
Novell

m
w w w . n o v e l l . c o

exteNd
Director

5 . 2
C ON T E N T M AN A GE ME N T G U ID E

Legal Notices
Copyright © 2004 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied, stored on a retrieval system, or
transmitted without the express written consent of the publisher. This manual, and any portion thereof, may not be copied without the express written
permission of Novell, Inc.

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and specifically disclaims any express
or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to revise this publication and to
make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims any express or implied warranties
of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to makes changes to any and all parts of Novell
software, at any time, without any obligation to notify any person or entity of such changes.

This product may require export authorization from the U.S. Department of Commerce prior to exporting from the U.S. or Canada.

Copyright ©1997, 1998, 1999, 2000, 2001, 2002, 2003 SilverStream Software, LLC. All rights reserved.

SilverStream software products are copyrighted and all rights are reserved by SilverStream Software, LLC

Title to the Software and its documentation, and patents, copyrights and all other property rights applicable thereto, shall at all times remain solely and
exclusively with SilverStream and its licensors, and you shall not take any action inconsistent with such title. The Software is protected by copyright
laws and international treaty provisions. You shall not remove any copyright notices or other proprietary notices from the Software or its
documentation, and you must reproduce such notices on all copies or extracts of the Software or its documentation. You do not acquire any rights of
ownership in the Software.

Patent pending.
Novell, Inc.
404 Wyman Street, Suite 500
Waltham, MA 02451
U.S.A.

www.novell.com
exteNd DirectorContent Management Guide

June 2004
Online Documentation: To access the online documemntation for this and other Novell products, and to get updates, see
www.novell.com/documentation.

New http://www.novell.com/documentation/

Novell Trademarks
ConsoleOne is a registered trademark of Novell, Inc.

eDirectory is a trademark of Novell, Inc.

GroupWise is a registered trademark of Novell, Inc.

exteNd is a trademark of Novell, Inc.

exteNd Composer is a trademark of Novell, Inc.

exteNd Director is a trademark of Novell, Inc.

iChain is a registered trademark of Novell, Inc.

jBroker is a trademark of Novell, Inc.

NetWare is a registered trademark of Novell, Inc.

Novell is a registered trademark of Novell, Inc.

Novell eGuide is a trademark of Novell, Inc.

SilverStream Trademarks
SilverStream is a registered trademark of SilverStream Software, LLC.

Third-Party Trademarks
All third-party trademarks are the property of their respective owners.

Third-Party Software Legal Notices

The Apache Software License, Version 1.1
Copyright (c) 2000 The Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary
form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution. 3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment:
"This product includes software developed by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment may
appear in the software itself, if and wherever such third-party acknowledgments normally appear. 4. The names "Apache" and "Apache Software
Foundation" must not be used to endorse or promote products derived from this software without prior written permission. For written permission,
please contact apache@apache.org. 5. Products derived from this software may not be called "Apache", nor may "Apache" appear in their name,
without prior written permission of the Apache Software Foundation.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

JDOM.JAR
Copyright (C) 2000-2002 Brett McLaughlin & Jason Hunter. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in
binary form must reproduce the above copyright notice, this list of conditions, and the disclaimer that follows these conditions in the documentation
and/or other materials provided with the distribution. 3. The name "JDOM" must not be used to endorse or promote products derived from this
software without prior written permission. For written permission, please contact license@jdom.org. 4. Products derived from this software may not
be called "JDOM", nor may "JDOM" appear in their name, without prior written permission from the JDOM Project Management (pm@jdom.org).

In addition, we request (but do not require) that you include in the end-user documentation provided with the redistribution and/or in the software
itself an acknowledgement equivalent to the following: "This product includes software developed by the JDOM Project (http://www.jdom.org/)."
Alternatively, the acknowledgment may be graphical using the logos available at http://www.jdom.org/images/logos.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE JDOM AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Sun
Sun Microsystems, Inc. Sun, Sun Microsystems, the Sun Logo Sun, the Sun logo, Sun Microsystems, JavaBeans, Enterprise JavaBeans, JavaServer

Pages, Java Naming and Directory Interface, JDK, JDBC, Java, HotJava, HotJava Views, Visual Java, Solaris, NEO, Joe, Netra, NFS, ONC, ONC+,
OpenWindows, PC-NFS, SNM, SunNet Manager, Solaris sunburst design, Solstice, SunCore, SolarNet, SunWeb, Sun Workstation, The Network Is
The Computer, ToolTalk, Ultra, Ultracomputing, Ultraserver, Where The Network Is Going, SunWorkShop, XView, Java WorkShop, the Java
Coffee Cup logo, Visual Java, and NetBeans are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other
countries.

Indiana University Extreme! Lab Software License
Version 1.1.1

Copyright (c) 2002 Extreme! Lab, Indiana University. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary
form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution. 3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment:
"This product includes software developed by the Indiana University Extreme! Lab (http://www.extreme.indiana.edu/)." Alternately, this
acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments normally appear. 4. The names "Indiana
University" and "Indiana University Extreme! Lab" must not be used to endorse or promote products derived from this software without prior written
permission. For written permission, please contact http://www.extreme.indiana.edu/. 5. Products derived from this software may not use "Indiana
University" name nor may "Indiana University" appear in their name, without prior written permission of the Indiana University.

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE AUTHORS, COPYRIGHT HOLDERS OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Phaos
This Software is derived in part from the SSLavaTM Toolkit, which is Copyright ©1996-1998 by Phaos Technology Corporation. All Rights
Reserved. Customer is prohibited from accessing the functionality of the Phaos software.

W3C
W3C® SOFTWARE NOTICE AND LICENSE

This work (and included software, documentation such as READMEs, or other related items) is being provided by the copyright holders under the
following license. By obtaining, using and/or copying this work, you (the licensee) agree that you have read, understood, and will comply with the
following terms and conditions.

Permission to copy, modify, and distribute this software and its documentation, with or without modification, for any purpose and without fee or
royalty is hereby granted, provided that you include the following on ALL copies of the software and documentation or portions thereof, including
modifications: 1.The full text of this NOTICE in a location viewable to users of the redistributed or derivative work. 2.Any pre-existing intellectual
property disclaimers, notices, or terms and conditions. If none exist, the W3C Software Short Notice should be included (hypertext is preferred, text
is permitted) within the body of any redistributed or derivative code. 3. Notice of any changes or modifications to the files, including the date changes
were made. (We recommend you provide URIs to the location from which the code is derived.)

THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO REPRESENTATIONS OR
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE OR DOCUMENTATION WILL NOT INFRINGE ANY
THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF ANY USE OF THE SOFTWARE OR DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to the software without specific, written prior
permission. Title to copyright in this software and any associated documentation will at all times remain with copyright holders.

Contents

About This Book. 11

PART I CONCEPTS . 13

1 About the Content Management Subsystem . 15
About content management. 15

About content . 15
About documents . 16
Content and pages . 16

Subsystem infrastructure . 16
Physical infrastructure. 17
Logical infrastructure. 17
Defining content structure and layout . 18
Classifying content . 19

Content life cycle . 20
Checking out documents. 20
Publishing a document . 20

Subsystem support functions. 20
Integration with other subsystems . 21

2 Developing Content Management Infrastructure . 23
About the CM API . 23

Getting a content manager object . 23
Changing repository data . 24

About the CM subsystem infrastructure. 24
Managing fields . 25

Adding a field . 26
Adding a field to a portlet . 26
Listing fields using different filters . 27

Managing document types. 27
Adding a document type with associated fields . 28

Managing layout styles . 29
User agents . 31
Adding a layout style . 31
Adding a layout document and a layout document descriptor . 32
Changing a layout style . 33

Managing folders and categories. 33
Adding a category . 34

Navigating the CM hierarchy . 34

3 Managing Documents . 37
About documents. 37

Accessing the CM API . 37
Adding documents . 38

Adding a document . 38
Adding multiple documents . 39
5

Specifying field values for a document . 40
Getting fields for the document type . 41
Getting a field object by name . 41
Setting a field value . 41
Getting all fields . 43
Getting field values for a single field . 43

Specifying layout sets for documents . 45
When to use a layout set . 45
Methods for managing layout sets . 45

Creating links between documents . 46
Two types of document relationships . 46
Hierarchical linking . 47
Adding a child document . 47
Compound linking . 48
Linking a child document . 49
Updating a link with a new document version . 49
Getting linked parent documents . 50
Getting linked child documents . 50

Modifying and publishing documents . 51
Tracking document status . 52
Methods for source control and publishing. 52

Displaying documents. 53
HTML content . 53
XML content . 54
Composite documents . 54

4 Securing Content . 57
About access control. 57

CM user groups . 57
ACL-based security. 58

Permissions . 58
Element types and associated permissions . 58
ContentAdmin group . 59

Methods for managing access control . 59
Accessing ACLs for existing elements . 59
Specifying ACLs for new elements. 60
Inheriting ACLs. 60
Accessing ACLs for ContentAdmin . 60
Restricting element access to administrators . 60

Examples of adding ACLs. 61
Example of handling a security exception. 62

5 Managing Tasks . 63
About tasks . 63

Installed tasks . 63
Custom tasks . 64

About how tasks are registered and configured . 64
tasktypes.xml . 64
Default_tasklist.xml . 65
services.xml . 65

Customizing an installed task . 66
Creating and implementing a new task. 67
Custom task sample code. 68

NewDocumentNotifier . 69
PeriodicNewDocumentNotifier . 74

Working with task events . 75
Task event types . 75
Registering for a task event . 76
Enabling or disabling a task event . 76
6 exteNd Director Content Management Guide

6 Managing Content Caching . 77
About caching in CM . 77
Summary of CM caching information. 77

Caching behavior . 77
Caching of folders, categories, and document metadata . 78
About document content and versions . 78

Controlling caching in the DAC . 78

7 Importing and Exporting Content. 79
About importing and exporting. 79

Using the import/export facilities . 79
About the export facility . 79

Export process . 80
About the import facility . 81

Import process . 81
Customizing imports and exports . 82

Customizing the data export descriptor (DED) . 82
Customizing the data import descriptor (DID) . 82
Accessing the import and export API . 83

8 Working with Content Management Events . 85
About CM events . 85

CM event types . 85
Registering for CM events . 88

Registering for events on directory elements . 88
Specifying event types . 88
Using the event helper class . 89
Event registration examples . 89

Enabling CM events. 90

PART II WEBDAV . 91

9 Using WebDAV Clients with exteNd Director for Collaborative Authoring . 93
What is WebDAV? . 93

Information elements for distributed Web authoring . 94
WebDAV extensions to HTTP . 94

About exteNd Director’s WebDAV support . 94
How you get WebDAV support . 95
Accessing the WebDAV server . 95
What you can do with exteNd Director and WebDAV . 96
How exteNd Director stores content from WebDAV clients. 96
How exteNd Director secures content from WebDAV clients . 97
How exteNd Director manages versioning for WebDAV clients . 97

Supported WebDAV methods . 97
Public WebDAV server . 98

10 Building Your Own WebDAV Client . 99
About the WebDAV client API . 99
Why build your own WebDAV client? . 100
Configuring your environment . 100
Using the WebDAV client API . 100

WebDAV requests and responses . 101
Working with resources, collections, and properties . 101
Classes . 101
Helper methods. 102
Utility methods . 102

Programming practices . 104
Programming practices using helper methods . 104
Programming practices using utility methods . 105
7

Issuing WebDAV requests from a Java client. 108
Adding a category reference to a document . 108
Copying a resource or collection . 111
Creating a new collection . 112
Creating a new document from a custom template . 113
Deleting a document . 115
Getting a resource or collection . 115
Getting header information from a resource or collection. 116
Getting methods that can be called on a resource or collection. 118
Getting properties defined on a resource or collection . 119
Locking a document . 121
Moving a resource or collection . 122
Removing a category reference from a document . 123
Removing all category references from a document . 126
Renaming a resource or collection. 128
Setting the value of a custom field in a document . 129
Unlocking a document . 132
Updating a document . 133

11 Working with WebDAV Events. 135
About WebDAV events . 135

Event types . 135
Registering for WebDAV events . 136
Enabling WebDAV events. 136

PART III CMS ADMINISTRATION CONSOLE . 137

12 About the CMS Administration Console. 139
What CM tasks you can do with the CMS Administration Console. 139
How to access the CMS Administration Console . 141
The main CMS Administration Console page . 141

Interactive controls . 142

13 Setting Up the Required Infrastructure. 145
Flow of operations. 145
Creating folders. 145
Creating document types . 146
Creating fields and adding them to a document type . 149

About fields . 149
Creating and manipulating fields . 149

Writing JavaScript for document types and fields . 152

14 Setting Up the Optional Infrastructure . 157
Flow of operations. 157
Creating display styles . 157

About display styles . 157
Specifying a style sheet for a document type . 161
Creating taxonomies . 162
Creating categories. 163

15 Creating Content . 165
About content . 165
Flow of operations. 165
Creating documents . 166

Creating a document . 167
Specifying a folder for a new document . 170
Using Auto Create to create a document . 170
Using the CMS Administration Console’s HTML Editor . 170

Creating relationships between documents . 176
8 exteNd Director Content Management Guide

16 Maintaining Content . 179
Flow of operations . 179
Previewing content . 180
Editing content . 181
Modifying properties . 182
Assigning a document’s folder, categories, and taxonomies. 183
Modifying display styles . 185
Editing document types . 186
Editing document fields . 187
Setting document expiration dates . 187
Deleting content. 188

Deleting folders . 188
Deleting taxonomies and categories . 188
Deleting documents . 188
Deleting display styles. 189
Deleting document types. 189
Deleting and removing document fields . 190

17 Administering Content . 193
About content administration . 193
Flow of operations . 193
Checking documents in and out . 194

What happens during checkout. 194
What happens during checkin. 196
Checkin and checkout procedures . 196

Administering version control. 198

18 Searching Content. 203
Setting up the CMS Administration Console search facility. 203
Using the search facility in the CMS Administration Console . 203
Search options. 205

19 Managing Content Security . 209
About content security . 209
Flow of operations . 210
Permissions for content access . 211
User permissions required for CM operations . 211
Cascading security . 212
Setting security on CM elements . 213

20 Importing and Exporting Content. 215
About the import and export facilities. 215
Summary of CMS Administration Console import and export behavior. 216
Exporting content. 216

Exporting from the toolbar. 217
Exporting from a Property Inspector . 218
Customizing exports . 219

Importing content . 219
Configuring the import process . 219
Importing from the toolbar . 219
Importing from a Property Inspector . 220

Structure of the data import or export archive . 221
Best practices and prerequisites . 222

Planning for large-scale import/export operations. 222
Security considerations . 222

21 Administering Automated Tasks . 223
The task display. 223
Starting and stopping tasks . 224
9

PART IV APPLICATIONS . 225

22 Content Query Application. 227
About Content Query . 227
Using the Content Query action . 227

PART V REFERENCE . 231

23 Content Management Tag Library . 233
Alphabetical list of tags . 233

checkIn. 233
checkOut . 234
findDocuments . 235
getChildDocuments . 237
getContent . 238
getDirectory . 239
getDirectoryList . 240
getDocType . 242
getDocument . 242
getFieldInfo . 243
getFields . 244
getLinkedDocuments . 245
getVersionHistory. 246
publish . 247
unCheckOut . 248
updateDocument . 248
10 exteNd Director Content Management Guide

About This Book

Purpose

This book shows how to use the Content Management (CM) subsystem of Novell® exteNd Director™.

Audience

This book is for anyone who creates, manages, and accesses content in the CM subsystem, whether via
the CM API or the CMS Administration Console.

Prerequisites

This book assumes you are familiar with the Java programming language, the Internet, and Web
applications.

Learning materials on these topics are readily available from a variety of public and commercial sources.
11

12 exteNd Director Content Management Guide

I Concepts

Describes the fundamentals of the Content Management (CM) subsystem and API
programming

• Chapter 1, “About the Content Management Subsystem”
• Chapter 2, “Developing Content Management Infrastructure”
• Chapter 3, “Managing Documents”
• Chapter 4, “Securing Content”
• Chapter 5, “Managing Tasks”
• Chapter 6, “Managing Content Caching”
• Chapter 7, “Importing and Exporting Content”
• Chapter 8, “Working with Content Management Events”
13

14 exteNd Director Content Management Guide

1 About the Content Management Subsystem

This chapter provides an overview of the Content Management (CM) subsystem and includes the
following topics:

About content management

Subsystem infrastructure

Content life cycle

Subsystem support functions

Integration with other subsystems

About content management
The CM subsystem provides a repository for documents, enabling you to create and version documents,
manage document security, search the repository, and so on. The CM subsystem provides Web CM
capabilities such as style and layout management and document publishing and expiration.

The CM API and CMS Administration console provide interfaces to the CM subsystem that assist you in
managing Web content. Other front-end applications can use the CM subsystem as a general document
management system. For example, you could use a WebDAV application and the CM subsystem to
manage CAD files or legal documents.

About content

What is meant by content? Content is defined as information that is viewed or downloaded by users of
your exteNd Director application. The content managed by the CM subsystem is retrieved dynamically
for online viewing or downloading when end users access your exteNd Director application.

The CM subsystem can store any type of content that can be digitized. It might store:

Text documents, with XML or HTML tagging or in any word processing format

Image files, such as GIF, JPG, QuickTime, and any other format

Sound files

Executable files

Any other type of binary data

You can also store documents that support your content, such as:

XSL style sheets

XML DTDs

Other content resources
About the Content Management Subsystem 15

It is up to you to store content in formats that are appropriate to your online application. A document
doesn’t have to be a complete item that would be displayed as is. A document can be a piece of data that
you want to combine with other documents before displaying it, or some code resource that allows you
to get data. For example, a document’s content could be an URL, a set of URLs, a SQL statement, a
paragraph, or an image.

About documents

The center of the CM subsystem is the document. Each document is described by a set of metadata that
is a definition or description of data—in other words, data about data. In the CM subsystem, a document
consists of all information required to maintain content (including the document’s metadata, content, and
versions) and all specifications for categorization, display characteristics, linked documents, access
control, and so on.

A checkout/checkin system protects documents while you are changing them, and versioning allows you
to maintain a history of content changes.

Publishing a document lets you choose a particular version of the document’s content to make public.
Once a version is published, you can define a fixed lifetime after which the version expires and can be
archived and deleted.

For more information, see Chapter 3, “Managing Documents”.

Content and pages

It is important to distinguish the type of content managed by the CM subsystem from the pages managed
by the Portal subsystem. Pages constitute the structure of the application, defining the graphical user
interface (GUI) that helps users navigate the site. Pages contain portlets—the building blocks of an
exteNd Director portal application. It is within portlets that application developers write code to search
for and retrieve content managed by the CM subsystem in response to rules and real-time user
interactions. Typically, pages change infrequently—while content is more dynamic.

The CM subsystem enables you to manage content structure, display style, versioning, categorization,
and security to facilitate the retrieval—and preserve the integrity—of information presented to end users
of your application. The Portal subsystem manages the actual application, including the interface and
architecture in which this content is presented.

For more information about pages and the Portal subsystem, see the section on portal concepts in
the Portal Guide.

Subsystem infrastructure
The CM subsystem infrastructure establishes the criteria for organizing, displaying, managing, and
securing your content. It is designed to support the basic unit of content—the document.

There are two levels of infrastructure: physical and logical. You must set up the physical infrastructure
before you can create documents. Optionally, you can also define a logical infrastructure anytime.
16 exteNd Director Content Management Guide

pgPartPortalConcepts.html

Physical infrastructure

The physical infrastructure organizes the storage of documents in physical memory. This infrastructure
consists of these components:

There is a hierarchical relationship between folders and documents:

The top-level container is the root folder, which can contain one or more folders. A root folder is
essentially just a specialized type of folder, one with no parent. In turn, folders can contain one or more
documents or other folders. Each document resides in one (and only one) folder.

Logical infrastructure

The logical infrastructure organizes documents into logical groupings that can be used to provide a user’s
view of content. There are several elements:

Component Description

Root folder

Folder

Document

Element Description Required or optional?

Field Extension metadata content that can be shared by multiple
documents.

Documents can have one field, multiple fields—or none at
all.

Optional

Document
type

The basic classification mechanism for documents.
Document types act as templates and provide groupings of
fields.

Every document must be associated with a document
type.

The CM subsystem attaches a default document type to all
documents, but you can override this default.

Required
About the Content Management Subsystem 17

Document types, fields, and display styles define the structure and layout of documents, as
described in “Defining content structure and layout” on page 18. Taxonomies and categories classify
documents for search and retrieval, as described in “Classifying content” on page 19.

Defining content structure and layout

Before you create documents, the structure of the content must be defined. Before you publish
documents, the look and feel of the content must be defined to determine how the information will appear
to users of the Web site. Typically, a content administrator oversees these tasks by developing the fields,
document types, display styles, folders, and categories described under “Logical infrastructure” above.

Content developers associate document types and display styles with the documents they create by
following this pattern:

1 Create a document type.

2 Create an instance of the document type and then create an XSL style sheet based on the content of
that document.

3 Upload this XSL style sheet into a display style defined for the document type.

All documents you create based on the document type will contain the content structure and layout
defined in the document type’s display style.

Document types

A content administrator can create any number of document types, which consist of fields of information
that dictate the structure of documents.

The CM subsystem provides default document types that can be accessed and modified by content
administrators. In the CM API, the default document type is called Default; in the CMS Administration
Console, it is called _PmcSystemDefaultType. These document types can be used to enforce a corporate
standard for content or to create content in the absence of any custom document types.

Display
style

A classification for the look and feel of a document. This is
sometimes called a layout style.

Every document type can be associated with a display
style for which you can define application-specific XML
specifications for rendering documents uniquely for
particular user agents.

The CM subsystem attaches a default display style to all
document types, but you can override this default.

Optional

Taxonomy A classification system often used in Web portal design to
describe categories and subcategories of content found on
a Web site.

Documents do not need to be classified under a taxonomy.

Category A descriptive name used to group documents logically.

Documents do not need to be categorized.

Element Description Required or optional?
18 exteNd Director Content Management Guide

Display styles

The CM subsystem comes with a default display style that is applied to all document types unless you
override it with custom display styles.

Content administrators can define custom display styles that use one or more XSL style sheets developed
in external editors and then uploaded to the CMS Administration Console. Each XSL style sheet specifies
how to render content for a particular user agent, such as Microsoft Internet Explorer and Netscape
Navigator.

When you have specified your display styles appropriately, the CM subsystem automatically matches the
desired style to the user agent that is active in real time.

Classifying content

You can create content without classifying it; but if your exteNd Director application allows users to
select categories of information, a content administrator may want to create categories for grouping
documents in a logical fashion. That way portlets can more easily access the documents specified by
users as they interact with the Web site.

For example, suppose an exteNd Director application developer creates a portlet that lists URLs that link
to specific documents. If documents are classified by category, the portlet can link to all documents of a
particular category by looking for a parameter called category passed on the URL.

There is a hierarchical relationship between categories and documents:

The top-level container is the root category, which can contain one or more categories. In turn, a category
can contain one or more documents or other categories. A single document can be associated with any
number of categories—or with no categories at all.
About the Content Management Subsystem 19

Content life cycle
The CM subsystem maintains a history of all document changes. The version history for a document
might look like this:

Checking out documents

When you check out a document, it becomes locked; no one else can check it out until you check it in or
cancel the checkout. (Exception: the CM subsystem allows administrators to remove locks on documents
if that becomes necessary.)

When you check in a document whose content has changed, a new version of that content is created. If
you change the metadata but not the content, no new version is created when you check in the document.
The metadata is updated but not versioned.

Publishing a document

When a document has been approved, its content can be published as the officially released version of the
document. When an application requests a document, the published version is the one provided.

The published version is not necessarily the latest one, however. Modifications can continue as content
developers check out the most recent version of the document. Publishing a document creates a stable
version of the document for the public.

Subsystem support functions
The CM subsystem includes built-in support for these functions:

Version
ID

MIME
type Content data Size Date Modifier Comment

3 text/html [content v3] 47K 6/16/00 bbrown New facts

2 text/html [content v2] 45K 6/11/00 bbrown Fleshed-out
content

1 text/html [content v1] 24K 6/10/00 ssmith Created

Function Description For more information see

Content caching CM function that allows you to configure caching for
different elements

Chapter 6, “Managing
Content Caching”

Task
management

CM function for configuring background execution
of specific operations such as publishing documents

Chapter 5, “Managing
Tasks”

Content import
and export

Facilities for importing and exporting content in and
out of the CM subsystem

Chapter 7, “Importing and
Exporting Content”
20 exteNd Director Content Management Guide

Integration with other subsystems
You can integrate CM with any other exteNd Director subsystem, including:

Related
subsystem Description For more information see

Search Supports conceptual and keyword searching of
document content and metadata.

Chapter on conceptual searching
in the Content Search Guide

Security Used to secure access to CM subsystem elements. Chapter 4, “Securing Content”

Workflow Used to access CM documents in workflow
applications.

Chapter on the Content Life
Cycle application in the Workflow
Guide
About the Content Management Subsystem 21

srcConfigure.html
wfAppContent.html
wfAppContent.html

22 exteNd Director Content Management Guide

2 Developing Content Management
Infrastructure

This chapter describes how to set up and manage the infrastructure for the Content Management (CM)
subsystem using the CM API. It has these sections:

About the CM API

About the CM subsystem infrastructure

Managing fields

Managing document types

Managing layout styles

Managing folders and categories

Navigating the CM hierarchy

NOTE: This chapter describes an exteNd Director API that allows you to build your own CM application.
exteNd Director also provides the CMS Administration Console, which you can use to create, maintain,
administer, and secure all content for your exteNd Director application.

For more information, see Chapter 13, “Setting Up the Required Infrastructure” and Chapter 14,
“Setting Up the Optional Infrastructure”.

About the CM API
You can use the CM API to build a system tailored to your business process. By writing portlets, you can
build a complete interface that includes such functionality as:

Adding and managing documents

Checking out documents for editing

Versioning documents

Approving document versions for publication

Building layout styles for XML content

Providing comprehensive searching functionality of content and metadata

Providing security for content objects

The CM API provides complete programmatic access to the document repository.

Getting a content manager object

Methods of the EbiContentMgmtDelegate interface provide access to the most of the objects in the CM
subsystem.

For all the examples in this chapter, you must use this code somewhere in your portlet to get a reference
to the content manager delegate:
Developing Content Management Infrastructure 23

EbiContentMgmtDelegate defaultCmgr =
com.sssw.cm.client.EboFactory.getDefaultContentMgmtDelegate();

if (cmgr != null)
... // do content-related processing

else
System.out.println("Failed to get Content Manager");

Using delegates Delegates are objects that provide a layer of abstraction for main exteNd Director
manager objects (such as the Content Manager object). Using delegates removes the need for coding
things like local and remote access to exteNd Director services.

From a best-practices standpoint, you should always use delegates rather than accessing exteNd Director
manager objects directly.

Changing repository data

In the simplest case, the basic procedure for working with objects in the repository is:

1 Use a get method of EbiContentMgmtDelegate to get an object from the repository.

2 Use methods of that object to modify it.

3 Use an update method of EbiContentMgmtDelegate to put the changed object back in the
repository, or use the update method on the object itself if it is available.

Some objects are more complex. The rest of this chapter describes how to work with many of these
objects, with code examples.

About the CM subsystem infrastructure
Before creating documents in the CM subsystem, you must set up the content infrastructure, which
includes the criteria by which you organize the documents. The infrastructure includes fields, document
types, layout styles, folders, and categories:

Item Description For more information

Fields A field allows you to provide application-specific information
about documents, also called extension metadata. Each
document type can have zero or more fields. Each document
may have one or more values per field, and null values are
allowed.

“Managing fields” on
page 25

Document
types

The document type is the basic classification mechanism of
the system. You would classify documents as a particular
type when they have similar formatting and subject matter. A
document type has a list of fields and a default layout style.

 “Managing document
types” on page 27

Layout
styles

A document type can have a default layout style. Specific
documents can have their own layout styles or sets of styles.

“Managing layout
styles” on page 29

Folders Folders allow you to group documents for administrative
purposes. For example, you can assign confidential
documents to a folder that has restricted access. Folders can
be nested.

“Managing folders and
categories” on
page 33

Categories You can use categories as another way of organizing
documents. Typically, categories are the user’s view of the
content repository, organized by subject matter. Categories
can be nested.

“Managing folders and
categories” on
page 33
24 exteNd Director Content Management Guide

Managing fields
All documents have a basic set of metadata, such as title, author, abstract, published version, and so on.
You can also define custom metadata fields to store application-specific data for each document type.
Fields are appropriate for any piece of data for which all the documents have a value. For example, movie
reviews have a director, cast, release date, and rating. Books have an author, publisher, publish date, and
number of pages. Reviews of travel destinations have country, cost category, and quality rating.

Fields are also useful for finding documents. For each document type, a set of fields identify the
pertinent, searchable information for the subject matter of that document type. Fields can be searched
quickly via a database lookup, in contrast to searching the document content text.

For example, for a document type of MovieReview, you might create several fields as shown below:

NOTE: In this example, Genre and Runtime could have multiple values.

Data types EbiDocField defines several data types to be used for fields. This table categorizes the
available types:

Metadata for fields You already know that fields store metadata about a document. You can also store
data about the field itself. You can use this extension metadata to store a list of appropriate values, a
prompt to use in forms, an image for the field, or other information appropriate to your application. The
data is a byte array.

Fields and document types When you create a document type, you specify the set of fields it uses.
You can use a field with more than one document type.

Fields and values For each document of a particular document type, all the associated fields must
have at least one value, specified via an EbiDocExtnMetaInfo object. The value can be null. You assign
the field values to the document as a set via an EbiDocExtnMeta object. EbiDocExtnMeta holds an
EbiDocExtnMetaInfo object for each field associated with the document type. You call getFieldValues()
to get an array of values for a field. The values can be returned as Strings, or they can have the field’s data
type.

Field name Data type Sample value

Genre FT_STRING Drama, Romance

Tagline FT_STRING In a perfect world...they never would have met

User Rating FT_STRING 4.9/10 (1083 votes)

Runtime FT_STRING USA:133 / UK:132 / Finland:133 / Japan:132

Year of Release FT_INT 2000

Type of data Available data types defined in EbiDocField

Character data FT_CHAR, FT_STRING

Numeric FT_BIGDECIMAL
FT_DOUBLE, FT_FLOAT
FT_INT, FT_LONG, FT_SHORT

Boolean FT_BOOLEAN

Date and time FT_DATE, FT_TIME, FT_TIMESTAMP

Binary FT_BYTE, FT_BYTEARRAY
Developing Content Management Infrastructure 25

These methods in EbiContentMgmtDelegate let you add and modify fields:

For information about using fields with document types, see “Managing document types” on
page 27.

Adding a field

This example provides a method called addField() that adds an extension metadata field:

public void addField(EbiContentMgmtDelegate cmgr, EbiContext context)
 throws EboUnrecoverableSystemException, EboSecurityException,
EboItemExistenceException
 {
 String fieldName = "Rating";
 String valueType = EbiDocField.FT_STRING;
 String extnMeta = "This is a Rating field...";
 cmgr.addDocumentField(
 context, // Context
 fieldName, // Field name
 valueType, // Value data type
 extnMeta.getBytes(), // Extension metadata
 null); // ACL
 }

Adding a field to a portlet

This example shows how to add a field to a portlet’s processAction(0 method. It gets the name and data
type the user entered in an HTML form and adds a field. A message about success or failure is stored in
the context object to be displayed when the portlet content is generated.

public void processAction (ActionRequest request, ActionResponse response){

String name = request.getParameter(FORM_NAME);
String datatype = request.getParameter(FORM_DATATYPE);
String valuelist = request.getParameter(FORM_LIST);

EbiContentMgmtDelegate cmgr = ...; // get content manager

try

Method Returns Description

addDocumentField() EbiDocField Adds a field to the CM subsystem. You specify the
name, data type, supporting data for the field, and
an ACL (access control list). The last two
arguments can be null.

getDocumentFieldByID() EbiDocField Gets a field by ID.

getDocumentFieldByName() EbiDocField Gets a field by name.

updateDocumentField() void After calling methods to modify an EbiDocField
object, updates the content repository with the
changes.

removeDocumentField() void Removes a field from the system.

getDocumentFields() and
getFilteredDocumentFields()

Collection of
EbiDocField

Gets a Collection of all the fields in the CM
subsystem. The filtered version omits fields to
which the current user has no READ access. The
unfiltered version gets all fields, regardless of
access rights.
26 exteNd Director Content Management Guide

{
cmgr.addDocumentField(context,name,datatype,valuelist,null);
context.setValue(

this.getPortletName() + KEY_STATUS,
"Field " + name + " successfully added.");

}
catch (Exception e)
{

context.setValue(
this.getPortletName() + KEY_STATUS,
"Field " + name + " not added.");

}
}

Listing fields using different filters

This example provides a method called listFields() that gets existing document fields by filtering the
results in different ways.

