest.

Document

Select the document.
Check out the document by clicking Check-Out.

Document field Click the Templates button.

Select a document type that contains the field of interest.

W N PO D WODNPFPIWODNPRPIWDNP

Select the field and click the Properties button.

2 Inthe Property Inspector, modify properties as needed.
TIP: Some properties cannot be edited.

3 Record your changes:

For Do this

Folders, taxonomies, categories, and documents Click Save.

Document fields 1 Click Update.

2 Check the document back in by clicking
Check-In.

L) For moreinformation about checking documents out and in, see “ Checking documentsin and out”
on page 194.

182 exteNd Director Content Management Guide

Assigning a document’s folder, categories, and taxonomies

You can change the folder, categories, and taxonomies anytime for any document for which you have
READ, WRITE, and LIST permissions.

> To change adocument’s folder:

1
2

9

Enter content mode by clicking the Content button in the toolbar.
Select the Folder View tab.

Your folders appear in the content tree view. You may need to expand some of these containers to
see the compl ete view.

Click the folder that contains the document of interest.

A list of documents appears in the content list.

Select the document of interest to open its Property I nspector.
Click the Check-Out button.

Click the Edit button.

An edit window appears.

Click the éllipsis next to the Folder field.

The Folder Selector window opens:

/J Folder Selector - Microsoﬂ:}if 10l =l
-

o [Defaut
= O3 psar
m B3 sar

Done |

Navigate to the new folder, click the folder name, and click Done.
The name of the new folder replaces the old one in the Folder field of the edit window.
Click Update The Content.

10 Click Check-In.

> To assign a document to categories or taxonomies:

1
2

Enter content mode by clicking the Content button in the toolbar.
Select the Folder View tab.

Your folders appear in the content tree view. You may need to expand some of these containers to
see the compl ete view.

Click the folder that contains the document of interest.

A list of documents appears in the content list.

Select the document of interest to open its Property I nspector.
Click the Check-Out button.

Click the Edit button.

An edit window appears.

Click the éllipsis next to the Categories field.

Maintaining Content 183

184

8

10

11

The Category Selector window opens:;

4} Category Selector - Microsoft: =131 x|

@ Defaut =

=]

= 4"' BusineszGeneration
= 4l DemaTools
& Wl Salesleads

Clear Categories | Done |

[

Navigate to an appropriate category or taxonomy and click the name.
The name of the new category appears in the Categories field of the edit window.
You can click additional categories and taxonomies to add the document to them.

TIP: If you click a category or taxonomy that already contains the document, that document is
removed from that category or taxonomy. (In the Edit Document dialog, the document’s name is
removed from the Categories listing.)

When you have finished specifying categories and taxonomies, click Done.

The Category Selector window closes and your choices are reflected in the Categories listing.
Enter other content as needed and click Update And Close.

The Edit Document dial og closes.

In the Content Property Inspector, click Check-In.

> To change adocument’s categories or taxonomies:

1
2

Enter content mode by clicking the Content button in the toolbar.
Select the Category View tab.

Your taxonomies and categories appear in the content tree view. You may need to expand some of
these containers to see the complete view.

Click the category or taxonomy that contains the document of interest.
A list of documents appears in the content list.

Select the document of interest to open its Property I nspector.

Click Check-Out.

Click Edit.

An edit window appears.

Select the dllipsis next to the Categor ies field.

The Category Selector window opens:

4} Category Selector - Microsoft: =131 x|

@ Defaut =

=]

= 4"' BusineszGeneration
= 4l DemaTools
& Wl Salesleads

Clear Categories | Done |

E
Navigate to the appropriate category or taxonomy and click the name.
The name of the new category appears in the Categories field of the edit window.

You can click additional categories and taxonomies to add the document to them.

To remove the document from a category or taxonomy, click that category or taxonomy. (In the Edit
Document dialog, the document’s name is removed from the Categorieslisting.)

When you have finished specifying categories and taxonomies, click Done.

exteNd Director Content Management Guide

10
11

The Category Selector window closes and your choices are reflected in the Categories listing.
Click Update The Content.
Click Check-In.

Modifying display styles

Authorized users can modify adisplay style by uploading changesto its XSL style sheets. The CMS
Administration Consol e stores these updates as new versions of the style sheets. Users then publish the
version they want to apply to content.

This section describes the procedure for modifying style sheetsin adisplay style.

NOTE: Before you begin, make sure you have updated the style sheet in an external editor and can
access the file containing these modifications from your local file system, the network, or the CMS
Administration Console.

> To modify a display style:

1
2

10

Enter content mode by clicking the Content button in the tool bar.
Select the Folder View tab.

Your folders appear in the content tree view. You may need to expand some of these containers to
see the compl ete view.

Navigate to the folder that contains the X SL style sheet you want to modify.
TIP: Style sheets appear as system resources.

Select the style sheet of interest to open its Property Inspector.

Click the Check-Out button.

The style sheet is checked out and appears with the checked-out document icon:

=

Switch to templates mode by clicking the Templates button in the tool bar.
A panel appearslisting al document types that have been defined.

Select the document type that contains the display style you want to change.
A document type Property Inspector appears.

Click the XSL Style Sheetstab.

Two panes appear. The Default Display Styles pane lists the display styles that have been created
for the document type, and the Properties pane displays the properties of a selected display style.

In the Default Display Styles pane, expand the display style you want to modify to display its
associated XSL style sheets.

Select the style sheet you want to modify and click Upload.
The Update Style Sheet window opens:

/J Style Sheet Maintenance - Microzoft Internet Explorer [_[O] x]

Update Style Sheet for the 'Test Question' Document Type
XSE Fife: I Browse... | Choose Existing Document |

Current setting: ‘none'

Update The Style Sheet | | Reset |

Maintaining Content 185

11 Enter the name of the updated X SL style sheet using one of these methods:
+ Browsethe network for an external file.
OR

+ Sdlect Choose Existing Document to search for an updated X SL file that has already been
uploaded to the CMS Administration Console.

A new version of the XSL style sheet is created.
12 Enter content mode by clicking the Content button in the toolbar.

The style sheet document should still be selected with its Property |nspector open.
13 Check the style sheet back in by clicking Check-In.

”

L) For moreinformation about checking documentsin and out, see “ Checking documentsin and out
on page 194.

NOTE: To apply the updated style sheet to content, you must publish the new version, as described in
“Administering version control” on page 198.

Editing document types

Authorized users can edit document types. All changes apply to legacy documents as well as new
documents of the designated type.

> To edit a document type:
1 Enter templates mode by clicking the Templates button in the toolbar.
A panel appears listing the document types that have been defined.
2 Select the document type you want to modify and click Edit.
The Edit This Document Type window opens:

a http:/ /localhost/Director/CM/PMC /main/pages/PmcTemplate

Edit This Document Type

Hame: ITestQuestion

Auto-Checkin: I
If checked, documents will be sutomstically checked in when they are edited.
Auto-Publish: -

If checked, the content of the document will be automatically published in
when i iz edited.

Default Content: I Chaice l

- Choice -- The user can choose which mode of content they use.
- Binary -- Content iz uploaded
- HTML -- Cortert i created via the HTML editar

Extended Options

Update Document Type |

NOTE: If you created the document outside of the CMS Administration Console using the CM
APIs, you might not be able to access the document type and associated data. The CMS
Administration Console requires that certain meta data be included. For more information, refer to
EbiContentMgmtDelegate in the on-line API Reference section.

3 (Optional) Click Extended Optionsto display additional document type options.
4 Edit fields and options as needed.

L) For details about the individual options, see “ Creating document types’ on page 146.
5 Click Update Document Type.

186 exteNd Director Content Management Guide

Editing document fields

Authorized users can edit fields, but only from within the document types where the fields were
originally created.

> To edit a document field:

1

4

Enter templates mode by clicking the Templates button in the toolbar.

A panel appearslisting al document types that have been defined.

Select the document type in which the field was created.

The fields defined for that document type appear along with thelist of all available fields.

NOTE: If you created the document outside of the CMS Administration Console using the CM
APIs, you might not be able to access the document fields. The CMS Administration Console
requires that meta data from the document fields be included. For more information, refer to
EbiContentMgmtDelegate in the on-line API Reference section.

The Available Fields list displays the parent document type in parentheses next to each field. Use
thisinformation to verify that you are editing the field in its parent document type.

Select the field you want to edit and click Properties.
The Property Inspector opens.
Edit the properties of the field as appropriate and click Update.

Setting document expiration dates

There are occasions when acontent administrator needsto set an expiration date for adocumentsthat has
alimited life span. The CM S Administration Console alows users with WRITE permission to set or
change this date anytime after the document is created.

When expiration dates are set, devel operscan write queriesin portletsto remove expired content, or write
a scheduled business object to check expiration dates and take specified actionsif content is obsolete.

> To set the expiration date of a document:

1 Enter content mode by clicking the Content button in the toolbar.
2 Selectthe Folder View tab.
Your folders appear in the content tree view. You may need to expand some of these containers to
see the compl ete view.
3 Click to select the folder that contains the document of interest.
A list of documents appears in the content list.
4 Select the document of interest to open its Property |nspector.
5 Click the Check-Out button.
6 IntheExpiration Date field, enter an expiration date of the form:
YYYY-MM-DD HH:MM:SS
7 Click Save.
8 Click the Check-In button.
L For moreinformation about checking documentsin and out, see “ Checking documentsin and out”
on page 194.

Maintaining Content 187

Deleting content

Authorized users can delete certain CM elementsin the CMS Administration Console. This section
describes procedures for:

*

*

Deleting folders

Deleting folders

Deleting taxonomies and categories
Deleting documents

Deleting display styles

Deleting document types

Deleting and removing document fields

When you delete afolder, all folders and documentsiit contains are also del eted.

> To delete afolder:

1
2

Enter content mode by clicking the Content button in the toolbar.
Select the Folder View tab.

Your folders appear in the content tree view. You may need to expand some of these containers to
see the compl ete view.

Select the folder of interest to open its Property Inspector.
Click Delete.
When a confirmation window appears, click OK.

Deleting taxonomies and categories

When you delete ataxonomy or category, all categoriesit contains are also deleted. Documents are
alwaysretained in their parent folder, even if their assigned taxonomies or categories have been removed.

> To delete a taxonomy or category:

1
2

Enter content mode by clicking the Content button in the toolbar.
Select the Category View tab.

Your taxonomies and categories appear in the content tree view. You may need to expand some of
these containers to see the complete view.

Select the taxonomy or category of interest to open its Property |nspector.
Click Delete.
When a confirmation window appears, click OK.

Deleting documents

188

You must check out adocument before you can delete it. When you delete a document, all versions are
removed.

> To delete a document:

1
2

Enter content mode by clicking the Content button in the toolbar.
Select the Folder View tab.

Your folders appear in the content tree view. You may need to expand some of these containers to
see the compl ete view.

exteNd Director Content Management Guide

3 Navigate to the document of interest and select it to open its Property Inspector.
4 Inthe Property Inspector, select the General tab and click Check-Out.
The Property Inspector refreshes to display new function buttons.
5 Click Delete.
6 When aconfirmation window appears, click OK.

L) For moreinformation about checking documentsin and out, see “ Checking documentsin and out”
on page 194.

When you delete a document, the Director DRE Administrator reflects the change in the number of
documentsimmediately, but the number of terms remai ns the same. The number of termswill not change
until the DRECOMPACT command is executed. DRECOMPACT is not run immediately on delete
because of the impact on query performance. You can find out more about DRECOMPACT in your
Autonomy documentation.

Deleting display styles

When you delete adisplay style, the CM'S Administration Console also removesall X SL style sheetsthat
have been created for that display style.

> To delete a display style:
1 Enter templates mode by clicking the Templates button in the toolbar.
A panel appearslisting al document types that have been defined.
2 Select the document type that contains the display style to delete.
3 Select the XSL Style Sheetstab.
A list of the document type’s display styles appearsin the Default Display Styles pane.
4 Select the display style you want to delete.
Click Delete under the Properties pane.
6 When aconfirmation window appears, click OK.

(&)

Deleting document types

When you delete a document type, the CM S Administration Console also removes all documents that
have been created using that document type.

Thereisanother side effect of deleting document types: any fieldsthat were created within that document
type are adopted by a new parent—the system document type—that appears in the Document Types list
as_PmcSystemDefaultType.

Once adopted, these fields remain part of the avail able pool of fields but can be edited only from within
_PmcSystemDefault Type. You can easily identify adopted system fields: they appear in the Available
Fields pool with the suffix --System Field appended to their names.

In the following example, M ultiple Choice is an adopted system field:

Maintaining Content 189

Document Types:

_ PmeSystemDefault Type
Defauk

Dacument Layout
LegaiMotices
TestQuestion

Content Types H3L Style Sheets Addvanced

dogr Hoset: 7 e
@ Auto Create BEdit

Fields:

Available Fields:

Hame Control Type Hame

Texthrea ITextﬂe\d i E| Copyrighthlotice (LegalNotices)
True or False IRadiu Button = { E| MutipleChaice -- System Field

B retrea Testquestion
3 E| True of False (TestQuestion)

i
P @Pmperties n Save

X Delete Shaw Fields in Document Type .. j

Property Inspector

[Dauble Click an Entry from the Fields list ahove.
Click an Entry from the Fields list above and then click the 'Properties’ button.

]

> To delete a document type:
1 Enter templates mode by clicking the Templates button in the toolbar.

A panel appearslisting al document types that have been defined.
2 Select the document typeto delete.

w

r |— Local intranet

Click Delete under the Document Types pane.

4 When aconfirmation window appears, click OK.

The CMS Administration Console del etes the document type and all documents that have been
created using that document type.

Deleting and removing document fields

There are two separate operations:

Operation

Description

Permanently deleting fields—from the
CMS Administration Console

Deletes fields from all documents and from pool or available
fields

Removing fields—from the parent

document type

Removed fields from all documents—but leaves fields in
pool of available fields

190 exteNd Director Content Management Guide

Permanently deleting fields—from the CMS Administration Console

You can delete document fields permanently from the CMS Administration Console, but only from
within the document types where they were originally defined. When you delete afield fromthe CMS
Administration Console, thefield isremoved from all existing documentsin which it appeared and from
the pool of available fields.

CAUTION: Although this is a convenient way of applying one deletion to multiple documents, be aware
that the effect is global and irreversible.

> To permanently delete a document field from the CMS Administration Console:
1 Enter templates mode by clicking the Templates button in the toolbar.

A panel appears listing the document types that have been defined.

Select the document type for which the field was defined.

Select the field in the Available Fields pane.

Click Delete under the Available Fields pane.

When a confirmation window appears, click OK.

The CMS Administration Console deletes the field from the Available Fields pane and from all
documents that have been created using document types that contain the field.

a h~ W N

Removing fields—from the parent document type

You can remove adocument field from the document typeswhere it was originally defined but leaveitin
the available pool of fields for later use.

When afield isremoved from its parent document type, it is adopted by the system document type
_PmcSystemDefault Type. You can then add the field to any document type, but edit it only from the
system document type.

What happens to legacy documents when you remove afield from its parent document type? There are
two scenarios:

If you The CMS Administration Console

Selected the Clean Up Data option Deletes the field from legacy documents of the designated type
in the parent document type

Did not select the Clean Up Data Preserves the field in legacy documents of the designated
option in the parent document type type, but does not allow you to edit the field

NOTE: You will see the legacy field when you preview the
document, but not when you edit the document.

L] For more information about the Clean Up Data option, see “ Creating document types” on
page 146.

Maintaining Content 191

> To remove a document field from a document type (but leave it available):
1 Enter templates mode by clicking the Templates button in the toolbar.
A panel appears listing the document types that have been defined.
2 Select the document type for which the field was defined.
3 Select the field in the Fields pane and then click the Remove Field button:

>

Thefield isremoved from the Fields pane and refreshes in the Available Fields pane as a system
field.

4 Click Save.

192 exteNd Director Content Management Guide

Administering Content

This chapter describes how to check documentsin and out and administer version control. It has these
sections:

+ About content administration

+ Flow of operations

+ Checking documentsin and out
+ Administering version control

About content administration

In organizations responsible for devel oping and maintaining exteNd Director applications, CM isa
dynamic process that often involves multiple usersinteracting concurrently with a shared set of files
within a common infrastructure.

To preserve the integrity of datain thistype of environment, the CM S Administration Console provides
anumber of safeguards for effectively administering content:

+ Ability to lock documents using checkin and checkout functions
+ Version control

Flow of operations

Hereisaworkflow that illustrates the recommended order of operationsfor administering content in the
CMS Administration Console;

'

Preview document

a

O <Check out dacument
O Editdecument
O <Checkin new version

Publish document

Administering Content 193

Checking documents in and out

To prevent concurrent accessto documentsinamultiuser environment, the CMS Administration Console
provides checkin and checkout capability to users with READ, WRITE, and LIST permissions—
typically the users who are content devel opers and administrators.

Authorized users must check out documents before they can make any changesto the content, including:

+ Maodifying properties

+ Changing field values

+ Updating HTML content
+ Adding child documents
+ Adding attachments

These rules also apply to XSL style sheets, which when uploaded to the CM S Administration Console
are managed in the same way as documentsthat are created in the CM'S Administration Console.

This section describes what happens during checkin and checkout and explains how to perform the
following tasks:

+ Check out a document

+ Check in adocument

+ Enable automatic checkin

What happens during checkout

194

Checking out adocument locksit, preventing other users from modifying the content. Userswith READ
permission can view the currently published content of checked-out documents.

The CMS Administration Console marks checked-out documents for easy identification with a
checkmark icon and displays the name of the user who has locked the content. In the following example,
the document PSAT 3 has been checked out by user administrator:

exteNd Director Content Management Guide

Folder View | Category Visw | Check-Outs'iew |
MName: Description Author Created Publish Date Expiration Date Checked-out By
4 8 befaul TestQuest J.Smith 2001-10-02 dh:
psaTY TestQuestion J.Sm 0 3
m [Corporate i
2 [psar E psar? TestQuestion JSmih 2001-10-04
m O3 saT
El Content Property Inspector
Genersl | Seouity | ChidDoss | Aftachmerts | Vesons |
hlame Author Date Created
psami [0 smih [2001-1002 11:57:45 802
Ahstract Puklish Ciate Expiration Date
Sample PSAT guestion with answer, d I |
Checked-Out By
H |
Weave Hookte [Feat [Arreview Sflcneckn
a Wew Folder
H
|@ |— |— | Local intranet 4

In this example, the user dba now becomes the owner of the document and the only user with

authorization to save, delete, edit, and check in the document. If other userstry to access PSAT 3, they will
not see the Save, Delete, Edit, or Check In buttons on the Property | nspector—even if they have WRITE
permission for PSAT3—and they will see only the Preview button if they have READ permission for

PSAT3.

When a document is checked out, the latest version is locked for editing by the owner. The only way to
modify an earlier version of adocument isto roll back to that version, as described in “Administering
version control” on page 198.

Using the check-outs view The Content tab contains a check-outs view that displays checkouts for
either the current user or other users. Hereisasample check-outsview display, with asinglefile checked
out to the current user:

Administering Content 195

Folder Yiew] Categary Yiew Check-OutsV\ewl

Document Name Description Authar Created Checked-out By Relative Path
] ﬁ(‘ Al Portal Users @ PSAT] TestGuestion I Emith 200110417 iha PEATREATY

Property Inspector

o Click on a Document within the izt shave

h Display Check-Cuts for Current User E Check-in &l documents currently displayed in document fist

‘@ |- |—|— = Local intranet 4

Using the check-outs view, you can:

+ View checkouts for the current user or for other exteNd Director users
+ View the Property Inspector for the checked-out document by selecting it in the list
+ Check in al documents displayed in the list

What happens during checkin

When a document is checked in by its owner, any content modifications are saved as a new version,
accessible from the Versionstab in the document’s property sheet. Other authorized usersarethen freeto
check out the document for editing and will get the most up-to-date version of the content.

Content administrators can implement an automatic checkin feature when they create document types.
When thisfeatureisenabled, the CM S Administration Console automatically checksin any document of
the specified type after it is edited.

Checkin and checkout procedures

196

> To check out a document:
1 Enter content mode by clicking the Content button in the toolbar.
2 Sdlect the Folder View tab.

Your folders appear in the content tree view. You may need to expand some of these containers to
see the compl ete view.

exteNd Director Content Management Guide

Navigate to the document of interest and select it to open its Property |nspector.
In the Property Inspector, select the General tab and click Check-Out.

The CMS Administration Console checks out the latest version of the document, indicating who
has locked the content and changing the document icon to the checked-out icon:

=

> To check in a document:

Enter content mode by clicking the Content button in the toolbar.
Select the Folder View tab.

Your folders appear in the content tree view. You may need to expand some of these containers to
see the compl ete view.

Navigate to the checked-out document of interest and select it to open its Property Inspector.
In the Property Inspector, select the General tab and click Check-1n.

The CM S Administration Console checks in the document, making the most current version of the
content available for other users to edit.

> To enable automatic checkin for an existing document type:

This option is available only to administrators.

NOTE: You can also set this parameter when you create a new document type, as described in “Creating
document types” on page 146.

1

Enter templates mode by clicking the Templates button in the toolbar.

A panel appearslisting al document types that have been defined.

Select the document type for which you want to set automatic check-in, then click Edit.
The Edit This Document Type window opens:

a http:/ /localhost/Director/CM,/PMC/main/pages/PmcTemplates.h

Edit This Document Type

Hame: ITestQuestion

Auto-Checkin: I
If checked, documents will be sutomstically checked in when they are edited.
Auto-Publish: -

If checked, the content of the document will be automatically published in
when i iz edited.

Default Content: I Chaice l

- Choice -- The user can choose which mode of content they use.
- Binary -- Content iz uploaded
- HTML -- Cortert i created via the HTML editar

Extended Options

Update Document Type |

3 Check the Auto-Checkin check box and click Update Document Type.

When you edit adocument of this type, the CM S Administration Console automatically checksin
your modifications.

Administering Content 197

Administering version control

198

The CM S Administration Console provides version control to systematically maintain a history of
changes to documents and ensure that the correct content is published.

Administrator tasks Theversion control system allows administrators with PUBLISH permissions
to perform the following tasks:

Task Description

Publish Approve the designated content version and make the content available for viewing by
other users with appropriate permissions. The published version of a document is the
content that is returned by the method getContent().

Unpublish Hide the designated version from public view.

Roll back Delete all versions of content created after a specified version.

What version you see By default, you receive the latest version of content when you check out and
edit adocument in the CMS Administration Console. If you want to revert to and modify earlier content,
you can roll back to a previous version. Rolling back deletes all later versions of content and sets the
target version as the most current.

You must check out adocument before you can publish, unpublish, or roll back versions of that
document. If you have not checked the document out, you can only preview versions of the content.

Any user who opens adocument will seea Ver sionstab in the document’s Property Inspector. Hereisan
example of what the Versions panel looks like:

Folder Vigw ‘ Category Yiew J Check-OutsV\ewJ

Matme: Description Author Created Publish Date Expiration Date Checked-out By

g @ vetaut i
) psam Testuesion J.Snih 2001-10:23

o [psaT
@ 03 sar
o B styleshests

.
Z| Content Property Inspector =
Gereral 1 Security }_.Chiidb'n[s' 1 Attachments | Versions
Dic Yersion Motified By Date Mocified Mime Type Bytes Comment
E] versnz doa 20014023 10194657 ftexthiml 115 Updated Cortert
E] versin1 ke 20011023 1012062 testitml 55
B«Preview
-
Il | E
B b Folder
E
|@ | rlncal intranet 7

In this example, any user who selects the document PSAT 1 can preview its two versions.

Publish features Userswith PUBLISH permission can check out PSAT1 and gain the ability to
publish, unpublish, and roll back versions, as shown in the refreshed Property Inspector:

exteNd Director Content Management Guide

Folder iew | Category View | Check-Ouis View |

Mame Description Author Created Publish Date Expiration Date Checked-out By
4 8 Dejed TestQuest J.Smith - 2009-10-23 by
PSAT1 TestQuestion i 104 @
2 [psaT @
g B sar

]] styleSheets

=] Content Property Inspector i

Gereral 1 Security }:&hﬁd.boc& U&na&hmé’ht;% Versions

Dioc Yersion Modified By Date Mocified Mime Type Byltes Comment
E Version 2 dhia 2001-10-2310:18:48.571 texthtml 113 Upcsted Contert
E Yersion 1 dha 2001-10-2310:18:06.2 texthiml 53

B.Preview ‘-}Pubhsh @Unpubhsh oRallback B

v
il 1 B

a Mew Folder

E
Y

3] [r Local intranet

Content administrators can a so implement an automatic publish feature when they create document
types. When this feature is enabled, the CM S Administration Console automatically publishesthe
content of any document of the specified type if that content is changed.

What's in this section This section explains how to perform the following version control tasks:

*
*
*
*

*

Publish aversion

Unpublish aversion

Roll back to a previous version
Enable automatic publishing
Set publish dates

To publish a version:

You can publish any version, even if it is not the latest. The CM S Administration Console allows only
one version of a document to be published at any given time.

1
2

Enter content mode by clicking the Content button in the toolbar.
Select the Folder View tab.

Your folders appear in the content tree view. You may need to expand some of these containers to
see the compl ete view.

Navigate to the document of interest and select it to open its Property |nspector.
In the Property Inspector, select the General tab and click Check-Out.

The CMS Administration Console checks out the latest version of the document.
Select the Ver sions tab, then select the document version you want to publish.
Click Publish.

The CMS Administration Console publishes the version you selected, marking it with the
published-version icon:

El

Return to the Gener al tab and click Check-In.

Administering Content 199

200

The published version cannot be edited, even when the document is checked out.

> To unpublish a version:

1
2

7

Enter content mode by clicking the Content button in the toolbar.
Select the Folder View tab.

Your folders appear in the content tree view. You may need to expand some of these containers to
see the compl ete view.

Navigate to the document of interest and select it to open its Property |nspector.
In the Property Inspector, select the General tab and click Check-Out.

The CM S Administration Console checks out the latest version of the document.
Select the Ver sions tab, then select the published version you want to unpublish.
Published versions appear with this icon:

El

Click Unpublish.

The CMS Administration Console unpublishes the version you selected, marking it with the default
document icon:

El

Return to the Gener al tab and click Check-In.

> To roll back to a previous version:

1
2

7

Enter content mode by clicking the Content button in the toolbar.
Select the Folder View tab.

Your folders appear in the content tree view. You may need to expand some of these containers to
see the compl ete view.

Navigate to the document of interest and select it to open its Property |nspector.