The listFields() method needs to have access to a content manager (EbiContentMgmtDelegate) and
context object (EbiContext), which are passed in as arguments. The context object provides information
about the user’s security privileges. The listFields() method passes the context object to the
getFilteredDocumentFields() method to return only those fields for which the user has READ access:

public void listFields(EbiContentMgmtDelegate cmgr, EbiContext context)
 throws EboUnrecoverableSystemException, EboSecurityException, EboItemExistenceException
 {
 // Get all the existing fields (note: no security checking is done here)
 Collection allFields = cmgr.getDocumentFields(context);
 Iterator iterAllFields = allFields.iterator();
 while (iterAllFields.hasNext())
 {
 EbiDocField field = (EbiDocField)iterAllFields.next();
 System.out.println(field + "\n\n");
 }

 // Get all the fields that belong to doctype 'MovieReview'
 EbiDocType docType = cmgr.getDocumentTypeByName(context,"MovieReview");
 Collection docTypeFields = cmgr.getDocumentFields(context,docType.getDocTypeID());

 // Get all the fields to which the user has Read access
 Collection filteredFields = cmgr.getFilteredDocumentFields(context);

 // Get all the Read-accessible fields that belong to doctype 'MovieReview'
 Collection filteredDtFields = cmgr.getFilteredDocumentFields(context, docType.getDocTypeID());
 }

Managing document types
A document type identifies a particular type of content. Typically, you create document types for groups
of documents that have similar content. The documents share the same set of fields that describe that
content and, for XML content, the same layout styles to display the content.

After you have created a document type, you can modify its name and description. To do so, get an
EbiDocType object, call setDocTypeName() or setDescription(), then call updateDocumentType() to put
the changed type back into the content repository.

TIP: You can also associate layout styles with the document type. For information, see “Managing layout
styles” on page 29.
Developing Content Management Infrastructure 27

These methods in EbiContentMgmtDelegate let you add and modify document types:

These methods of EbiContentMgmtDelegate manage the association between document types and
fields:

Adding a document type with associated fields

This example provides a method called addDocType() that adds a document type called Movie Review
and associates it with several existing fields. The addDocType() method needs to have access to a content
manager (EbiContentMgmtDelegate) and context object (EbiContext), which are passed in as arguments.

public void addDocType(EbiContentMgmtDelegate cmgr, EbiContext context)
 throws EboUnrecoverableSystemException, EboSecurityException, EboItemExistenceException
 {
 // Get several fields by name
 EbiDocField fldDir = cmgr.getDocumentFieldByName(context, "Director");
 EbiDocField fldGenre = cmgr.getDocumentFieldByName(context, "Genre");
 EbiDocField fldYear = cmgr.getDocumentFieldByName(context, "Year");
 EbiDocField fldCast = cmgr.getDocumentFieldByName(context, "Cast");
 // Get the field IDs
 String[] fieldIDs = {

Method Returns Description

addDocumentType() EbiDocType Adds a document type to the system. You specify a
name, description, and the list of metadata fields
associated with the type. The system gives the
type a numeric ID.

getDocumentType() EbiDocType Gets a document type by name or ID.

updateDocumentType() void After calling methods to modify an EbiDocType
object, updates the content repository with the
changes.

removeDocumentType() boolean Removes a document type from the system. If
documents of that type exist, you must delete them
before you can delete the type.

getDocumentTypes() and
getFilteredDocumentTypes()

Collection of
EbiDocType

Gets a Collection of EbiDocType objects. The
filtered version omits types to which the current
user has no READ access. The unfiltered version
gets all types, regardless of access rights.

Method Returns Description

addFieldToDocumentType() void Adds a field to the document type. For existing
documents, the values for the field are null.

removeFieldFrom-
DocumentType()

boolean Removes the association between a field and a
document type. Deletes the field values for
documents of that type.

getDocumentFields() and
getFilteredDocumentFields()

Collection of
EbiDocField

Gets the document fields for a document type.
The filtered version omits fields to which the
current user has no READ access. The unfiltered
version gets all fields for the type, regardless of
access rights.

getDocumentTypesWithField()
and getFilteredDocument-
TypesWithField()

Collection of
EbiDocType

Gets a Collection of all the document types that
use a particular field.
28 exteNd Director Content Management Guide

 fldDir.getFieldID(),
 fldGenre.getFieldID(),
 fldYear.getFieldID(),
 fldCast.getFieldID() };

 // Add the doctype
 EbiDocType dt = cmgr.addDocumentType(
 context, // Context
 "Movie Review", // Doctype name
 "Movie Review document type", // Description
 fieldIDs, // Associated fields
 null); // ACL for the doctype
 System.out.println("The new doctype: " + dt);
 }

Managing layout styles
Layouts are XSL specifications for rendering a document. The document might be XML or some other
format that can be processed by XSL. The actual layout specification is stored as the content of a
document in the repository. The CM subsystem has a document type called Document Layout already
installed for layout documents. You can use it or add your own document types for layouts.

What you can do After you have added a layout document, you can check it out, modify it, and check
it in. That means a particular layout document can have multiple versions. You can publish one of those
versions.

You can group several layouts together under the umbrella of a layout style. The various layouts in the
layout style can handle the rendering of the document for different clients (also called user agents), such
as browsers, PDAs, and other display devices. The association of a layout document with a user agent is
handled by a layout document descriptor.

Layout styles and document types A layout style is associated with a document type. When you
display a document of that type, the system searches the layout document descriptors in the style to find
the one for the user agent, as specified in the portlet’s context object.

A layout style with multiple layout document descriptors can process content for various clients. When
you want to display a document of the particular document type, you call getDocumentLayout(); the
system gets the current user agent from the context object to select the appropriate layout.

Here is the group of objects that provide XSL processing for a content document:
Developing Content Management Infrastructure 29

NOTE: In addition to layout styles for document types, you can define a layout set for a specific
document. A layout set is a custom combination of layout documents for a single content document. This
specialized functionality is appropriate for special types of documents. When you are producing many
documents of the same type, you will typically stick with layout styles for the document type. For more
information, see “Specifying layout sets for documents” on page 45.

To set up layout styles for a document type:

1 Add one or more layout styles for the content document type.

2 Specify one of the styles as the default for that document type.

3 Add one or more layout documents whose XSL is designed for the expected content. The versions
can arrange the content differently or tailor the content for different clients.

4 Add layout document descriptors that tie the layout documents to a client and a layout style.

These methods in EbiContentMgmtDelegate let you add and modify layout styles and their associated
objects:

Method Returns Description

addDocumentLayoutStyle() EbiDoc-
LayoutStyle

Adds a new Document Layout Style for the
specified Document Type.

getDocumentLayoutStyle() EbiDoc-
LayoutStyle

Gets the details of a particular layout style.

updateDocumentLayout-
Style()

void Updates the information for a layout style in the CM
subsystem.

removeDocumentLayout-
Style()

boolean Removes a layout style from the system.

addLayoutDocument-
Descriptor()

EbiLayout-
DocDescriptor

Adds a layout document descriptor, associating a
layout document with a layout style and user agent.

getLayoutDocument-
Descriptor()

EbiLayout-
DocDescriptor

GetS a layout document descriptor object.

updateLayoutDocument-
Descriptor()

void Updates a layout document descriptor with a new
user agent.
30 exteNd Director Content Management Guide

User agents

A user agent identifies itself in the HTTP header it sends to the server. exteNd Director stores the
identifying string in the context object. The string used by a browser varies according to the browser
version. Here are some examples:

User Agent: Mozilla/4.0 (compatible; MSIE 4.01; Windows 98)
User Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT)
User Agent: Mozilla/4.5 (Macintosh; U; PPC)
User Agent: Mozilla/4.7 [en] (WinNT; I)
User Agent: Mozilla/3.0 (compatible; Opera/3.0; Windows 95/NT) 3.1

You will need to use these strings in EbiLayoutDocumentDescriptor objects.

For more information on user agents, see the HTTP 1.1 specification.

Adding a layout style

This example provides a method called addLayoutStyle() that adds a layout style for a document type
called Movie Review. The addLayoutStyle() method needs to have access to a content manager
(EbiContentMgmtDelegate) and context object (EbiContext), which are passed in as arguments:

public void addLayoutStyle(EbiContentMgmtDelegate cmgr, EbiContext context)
 throws EboUnrecoverableSystemException, EboSecurityException, EboItemExistenceException
 {
 // Get the doctype for which the style is to be added
 EbiDocType dtMovieReviews = cmgr.getDocumentTypeByName(context, "Movie Review");

 // Add the new style
 EbiDocLayoutStyle style = cmgr.addDocumentLayoutStyle(
 context, // Context
 dtMovieReviews.getDocTypeID(), // Doctype ID
 "MovieReviewStyle-PicOnLeft", // Style name
 "Layout style for movie reviews, with pic on left", // Style descr
 true, // Is default style
 null); // ACL for style
 System.out.println("The new style: " + style);
 }

removeLayoutDocument-
Descriptor()

boolean Removes a layout document descriptor.

getLayoutDocument-
Descriptors()

Collection of
EbiLayout-
DocDescriptor

Gets the layout document descriptors associated
with a layout style.

getDocumentLayout() EbiDoc-
Version-
Descriptor

Gets the layout document appropriate for the
current document and user agent. This is the actual
XSL you use to process the content document.

getDefaultDocument-
LayoutStyle()

EbiDoc-
LayoutStyle

Gets the layout style that is the default for a
document type.

getDocumentLayout-
Styles() and getFiltered-
DocumentLayoutStyles()

Collection of
EbiDoc-
LayoutStyle

Gets all the layout styles associated with a
document type. The filtered version omits styles to
which the current user has no READ access. The
unfiltered version gets all styles for the type,
regardless of access rights.

Method Returns Description
Developing Content Management Infrastructure 31

new http://www.w3.org/Protocols

Adding a layout document and a layout document descriptor

This example provides a method called addLayoutDocAndDescriptor() that adds a layout document
and a layout descriptor. The layout descriptor associates the layout document with the layout style from
the previous example. The addLayoutDocAndDescriptor() method needs to have access to a content
manager (EbiContentMgmtDelegate), context object (EbiContext), layout file name, and layout style,
which are passed in as arguments:

public void addLayoutDocAndDescriptor(
 EbiContentMgmtDelegate cmgr, EbiContext context, String layoutFileName, String layoutStyleID)
 throws
 EboUnrecoverableSystemException, EboSecurityException, EboItemExistenceException,
FileNotFoundException, IOException
 {
 // Read in the XSL for the layout
 FileInputStream fis = new FileInputStream(layoutFileName);
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 byte[] value = new byte[4096];
 while (true)
 {
 int bytes = fis.read(value);
 if (bytes < 1)
 break;
 baos.write(value, 0, bytes);
 }
 byte[] content = baos.toByteArray();
 baos.close();

 // Get the document layout doctype
 EbiDocType dtLayout = cmgr.getDocumentTypeByName(context, "Document Layout");
 // Get the Layouts folder
 EbiDocFolder layoutFolder = (EbiDocFolder)cmgr.lookupDirectoryEntry(
 context, "MyApp/Layouts", EbiDocFolder.EL_DOC_FOLDER);

 // Add the layout document
 EbiAddDocumentParams params = cmgr.createAddDocumentParams();
 params.setName("ReviewLayout-POL");
 params.setDocTypeID(dtLayout.getDocTypeID());
 params.setFolderID(layoutFolder.getID());
 params.setAuthor("JSmith");
 params.setTitle("ReviewLayout-POL");
 params.setSubtitle("This is the layout with picture on left");
 params.setMimeType("text/xsl");
 params.setContent(content);
 params.setComment("Initial revision.");
 // params.setAcl(...); specify an ACL, otherwise inherit ACL of parent folder
 EbiDocument layoutDoc = cmgr.addDocument(context, params);
 System.out.println("New layout doc: " + layoutDoc);

 // Publish the new layout document
 cmgr.publishDocumentContentVersion(context, layoutDoc.getID(), 1, true, true);

 // Figure out what user agent this layout is intended for
 String userAgent = "User Agent: Mozilla/4.0 (compatible; MSIE 5.01; Windows NT)";

 // Associate the new layout document with the specified layout style
 EbiLayoutDocDescriptor ldd = cmgr.addLayoutDocumentDescriptor(

 context, // Context
 layoutStyleID, // Layout style ID
 layoutDoc.getID(), // Layout document ID
 userAgent); // User agent

 }
32 exteNd Director Content Management Guide

Changing a layout style

This example presents a method called changeLayoutStyle() that gets the default style for a document
type and changes it so that it is not the default. The changeLayoutStyle() method needs to have access to
a content manager (EbiContentMgmtDelegate) and context object (EbiContext), which are passed in as
arguments:

public void changeLayoutStyle(EbiContentMgmtDelegate cmgr, EbiContext context)
 throws EboUnrecoverableSystemException, EboSecurityException, EboItemExistenceException
 {
 EbiDocType dtMovieReview = cmgr.getDocumentTypeByName(context, "MovieReview");
 EbiDocLayoutStyle style = cmgr.getDefaultDocumentLayoutStyle(context,
dtMovieReview.getDocTypeID());
 style.setDefault(false);
 cmgr.updateDocumentLayoutStyle(context, style);
 }

Managing folders and categories
Folders and categories are ways of organizing documents. A document belongs to one folder and can
belong to many categories. Typically, you would use folders to group documents for administrative
purposes, such as all documents for a project or documents that have access restrictions. You can use
categories to organize documents as an end user might view them, typically by subject matter.

The system has a root folder and root category already created—called Root Folder and Root Category.
The content manager provides the getRootFolder() and getRootCategory() methods to get EbiDocFolder
and EbiDocCategory objects for them.

The default directory type for folders and categories is EbiDirectory.DIR_TYPE_DEFAULT. The root
and system types apply to the root folder and root category. You can also define your own folder types.
For information, see EbiDirectory in the API Reference.

These methods of EbiContentMgmtDelegate let you manage folders and categories:

Method Returns Description

addFolder() EbiDocFolder Creates a new folder.

copyFolder() EbiDocFolder Copies one folder into another.

getFolder() EbiDocFolder Gets a folder by name or ID.

moveFolder() EbiDocFolder Moves one folder into another.

updateFolder() void Updates a folder in the content repository after
making changes to its properties via the
EbiDocFolder object.

removeFolder() boolean Removes a folder. If the folder contains documents
and subfolders, you can set the force argument to
remove them too. The user must have WRITE
permissions on all the subfolders and documents;
otherwise, a security exception is thrown. If force is
false, the folder can’t be removed until the contents
are deleted.

getRootFolder() EbiDocFolder Gets the top-level folder.

addCategory() EbiDocCategory Creates a new category.

copyCategory() EbiDocCategory Copies one category into another.
Developing Content Management Infrastructure 33

../javadoc/com/sssw/cm/api/EbiDirectory.html

Adding a category

This example presents a method called addCategory() that gets the information required for creating a
new category, then adds the new category as a subcategory of the specified parent. The addCategory()
method needs to access a content manager (EbiContentMgmtDelegate) and context object (EbiContext),
which are passed in as arguments:

public void addCategory(EbiContentMgmtDelegate cmgr, EbiContext context)
 throws EboUnrecoverableSystemException, EboSecurityException, EboItemExistenceException
 {
 // Locate the parent category
 EbiDocCategory categParent = (EbiDocCategory)cmgr.lookupDirectoryEntry(
 context, "MyApp/Shopping", EbiDocCategory.EL_DOC_CATEGORY);
 EbiDocCategory categChild = cmgr.addCategory(
 context, // Context
 categParent, // Parent category
 "Clothing", // Tew category name
 EbiDirectory.DIR_TYPE_DEFAULT, // type of the new category
 "This is the clothing-related category", // Description
 null); // ACL for the new category
 System.out.println("New category added: " + categChild);

Navigating the CM hierarchy
Once your directory hierarchy is established, you can get a listing of the contents of a directory and
examine the properties of individual entries.

This section describes some ways to use the methods and classes that navigate the directory hierarchy.
Both categories and folders implement the functionality for directory manipulation found in their
superinterface EbiDirectory. Folders, categories, and documents also implement EbiDirectoryEntry and
share methods for getting information about the contents of a directory.

getCategory() EbiDocCategory Gets a category by name or ID.

moveCategory() EbiDocCategory Moves one category into another.

updateCategory() void Updates a category in the content repository after
making changes to its properties via the
EbiDocCategory object.

removeCategory() boolean Removes a category.

getRootCategory() EbiDocCategory Gets the top-level category.

addDocument-
CategoryReference()

void Adds a document to a category.

removeDocument-
CategoryReference()

boolean Removes a document from the category.

getDocumentCategory-
References() and
getFilteredDocument-
CategoryReferences()

Collection of
EbiDocCategory

Gets the categories to which the document belongs.
The filtered version omits categories to which the
current user has no READ access. The unfiltered
version gets all categories for the document,
regardless of access rights.

Method Returns Description
34 exteNd Director Content Management Guide

Methods These methods are useful in navigating categories and folders:

getRootCategory() and getRootFolder() of EbiContentMgmtDelegate get the top of a directory
hierarchy.

getDirectoryList() and getFilteredDirectoryList() of EbiContentMgmtDelegate return a
collection of EbiDirectoryEntry objects. You can specify whether the list includes subdirectories,
documents, or both.

isDirectory() of EbiDirectoryEntry reports whether an entry is a directory or a document.

lookupDirectoryEntry() of EbiContentMgmtDelegate gets an EbiDirectoryEntry object for a
category, folder, or document based on a path built from the names of the parent objects in the
hierarchy.

getEntry() of EbiContentMgmtDelegate gets an entry by name in the specified directory.

Example This example builds an XML DOM tree of nested categories, starting with the root category.
The root category is a category element within Categories; subcategories of the root and further nested
levels are category elements also. The name and ID for each category are attributes.

The code creates the Categories container element and gets the root category of the tree you want to build.
It then calls addNode() to find and add its subcategories. The variable dom is the DOM object and root
is the root element of the DOM.

Element categories = dom.createElement("Categories");
root.appendChild(categories);

EbiDocCategory category = cmgr.getRootCategory(context);
if (category == null)

System.out.println("root category is null");
else
{

Element rootCategory = dom.createElement("category");
categories.appendChild(rootCategory);
rootCategory.setAttribute("id", category.getID());
rootCategory.setAttribute("name", category.getName());
addNode(rootCategory, category, dom, context,

cmgr, "category");
}

The addNode() method gets the subcategories of a particular category and adds them as child elements.
It is called recursively to add additional levels of nested subcategories if they exist:

public void addNode(org.w3c.dom.Element element,
EbiDirectoryEntry directoryEntry, org.w3c.dom.Document document,
EbiContext context, EbiContentMgmtDelegate cmgr, String elementName)
{

try
{

Collection collection = cmgr.getFilteredDirectoryList(
context, (EbiDirectory) directoryEntry, true, false);

Enumeration list = Collections.enumeration(collection);
if (list != null)
{

Element child;
while (list.hasMoreElements())
{

EbiDirectoryEntry subdirEntry =
(EbiDirectoryEntry) list.nextElement();

child = document.createElement(elementName);
child.setAttribute("id", subdirEntry.getID());
child.setAttribute("name", subdirEntry.getName());
element.appendChild(child);
addNode(child, subdirEntry, document,

context, cmgr, elementName);
}

}

Developing Content Management Infrastructure 35

}
catch (Exception e)
{

e.printStackTrace();
}

}

36 exteNd Director Content Management Guide

3 Managing Documents

This chapter describes how to manage documents using the Content Management (CM) API. It has these
sections:

About documents

Adding documents

Specifying field values for a document

Specifying layout sets for documents

Creating links between documents

Modifying and publishing documents

Displaying documents

NOTE: Most of the document management tasks described in this chapter can also be accomplished
using the CMS Administration Console.

For more information, see Chapter 15, “Creating Content”. and Chapter 16, “Maintaining
Content”.

About documents
A document in the CM subsystem may represent a simple, finite piece of content such as an image, or it
may be a complex entity that comprises other documents. A document can be any data that you want to
use directly or indirectly in your exteNd Director application.

The CM subsystem uses metadata fields to describe a document. There are standard fields for every
document, such as name, title, author, and abstract. You can also associate content-related fields with a
document type. This extension metadata can hold additional searchable information specific to that
document type.

A document object can be associated with an EbiDocContent object that holds the text or binary data, but
a document doesn’t need to have a content object. The metadata for the document may store all the
information you need. For a short text document, you could store the entire text in the abstract field. If the
document doesn’t have content, specify null for the MIME type and content.

The supplied content, if any, becomes the first version of the document. If you want to publish the
content, you can call publishDocumentContentVersion() anytime or rely on your scheduled task to
publish it. Documents without content cannot have versions (including a published version), but you
could use another field (such as status) to label a document as publicly available.

Accessing the CM API

The EbiContentMgmtDelegate interface provides access to most of the document-related methods in the
CM subsystem.

For information, see “About the CM API” on page 23.
Managing Documents 37

Adding documents
To add a document, you create an EbiAddDocumentParams object and set various parameters. The next
table explains the default values for the required parameters: name, document type, folder, and extension
metadata, if any—as well as other parameters for which the default value has a particular meaning. Any
other metadata fields that aren’t explicitly set are null:

Adding a document

This code example presents a method called addDocument() that illustrates how to add a document of
type Movie Review. This method sets all required document parameters—document type, name, title,
author, and parent folder—as well as some optional parameters.

The new document does not contain extension metadata fields, nor does it have a parent document. The
addDocument() method sets the content of the new movie review document explicitly and stores it in the
byte array content.

The addDocument() method needs to access a content manager (EbiContentMgmtDelegate) and context
object (EbiContext), which are passed in as arguments.

Note that the addDocument() method does not set the ACL for the new document. This means that the
ACL is null and the document inherits the ACL of its folder:

public void addDocument(EbiContentMgmtDelegate cmgr, EbiContext context)
 throws EboUnrecoverableSystemException, EboSecurityException, EboItemExistenceException
 {
 // Get the doctype
 EbiDocType type = cmgr.getDocumentTypeByName(context, "Movie Review");

 // Get the folder
 EbiDocFolder folder = (EbiDocFolder)cmgr.lookupDirectoryEntry(
 context, "MyApp/MovieReviews/Current", EbiDocFolder.EL_DOC_FOLDER);

 // Get the content

Parameter Description and default values

Name A name for the document, used when specifying a path for the document in
the folder structure. The default name is the UUID assigned to the document
when it is added.

Document type ID The ID of the document type for this document. The default is the system’s
Default document type.

Folder ID The folder that contains this document. The default is the system’s root folder.

Extension metadata If the document belongs to a document type that has at least one associated
extension metadata field, you must call the setExtensionMetaData() method
to provide values for the fields.

For information, see “Specifying field values for a document” on
page 40.

Publish date A timestamp specifying when the document’s current version should be
published. The default value of null means publish as soon as possible.

Expiration date A timestamp specifying when the document should be removed from the
published area. The default value of null means never expire.

Access control list An ACL specifying access rights to the document.

The ACL is null by default. In this case, the document inherits the ACL of its
folder. If the folder doesn’t have an ACL, there are no restrictions for the
document.
38 exteNd Director Content Management Guide

 String movieContent = "This movie has exceeded all expectations!....";
 byte content[] = movieContent.getBytes();

 EbiAddDocumentParams docParams = cmgr.createAddDocumentParams();
 docParams.setName("Star Trek Movie Review");
 docParams.setDocTypeID(type.getDocTypeID());
 docParams.setFolderID(folder.getID());
 docParams.setAuthor("Night Ghost");
 docParams.setTitle("Star Trek Movie Review");
 docParams.setSubtitle("Generations");
 docParams.setAbstract("This reviewer loves the movie!........");
 docParams.setMimeType("text/xml");
 docParams.setContent(content);
 docParams.setComment("Initial revision.");

 // params.setAcl(...); specify an ACL, otherwise inherit ACL of parent folder

 EbiDocument doc = cmgr.addDocument(context, docParams);
 System.out.println("Added new movie review: " + doc);

 // Publish the new document
 cmgr.publishDocumentContentVersion(context, doc.getID(), 1, true, true);
 }

Adding multiple documents

This code example presents a method called addMultipleDocuments() that converts a set of files into
new documents of type Movie Review and adds them to the CM subsystem.

This method sets all required document parameters—document type, name, title, author, and parent
folder—as well as some optional parameters.

Note that the addMultipleDocuments() method executes the following shared logic outside the for loop
for efficient processing:

Sets the shared parameters author, comment, and MIME type
Calls the getDocTypeByName() and createAddDocumentParams() methods

The new documents do not contain extension metadata fields, nor do they have parent documents. The
addMultipleDocuments() method reads in the content of each new movie review from its file of origin
and stores the data in the byte array content.

As for security, the addMultipleDocuments() method does not set the ACL for the new documents. This
means that the ACL is null and the documents inherit the ACL of their folder.

The addMultipleDocuments() method needs to access a content manager (EbiContentMgmtDelegate),
context object (EbiContext), and the directory where the files of interest are stored. All of these entities
are passed in as arguments:

public void addMultipleDocuments(
 EbiContentMgmtDelegate cmgr, EbiContext context, String dirName)
 throws
 EboUnrecoverableSystemException, EboSecurityException, EboItemExistenceException,
 FileNotFoundException, IOException
 {
 // Get the doctype
 EbiDocType type = cmgr.getDocumentTypeByName(context, "Movie Review");

 // Get the folder
 EbiDocFolder folder = (EbiDocFolder)cmgr.lookupDirectoryEntry(
 context, "MyApp/MovieReviews/Current", EbiDocFolder.EL_DOC_FOLDER);

 // Instantiate a document addition parameters object
 EbiAddDocumentParams docParams = cmgr.createAddDocumentParams();
Managing Documents 39

 // Set all the String parameters to be reused
 String author = "NightGhost";
 String mimeType = "text/xml";
 String comment = "Initial revision.";

 File dir = new File(dirName);
 File[] files = null;
 if (dir.exists() && dir.isDirectory())
 files = dir.listFiles();
 else
 throw new EboApplicationException(null, "Invalid directory name '" + dirName

+ "'.");

 // Turn each file in the specified directory into a new movie review document
 for (int i = 0; i < files.length; i++)
 {
 if (files[i].isDirectory())
 continue;
 FileInputStream fis = new FileInputStream(files[i]);
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 byte[] value = new byte[4096];
 while (true)
 {
 int bytes = fis.read(value);
 if (bytes < 1)
 break;
 baos.write(value, 0, bytes);
 }
 byte[] content = baos.toByteArray();
 baos.close();

 String name = files[i].getName();

 docParams.setName(name);
 docParams.setDocTypeID(type.getDocTypeID());
 docParams.setFolderID(folder.getID());
 docParams.setAuthor(author);
 docParams.setTitle(name);
 docParams.setMimeType(mimeType);
 docParams.setContent(content);
 docParams.setComment(comment);
 docParams.setPublishImmediately(true);

 // params.setAcl(...); specify an ACL, otherwise inherit ACL of parent folder

 EbiDocument doc = cmgr.addDocument(context, docParams);

 }
 }

Specifying field values for a document
When you add a document, you must create a set of field values that match the fields defined for the
document’s type. Each field can have one or more values, and null values are allowed. The fields and
their values are called extension metadata, in contrast to the standard metadata defined for an
EbiDocument object (such as title, author, abstract, and status).
40 exteNd Director Content Management Guide

You manage the extension metadata via two objects:

After you create an EbiDocExtnMetaInfo object for a specific field, you set the values for the field as an
array, even if there is only one value. The type of the array must correspond to the data type of the field.

After you’ve created an EbiDocExtnMetaInfo object for each field and added it to the EbiDocExtnMeta
object, call setExtensionMetaData() for EbiAddDocumentParams to associate it with the document you
are adding.

Getting fields for the document type

To find out what fields to specify for a document, you can get a collection of EbiDocField objects for the
document type. This example presents a method called getDocTypeFields() that gets all the document
type fields to which the user has READ access.

The getDocTypeFields() method needs to access a content manager (EbiContentMgmtDelegate) and
context object (EbiContext), which are passed in as arguments:

public void getDocTypeFields(EbiContentMgmtDelegate cmgr, EbiContext context)
 throws EboUnrecoverableSystemException, EboSecurityException, EboItemExistenceException
 {
 EbiDocType docType = cmgr.getDocumentTypeByName(context, "Movie Review");
 if (docType != null)
 {
 Collection fields = cmgr.getFilteredDocumentFields(context, docType.getDocTypeID());
 System.out.println("Fields: " + fields);
 }
 }

Getting a field object by name

You can also get individual fields by name. This example presents a method called getField() that gets
the field named Director.

The getField() method needs to access a content manager (EbiContentMgmtDelegate) and context object
(EbiContext), which are passed in as arguments:

public void getField(EbiContentMgmtDelegate cmgr, EbiContext context)
 throws EboUnrecoverableSystemException, EboSecurityException, EboItemExistenceException
 {
 EbiDocField fldDirector = cmgr.getDocumentFieldByName(context, "Director");
 System.out.println("Director field: " + fldDirector);
 }

Setting a field value

This example presents a method called setFieldValues() that performs the following tasks:

Creates an EbiDocExtnMeta holder and EbiDocExtnMetaInfo objects for the Director and Genre
fields

Associates the EbiDocExtnMeta object with an EbiAddDocumentParams object that it uses to add
the new document to the content respository

The values for each field are passed as String arrays.

Object Description

EbiDocExtnMeta A holder for all the extension metadata for all the fields

EbiDocExtnMetaInfo Associates a field with a set of values
Managing Documents 41

Note that the setFieldValues() method does not set the ACL for the new document. This means that the
ACL is null and the document inherits the ACL of its folder.

The setFieldValues() method needs to access a content manager (EbiContentMgmtDelegate) and context
object (EbiContext), which are passed in as arguments:

public void setFieldValues(EbiContentMgmtDelegate cmgr, EbiContext context)
 throws EboUnrecoverableSystemException, EboSecurityException, EboItemExistenceException
 {
 // Get the doctype
 EbiDocType type = cmgr.getDocumentTypeByName(context, "Movie Review");
 // Get the folder
 EbiDocFolder folder = (EbiDocFolder)cmgr.lookupDirectoryEntry(
 context, "MyApp/MovieReviews/Current", EbiDocFolder.EL_DOC_FOLDER);
 // Instantiate a document addition parameters object
 EbiAddDocumentParams docParams = cmgr.createAddDocumentParams();

 // Create the extension metadata holder object
 EbiDocExtnMeta meta = cmgr.createExtnMeta();

 // Specify the extn metadata field values for 'Director'
 EbiDocField fldDirector = cmgr.getDocumentFieldByName(context, "Director");
 EbiDocExtnMetaInfo miDirector = cmgr.createExtnMetaInfo(fldDirector);
 String[] directors = { "Andy Wachowski", "Larry Wachowski" };
 miDirector.setFieldValues(directors);
 meta.setExtnMetaInfo(miDirector);

 // Specify the exnt metadata field values for 'Genre'
 EbiDocField fldGenre = cmgr.getDocumentFieldByName(context, "Genre");
 EbiDocExtnMetaInfo miGenre = cmgr.createExtnMetaInfo(fldGenre);
 String[] genres = { "Action", "Thriller", "Sci-Fi" };
 miGenre.setFieldValues(genres);
 meta.setExtnMetaInfo(miGenre);

 // Get the content
 String movieContent = "This movie has exceeded all expectations!....";
 byte content[] = movieContent.getBytes();

 // Set the extension metadata into the doc params object
 docParams.setExtensionMetaData(meta);

 docParams.setName("The Matrix (1999)");
 docParams.setDocTypeID(type.getDocTypeID());
 docParams.setFolderID(folder.getID());
 docParams.setAuthor("Night Ghost");
 docParams.setTitle("The Matrix (1999)");
 docParams.setMimeType("text/xml");
 docParams.setContent(content);
 docParams.setComment("Initial revision.");

 // params.setAcl(...); specify an ACL, otherwise inherit ACL of parent folder

 EbiDocument doc = cmgr.addDocument(context, docParams);

 // Publish the new document
 cmgr.publishDocumentContentVersion(context, doc.getID(), 1, true, true);
 }
42 exteNd Director Content Management Guide

Getting all fields

This example presents a method called getExtnMeta() that gets all the extension metadata fields for a
specified document. The method uses the EbiDocExtnMeta object as a holder for the document’s fields.
This object provides methods for getting information about the fields, such as names and values.