In the Property Inspector, select the General tab and click Check-Out.

The CMS Administration Console checks out the latest version of the document.

Select the Ver sionstab, select the version you want to roll back to, then click Rollback.
When a confirmation window opens, click OK.

The CM S Administration Console deletes all versions created after the selected version—even if
one of these later versions was already published. The selected version becomes the latest version.

Return to the Gener al tab and click Check-In.

> To enable automatic publish:

Only users with administrative permissions can implement this feature. Enabling automatic publish
produces the following effects:

*

Whenever you edit the dynamic content of a document, the CM S Administration Console
automatically publishes anew version of the document.

If you edit only the metadata and field portions of a document, the CMS Administration Console
automatically updates and publishes the latest version of the document.

exteNd Director Content Management Guide

> To enable automatic publish:

1

Enter templates mode by clicking the Templates button in the toolbar.

A panel appears listing the document types that have been defined.

Select the document type for which you want to set automatic checkin, and click Edit.
The Edit This Document Type window opens:

a http:/ /localhost,/Director/CM/PMC/main/pages/PmcTemplates:h

Edit This Document Type

Hame: ITestQuestion

Auto-Checkin: I
If checked, documents will be sutomstically checked in when they are edited.
Auto-Publish: -

If checked, the content of the document will be automatically published in
when i iz edited.

Default Content: I Chaice l

- Choice -- The user can choose which mode of content they use.
- Binary -- Content iz uploaded
- HTML -- Cortert i created via the HTML editar

Extended Options

Update Document Type |

Check the Auto-Publish check box and click Update Document Type.

When you edit and save a document of thistype, the CMS Administration Console automatically
publishes your modifications as a new version of the content. This latest version becomes the
published version, regardless of whether an earlier version was already published or no earlier
versions were published.

NOTE: You can also enable automatic publish when you create a new document type, as described in
“Creating document types” on page 146.

> To set publish dates:

The CMS Administration Console does not automatically set publish dates, although content
administrators with WRITE permission can set publish dates manually anytime to mark documents for
publication. After that, devel opers can write schedul ed business objects that publish documents based on
these dates.

1
2

Enter Content mode by clicking the Content button in the toolbar.
Select the Folder View tab.

Your existing folders appear in the content tree view. You may need to expand some of these
containers to see the complete view.

Navigate to the document of interest and select it to open its Property |nspector.
In the Property Inspector, select the General tab and click Check-Out.
The CM S Administration Console checks out the latest version of the document.

Inthe Publish Date field, enter a publish date of the form:
YYYY-MM-DD HH:MM:SS
Click Save to record the date.

Administering Content 201

202 exteNd Director Content Management Guide

Searching Content

This chapter describes how to use the Autonomy search engine to search content in the CMS
Administration Console. It has these sections:

*

*

*

Setting up the CM S Administration Console search facility
Using the search facility in the CM'S Administration Console
Search options

Setting up the CMS Administration Console search facility

The search facility of the CM S Administration Console uses the Autonomy search engine (Dynamic
Reasoning Engine, or DRE). The Autonomy DRE uses conceptual pattern matching, whichisamore
sophisticated form of searching than keyword-based full-text searching.

Before you can use the search facility in the CMS Administration Console, you must:

*

*

Configure the Autonomy DRE to interface properly with your server.

L For instructions on configuring Autonomy for use with your server and the CM subsystem,
see the section on configuring your environment in the Content Search Guide.

Configure the CM subsystem to link to the Search service for your exteNd Director EAR project.

You can make search configuration settings when you create your project. After you have created a
project, you can change search configuration settings for the CM subsystem in the exteNd Director
EAR configuration tool.

NOTE: For changes in content to be immediately available to the CMS Administration Console’s
search facility, you must set Synchronization Mode to immediate and select which document
operations you want to trigger immediate synchronization (for example, checkin and publish). In
batch mode, changes are propagated to the DRE by the synch task.

If you have made configuration changes in an existing project, redeploy your project.

After you have configured you environment for the Autonomy DRE and configured the search options
for your project, you can use the search facility in the CM S Administration Console.

Using the search facility in the CMS Administration Console

> To perform a search in the CMS Administration Console:

1
2
3

Enter content mode by clicking the Content button in the toolbar.

Select the Search View tab.

In the Search Pane:

3a Enter the word or phrase you want to search for in the Search Text box.

3b (Optional) Set any other search options you want to use to refine your search. See “ Search
options’ on page 205.

Searching Content 203

srcIntro.html#OverviewofAutonomy-basedconceptualsearching
srcConfigure.html
cdConfigServicesEdit.html
cdConfigServicesEdit.html

3c Click the Search button:

q Search

The search view Inthe search view:

+ The Search Pane replaces the content tree.

+ Documents found by the search are listed in the content list. If you click a document to select it
from the list, the Content Property Inspector appears, as shown in Step 2 above.

+ Inthe content list, thereis a Weight column between the Name and Description columns. The
numbers in the Weight column indi cate the rel evance of each found document to the search criteria,

expressed as a percentage:
Folder iew J Categary View] Check-Cuts View] Search Vigw]
Maime: Weight Description Author Created Publizh Dete: Expiration Date: Checked-out By
Search Text: .
perf_jbyard ™ Bo admin 2002-06-11 acimin
E perf_c_chestnut 79 Bio goimin - 2002-03-28 acimin
Query Type:
@ Conceptual or keyword search
c Proper Mame Search
Min. weight: l_%
Max.number of results:
Sort by: weight - El Content Property Inspector
I” Search Within Date Range AT AT R
Dy J Mo [Ve Genersl I Security. 1 Child Dacs I Attachments } Wersions I
From i i hlame. Author Date Crested
To . [pert c_chestrut [acinin [en02.05 28 1248224
I™ Batch Mode Ahstract Publish Dite: Expiration Date
Start Size [Cyrus Chestrut is a very versatile ﬂ I I
Field Seareh: pianst Status Checked-Out By
I ﬂ I Iadmm
sher Suigoest More Wooe XKoo e [Breew @erecn Blepon
|
|&] Dune T @ Tusegstes A

If you are not getting the results you expect If the search facility is not finding documents you
expect it to find:
+ Make sure you have created or imported content into your repository.

+ Review the synchronization settings for your project. You can do thisin the exteNd Director EAR
Configuration tool.

+ If you are using immediate synchronization, make sure you have made your documents available to
the search engine by performing one or more of the operations you chose when you configured
immediate synchronization on each of the documents.

204 exteNd Director Content Management Guide

cdConfigServicesEdit.html
cdConfigServicesEdit.html

Search options

In the Search Pane you can set a number of optionsto refine your search:

Search Text:

|
Q Search

Query Type:
o Conceptual or keyword search

r Proper Mame Search
Min. weight: I_%
Max.number of results: I—
Sort by: [weigt =]

™ Search Within Date Range
Day ! horith ! Year

From I ! I ! I
To | i i |
™ Batch Mode

S‘tart:l Size:l

Field Search:

FReee Suggest More...

The following table explains how to use the search options:

Option How to use the option
Search Text Enter the word or phrase you want to search for.
Query Type Select the type of search you want to perform:

+ Conceptual or keyword search (the default)—When this type is selected, the
DRE uses conceptual pattern matching by default.

If you use semicolon notation (for example: silk; +worm;) the search engine
performs a keyword search based on the number of occurrences of the terms,
rather than on their conceptual relevance.

+ Proper Name Search—When this type is selected, the search engine treats the
search text as a proper name, and performs a conceptual search accordingly.

Min. weight Enter the minimum weight for a document to be displayed in the content list.

The weight of a found document is a measure of its relevance to the search text.
The search engine assigns a percentage value to each document, with 100%
representing the greatest possible relevance.

Max. number of Enter a number that specifies the greatest number of documents you want to be
results displayed in the content list.

Searching Content 205

srcIntro.html#OverviewofAutonomy-basedconceptualsearching

206

Option

How to use the option

Sort by

Select a sort order from the dropdown list. The available choices are:
« weight (the default)
+ date

« weight and date

Search Within

Select this check box if you want to restrict the search to documents created

Date Range within a specified time period. For both the From and To dates, enter the day,
month, and year in the corresponding text boxes.
Batch Mode Check this check box if you want a subset of the found documents to appear in

the content list.

When using batch mode, it is helpful to think of the full set of found documents as
an array, ordered according to the sort order you indicate in the Sort by box.

The documents that are displayed are selected from the full set of found
documents, based on the numeric values you enter in the Start and Size boxes:

« Start—Specifies the position of the first document (from the full set of found
documents) to be displayed in the content list. Like array elements, the order of
the documents in the full set of found documents begins with 0.

+ Size—Specifies the total number of documents you want to be displayed in the
content list, beginning with the document specified by the Start value.

Example Say you perform a search without using batch mode that returns six
documents. Then you repeat the search in batch mode, indicating a Start value of
1 and a Size value of 3.

The search now returns the second, third, and fourth documents from the original
set of found documents, based on the order in which they initially appeared in the
content list.

exteNd Director Content Management Guide

Option How to use the option

Field Search Enter a field search expression.
The syntax of a field search expression is:
fieldnamel=valuel operator fieldname2=value2 ...
where:

+ fieldname is the name of an extension metadata field you have created, or one
of these standard metadata fields:

+ AUTHOR
+ CONTENTSIZE
+ CREATED
+ DOCABSTRACT
+ DOCID
+ DOCNAME
+ DOCTYPEID
+ DOCTYPENAME
+ EXPIRATIONDATE
+ FOLDERID
+ LOCKEDBY
+ MIMETYPE
+ PARENTDOCID
+ PUBLISHDATE
+ PUBLISHSTATUS
+ STATUS
+ SUBTITLE
+ TITLE
+ UPDATETIME
+ value is the field value you are searching for
« operator is either:
+ AND
or
+ OR

Example If you want to limit your search to all HTML documents written by user
admin, the field search expression you would use is:

author=admin AND mime-type=text/html

Suggest More If you want to find documents related to a document that was found by previous
search, select that document in the content list and click the Suggest More button.

The list of documents found by the previous search is replaced by a list consisting
of the selected document and any related documents.

Searching Content 207

208 exteNd Director Content Management Guide

Managing Content Security

This chapter describes how to secure access to content using the CM S Administration Console. It has
these sections:

+ About content security

+ Flow of operations

+ Permissionsfor content access

o User permissions required for CM operations

+ Cascading security

o Setting security on CM elements

L) For background information, see Chapter 4, “ Securing Content”.

About content security

The CM S Administration Consol e allows administrators—and other userswith PROTECT permission—
to control accessto CM elements. Administrators can assign users and groups various levels of access
permission on an element-by-element basis to the following types of content:

«+ Document

+ Folder
+ Taxonomy
+ Category

When users with PROTECT permission open one of these CM elementsin the CM S Administration
Console, they will see a Security tab in the Property Inspector. The Security tab displays controls for
assigning levels of access to the selected CM element.

For example, here iswhat the Security tab looks like after assigning the ContentAdmins Group WRITE
access to the document PSAT 1.

Managing Content Security 209

Folder ‘igw] Category Yiew Check-OutsV\ewJ

3 0 oetau
] [Corporate
9 [psaT
@ 0 sar

a Mew Folder

hame: Dest

E psar? TestQuestion JSmith 2001-10-04

Cription Author Created
E] psamt Testdueston J.Smth 20011002

Publish Date Expiration Date Checked-out By

El Content Property Inspector

Permiszion

Selected Users

Availahle Usars

[wrTE 5] bcomemmmms _<| z 8% R =
] BusinessPartrier
_I] ﬂﬂ Busingsslnt
ll] Oﬂ ContentAdming
usa"e ;I m ﬁ(‘ Contractor j

2l

|
[r Local intranet 4

The CMS Administration Console provides security-sensitive controls as part of its user interface. It
givesyou only those CM capabilitiesthat are permitted by the security privilegesassigned to you for each
CM element.

For example, if you have WRITE permission for all documents, you can check out and edit any document
inthe CM'S Administration Console. If you do not have WRITE permission for documentsin a
confidential folder, you will never see Edit and Check-Out controlsin the Property | nspectors of
documentsresiding in that folder.

Flow of operations

Here isthe basic task for securing content in the CM S Administration Console:

210

O <Contral access to content elements

This chapter explains how to manage security in the CM S Administration Console and includes the
following topics:

*

*

*

Permissions for content access

User permissions required for CM operations

Cascading security

Setting security on CM elements

exteNd Director Content Management Guide

Permissions for content access

Administrators with PROTECT permission can assign users various levels of content access based on
their rolesin the organization.

The CMS Administration Consol e allows authorized usersto assign the following access permissions:

Permission Allows you to

READ View any data and/or metadata associated with the designated CM element—for
example, preview a document or view the metadata associated with a folder

WRITE Create, modify, and save the designated CM element

PROTECT Set security on a designated CM element

LIST View lists of documents in a folder or category

NOTE: This permission applies to folders or categories only, not to documents.

PUBLISH Publish a document
NOTE: This permission applies to documents only, not to folders or categories.

While each of these access permissionsisassigned to CM elementsindividually (asdescribed in“ Setting
security on CM elements” on page 213), it is not necessary to explicitly set access permissions on each
element. A CM element can inherit access permissions from its parent element.

L) For more information on setting CM element permissions through inheritance, see “ Cascading
security” on page 212.

User permissions required for CM operations

The following table describes which permissions are required for performing specific CM operationsin
the CM'S Administration Console:

Element Operation Permission

Document View content or metadata READ
Modify content or metadata WRITE
Publish PUBLISH
Set security PROTECT

Folder View metadata READ
Modify folder metadata WRITE

Add subfolder
Add document

List contents LIST

Set security PROTECT

Managing Content Security 211

Element Operation Permission

Category View metadata READ

Modify category metadata WRITE
Add subcategory
Add document

List contents LIST

Set security PROTECT
Field View metadata READ

Modify metadata WRITE

Set security PROTECT
Document type View metadata READ

Modify metadata WRITE

Set security PROTECT

List fields that belong to the document type LIST

Layout style View metadata READ
Modify metadata WRITE
Set security PROTECT

L) For information on giving users and groups levels of accessto individual CM elements, see
“ Setting security on CM elements” on page 213.

Cascading security

Generally, security settings cascade from parent to child in the hierarchical relationships of CM elements.
The following content hierarchies exist in the CM S Administration Console:

+ Physical hierarchy of root folders @, folders &, and documents E:

FED
an

B
E

212 exteNd Director Content Management Guide

+ Logical hierarchy of taxonomies o categories «, and documents El:

B B
a b I

Inherited security When anew child is created in either hierarchy, it inherits the parent’s security
settings. Child elements can a so inherit changesto aparent’s access permissions, but you must explicitly
enable this behavior, as described in “ Setting security on CM elements’ on page 213.

Setting security on CM elements
Userswith PROTECT permission can set security on the following CM elements:

+ Documents
+ Folders

+ Categories

+ Taxonomies

> To set security on documents and folders:
1 Enter content mode by clicking the Content button in the toolbar.
2 Select the Folder View tab.

Your folders appear in the content tree view. You may need to expand some of these containers to
see the compl ete view.

Navigate to the folder or document of interest and select it to open its Property Inspector.
Select the Security tab.

Select a permission from the dropdown list.

Assign this permission to the appropriate users and groups by following these steps:

o 0 b~ W

To Do this

Assignindividualusers 1 Select users or groups one at a time from Available Users.

and groups 2 Click the single-arrow button to move each selection to Selected
Users.
NOTE: You cannot multiselect users and groups from Available
Users.
Assign all users and Click the double-arrow button.

groups NOTE: All groups move from Available Users to Selected Users.

Managing Content Security 213

214

8

To alow existing children of the selected folder to inherit the new security setting, check Apply
Security To Existing Children.

IMPORTANT: This option is available only to administrators.
Click Save.

> To set security on categories and taxonomies:

1
2

o 0 b~ W

Enter content mode by clicking the Content button in the toolbar.
Select the Category View tab.

Your categories and taxonomies appear in the content tree view. You may need to expand some of
these containers to see the complete view.

Navigate to the category or taxonomy of interest and select it to open its Property Inspector.
Select the Security tab.

Select a permission from the dropdown list.

Assign this permission to the appropriate users and groups by following these steps:

To Do this

Assignindividualusers 1 Select users or groups one at a time from Available Users.

and groups 2 Click the single-arrow button to move each selection to Selected

Users.

NOTE: You cannot multiselect users and groups from Available Users.

Assign all users and Click the double-arrow button.
groups

To allow existing children of the selected folder to inherit the new security setting, check Apply
Security To Existing Children.

IMPORTANT: This option is available only to administrators.
Click Save.

exteNd Director Content Management Guide

Importing and Exporting Content

This section describes how to import and export content using the CM S Administration Console;

+ About theimport and export facilities

Summary of CMS Administration Console import and export behavior
Exporting content

+ Importing content

+ Structure of the dataimport or export archive

+ Best practices and prerequisites

*
*

L) For background information about how the functions work and how to customize the import and
export functions, see Chapter 7, “Importing and Exporting Content”.

About the import and export facilities

The CM S Administration Console allows you to export CM datafrom your repository, beginning from
any point in the Content Tree. You can also export the entire contents of a CM system from the toolbar.

Similarly, the CMS Administration Console allows you to import CM data at any point in the Content
Tree, or the entire contents of a CM system from the tool bar.

Uses for the import and export facilities include:

+ Moving or copying folders, categories, and documents within a repository
+ Moving CM data between different stages of devel opment

Integrating with third-party vendors

Backing up and restoring CM data

+ Debugging and data analysis

*
*

Import and export of CM infrastructure Itisalso possibleto export and import all or part of the
supporting infrastructure of your CM subsystem, such asfields or document types.

Import and export of archives Whenyou export CM datafromthe CMS Administration Console, it
isstoredin aZlPfilethat servesasastructured export archive. When youimport CM datausingtheCMS
Administration Console, it must beimported from aZIPfile that follows the same structure as the export
archive. When you import CM data that has been exported from a CM repository, you import directly
from the export archive.

Importing and Exporting Content 215

Summary of CMS Administration Console import and export
behavior

Here iswhat happens when you export or import CM data, depending on the starting point for the
operation:

Import:
Export: where the contents of the
Starting point what goes into the ZIP file ZIP file are placed

Toolbar The entire contents of the CM subsystem The Default folder
including:

+ The Content Admin element
+ Taxonomies

+ Categories

« Display styles

+ Document types

« Fields

+ Folders

«+ Documents

+ Document versions

OR

A subset of the CM subsystem, as specified by
a document export descriptor (DED)

Repository Property All folders, documents, document versions, The Default folder
Inspector fields, and document types contained in the
repository

Folder Property The selected folder and all its contents, The selected folder
Inspector including:

«+ Documents and associated versions, fields,
and document types

«+ Subfolders of the selected folder, and their
contents

Content Property All versions of the selected document, plusany Not applicable
Inspector document type and fields associated with it

L) For more information on what goes into the export archive and how the archive is structured, see
“Structure of the dataimport or export archive” on page 221.

Exporting content
This section explains how to export CM data from the toolbar and the Property Inspectors.

NOTE: Before you export data, be sure to review the section “Best practices and prerequisites” on
page 222.

216 exteNd Director Content Management Guide

Exporting from the toolbar

The Export button on the toolbar allows you to export the entire contents of your CM subsystem, or to

perform a customized export using a descriptor file called the data export descriptor (DED).

> To export content from the toolbar:

1

a h~ W N

Click the Export button on the CM'S Administration Console tool bar.
The Export Pane displays:

il Export Content Management Data
Please choose whether you would like to export the entire contents of the Content Management
System or use a specific Data Export Descriptor to select data to be exported. Once you've made

your selection click the export button to continue.

[Export entire contents of Content Management System

o Export using a specific Data Export Descriptor

Diata Export Descriptor: I Browse. .. |

% Export

|&] Done ’_ ’_ ’_ @ Trusted sites

Choose Export using a specific Data Export Descriptor.

Click the Browse button and navigate to the DED file you want to use for this export.
Click the Export button.

Click OK in the question box that appears:

Thiz export operation will include all elements of the Content banagement System. Please be aware that this operation
may take several minutes.

Are you sure you wish to continue?

Cancel |

In the File Download dialog, click Save;

File Download E
*f'ou are downloading the file:

exportYzpecifier=ALL from localhost

‘wiould you like to open the file or save it to your computer?

Cancel | More Info |

¥ &lways ask before opening this type of fils

In the Save As dialog, navigate to the folder where you want to store the export archive, give the

archive file aunique name, and click Save.

Save As HE
Save jn: I {23 JazzMew j gl
[Boat: [(dPac
build CdPme
ContenttdgmtService I Partal
[ebug [C0webDévService
library
teta-inf

File name: Icontentmgmt_data[‘l 114-Jun-02.09.58. 41 zip Save [f
Save as ype: IW’inZip File j Cancel |

Importing and Exporting Content

217

L) For more information about the archive, see “ Structure of the dataimport or export archive”
on page 221.

Exporting from a Property Inspector

> To export content from a Property Inspector:
1 Enter Content mode by clicking the Content button on the CMS Administration Console toolbar.
2 Select the starting point for the export by doing one of the following:
+ Inthe Content Tree, click the Default folder. The Repository Property Inspector displays:

il Repository Property Inspector
General] 3
[aime Created by Diate Crested
Joetaut JEystem J2002-05-23 09:56:34.1
Description Modified by Drate Modified
The defauit cortert repostory folder.] | JSystem J2002-05-23 09:56:34 1
Biytes Create Document of Type
LI I3584 IChoose a Type LI
I%:I Export
OR
+ IntheContent Tree, click any folder other than the Default folder. The Folder Property I nspector
displays:
3 Folder Property Inspector
General]
[aime Created by Diate Crested
Jehronalogy Jacimin J2002-05-24 15:56:37 1
Description Modified by Drate Modified
e untitied folcer =l Jzcmin Je002-05-24 15:56:52 5
Biytes Create Document of Type
LI I2D?9 IChoose a Type LI
u Save x Delete I@ Export
OR

+ Inthecontent list, click adocument. The Content Property Inspector displays:

El Content Property Inspector

General]
Mame Athar Diate Created
Jerrono_1335 Jacimin Je002-05-24 16:57:48. 5
Abstract Publish Drate: Expiration Date
[Signifcant events of 1935, = |
Status Checked-Cut By
-] | |

EPreview Qcheck Cut I@ Export

3 Click the Export button in the Property Inspector.

4 Follow Step 5, Step 6, and Step 7 in “ To export content from the toolbar:” on page 217 to name and
save your export archive.

L) For adescription of the contents of the export archive file, see “ Structure of the dataimport or
export archive” on page 221.

218 exteNd Director Content Management Guide

Customizing exports
You can configure and customize the export process by editing the DED.

L) For more information, see “Customizing imports and exports’ on page 82.

Importing content

This section describes the import process and explains how to import datainto your CM subsystem from
the toolbar and the Property | nspectors.

NOTE: Before you import data, be sure to review the section “Best practices and prerequisites” on
page 222.

Data not previously exported If you want to import datathat was not previously exported from a
CM repository, you can do this manually by assembling an import ZIP file, or programmatically using
the CM API. For more information, see “ Customizing imports and exports’ on page 82.

Data previously exported If you are importing data that was previously exported from a CM
repository—for example, as part of amoving or copying process—you import directly from the export
archive so that the archive will automatically follow the required structure.

Configuring the import process

Unlike with exporting content (when you can configure the process only from the toolbar), when you are
importing content you can configure the process regardl ess of the starting point. You do thisby adding a
data import descriptor (DID) to the import archivefile or editing the existing file before performing the
import.

NOTE: When you are importing previously exported CM data, the import archive will always contain a
DID (called contentmgmt_did.xml) in the contentmgmt-inf folder.

L For more information about the DID, see “ Customizing the dataimport descriptor (DID)” on
page 82.

Importing from the toolbar

The Import button on the toolbar allows you to import CM data from an import archiveinto the Default
folder of arepository.

> To import content from the toolbar:
1 Click the Import button on the CMS Administration Console toolbar.
The Import Pane displays:

i Import Content Management Data

Please select the Content Management Data Import Archive to be used and click the import button to
continue.

i Browse... :

Drata Import Archive:

@l Import

|&] Done ’_ ’_ ’_ @ Trusted sites

Importing and Exporting Content 219

2 Click the Browse button.
3 Inthe Choose File diaog, browse to the import archive you want to use and click Open:

Choosze file EHE
Look in: I {23 JazzMew j gl
|_JEoat [dPac

1231 build [Pme

) Contenth gmtService I Partal

) Debug ([0 webDavService

|1 ibrary i cantentrngmt_data[1].14)
|0 Metaint JazzMew.ear

K — b

File name: Icontentmgmt_data[‘l 114-Jun-02.09.58. 41 zip Open
Files of type: [l Fies (*) =l Cancel

4 IntheImport Pane, click Import.

Importing from a Property Inspector

You can import from the Repository Property Inspector and the Folder Property Inspector (but not from
the Content Property Inspector).

> To import content from a Property Inspector:
1 Enter content mode by clicking the Content button on the CM S Administration Console toolbar.
2 Select the starting point for the import by doing either of the following:
+ Inthe Content Tree, click the Default folder. The Repository Property Inspector displays:

il Repository Property Inspector
Genersl | Secuity | import |

The currently selected repository wil be used as the target for thiz import. Please select the Content
Management Data Import Archive to be used and click the import button to continue.

Drata Import Archive: Browse... |
@l Import
OR
+ IntheContent Tree, click any folder other than the Default folder. The Folder Property Inspector
displays:

3 Folder Property Inspector
Genersl | Secuity | import |

The currently selected folder will be used as the target for this import. Please select the Content
Management Data Import Archive to be used and click the import button to continue.

Drata Import Archive: Browse... |

@l Import

3 Inthe Property Inspector, click the Import tab.
4 Click Browse.

220 exteNd Director Content Management Guide

Structure of the data import or export archive

Thefollowing table showstheinternal folder structure of adataimport or export archivefile and explains
what each folder contains:

5

6

In the Choose File dialog, browse to the import archive you want to use and click Open:

Choosze file EHE
Look in: I {23 JazzMew j gl
|_JEoat [dPac
1231 build [Pme
) Contenth gmtService I Partal
) Debug ([0 webDavService
|1 ibrary i cantentrngmt_data[1].14)
|0 Metaint JazzMew.ear
K — b
File name: Icontentmgmt_data[‘l 114-Jun-02.09.58. 41 zip Open
Files of type: [l Fies (*) =l Cancel

In the Import pane, click Import.