The getExtnMeta() method needs to access a content manager (EbiContentMgmtDelegate), context
object (EbiContext), and the document of interest—all of which are passed in as arguments:

public void getExtnMeta(EbiContentMgmtDelegate cmgr, EbiContext context, String docID)
 throws EboUnrecoverableSystemException, EboSecurityException, EboItemExistenceException
 {
 // Get the extension metadata holder for the document
 EbiDocExtnMeta extnMetaData = cmgr.getDocumentExtnMeta(context, docID);
 System.out.println("Extension metadata: " + extnMetaData);

 // Enumerate the field names
 Iterator fieldNames = extnMetaData.getFieldNames().iterator();
 while (fieldNames.hasNext())
 System.out.println("Field: " + (String)fieldNames.next());

 // For each extension meta info
 for (int i = 0; i < extnMetaData.size(); i++)
 {
 EbiDocExtnMetaInfo mi = extnMetaData.getExtnMetaInfoByIndex(i);
 System.out.println("MetaInfo " + i + ": " + mi);

 String fieldName = mi.getFieldName();
 System.out.println("Field name: " + fieldName);

 Collection fieldValues = mi.getFieldValues(false);
 System.out.println("Values: " + fieldValues);
 }
 }

Getting field values for a single field

This example presents a method called getExtnMeta() that gets an EbiDocExtnMetaInfo object for a
single field.

The getExtnMeta() method needs to access a content manager (EbiContentMgmtDelegate), context
object (EbiContext), and the document and field of interest—all of which are passed in as arguments:

public void getExtnMeta(
 EbiContentMgmtDelegate cmgr, EbiContext context,
 String docID, String fieldID)
 throws EboUnrecoverableSystemException, EboSecurityException,
EboItemExistenceException
 {
 EbiDocExtnMetaInfo info = cmgr.getDocumentExtnMetaInfo(
 context, docID, fieldID);
 System.out.println("Meta Info: " + info);
 }

From the EbiDocExtnMetaInfo object you can get a Collection of the values for the field (the values of
the array that set the field). A boolean argument lets you specify whether the data type of the returned
values is String or the actual data type of the field.

This statement gets the values of the EbiDocExtnMetaInfo object as Strings:

Collection valueStrings = info.getFieldValues(true);
Managing Documents 43

Methods for managing documents

This table lists methods that let you manage documents, edit the metadata, and get documents:

Method Returns Description

createAddDocument
Params()

EbiAdd-
DocumentParams

Creates an empty object to hold the data
needed to add a document, including
metadata, extension metadata, content, and
ACL. You use the EbiAddDocumentParams
object with the addDocument() method.

addDocument() EbiDocument Adds a document to the content repository.
Content for the document is optional.

copyDocument() EbiDocument Copies a document to a folder or to a parent
document.

getDocument() EbiDocument Gets a document object for a specified
document ID.

moveDocument() EbiDocument Moves a document to a folder or to a parent
document.

updateDocument() void Updates the information about a document in
the content repository using changes made to
EbiDocument.

removeDocument() boolean Removes a document and all its versions from
the system.

addDocumentCategory-
Reference()

void Adds a document to a category. A document
can belong to many categories.

removeDocument
Category-Reference()

boolean Removes a document from a category.

getDocumentExtnMeta() EbiDocExtnMeta Gets a holder for the extension metadata
objects associated with each field of the
document. Its methods let you get the values
for individual fields.

getDocumentExtnMeta-
Info()

EbiDocExtnMeta
Info

Gets the extension metadata object for a field
of the document.

getDocumentsByType()
and getFilteredDocuments-
ByType()

Collection of
EbiDocument

Gets a collection of the documents of a
particular document type. The filtered version
omits documents to which the current user
has no READ access. The unfiltered version
gets all documents for the type, regardless of
access rights.

getLatestDocumentContent-
Version()

EbiDocVersion Gets the most recent version of a document.

getDocumentContent-
Version()

EbiDocVersion Gets a version of a document.

getDocumentContent-
Versions()

Collection of
EbiDocContent

Gets all the versions of a document.

publishDocumentContent-
Version()

void Publishes a version of a document.

getContent() EbiDocContent Gets the published content for a document. If
the document is not published, returns null.
44 exteNd Director Content Management Guide

Specifying layout sets for documents
Typically, the layout styles associated with the document type are adequate for displaying your document
(as described in “Managing layout styles” on page 29). When you have hundreds of documents (news
stories, press releases, editorials, reviews), you don’t want to design custom XSL for each one. One
design or a few alternative designs are enough; you can associate one or more layout styles with a
document type.

When to use a layout set

When you want to lock in a particular layout for an individual document, you can specify a layout set for
that document. A layout set uses a specific layout style, selected from the ones that are valid for the
document’s type. The layout set uses one or more of the layout document descriptors associated with that
style. In the set you can use whatever version of the layout document is currently published or you can
select a specific version. The set needs to includes layout document descriptors for whatever clients will
view the content. The XSL in the layout documents associated with the descriptors render the document.

What a layout set is good for A layout set is meant for locking in a presentation so that the
document always looks the same. As layout styles for a document type evolve with new versions, the
presentation of an individual document will change. Use a layout set when it is important to preserve the
original presentation.

What a layout set is less appropriate for The layout set is less appropriate for giving a document a
unique look. It may be more appropriate to add a new document type. However, you can also add a
custom style to the document type in order to make a special layout available for the document. If you
don’t want to be constrained to styles for the document type, you could design your application to locate
style documents another way—for example, via a custom field. However, you would want to make sure
your custom system has the flexibility for getting different XSL for different clients.

Methods for managing layout sets

These methods of EbiContentMgmtDelegate manage layout sets:

To associate a layout set with a new document, call the setLayoutSet() method of
EbiAddDocumentParams.

unpublishDocumentContent() boolean Removes a document’s content from the
published area.

The content for all document versions remains
intact.

Method Returns Description

createDocLayoutSet() EbiDocLayoutSet Creates an empty layout set. It is associated
with a document when you call addDocument().

getDocumentLayoutSet() EbiDocLayoutSet Gets the layout set for a document.

removeDocumentLayoutSet() boolean Removes the layout set from the document.

updateDocumentLayoutSet() void Updates the layout set with new layout style
and layout style descriptor information.

Method Returns Description
Managing Documents 45

To change the XSL documents in the layout set of an existing document, call getDocumentLayoutSet(),
call methods of EbiDocLayoutSet to make changes, and then call updateDocumentLayoutSet().

NOTE: Currently, you cannot add a layout set to a document if it didn’t have one when it was added.

Creating links between documents
You can specify relationships between documents by specifying that one document is a child of another.

This section includes these topics:

Two types of document relationships

Hierarchical linking

Adding a child document

Compound linking

Linking a child document

Updating a link with a new document version

Getting linked parent documents

Getting linked child documents

Two types of document relationships

The content repository supports two types of document relationships—hierarchical and compound

You can use linked documents in many ways. A parent document might serve as a container of child
documents, where each subsection of the document is produced by a different author. Documents could
be linked in a chain to identify a message thread. Links could point to nontext documents that are stored
separately, such as images or sound files.

CAUTION: When specifying either hierarchical or compound links, you are not prevented from creating
circular links, where a parent document is also a child of its child document. If you do this, proceed with
caution: circularity may confuse both programmer and end user. It is up to you to understand the link
structure of your repository when you process the content.

Document
relationship Description

Hierarchical Where each document in the hierarchy stores the ID of its parent document. A
document has only one parent. The value –1 identifies the top document in a chain
of links. The chain can be an indefinite number of levels deep.

Hierarchical linking is designed for a threaded discussion and similar structures.

Compound Where a link object identifies the originator of the link (parent) and the target of the
link (child). A parent can have many child documents, and a child can have many
parents.

Compound linking is designed for building composite documents, where many
pieces of content are brought together in a single presentation page. For example,
child documents might include sections of a report, a list of cross-references that is
appended to a document, or images to be displayed in a page.
46 exteNd Director Content Management Guide

Hierarchical linking

Hierarchical linking lets you create a threaded discussion. The following diagram shows two views of a
threaded discussion. Each reply has one parent, and each message can be the parent of several replies.
The top message in each chain has no parent.

When a user submits a reply, the application uses the ID of the original message as the parent of the new
reply document:

Methods for hierarchical linking

These methods of EbiContentMgmtDelegate are useful in managing hierarchical links:

In addition, when you have an EbiDocument object, you can get and change the parent document ID, via
getParentDocID() and setParentDocID(). After changing the ID, call updateDocument() to put the
changes in the repository.

Adding a child document

This example presents a method called addChildDocument() that creates a child document as a reply in
a message thread. Inside a while loop, the method navigates the thread to the top message, and then uses
its title to construct the name and subtitle of the reply.

The addChildDocument() method needs to access a content manager (EbiContentMgmtDelegate), the
context object (EbiContext), the parent document, a message subject, and a reply—all of which are
passed in as arguments:

public void addChildDocument(
 EbiContentMgmtDelegate cmgr, EbiContext context, String folderID,
 String parentID, String subject, String reply)
 throws EboUnrecoverableSystemException, EboSecurityException,
EboItemExistenceException
 {
 EbiAddDocumentParams params = cmgr.createAddDocumentParams();

Method Returns Description

addDocument() EbiDocument When adding a document, you can make it a child
document by specifying a parent ID. If the parent ID is –1,
the document has no parent.

getChildDocuments()
and getFilteredChild-
Documents()

Collection of
EbiDocument

Gets child documents that have a parent ID of the specified
document. The filtered version omits documents to which
the current user has no READ access. The unfiltered
version gets all child documents, regardless of access
rights.
Managing Documents 47

 params.setName("Reply to " + threadTitle);
 EbiDocType doctype = cmgr.getDocumentTypeByName(context, "Discussion");
 if (doctype != null)
 params.setDocTypeID(doctype.getDocTypeID());
 params.setFolderID(folderID);
 params.setAuthor(context.getUserID());
 params.setTitle(subject);
 params.setSubtitle(threadTitle);
 params.setMimeType("text/plain");
 params.setContent(reply.getBytes());
 params.setParentID(parentID);
 cmgr.addDocument(context, params);

 }

Compound linking

Compound linking lets you create a network of interrelated documents. You might use it to create a
composite document out of many contributed pieces, such as sections (written by different authors),
images, cross-references, and other information.

For more information, see “Composite documents” on page 54.

The following diagram shows a network of documents that are used by two different parent documents;
some of the material is shared by both:

Access to documents you want to link To create a link, you must check out both the parent and
child documents, add the link, and then check in both documents.

XML for composite documents It is easy to program the display of a composite document when the
content type is XML. Your portlet inserts each child document as a node in the DOM with an appropriate
element name. An XSL style sheet specifies how those elements are displayed. You don’t have to insert
the child documents into existing content in any particular order. The order is determined by the style
sheet. By selecting different style sheets, you can change the way the different elements are displayed and
whether they are included at all.

For information about style sheets for document types, see “Managing layout styles” on page 29.
To specify styles for individual documents, see “Specifying layout sets for documents” on page 45.

For example, suppose you have a Movie Review document type and the paragraphs of the review are its
content. Child documents for the review could include an image from the movie and biographies of the
cast. In the displayed HTML, the biographies could be displayed on the same page or they could be links
to another HTML page. You could have different style sheets that determine which way to display the
biographies and whether the image is on the left or the right.
48 exteNd Director Content Management Guide

Methods for compound linking

NOTE: When adding, removing, and changing links, you must check out the parent and child documents.

These methods of EbiContentMgmtDelegate are useful in managing compound links:

Linking a child document

This example presents a method called addDocLink() that adds a link between a parent document and a
child document.

The addDocLink() method needs to access a content manager (EbiContentMgmtDelegate), the context
object (EbiContext), the parent and child documents, and the child document version—all of which are
passed in as arguments.

public void addDocLink(
 EbiContentMgmtDelegate cmgr, EbiContext context,
 String linkParentDocID, String linkChildDocID, int linkChildVersionID)
 throws EboUnrecoverableSystemException, EboSecurityException,
EboItemExistenceException
 {
 EbiDocLink lnk = cmgr.addDocumentLink(
 context, linkParentDocID, linkChildDocID, linkChildVersionID);
 }

Updating a link with a new document version

This example presents a method called updateDocumentContentAndLink() that creates and publishes
a new version of a child document, then updates the link from the parent to point to the new version.

If a new version of the child document is published later, this link continues to point to the old version. A
link between parent and child must exist. If not, you need to use addDocumentLink() instead of
updateDocumentLink().

The updateDocumentContentAndLink() method needs to access a content manager
(EbiContentMgmtDelegate), the context object (EbiContext), the parent and child documents, document
content, and a MIME type—all of which are passed in as arguments:

Method Returns Description

addDocumentLink() EbiDocLink Adds a link between two documents. For the child
version ID argument, you can specify a specific
version or –1 to use the published version.

getDocumentLink() EbiDocLink Gets a link object, given the parent and child IDs.

removeDocumentLink() boolean Removes a link.

updateDocumentLink() void Allows you to change the version of the child
document the link uses.

getLinkChildDocuments()
and getFilteredLinkChild-
Documents()

Collection of
EbiDocument

Gets the link objects for the child documents that are
linked to the specified parent document. The filtered
version omits documents to which the current user
has no READ access. The unfiltered version gets all
documents regardless of access rights.

getLinkParentDocuments()
and getFilteredLinkParent-
Documents()

Collection of
EbiDocument

Gets the document objects for the parent documents
to which the specified child document is linked. The
filtered version omits documents to which the current
user has no READ access. The unfiltered version
gets all documents regardless of access rights.
Managing Documents 49

public void updateDocumentContentAndLink(
 EbiContentMgmtDelegate cmgr, EbiContext context,
 String linkParentDocID, String linkChildDocID,
 byte[] linkChildDocContent, String linkChildDocMimeType)
 throws EboUnrecoverableSystemException, EboSecurityException,
EboItemExistenceException
 {
 // Create a new version of the link child document
 int newVersionID = cmgr.checkinDocument(
 context, // Context
 linkChildDocID, // Docid of link child
 linkChildDocMimeType, // Mime type
 linkChildDocContent, // New content
 "new version", // Check-in comment
 false); // Whether to keep doc checked out

 // Publish it
 cmgr.publishDocumentContentVersion(
 context, linkChildDocID, newVersionID, true, true);

 // Now update the link to point to the new version
 cmgr.updateDocumentLink(
 context, // Context
 linkParentDocID, // Link parent docid
 linkChildDocID, // Link child docid
 newVersionID); // New version id
 }

Getting linked parent documents

This example presents a method called getLinkParentDocuments() that gets the parent documents that
are linked to a specified child.

By calling getFilteredLinkParentDocuments(), the code retrieves only documents to which the user has
READ access.

The getLinkParentDocuments() method needs to access a content manager (EbiContentMgmtDelegate),
the context object (EbiContext), and the child document of interest—all of which are passed in as
arguments:

public void getLinkParentDocuments(
 EbiContentMgmtDelegate cmgr, EbiContext context,
 String linkChildDocID)
 throws EboUnrecoverableSystemException, EboSecurityException,
EboItemExistenceException
 {
 Collection linkParentDocs = cmgr.getFilteredLinkParentDocuments(context,
linkChildDocID);
 System.out.println("Parent docs: " + linkParentDocs);
 }

Getting linked child documents

This example presents a method called getLinkChildDocuments() that gets the child documents that are
linked to a specified parent.

By calling getFilteredLinkChildDocuments(), the code retrieves only documents to which the user has
READ access.

The getLinkChildDocuments() method needs to access a content manager (EbiContentMgmtDelegate),
the context object (EbiContext), and the parent document of interest—all of which are passed in as
arguments.
50 exteNd Director Content Management Guide

public void getLinkChildDocuments(
 EbiContentMgmtDelegate cmgr, EbiContext context,
 String linkParentDocID)
 throws EboUnrecoverableSystemException, EboSecurityException,
EboItemExistenceException
 {
 Collection linkChildDocs = cmgr.getFilteredLinkChildDocuments(context,
linkParentDocID);
 System.out.println("Child docs: " + linkChildDocs);
 }

Modifying and publishing documents
The CM subsystem includes functionality that supports checkout, checkin, versioning, and publishing.

Much of the information in the CM subsystem is data about documents. However, when you start using
the checkout and checkin methods, you also get multiple versions of document content. Each time a
document is checked in, a new version is created. When a document is published, there is also a released
version of the content, which comes from the set of versions. You can continue creating new versions,
while the publicly available version remains stable.

The diagram that follows shows the relationship between an EbiDocument object, which holds the
document metadata, and its version objects. The content for each version is stored in an EbiDocVersion
object. When you select a version for publishing, that version’s content is copied to an EbiDocContent
object.

NOTE: It is important to remember that only the content has multiple versions. There is only one version
of the document’s metadata.

You might program portlets for source control and publishing to accomplish tasks like these:

Task Information

Add a new document to the
system

If the document is added with accompanying content, the system
creates a first version.

Check out a document When a user checks out the document, your portlet copies the
content to an appropriate editing environment.

Check in a document When the user checks in the document, the system creates a new
version.

Publish documents You might have a scheduled task that checks publish dates and
calls publishDocumentContentVersion() when a document’s publish
date is passed.
Managing Documents 51

Tracking document status

To find out if a document is published, you call the EbiDocument method getPublishStatus(). If it returns
null, then the document has no published content.

A publish date does not automatically reflect the time the document was published. It just indicates when
it should be published; for example, a publish date of null means publish immediately. However, your
publishing portlet can set the publish date if you want to track the date a document became available.

The document’s status field is available for your own document tracking. You can establish your own
application-specific set of status values and update the document’s status field to reflect its progress
through your document processing procedures. For example, you could specify submitted, reviewed,
approved, rejected, published, unpublished, archived, and purged as status values for your application.

Setting document status This example presents a method called setDocumentStatusToRejected()
that sets a document’s status to rejected—perhaps to indicate that the document has been rejected by a
content administrator and requires further changes before it can be published. Note that after setting
status, you must call the updateDocument() method for the change to take effect.

The setDocumentStatusToRejected() method needs to access a content manager
(EbiContentMgmtDelegate), the context object (EbiContext), and the document of interest—all of which
are passed in as arguments:

public void setDocumentStatusToRejected(
 EbiContentMgmtDelegate cmgr, EbiContext context, String docID)
 throws EboUnrecoverableSystemException, EboSecurityException,
EboItemExistenceException
 {
 EbiDocument doc = cmgr.getDocument(context, docID);
 doc.setStatus("rejected");
 cmgr.updateDocument(context, doc);
 }

Methods for source control and publishing

These methods of EbiContentMgmtDelegate are available for source control and publishing:

Unpublish documents You might have a scheduled task that removes a published version
when the expiration date has passed. The task might move the
document to an archive folder, purge it from the system, or set its
publish date so another version can be published later.

Review the checkin comments
for a document’s versions.

—

Method Returns Description

checkoutDocument() boolean Checks out a document to the current user (specified in
the context argument). This method locks the
document. To get the content for editing, use other
methods—such as getDocumentContentVersion().

checkinDocument() int Checks in a new version of the document with data for
the content. Only the user who checked out the
document can check it in. The user is implicit in the
context argument.

uncheckoutDocument() boolean Releases the lock set by the current user.

Task Information
52 exteNd Director Content Management Guide

Displaying documents
Portlets in your online application get a document’s metadata and content, retrieve linked content, and
use the associated layout styles to display the document to the user.

HTML content

If the content type of a document is HTML and it has no linked documents, the portlet might simply get
and set the content, as shown below:

EbiContentMgmtDelegate cm = null;
try {

cm =
com.sssw.cm.client.EboFactory.getDefaultContentMgmtDelegate();

} catch (EboFactoryException ebfe) {
throw new EboUnrecoverableSystemException(ebfe,
"Unable to get ContentManager");

}
try {

EbiDocument doc = (EbiDocument)
cm.lookupDirectoryEntry(context, "MyFolder/TDBDoc1",
EbiDocument.EL_DOCUMENT);
EbiDocContent content = cm.getContent(context, doc.getID(), true);
if (content != null)
{

 PrintWriter writer = response.getWriter();
byte [] html = content.getData();
String shtml = new String(html);
writer.print(shtml);

}

} catch (EboItemExistenceException eiee)
{

throw new EboUnrecoverableSystemException(eiee,
"Unable to get Content");

} catch (EboSecurityException ese)
{

throw new EboUnrecoverableSystemException(ese, "Security exception");
}

unlockDocument() boolean An administrative method that allows you to release a
document lock that was set by any user.

rollbackDocument-
Content()

void Rolls document content from the latest version back to
the specified one.

publishDocument-
ContentVersion()

void Publishes a specific version of the specified document.

getContent() EbiDocContent Gets the published content object for a document. You
can choose whether it includes the actual data. If it
does, get the byte array of data by calling getData() of
EbiDocContent.

getDocumentContent-
Version()

EbiDocVersion Gets a version of a document. You can choose whether
it includes the actual data. If it does, get the byte array
of data by calling getData() of EbiDocVersion.

unpublishDocument-
Content()

boolean Removes the published content for a document.

Method Returns Description
Managing Documents 53

XML content

If the content of a document is an XML String and it has no linked documents, the portlet could get the
content and the document layout (also as an XML String) and use the layout XSL to transform the XML.

This concept is illustrated in the displayContent() example method shown below. In this example,
methods in com.sssw.fw.util.EboXmlHelper convert a String to a DOM and apply an XSL transformation
to a DOM. The displayContent() method accesses a content manager (EbiContentMgmtDelegate), the
context object (EbiContext), and the document of interest—all of which are passed as arguments:

public void displayContent(
 EbiContentMgmtDelegate cmgr, EbiPortalContext context, String docID)
 throws EboUnrecoverableSystemException, EboSecurityException, EboItemExistenceException
 {
 EbiDocument doc = (EbiDocument)cmgr.lookupDirectoryEntry(
 context, "MyFolder/TDBDoc1", EbiDocument.EL_DOCUMENT);
 EbiDocContent doccnt = cmgr.getContent(context, doc.getID(), true);
 if (doccnt != null)
 {
 byte[] xml = doccnt.getData();
 EbiDocVersionDescriptor layoutver = cmgr.getDocumentLayout(
 context, docID, EbiContentMgmtDelegate.COMPARE_ALL, true);
 EbiDocVersion layoutcnt = cmgr.getDocumentContentVersion(
 context, layoutver.getDocumentID(), layoutver.getDocumentVersionID(), true);
 byte[] xsl = layoutcnt.getData();
 String sxml = new String(xml);
 String sxsl = new String(xsl);

 String content = EboXmlHelper.processXML(
 EboXmlHelper.getDOM(sxml), EboXmlHelper.getDOM(sxsl));
 // Set type according to results of xsl transformation
 response.setContentType(EbiPortletConstants.MIME_TYPE_HTML);
 // Use a PrintWriter to render
 writer.print(content);
 }
 }

Composite documents

A composite document could be constructed in many different ways. It is up to your portlet to gather the
pieces and put them together in an appropriate way. Typically, you would build an XML DOM for the
composite document and add elements for each piece. For a simpler composite document where the
pieces are HTML fragments, you might concatenate them into a larger HTML fragment.

To illustrate the process of building an XML DOM, suppose you are displaying a movie review, a
document of type Movie Review. The content of the movie review document is the text paragraphs of the
review. The document’s metadata provides the title, author, and other information specific to the Movie
Review type, such as genre, director, year of release, and cast. Child documents refer to an image of the
movie and cast biographies. To display all the data, the portlet builds an XML DOM of the pieces and
provides an XSL style sheet for display specifications.

You will want to plan an XML structure for defining the XSL and building the DOM in the portlet’s code.
You may want to formalize that structure in a DTD. The XML structure might look like this (shown
without closing tags):

<REVIEW>
<TITLE>
<AUTHOR>
<GENRE>
<DIRECTOR>
<CAST>

<CASTMEMBER>
<CASTPICTURE>
54 exteNd Director Content Management Guide

<BIO>
</CASTMEMBER>
<CASTMEMBER>

<CASTPICTURE>
<BIO>

</CASTMEMBER>
</CAST>
<CONTENT>

</REVIEW>

The coding steps might be:

1 Get the EbiDocument object.

2 Get the metadata you want displayed (such as title, author, director, and genre) and add elements
for each one. Element names might be TITLE, AUTHOR, and so on. The data values could be
attributes or text nodes of the elements.

3 Get the cast metadata and add a CAST element, with child CASTMEMBER elements for each one.

4 Get the content data. Add a CONTENT element for the review paragraphs (the document content)
and add the content data as a text node of the element.

5 Call getLinkChildDocuments() to get the linked child documents.

6 For each linked document, get the MIME type and other information to determine the document’s
purpose:

For an image from the film, add a MOVIEPICTURE element whose attributes have information
needed by the XSL to build an image link.

For a cast biography, find the corresponding CASTMEMBER element and add a child BIO
element. Depending on the page design, you could insert information to build a link or include
the paragraphs.

For a picture of a cast member, find the CASTMEMBER element and add a CASTPICTURE
element with information to build an image link.

7 When the XML DOM is complete, call methods of the context object to set the MIME type and the
content.
Managing Documents 55

56 exteNd Director Content Management Guide

4 Securing Content

This chapter describes how to use ACL-based security to authorize access to Content Management (CM)
subsystem elements. It has these sections:

About access control

ACL-based security

Methods for managing access control

Examples of adding ACLs

Example of handling a security exception

NOTE: Most of the security tasks described in this chapter can also be accomplished using the CMS
Administration Console.

For more information, see Chapter 19, “Managing Content Security”.

About access control

The CM subsystem supports ACL-based security, as described in “ACL-based security” on page 58. You
can specify access restrictions based on user ID or group membership on most objects in the CM
subsystem. You can use access restrictions to:

Prevent changes after your infrastructure of document types, folders, and categories has been set up

Prevent inadvertent deletion of objects

Protect documents or other objects from being seen by unauthorized users

CM user groups

A comprehensive security policy must set different permissions for different user roles. Typical roles in
the CM subsystem are:

When setting up users and groups for exteNd Director, you will want to consider how your users fall into
these roles and create appropriate groups. You can use those user IDs and groups to create ACLs that
implement your security. You might create a master ACL that you can get and reuse throughout the CM
subsystem.

Role Description

Author Has read and write access for documents; has read, write, and list access for
folders and categories.

Publisher Has publish access for documents; has list access for folders and categories.

Administrator Has all access rights to all objects. Users are considered administrators when the
ACL assigned to the EbiContentAdmin interface gives them at least one of the
permissions. See “ContentAdmin group” on page 59.
Securing Content 57

You can set up users and groups using the Director Administration Console (DAC).

For more information, see the chapter on using the Directory section of the DAC in the User
Management Guide.

ACL-based security
You specify access restrictions on CM objects by using an access control list (ACL). To provide support
for ACLs, exteNd Director implements the java.security.acl.Acl interface. Each of the securable elements
has a set of supported access right types, or permissions. The supported permissions are defined as String
constants in each object’s interface.

This section describes using ACLs to specify access restrictions on CM objects.

For general information about using ACLs in exteNd Director applications, see the chapter on
ACL-based security in the User Management Guide

Permissions

The permissions defined for the CM subsystem include:

Element types and associated permissions

The table that follows lists the subsystem securable element types (not including some securable
superinterfaces) and permissions they support:

Permission Description

PROTECT Allows the users and groups in the ACL to change permissions on the object.

READ Allows the users and groups in the ACL to view the object or get the metadata for an
object.

WRITE Allows the users and groups in the ACL to make changes to the object, by updating the
object programmatically or by checking in a new version of a document. A user who
has been denied WRITE access cannot check out a document.

LIST Allows the users and groups in the ACL to view a list of the objects that this object
contains. This includes the documents and subfolders of a folder, the documents and
subcategories of a category, and the documents associated with a document type.

PUBLISH For documents, allows the users and groups in the ACL to change the published status
of the document. They can publish it and remove it from the published area.

Object Access right types

EbiContentAdmin PROTECT, READ, WRITE

EbiDocType PROTECT, READ, WRITE, LIST

EbiDocField PROTECT, READ, WRITE

EbiDocCategory PROTECT, READ, WRITE, LIST

EbiDocFolder PROTECT, READ, WRITE, LIST

EbiDocument PROTECT, READ, WRITE, PUBLISH

EbiDocLayoutStyle PROTECT, READ, WRITE
58 exteNd Director Content Management Guide

usSecurityACL.html
usPACDirectory.html

ContentAdmin group

The EbiContentAdmin interface represents the built-in content administrator group. Users added to this
group have specified access to subsystem management and administration. Here are the available
permissions:

Methods for managing access control
The EbiContentMgmtDelegate interface provides access to most of the security-related methods in the
CM subsystem.

Accessing ACLs for existing elements

These methods of EbiContentMgmtDelegate let you set security for objects:

EbiLayoutDocDescriptor PROTECT, READ, WRITE

Permission Description

PROTECT Set ACLs for the ContentAdmin type.

READ Get subsystem elements (folders, categories and documents) in the CM subsystem

WRITE Add subsystem elements to the CM subsystem

Method Returns Description

getAcl() java.security.acl.-Acl Gets the ACL for a securable element: category, field,
folder, layout style, layout document descriptor,
document type, or document.

setAcl() void Assigns an ACL to a securable element.

removeAcl() boolean for success Removes the ACL currently set for an element.

isAuthorized() boolean Checks whether the user identified in the context
object is authorized for the specified type of access
for an object.

getAllAccessible() Collection From a list of securable elements, filters out the ones
that are accessible to the user whose context is
passed in.

getAdminElement() EbiContentAdmin Gets the Content Admin element holding the ACL that
identifies the users and groups that have
administrator access to content objects.

See “Accessing ACLs for ContentAdmin” on
page 60.

hasAdminAccess() boolean This is a shortcut for isAuthorized() and is invoked
with a reference to the Content Admin element.

Object Access right types
Securing Content 59

../javadoc/com/sssw/cm/api/EbiContentMgmtDelegate.html

Specifying ACLs for new elements

For securable elements, you can specify an ACL when you create the object. It is an argument of the
object’s add method on the EbiContentMgmtDelegate — addDocument(), addFolder(), and so on.

For a code example, see “Examples of adding ACLs” on page 61.

Inheriting ACLs

For the following objects: if you don’t specify an ACL when you create them, the settings of their
containers are copied to the new object:

After the object is created, there is no further connection to the container’s ACL. Changes to a container’s
ACL have no effect on the contained objects.

For other object types: if you don’t specify an ACL, they have an empty ACL.

Accessing ACLs for ContentAdmin

These methods on EbiContentAdmin allow you to access ACLs for the ContentAdmin group:

Restricting element access to administrators

You can restrict access for any CM element to Content Admin users using the setRestrictedAccess()
method. Specify the permission you want to restrict. For example, if you restrict access to a folder for the
WRITE permission, only members of the ContentAdmin group have WRITE access to the element.

NOTE: The restricted access right takes precedence over any other ACL associated with the restricted
element.

Here are the related methods on the EbiSecurityManager interface:

New Copy the ACL of their

Folders Parent folder

Documents Folder

Layout descriptors Layout style

Method Returns Description

getAcl() java.security.acl.-Acl Gets the ACL currently set for the ContentAdmin
element.

setAcl() void Assigns an ACL to the Content Admin element.

removeAcl() boolean for success Removes the ACL currently set for the Content Admin
element.

isUserAuthorized() boolean Checks if the current user is listed in the Content
Admin ACL.