Included when exporting from:

Toolbar Repository, Folder, or
(entire Content property
Folder name Contains system) inspector
contentmgmt-inf contentmgmt_did.xml (the DID) a a
admin_metadata ContentAdmin.xml (the Content Admin element) a
categories_metadata XML descriptor files for each taxonomy and category, a
organized according to the structure of the taxonomy(ies)
styles_metadata An XML descriptor for each style, registering its name and a
listing the document type it is associated with
fields_metadata An XML descriptor for each field, registering the field name a a
and the data type of its value
fields_data The application-specific data associated with each a a
extension metadata field; for fields created with the CMS
Administration Console, this consists of an XML descriptor
for each field listing its properties, including its control type
and (if applicable) its possible values
doctypes_metadata An XML descriptor for each document type, listing the a a
fields associated with it
doctypes_data The application-specific data associated with each a a
document type; for document types created with the CMS
Administration Console, this consists of an XML descriptor
for each document type describing its properties
folders_metadata An XML descriptor for each folder, registering the folder s s
and listing its parent folder, if any
docs_metadata An XML descriptor for each document containing the s s

names and values of the fields associated with the
document, organized according to the folder structure

Importing and Exporting Content

221

Included when exporting from:

Toolbar Repository, Folder, or
(entire Content property
Folder name Contains system) inspector
docs_content Files containing the published content of each exported
- . . F F
document, organized according to the folder structure
docs_content_versions Files containing the content of each version of exported s s

document, organized according to the folder structure

Best practices and prerequisites

This section provides some notes on best practices for importing and exporting CM data.

Planning for large-scale import/export operations

If you are planning to export or import avery large amount of CM data, it isimportant to keep the
memory capacity of your machinesin mind as you plan your operation.

During an import or export operation, all objects representing elements of the repository must be present
in memory at the sametime. That means the amount of available memory imposesapractical limit onthe
size of arepository you can processin a single operation.

The best way to approach alarge-scale operation isto export or import your source repository in logical
chunks. For example, you might export all your document typesin one operation, your fieldsin another
operation, and so on, ending with exporting or importing your document content in manageable chunks
according to the folder structure of your repository.

Security considerations

This section applies primarily to importing CM data that has been exported from another repository.

Permissions to establish in the import target The user who performs the export from the source
repository must exist and must have the SearchAdmin WRITE permission in the target repository.

Users to create in the import target You need to make surethat if any documentswere checked out
at the time of export, the users to whom they are checked out have been created in the repository into
which you are importing.

If these users do not exist in the import repository, the import will fail.

222 exteNd Director Content Management Guide

Administering Automated Tasks

Tasks mode in the CM S Administration Console allows you to view, start, and stop automated CM tasks
from the CM'S Administration Console. This chapter includes these topics:

+ Thetask display
+ Starting and stopping tasks

Several tasks are installed with the CM subsystem. You can modify these installed tasks and/or create
new, custom tasks to meet the specific needs of your application.

L) For more information, see Chapter 5, “Managing Tasks’.

The task display

You enter tasks mode by clicking the Tasks button on the CM S Administration Console toolbar. The task
display appears, asin this example:

Content Management Tasks:

Hame: Desciption: Type: Status: PStart Task
@ Default Repostory Document Publish - The Defaul Repostaory Document Publish Task periodic Stopped

@ Default Repostory Document Expire The Default Repostory Document Expire Task periodic Stopped @ Stap Task
@ Default Repostory Document Remove The Defaul Repostory Document Remove Task periodic Stopped

i
&) Dane |_|_|_ @) Trusted sies v

Administering Automated Tasks 223

This display provides the following information about the tasks defined on your server:

Task property Details Example

Name and As defined in the task object. —

description

Type The task type, from a scheduling point of For example, a scheduled task could
view. Possible types are: be a content publishing task that is

scheduled to run at three publication

+ Periodic: a task that is scheduled to run .
deadlines, such as:

multiple times at regularly scheduled

intervals. + Monday, June 24, 2002 at 9 a.m.
For example, a periodic task could be a + Wednesday, June 26, 2002 at 5
repository backup utility that runs every p.m.

24 hours (86,400,000 milliseconds). + Friday, June 28, 2002 at midnight

+ Scheduled: a task that is scheduled to
run at one or more fixed points in time.

Status The execution status of the task. Possible —
values are:

+ Stopped: Task is not yet running or has
been halted.

« Started: Task is currently running.

Starting and stopping tasks

Tasks are not persistent across application server sessions. Each time you restart your server, you must
restart each of your tasks.

> To start or stop a task:
1 Enter tasks mode by clicking the Tasks button in the tool bar.
2 Click anywherein atask description to select it.
3 Click the Start Task button to start the task or the Stop Task button to stop the task.

224 exteNd Director Content Management Guide

I V Applications

Describes how to use the Content Query and RSS portlet application
¢ Chapter 22, “Content Query Application”

225

226 exteNd Director Content Management Guide

Content Query Application

This chapter describes how to use the Content Query action and related artifacts to query the Content
Management subsystem. It has these sections:

+ About Content Query
+ Using the Content Query action

NOTE: To use this application your project must include the Content Management and the Rule
subsystems.

About Content Query

The Content Query action (CQA) allowsyou to query published documentsin the Content Management
(CM) subsystem. You can query by folder, category, document type, or by specific document. Searches
can be designated as either inclusive or exclusive. Theresults of the query are captured in XML and
processed as aquery inthe CM subsystem.

Content Query consists of a portlet and sample rules that use the installed Content Query action. The
application artifacts are provided in your exteNd Director directory at:

Portal /WEB-INF/lib/cga-portlets.jar

Application contents The CQA-Portlets JAR includes:

CQA Artifact Description

ContentListPortlet.class Portlet that displays the results of a query using the Content Query action.

ContentList.xml Sample rule that executes a general document query against the CM
subsystem.

D see Using the Content Query action.

MyDocuments.xml Sample rule that executes a query for documents created or modified by
the logged-in user

NewDocuments.xml Sample rule that executes the SetDateonWhiteboard action and executes
a query for documents created or modified on the current date

Using the Content Query action

The Content Query action provides a custom user interface in the Rule Editor for specifying the folders,
categories, document types, and documents to include (or exclude) in the query results. It also provides
an interface for selecting the properties (content fields) that should be displayed in the query output and
for specifying sort rules. The Content Query action also includes aquery builder to allow you to specify
selection criteria

Content Query Application 227

228

> To edit and run a query:

1

If you have not yet created content, you need to add some content using the Director
Administration console (DAC) or WebDAV.

Start your server and open the ContentList rule in exteNd Director.
L) For more information, see Using the Rule and Macro Editors in the Rules Guide.

NOTE: You can also create a new rule and add the Query action. If you are creating your own rule,
skip the next step.

Select the Edit query against the content management system action, then right-click and select
Edit from the popup menu.

A popup asks you to specify the URL to your project’s ContentM gmtService folder.

Specify the correct URL—for example:
http://localhost/MyDirectorProj/ContentMgmtService/

The Content Query Property Inspector displays:
=10l x|

Actions Icom.sssw.cm.adion.@uery

I>IL

Search | Propertiesl Sortl URLI
Showe Content:

W, Folders |

",T_ll Categories |

3L Doc. Types|

j Ducumems|

-}’-i{) Whose | ;I

Cancel |

5 Onthe Search tab, specify which documents you want to include (or exclude) in your query:

To select one or more Click the
Folders to be included or excluded Folders button
Categories to be included or excluded Categories button

Document types to be included or excluded Doc Types button

Documents to be included or excluded Documents button

Each property panel alows you to specify an URL to a whiteboard key for the documents:

Falder UR] weivWhitehoard value: I A

OK | Cancel |

You can either enter the value or specify awhiteboard key that holds the value you want. Use this
format:

!valueOf . keyname
You can also specify akey that holds the name of another key. To get a value from another key,
specify valueOf.anotherkey.

exteNd Director Content Management Guide

reEditorMacros.html

L) For more information about the !valueOf construct, see the section on using whiteboard
values in the Rules Guide.

6 To build aquery condition, click the \Whose button:

.ﬁ{u Show tems Whose:

et} LI IStandard Document Properties LI IAuthor

encls with

Lelle

;I |<I'rtera|> ;I |

A | Updlate | Delete |

QK | Cancel |

The Whose query builder lets you specify selection criteriafor individual CM properties. To build a
query condition:

Step

Action

1

If you've already added one or more conditions to the query, select a logical operator
(and or or).

Select Standard Document Properties.

Select a property (such as Author).

Select an operator (such as ends with).

a|lbh|lw N

Select <literal>.
TIP: Only literal strings or whiteboard keys are supported at this time.

Enter a value that will be used for the expression. You can either enter the literal
value or a whiteboard key that holds a value. Use this format:

!valueOf . keyname

You can also specify a key that holds the name of another key. To get a value from
another key, specify valueOf.anotherkey.

L) For more information about the IvalueOf construct, see the chapter on using
whiteboard values in the Rules Guide.

Click Add to add the condition.

The query specifications you provide on the Search tab are ANDed together. That means that to be
included in the result set for the query, a document must satisfy all criteria specified on the Search

tab.

7 Onthe Propertiestab, select the document properties that you want to appear in the query output.
You can select one or more properties from the list on the left and add them to the list on the right
by using the arrows. You can also move the properties up or down to adjust the display order by
using the arrows on the right side of the dialog.

TIP: You must select at least one property on the Properties tab to see data in the query output. In
the ContentList rule, some properties are selected by default.

Content Query Application 229

reRulesPipeDev.html#Usingwhiteboardvalues
reRulesPipeDev.html#Usingwhiteboardvalues
reRulesPipeDev.html#Usingwhiteboardvalues
reRulesPipeDev.html#Usingwhiteboardvalues

8 Onthe Sort tab, specify how the datawill be sorted in the query output. For each property you
select, you can specify the sort order (ascending or descending).

9 Onceyou vefinished editing the action, click Exit.

10 To save your changes, click Yes.

11 Savetherule.

12 Totest your query, add the ContentList portlet to a portal page and test the page.

230 exteNd Director Content Management Guide

Reference

Describes how to use the Content Management (CM) JSP tag library
¢ Chapter 23, “Content Management Tag Library”

231

232 exteNd Director Content Management Guide

Content Management Tag Library

This chapter describes the tags in the Content Management (CM) tag library:

[N

Developing exteNd Director Applications.

For background information, see the chapter on using the exteNd Director tag librariesin

Content M anagement tags:

checkln

checkOut
findDocuments
getChildDocuments
getContent
getDirectory
getDirectoryList
getDocType
getDocument
getFieldinfo
getFields
getLinkedDocuments
getVersionHistory
publish
unCheckOut
updateDocument

Alphabetical list of tags

checkln

Description

Syntax

Checks adocument in to the CM subsystem for the current user and saves a new content version. If the
saveis successful, the tag returns an integer representing the new version.

This tag wraps the checkinDocument() method on the EbiContentM gmtDel egate interface.

<prefix:checkIn docid="docID" mime="mime" content="content" comment="comment"

keepcheckedout="keepcheckedout" id="ID"

Content Management Tag Library

233

cdUsingTagLib.html

Example

checkOut

Description

Syntax

Request-time

expression
values
Attribute Required? supported? Description
docid Yes Yes Specifies the UUID for a document in the CM
subsystem.
mime Yes Yes Specifies the MIME type of the new version.
content Yes Yes Specifies the new content data.
comment No Yes Specifies a checkin comment.
keepcheckedout Yes Yes Indicates whether the new version should be kept
checked out.
If true, the new version is inserted but the document
remains checked out to the user.
If false, the lock is released and the document is
made available for changes by other users.
id No No Specifies the name of the variable used to store the

result of the operation. If the checkin is successful,
this variable holds the new version.

If no value is specified, a default id of version is
used.

<% taglib uri="/cm" prefix="cm" %>

<%
String content = "this is my new content";
byte myarray[] = content.getBytes();

o
5>

<cm:checkIn docid="addd2545931b11d48e130010a4e70c5f" id="version" comment="checking in
my changes" content="<%=myarray$%>" keepcheckedout="true" mime="text/html" />

o

<%=pageContext.getAttribute ("version") %>

Checks out a document for the current user, returning true if successful and false if unsuccessful.

This tag wraps the checkoutDocument() method on the Ebi ContentM gmtDel egate interface.

<prefix:checkOut docid="docID" id="ID" />

Request-time

expression

values
Attribute Required? supported? Description
docid Yes Yes Specifies the UUID for a document in the CM subsystem.
id No No Specifies the name of the variable that is used to store the

result of the operation.
If no value is specified, a default id of checkout is used.

234 exteNd Director Content Management Guide

Example

findDocuments

Description

Syntax

<% taglib uri="/cm" prefix="cm" %>

<cm:checkOut docid="addd2545931b11d48e130010a4e70c5f" id="result" />
<%=pageContext.getAttribute ("result") %>

Retrieves documents that match the criteria specified in tag attributes (as described below), returning
either alist of EbiDocument objects or an XML string.

This tag wraps either the findElements() or the findFilteredElements() method of the
Ebi ContentM gmtDel egate interface.