Method Returns Description

setRestrictedAccess() boolean for
success

Restricts specified access for an element to system
administrators

check RestrictedAccess() boolean Checks whether an element has restricted access
60 exteNd Director Content Management Guide

../javadoc/com/sssw/cm/api/EbiContentAdmin.html
../javadoc/com/sssw/fw/security/api/EbiSecurityManager.html

Examples of adding ACLs
This example presents a method called demonstrateSecurity() that illustrates the following techniques:

Adding READ access to the ContentAdmin element associated with a principal (the identity
assigned to a user as a result of authentication)

Adding a folder with an ACL

Adding a folder with no ACL

NOTE: In this case the folder inherits the ACL from its parent.

Adding an ACL to an existing folder

The demonstrateSecurity() method needs to access a content manager (EbiContentMgmtDelegate), the
context object (EbiContext), and a principal—all of which are passed in as arguments:

public void demonstrateSecurity(
 EbiContentMgmtDelegate cmgr, EbiContext context,
 Principal principal)
 throws
 EboUnrecoverableSystemException, EboSecurityException, EboItemExistenceException,
EboFactoryException, NotOwnerException
 {
 EboPermission readPerm = EboPermission.getPermission(
 context.getEbiSession(), EboPermission.READ);
 EboPermission writePerm = EboPermission.getPermission(
 context.getEbiSession(), EboPermission.WRITE);

 // Add READ access to the Content Admin element to the passed-in principal
 EbiContentAdmin adminElement = cmgr.getAdminElement(context);
 Acl admAcl = cmgr.getAcl(context, adminElement);
 AclEntry aclEntry = com.sssw.fw.factory.EboFactory.getAclEntry();
 aclEntry.setPrincipal(principal);
 aclEntry.addPermission(readPerm);
 admAcl.addEntry(principal, aclEntry);
 cmgr.setAcl(context, adminElement, admAcl);

 // Add a folder with an ACL
 Acl acl = com.sssw.fw.factory.EboFactory.getAcl();
 aclEntry = com.sssw.fw.factory.EboFactory.getAclEntry();
 aclEntry.setPrincipal(principal);
 aclEntry.addPermission(readPerm);
 aclEntry.addPermission(writePerm);
 cmgr.addFolder(
 context,
 cmgr.getRootFolder(context),
 "Movie Reviews",
 EbiDocFolder.DIR_TYPE_DEFAULT,
 "Folder for movie reviews",
 acl);

 // Add a folder with no ACL -- it will inherit the ACL
 // from its parent folder (if there is an ACL set on the parent)
 EbiDocFolder frFolder = cmgr.addFolder(
 context,
 cmgr.getRootFolder(context),
 "Financial Reports",
 EbiDocFolder.DIR_TYPE_DEFAULT,
 "Folder for financial reports",
 null);

 // This code adds an ACL to an existing folder.
 cmgr.setAcl(context, frFolder, acl);
 }
Securing Content 61

Example of handling a security exception
This example presents a method called demonstrateHandleExceptions() that illustrates how to handle
a security exception (and other exceptions as well).

This code publishes version 2 of a document whose ID is assigned to the variable docid. The
publishDocumentContentVersion() method will throw an EboSecurityException if the user is not
allowed to publish the specified document. This example handles the exception by adding an error
message to the context object. The portlet can then include the error message in its generated content so
the user knows what went wrong.

The demonstrateHandleExceptions() method needs to access a content manager
(EbiContentMgmtDelegate), the context object (EbiContext), and the document of interest—all of which
are passed in as arguments.

public void demonstrateHandleExceptions(
 EbiContentMgmtDelegate cmgr, EbiContext context, String docID)
 {
 try
 {
 cmgr.publishDocumentContentVersion(context, docID, 2, true, true);
 }
 catch (EboSecurityException se)
 {
 se.printStackTrace();
 String msg = "Security violation: " + se.toString();
 context.setValue("error", "User does not have access. " + msg);
 }
 catch (EboUnrecoverableSystemException use)
 {
 use.printStackTrace();
 String msg = "Unrecoverable exception: " + use.toString();
 context.setValue("error", msg);
 }
 catch (EboItemExistenceException iee)
 {
 iee.printStackTrace();
 String msg = "Item existence exception: " + iee.toString();
 context.setValue("error", msg);
 }
 }
}

62 exteNd Director Content Management Guide

5 Managing Tasks

This chapter describes how tasks work in the Content Management (CM) subsystem and explains how to
reconfigure installed tasks and write and implement custom tasks. It contains the following sections:

About tasks

About how tasks are registered and configured

Customizing an installed task

Creating and implementing a new task

Custom task sample code

Working with task events

You also can use the CMS Administration Console to manage tasks. For more information, see
Chapter 21, “Administering Automated Tasks”.

About tasks
An exteNd Director task is a background job or process that you can configure to run at a specified time
or specified times. Typically, a task carries out a specific CM operation, such as publishing documents.

Using tasks A task must be enabled before it can be used in a deployed exteNd Director application.
A list of enabled tasks appears in the Task section of the CMS Administration Console. You can start and
stop the tasks that appear in this list while an application is running

Types of tasks There are two types of exteNd Director tasks: periodic and scheduled. Periodic tasks
are configured to run at regular intervals (specified in milliseconds). Scheduled tasks are configured to
run at specific dates and times. A task can be scheduled, periodic, or both.

Installed tasks

The following tasks are installed with the CM subsystem:

Task name Description

publish Publishes a specified set of documents.

expire Expires a specified set of documents.

janitor Removes a specified set of documents.

synch Synchronizes CM data with the Search subsystem engine, which by default is based on
the Autonomy Dynamic Reasoning Engine (DRE); updates to CM data are propagated
to the DRE.

NOTE: The synch task appears in the Task section only when the CM subsystem’s
Search synchronization mode is set to batch. In immediate synchronization mode, the
CM subsystem automatically performs search synchronization operations.
Managing Tasks 63

Configurability These installed tasks are highly configurable (in a set of three XML files) and can be
adjusted to meet the specific needs of your application. For example, you might provide a task such as
the publisher or the janitor with a query that defines the scope of its operation. Such a query would
specify the set of documents on which the task was to operate.

For information on which files you need to edit to reconfigure an installed task, see “About how
tasks are registered and configured” on page 64. For an example, see “Customizing an installed task” on
page 66.

Custom tasks

You may not be able to meet the needs of some applications just by reconfiguring the installed tasks. In
such cases you can also create new, application-specific tasks.

When you create a task, you:

Register its type, name, description, and configuration information

Create Java classes to provide the task’s functionality and register these classes.

 For information on the files you need to edit to register and configure a new task—and register the
Java classes you create for it, see “About how tasks are registered and configured” next.

About how tasks are registered and configured
Tasks—and the Java classes associated with them—are registered and configured in three XML files in
your project’s library/ContentMgmtService/ContentMgmtService.spf/ContentMgmtService-conf
directory:

tasktypes.xml

The entries in tasktypes.xml establish the name and description of each task and identify each task as
either periodic or scheduled (or both). The structure of this file must conform to framework-task-
type_3_0.dtd in your project’s library/FrameworkService/FrameworkService.spf/DTD directory.

Here is an excerpt from tasktypes.xml, showing how the file is structured and how the default, synch,
and publish installed tasks are initially defined:

<framework-task-types>
<!-- PERIODIC TASK TYPES -->
 <periodic>
 <task-type>
 <type-name>default</type-name>

default For debugging and demonstration purposes. This task is not automatically implemented
in a deployed application.

XML file What it does

tasktypes.xml Establishes the names and descriptions of tasks and identifies them as
periodic or scheduled

Default_tasklist.xml Configures tasks

services.xml Associates tasks (and other exteNd Director functions) with their respective
Java classes

Task name Description
64 exteNd Director Content Management Guide

 <type-descr>The Default Periodic Task</type-descr>
 </task-type>
 <task-type>
 <type-name>synch</type-name>
 <type-descr>Periodic CM/Search Engine Synchronization Task</type-descr>
 </task-type>
 <task-type>
 <type-name>publish</type-name>
 <type-descr>Periodic Document Publish Task</type-descr>
 </task-type>
 ...
 </periodic>
<!-- SCHEDULED TASK TYPES -->
 <scheduled>
 ...
 </scheduled>
</framework-task-types>

Default_tasklist.xml

The entries in Default_tasklist.xml configure each task in conformance with contentmgmt-task-
list_3_0.dtd in your project’s library/ContentMgmtService/ContentMgmtService.spf/DTD directory.

Here is an excerpt from Default_tasklist.xml showing how the file is structured and how the periodic-
publish task is configured:

<contentmgmt-task-list>
 ...
 <periodic-publish>
 <task-name>Default Repository Document Publish</task-name>
 <description>The Default Repository Document Publish Task</description>
 <since-last>false</since-last>
 <enabled>true</enabled>
 <interval>
 <millis>86400000</millis>
 <exact>false</exact>
 </interval>
 <do-all-not-yet-published>false</do-all-not-yet-published>
 <do-all-unpublished>false</do-all-unpublished>
 <do-all-ready>false</do-all-ready>
 <force-publish>false</force-publish>
 </periodic-publish>
 ...
</contentmgmt-task-list>

Naming convention Note that the tag name for the periodic-publish task is constructed from its type
(periodic) and its name (publish) as defined in tasktypes.xml, connected by a hyphen. This is a required
naming convention for the Default_tasklist.xml file.

Enabling or disabling a task Note that to enable a task, you set the content of the <enabled> tag to
true. To disable a task, you set this value to false.

services.xml

The services.xml file includes entries that associate tasks (and other exteNd Director functions) with their
respective Java classes. The structure of this file must conform to framework-services_3_0.dtd in your
project’s library/FrameworkService/FrameworkService.spf/DTD directory.

Here is an excerpt from services.xml showing how the periodic-publish task is handled:

<service>
<interface>com.sssw.cm.periodic-publish</interface>
Managing Tasks 65

<impl-class>com.sssw.cm.task.impl.EboDocPeriodicPublishTask</impl-class>
<description>Periodic CM Document Publish Task</description>
<max-instances>0</max-instances>
<startup>M</startup>
<namespaced>false</namespaced>
</service>

Graphical view exteNd Director also provides a graphical view of this file where you can add new
entries.

New tasks only You will need to add new entries to services.xml only if you create new tasks.

Customizing an installed task
You customize an installed task by editing its configuration in the Default_tasklist.xml file.

In the following example, a document query has been added to the definition of the periodic-publish task.
The query is specified in the <content-search> element.

The added code (shown in bold) configures the periodic-publish task to publish all documents whose
STATUS has been set to Reviewed:

<periodic-publish>
 <task-name>Default Repository Document Publish</task-name>
 <description>The Default Repository Document Publish Task</description>
 <since-last>false</since-last>
 <enabled>true</enabled>
 <interval>
 <millis>86400000</millis>
 <exact>false</exact>
 </interval>
 <do-all-not-yet-published>false</do-all-not-yet-published>
 <do-all-unpublished>false</do-all-unpublished>
 <do-all-ready>false</do-all-ready>
 <force-publish>false</force-publish>
 <content-search>
 <where-clause>
 <eq>
 <var>STATUS</var>
 <val>Reviewed</val>
 </eq>
 </where-clause>
 </content-search>
</periodic-publish>

For a complete description of the elements and values you can use to construct a document query
within a task’s definition, see the definition of the <content-search> element in contentmgmt-task-
list_4_0.dtd.

Need to redeploy You must redeploy your application EAR for any task configuration changes to
take effect.
66 exteNd Director Content Management Guide

Creating and implementing a new task
The following procedure is based on the example of creating a new task named new-doc-notifier that
checks for new documents and notifies a list of recipients about the new documents by e-mail.

To create and implement a new task:

1 Register your task type.

To do so, modify the tasktypes.xml file. You can register the task as scheduled, periodic, or both
scheduled and periodic. In this example, the new task is periodic:

<periodic>

 <task-type>
 <type-name>new-doc-notifier</type-name>
 <type-descr>Periodic CM task for notifying of any new documents.</type-
descr>
 </task-type>

2 Register your task in the tasklist.

To do so, add a new element to the Default_tasklist.xml file:
<periodic-new-doc-notifier>
 <task-name>New Document Notifier</task-name>
 <description> Periodic CM task for notifying of any new
documents.</description>
 <since-last>false</since-last>
 <enabled>true</enabled>
 <interval>
 <millis>86400000</millis>
 <exact>false</exact>
 </interval>
 <!-- any other XML that is specific to the custom task goes here... -->
 <!-- for instance, there may be a node here defining the list of email
recipients. -->
 <recipients>
 <recipient>user@myco.com</recipient>
 <recipient>user2@myco.com</recipient>
 <recipient>user3@myco.com</recipient>
 </recipients>
 <mail-smtp-host>smtp_host@myco.com</mail-smtp-host>
 <subject>New documents have been added</subject>
 <text>The following new documents have been added:</text>
</periodic-new-doc-notifier>

Naming convention Note that the name of the XML tag surrounding the task definition
(<periodic-new-doc-notifier>) must be constructed from the task’s type (periodic or
scheduled) and the task’s name in Default_tasklist.xml. This naming convention is required.

3 Write Java classes for the new task.

The generic exteNd Director task management API is provided in the com.sssw.fw.task.api
package. This package contains very general interfaces for tasks, task types, and task management:

EbiTask

EbiScheduledTask

EbiPeriodicTask

EbiTaskType

EbiTaskManager

The CM subsystem subclasses those interfaces in its own task management package
(com.sssw.cm.task.api). It provides its own EbiTask and EbiTaskManager along with
EbiTaskMgmtDelegate, all three of which should be used for managing tasks. This package also
contains generic interfaces for document publishing, expiration, removal, and synchronization
between the CM subsystem and the Search subsystem engine.
Managing Tasks 67

When writing your own custom task, you should implement one of the following interfaces:

com.sssw.fw.task.api.EbiPeriodicTask

com.sssw.fw.task.api.EbiScheduledTask

In the code for the new-doc-notifier example, the NewDocumentNotifier class extends
com.sssw.cm.task.impl.EboTask and encapsulates the details of the task’s duties and how they are
carried out. The PeriodicNewDocumentNotifier class is the periodic subclass of the
NewDocumentNotifier class.

For a complete listing of the Java code for the new-doc-notifier example, see “Custom task
sample code” on page 68.

4 Register the new task’s Java class.

To do so, add an entry to the services.xml file under <!-- Task management related objects
-->:

<!-- Periodic tasks -->
........................
 <service>
 <interface>com.myco.cmtask.api.periodic-new-doc-notifier</interface>
 <impl-class>com.myco.cmtask.impl.PeriodicNewDocumentNotifier</impl-class>
 <description>The periodic new document notifier class.</description>
 <max-instances>0</max-instances>
 <startup>M</startup>
 </service>

Naming convention Note that in order for the object to be factoried and instantiated correctly,
the interface naming should correspond to the task kind and type. For example, periodic and new-
doc-notifier map to periodic-new-doc-notifier in the <interface> node value.

5 Prepare for your custom task to be loaded and instantiated correctly:

5a Place your custom task class or classes into a separate JAR.

5b Add the JAR to your exteNd Director EAR.

5c In the PMC WAR of your application, add the custom class JAR to the Class-Path section of
the META-INF/MANIFEST.MF file.

This ensures that class loading works correctly and that users can manage the custom tasks in
the Task section of the CMS Administration Console.

6 Build and deploy your application.

7 Start the task:

7a In a browser window, launch the CMS Administration Console and log in.

7b Click the Tasks button to enter Tasks mode.

7c In the Tasks Pane, click to select your task and then click the Start button.

TIP: To stop a task, click the Stop button.

Custom task sample code
This section provides a listing of the Java code for the NewDocumentNotifier class discussed in Step 3
above.

This section also includes the code for the PeriodicNewDocumentNotifier class, which is the periodic
subclass of the NewDocumentNotifier class.
68 exteNd Director Content Management Guide

NewDocumentNotifier
package com.myco.cmtask.impl;

// Java imports
import java.io.*;
import java.sql.Timestamp;
import java.util.*;
import javax.mail.*;
import javax.mail.internet.*;
import javax.activation.*;

// FW imports
import com.sssw.fw.api.*;
import com.sssw.fw.exception.*;
import com.sssw.fw.log.*;
import com.sssw.fw.task.exception.*;
import com.sssw.fw.util.*;

// CM imports
import com.sssw.cm.api.*;
import com.sssw.cm.factory.*;
import com.sssw.cm.task.api.*;
import com.sssw.cm.task.impl.EboTask;

// Other imports
import org.w3c.dom.*;

abstract public class NewDocumentNotifier extends EboTask
{
 //
 // Constants
 //

 protected static final String RECIPIENTS = "recipients";
 protected static final String RECIPIENT = "recipient";
 protected static final String SMTP_HOST = "mail-smtp-host";
 protected static final String SUBJECT = "subject";
 protected static final String TEXT = "text";
 protected static final String SENDER = "sender";
 protected static final String NEWLINE = "\n";
 protected static final String MAIL_SMTP_HOST = "mail.smtp.host";
 protected static final String LINE_SEPARATOR = "line.separator";

 // These actually belong in a resource bundle...
 protected static final String ERROR = "An error occurred while executing the
New Document Notifier task.";
 protected static final String DEFAULT_SUBJECT = "New documents have been
added";
 protected static final String DEFAULT_TEXT = "The following documents have
been added:";
 protected static final String DEFAULT_SENDER = "notifier@myco.com";
 protected static final String LOCATION = "Location: ";
 protected static final String TITLE = "Title: ";
 protected static final String AUTHOR = "Author: ";

 //
 // Member variables
 //

 protected EbiLog m_log; // Our log
 protected ArrayList m_recipients; // Notification recipients
 protected String m_smtpHost; // SMTP host
 protected String m_subject; // Message subject
 protected String m_text; // Message text
 protected String m_sender; // Sender
 protected String m_lineSep; // Line separator
Managing Tasks 69

 // Constructor
 public NewDocumentNotifier()
 {
 // Use the CM log
 m_log = EboLogFactory.getLog(EboLogFactory.CM);

 m_recipients = new ArrayList();

 m_subject = DEFAULT_SUBJECT;

 m_text = DEFAULT_TEXT;

 m_sender = DEFAULT_SENDER;
 }

 // Initialization from XML
 public void fromXML(Node node)
 {
 // Rely on the superclass to get all the general task

// settings
 super.fromXML(node);

 try
 {
 NodeList nodes = node.getChildNodes();
 if (nodes != null)
 {
 // Process the nodes
 for (int i = 0; i < nodes.getLength(); i++)
 {
 Node child = nodes.item(i);
 String nodeName = child.getNodeName();

 if (child.getNodeType() == Node.ELEMENT_NODE)
 {
 // Recipient list
 if (RECIPIENTS.equals(nodeName))
 processRecipientList(child);

 // SMTP host
 else if (SMTP_HOST.equals(nodeName))
 m_smtpHost = getElementValue(child);

 // Message subject
 else if (SUBJECT.equals(nodeName))
 m_subject = getElementValue(child);

 // Base message text
 else if (TEXT.equals(nodeName))
 m_text = getElementValue(child);

 // Sender
 else if (SENDER.equals(nodeName))
 m_sender = getElementValue(child);
 }

 } // End for each node
 }
 }
 catch (Exception ex)
 {
 EboExceptionHelper.handleException(
 ex, // The exception
 m_log, // Our log to write exception into
 false, // Don’t print stack trace to console
70 exteNd Director Content Management Guide

 false); // Don’t rethrow as a runtime exception
 }
 }

 // Process the list of recipients provided in the XML task definition
 protected void processRecipientList(Node node)
 {
 NodeList nodes = node.getChildNodes();
 if (nodes != null)
 {
 // Process the nodes
 for (int i = 0; i < nodes.getLength(); i++)
 {
 Node child = nodes.item(i);

 if (child.getNodeType() == Node.ELEMENT_NODE)
 {
 String nodeName = child.getNodeName();
 if (RECIPIENT.equals(nodeName))
 {
 String recipient = getElementValue(child);
 if (!EboStringMisc.isEmpty(recipient))
 m_recipients.add(recipient);
 }
 }
 }
 }
 }

 // Extract a node value from a Node
 public static String getElementValue(Node node)
 {
 // Entities are often considered separate text nodes;

 // for example, Jim's wagon is represented by three
 // text nodes "Jim", "'",and "s wagon". Thus all
 // children need to be concatenated in order to retrieve
 // the proper text node value.

 String nodeValue;
 if (node.hasChildNodes())
 {
 Node curNode = node.getFirstChild();
 nodeValue = EboStringMisc.m_emptyStr;
 while (curNode != null)
 {
 nodeValue = nodeValue + curNode.getNodeValue();
 curNode = curNode.getNextSibling();
 }
 }
 else
 nodeValue = EboStringMisc.m_emptyStr;
 return nodeValue;
 }

 // Carry out the task
 public void doTask() throws EboTaskException
 {
 try
 {
 super.doTask();

 EbiContentManager cmgr = EboFactory.getDefaultContentManager();
 EbiDocQuery query =
(EbiDocQuery)cmgr.createQuery(EbiDocQuery.DOC_QUERY);

 // If we're to only get the data that's changed since
Managing Tasks 71

 // The time that the task was last run
 if (getSinceLast())
 {
 // Figure out the start of the interval
 Timestamp fromTime = getFromTime();

 // Figure out the end of the interval
 Timestamp toTime = new Timestamp((new Date()).getTime());

 EbiQueryExpression expr = null;
 EbiQueryExpression expr2 = null;

 // Augment the where clause with the time interval
 if (fromTime != null)
 expr = query.whereCreateDate(fromTime,
EbiDocQuery.ROP_GREATER, false);
 if (toTime != null)
 expr2 = query.whereCreateDate(toTime, EbiDocQuery.ROP_LEQ,
false);

 // Set the augmented where clause into the query
 if (expr != null && expr2 != null)
 {
 expr.andExpression(expr2);
 query.setWhere(expr);
 }
 }
 // Otherwise, we'll process all the documents

 // Get the list of documents
 Collection documents = cmgr.findElementsFiltered(m_context, query);

 // Send the e-mail notifications
 sendNotifications(documents);
 }
 catch (Exception ex)
 {
 throw new com.sssw.fw.task.exception.EboTaskException(ex, ERROR);
 }
 }

 // Send the e-mail notifications to our recipients
 protected void sendNotifications(Collection documents)
 throws EboUnrecoverableSystemException, EboSecurityException,
 MessagingException
 {
 if (!documents.isEmpty())
 {
 String msgText = getEmailMessageBody(documents);

 // For each recipient
 for (int i = 0; i < m_recipients.size(); i++)
 {
 String recipient = (String)m_recipients.get(i);
 send(
 m_sender, // From
 recipient, // To
 m_smtpHost, // Host
 m_subject, // Subject
 msgText); // Yext
 }
 }
 }

 // Generate an e-mail
 // "The following documents have been added:
72 exteNd Director Content Management Guide

 //
 // <doc 1>
 // <doc 2>
 //
 // <doc N>"
 protected String getEmailMessageBody(Collection documents)
 throws EboUnrecoverableSystemException, EboSecurityException
 {
 String lineSeparator = getLineSeparator();
 StringBuffer buf = new StringBuffer(m_text);
 buf.append(lineSeparator);
 buf.append(lineSeparator);

 Iterator iter = documents.iterator();
 while (iter.hasNext())
 {
 EbiDocument doc = (EbiDocument)iter.next();
 buf.append(getDocumentDescriptor(doc));
 buf.append(lineSeparator);
 buf.append(lineSeparator);
 }

 return buf.toString();
 }

 // Send an e-mail
 protected static void send(
 String from,
 String to,
 String host,
 String subject,
 String msgText)
 throws MessagingException
 {
 Properties props = System.getProperties();
 props.put(MAIL_SMTP_HOST, host);
 Session session = Session.getDefaultInstance(props, null);

 // Create a message
 Message msg = new MimeMessage(session);
 msg.setFrom(new InternetAddress(from));
 InternetAddress[] address = { new InternetAddress(to) };
 msg.setRecipients(Message.RecipientType.TO, address);
 msg.setSubject(subject);
 msg.setSentDate(new Date());
 msg.setText(msgText);
 Transport.send(msg);
 }

 // Generate a document descriptor
 // Location: <...>
 // Title: <...>
 // Author: <...>
 protected String getDocumentDescriptor(EbiDocument doc)
 throws EboUnrecoverableSystemException, EboSecurityException
 {
 String lineSeparator = getLineSeparator();
 StringBuffer buf = new StringBuffer(LOCATION);
 buf.append(doc.getURL(false));
 buf.append(lineSeparator);
 buf.append(TITLE);
 buf.append(doc.getTitle());
 buf.append(lineSeparator);
 buf.append(AUTHOR);
 buf.append(doc.getAuthor());
 return buf.toString();
Managing Tasks 73

 }

 // Figure out the line separator to use
 protected String getLineSeparator()
 {
 if (m_lineSep == null)
 m_lineSep = System.getProperty(LINE_SEPARATOR, NEWLINE);
 return m_lineSep;
 }

 abstract protected Timestamp getFromTime();
}

PeriodicNewDocumentNotifier
package com.myco.cmtask.impl;

// Java imports
import java.sql.Timestamp;

// Framework imports
import com.sssw.fw.task.api.*;
import com.sssw.fw.task.impl.*;

// CM imports
import com.sssw.cm.api.*;
import com.sssw.cm.task.api.*;

// Other imports
import org.w3c.dom.*;

public class PeriodicNewDocumentNotifier
 extends NewDocumentNotifier
 implements EbiPeriodicTask
{
 //
 // Protected data
 //

 protected long m_interval; // Interval, if any
 protected boolean m_exact; // Run asap or x millis after

 // current time

 //
 // Constructor
 //

 public PeriodicNewDocumentNotifier()
 {
 }

 public boolean isExact()
 {
 return m_exact;
 }

 public long getInterval()
 {
 return m_interval;
 }

 public void setExact(boolean exact)
 {
 m_exact = exact;
 }

74 exteNd Director Content Management Guide

 public void setInterval(long millis)
 {
 m_interval = millis;
 }

 public void fromXML(Node node)
 {
 super.fromXML(node);
 EboTaskHelper.getPeriodicDataFromXML(this, node);
 }

 public String toString()
 {
 return super.toString() +
 ", Interval (millis)=" + m_interval +
 ", Exact=" + m_exact;
 }

 protected Timestamp getFromTime()
 {
 // For an interval-based task, the 'from' time is 'none' if
 // the task has not run once yet; otherwise it's
 // task_first_scheduled_time + interval*times_task_ran
 return (m_timesRan < 1) ? null :
 new Timestamp(
 m_launchTime.getTime() + m_interval * (m_timesRan - 1));
 }
}

Working with task events
Task events are an extension of the exteNd Director event model framework, consisting of state change
events, event producers, and event listeners (including vetoable listeners). This section includes these
topics:

Task event types

Registering for a task event

Enabling or disabling a task event

This section assumes familiarity with exteNd Director event model and event handling. For more
information, see the section on working with events in Developing exteNd Director Applications.

Task event types

The API defines a set of state change events related to task management operations. Event IDs are
exposed on the individual event classes as well as on the com.sssw.fw.task.event.api.EbiConstants
interface:

Task operation Event ID constant

Task added EVENT_ID_TASK_ADDED

Task completed EVENT_ID_TASK_COMPLETED

Task disabled EVENT_ID_TASK_DISABLED

Task enabled EVENT_ID_TASK_ENABLED

Task failed EVENT_ID_TASK_FAILED

Task started EVENT_ID_TASK_STARTED
Managing Tasks 75

cdEventHandling.html

Generic state change events In addition, there are generic state change constants representing
types of changes defined in com.sssw.fw.event.api.EboStateChangeEvent.

Registering for a task event

To register a task event listener:

Use either the addStateChangeListener() or the addVetoableStateChangeListener method on the
task manager object (com.sssw.cm.task.api.EbiTaskMgmtDelegate).

You can register for a specified type or types of events using this version of addStateChangeListener():

public boolean addStateChangeListener(
 BitSet events, EbiStateChangeListener listener)

where events is a bit set of event IDs.

Use the event IDs specified in com.sssw.fw.event.api.EbiConstants. For example, this code registers for
the task started, stopped, and completed operations:

EbiTaskMgmtDelegate tmgr = new EbiTaskMgmtDelegate();
EbiStateChangeListener listener = new EbiStateChangeListener();
// Instantiate a Java BitSet and populate it
BitSet events = new BitSet();
events.set(EbiConstants.EVENT_ID_TASK_STARTED);
events.set(EbiConstants.EVENT_ID_TASK_STOPPED);
events.set(EbiConstants.EVENT_ID_TASK_COMPLETED);
// add listener
tmgr.addStateChangeListener(events, listener);

Enabling or disabling a task event

To enable or disable task events:

1 Open the config.xml for the Framework subsystem in your exteNd Director project.

2 Find this property:
com.sssw.fw.task.events.enable

3 Set the value to true for enable or false for disable.

4 Redeploy your project.

Task stopped EVENT_ID_TASK_STOPPED

Tasks listed EVENT_ID_TASKS_LISTED

Task operation Event ID constant
76 exteNd Director Content Management Guide

locator cdLocator.html#Frameworksubsystemconfiguration file

6 Managing Content Caching

This chapter describes caching in the Content Management (CM) subsystem and includes these topics:

About caching in CM

Summary of CM caching information

Controlling caching in the DAC

About caching in CM
Several CM elements are cached by default while an exteNd Director application is running. Caching can
increase the efficiency of an application (because the application makes fewer SQL queries of the
database).

For most of these elements, you can configure your exteNd Director EAR to override the default settings
for caching.

NOTE: If you make any changes to the caching settings, you must redeploy your exteNd Director EAR
for the changes to take effect.

Summary of CM caching information

Caching behavior

The table below provides the following information on caching behavior for several elements of
documents in the CM subsystem:

Element—The name of the CM element

CM API object name—The com.sssw.cm.api interface name that corresponds to the CM element

CM cache holder used—The name of the cache holder used for the element

Default behavior—The default caching behavior for the element

Setting in the CM config.xml file—The setting to change to alter the default behavior
Managing Content Caching 77

For information, see the section on reconfiguring your EAR project in Developing exteNd
Director Applications.

Caching of folders, categories, and document metadata

Folders, categories, and document metadata, when cached, are cached by both UUID and URL.

Document metadata is always cached.

About document content and versions

Document contents and versions of document content are not cached, because some cached content
might require excessively large amounts of memory.

Controlling caching in the DAC
Another place you can control the caching process is on the Cache tab of the Configuration section of the
DAC. For example, you can flush a single cache or all caches at once. This can be helpful when you are
doing diagnostic work on a running exteNd Director application.

For more information on controlling caching in the DAC, see the discussion of the Cache tab in
Developing exteNd Director Applications.

Element
CM API object
name CM cache holder used

Default
behavior Setting in CM config.xml

Extension metadata
fields

EbiDocField ContentMgmtService/-
CacheHolder/Fields

Cached com.sssw.cm.cacheFields

Document types EbiDocType ContentMgmtService/-
CacheHolder/DocTypes

Cached com.sssw.cm.cacheDocTypes

Folders EbiDocFolder ContentMgmtService/-
CacheHolder/Folders

Cached com.sssw.cm.cacheFolders

Categories EbiDocCategory ContentMgmtService/-
CacheHolder/Categories

Cached com.sssw.cm.cacheCategories

Document metadata EbiDocument ContentMgmtService/-
CacheHolder/Documents

Always cached None

Document contents EbiDocContent None Never cached None

Document content
versions

EbiDocVersion None Never cached None
78 exteNd Director Content Management Guide

cdConfigServicesNew.html
cdConfigServicesEdit.html

7 Importing and Exporting Content

This chapter describes the import and export facilities provided with the exteNd Director Content
Management (CM) subsystem. It has these sections:

About importing and exporting

About the export facility

About the import facility

Customizing imports and exports

About importing and exporting
The CM subsystem includes facilities for importing and exporting data between databases or within a
single database.

Uses for the import and export facilities include:

Moving or copying folders, categories, and documents within a repository

Moving CM data between different stages of development

Integrating with third-party vendors

Backing up and restoring CM data

Debugging and data analysis

This chapter describes how the import and export functions work and how you can customize them.