<prefix:findDocuments id="ID" secure="securitySetting" xml="xmlFormat"
authorFrom="authorFrom" authorTo="authorTo" authorLike="authorLike"
categoryID="categoryID" createDateFrom="createDateFrom" createDateTo="createDateTo"
expireDateFrom="expireDateFrom" expireDateTo="expireDateTo"
publishDateFrom="publishDateFrom" publishDateTo="publishDateTo"
docTypeName="docTypeName" folderID="folderID" docNameFrom="docNameFrom"
docNameTo="docNameTo" docNameLike="docNameLike" parentDocId="parentDocID"
titleFrom="titleFrom" titleTo="titleTo" titleLike="titleLike" orderAsc="orderAsc"
orderDesc="orderDesc" />

Request-time
expression
values
Attribute Required? supported? Description

id No No Specifies the name of the variable used to store the
list of EbiDocument objects.

If no value is specified, a default id of
foundDocuments is used.

secure No No Specifies whether the returned documents are filtered
according to security constraints.

If true (the default), the filter method is used and only
those documents to which the user has read access
are returned.

If false, all documents are returned.

xml No No Specifies that the document list is returned as an XML
string.

The DTD for the returned xml is contentmgmt-query-
results_3_0.dtd, which can be found under
templates\Director\library\ContentMgmtService/Conte
ntMgmtService-conf/DTD directory in the standard
exteNd Director installation directory.

If not specified, a list of EbiDocument objects is
returned.

authorFrom No Yes Search for documents based on a range of author

authorTo metadata.

authorLike No Yes Search for documents based on a match of author
metadata.

This attribute is case-insensitive, and may include
SQL wildcard characters % and _.

Content Management Tag Library 235

236

Request-time

expression
values
Attribute Required? supported? Description
categorylD No Yes Limits the search to documents in a particular
category.
createDate No Yes Search for documents based on creation date
From metadata.
createDateTo Date entries should have the format m/d/yyyy. For
example: 5/14/2001 is a valid date entry.
expireDate No Yes Search for documents based on expiration date
From metadata.
expireDateTo Date entries should have the format m/d/yyyy. For
example: 5/14/2001 is a valid date entry.
publishDate No Yes Search for documents based on publication date
From metadata.
publishDateTo Date entries should have the format m/d/yyyy. For
example: 5/14/2001 is a valid date entry.
docTypeName No Yes Limits the search to documents of a specific type.
folderld No Yes Limits the search to documents in a particular folder.
docName No Yes Search for documents based on a range of document
From name metadata.
docNameTo
docNamelLike No Yes Search for documents based on a match of document
name metadata.
This attribute is case-insensitive, and may include
SQL wildcard characters % and .
parentDocld No Yes Limits the search to documents that are children of a
particular document.
titteFrom No Yes Search for documents based on a range of title
titleTo metadata.
titleLike No Yes Search for documents based on a match of title
metadata.
This attribute is case-insensitive, and may include
SQL wildcard characters % and _.
orderAsc No Yes Sorts the documents in ascending or descending
orderDesc order, based on one of the search criteria.

Legitimate values for these attributes are:
« author

+ createDate

+ docld

+ docName

+ expireDate

+ publishDate

« title

exteNd Director Content Management Guide

Example

<cm: findDocuments id="test2" secure="false" xml="false"

authorLike="administrator" orderAsc="DOCID" />
Found <%=test2.size()%> Documents

<% for (int x=0;x<test2.size() ;x++)

EbiDocument doc

A
o°
—
o°
\%

getChildDocuments

Description

Syntax

Example

= (EbiDocument) test2.get(x); %>
Doc <%=x%> title = <%=doc.getTitle() %>

Retrieves the children of adocument, returning alist of EbiDocument objects.

Depending on the setting for the secur e attribute, this tag wraps either the getChildDocuments() or the
getFilteredChildDocuments() method on the EbiContentM gmtDel egate interface.

<prefix:getChildDocuments docid="docID" docpath="docPath" id="ID"
secure="securitySetting"/>

Request-time

expression
values
Attribute Required? supported? Description
docid No Yes Specifies the UUID for the parent document in the CM
subsystem.
If you do not specify a docid value, you must specify a
value for the docpath attribute.
docpath No Yes Specifies the path to the parent document in the CM
subsystem.
If you do not specify a docpath value, you must specify a
value for the docid attribute.
id No No Specifies the name of the variable used to store the
returned list of EbiDocument objects.
If no value is specified, a default id of childDocuments is
used.
secure No No Specifies whether the returned documents are filtered

according to security constraints.

If true (the default), the filter method is used and only
those documents to which the user has read access are
returned.

If false, all documents are returned.

<cm:getChildDocuments docid="c373e9ea8d110d2c8£f6a0000864ec468" id="test3"/>
Found <%=test3.size()%> Child Documents

Content Management Tag Library 237

getContent

Description.

Syntax

Example

Retrieves the contents of a document, returning a string.

This tag wraps the getContent() method on the Ebi ContentM gmtDel egate interface.

<prefix:getContent docid="docID" docpath="docpath" id="ID" version="version"
verid="verID" />

Request-time
expression
values
Attribute Required? supported? Description

docid No Yes Specifies the UUID for a document in the CM subsystem.

If a docid value is not specified, you must specify a value
for the docpath attribute.

docpath No Yes Specifies the path to a document in the CM subsystem.

If a docpath value is not specified, you must specify a
value for the docid attribute.

id No No Specifies the name of the variable used to store the
EbiDocContent object.

If no value is specified, the document content is inserted
in the page at the location where the tag appears.

version No No Indicates whether to return a specified version of the
content.

If false (the default), or if this attribute is omitted, the
published version of the content is returned. If no version
is published, no content is returned.

If true, you must specify a version using the verid
attribute. The specified version is returned.

verid No Yes Specifies a version ID for the content that should be
returned.

If the version attribute is false, the verid attribute is
ignored.

This example gets the latest version of the content for two documents by specifying the paths to the
documents. The content for each document isinserted in the page at the | ocation where the corresponding
getContent tag appears:

<% taglib uri="/cm" prefix="cm" %>

<cm:getContent docpath="HR/Employee Forms/ESPP/ChangeOfAddress.html" id="docl" />
content = <%$=new String(((EbiDocContent)docl) .getData()) %>

<cm:getContent docpath="HR/Employee Forms/ESPP/ChangeOfAddressInstructions.html"
id="doc2" />

content = <%$=new String(((EbiDocContent)doc2) .getData()) %>

238 exteNd Director Content Management Guide

getDirectory

Description. Retrieves a directory from the CM subsystem, returning an EbiDirectory object. Thistag can be used to
retrieve folders as well as categories.
This tag wraps the getEntry() and |ookupDirectoryEntry() methods on the Ebi ContentM gmtDel egate

interface.

Syntax <prefix:getDirectory id="id" roottype="roottype" dirname="dirname" dirid="dirid"
dirpath="dirpath" />

Request-time

expression
values

Attribute Required? supported? Description

id No No Specifies the name of the variable used to store the
EbiDirectory object.
If no value is specified, the default name of dirEntry is
used for the variable.

roottype Yes Yes Specifies whether the tag is being used to retrieve a
folder or a category.
If the directory is a folder, specify folder as the value for
the roottype attribute. If it is a category, specify category
instead.
Typically, this attribute is used in conjunction with one of
the following attributes to specify the correct directory
object in the CM subsystem:
+ dirname
« dirid
« dirpath
If none of these attributes is specified, the root folder or
category is returned, depending on the setting of
roottype.

dirname No Yes Specifies the name of the directory you want to retrieve.
The directory specified must be a direct descendent of
the root.
The directory can be a folder or category in the CM
subsystem.

dirid No Yes Specifies the UUID for the directory you want to retrieve.
The directory can be a folder or category in the CM
subsystem.

dirpath No Yes Specifies the path to the directory you want to retrieve.
The directory can be a folder or category in the CM
subsystem.

Exanuﬂe <%@ taglib uri="/cm" prefix="cm" %>

<cm:getDirectory roottype="category" dirpath="HR/Employee Forms/ESPP" >

ID for the directory is ...
<%$=dirEntry.getID() %>

Content Management Tag Library 239

getDirectoryList

Description Retrievesalist of directory contentsfrom the CM subsystem, returning acollection of EbiDirectoryEntry
objects. Depending on the attributes specified, this collection can contain folder, category, and document
objects.

Thistag wraps the getDirectoryList() and getFilteredDirectoryList() methods on the
Ebi ContentM gmtDel egate interface.

Syntax <prefix:getDirectoryList id="id" finddocuments="finddocuments" roottype="roottype"
parentdir="parentdir" iterate="iterate" findsubdirs="findsubdirs" dirname="dirname"
dirid="dirid" dirpath="dirpath" filter="documents" />

Request-time
expression
values
Attribute Required? supported? Description

id No No Specifies the name of the variable used to store the
Collection object.

If a value is specified for the id attribute, that value
is used as the name for the resulting variable that
contains the collection. Otherwise, the default name
of dirList is used for the variable.

finddocuments No No Indicates whether to retrieve the documents that are
located in the specified directory.

If true, all documents located in the specified
directory are retrieved.

If false (the default), documents located in the
specified directory are not retrieved.

roottype No Yes Specifies whether to retrieve the contents of a folder
or a category. If the directory is a folder, specify
folder as the value for the root attribute. If it's a
category, specify category.

Typically, this attribute is used in conjunction with
one of the following attributes:

+ dirname
+ dirid
+ dirpath

If the roottype attribute is specified by itself, the
directory for which contents will be retrieved is the
root.

If a value for this attribute is not specified, the
directory for which contents will be retrieved is
assumed to be the root folder.

parentdir No Yes Specifies the directory object for which the
document contents should be retrieved. The object
should be of type EbiDirectory.

If this attribute is specified, it is not necessary to
specify the roottype attribute.

240 exteNd Director Content Management Guide

Request-time

expression
values

Attribute Required? supported? Description

iterate No No Indicates whether this tag operates as a body tag so
that each row can be processed separately.
If true, the following values can be accessed within
the getDirectoryList tag:
+ identifier
+ name
* type
« isdir
Each of these variables has a scope of NESTED.
If false (the default), this tag operates as a nonbody
tag. The tag returns an object of type Collection that
contains a collection of EbiDirectoryEntry objects.

findsubdirs No No Indicates whether to retrieve directories that are
child directories under the specified one.
If true (the default), all subdirectories of the
specified directory are retrieved.
If false, subdirectories of the specified directory are
not retrieved.

dirname No Yes Specifies the name of a directory from which
contents should be retrieved.
The directory specified must be a direct descendent
of the root.
The directory can be a folder or category in the CM
subsystem.

dirid No Yes Specifies the UUID for a directory from which
contents should be retrieved.
The directory can be a folder or category in the CM
subsystem.

dirpath No Yes Specifies the path to a directory from which contents
should be retrieved.
The directory can be a folder or category in the CM
subsystem.

filter No No Indicates whether to search using security filters.
If true (the default), the filter method is used and
only those objects to which the user has read
access are returned.
If false, all objects are returned.

Examples This example shows how to use the getDirectoryList tag with the iterate attribute set to true:

<%@ taglib uri="/cm" prefix="cm" %>

<cm:getDirectoryList roottype="category" dirpath="HR/Employee Forms/ESPP"

finddocuments="true" iterate="true">

Identifier = <%=identifier%>

Name =
Type =

<%=name%>

<%=type%>

Content Management Tag Library 241

Is this item a directory? = <%=isdir%>

</cm:getDirectoryList>

This example shows how to use the getDirectoryList tag with the iterate attribute set to false:

<%@ taglib uri="/cm" prefix="cm" %>

<cm:getDirectoryList iterate="false" filter="false"/>

<%= ((java.util.List)pageContext.getAttribute ("dirList")) .size() %> = the size of
the list...
getDocType
Description Retrieves a document type from the CM subsystem, returning an EbiDocType object.
Depending on whether you specify the typeid or name attribute, this tag wraps the
getDocumentTypeByID() or getDocumentTypeByName() method on the EbiContentMgmtDel egate
interface.
Syntax <prefix:getDocType typeid="docID" name="name" id="ID" />
Request-time
expression
values
Attribute Required? supported? Description
typeid No Yes Specifies the UUID for a document type in the CM
subsystem.
If you do not specify a typeid value, you must specify a
value for the name attribute.
name No Yes Specifies the name of a document type in the CM
subsystem.
If you do not specify a name value, you must specify a
value for the typeid attribute.
id No No Specifies the name of the variable used to store the
EbiDocType object.
If no value is specified, a default id of docType is used.
Exanuﬂe <% taglib uri="/cm" prefix="cm" %>
;é%:getDocType typeid="addd2543931b11d48e130010a4e70c5f" id="test" />
ﬁ%ﬁe for the doc type is ...
<%=test.getDocTypeName () %>
getDocument
Description Retrieves a document, returning an Ebi Document object.
This tag wraps the lookupDirectoryEntry() and getDocument() methods on the
Ebi ContentM gmtDel egate interface.
Syntax <prefix:getDocument docid="docID" docpath="docPath" id="ID" />

242 exteNd Director Content Management Guide

Example

getFieldInfo

Description

Syntax

Request-time

expression

values
Attribute Required? supported?

Description

docid No Yes

Specifies the UUID for a document in the CM subsystem.

If you do not specify a docid value, you must specify a
value for the docpath attribute.

docpath No Yes

Specifies the path to a document in the CM subsystem.

If you do not specify a docpath value, you must specify a
value for the docid attribute.

Specifies the name of the variable used to store the
EbiDocument object.

If no value is specified, a default id of document is used.

<% taglib uri="/cm" prefix="cm" %>

<cm:getDocument id="test" docid="addd2545931b11d48e130010a4e70c5f" />

Title for document is ...
<%=test.getTitle() %>

Retrieves the extension fields of a document, returning the field information as an EbiDocExtnMeta

object.