Using the import/export facilities

You can use the import/export facilities in the CMS Administration Console to import and export
content.

For more information, see Chapter 20, “Importing and Exporting Content”

About the export facility
The export facility comprises these elements:

Export facility element Description

Export component(s) A portal portlet (or other UI element) that gets the data export descriptor
(DED) selected by the user and lets the user save the CM archive
generated by the EbiExporter object.

NOTE: This function is provided in the CMS Administration Console.
Importing and Exporting Content 79

Export process

Here is how the export process works:

1 The export process begins when a portlet gets the selected DED and passes it to the CM export
servlet.

2 The export servlet forwards the DED to an object that implements the EbiExporter API.

NOTE: The servlet provides remote access to the EbiExporter API; however, the portlet could call
the API directly.

3 The CM exporter API uses the DED to create a query representing all data and infrastructure the
user has identified and executes the query against the CM database.

4 The CM database responds to the query by returning a raw result set.

5 The CM exporter API formats the raw query result into a structured ZIP archive file containing the
content and data descriptors and returns the archive to the export servlet.

6 The export servlet returns the ZIP file to the portlet as bytes of content with a MIME type of
application/zip.

7 The export portlet gets the ZIP file and saves it in a disk location specified by the user.

Data export descriptor
(DED)

An XML descriptor that defines the export data selected by the user.

For more information, see “Customizing the data export descriptor
(DED)” on page 82.

EbiExporter Contains the API for exporting CM data. This object queries the CM
repository for data based on the scope specified in the DED and then
packages the result into a CM archive.

CM export servlet Provides a connection between the EbiExporter object and the exporter
portlet. This object passes the DED from the portlet to the exporter API
and then gets the CM archive from the exporter and returns it to the portlet.

CM archive A ZIP file that contains the CM export data and a default data import
descriptor (DID) for subsequent use with the import facility.

For a description of the archive contents, see “Structure of the data
import or export archive” on page 221.

Export facility element Description
80 exteNd Director Content Management Guide

About the import facility
The import facility is made up of these elements:

Import process

Here is how the import process works:

1 The import process begins when a portlet allows the user to select the CM archive containing the
DID.

The CM archive is generated by the export facility.

2 The import portlet posts the ZIP file to the CM import servlet via HTTP.

NOTE: The servlet provides remote access to the EbiImporter API; however, the portlet could call
the API directly.

3 The import servlet passes the ZIP file to the CM importer as an input stream.

4 The CM importer extracts the DID from the ZIP and uses it to transfer the data from the ZIP file to
the underlying content repository.

5 The CM importer returns a summary of its execution to the CM import servlet.

6 The import servlet creates an XML document that represents successes, warnings, and failures that
were encountered during the import process.

7 The import servlet returns the XML document to the portlet, which generates a report for the user.

Import facility element Description

Import component(s) A portal portlet (or other UI element) that provides the UI for the user to
select import data. This import function is provided in the CMS
Administration Console.

Data import descriptor
(DID)

An XML descriptor based on the contents of the CM archive generated by
the exporter.

For more information, see “Customizing the data import descriptor
(DID)” on page 82.

EbiImporter Contains the API for importing CM data. It extracts the DID from the CM
archive and uses it to insert data into the target database.

CM import servlet Provides a connection between the EbiImporter and the CMS
Administration Console. This object passes the CM archive to the importer
API and creates an XML document that enumerates any warnings and
failures encountered in the import process.
Importing and Exporting Content 81

Customizing imports and exports
You can customize data imports and exports several ways:

Customizing the data export descriptor (DED)

The data export descriptor (DED) is an XML file you can use to:

Set configuration options for data export

Specify what CM data will be placed in your export archive

Format for entries The entries in your DED must conform to the DTDs in your project’s
library/ContentMgmtService/ContentMgmtService.spf/DTD directory.

Sample DED files There are several sample DED files in your project’s
library/ContentMgmtService/ContentMgmtService.spf/DTD directory. Each of these samples represents
a typical export scenario:

Customizing the data import descriptor (DID)

The data import descriptor (DID) is an XML file you can use to:

Set configuration options for data import

Set overwrite options for each type of CM data

Specify the target folder for the import

Format for entries The entries in your DID must conform to contentmgmt-import-descr_5_0.dtd
in your project’s library/ContentMgmtService/ContentMgmtService.spf/DTD directory.

Operation Customizing option

For an export Providing a custom DED file before executing an export

For an import Editing the generated DID before executing an import

Adding or deleting items from the CM archive before executing an import

For an export or an
import

Providing your own logic by implementing the import and export APIs

Sample file Demonstrates how to

contentmgmt-export-
descr_5_0_sample.xml

Export all data out of the CM system

Specify options for the operation

contentmgmt-export-
descr_5_0_sample2.xml

Export specific infrastructural data out of the CM system

contentmgmt-export-
descr_5_0_sample3.xml

Export specific infrastructural data out of the CM system

Export dependent items in the element hierarchy

contentmgmt-export-
descr_5_0_sample4.xml

Export all documents and supporting infrastructure using default
configuration options

contentmgmt-export-
descr_5_0_sample5.xml

Export certain elements of documents that satisfy a query conforming to
contentmgmt-docmeta-search_5_0.dtd
82 exteNd Director Content Management Guide

Sample DID file There is a sample DID file in your project’s
library/ContentMgmtService/ContentMgmtService.spf/DTD directory that shows how to set all
available import options:

contentmgmt-import-descr_5_0_sample.xml

Accessing the import and export API

In most cases, editing the descriptors or the CM archive should provide most of the flexibility you need.
However you can access the import and export API directly for tasks ranging from ad hoc imports and
exports to writing your own facility.

Potential uses of the functionality provided by EbiImporter and EbiExporter include:

Importing pre-existing documents into a new exteNd Director CM system

Backing up and restoring CM data

Replicating data between two CM systems

Moving and copying data within a single CM system

For more information, see the online API documentation for EbiExporter and EbiImporter.
Importing and Exporting Content 83

new ../javadoc/com/sssw/cm/api/EbiExporter.html
new ../javadoc/com/sssw/cm/api/EbiImporter.html

84 exteNd Director Content Management Guide

8 Working with Content Management Events

This chapter describes how to handle events related to Content Management (CM) subsystem operations
and activities. It has these sections:

About CM events

Registering for CM events

Enabling CM events

This chapter assumes familiarity with exteNd Director event model and event handling. For more
information, see the chapter on working with events in Developing exteNd Director Applications.

About CM events
CM events are an extension of the exteNd Director event model framework, consisting of state change
events, event producers, and event listeners (including vetoable listeners). The API for CM events is
defined in these packages:

com.sssw.cm.event.api

com.sssw.cm.event.util

CM event types

The API defines a set of state change events related to CM operations on documents, folders, and other
elements—as well as general activities like data import/export. Event IDs are exposed on the individual
event classes as well as on the com.sssw.cm.event.api.EbiConstants interface. In addition, there are state
change constants defined in com.sssw.fw.event.api.EboStateChangeEvent.

Here is a list of events defined for the CM subsystem:

Event type Operation Event constant

Category added EVENT_ID_CATEGORY_ADDED

contents listed EVENT_ID_CATEGORY_CONTENTS_LISTED

copied EVENT_ID_CATEGORY_COPIED

moved EVENT_ID_CATEGORY_MOVED

removed EVENT_ID_CATEGORY_REMOVED

document removed EVENT_ID_DOC_REMOVED_FROM_CATEGORY

metadata retrieved EVENT_ID_CATEGORY_RETRIEVED

metadata updated EVENT_ID_CATEGORY_UPDATED
Working with Content Management Events 85

cdEventHandling.html

Data export/import data exported EVENT_ID_DATA_EXPORTED

data imported EVENT_ID_DATA_IMPORTED

Document added EVENT_ID_DOC_ADDED

added to category EVENT_ID_DOC_ADDED_TO_CATEGORY

checked in EVENT_ID_DOC_CHECKED_IN

checked out EVENT_ID_DOC_CHECKED_OUT

copied EVENT_ID_DOC_COPIED

moved EVENT_ID_DOC_MOVED

published EVENT_ID_DOC_PUBLISHED

removed EVENT_ID_DOC_REMOVED

retrieved EVENT_ID_DOC_RETRIEVED

rolled back EVENT_ID_DOC_ROLLED_BACK

unchecked out EVENT_ID_DOC_UNCHECKED_OUT

unlocked EVENT_ID_DOC_UNLOCKED

unpublished EVENT_ID_DOC_UNPUBLISHED

updated EVENT_ID_DOC_UPDATED

link added EVENT_ID_DOC_LINK_ADDED

link removed EVENT_ID_DOC_LINK_REMOVED

link retrieved EVENT_ID_DOC_LINK_RETRIEVED

link updated EVENT_ID_DOC_LINK_UPDATED

links listed EVENT_ID_DOC_LINKS_LISTED

Document type added EVENT_ID_DOC_TYPE_ADDED

removed EVENT_ID_DOC_TYPE_REMOVED

retrieved EVENT_ID_DOC_TYPE_RETRIEVED

updated EVENT_ID_DOC_TYPE_UPDATED

listed EVENT_ID_DOC_TYPES_LISTED

fields listed EVENT_ID_DOC_TYPE_FIELDS_LISTED

Field added EVENT_ID_DOC_FIELD_ADDED

added to document type EVENT_ID_DOC_FIELD_ADDED_TO_TYPE

listed EVENT_ID_DOC_FIELDS_LISTED

removed EVENT_ID_DOC_FIELD_REMOVED

removed from document type EVENT_ID_DOC_FIELD_REMOVED_FROM_TYPE

retrieved EVENT_ID_DOC_FIELD_RETRIEVED

updated EVENT_ID_DOC_FIELD_UPDATED

Event type Operation Event constant
86 exteNd Director Content Management Guide

Folder added EVENT_ID_FOLDER_ADDED

contents listed EVENT_ID_FOLDER_CONTENTS_LISTED

copied EVENT_ID_FOLDER_COPIED

moved EVENT_ID_FOLDER_MOVED

removed EVENT_ID_FOLDER_REMOVED

retrieved EVENT_ID_FOLDER_RETRIEVED

updated EVENT_ID_FOLDER_UPDATED

Layout document
descriptor

added EVENT_ID_LLD_ADDED

listed for a style EVENT_ID_LLDS_LISTED

removed EVENT_ID_LLD_REMOVED

retrieved EVENT_ID_LLD_RETRIEVED

updated EVENT_ID_LLD_UPDATED

Layout style added EVENT_ID_DOC_LAYOUT_STYLE_ADDED

removed EVENT_ID_DOC_LAYOUT_STYLE_REMOVED

retrieved EVENT_ID_DOC_LAYOUT_STYLE_RETRIEVED

updated EVENT_ID_DOC_LAYOUT_STYLE_UPDATED

styles listed EVENT_ID_DOC_LAYOUT_STYLES_LISTED

Directory entry lookup by absolute path (URL) EVENT_ID_LOOKUP_BY_ABSOLUTE

by ancestor and relative path EVENT_ID_LOOKUP_BY_RELATIVE

CM repository added EVENT_ID_REPOSITORY_ADDED

listed EVENT_ID_REPOSITORIES_LISTED

removed EVENT_ID_REPOSITORY_REMOVED

retrieved EVENT_ID_REPOSITORY_RETRIEVED

updated EVENT_ID_REPOSITORY_UPDATED

Query/search document query executed EVENT_ID_DOC_QUERY_EXECUTED

document search query executed EVENT_ID_DOC_SEARCH_QUERY_EXECUTED

Security access checked EVENT_ID_ACCESS_CHECKED

admin access checked EVENT_ID_ADMIN_ACCESS_CHECKED

access removed EVENT_ID_SECURITY_REMOVED

access retrieved EVENT_ID_SECURITY_RETRIEVED

access set EVENT_ID_SECURITY_SET

Event type Operation Event constant
Working with Content Management Events 87

Registering for CM events
This section includes these sections:

Registering for events on directory elements

Specifying event types

Using the event helper class

Event registration examples

Registering for events on directory elements

Event support in the CM subsystem provides convenience methods for registration of listeners based on
CM categories, folders, and documents. The methods are available on an EbiContentMgmtDelegate
object:

For example, here is how to subscribe to all events that relate to folder operations:

EbiContentMgmtDelegate cmgr =
 com.sssw.cm.client.EboFactory.getDefaultContentMgmtDelegate();
cmgr. addFolderStateChangeListener (myStateChangeListener);

Specifying event types

You can register for specified type(s) of events using the framework version of
addStateChangeListener(), available on EbiContentMgmtDelegate:

public boolean addStateChangeListener(
 BitSet events, EbiStateChangeListener listener)

where events is a bit set of event IDs. The CM API provides some helper methods for specifying a bit set,
as described in “Using the event helper class” next.

You can also filter events that occur on either a specific directory entry or a directory and entries
underneath it (recursively). In order to register for events that occur within a certain directory entry
scope, add the listener using this method:

Listener convenience method What it subscribes to

addCategoryStateChangeListener() All category events

addDocumentStateChangeListener() All document events

addFolderStateChangeListener() All folder events

addVetoableCategoryStateChangeListener() All category events, with ability to veto operation

addVetoableDocumentStateChangeListener() Subscribes to all document events, with ability to
veto operation

addVetoableFolderStateChangeListener() Subscribes to all folder events, with ability to veto
operation
88 exteNd Director Content Management Guide

public boolean addStateChangeListener(
 BitSet events, EbiDirectoryEntry entry, int depth,

 EbiStateChangeListener listener)

Using the event helper class

The com.sssw.cm.event.util.EboEventHelper class provides utilities for managing event sets. It includes
these methods:

Event registration examples

Listen on one event for all elements This example adds a listener for the “create” state change
event on all elements:

EbiContentMgmtDelegate cmgr =
 com.sssw.cm.client.EboFactory.getDefaultContentMgmtDelegate();

BitSet events = EboEventHelper.getEventIDSet(
 com.sssw.fw.event.api.EboStateChangeEvent.SC_CREATE);
cmgr.addStateChangeListener(events, MyListener);

Listen on all events for two element types This example adds a listener for all changes on
document types and fields only; note the use of adjustEventIDSet():

Method
parameter What it means

events Bit set of event IDs

entry Directory entry (a folder, a category, or a document)

depth How deep event tracking should go:

0 means that state changes that occur only on the entry itself

1 means that state changes that occur to the entry and its children

-1 means that state changes that occur to the entry and any of its descendant

Any other depth specifies that state changes that occur on the entry and its
descendants to that depth in the entry hierarchy are to be tracked

listener A new listener object

Event helper method What it does

getFullEventIDSet() Returns a bit set containing the full set of CM events exposed on all
CM element types

getEventIDSet(String elType) Returns a bit set containing the full set of CM events exposed on a
specified CM element type

getEventIDSet(int
stateChangeID)

Returns a bit set for all events that map to a given state change type

adjustEventIDSet() Given a bit set for event IDs, turns on or off the bits for CM events of
the specified state change type
Working with Content Management Events 89

EbiContentMgmtDelegate cmgr =
 com.sssw.cm.client.EboFactory.getDefaultContentMgmtDelegate();

BitSet events =
 EboEventHelper.getEventIDSet(EbiDocType.EL_DOC_TYPE);
EboEventHelper.adjustEventIDSet(events,
 EbiDocField.EL_DOC_FIELD, true);
cmgr.addStateChangeListener(events, Mylistener);

Listen on multiple events for all elements This example adds event types by instantiating a new
bit set; this is the technique to use for specifying multiple sets of events:

EbiContentMgmtDelegate cmgr =
 com.sssw.cm.client.EboFactory.getDefaultContentMgmtDelegate();

BitSet events = new BitSet();
events.set(com.sssw.cm.event.api.EbiConstants.
 EVENT_ID_ACCESS_CHECKED);
events.set(com.sssw.cm.event.api.EbiConstants.
 EVENT_ID_ADMIN_ACCESS_CHECKED);
events.set(com.sssw.cm.event.api.EbiConstants.
 EVENT_ID_SECUIRTY_RETRIEVED);

cmgr.addStateChangeListener(events, Mylistener);

Listen on all events except for a specified element type This example shows how to use the
boolean argument on adjustEventIDSet() to turn off an event set:

EbiContentMgmtDelegate cmgr =
 com.sssw.cm.client.EboFactory.getDefaultContentMgmtDelegate();

BitSet events = EboEventHelper.getFullEventIDSet();
EboEventHelper.adjustEventIDSet(events, EbiDocType.EL_DOC_TYPE, false);
cmgr.addStateChangeListener(events, Mylistener);

Enabling CM events

To enable or disable CM events:

1 Open config.xml for CM your exteNd Director project.

2 Find this property:
com.sssw.cm.events.enable.Default

3 Set the value to true for enable or false for disable.

4 Redeploy your project.
90 exteNd Director Content Management Guide

locator cdLocator.html#ContentManagementsubsystemconfiguration files

II WebDav

Describes how to set up and use a WebDav client with the Content Management (CM)
subsystem

• Chapter 9, “Using WebDAV Clients with exteNd Director for Collaborative Authoring”
• Chapter 10, “Building Your Own WebDAV Client”
• Chapter 11, “Working with WebDAV Events”
91

92 exteNd Director Content Management Guide

9 Using WebDAV Clients with exteNd Director for
Collaborative Authoring

This chapter describes the exteNd Director support for the the Web Distributed Authoring and Versioning
(WebDAV) communications protocol. Using this protocol allows you to access server-side content in the
exteNd Director Content Management (CM) subsystem from third-party or custom WebDAV client
applications.

This chapter includes the following topics:

What is WebDAV?

About exteNd Director’s WebDAV support

Supported WebDAV methods

Public WebDAV server

What is WebDAV?
The WebDAV protocol extends the Hypertext Transfer Protocol (HTTP) to support asynchronous
collaborative authoring on the Web.

As the standard protocol that allows Web browsers to communicate with Web servers, HTTP has
transformed the Web into a readable medium by allowing users to view and download individual static
documents as read-only information. However, HTTP falls short of supporting write operations such as
simultaneous editing of multiple resources on the Web.

WebDAV goes the next step by providing extensions to HTTP that create a distributed writable Web
environment. Using WebDAV, multiple users can create content locally or remotely using WebDAV-
enabled authoring tools, then save content directly to an URL on an HTTP server.

This section provides a brief overview of WebDAV.

For more detailed information on WebDAV, search on the Web for rfc2518—the WebDAV
specification. The following URL provided helpful information at the time this chapter was published:

http://asg.web.cmu.edu/rfc/rfc2518.html
Using WebDAV Clients with exteNd Director for Collaborative Authoring 93

new http://asg.web.cmu.edu/rfc/rfc2518.html

Information elements for distributed Web authoring

The WebDAV protocol provides methods that act on Web resources, collections, and properties—key
information elements used in distributed Web authoring:

WebDAV extensions to HTTP

The WebDAV protocol provides extensions to HTTP through a set of open standards that can be used by
any distributed authoring tool. These extensions support the following key requirements for collaborative
authoring on the Web:

About exteNd Director’s WebDAV support
exteNd Director’s WebDAV support is designed to work with any WebDAV-compliant client application.

Works with WebDAV-compliant authoring tools You can create content in your preferred
WebDAV-compliant authoring tool and still take advantage of the standard document management
capabilities of the exteNd Director CM subsystem on your server—functions such as checkin, checkout,
and versioning.

Includes WebDAV client API While most third-party WebDAV clients support these standard
document management functions, they do not support the more sophisticated features of the CM
subsystem, such as categorization and document creation using custom templates. To bridge this gap,
exteNd Director subsystem also includes a WebDAV client API that provides classes and methods for
accessing these custom features from your own client applications.

Element Definition Examples

Resource Any piece of information that is stored on a Web server and
whose location is described by an URL

Web pages, documents,
and bitmap images

Collection A resource that serves as a container for other resources,
including other collections. Collections provide a paradigm
for grouping and searching resources

Folders and directories

Property
(metadata)

Descriptive information that is associated with Web
resources but not stored as part of their content

Author, title, publication
date, and expiration date

Authoring requirement How WebDAV meets the requirement

Overwrite protection Mediates concurrent access to content by multiple authors by providing
resource locking for write operations

Properties Provides methods for creating, modifying, reading, and deleting
properties

Namespace manipulation Supports copying and moving multiple Web resources by manipulating
names and directories within the namespaces of URLs

Collections Provides methods for creating and deleting collections, adding members
to a collection, removing members from a collection, and listing members
of a collection

Version management Supports the storage of resource revisions for later retrieval; automatic
versioning records successive modifications to a resource

Access control Limits the access rights of a particular authenticated principal to a given
resource
94 exteNd Director Content Management Guide

For more information about the WebDAV client API, see Chapter 10, “Building Your Own
WebDAV Client”.

How you get WebDAV support

WebDAV support is added, by default, when you create an exteNd Director project. The default WebDAV
support includes these settings:

Property settings in the config.xml file in the (in WEB-INF/conf) include:

If you opt for Custom setup, you must explicitly specify that WebDAV support be included.

Changing default settings You can change the project’s default settings by editing the config.xml
file directly.

Accessing the WebDAV server

After you deploy the exteNd Director project containing WebDAV support, you can connect a WebDAV-
enabled client to the exteNd Director content repository. To establish this connection, you must provide
the following parameters to the client:

User ID and password that are valid for exteNd Director (not a server user ID and password)

URL that references the directory on the WebDAV server you want to connect to. The structure of
the URL for the Novell WebDAV server is:
http://server/context/WebDAV

For example:

http://localhost/ExpressPortal/WebDAV

To learn how to provide these parameters and connect to a site (in this case the exteNd Director
content repository) using the WebDAV protocol, consult client documentation.

Parameter Description Default

Servlet Path The WebDAV servlet in the Portal WAR. WebDAV

Property Description

com.sssw.webdav.cdata Specifies whether the server should wrap user data in WebDAV
responses in CDATA tags.

When true (the default), you are unable to use Microsoft clients. It
is required by other client types when valid xml markup is
contained in the user data (for example, a folder named "Jack &
Jil")

com.sssw.webdav.reqchkout When true (the default), requires files to be checked out and
locked before they are moved, copied, or deleted. Locking
preserves data consistency when multiple users update data.

Disable this parameter if your WebDAV client does not support a
locking mechanism. In particular, Microsoft File Explorer does not
support locking of WebFolders.

For more information, see Changing default settings

com.sssw.webdav.events.enable Enables events to be generated when WebDAVis used to
manipulate the Content Management subsystem.
Using WebDAV Clients with exteNd Director for Collaborative Authoring 95

What you can do with exteNd Director and WebDAV

exteNd Director allows you to perform the following functions remotely from your WebDAV client
application:

Save your content in the content repository

Get the latest version of your content from the content repository for editing

Lock content for editing in the content repository and know that your changes will not be
overwritten by another author

Unlock content so that it is available to other authors for editing

Copy and move content across collections within the hierarchical physical infrastructure of the
content repository

Delete content from the content repository

Make new collections in the content repository

Retrieve resources and collections from the server

Upload resources and collections from the client to the server

WebDAV-enabled clients implement these functions in different ways. Consult your client
documentation to learn how to use specific third-party tools with the WebDAV protocol.

For more information about the WebDAV methods exteNd Director supports, see “Supported
WebDAV methods” on page 97.

How exteNd Director stores content from WebDAV clients

When you save content created using a third-party WebDAV client to the exteNd Director content
repository, the content is stored as a system resource. The repository handles system resources by storing
a default set of properties (or metadata) along with content. The following table describes these
properties and how default values are assigned:

You can change or assign values to these properties in the exteNd Director CM subsystem
programmatically or using the CMS Administration Console. Some WebDAV-enabled authoring tools
also allow you to edit property values on the client side.

For more information about using the CMS Administration Console, see Chapter 12, “About the
CMS Administration Console”.

When content is stored as a system resource, it cannot be associated with any custom document types or
categories that have been defined in the CM subsystem. To create content that is more tightly integrated
with these CM subsystem features, you can:

Property Default value

Name Name of file (with extension if provided)

NOTE: Some WebDAV clients require you to specify extensions for files to
indicate the appropriate content editor

Author Identifier of user who is logged in

Date created Date uploaded

Abstract None

Publish date Null, which means publish as soon as possible

Expiration date Null, which means never expire

Checked out by None
96 exteNd Director Content Management Guide

Build your own WebDAV client application using a client API provided with exteNd Director.

For more information about the WebDAV client API, see Chapter 10, “Building Your Own
WebDAV Client”.

Use the CM API or the CMS Administration Console to create a document of a particular type in
the CM subsystem on the server. You can then edit this content inside a WebDAV-compliant client,
preserving the original document type.

How exteNd Director secures content from WebDAV clients

exteNd Director requires tha you provide a valid user ID and password to the WebDAV client. These
values are used to authenticate your access privileges when you attempt to access secure content in the
content repository from your WebDAV client.

Users do not see resources for which they do not have read access.

For more information, see “Accessing the WebDAV server” on page 95.

How exteNd Director manages versioning for WebDAV clients

When a WebDAV client requests a resource from the server, exteNd Director returns the latest version
from the content repository—though not necessarily the published version. For example, a WebDAV
client cannot retrieve the published version of content if it is not the latest version.

When the WebDAV client uploads and checks in a resource, the exteNd Director creates a new version
and publishes it in the content repository.

Supported WebDAV methods
exteNd Director supports the following WebDAV methods. To learn how to perform these functions from
your WebDAV-enabled authoring tool, consult client documentation:

Method Description

PROPFIND Retrieves properties on resources and collections from the server. This action is
generally transparent to the user; WebDAV client tools use this method to get and
display properties such as name, type (of resource), date modified, and checked
out by.

PROPPATCH Sets and/or removes properties on server-side resources and collections identified
by the Request-URI. This action is generally transparent to the user; WebDAV client
tools use this method to modify properties such as name, type (of resource), date
modified, and checked out by.

COPY Copies resources and collections on the server—along with their properties—
without causing name conflicts. When you copy a collection, all of its members are
also copied.

DELETE Deletes resources or collections on the server.

GET Retrieves resources and collections from the server, as identified by the Request-
URI. Some WebDAV-enabled clients automatically check out resources for you
before downloading them from the server; other clients require you to perform two
separate operations—first check out the resource, then get it.

HEAD Functions like GET, but retrieves only header information (without a response
message body).
Using WebDAV Clients with exteNd Director for Collaborative Authoring 97

Public WebDAV server
Novell provides a WebDAV server—deployed and publicly available—against which you can test your
WebDAV clients. This server provides the features of the Novell WebDAV implementation.

CAUTION: Do not use this server for production applications. Novell cannot be responsible for content
uploaded by anonymous users, and periodically purges user data.

To access the Novell public WebDAV server (general steps):

1 Access the server from your WebDAV client using this URL:
http://webdav.silverstream.com/Director/WebDAVService/main

2 When prompted, provide these credentials:

LOCK Creates a lock specified by the lockinfo XML element on the Request-URI. The
lockinfo element specifies the scope, type, and owner of the lock. The exteNd
Director CM subsystem uses just one type of lock—the exclusive lock, to enforce
pessimistic concurrency.

The scope of a lock spans the entire state of the resource, including its body and
associated properties.

Some WebDAV-enabled clients automatically lock resources before you check them
out; other clients require you to explicitly lock a resource as a separate operation.

UNLOCK Removes the lock identified in the Lock-Token request header of the Request-URI.
This action unlocks all resources included in the lock.

Some WebDAV-enabled clients automatically unlock resources after you check
them in; other clients require you to explicitly unlock a resource as a separate
operation.

MKCOL Creates collections on the server.

MOVE Moves resources and collections on the server without creating name conflicts.

PUT Uploads resources and collections from the client to the server.

OPTIONS Returns all methods that can be called on resources and collections specified in the
Request-URI. For example, if the resource is a document, OPTIONS returns LOCK,
UNLOCK, OPTIONS, GET, PUT, MOVE, DELETE, COPY, PROPFIND, and
PROPPATCH.

Credential Value

User ID devcenter

Password rocks

Method Description
98 exteNd Director Content Management Guide

10 Building Your Own WebDAV Client

This chapter describes an API provided with the exteNd Director WebDAV service for developing a
custom WebDAV client that takes advantage of the specialized features of the exteNd Director Content
Management (CM) subsystem to create and administer content.

The chapter covers the following topics:

About the WebDAV client API

Why build your own WebDAV client?

Configuring your environment

Using the WebDAV client API

Programming practices using helper methods

Programming practices using utility methods

Issuing WebDAV requests from a Java client

About the WebDAV client API
The WebDAV client API is based on the Jakarta Slide content management framework and is designed
to work with the exteNd Director CM subsystem. Slide is a low-level framework that can be used to
develop a consistent interface for manipulating binary content in a variety of data stores using the
WebDAV protocol.

Java client applications can access the Slide content management framework directly through a set of
Java classes that implement WebDAV methods and other low-level logic in these functional areas:

Managing the namespace (for creating, moving, copying, and deleting content)

Updating content and metadata

Locking and unlocking content

Securing content

The exteNd Director WebDAV client API adds a level of abstraction by providing wrapper classes
around the Slide client API. These classes contain helper and utility methods that encapsulate the low-
level Slide methods and add logic that tightly integrates with the specialized capabilities of the exteNd
Director CM subsystem. For example, you can build a WebDAV client that assigns categories to
documents, associates custom metadata with content, and creates content using custom templates called
document types as defined in the CM subsystem.

For more information about Slide, see the Jakarta Slide project Web site. The following URL was
valid at the time this chapter was published:

http://jakarta.apache.org/slide/
Building Your Own WebDAV Client 99

new http://jakarta.apache.org/slide/

Why build your own WebDAV client?
With so many commercial and open source WebDAV client applications now available—and more on the
way—why build your own WebDAV client to work with the exteNd Director CM subsystem?

Here is a key reason: to tailor an application to your unique authoring needs in terms of creating,
updating, and managing content using the exteNd Director CM subsystem. With this objective in mind,
the WebDAV client API allows you to develop applications that are more robust than most commercial
and open-source WebDAV clients, because it provides:

Simplified access to all WebDAV methods, including PROPPATCH

An interface to the comprehensive content management features of the CM subsystem, including
the ability to create documents using custom templates and manipulate custom metadata separately
from content

Configuring your environment
To use the WebDAV client API, you must add the following JAR files to your project classpath:

These JAR files are installed with exteNd Director in the following location in the exteNd Director
Utilities\Client directory:

To run a WebDAV client, you must add the following JAR files to your client’s classpath at runtime:

Using the WebDAV client API
You use the WebDAV client API to design a custom authoring tool with WebDAV access to the exteNd
Director CM subsystem for managing collaborative interactions with your content.

You need to build your own user interface, but the API provides the logical underpinnings for invoking
key CM functions from your client:

Creating documents using custom templates

Categorizing documents

Deleting, copying, moving, and renaming resources and collections

Locking and unlocking documents

Making collections

JAR file Description

WebDAV_slide.jar Contains relevant Slide client API classes

WebDAVClient.jar Contains exteNd Director WebDAV client API classes

JAR file Directory Location

WebDAVClient.jar exteNd Director installation directory \utilities\Client

WebDAV_slide.jar \utilities\Client

xerces.jar \lib

xalan.jar \lib

FrameworkService.jar \lib

servlet.jar Novell installation directory \lib
100 exteNd Director Content Management Guide

Updating documents

Getting and setting custom metadata values in a document

WebDAV requests and responses

The WebDAV client API provides methods that invoke CM functions by sending WebDAV requests. The
result of each request is returned as a WebDAV response that includes a status code to indicate success or
the reason for failure.

A WebDAV request consists of a header and a body. The request header contains the method, target
resource, HTTP version, and a sequence of key/value pairs containing parameters for the method. The
request body defines additional—and perhaps more complex—parameters if necessary.

Similarly, a WebDAV response contains a header and optional body. The response header contains
information about the response, such as the HTTP version used by the server, along with status codes and
messages. The response body generally contains the result of method execution—such as a document.

Classes in the WebDAV client API provide methods for easily constructing and sending specific
WebDAV requests and processing responses.

For more information about WebDAV, search on the Web for rfc2518—the WebDAV
specification.

Working with resources, collections, and properties

WebDAV requests act on Web resources, collections, and properties as described in “Information
elements for distributed Web authoring” on page 94. When you issue a WebDAV request, you need to
pass along a reference to the element of interest. This reference should be a URI, relative to the element’s
server in this format:

/database name/WebDAVService/main/path relative to default (root) folder

For example, assume your exteNd Director database is called Director. For a document called
MyDocument that resides in a folder called Test in the default (root) folder, the URI looks like this:

/Director/WebDAVService/main/Test/MyDocument

Classes

The WebDAV client API consists of these key classes:

EboDAVSwitch—the heart of the matter The EboDAVSwitch object is the heart of the WebDAV
client API, containing most of the functionality for communicating with the CM subsystem.
EboDAVSwitch provides helper methods and utility methods that encapsulate much of the low-level
Slide code required for transmitting WebDAV requests and responses.

Class Description

EboDAVSwitch Constructs WebDAV requests and fetches WebDAV responses

EboDAVException Defines WebDAV exceptions

EboDAVStatus Indicates the status code associated with WebDAV exceptions
Building Your Own WebDAV Client 101

cmgWebDAVClient.html#Helpermethods
../javadoc/com/sssw/webdav/client/EboDAVSwitch.html
cmgWebDAVClient.html#Utilitymethods

Helper methods

The EboDAVSwitch object provides a set of helper methods for constructing WebDAV requests. Each
helper method allows you to send a complete request in a single line of code.

Here is list of supported WebDAV requests that have associated helper methods. Click on the links in the
table to get more information about how to code specific WebDAV requests in a Java client program.

Some WebDAV requests do not have associated helper methods and can be issued only by using Slide
classes and utility methods, described next.

For information on how to use these helper methods in WebDAV client applications, see
“Programming practices using helper methods” on page 104.

Utility methods

All WebDAV requests can be invoked using utility methods. Compared to helper methods, utility
methods expose more of the Slide API than helper methods. The tradeoff is that while you gain access to
the additional functionality offered by the Slide API, you’ll have to write more lines of code to send a
WebDAV request.

Utility methods also provide a mechanism for issuing WebDAV requests that do not have associated
helper methods.

Request Helper method

Adding a category reference to a document addCategoryToDocument

Deleting a document copyElement

Creating a new collection makeCollection

Creating a new document from a custom template createNewDocument

Deleting a document deleteDocument

Locking a document lockDocument

Moving a resource or collection moveElement

Removing a category reference from a document removeCategoryFromDocument

Removing all category references from a document removeAllCategoriesFromDocument

Renaming a resource or collection moveElement

Setting the value of a custom field in a document setFieldValueForDocument

Unlocking a document unlockDocument

Updating a document putDocument
102 exteNd Director Content Management Guide

cmgWebDAVClient.html#Utilitymethods

Utility methods that wrap Slide functions

Here is list of commonly used utility methods that wrap Slide functions for constructing and issuing
WebDAV requests:

For information about how to use these utility methods in WebDAV client applications, see
“Programming practices using utility methods” on page 105.

Associated Slide API classes

When you work with utility methods, you need to use several Slide API classes:

Credentials
State

Specific WebDAV method classes:
CopyMethod

DeleteMethod

GetMethod

HeadMethod

LockMethod

MoveMethod

OptionsMethod

PostMethod

PropFindMethod

PropPatchMethod

PutMethod

UnlockMethod

For more information about these classes, see the Slide WebDAV client JavaDoc, available at this
URL (valid at the time this chapter was published):

http://jakarta.apache.org/slide/clientjavadoc/index.html

Utility method What it does

createCredentials Creates credentials

NOTE: The credentials object is a Slide object that is used for
authenticating users

createWebDAVmethod Creates the method you want to execute as part of your WebDAV request

endSession Ends a WebDAV client session

executeCommand Issues the WebDAV request

getState Gets state

NOTE: The state object is a Slide object; you call the Slide method
setAuthenticateToken on the state object to indicate how you are going to
authenticate users

setCredentials Sets credentials on the EboDAVSwitch object

setState Sets state with your authentication token

startSession Starts a WebDAV client session
Building Your Own WebDAV Client 103

new http://jakarta.apache.org/slide/clientjavadoc/index.html

WebDAV requests that have no helper methods

Here is list of WebDAV requests that have no associated exteNd Director helper methods and therefore
can be implemented only by using Slide classes and exteNd Director utility methods. Click on the links
in the table to get more information about how to code these WebDAV requests in a Java client program:

Programming practices
This section describes best practices for using the client API to issue WebDAV requests and process
WebDAV responses in custom Java client programs. The logic varies depending on whether you use
helper methods or utility methods.

Programming practices using helper methods

Recommended steps

Here are the steps for using helper methods to issue WebDAV requests:

1 Instantiate an EboDAVSwitch object.

2 Start a session on the EboDAVSwitch object.

3 Call the helper method on the EboDAVSwitch object in a try/catch block.

4 Get the response and process the results if necessary.

5 End the session.

Code example: deleting a document using a helper method

Here is sample code showing how to use the helper method deleteDocument() in a WebDAV client. In
this example, assume server URL = localhost and port = 80. The document to be deleted is passed as an
argument to the method.

Note that an EboDAVStatus object is also instantiated. This object is used to check the status of the
request and inform the user of success or failure.

/**
 deleteADocument

*/
import com.sssw.webdav.client.*;

public class deleteADocument {

private static boolean m_debug = false;

public void deleteADocument (String document)
{

 //Define variables

WebDAV request Associated WebDAV method

Getting a resource or collection GET

Getting header information from a resource or collection HEAD

Getting methods that can be called on a resource or collection OPTIONS

Getting properties defined on a resource or collection PROPFIND
104 exteNd Director Content Management Guide

cmgWebDAVClient.html#Helpermethods
cmgWebDAVClient.html#Utilitymethods

int statuscode = 0;
String user = "contentadmin";
String password = "contentadmin";
String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";

//Instantiate an EboDAVSwitch object
EboDAVSwitch dav = new EboDAVSwitch();

//Instantiate an EboDAVStatus object
EboDAVStatus status = new EboDAVStatus();

//Start a session
dav.startSession("localhost", 80);

try
{

//Lock document before trying to delete
statuscode = dav.lockDocument(user, password, realm, document);
if (statuscode==EboDAVStatus.SC_NO_CONTENT)

System.out.println(“Request succeeded: The document is now
locked”);

else
System.out.println(“Request failed: “ +

status.getStatusText(statuscode));

//Send the WebDAV request to delete document
statuscode = dav.deleteDocument(user, password, realm, document);
if (statuscode==EboDAVStatus.SC_OK)

System.out.println("Request succeeded: The document was deleted.");
else

System.out.println("Request failed: " +
status.getStatusText(statuscode));

}
catch (EboDAVException e) {

if (m_debug)
e.printStackTrace();

else
System.out.println(e.getMessage());

}

//End session
dav.endSession();

 }
}

To learn how to issue the same WebDAV request using utility methods, see “Code example:
deleting a document using utility methods” on page 106.

Programming practices using utility methods

Recommended steps

Here are the steps for using utility methods to issue WebDAV requests:

1 Instantiate an EboDAVSwitch object.

2 Start a session on the EboDAVSwitch object.

3 Create and set credentials on the EboDAVSwitch object.

4 Get and set the state of the EboDAVSwitch object and the authentication realm.

5 Construct the WebDAV method.
Building Your Own WebDAV Client 105

6 Execute the WebDAV method.

7 End the session.

Constructing WebDAV requests that use Proppatch

The WebDAV Proppatch method is used with exteNd Director utility methods to issue a variety of
WebDAV requests:

Adding a category reference to a document

Removing a category reference from a document

Removing all category references from a document

Setting the value of a custom field in a document

For each of these requests, you must instantiate a Slide PropPatchMethod object, then call the
addPropertyToSet() method on the PropPatchMethod object using this signature:

addPropertyToSet(String property name, String property value, String namespace-
abbr, String namespace)

Here are descriptions of the arguments to addPropertyToSet():

Setting values of standard fields You can also use the WebDAV Proppatch method to set values of
standard fields—such as title and author—in a document. In this case, call addPropertyToSet() without
the namespace-abbr and namespace arguments.

Code example: deleting a document using utility methods

Here is sample code illustrating how to use utility methods with Slide classes in a WebDAV client to send
a request to delete a document. In this example, assume server URL = localhost and port = 80. The
example uses the following Slide classes:

Credentials

State

DeleteMethod
/**
 deleteTheDocument

*/
import com.sssw.webdav.client.*;
import org.apache.webdav.lib.*;
import org.apache.webdav.lib.methods.*;

Argument Description

property name The name or UUID of the property to be updated

property value The value of the property to be updated

If property name is a UUID, then property value must be null

namespace-abbr An arbitrary string that must be unique within the PropPatch method request

namespace Type of request issued using the PropPatch method

These requests are defined as fields of the EboWebdavConstants class:

EboWebdavConstants.PROPPATCH_SETFIELDVALUE

EboWebdavConstants.PROPPATCH_ADDCATEGORY

EboWebdavConstants.PROPPATCH_REMOVECATEGORY

EboWebdavConstants.PROPPATCH_REMOVEALL
CATEGORIES
106 exteNd Director Content Management Guide

public class deleteTheDocument
{
 private static boolean m_debug = false;

 public void deleteTheDocument (String document)
 {
 //Define variables

int statuscode = 0;
String user = "contentadmin";
String password = "contentadmin";
String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";

//Instantiate an EboDAVSwitch object
EboDAVSwitch dav = new EboDAVSwitch();

//Instantiate an EboDAVStatus object
EboDAVStatus status = new EboDAVStatus();

//Start a session
dav.startSession("localhost", 80);

//Get and set credentials
Credentials credentials = dav.createCredentials(user, password);
dav.setCredentials(credentials);

//Get and set state and authentication realm
State state = dav.getState();
state.setAuthenticateToken(realm);
dav.setState(state);

try
{

//Create the WebDAV method object LockMethod
LockMethod lm = (LockMethod)dav.createWebdavMethod(dav.LOCK_METHOD,document);

//Set the owner
lm.setOwner(user);

//Execute LockMethod
dav.executeCommand(lm);
statuscode = lm.getStatusCode();
if (statuscode == (EboDAVStatus.SC_NO_CONTENT))

System.out.println(“Request succeeded: The document was locked.”);
else

System.out.println(“Request failed: “ + status.getStatusText(statuscode));

//Create the WebDAV method object DeleteMethod
DeleteMethod dm = (DeleteMethod)dav.createWebdavMethod(dav.DELETE_METHOD,document);

//Execute DeleteMethod (send the WebDAV request to delete document)
dav.executeCommand(dm);
statuscode = dm.getStatusCode();
if (statuscode == (EboDAVStatus.SC_OK))

System.out.println("Request succeeded: The document was deleted.");
else

System.out.println("Request failed: " + status.getStatusText(statuscode));

}
catch (EboDAVException e)
{

if (m_debug)
e.printStackTrace();

else
System.out.println(e.getMessage());

}

Building Your Own WebDAV Client 107

catch (java.net.MalformedURLException murle)
{

if (m_debug)
murle.printStackTrace();

else
System.out.println(murle.getMessage());

}
catch (java.io.IOException ioe)
{

if (m_debug)
ioe.printStackTrace();

else
System.out.println(ioe.getMessage());

}

//End session
dav.endSession();

 }
}

To learn how to issue the same WebDAV request using helper methods, see “Code example:
deleting a document using a helper method” on page 104.

Issuing WebDAV requests from a Java client
This section describes how to issue WebDAV requests from a Java client application. The following
functions are covered:

Adding a category reference to a document

Copying a resource or collection

Creating a new collection

Creating a new document from a custom template

Deleting a document

Getting a resource or collection

Getting header information from a resource or collection

Getting methods that can be called on a resource or collection

Getting properties defined on a resource or collection

Locking a document

Moving a resource or collection

Removing a category reference from a document

Removing all category references from a document

Renaming a resource or collection

Setting the value of a custom field in a document

Unlocking a document

Updating a document

Adding a category reference to a document

The following code examples show how to add a category reference to a document. A category is a
descriptive name used to group documents logically in the CM subsystem.

Code example: adding a category reference using a helper method

This example uses the helper method addCategoryToDocument():
108 exteNd Director Content Management Guide

/**
 addCategoryReferenceToDocument

*/
import com.sssw.webdav.client.*;

public class addCategoryReferenceToDocument {

private static boolean m_debug = false;

public void addCategoryReferenceToDocument (String document, String categoryUUID)
{

 //Define variables
 int statuscode = 0;
 String user = "contentadmin";
 String password = "contentadmin";
 String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";

//Instantiate an EboDAVSwitch object
 EboDAVSwitch dav = new EboDAVSwitch();

 //Instantiate an EboDAVStatus object
 EboDAVStatus status = new EboDAVStatus();

 //Start a session
 dav.startSession("localhost", 80);

 try
 {

//Lock the document
statuscode = dav.lockDocument(user, password, realm, document);
if (statuscode == EboDAVStatus.SC_NO_CONTENT)

System.out.println(“Request succeeded: The category was added to “ + document);
else

System.out.println(“Request failed: “ + status.getStatusText(statuscode));

//Send the WebDAV request to add a category reference
 statuscode = dav.addCategoryToDocument(user, password, realm, document, categoryUUID);
 if (statuscode==EboDAVStatus.SC_MULTI_STATUS)
 System.out.println("Request succeeded: The category was added to " + document);
 else
 System.out.println("Request failed: " + status.getStatusText(statuscode));

//Unlock the document
statuscode = dav.unlockDocument(user, password, realm, document);
if (statuscode == EboDAVStatus.SC_NO_CONTENT)

System.out.println(“Request succeeded: The document was unlocked.”);
else

System.out.println(“Request failed: “ + status.getStatusText(statuscode));
}

 catch (EboDAVException e)
 {
 if (m_debug)
 e.printStackTrace();
 else
 System.out.println(e.getMessage());
 }

 //End session
 dav.endSession();

}
}

Building Your Own WebDAV Client 109

Code example: adding a category reference using utility methods

This example uses the Slide PropPatchMethod class and the exteNd Director utility methods
startSession(), createCredentials(), setCredentials(), getState(), setState(), and
createWebDAVMethod().

The method that adds the category reference is addPropertyToSet(), called on the PropPatchMethod
object. Notice that the second argument—property value—is null (because the category UUID is passed
as the first argument—property name). For more information about addPropertyToSet() and its
arguments, see “Constructing WebDAV requests that use Proppatch” on page 106.

/**
 addCategoryReference

*/
import com.sssw.webdav.client.*;
import com.sssw.webdav.common.EboWebdavConstants;
import org.apache.webdav.lib.*;
import org.apache.webdav.lib.methods.*;

public class addCategoryReference
{
 private static boolean m_debug = false;

 public void addCategoryReference (String document, String categoryUUID)
 {
 //Define variables
 int statuscode = 0;
 String user = "contentadmin";
 String password = "contentadmin";
 String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";
 String namespace-abbr = "AC";

 //Instantiate an EboDAVSwitch object
 EboDAVSwitch dav = new EboDAVSwitch();

 //Instantiate an EboDAVStatus object
 EboDAVStatus status = new EboDAVStatus();

 //Start a session
 dav.startSession("localhost", 80);

 //Get and set credentials
 Credentials credentials = dav.createCredentials(user, password);
 dav.setCredentials(credentials);

 //Get and set state and authentication realm
 State state = dav.getState();
 state.setAuthenticateToken(realm);
 dav.setState(state);

try
{

//Lock the document
//Create the WebDAV method object LockMethod
LockMethod lm = (LockMethod)dav.createWebdavMethod(dav.LOCK_METHOD,document);

//Set the owner
lm.setOwner(user);

//Execute the command
dav.executeCommand(lm)
statuscode = lm.getStatusCode();
if (statuscode == (EboDAVStatus.SC_NO_CONTENT))

System.out.println(“Request succeeded: The document was locked.”);
110 exteNd Director Content Management Guide

else
System.out.println(“Request failed: “ + status.getStatusText(statuscode));

 //Create the WebDAV method object PropPatchMethod
 PropPatchMethod ppm = (PropPatchMethod)dav.createWebdavMethod(dav.PROPPATCH_METHOD,document);
 ppm.addPropertyToSet(categoryUUID, null, namespace-abbr,
EboWebdavConstants.PROPPATCH_ADDCATEGORY);

 //Execute PropPatchMethod (send the WebDAV request to add category reference)
dav.executeCommand(ppm);

 statuscode = ppm.getStatusCode();
 if (statuscode == (EboDAVStatus.SC_MULTI_STATUS))
 System.out.println("Request succeeded: The category was added to " + document + ".");
 else
 System.out.println("Request failed: " + status.getStatusText(statuscode));

//Create the WebDAV method object UnlockMethod
UnlockMethod ulm = (UnlockMethod)dav.createWebdavMethod(dav.UNLOCK_METHOD,document);

//Execute UnlockMethod
dav.executeCommand(ulm);
statuscode = ulm.getStatusCode();
if (statuscode == (EboDAVStatus.SC_NO_CONTENT))

System.out.println(“Request succeeded: The document was unlocked.”);
else

System.out.println(“Request failed: “ + status.getStatusText(statuscode));
 }
 catch (EboDAVException e)
 {
 if (m_debug)
 e.printStackTrace();
 else
 System.out.println(e.getMessage());
 }
 catch (java.net.MalformedURLException murle)
 {
 if (m_debug)
 murle.printStackTrace();
 else
 System.out.println(murle.getMessage());
 }
 catch (java.io.IOException ioe)
 {
 if (m_debug)
 ioe.printStackTrace();
 else
 System.out.println(ioe.getMessage());
 }

 //End session
 dav.endSession();
 }
}

Copying a resource or collection

The following code shows how to copy a document from a source path to a destination path. In this case
the source path points to a document. To copy other types of resources or collections, make sure the
source path points to the element of interest.

Code example: copying a document using a helper method

The example uses the helper method copyElement():
Building Your Own WebDAV Client 111

/**
 copyADocument

*/
import com.sssw.webdav.client.*;

public class copyADocument {

private static boolean m_debug = false;

public void copyADocument (String docsourcepath, String docdestinationpath)
{

 //Define variables
 int statuscode = 0;
 String user = "contentadmin";
 String password = "contentadmin";
 String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";
 boolean overwrite = true; //Overwrite an existing document of the same name in the
docdestinationpath
 boolean autogen = true; //Generate folders in the docdestinationpath if they don't exist

 //Instantiate an EboDAVSwitch object
 EboDAVSwitch dav = new EboDAVSwitch();

 //Instantiate an EboDAVStatus object
 EboDAVStatus status = new EboDAVStatus();

 //Start a session
 dav.startSession("localhost", 80);

 //Send the WebDAV request to copy document
 try
 {
 statuscode = dav.copyElement(user, password, realm, docsourcepath, docdestinationpath,
overwrite, autogen);
 if (statuscode==EboDAVStatus.SC_CREATED)
 System.out.println("Request succeeded: The document " + docsourcepath + "was copied to " +
docdestinationpath);
 else
 System.out.println("Request failed: " + status.getStatusText(statuscode));

}
 catch (EboDAVException e)
 {
 if (m_debug)
 e.printStackTrace();
 else
 System.out.println(e.getMessage());
 }

 //End session
 dav.endSession();
 }
}

You can also copy a resource or collection using the Slide CopyMethod class and exteNd Director
utility methods. See “Programming practices using utility methods” on page 105.

Creating a new collection

The following code shows how to create a new collection. Recall that a collection is a container for other
resources and collections. A folder is a an example of a collection.
112 exteNd Director Content Management Guide

Code example: creating a collection using a helper method

This example uses the helper method makeCollection():

/**
 makeACollection

*/
import com.sssw.webdav.client.*;

public class makeACollection {

private static boolean m_debug = false;

public void makeACollection (String parent_folder, String folder_name)
{

 //Define variables
 int statuscode = 0;
 String user = "contentadmin";
 String password = "contentadmin";
 String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";

 //Instantiate an EboDAVSwitch object
 EboDAVSwitch dav = new EboDAVSwitch();

 //Instantiate an EboDAVStatus object
 EboDAVStatus status = new EboDAVStatus();

 //Start a session
 dav.startSession("localhost", 80);

 //Send the WebDAV request to make a collection
 try
 {
 statuscode = dav.makeCollection(user, password, realm, parent_folder, folder_name, true);
 if (statuscode==EboDAVStatus.SC_CREATED)
 System.out.println("Request succeeded: The collection " + parent_folder + "/" + folder_name +
"was created.");
 else
 System.out.println("Request failed: " + status.getStatusText(statuscode));

 }
 catch (EboDAVException e)
 {
 if (m_debug)
 e.printStackTrace();
 else
 System.out.println(e.getMessage());
 }

 //End session
 dav.endSession();
 }
}

You can also make a new collection using the Slide MkcolMethod class and exteNd Director utility
methods. See “Programming practices using utility methods” on page 105.

Creating a new document from a custom template

The following code shows how to create a new document from a custom template. Custom templates are
document types that you define in the exteNd Director CM subsystem using the CM API or CMS
Administration Console.
Building Your Own WebDAV Client 113

The document that is created contains the content “Hello world!” along with any custom fields defined
in the document type.

Code example: creating a document using a helper method

This example uses the helper method createNewDocument(). The document type is passed as an
argument to createNewDocument, along with the user name, password, realm, containing folder, and
content:

/**
 createADocument

*/
import com.sssw.webdav.client.*;

public class createADocument {

private static boolean m_debug = false;

public void createADocument (String document, String folder, String documentType)
{

 //Define variables
 int statuscode = 0;
 String user = "contentadmin";
 String password = "contentadmin";
 String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";
 String sourcetext = "Hello world!";
 byte [] content = sourcetext.getBytes();

 //Instantiate an EboDAVSwitch object
 EboDAVSwitch dav = new EboDAVSwitch();

 //Instantiate an EboDAVStatus object
 EboDAVStatus status = new EboDAVStatus();

 //Start a session
 dav.startSession("localhost", 80);

 //Send the WebDAV request to create a document
 try
 {
 statuscode = dav.createNewDocument(user, password, realm, folder, document, documentType,
content);
 if (statuscode==EboDAVStatus.SC_CREATED)
 System.out.println("Request succeeded: The document " + document + "was created.");
 else
 System.out.println("Request failed: " + status.getStatusText(statuscode));

 }
 catch (EboDAVException e)
 {
 if (m_debug)
 e.printStackTrace();
 else
 System.out.println(e.getMessage());
 }

 //End session
 dav.endSession();
 }
}

114 exteNd Director Content Management Guide

Deleting a document

For examples of how to delete a document from a WebDAV client, see “Code example: deleting a
document using a helper method” on page 104 and “Code example: deleting a document using utility
methods” on page 106.

Getting a resource or collection

The following code shows how to get the content of a document stored in the CM subsystem. The
document is referenced as the second argument of the createWebDAVMethod() utility method. To get
other types of resources or collections, modify this argument to point to the element of interest.

Code example: getting a document using utility methods

This example uses the Slide GetMethod class and the exteNd Director utility methods startSession(),
createCredentials(), setCredentials(), getState(), setState(), and createWebDAVMethod().

By calling the getDataAsString() method on the GetMethod class, the client application retrieves the
content of the document in HTML format.

There is no helper method for getting a resource or collection:

/**
 getTheDocument

*/
import com.sssw.webdav.client.*;
import org.apache.webdav.lib.*;
import org.apache.webdav.lib.methods.*;

public class getTheDocument
{
 private static boolean m_debug = false;

 public void getTheDocument (String document)
 {
 //Define variables
 int statuscode = 0;
 String user = "contentadmin";
 String password = "contentadmin";
 String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";

 //Instantiate an EboDAVSwitch object
 EboDAVSwitch dav = new EboDAVSwitch();

 //Instantiate an EboDAVStatus object
 EboDAVStatus status = new EboDAVStatus();

 //Start a session
 dav.startSession("localhost", 80);

 //Get and set credentials
 Credentials credentials = dav.createCredentials(user, password);
 dav.setCredentials(credentials);

 //Get and set state and authentication realm
 State state = dav.getState();
 state.setAuthenticateToken(realm);
 dav.setState(state);

 //Create the WebDAV method object GetMethod
 GetMethod gm = (GetMethod)dav.createWebdavMethod(dav.GET_METHOD,document);
Building Your Own WebDAV Client 115

 //Execute GetMethod (send the WebDAV request to get document)
 try
 {
 dav.executeCommand(gm);
 statuscode = gm.getStatusCode();
 if (statuscode == (EboDAVStatus.SC_OK))
 {
 String html = gm.getDataAsString();
 System.out.println("Request succeeded: Got the document and its content as html.");
 }
 else
 System.out.println("Request failed: " + status.getStatusText(statuscode));

 }
 catch (EboDAVException e)
 {
 if (m_debug)
 e.printStackTrace();
 else
 System.out.println(e.getMessage());
 }
 catch (java.net.MalformedURLException murle)
 {
 if (m_debug)
 murle.printStackTrace();
 else
 System.out.println(murle.getMessage());
 }
 catch (java.io.IOException ioe)
 {
 if (m_debug)
 ioe.printStackTrace();
 else
 System.out.println(ioe.getMessage());
 }

 //End session
 dav.endSession();
 }
}

There is no exteNd Director helper method for getting a resource or collection.

Getting header information from a resource or collection

The following code shows how to get the header information of a document stored in the CM subsystem.
The document is referenced as the second argument of the createWebDAVMethod() utility method. To
get other types of resources or collections, modify this argument to point to the element of interest.

Code example: getting header information using utility methods

This example uses the Slide HeadMethod class and the exteNd Director utility methods startSession(),
createCredentials(), setCredentials(), getState(), setState(), and createWebDAVMethod().

There is no helper method for getting a resource or collection:

/**
 getDocumentHeader

*/
import com.sssw.webdav.client.*;
import org.apache.webdav.lib.*;
import org.apache.webdav.lib.methods.*;
116 exteNd Director Content Management Guide

public class getDocumentHeader
{
 private static boolean m_debug = false;

 public void getDocumentHeader (String document)
 {
 //Define variables
 int statuscode = 0;
 String user = "contentadmin";
 String password = "contentadmin";
 String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";

String authtype = ““;

 //Instantiate an EboDAVSwitch object
 EboDAVSwitch dav = new EboDAVSwitch();

 //Instantiate an EboDAVStatus object
 EboDAVStatus status = new EboDAVStatus();

 //Start a session
 dav.startSession("localhost", 80);

 //Get and set credentials
 Credentials credentials = dav.createCredentials(user, password);
 dav.setCredentials(credentials);

 //Get and set state and authentication realm
 State state = dav.getState();
 state.setAuthenticateToken(realm);
 dav.setState(state);

 //Create the WebDAV method object HeadMethod
 HeadMethod hm = (HeadMethod)dav.createWebdavMethod(dav.HEAD_METHOD,document);

 //Execute HeadMethod (send the WebDAV request to get document header)
 try
 {
 dav.executeCommand(hm);
 statuscode = hm.getStatusCode();
 if (statuscode == (EboDAVStatus.SC_OK))
 {

//Get authorization type from header
 authtype = hm.getHeader (“authorization”).toString();

System.out.println("Request succeeded: Got the document header. Authorization type is “ +
authtype);
 }
 else
 System.out.println("Request failed: " + status.getStatusText(statuscode));

 }
 catch (EboDAVException e)
 {
 if (m_debug)
 e.printStackTrace();
 else
 System.out.println(e.getMessage());
 }
 catch (java.net.MalformedURLException murle)
 {
 if (m_debug)
 murle.printStackTrace();
 else
 System.out.println(murle.getMessage());
 }
 catch (java.io.IOException ioe)
Building Your Own WebDAV Client 117

 {
 if (m_debug)
 ioe.printStackTrace();
 else
 System.out.println(ioe.getMessage());
 }

 //End session
 dav.endSession();
 }
}

There is no exteNd Director helper method for getting header information from a resource or collection.

Getting methods that can be called on a resource or collection

The following code shows how to get the methods that can be called on a document stored in the CM
subsystem. The document is referenced as the second argument of the createWebDAVMethod() utility
method. To get other types of resources or collections, modify this argument to point to the element of
interest.

Code example: getting allowed methods using utility methods

This example uses the Slide OptionsMethod class and the exteNd Director utility methods
startSession(), createCredentials(), setCredentials(), getState(), setState(), and
createWebDAVMethod().

There is no helper method for getting allowed methods on a resource or collection:

/**
 getAllowedMethods

*/
import com.sssw.webdav.client.*;
import org.apache.webdav.lib.*;
import org.apache.webdav.lib.methods.*;
import java.util.*;

public class getAllowedMethods
{
 private static boolean m_debug = false;

 public void getAllowedMethods (String document)
 {
 //Define variables
 int statuscode = 0;
 String user = "contentadmin";
 String password = "contentadmin";
 String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";

 //Instantiate an EboDAVSwitch object
 EboDAVSwitch dav = new EboDAVSwitch();

 //Instantiate an EboDAVStatus object
 EboDAVStatus status = new EboDAVStatus();

 //Start a session
 dav.startSession("localhost", 80);

 //Get and set credentials
 Credentials credentials = dav.createCredentials(user, password);
 dav.setCredentials(credentials);
118 exteNd Director Content Management Guide

 //Get and set state and authentication realm
 State state = dav.getState();
 state.setAuthenticateToken(realm);
 dav.setState(state);

 //Create the WebDAV method object HeadMethod
 OptionsMethod om = (OptionsMethod)dav.createWebdavMethod(dav.OPTIONS,document);

 //Execute OptionsMethod (send the WebDAV request to get the allowed methods on
//the document)

 try
 {
 dav.executeCommand(om);
 statuscode = om.getStatusCode();
 if (statuscode == (EboDAVStatus.SC_OK))
 {
 System.out.println("Request succeeded: Got the document header.\n");
 System.out.println("The allowed methods on " + document + " are:\n");
 Enumeration methods = om.getAllowedMethods();
 while (methods.hasMoreElements()) {
 System.out.println(methods.nextElement().toString() + "\n");
 }
 }
 else
 System.out.println("Request failed: " + status.getStatusText(statuscode));

 }
 catch (EboDAVException e)
 {
 if (m_debug)
 e.printStackTrace();
 else
 System.out.println(e.getMessage());
 }
 catch (java.net.MalformedURLException murle)
 {
 if (m_debug)
 murle.printStackTrace();
 else
 System.out.println(murle.getMessage());
 }
 catch (java.io.IOException ioe)
 {
 if (m_debug)
 ioe.printStackTrace();
 else
 System.out.println(ioe.getMessage());
 }

 //End session
 dav.endSession();
 }
}

There is no exteNd Director helper method for getting methods that can be called on a resource or
collection.

Getting properties defined on a resource or collection

The following code shows how to get properties defined on a document stored in the CM subsystem. The
document is referenced as the second argument of the createWebDAVMethod() utility method. To get
other types of resources or collections, modify this argument to point to the element of interest.
Building Your Own WebDAV Client 119

Code example: getting properties using utility methods

This example uses the Slide PropFindMethod class and the exteNd Director utility methods
startSession(), createCredentials(), setCredentials(), getState(), setState(), and
createWebDAVMethod().

There is no helper method for getting properties defined on a resource or collection:

/**
 getProperties

*/
import com.sssw.webdav.client.*;
import org.apache.webdav.lib.*;
import org.apache.webdav.lib.methods.*;
import java.util.*;

public class getProperties
{
 private static boolean m_debug = false;

 public void getProperties (String document)
 {
 //Define variables
 int statuscode = 0;
 String user = "contentadmin";
 String password = "contentadmin";
 String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";

 //Instantiate an EboDAVSwitch object
 EboDAVSwitch dav = new EboDAVSwitch();

 //Instantiate an EboDAVStatus object
 EboDAVStatus status = new EboDAVStatus();

 //Start a session
 dav.startSession("localhost", 80);

 //Get and set credentials
 Credentials credentials = dav.createCredentials(user, password);
 dav.setCredentials(credentials);

 //Get and set state and authentication realm
 State state = dav.getState();
 state.setAuthenticateToken(realm);
 dav.setState(state);

 //Create the WebDAV method object PropFindMethod
 PropFindMethod pfm = (PropFindMethod)dav.createWebdavMethod(dav.PROPFIND_METHOD,document);

 //Execute PropFindMethod (send the WebDAV request to get the properties defined on
//the document)

 try
 {
 dav.executeCommand(pfm);
 statuscode = pfm.getStatusCode();
 if (statuscode == (EboDAVStatus.SC_MULTI_STATUS))
 {
 System.out.println("Request succeeded: Got the properties.\n");
 System.out.println("The properties defined on " + document + " are:\n");
 Enumeration props = pfm.getResponseProperties(document);
 while (props.hasMoreElements()) {
 System.out.println(props.nextElement().toString() + "\n");
 }
 }
 else
 System.out.println("Request failed: " + status.getStatusText(statuscode));
120 exteNd Director Content Management Guide

 }
 catch (EboDAVException e)
 {
 if (m_debug)
 e.printStackTrace();
 else
 System.out.println(e.getMessage());
 }
 catch (java.net.MalformedURLException murle)
 {
 if (m_debug)
 murle.printStackTrace();
 else
 System.out.println(murle.getMessage());
 }
 catch (java.io.IOException ioe)
 {
 if (m_debug)
 ioe.printStackTrace();
 else
 System.out.println(ioe.getMessage());
 }

 //End session
 dav.endSession();
 }
}

There is no exteNd Director helper method for getting methods that can be called on a resource or
collection.