This tag wraps the getDocumentExtnM eta() method on the Ebi ContentM gmtDel egate interface.

<prefix:getFieldInfo docid="docID" docpath="docPath" id="ID"

iterate="iterateSetting"/>

Request-time

expression

values
Attribute Required? supported?

Description

docid No Yes

Specifies the UUID for a document in the CM subsystem.

If you do not specify a docid value, you must specify a value
for the docpath attribute.

docpath No Yes

Specifies the path to a document in the CM subsystem.

If you do not specify a docpath value, you must specify a
value for the docid attribute.

Specifies the name of the variable used to store the
EbiDocExtnMeta object.

If no value is specified, a default id of docFields is used.

Content Management Tag Library 243

Request-time
expression
values
Attribute Required? supported? Description

iterate No No Indicates whether this tag operates as a body tag so that
each row can be processed separately.

If true, the following values can be accessed within the
getDirectoryList tag:

« fieldinfo

+ fieldName

+ fieldValues

Each of these variables has a scope of NESTED.

If false (the default), this tag operates as a nonbody tag.
The tag returns an EbiDocExtnMeta object.

Exanuﬂe <cm:getFieldInfo docid="c373e9ea8d110d2c8f6a0000864ec468" id="test6" />
<% for (int x=0;x<test6.size() ;x++)

EbiDocExtnMetaInfo dmi = (EbiDocExtnMetaInfo) test6.get (x); %>
Field <%=x%> info = <%=dmi.getFieldName () %>
<% } %>
getFields
Description Retrievesfieldsfrom the CM subsystem, returning a collection of EbiDocField objects. You can usethis
tag toretrieve al fields or fields for a given document type.
This tag wraps the getDocumentFields() and getFilteredDocumentFields() methods on the
Ebi ContentMgmtDel egate interface.
Syntax <prefix:getFields id="ID" doctypeid="doctypeID" doctypename="doctypename"

iterate="iterate" filter="filter" />

Request-time

expression
values
Attribute Required? supported? Description
id No No Specifies the name of the variable used to store the
collection of EbiDocField objects.
If no value is specified, a default name of fieldList is
used for the variable.
doctypeid No Yes Specifies the UUID for a document type in the CM
subsystem.
If you do not specify either a doctypeid or
doctypename value, all fields are retrieved.
doctypename No Yes Specifies the name of a document type in the CM

subsystem.

If you do not specify either a doctypeid or
doctypename value, all fields are retrieved.

244 exteNd Director Content Management Guide

Request-time
expression
values
Attribute Required? supported? Description

iterate No No Indicates whether this tag is to operate as a body tag
so that each row can be processed separately.

If true, the following values can be accessed within
the getFields tag:

« identifier
+ name
Each of these variables has a scope of NESTED.

If false (the default), this tag operates as a nonbody
tag. In this case, the tag returns a collection of
EbiDocField objects.

filter No No Indicates whether to search using security filters.

If true (the default), the filter method is used and only
those fields to which the user has read access are
returned.

If false, all fields are returned.

Examples This example shows how to use the getFields tag with the iterate attribute set to true:

<%@ taglib uri="/cm" prefix="cm" %>

<cm:getFields doctypename="myDocumentType" iterate="true">
Identifier = <%=identifier%s>

Name = <%$=name$>

</cm:getFields>

This example shows how to use the getFields tag with the iterate attribute set to false;

<%@ taglib uri="/cm" prefix="cm" %>
<cm:getFields iterate="false" filter="false"/>

<%= ((java.util.List)pageContext.getAttribute ("fieldList")) .size() %> = the size
of the list...

getLinkedDocuments

Description Retrieves the documents linked to a particular document, returning alist of EbiDocument objects.

Depending on the attributes you specify for this tag, it wraps one of these methods on the
Ebi ContentM gmtDel egate interface:

+ getFilteredLinkChildDocuments()

+ getLinkChildDocuments()

+ getFilteredLinkParentDocuments()

+ getLinkParentDocuments()

Syntax <prefix:getLinkedDocuments docid="docID" docpath="docPath" id="ID"
secure="securitySetting" parentLinks="parentLinksSetting"/>

Content Management Tag Library 245

Request-time
expression
values
Attribute Required? supported? Description

docid No Yes Specifies the UUID for a document in the CM subsystem.

If you do not specify a docid value, you must specify a value
for the docpath attribute.

docpath No Yes Specifies the path to a document in the CM subsystem.

If you do not specify a docpath value, you must specify a
value for the docid attribute.

id No No Specifies the name of the variable used to store the list of
EbiDocument objects.

If no value is specified, a default id of linkedDocuments is
used.

secure No No Specifies whether the returned documents are filtered
according to security constraints.

If true (the default), the filter method is used and only those
documents to which the user has read access are returned.

If false, all documents are returned.

parentLi No No Specifies whether you want to get documents that are linked
nks as parents or children to the specified document.

If true, return parent documents to which this document is
linked.

If false (the default), return child documents that are linked to
this document.

Exanuﬂe <cm:getLinkedDocuments docid="c373e9ea8d110d2c8f6a0000864ec468"
id="test4" parentLinks="false"/>
Found <%=test4.size()%> Linked Documents

getVersionHistory

Description Retrieves the versions of a document, returning alist of EbiDocVersion abjects.

This tag wraps the getDocumentContentVersions() method on the Ebi ContentM gmtDel egate interface.

Syntax <prefix:getVersionHistory docid="docID" docpath="docPath" id="ID"
includeContent="includeContent"/>

Request-time

expression
values
Attribute Required? supported? Description
docid No Yes Specifies the UUID for a document in the CM subsystem.

If you do not specify a docid value, you must specify a value
for the docpath attribute.

246 exteNd Director Content Management Guide

Example

publish

Description

Syntax

Request-time

expression
values
Attribute Required? supported? Description
docpath No Yes Specifies the path to a document in the CM subsystem.
If you do not specify a docpath value, you must specify a
value for the docid attribute.
id No No Specifies the name of the variable used to store the list of
EbiDocVersion objects.
If no value is specified, a default id of docVersions is used.
include No No Include the actual content in the returned EbiDocVersion
Content objects.

<cm:getVersionHistory docid="c373e9ea8d110d2c8£6a0000864ec468"
id="testl" includeContent="false"/>

<% EbiDocVersion ver = (EbiDocVersion) testl.get(0); %>

Version mime-type is = <%$=ver.getMimeType () %>

Publishes a specified version of content for a document, returning true if successful or falseif
unsuccessful.

This tag wraps the publishDocumentContentVersion() method on the Ebi ContentMgmtDel egate
interface.

<prefix:publish docid="docID" uselatest="uselatest" version="version"

overwrite="overwrite" force="force" />

Request-time

expression
values
Attribute Required? supported? Description
docid Yes Yes Specifies the UUID for a document in the CM subsystem.
uselatest Yes No Indicates whether to publish the latest version of the
document.
If true, the latest version is published.
If false, the version number specified in the version
attribute is published.
version No Yes Specifies the version to publish.
This attribute is required if the uselatest attribute is set to
false.
overwrite No No Indicates whether to replace any versions already
published.

If true (the default), the specified version overwrites any
published version for the document.

If false, an exception is thrown if a published version of the
document already exists.

Content Management Tag Library 247

Request-time
expression
values
Attribute Required? supported? Description

force No No Indicates whether to force an immediate publish,
regardless of the publish dates specified in the document
metadata.

If true, the version is published regardless of the publish
date value specified for the document.

If false (the default), the current data and time is compared
against the publish date and time specified for the
document. If it is too early or too late to publish, the
version is not published; otherwise, the version is
published. In either case, an application exception is
thrown.

Exanuﬂe <% taglib uri="/cm" prefix="cm" %>

<cm:publish docid="addd2545931b11d48e130010a4e70c5f" uselatest="true" />

unCheckOut
Description Unchecks out a document from the CM subsystem for the current user, returning trueif successful or
falseif unsuccessful.
NOTE: No data is saved. Any changes made between the original checkout and the uncheckout are lost.
This tag wraps the unCheckOutDocument() method on the Ebi ContentM gmtDel egate interface.
Syntax <prefix:unCheckOut docid="docID" id="ID" />
Request-time
expression
values
Attribute Required? supported? Description
docid Yes Yes Specifies the UUID for a document in the CM subsystem.
id No No Specifies the name of the variable used to store the result of
the operation.
If no value is specified, a default id of uncheckout is used.
Exanuﬂe <% taglib uri="/cm" prefix="cm" %>
;éﬁzuncheckOut docid="addd2545931b11d48e130010a4e70c5f" id="done" />
<%=pageContext.getAttribute ("done") %>
updateDocument
Description Updates a document in the CM subsystem, returning true if successful or false if unsuccessful.
This tag wraps the updateDocument() method on the EbiContentM gmtDel egate interface.
Syntax <prefix:updateDocument doc="document" checkout="checkoutSetting"

checkin="checkinSetting"/>

248 exteNd Director Content Management Guide

Request-time

expression
values
Attribute Required? supported? Description
doc No Yes Specifies a document (an object of class EbiDocument)
in the CM subsystem.
checkout No Yes Specifies that the document is to be checked out to the
current user before performing the update.
checkin No Yes Specifies that the document is to be checked in after
performing the update.
Exanuﬂe <cm:getDocument id="test" docid="c373e9ea8d110d2c8f6a0000864ec468" />
<% test.setAbstract (test.getAbstract()+"a"); %>

<cm:updateDocument doc="<%$=test%>" checkout="true" checkin="true"/>

Content Management Tag Library 249

250 exteNd Director Content Management Guide

Index

A

access
permissionsin Content Management subsystem 58
restricting 60
access control
in Content Management subsystem 57
access right types
and Content Management subsystem 58
ACLs
about 26
access methods for ContentAdmin 60
access methods in Content Management subsystem 59
adding (code examples) 61
inheriting 60
specifying for new objects 60
administrator
ContentAdmin 59
role 57
attachments
adding 177
author role 57

Auto Create utility for Content Management subsystem 167, 170

auto-checkin feature for documents
about 147
enabling 197

auto-publish feature for documents
about 147, 199
enabling 200

B

browsers
identifier strings 31

C

cascading security in CMS Administration Console 212
categories
assigning to documents 183
creating 163
deleting 188
managing 33
category parameter 19
category tree 35

child documents
adding 47, 176
getting 50
updating link 49
cleanup data feature for document types 148, 191
cm.sssw.cm.api package 23
CMS Administration Console
about 18
accessing 141
administering tasks 223
Auto Create utility 167
classifying content 19
content list 143
content tree view 143
content view tabs 142
context-sensitive toolbar 143
creating content 165
interactive controls 142
main page 141
Property Inspector 143
tasks 139
toolbar 142
using theinternal HTML Editor 170
compound document relationship 46
compound linking
about 48
methods for 49
Content Management subsystem
APl 23
auto-publish feature 199
changing data about content 24
checking documentsin and out 194
creating and adding fields 149
creating categories 163
creating display styles 157
creating document types 146
creating documents 166
creating folders 145
creating rel ationships between documents 176
creating tasks 67
creating taxonomies 162
customizing tasks 66
default document type 18
document types, about 18
getting manager (code example) 23
installed tasks 63
layout styles, adding 31
logical infrastructure 17
physical infrastructure 17

251

publishing document versions 198
removing rel ationships between documents 178
repository 24
rolling back document versions 198
security for 57
security methods 59
setting security on content elements 213
system document type 189
tasks, managing 63
tasks, overview of 24
unpublishing document versions 198
users, rolesfor 57
version control 198
Content Query
sample application 227
Content Query action
in Content Query sample application 227
content security
access permissions 211
cascading 212

permissions required for Content Management tasks 211

setting 213
content, in Content Management subsystem
about display styles 19
classifying 19
compared to pages 16
creating 165
default formats in document types 147
defined 15, 165
defining structure and layout 18
deleting 188
dynamic 166
editing 181
exporting 79

exporting in the CMS Administration Console 216

importing 81

importing in the CM S Administration Console 219

previewing 180

securing 57

versions of 20
ContentAdmin group 59
ContentList

sample application 227
ContentList rule

editing 228
control types

for document fields 149

D

data export descriptor (DED)
about 82
samples 82

dataimport descriptor (DID)
about 82
sample 83

datatypes
about 25

default task 64

252

display styles
about 19
creating 157, 159
deleting 189
modifying 185

document fields
seefields

document types
about 18
adding 28
cleanup data feature 148, 191
creating 146
default 18
deleting 189, 190
editing 186
system 189

documents
adding 37
adding category (code example) 34
adding child (code example) 47
adding fields 26
adding layout document 32
auto-checkin feature 147
auto-publish feature 147
categories (code example) 35
changing layout style 33
checkingin 197
checking in and out 194, 196
child document, updating (code example) 49
child documents, getting (code example) 50
composite 54
compound document relationship 46
creating 166
creating rel ationships between 176
defined 16
deleting 188
displaying 53
extension metadata 41
field values, geting 43
field values, setting 41
fields by name 41
fields for document (code example) 43
fields for type (code example) 41
hierarchical relationship 46
HTML content, displaying 53
HTML, setting in aportlet 53
layout sets 45
layout styles, managing 29
managing folders and categories 33
metadatafor 25, 37
methods for managing 44
modifying and publishing 51
parent, getting (code example) 50
publishing aversion 199
removing rel ationships between 178
rolling back to a previous version 200
setting expiration dates 187
status of 52
status, setting (code example) 52
style sheets 29

types, managing 27

unpublishing aversion 200

when to check out 194

XML content, displaying 54

XML layout, getting (code example) 54

E

EbiContentMgmtDel egate 59
elements
securable in Content M anagement subsystem 58
events
Content Management types 85
enabling in Content Management 90
enabling task 76
enabling WebDAV 136
in Content Management 85
registering in Content Management 88, 89
registering WebDAV 136
tasksand 75
types, in WebDAV 135
types, specifiying in Content Management 88
WebDav and 135
exceptions
handling (code example) 62
expiretask 63
export behavior in the CMS Administration Console 216
exporting content
about 216
API 83
customizing 82
process overview 80
extension metadata
and documents 41
see also fields