Locking a document

The following code shows how to lock a document for exclusive access in a collaborative environment.
You might invoke this function in your WebDAV client application when a user checks out a document.

Code example: locking a document using a helper method

The example uses the helper method lockDocument(). This method throws an exception if the document
of interest is already locked. To explicitly check for this condition, the code calls the checkLockToken()
method:

/**
 lockADocument

*/
import com.sssw.webdav.client.*;

public class lockADocument {

private static boolean m_debug = false;

public void lockADocument (String document)
{

 //Define variables
 int statuscode = 0;
 String user = "contentadmin";
 String password = "contentadmin";
 String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";

 //Instantiate an EboDAVSwitch object
Building Your Own WebDAV Client 121

 EboDAVSwitch dav = new EboDAVSwitch();

 //Instantiate an EboDAVStatus object
 EboDAVStatus status = new EboDAVStatus();

 //Start a session
 dav.startSession("localhost", 80);

try
 {

//If document not already locked, send the WebDAV request to lock the document
if (dav.checkLockToken(document) == null)
{

statuscode = dav.lockDocument(user, password, realm, document);
if (statuscode==EboDAVStatus.SC_NO_CONTENT)

System.out.println("Request succeeded: The document " + document + "was locked.");
else

System.out.println("Request failed: " + status.getStatusText(statuscode));
}
else

System.out.println(“Document is already locked.”);

}
catch (EboDAVException e)

 {
 if (m_debug)
 e.printStackTrace();
 else
 System.out.println(e.getMessage());
 }

 //End session
 dav.endSession();
 }
}

You can also lock a document using the Slide LockMethod class and exteNd Director utility methods.
See “Programming practices using utility methods” on page 105.

Moving a resource or collection

The following code shows how to move a folder from a source path to a destination path. In this case, the
source path points to a folder. To move other types of resources or collections, make sure the source path
points to the element of interest.

Code example: moving a folder using a helper method

The example uses the helper method moveElement():

/**
 moveAFolder

*/
import com.sssw.webdav.client.*;

public class moveAFolder {

private static boolean m_debug = false;

public void moveAFolder (String foldersourcepath, String folderdestinationpath)
{

 //Define variables
 int statuscode = 0;
 String user = "contentadmin";
122 exteNd Director Content Management Guide

 String password = "contentadmin";
 String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";
 boolean autogen = true; //Generate folders in the folderdestinationpath if they don't exist

 //Instantiate an EboDAVSwitch object
 EboDAVSwitch dav = new EboDAVSwitch();

 //Instantiate an EboDAVStatus object
 EboDAVStatus status = new EboDAVStatus();

 //Start a session
 dav.startSession("localhost", 80);

 //Send the WebDAV request to move folder
 try
 {
 statuscode = dav.moveElement(user, password, realm, foldersourcepath, folderdestinationpath,
autogen);
 if (statuscode==EboDAVStatus.SC_CREATED)
 System.out.println("Request succeeded: The folder " + foldersourcepath + "was moved to " +
folderdestinationpath);
 else
 System.out.println("Request failed: " + status.getStatusText(statuscode));

 }
 catch (EboDAVException e)
 {
 if (m_debug)
 e.printStackTrace();
 else
 System.out.println(e.getMessage());
 }

 //End session
 dav.endSession();
 }
}

You can also move a resource or collection using the Slide MoveMethod class and exteNd Director
utility methods. See “Programming practices using utility methods” on page 105.

Removing a category reference from a document

The following code examples show how to remove a category reference from a document. A category is
a descriptive name used to group documents logically in the CM subsystem.

Code example: removing a category reference using a helper method

This example uses the helper method removeCategoryFromDocument():

/**
 removeCategoryReferenceFromDocument

*/
import com.sssw.webdav.client.*;

public class removeCategoryReferenceFromDocument {

private static boolean m_debug = false;

public void removeCategoryReferenceFromDocument (String document, String categoryUUID)
{

 //Define variables
Building Your Own WebDAV Client 123

 int statuscode = 0;
 String user = "contentadmin";
 String password = "contentadmin";
 String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";

 //Instantiate an EboDAVSwitch object
 EboDAVSwitch dav = new EboDAVSwitch();

 //Instantiate an EboDAVStatus object
 EboDAVStatus status = new EboDAVStatus();

 //Start a session
 dav.startSession("localhost", 80);

 //Send the WebDAV request to remove a category reference
 try
 {
 statuscode = dav.removeCategoryFromDocument(user, password, realm, document, categoryUUID);
 if (statuscode==EboDAVStatus.SC_MULTI_STATUS)
 System.out.println("Request succeeded: The category was removed from " + document);
 else
 System.out.println("Request failed: " + status.getStatusText(statuscode));

 }
 catch (EboDAVException e)
 {
 if (m_debug)
 e.printStackTrace();
 else
 System.out.println(e.getMessage());
 }

 //End session
 dav.endSession();
 }
}

Code example: removing a category reference using utility methods

This example uses the Slide PropPatchMethod class and the exteNd Director utility methods
startSession(), createCredentials(), setCredentials(), getState(), setState(), and
createWebDAVMethod().

The method that removes the category reference is addPropertyToSet(), called on the PropPatchMethod
object. Notice that the second argument—property value—is null because the category UUID is passed
as the first argument—property name. For more information about addPropertyToSet() and its
arguments, see “Constructing WebDAV requests that use Proppatch” on page 106.

/**
 removeCategoryReference

*/
import com.sssw.webdav.client.*;
import com.sssw.webdav.common.EboWebdavConstants;
import org.apache.webdav.lib.*;
import org.apache.webdav.lib.methods.*;

public class removeCategoryReference
{
 private static boolean m_debug = false;

 public void removeCategoryReference (String document, String categoryUUID)
 {
 //Define variables
 int statuscode = 0;
124 exteNd Director Content Management Guide

 String user = "contentadmin";
 String password = "contentadmin";
 String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";
 String namespace-abbr = "RC";

 //Instantiate an EboDAVSwitch object
 EboDAVSwitch dav = new EboDAVSwitch();

 //Instantiate an EboDAVStatus object
 EboDAVStatus status = new EboDAVStatus();

 //Start a session
 dav.startSession("localhost", 80);

 //Get and set credentials
 Credentials credentials = dav.createCredentials(user, password);
 dav.setCredentials(credentials);

 //Get and set state and authentication realm
 State state = dav.getState();
 state.setAuthenticateToken(realm);
 dav.setState(state);

 //Create the WebDAV method object PropPatchMethod
 PropPatchMethod ppm = (PropPatchMethod)dav.createWebdavMethod(dav.PROPPATCH_METHOD,document);
 ppm.addPropertyToSet(categoryUUID, null, namespace-abbr,
EboWebdavConstants.PROPPATCH_REMOVECATEGORY);

 //Execute PropPatchMethod (send the WebDAV request to remove category reference)
 try
 {
 dav.executeCommand(ppm);
 statuscode = ppm.getStatusCode();
 if (statuscode == (EboDAVStatus.MULTI_STATUS))
 System.out.println("Request succeeded: The category was removed from " + document + ".");
 else
 System.out.println("Request failed: " + status.getStatusText(statuscode));

 }
 catch (EboDAVException e)
 {
 if (m_debug)
 e.printStackTrace();
 else
 System.out.println(e.getMessage());
 }
 catch (java.net.MalformedURLException murle)
 {
 if (m_debug)
 murle.printStackTrace();
 else
 System.out.println(murle.getMessage());
 }
 catch (java.io.IOException ioe)
 {
 if (m_debug)
 ioe.printStackTrace();
 else
 System.out.println(ioe.getMessage());
 }

 //End session
 dav.endSession();
 }
}

Building Your Own WebDAV Client 125

Removing all category references from a document

The following code examples show how to remove all category references from a document. A category
is a descriptive name used to group documents logically in the CM subsystem.

Code example: removing all category references using a helper method

This example uses the helper method removeAllCategoriesFromDocument():

/**
 removeAllCategoryReferencesFromDocument

*/
import com.sssw.webdav.client.*;

public class removeAllCategoryReferencesFromDocument {

private static boolean m_debug = false;

public void removeAllCategoryReferencesFromDocument (String document)
{

 //Define variables
 int statuscode = 0;
 String user = "contentadmin";
 String password = "contentadmin";
 String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";

 //Instantiate an EboDAVSwitch object
 EboDAVSwitch dav = new EboDAVSwitch();

 //Instantiate an EboDAVStatus object
 EboDAVStatus status = new EboDAVStatus();

 //Start a session
 dav.startSession("localhost", 80);

 //Send the WebDAV request to remove all category references from the document
 try
 {
 statuscode = dav.removeAllCategoriesFromDocument(user, password, realm, document);
 if (statuscode==EboDAVStatus.MULTI_STATUS)
 System.out.println("Request succeeded: All categories were removed from " + document);
 else
 System.out.println("Request failed: " + status.getStatusText(statuscode));

 }
 catch (EboDAVException e)
 {
 if (m_debug)
 e.printStackTrace();
 else
 System.out.println(e.getMessage());
 }

 //End session
 dav.endSession();
 }
}

126 exteNd Director Content Management Guide

Code example: removing all category references using utility methods

This example uses the Slide PropPatchMethod class and the exteNd Director utility methods
startSession(), createCredentials(), setCredentials(), getState(), setState(), and
createWebDAVMethod().

The method that removes all category references is addPropertyToSet(), called on the PropPatchMethod
object. Notice that the second argument—property value—is null because the document UUID is passed
as the first argument—property name. For more information about addPropertyToSet() and its
arguments, see “Constructing WebDAV requests that use Proppatch” on page 106.

/**
 removeAllCategoryReferences

*/
import com.sssw.webdav.client.*;
import com.sssw.webdav.common.EboWebdavConstants;
import org.apache.webdav.lib.*;
import org.apache.webdav.lib.methods.*;

public class removeAllCategoryReferences
{
 private static boolean m_debug = false;

 public void removeAllCategoryReferences (String documentUUID)
 {
 //Define variables
 int statuscode = 0;
 String user = "contentadmin";
 String password = "contentadmin";
 String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";
 String namespace-abbr = "RAC";

 //Instantiate an EboDAVSwitch object
 EboDAVSwitch dav = new EboDAVSwitch();

 //Instantiate an EboDAVStatus object
 EboDAVStatus status = new EboDAVStatus();

 //Start a session
 dav.startSession("localhost", 80);

 //Get and set credentials
 Credentials credentials = dav.createCredentials(user, password);
 dav.setCredentials(credentials);

 //Get and set state and authentication realm
 State state = dav.getState();
 state.setAuthenticateToken(realm);
 dav.setState(state);

 //Create the WebDAV method object PropPatchMethod
 PropPatchMethod ppm = (PropPatchMethod)dav.createWebdavMethod(dav.PROPPATCH_METHOD,document);
 ppm.addPropertyToSet(documentUUID, null, namespace-abbr,
EboWebdavConstants.PROPPATCH_REMOVEALLCATEGORIES);

 //Execute PropPatchMethod (send the WebDAV request to remove all category references)
 try
 {
 dav.executeCommand(ppm);
 statuscode = ppm.getStatusCode();
 if (statuscode == (EboDAVStatus.SC_OK))
 System.out.println("Request succeeded: All categories were removed.");
 else
 System.out.println("Request failed: " + status.getStatusText(statuscode));

Building Your Own WebDAV Client 127

 }
 catch (EboDAVException e)
 {
 if (m_debug)
 e.printStackTrace();
 else
 System.out.println(e.getMessage());
 }
 catch (java.net.MalformedURLException murle)
 {
 if (m_debug)
 murle.printStackTrace();
 else
 System.out.println(murle.getMessage());
 }
 catch (java.io.IOException ioe)
 {
 if (m_debug)
 ioe.printStackTrace();
 else
 System.out.println(ioe.getMessage());
 }

//End session
 dav.endSession();
 }
}

Renaming a resource or collection

The following code shows how to rename a document. In this case, the source path points to a document.
The destination path is identical to the source path, except for a different document name.

To rename other types of resources or collections, make sure the source path points to the element of
interest and the destination path points to the same element, but with a different name.

Code example: renaming a document using a helper method

The example uses the helper method moveElement():

//**
 renameADocument

*/
import com.sssw.webdav.client.*;

public class renameADocument {

private static boolean m_debug = false;

public void renameADocument (String docsourcepath, String docdestinationpath)
{

 //Define variables
 int statuscode = 0;
 String user = "contentadmin";
 String password = "contentadmin";
 String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";
 boolean autogen = false; //Do not generate folders in the docdestinationpath if they don't exist

 //Instantiate an EboDAVSwitch object
 EboDAVSwitch dav = new EboDAVSwitch();

 //Instantiate an EboDAVStatus object
128 exteNd Director Content Management Guide

 EboDAVStatus status = new EboDAVStatus();

 //Start a session
 dav.startSession("localhost", 80);

 //Send the WebDAV request to rename the document
 try
 {
 statuscode = dav.moveElement(user, password, realm, docsourcepath, docdestinationpath, autogen);
 if (statuscode==EboDAVStatus.SC_CREATED)
 System.out.println("Request succeeded: The document " + docsourcepath + "was renamed to " +
docdestinationpath);
 else
 System.out.println("Request failed: " + status.getStatusText(statuscode));

 }
 catch (EboDAVException e)
 {
 if (m_debug)
 e.printStackTrace();
 else
 System.out.println(e.getMessage());
 }

 //End session
 dav.endSession();
 }
}

You can also rename a resource or collection using the Slide MoveMethod class and exteNd Director
utility methods. See “Programming practices using utility methods” on page 105.

Setting the value of a custom field in a document

The following code examples show how to update the custom metadata in a document by setting the
value of a custom field. Custom fields are fields that you define as part of a custom document type created
in the CM subsystem using the CM API or the CMS Administration Console.

To update standard metadata in a document, use the addPropertyToSet() method on a Proppatch method
object, as described in “Constructing WebDAV requests that use Proppatch” on page 106.

Code example: setting a field value using a helper method

This example uses the helper method setFieldValueForDocument(). This method overwrites existing
values of custom fields:

/**
 setFieldValueOfADocument

*/
import com.sssw.webdav.client.*;

public class setFieldValueOfADocument {

private static boolean m_debug = false;

public void setFieldValueOfADocument (String document, String field_name, String field_value)
{

 //Define variables
 int statuscode = 0;
 String user = "contentadmin";
 String password = "contentadmin";
 String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";
Building Your Own WebDAV Client 129

 //Instantiate an EboDAVSwitch object
 EboDAVSwitch dav = new EboDAVSwitch();

 //Instantiate an EboDAVStatus object
 EboDAVStatus status = new EboDAVStatus();

 //Start a session
 dav.startSession("localhost", 80);

 //Send the WebDAV request to update the custom field
 try
 {
 statuscode = dav.setFieldValueForDocument(user, password, realm, document, field_name,
field_value);
 if (statuscode==EboDAVStatus.SC_MULTI_STATUS)
 System.out.println("Request succeeded: The field " + field_name + " of document " + document +
"was changed to " + field_value);
 else
 System.out.println("Request failed: " + status.getStatusText(statuscode));

 }
 catch (EboDAVException e)
 {
 if (m_debug)
 e.printStackTrace();
 else
 System.out.println(e.getMessage());
 }

 //End session
 dav.endSession();
 }
}

Code example: setting a field value using utility methods

This example uses the Slide PropPatchMethod class and the exteNd Director utility methods
startSession(), createCredentials(), setCredentials(), getState(), setState(), and
createWebDAVMethod():

/**
setTheFieldValue

*/
import com.sssw.webdav.client.*;
import com.sssw.webdav.common.EboWebdavConstants;
import org.apache.webdav.lib.*;
import org.apache.webdav.lib.methods.*;

public class setTheFieldValue
{
 private static boolean m_debug = false;

 public void setTheFieldValue (String document)
 {
 //Define variables
 int statuscode = 0;
 String user = "contentadmin";
 String password = "contentadmin";
 String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";
 String fieldname = "Department";
 String fieldvalue = "Human Resources";
 String namespace-abbr = "SFV";

 //Instantiate an EboDAVSwitch object
130 exteNd Director Content Management Guide

 EboDAVSwitch dav = new EboDAVSwitch();

 //Instantiate an EboDAVStatus object
 EboDAVStatus status = new EboDAVStatus();

 //Start a session
 dav.startSession("localhost", 80);

 //Get and set credentials
 Credentials credentials = dav.createCredentials(user, password);
 dav.setCredentials(credentials);

 //Get and set state and authentication realm
 State state = dav.getState();
 state.setAuthenticateToken(realm);
 dav.setState(state);

 //Create the WebDAV method object PropPatchMethod
 PropPatchMethod ppm = (PropPatchMethod)dav.createWebdavMethod(dav.PROPPATCH_METHOD,document);
 ppm.addPropertyToSet(fieldname, fieldvalue, namespace-abbr,
EboWebdavConstants.PROPPATCH_SETFIELDVALUE);

 //Execute PropPatchMethod (send the WebDAV request to set field value)
 try
 {
 dav.executeCommand(ppm);
 statuscode = ppm.getStatusCode();
 if (statuscode == (EboDAVStatus.SC_MULTI_STATUS))
 System.out.println("Request succeeded: The field " + fieldname + " was set to " + fieldvalue +
".");
 else
 System.out.println("Request failed: " + status.getStatusText(statuscode));

 }
 catch (EboDAVException e)
 {
 if (m_debug)
 e.printStackTrace();
 else
 System.out.println(e.getMessage());
 }
 catch (java.net.MalformedURLException murle)
 {
 if (m_debug)
 murle.printStackTrace();
 else
 System.out.println(murle.getMessage());
 }
 catch (java.io.IOException ioe)
 {
 if (m_debug)
 ioe.printStackTrace();
 else
 System.out.println(ioe.getMessage());
 }

 //End session
 dav.endSession();
 }
}

Building Your Own WebDAV Client 131

Unlocking a document

The following code shows how to unlock a document, making it available to other authors in a
collaborative environment. You might invoke this function in your WebDAV client application when a
user checks in a document.

Code example: unlocking a document using a helper method

The example uses the helper method unlockDocument(). This method throws an exception if the
document of interest is already unlocked. To explicitly check for this condition, the code calls the
checkLockToken() method:

/**
 unlockADocument

*/
import com.sssw.webdav.client.*;

public class unlockADocument {

private static boolean m_debug = false;

public void unlockADocument (String document)
{

 //Define variables
 int statuscode = 0;
 String user = "contentadmin";
 String password = "contentadmin";
 String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";

 //Instantiate an EboDAVSwitch object
 EboDAVSwitch dav = new EboDAVSwitch();

 //Instantiate an EboDAVStatus object
 EboDAVStatus status = new EboDAVStatus();

 //Start a session
 dav.startSession("localhost", 80);

 try
 {

//If document is locked, unlock it
if (dav.checkLockToken(document) != null)
{

 //Send the WebDAV request to unlock the document
statuscode = dav.unlockDocument(user, password, realm, document);

 if (statuscode==EboDAVStatus.SC_NO_CONTENT)
 System.out.println("Request succeeded: The document " + document + "was unlocked.");
 else
 System.out.println("Request failed: " + status.getStatusText(statuscode));

}
else

{
System.out.println(“The document is already unlocked.”);

}
}

 catch (EboDAVException e)
 {
 if (m_debug)
 e.printStackTrace();
 else
 System.out.println(e.getMessage());
 }
 }
132 exteNd Director Content Management Guide

//End session
 dav.endSession();
 }
}

You can also unlock a document using the Slide UnlockMethod class and exteNd Director utility
methods. See “Programming practices using utility methods” on page 105.

Updating a document

The following code example shows how to update the content of a document.

Code example: updating a document using a helper method

The example uses the helper method putDocument(). This method updates the content—not the
metadata—of a document by creating and publishing a new version. To update document metadata, see
“Setting the value of a custom field in a document” on page 129.

/**
 updateADocument

*/
import com.sssw.webdav.client.*;

public class updateADocument {

private static boolean m_debug = false;

public void updateADocument (String document)
{

 //Define variables
 int statuscode = 0;
 String user = "contentadmin";
 String password = "contentadmin";
 String realm = "Basic realm = \"SSSW_WEBDAV_AUTHENTICATION\"";
 String updatetext = "Hello earth!";
 byte [] newcontent = updatetext.getBytes();

 //Instantiate an EboDAVSwitch object
 EboDAVSwitch dav = new EboDAVSwitch();

 //Instantiate an EboDAVStatus object
 EboDAVStatus status = new EboDAVStatus();

 //Start a session
 dav.startSession("localhost", 80);

 //Send the WebDAV request to update the document
 try
 {
 statuscode = dav.putDocument(user, password, realm, document, newcontent);
 if (statuscode==EboDAVStatus.SC_OK)
 System.out.println("Request succeeded: The document " + document + "was updated.");
 else
 System.out.println("Request failed: " + status.getStatusText(statuscode));

 }
 catch (EboDAVException e)
 {
 if (m_debug)
 e.printStackTrace();
 else
 System.out.println(e.getMessage());
Building Your Own WebDAV Client 133

 }

 //End session
 dav.endSession();
 }
}

You can also update a document or create a new document using the Slide PutMethod class and exteNd
Director utility methods. See “Programming practices using utility methods” on page 105.
134 exteNd Director Content Management Guide

11 Working with WebDAV Events

This chapter describes how to handle events related to WebDAV operations and activities. It has these
sections:

About WebDAV events

Registering for WebDAV events

Enabling WebDAV events

This chapter assumes familiarity with the exteNd Director event model and event handling. For
more information, see the chapter on working with events in Developing exteNd Director Applications.

About WebDAV events
The WebDAV API events are an extension of the base exteNd Director event model framework,
consisting of state change events, event producers, and event listeners (including vetoable listeners). The
API for WebDAV events is defined in the com.sssw.webdav.event.api package.

Event types

The API defines a set of state changed events related to WebDAV operations. Event IDs are exposed on
the individual event classes as well as on the com.sssw.webdav.event.api.EbiConstants interface. There
are also generic state change events defined in com.sssw.fw.event.api.EbiotateChangeEvent.

Below is a list of event IDs defined in com.sssw.webdav.event.api.EbiConstants:

For more information about WebDAV operations, see “Supported WebDAV methods” on page 97.

WebDAV operation Event ID constant

Copy collections and resources COPY_EVENT_ID

Delete collections or resources DELETE_EVENT_ID

Retrieve collections or resources GET_EVENT_ID

Retrieve header only HEAD_EVENT_ID

Create a lock specified by the lockinfo XML element on the Request-
URI.

LOCK_EVENT_ID

Create collection MKCOL_EVENT_ID

Move resources or collections MOVE_EVENT_ID

Return methods that can be called on resources and collections OPTIONS_EVENT_ID

Download resources and collections from the client POST_EVENT_ID

Retrieve properties on resources and collections PROPFIND_EVENT_ID
Working with WebDAV Events 135

cdEventHandling.html

Registering for WebDAV events

To subscribe to WebDAV events:

Use the addStateChangeListener() or add VetoableStateChangeListener method available on the
EbiStateChangeProducer interface.

You can register for a specified type or types of events using this version of addStateChangeListener():

public boolean addStateChangeListener(
 BitSet events, EbiStateChangeListener listener)

where events is a bit set of event IDs.

Use the event IDs specified in com.sssw.webdav.event.api.EbiConstants. For example, this code registers
for create, delete and move operations on collections and resources:

EbiStateChangeProducer producer = new EbiStateChangeProducer()
// Instantiate a Java BitSet and populate it
BitSet events = new BitSet();
events.set(EbiConstants.MKCOL_EVENT_ID_ID);
events.set(EbiConstants.DELETE_EVENT_ID);
events.set(EbiConstants.MOVE_EVENT_ID);
// Add listener
producer.addStateChangeListener(events, Mylistener);

Enabling WebDAV events

To enable or disable WebDAV events:

1 Open config.xml in your exteNd Director project.

2 Find this property:
com.sssw.webdav.events.enable.Default

3 Set the value to true for enable or false for disable.

4 Redeploy your project.

Set and/or remove properties on server-side resources and
collections

PROPPATCH_EVENT_ID

Upload resources and collections from the client PUT_EVENT_ID

Remove a lock identified in the Lock-Token request header of the
Request-URI.

UNLOCK_EVENT_ID

WebDAV operation Event ID constant
136 exteNd Director Content Management Guide

III CMS Administration Console

Describes how to use the CMS Administration Console, a graphical user interface for
developing and managing a content management scheme

• Chapter 12, “About the CMS Administration Console”
• Chapter 13, “Setting Up the Required Infrastructure”
• Chapter 14, “Setting Up the Optional Infrastructure”
• Chapter 15, “Creating Content”
• Chapter 16, “Maintaining Content”
• Chapter 17, “Administering Content”
• Chapter 18, “Searching Content”
• Chapter 19, “Managing Content Security”
• Chapter 20, “Importing and Exporting Content”
• Chapter 21, “Administering Automated Tasks”
137

138 exteNd Director Content Management Guide

12 About the CMS Administration Console

This chapter describes what tasks you can perform with the Content Management Subsystem
Administration Console, or CMS Administration Console. It has these sections:

What CM tasks you can do with the CMS Administration Console

How to access the CMS Administration Console

The main CMS Administration Console page

IMPORTANT: Along with exteNd Director, you must have Microsoft Internet Explorer Version 5.5 or
higher installed for running the CMS Administration Console.

What CM tasks you can do with the CMS Administration Console
You can use the CMS Administration Console to perform all tasks related to managing content
throughout its dynamic life cycle in the exteNd Director application.

The following diagram presents the recommended order and interaction of these tasks during a typical
CMS Administration Console session:
About the CMS Administration Console 139

For more information on how to perform these tasks with the CMS Administration Console, see
these sections:

Chapter 13, “Setting Up the Required Infrastructure”

Chapter 14, “Setting Up the Optional Infrastructure”

Chapter 15, “Creating Content”

Chapter 16, “Maintaining Content”

Chapter 17, “Administering Content”

Chapter 19, “Managing Content Security”

Importing and exporting documents In addition to the CM tasks shown in the diagram above, the
CMS Administration Console allows you to import and export documents.

For more information on how to import and export documents using the CMS Administration
Console, see Chapter 20, “Importing and Exporting Content”.
140 exteNd Director Content Management Guide

How to access the CMS Administration Console
You can access the CMS Administration Console by selecting Content Management from the Director
Administration Console (DAC).

For information about how to access the DAC, see the section on accessing the DAC in Developing
exteNd Director Applications.

You are prompted to log in. Do so by entering your user name and password and then clicking OK.

NOTE: Check with your administrator to make sure you have the necessary user privileges for
performing the CM tasks assigned to you. For more information, see Chapter 19, “Managing Content
Security”.

The main CMS Administration Console page opens in your browser, as described in the next section.

The main CMS Administration Console page
When you start the CMS Administration Console, the main page appears—as in this example:

The CMS Administration Console has several views and modes that you control via interactive
controls—as follows.
About the CMS Administration Console 141

cdAppAdmin.html#AccessingtheDAC

Interactive controls

The CMS Administration Console consists of the following interactive controls:

Toolbar

Content view tabs

Content tree view

Content list

Context-sensitive toolbar

Property Inspector

Toolbar—switch between modes

To switch between modes:

Content view tabs—display views of content infrastructure

To display views of the content infrastructure:

For more information about folders and categories, see “Subsystem infrastructure” on page 16. For
information about checking out documents, see “Checking documents in and out” on page 194. For
information about finding documents with the Search facility, see Chapter 18, “Searching Content”.

Mode Icon What authorized users can do

Content Set up content infrastructure, and administer and secure content, search for
documents

By default, the CMS Administration Console opens in content mode,
displaying your content by container in the content tree view and by
document in the document list.

Templates Define document types, display styles, and fields—and create content
based on these specifications

Tasks View, start, and stop automated tasks

Import Import content infrastructure, documents, document types, display styles,
and fields

Export Export content infrastructure, documents, document types, display styles,
and fields

View Displays

Folder Physical content infrastructure as a tree view of folders

Category Logical content infrastructure as a tree view of taxonomies and categories

Check-Outs Documents checked out, by either the current user or other users

Search Search dialogs and documents found by the most recent search
142 exteNd Director Content Management Guide

Content tree view

Displays:

The physical infrastructure in folder view

The logical infrastructure in category view.

Content list

Displays the list of documents in the selected folder, along with identifying information such as name,
author, description, create date, expiration date, publish date, and checkout status.

Context-sensitive toolbar

Provides functions based on the current mode and view.

Property Inspector

Displays properties for selected documents, folders, taxonomies, and categories.

The Property Inspector is context-sensitive and permission-sensitive. It displays interactive controls and
tabbed panes of information based on the object you select and the permissions associated with your user
ID.

For example: if you do not have WRITE permission, you cannot edit documents and the Property
Inspector will not display Check-In and Check-Out controls; if you do not have PROTECT permission,
you cannot set security on content and the Property Inspector will not display a Security tab.
About the CMS Administration Console 143

144 exteNd Director Content Management Guide

13 Setting Up the Required Infrastructure

This chapter describes the order of tasks required for setting up the required parts of the infrastructure,
along with associated procedures. It has these sections:

Flow of operations

Creating folders

Creating document types

Creating fields and adding them to a document type

Writing JavaScript for document types and fields

NOTE: Before creating documents for your exteNd Director application, you must define the content
infrastructure, as described in “Subsystem infrastructure” on page 16.

Flow of operations
Here is a workflow that illustrates the recommended order of operations for setting up the required parts
of the Content Management (CM) subsystem infrastructure:

Generally, the task of building this infrastructure is assigned to a system administrator or content
administrator who has READ, WRITE, and LIST permissions. For more information about managing
security, see Chapter 19, “Managing Content Security”.

Creating folders
The folder is a key part of the CM subsystem. Every document must reside in one (and only one) folder,
although a single folder can store one or more documents as well as other folders.

To create a folder:

1 Enter Content mode by clicking the Content button in the toolbar.

2 Select the Folder View tab.

Your existing folders appear in the content tree view.

3 Select the folder that will house your folder by clicking the name.

The name appears highlighted.

4 Click the New Folder icon, located in the bottom-left panel of the CMS Administration Console.

An Untitled folder appears in the content tree view.
Setting Up the Required Infrastructure 145

You may have to expand the parent folder in the content tree view to make the new folder visible in
that view.

5 Click Untitled to open the Property Inspector for the new folder.

6 Fill in the Name and Description text boxes in the Property Inspector, then click Save.

The other General fields are filled in automatically by the CMS Administration Console. You
cannot edit them.

7 Select the Security tab in the Property Inspector and set security for the folder, as described in
Chapter 19, “Managing Content Security”.

8 Click Save to preserve your settings.

9 Select the folder in the content tree view.

Your new folder should appear in the content tree view as well as in the content list along with the
description, author, and date created.

Here is an example showing information about a PSAT folder:

Creating document types
A document type is the basic definition of a document. Every document is associated with a document
type in the CMS Administration Console.

The document type is a template that specifies layout styles, fields of information, and document
management options—such as whether or not the CMS Administration Console automatically checks in
a document after it is edited.
146 exteNd Director Content Management Guide

To create a document type:

1 Enter Templates mode by clicking the Templates button in the toolbar.

A panel appears listing any document types that have been defined.