F

fields
adding 26
adding with document type 28
and document types 25
and values 25
creating and adding 149
del eting from document types 191
deleting from the CM S Administration Console 191
document (code example) 41
document type (code example) 41
editing 187
getting by name 41
getting for document 43
getting for document (code example) 43
getting values for (code example) 43
managing 25
setting valuesin document 41
system 189
values for adocument, specifying 40
values, getting 43

folders
assigning to documents 183
creating 145
deleting 188
managing 33
specifying for documents 170

G

groups
in Content Management subsystem 57

H

hierarchical document relationship 46
hierarchical linking 47
HTML Editor

using in the CMS Administration Console 170
hyperlinks

creating in documents 174

|
images
inserting in documents 175
import behavior in the CMS Administration Console 216
importing content
about 219
API 83
customizing 82
process overview 81

J

janitor task 63
JavaScript
writing in the CMS Administration Console 152

L

layout document
adding 32
layout styles
adding 31
adding layout document descriptor 32
changing 33
layout sets 45
managing 29
setting up 30
legacy documents
removing fields from parent document types 191
linking
checking out target documents 48
compound 48
hierarchical 47
logical content infrastructurein CMS Administration Console 17

253

M
manager objects

getting for content (code example) 23
metadata

for documents 25, 37

for fields 25

list of predefined elements 166
methods

for managing documents 44

for version control and publishing 52
modes, in the CM S Administration Console 142

P

pages
compared to CM'S Administration Console content 16
parent documents
getting 50
permissions
and Content Management subsystem elements 58
for ContentAdmin group 59
physical content infrastructurein CMS Administration Console 17
_PmcSystemDefaultType for content management 189, 191
portlets
HTML, settingin 53
properties
modifying 182
Property Inspector
exporting content from 218
publish task 63, 198
publishing
dates 201
methods for 52
publisher role 57

R

repository (Content Management)

changing information about 24
restricted access

in Content Management subsystem 60
roles

in Content Management subsystem 57
rolling back

defined 198

S

securable objects

access right types 58

accessing ACLsfor 59

in Content Management subsystem 58
security

cascading 212

for Content Management tasks 211

for the Content M anagement subsystem 57

permissions for content access 211

setting on content elements 213

254

security exceptions
handling (code example) 62
style sheets
and CM S Administration Console display styles 19, 157
and Content Management subsystem 29, 31
creating 158
how managed by CMS Administration Console 157
layout sets for content 45
uploading to CMS Administration Console 160
synch task 63
system administrator
ContentAdmin 59
system document fields 189
system document type 189

T
tag libraries

Content Management tag library 233
tasks

administering in the CM S Administration Console 223

creating 67

customizing 66

default 64

eventsand 75

expire 63

installed 63

janitor 63

managing 63

publish 63

registering and configuring 64

synch 63
taxonomies

assigning to documents 183

creating 162

deleting 188
text

copying 173

cutting 173

formatting 173

pasting 173

U

unpublish task
defined 198
user agents 31
users
in Content Management subsystem 57

Vv

version control
auto-checkin feature 147, 197
auto-publish feature 147, 199
in Content Management subsystem 198
methods for 52
publishing 198
rolling back 198
unpublishing 198
views, inthe CMS Administration Console 142

W

WebDAV
about 93
eventsand 135
exteNd Director support for 94
supported methods 97
what you can do 96
WebDAV client
about 99
adding a category reference to adocument 108
classes 101
configuring your environment 100
constructing WebDAV requests that use Proppatch 106
deleting a document using a hel per method (code example) 104
deleting a document using utility methods (code example) 106
helper methods 102
how exteNd Director manages versioning for 97
how exteNd Director secures content from 97
how exteNd Director stores content from 96
issuing WebDAV requests from a Javaclient 108
programming practices using helper methods 104
programming practices using utility methods 105
using 100
utility methods 102
WebDAV requests and responses 101
why build your own 100
working with resources, collections, and properties 101
WebDAV client, issuing WebDAV requests from a Javaclient
adding a category reference using a helper method (code
example) 108
adding a category reference using utility methods (code
example) 110
copying adocument using a helper method (code example) 111
copying aresource or collection 111
creating a collection using a hel per method (code example) 113
creating a document using a hel per method (code example) 114
creating anew collection 112
creating anew document from a custom template 113
deleting adocument 115
getting adocument using utility methods (code example) 115
getting aresource or collection 115
getting allowed methods using utility methods (code exampl€)
118
getting header information from aresource or collection 116
getting header information using utility methods (code exampl €)
116

getting methods that can be called on aresource or collection
118

getting properties defined on aresource or collection 119

getting properties using utility methods (code example) 120

locking adocument 121

locking a document using a helper method (code example) 121

moving afolder using a helper methods (code example) 122

moving aresource or collection 122

removing a category reference from adocument 123

removing a category reference using a helper method (code
example) 123

removing a category reference using utility methods (code
example) 124

removing al category references from a document 126

removing all category references using a hel per method (code
example) 126

removing all category references using utility methods (code
example) 127

renaming a document using a helper method (code example)
128

renaming aresource or collection 128

setting afield value using a helper method (code example) 129

setting afield value using utility methods (code example) 130

setting the value of a custom field in adocument 129

unlocking adocument 132

unlocking a document using a hel per method (code exampl€)
132

updating a document 133

updating adocument using ahel per method (code example) 133

WebDAV protocol

about 93

and distributed Web authoring 94

extensionsto HTTP 94

WebDAV server
accessing 95

X

XML
document categories (code example) 35
getting for adocument 54

255

256

257

258

	About This Book
	I Concepts
	1 About the Content Management Subsystem
	About content management
	About content
	About documents
	Content and pages

	Subsystem infrastructure
	Physical infrastructure
	Logical infrastructure
	Defining content structure and layout
	Classifying content

	Content life cycle
	Checking out documents
	Publishing a document

	Subsystem support functions
	Integration with other subsystems

	2 Developing Content Management Infrastructure
	About the CM API
	Getting a content manager object
	Changing repository data

	About the CM subsystem infrastructure
	Managing fields
	Adding a field
	Adding a field to a portlet
	Listing fields using different filters

	Managing document types
	Adding a document type with associated fields

	Managing layout styles
	User agents
	Adding a layout style
	Adding a layout document and a layout document descriptor
	Changing a layout style

	Managing folders and categories
	Adding a category

	Navigating the CM hierarchy

	3 Managing Documents
	About documents
	Accessing the CM API

	Adding documents
	Adding a document
	Adding multiple documents

	Specifying field values for a document
	Getting fields for the document type
	Getting a field object by name
	Setting a field value
	Getting all fields
	Getting field values for a single field

	Specifying layout sets for documents
	When to use a layout set
	Methods for managing layout sets

	Creating links between documents
	Two types of document relationships
	Hierarchical linking
	Adding a child document
	Compound linking
	Linking a child document
	Updating a link with a new document version
	Getting linked parent documents
	Getting linked child documents

	Modifying and publishing documents
	Tracking document status
	Methods for source control and publishing

	Displaying documents
	HTML content
	XML content
	Composite documents

	4 Securing Content
	About access control
	CM user groups

	ACL-based security
	Permissions
	Element types and associated permissions
	ContentAdmin group

	Methods for managing access control
	Accessing ACLs for existing elements
	Specifying ACLs for new elements
	Inheriting ACLs
	Accessing ACLs for ContentAdmin
	Restricting element access to administrators

	Examples of adding ACLs
	Example of handling a security exception

	5 Managing Tasks
	About tasks
	Installed tasks
	Custom tasks

	About how tasks are registered and configured
	tasktypes.xml
	Default_tasklist.xml
	services.xml

	Customizing an installed task
	Creating and implementing a new task
	Custom task sample code
	NewDocumentNotifier
	PeriodicNewDocumentNotifier

	Working with task events
	Task event types
	Registering for a task event
	Enabling or disabling a task event

	6 Managing Content Caching
	About caching in CM
	Summary of CM caching information
	Caching behavior
	Caching of folders, categories, and document metadata
	About document content and versions

	Controlling caching in the DAC

	7 Importing and Exporting Content
	About importing and exporting
	Using the import/export facilities

	About the export facility
	Export process

	About the import facility
	Import process

	Customizing imports and exports
	Customizing the data export descriptor (DED)
	Customizing the data import descriptor (DID)
	Accessing the import and export API

	8 Working with Content Management Events
	About CM events
	CM event types

	Registering for CM events
	Registering for events on directory elements
	Specifying event types
	Using the event helper class
	Event registration examples

	Enabling CM events

	II WebDav
	9 Using WebDAV Clients with exteNd Director for Collaborative Authoring
	What is WebDAV?
	Information elements for distributed Web authoring
	WebDAV extensions to HTTP

	About exteNd Director’s WebDAV support
	How you get WebDAV support
	Accessing the WebDAV server
	What you can do with exteNd Director and WebDAV
	How exteNd Director stores content from WebDAV clients
	How exteNd Director secures content from WebDAV clients
	How exteNd Director manages versioning for WebDAV clients

	Supported WebDAV methods
	Public WebDAV server

	10 Building Your Own WebDAV Client
	About the WebDAV client API
	Why build your own WebDAV client?
	Configuring your environment
	Using the WebDAV client API
	WebDAV requests and responses
	Working with resources, collections, and properties
	Classes
	Helper methods
	Utility methods

	Programming practices
	Programming practices using helper methods
	Programming practices using utility methods

	Issuing WebDAV requests from a Java client
	Adding a category reference to a document
	Copying a resource or collection
	Creating a new collection
	Creating a new document from a custom template
	Deleting a document
	Getting a resource or collection
	Getting header information from a resource or collection
	Getting methods that can be called on a resource or collection
	Getting properties defined on a resource or collection
	Locking a document
	Moving a resource or collection
	Removing a category reference from a document
	Removing all category references from a document
	Renaming a resource or collection
	Setting the value of a custom field in a document
	Unlocking a document
	Updating a document

	11 Working with WebDAV Events
	About WebDAV events
	Event types

	Registering for WebDAV events
	Enabling WebDAV events

	III CMS Administration Console
	12 About the CMS Administration Console
	What CM tasks you can do with the CMS Administration Console
	How to access the CMS Administration Console
	The main CMS Administration Console page
	Interactive controls

	13 Setting Up the Required Infrastructure
	Flow of operations
	Creating folders
	Creating document types
	Creating fields and adding them to a document type
	About fields
	Creating and manipulating fields

	Writing JavaScript for document types and fields

	14 Setting Up the Optional Infrastructure
	Flow of operations
	Creating display styles
	About display styles

	Specifying a style sheet for a document type
	Creating taxonomies
	Creating categories

	15 Creating Content
	About content
	Flow of operations
	Creating documents
	Creating a document
	Specifying a folder for a new document
	Using Auto Create to create a document
	Using the CMS Administration Console’s HTML Editor

	Creating relationships between documents

	16 Maintaining Content
	Flow of operations
	Previewing content
	Editing content
	Modifying properties
	Assigning a document’s folder, categories, and taxonomies
	Modifying display styles
	Editing document types
	Editing document fields
	Setting document expiration dates
	Deleting content
	Deleting folders
	Deleting taxonomies and categories
	Deleting documents
	Deleting display styles
	Deleting document types
	Deleting and removing document fields

	17 Administering Content
	About content administration
	Flow of operations
	Checking documents in and out
	What happens during checkout
	What happens during checkin
	Checkin and checkout procedures

	Administering version control

	18 Searching Content
	Setting up the CMS Administration Console search facility
	Using the search facility in the CMS Administration Console
	Search options

	19 Managing Content Security
	About content security
	Flow of operations
	Permissions for content access
	User permissions required for CM operations
	Cascading security
	Setting security on CM elements

	20 Importing and Exporting Content
	About the import and export facilities
	Summary of CMS Administration Console import and export behavior
	Exporting content
	Exporting from the toolbar
	Exporting from a Property Inspector
	Customizing exports

	Importing content
	Configuring the import process
	Importing from the toolbar
	Importing from a Property Inspector

	Structure of the data import or export archive
	Best practices and prerequisites
	Planning for large-scale import/export operations
	Security considerations

	21 Administering Automated Tasks
	The task display
	Starting and stopping tasks

	IV Applications
	22 Content Query Application
	About Content Query
	Using the Content Query action

	V Reference
	23 Content Management Tag Library
	Alphabetical list of tags
	checkIn
	checkOut
	findDocuments
	getChildDocuments
	getContent
	getDirectory
	getDirectoryList
	getDocType
	getDocument
	getFieldInfo
	getFields
	getLinkedDocuments
	getVersionHistory
	publish
	unCheckOut
	updateDocument

	Index