2 Click the Add button that appears under the Document Types list.

The Create A New Document Type window appears:

3 Specify the basic options, including:

4 Click Extended Options to specify additional document type behavior.

The Create A New Document Type window expands:

Option Effect

Auto-Checkin If selected, CMS Administration Console checks in documents automatically
after they are edited.

If not selected, CMS Administration Console does not check in documents
automatically after they are edited

Auto-Publish If selected, CMS Administration Console publishes the latest version of the
content of a document automatically after that document is edited.

If not selected, CMS Administration Console does not publish documents
automatically after they are edited

Default Content If you select:

HTML: CMS Administration Console will always enter content as HTML for
documents of this type.

Binary: CMS Administration Console will always upload content from an
external source for documents of this type.

Choice: You want to decide at content creation time whether to enter
content as HTML or upload content from an external source.
Setting Up the Required Infrastructure 147

5 Specify extended options, including:

6 Click the Create New Document Type button.

Your new document type is added to the list.

Option Effect

Default Folder When the CMS Administration Console creates documents of this type, this
folder is specified as the parent folder. You can change the folder when
creating the new document.

Force Folder If selected, the folder specified under Default Folder cannot be changed
when creating a new document of this type.

Default Categories When the CMS Administration Console creates documents of this type, this
category is specified as the parent category. You can change the category
when creating the new document.

Force Categories If selected, the category specified under Default Category cannot be
changed when creating a new document of this type.

Clean Up Data If selected, when you remove a field from a document type (but leave it
available for later use), the CMS Administration Console deletes the field
from legacy documents of that type.

If not selected, when you remove a field from a document type (but leave it
available for later use), the CMS Administration Console preserves the field
in legacy documents of that type but does not allow you to edit the field.

User Data You can use the text box to store additional metadata about the document
type (such as notes, procedural instructions, and so on).
148 exteNd Director Content Management Guide

Creating fields and adding them to a document type

About fields

Fields are application-specific metadata that you define as part of a document type.

You can create custom fields using the CMS Administration Console or programmatically using the CM
API.

NOTE: You must be a member of the SearchAdmin group to create fields. For more information about
users and groups, see the chapter on using the Directory section of the DAC in the User Management
Guide.

You assign each field a control type. The control type you select should reflect the way you’d like the
content developer to enter information in the document type template. Each control type requires its own
set of parameters, which you can specify in the Property Inspector. When fields are created, they are
added to a pool of available fields that are shared by multiple document types.

When you add a field to a document type, an equivalent blank field is added to documents of that type
that you have already created in the CMS Administration Console.

Creating and manipulating fields

This section explains how to create fields, add existing fields to document types, and specify which fields
to display in the Available Fields list.

To create a field:

1 Make sure you are a member of the SearchAdmin group.

For information, see the procedures described in the chapter on using the Directory section of
the DAC in the User Management Guide.

2 Enter templates mode by clicking the Templates button in the toolbar.

A panel appears listing the document types that have been defined.

3 Click the document type for which you are going to create a field.

NOTE: If you want to create a new document type first, see “Creating document types” on
page 146.
Setting Up the Required Infrastructure 149

usPACDirectory.html
usPACDirectory.html
usPACDirectory.html

A Content Types panel appears displaying the currently defined fields in the document type and
providing controls for creating new fields or adding existing fields:

4 Click Add in the Content Types panel.

An Untitled field appears in the Fields pane for the selected document type, and the Property
Inspector opens allowing you to specify properties for the new field:

5 In the Fields pane, select the control type you want for your field. Choices include Textfield,
Checkbox, Radio Button, and so on.

The Property Inspector refreshes to display options appropriate for the control type you select.
These control types represent HTML control types, and the display options represent the attributes
for those control types.

6 In the Property Inspector, enter an informative name for your field and fill in the other parameters.
150 exteNd Director Content Management Guide

7 Click Update.

The new field appears in the Fields pane for the selected document type and in the Available Fields
pane for other document types to use.

8 Repeat these steps for as many fields as you want to create and add to the document type.

9 Click Save in the Fields pane to save the fields in the current document type.

To add an existing field to a document type:

1 Enter templates mode by clicking the Templates button in the toolbar.

A panel appears listing all document types that are currently defined.

2 Click the document type for which you want to add a field.

NOTE: If you want to create a new document type first, see “Creating document types” on
page 146.

The Content Types panel appears displaying a pane of available fields:

3 Add fields to the document type using one of these methods:

Double-click the field name in the Available Fields list.

OR

Select a field in the Available Fields list and click the Add Field button:

OR

Drag the field icon from the Available Fields list to the Fields list:
Setting Up the Required Infrastructure 151

To change the Available Fields display:

1 Click the down arrow of the dropdown menu labeled Show Fields in Document Type, located
under the Available Fields list. A menu appears allowing you to display the fields available for only
a particular document type or for all document types:

2 Select a menu option.

The Available Fields list refreshes to reflect your choice.

Writing JavaScript for document types and fields
The CMS Administration Console enables you to specify JavaScript code for document types and fields.
You can specify JavaScript that runs when:

A content page is loaded

An HTML form on a page is submitted

A field on a page gains or loses focus, or is clicked

The content of a field is changed

If you code JavaScript for a particular document type, you can access that code when defining JavaScript
for individual fields in that document type. For example, if you define a function for the document type,
you can call that function on a JavaScript event for a field, such as gaining focus or clicking.

CAUTION: The CMS Administration Console does not verify JavaScript code. You are responsible for
verifying that JavaScript written for a document type or field is designed and coded correctly.

To specify JavaScript for a document type:

1 Enter templates mode by clicking the Templates button in the toolbar.

A panel appears listing all document types currently defined.

2 Click the document type for which you want to specify JavaScript code.
152 exteNd Director Content Management Guide

NOTE: If you want to create a new document type first, see “Creating document types” on
page 146.

3 Click the Advanced tab.

The Advanced Properties window displays:

4 Under JavaScript Event, specify when you want the JavaScript to run during the life cycle of the
document. Choices include:

Before Page Is Loaded

After Page Is Loaded

Form Submitted

If you want the JavaScript code to be available to fields in the document type (for example, if you
want to define functions that will be called by individual fields), specify Before Page Is Loaded.

5 Under JavaScript Code, insert the code.
Setting Up the Required Infrastructure 153

For example, here is some JavaScript code containing two function definitions that is to run before
the page is loaded:

6 Click Save to save the JavaScript specification in the current document type.

To code additional JavaScript for other events, repeat this procedure specifying the alternate event(s) in
Step 4 and code in Step 5.

To specify JavaScript for a field:

1 Enter templates mode by clicking the Templates button in the toolbar.

A panel appears listing all document types that are currently defined.

2 Click the document type that contains the field for which you want to specify JavaScript code. A
list of the fields defined for that type appears.

NOTE: If you want to create a new document type first, see “Creating document types” on
page 146.

3 Double-click the field for which you want to specify JavaScript to access the field properties.

4 Under JavaScript Events, specify when you want the JavaScript to run. Depending on the kind of
field (text field, check box, text area, and so on) selected, one or more of these events might be
available:

onBlur

onFocus

onClick

onChange

You can specify different JavaScript code for different events.

5 In the text box next to the JavaScript Events selection box, type your JavaScript code.
154 exteNd Director Content Management Guide

If any functions for the document type that contains the field have been defined, you can click
Available Functions to select from the list of predefined functions:

A template for the function is inserted into the text box. You can then edit the text box.

For information about defining JavaScript functions for a document type, see “To specify
JavaScript for a document type:”above.

6 Click Update to save your field properties.

To code additional JavaScript for other field events, repeat this procedure specifying the alternate
event(s) in Step 4 and code in Step 5.

CAUTION: If you create a field that references a function defined in a particular document type and then
use that field in another document type, you must redefine the function in the second document type
before that function can work.
Setting Up the Required Infrastructure 155

156 exteNd Director Content Management Guide

14 Setting Up the Optional Infrastructure

In addition to the required infrastructure such as document types and folders, you can create optional
parts of the CM subsystem infrastructure that define display styles and assign categories to content. This
chapter has these sections:

Flow of operations

Creating display styles

Specifying a style sheet for a document type

Creating taxonomies

Creating categories

Flow of operations
Here is a workflow that illustrates the recommended order of operations for setting up the optional CM
subsystem infrastructure:

Creating display styles

About display styles

Display styles specify how to display content for individual document types. The CMS Administration
comes with a default display style that it automatically applies to all content unless you override it by
creating custom display styles for document types.

For each display style, you can add one or more XSL style sheets that specify how to render content for
particular user agents, such as Microsoft Internet Explorer and Netscape Navigator. You must create the
XSL specifications in an external XSL editor, then upload the XSL file to a display style.

The CMS Administration Console treats XSL style sheets like documents—by:

Storing each XSL style sheet in one (and only one) folder, identifying it as a system resource

Storing each update to an XSL style sheet as a new version

Requiring authorized users to publish the version of the XSL style sheet they want to apply to
content
Setting Up the Optional Infrastructure 157

Before you create display styles Before you can create display styles, the following elements of
the content infrastructure must be in place:

Creation procedure After you complete these tasks, you are ready to:

Create an XSL style sheet in an external editor based on existing content

Create a display style

Upload the XSL style sheet to the display style

To create an XSL style sheet based on existing content:

1 Enter content mode by clicking the Content button in the toolbar.

2 Select the Folder View tab.

Your existing folders appear in the content tree view. You may need to expand some of these
containers to see the complete view.

3 Click to select the folder that contains the content of interest.

A list of documents appears in the content list.

4 Select the document of interest to open its Property Inspector.

5 Click Preview in the Property Inspector.

The content opens in a Content Reader window:

6 Click View XML.

The Content Reader refreshes to display the XML code that underlies your content, along with a
Show Styled Document button that allows you to redisplay the rendered content.

7 Copy the XML and paste it into an XSL editor and develop an XSL style sheet for the content.

8 Save the XSL style sheet in an XSL file on your local file system or designated network directory.

Now you are ready to create a display style that will use the XSL style sheet you just created.

Infrastructure element For information see

Folder for physically storing XSL style sheets “Creating folders” on page 145

Document type for defining content structure “Creating document types” on page 146 and
“Creating fields and adding them to a document
type” on page 149

Instances of the document type(s) for which
you want to create a display style

“Creating documents” on page 166
158 exteNd Director Content Management Guide

To create a display style:

1 Enter templates mode by clicking the Templates button in the toolbar.

A panel appears listing the document types that have been defined.

2 Select the document type for which you are going to define a display style.

TIP: If you want to create a new document type first, see “Creating document types” on page 146.

3 Click the XSL Style Sheets tab.

Two panes appear. The Default Display Styles pane lists any display styles that have already been
created for the document type, and the Properties pane displays the properties of a selected display
style. In the following example, no display styles have been created:

4 Click Create Display Style.

The Create Display Style window opens:

5 Enter a name for the new display style and (optionally) a description, then click Create The
Display Style.

The new display style is added to the Default Display Styles pane.

6 If you want to designate the display style as the default for the selected document type, select the
display style in the Default Display Styles pane and click Set As Default.
Setting Up the Optional Infrastructure 159

To upload an XSL style sheet to a display style:

Before performing this procedure, you must create an XSL style sheet in an external editor and store the
specification as an XSL file on your network.

1 Enter Templates mode by clicking the Templates button in the toolbar.

A panel appears listing all document types that have been defined.

2 Select the document type that contains the display style of interest.

The document type Property Inspector appears.

3 Click the XSL Style Sheets tab.

Two panes appear. The Default Display Styles pane lists any display styles that have been created
for the document type, and the Properties pane displays the properties of a selected display style.

4 In the Default Display Styles pane, select the display style for which you want to add an XSL style
sheet.

5 Click Upload in the Properties pane to upload the XSL style sheet you created externally.

The Upload Style Sheet window opens:

6 Fill in the text boxes as follows:

7 Click Upload The Style Sheet.

The XSL style sheet is uploaded to the display style. If you expand the display style in the Default
Display Styles pane, you will see its list of associated XSL style sheets.

The XSL style sheet is also uploaded as a system resource to the folder you specified in Step 6.

Option What to enter

Document Name Name that identifies the XSL style sheet in the CMS Administration Console

NOTE: The CMS Administration Console uses this name to display the XSL
style sheet as a document in folder view

Target Browser A user agent from the dropdown list

NOTE: The CMS Administration Console uses this value to determine
which XSL style sheet should render content for specific user agents

Folder Folder where the XSL style sheet should be stored

XSL File XSL style sheet you created for this display style. You can:

Browse the network for an external file

OR

Select Choose Existing Document to search for an XSL file that has
already been uploaded to the CMS Administration Console
160 exteNd Director Content Management Guide

Specifying a style sheet for a document type
The properties of a document type can include an XSL style sheet that you can specify on the Advanced
tab of the document type properties. This style sheet designation is included in the XML of all documents
of this type that you create.

The CMS Administration Console content creation code uses this style sheet to render the data for that
document type.

This style sheet designation is distinct from the styles and style sheets you can specify in the XSL Style
Sheets tab (as described under “Creating display styles” on page 157). Those styles are used when
displaying portlets of the document type in the Content Reader.

To specify a style sheet for the document type:

1 Enter templates mode by clicking the Templates button in the toolbar.

A panel appears listing all document types that have been defined.

2 Select the document type that contains the display style of interest.

A document type Property Inspector appears.

3 Click the Advanced tab.

4 To specify a style sheet document that currently exists in the CMS Administration Console:

4a Click Choose Existing Document.

The Search For A Resource window opens.

4b Search for a document by name, title, or author by selecting the appropriate radio button,
entering identifying information, and clicking the Search button.

This example shows a search for all resources that contain PC in their names.

4c Select the document from the search results.

Your choice is reflected under Style Sheet File.

4d Click Close Window to exit the Search For A Resource window.

5 To specify an external style sheet:

5a Click Browse.

A file selection dialog opens.

5b Browse to the appropriate style sheet and select it.

Your choice is reflected under Style Sheet File.

5c Next to Style Sheet Folder, click the ellipsis.

The Folder Selection dialog appears.

5d Navigate to the CMS Administration Console folder where you want to install the style sheet
and click Done.

Your choice is reflected next to Style Sheet Folder.
Setting Up the Optional Infrastructure 161

6 Click Save to apply the style sheet specification to the document type properties.

To remove a style sheet specification from the document type properties:

1 Enter templates mode by clicking the Templates button in the toolbar.

A panel appears listing all document types that have been defined.

2 Select the document type that contains the display style of interest.

A document type Property Inspector appears.

3 Click the Advanced tab.

4 Under Document Creation Style Sheet, click Do Not Use Style Sheet.

5 Click Save to remove the style sheet specification from the document type properties.

Creating taxonomies
If you plan to set up multiple categories for classifying documents, you may want to group them in a
meaningful taxonomy.

For more information, see “Classifying content” on page 19.

To create a taxonomy:

1 Enter content mode by clicking the Content button in the toolbar.

2 Select the Category View tab.

Your existing taxonomies and categories appear in the content tree view. (You may have to expand
the Default root category.)

3 Click the New Taxonomy icon, located in the bottom-left panel of the CMS Administration
Console.

An Untitled taxonomy appears in the content tree view.

4 Click Untitled to open the Property Inspector for the new taxonomy:
162 exteNd Director Content Management Guide

5 Fill in the Name and Description text boxes in the Property Inspector, then click Save.

The name of the taxonomy is updated in the content tree view.

6 Select the Security tab in the Property Inspector and set security for the taxonomy, as described in
Chapter 19, “Managing Content Security”.

7 Click Save to preserve your settings.

Creating categories
You can create one or more categories for classifying documents within a taxonomy.

For more information, see “Classifying content” on page 19.

To create a category:

1 Enter content mode by clicking the Content button in the toolbar.

2 Select the Category View tab.

Your existing taxonomies and categories appear in the content tree view.

3 Click the name of the taxonomy that will store your category.

The name appears highlighted.

4 Click the New Category icon in the bottom-left panel of the CMS Administration Console.

An Untitled category appears in the content tree view within the selected taxonomy.

5 Click Untitled to open the Property Inspector for the new category:

6 Fill in the Name and Description fields in the Property Inspector, then click Save.

The name of the category is updated in the content tree view.

7 Select the Security tab in the Property Inspector and set security for the category, as described in
Chapter 19, “Managing Content Security”.

8 Click Save to preserve your settings.
Setting Up the Optional Infrastructure 163

164 exteNd Director Content Management Guide

15 Creating Content

This chapter describes how to create content using the CMS Administration Console. It has these
sections:

About content

Flow of operations

Creating documents

Creating relationships between documents

About content
What content is Content is defined as information that is viewed or downloaded by users of your
exteNd Director application. Content is managed in the CMS Administration Console. (It is important to
distinguish content from pages, which are managed in the DAC and present the graphical interface that
helps users navigate the Web site.)

For more information about content, see Chapter 1, “About the Content Management Subsystem”.

The CMS Administration Console supports content in any format that can be digitized, including HTML
and binary content imported from other applications.

Before you create content Before you can create content for your exteNd Director application, the
following elements of the content infrastructure must be in place:

Within this infrastructure, you will be able to create content that conforms to the standards your
organization has set for structure.

Flow of operations
Here is the basic task required to create content in the CMS Administration Console:

Element For information see

Folder for physically storing the content “Creating folders” on page 145

Document type for defining content
structure

“Creating document types” on page 146 and “Creating
fields and adding them to a document type” on page 149
Creating Content 165

First you create content as documents based on a document type; then you can set up relationships
between documents by adding child documents and attachments to a parent document. You can also set
up relationships between documents by adding child documents and attachments to a parent document.

This section describes procedures for:

Creating documents

Creating relationships between documents

After the content has been developed, authorized users can add optional parts of the content infrastructure
as needed—such as custom display styles, taxonomies, and categories. These procedures are covered in
Chapter 14, “Setting Up the Optional Infrastructure”.

Creating documents
With the CMS Administration Console, content developers create content in the form of documents that
reside in folders. Each document is stored in one (and only one) folder.

When you create documents, you must specify three types of information:

1 Identifying information—or metadata:

Name of document (identifies the document in the CMS Administration Console content list)

Title of content (appears in the user view of the document)

Subtitle (optional)

Author

Folder (where document is stored)

Categories (optional)

Abstract (optional)

Status (optional)

Expiration date (optional)

Publish date (optional)

2 Information required by the fields that are part of the document type

3 Dynamic content that can be entered either as HTML directly in the CMS Administration Console,
or uploaded from external files

Identifying information Details

Name of document Identifies the document in the content list)

Title of content Appears in the user view of the document)

Subtitle (Optional)

Author —

Folder Where document is stored)

Categories (Optional)

Abstract (Optional)

Status (Optional)

Expiration date (Optional)

Publish date (Optional)
166 exteNd Director Content Management Guide

Each time you edit the content of a document, the CMS Administration Console creates a new version of
the document content. The CMS Administration Console does not create a new version of the document
content if you change only the metadata or custom field values but not the content.

If you want to create a document for the purpose of testing your style sheets, you can use the CMS
Administration Console’s Auto Create utility, which automatically fills in boilerplate content for you.

This section describes how to:

Creating a document

Specifying a folder for a new document

Using Auto Create to create a document

Using the CMS Administration Console’s HTML Editor

Creating a document

To create a document:

1 Enter templates mode by clicking the Templates button in the toolbar.

A panel appears listing all document types that have been defined.

2 Select a document type from the list and click Use.

The Create A New Document window opens with the General tab open.

This tab contains the basic document metadata, such as name, title, author, folder that contains the
document, any categories that contain the document, and so on:

3 Enter data into any required fields in the General tab.

TIP: Any fields marked with an asterisk are required fields and must be filled in before you can
create the document.
Creating Content 167

4 Click Custom Fields and enter data for any fields defined for the document type.

Some example custom fields are shown below:

TIP: Custom fields are in some sense required fields in that you must fill in any empty fields before
you can create the document. In the example above, you must fill in the Question Text field and select
one of the buttons before the CMS Administration Console can create the document.
168 exteNd Director Content Management Guide

5 Click the Content tab and specify the dynamic content for the document:

The options for entering content depend on the Default Content setting of the document type (as
specified under “Creating document types” on page 146):

If Default Content = Binary, content developers upload content from an external file on the
network.

If Default Content = HTML, content developers use the CMS Administration Console’s HTML
Editor to enter content by typing directly in the edit area or by pasting in HTML source from an
external editor.

If Default Content = Choice, content developers can choose the way they enter content, as
follows:

TIP: Users with appropriate privileges can modify the Default Content setting in the document
type to restrict the type of content users can enter.

To learn how to work with the CMS Administration Console’s HTML Editor, see “Using
the CMS Administration Console’s HTML Editor” on page 170.

6 Click Add the Content at the bottom of the Create A New Document window.

To Do this

Create content in
the HTML Editor

1 Select the Create Content radio button.

2 Type or paste content in the CMS Administration Console’s HTML
Editor, using the command bar buttons to format text, create
hyperlinks, and insert images.

Upload content
from an external
source

1 Select the Upload Content radio button.

2 Enter a path to a file, or click Browse to navigate to a file on the
network.
Creating Content 169

The document is created in the folder you specified in the General tab.

To view the content you just created, see “Previewing content” on page 180.

Specifying a folder for a new document

To specify a folder for a new document:

1 Enter templates mode by clicking the Templates button in the toolbar.

A panel appears listing all document types that have been defined.

2 Select a document type from the list and click Use.

The Create A New Document window opens.

3 Click the ellipsis next to the Folder field.

The Folder Selector window opens:

4 Navigate to the folder you want, click the folder name, and click Done.

The name of the selected folder appears in the Folder field of the Create Content window.

5 Enter other content as needed and click Update the Content.

Using Auto Create to create a document

To use Auto Create to create a document:

1 Enter templates mode by clicking the Templates button in the toolbar.

A panel appears listing all document types that have been defined.

2 Select a document type from the list and click Auto Create.

The Create Content window opens, with most required metadata and fields filled in.

3 Specify a folder for the document.

4 Fill in any other content as desired and click Add the Content.

The document is created in the specified folder.

Using the CMS Administration Console’s HTML Editor

Content developers can enter content as HTML using the CMS Administration Console’s HTML Editor.

The only prerequisite is that you must set the Default Content option to HTML or Choice when creating
the document type.

For more information about specifying document type options, see “Creating document types” on
page 146.

When you create or edit content using a document type with one of these Default Content settings
(Binary, HTML, or Choice), the HTML Editor appears in the Content tab of the Create A New
Document or Edit Document window:
170 exteNd Director Content Management Guide

With the CMS Administration Console’s HTML Editor you can:

Cut, copy, and paste text

Format text

Toggle editing mode between HTML code and rendered text

Create hyperlinks

Insert images

You can use the HTML Editor to edit the portion of the HTML code that would appear in the <BODY>
section—not the entire HTML document. For example, you cannot use the HTML Editor to modify
HTML code that would appear in the <HEAD> section of the document.

This section describes how to access and use the CMS Administration Console’s HTML Editor.

To access the CMS Administration Console’s HTML Editor when creating a new document:

1 Enter templates mode by clicking the Templates button in the toolbar.

A panel appears listing all document types that have been defined.

2 Select a document type whose Default Content field equals HTML or Choice.

3 Click Use.

The Create A New Document window opens.
Creating Content 171

4 Click Content to access the HTML Editor:

To access the CMS Administration Console’s HTML Editor when editing an existing document:

1 Enter content mode by clicking the Content button in the toolbar.

2 Select the Folder View tab.

Your existing folders appear in the content tree view. You may need to expand some of these
containers to see the complete view.

3 Navigate to the document of interest and select it to open its Property Inspector.

4 In the Property Inspector, select the General tab and click Check-Out.

The CMS Administration Console checks out the latest version of the document.

5 Click the Edit button.

The Edit Document window appears.
172 exteNd Director Content Management Guide

6 Click Content to access the HTML Editor:

For more information about checking documents in and out, see “Checking documents in and out”
on page 194.

To cut, copy, paste, and format text:

Select the appropriate buttons from the toolbar.

To show HTML code:

Check View HTML source.

Enabling this option:

Exposes HTML tags in existing text (entered while this setting was disabled)

Allows the HTML Editor to interpret HTML tags as code when typed in directly or pasted in
from an outside source

NOTE: If you enter HTML tags when this option is disabled, the tags are not interpreted as
code and instead are converted to text.

To show rendered text:

Deselect View HTML source to hide HTML tags and show rendered text.
Creating Content 173

To create a hyperlink:

1 Position the cursor in the HTML Editor where you want to insert the link.

2 Click the Create Hyperlink button:

The Create A Link window opens:

3 Choose the type of link you want to create:

4 To create an internal link:

4a Select the Internal radio button.

The Search For A Resource window opens:

4b Search for internal content by name, title, or author by selecting the appropriate radio button,
entering the appropriate identifying information, and clicking the Search button.

4c Select the resource from the search results and click the Close Window button at the bottom of
the window.

A text string linking to the resource appears in the Create A Link window. You can click on the
text string to view the resource.

4d Back in the Create A Link window, enter the display text for the link in the Display field and
click Add The Link.

5 To create an external link:

5a Select the External radio button.

5b Enter the display text for the link in the Display field.

5c Enter the URL of the external content in the URL field.

NOTE: You can enter an URL that invokes a servlet to serve up content to your exteNd
Director application.

5d Click Add The Link.

Type of link Description

Internal Link to content that you created in or uploaded to the CMS Administration Console

External Link to external content
174 exteNd Director Content Management Guide

To insert an image:

1 Position the cursor in the HTML Editor area where you want to insert the image.

2 Click the Insert Image button:

The Insert An Image window opens:

3 Choose the type of image you want to insert:

4 To insert an internal image:

4a Select the Internal radio button.

The Search For A Resource window opens:

4b Search for an internal image by name, title, or author by selecting the appropriate radio button,
entering the appropriate identifying information, and clicking the Search button.

4c Select the image from the search results and click the Close Window button at the bottom of
the window.

A text string identifying the image target appears in the Insert An Image window.

4d Back in the Insert An Image window, enter a title for the image in the Title field.

The title is the hover text that will appear as the cursor moves over the image.

4e Click Insert The Image.

5 To insert an external image:

5a Select the External radio button.

5b Enter a title for the image in the Title field.

The title is the hover text that will appear as the cursor moves over the image.

5c Enter the URL of the external image in the URL field.

5d Click Insert The Image.

Type of image Description

Internal Image that you created in or uploaded to the CMS Administration Console

External Image created outside the CMS Administration Console
Creating Content 175

Creating relationships between documents
The CMS Administration Console allows you to create two types of relationships between documents:

The definition of document includes not only documents created in the CMS Administration Console, but
also documents that are uploaded to the CMS Administration Console, such as images and binary files.

This section describes how to add child documents and attachments to a parent document, and how to
remove these relationships.

To add a child document:

Users with READ and WRITE permissions can add children to a document. You can add internal child
documents or upload external documents.

1 Enter content mode by clicking the Content button in the toolbar.

2 Select the Folder View tab.

Your folders appear in the content tree view. You may need to expand some of these containers to
see the complete view.

3 Click to select the folder that contains the content of interest.

A list of documents appears in the content list.

4 Select the document of interest.

A Child Docs tab appears in the document’s Property Inspector.

5 Click Check-Out to check out your document and then select the Child Docs tab.

6 Select a document, using one of these methods:

Relationship type Description

Parent/child In this relationship, a parent document can have one or more child documents.
This is a one-to-many relationship: each child document can have only one
parent, but each parent can have multiple child documents. A typical application
of the parent/child relationship is for a discussion thread in which one question
can have multiple responses but each response relates to only one parent
question.

Parent/attachment In this relationship, a parent document can have one or more attached
documents. This is a many-to-many relationship: each parent document can
have more than one attachment, while each attachment can be shared with
multiple other parents. A typical application of the parent/attachment
relationship is an online bookstore that attaches author documents to its book
lists, where multiple books can have the same author.

To Do this

Add an internal
document

1 Click Add in the Child Docs pane.

The Search For A Resource window opens.

2 Search for a document by name, title, or author by selecting the
appropriate radio button, entering identifying information, and clicking
the Search button.

3 Select the document from the search results.

Upload an external
document

1 Click Upload in the Child Docs pane.

The Upload A File Attachment window opens.

2 Browse to the document of interest and select it.

3 Click Upload.
176 exteNd Director Content Management Guide

The document you select appears as a child of your document in the Property Inspector.

7 Check your document back in by selecting the General tab, then clicking Check-In.

For more information about checking documents in and out, see “Checking documents in and out”
on page 194.

To add an attachment:

Users with READ and WRITE permissions can add attachments to a document. You can attach internal
documents or upload external documents.

1 Enter content mode by clicking the Content button in the toolbar.

2 Select the Folder View tab.

Your folders appear in the content tree view. You may need to expand some of these containers to
see the complete view.

3 Click to select the folder that contains the content of interest.

A list of documents appears in the content list.

4 Select the document of interest.

An Attachments tab appears in the document’s Property Inspector.

5 Click Check-Out to check out your document and then select the Attachments tab.

6 To attach an internal document (one that has been created in or uploaded to the CMS
Administration Console):

6a Click Add in the Attachments pane.

The Search For A Resource window opens.

6b Search for a document by name, title, or author by selecting the appropriate radio button,
entering identifying information, and clicking the Search button.

6c Select the document from the search results.

The Attachment Properties window opens.

6d (Optional) In the Description text area, enter text about the relationship between the parent
document and its attachment.

This text appears in the XML generated by the CMS Administration Console Content Reader.

6e Click Add.

The document you selected appears as an attachment to your document in the Property
Inspector.

7 To attach an external document:

7a Click Upload in the Child Docs pane.

The Upload A File Attachment window opens.

7b Browse to the document of interest and select it.

7c (Optional) In the Description text area, enter text about the relationship between the parent
document and its attachment.

This text appears in the XML generated by the CMS Administration Console Content Reader.

7d Click Upload.

The document you select appears as an attachment to your document in the Property Inspector.

8 Check your document back in by selecting the General tab, then clicking Check-In.

For more information about checking documents in and out, see “Checking documents in and out”
on page 194.
Creating Content 177

To remove relationships between documents:

To remove the relationship between a parent document and its child or attachment, you need READ,
WRITE, and LIST permissions.

1 Enter content mode by clicking the Content button in the toolbar.

2 Select the Folder View tab.

Your folders appear in the content tree view. You may need to expand some of these containers to
see the complete view.

3 Click to select the folder that contains the content of interest.

A list of documents appears in the content list.

4 Select the parent document of interest to open its Property Inspector.

5 Check out the parent document by clicking Check-Out in its Property Inspector.

6 Check out the attachment or child document of interest by selecting it in the content list and
clicking Check-Out in its Property Inspector.

7 Select the parent document again and then choose the Attachments or Child Docs tab in its
Property Inspector.

8 Select the attachment or child document of interest in the parent’s Property Inspector.

The Property Inspector refreshes to provide a Remove Relationship button.

9 Click the Remove Relationship button.

The attachment or child document disappears from the parent’s Property Inspector, but remains in
its CMS Administration Console folder.

10 Check the parent and child (or attachment) back in by selecting the General tab, then clicking
Check-In.

NOTE: The parent and child (or attachment) must both be checked out to sever the relationship.
Otherwise, the Remove Relationship button will not appear. Even after you sever the relationship, the
attached file or child document remains in the CMS Administration Console.

For more information about checking documents in and out, see “Checking documents in and out”
on page 194.
178 exteNd Director Content Management Guide

16 Maintaining Content

This chapter describes various ways to access and update existing content using the CMS Administration
Console. It has these sections:

Flow of operations

Previewing content

Editing content

Modifying properties

Assigning a document’s folder, categories, and taxonomies

Modifying display styles

Editing document types

Editing document fields

Setting document expiration dates

Deleting content

Flow of operations
Here is a workflow that shows the variety of operations available to authorized users who are responsible
for maintaining content in the CMS Administration Console:

This section presents procedures for:

Previewing content

Editing content

Modifying properties

Assigning a document’s folder, categories, and taxonomies

Modifying display styles

Editing document types

Editing document fields

Setting document expiration dates

Deleting content
Maintaining Content 179

Previewing content
Users with READ permission can preview documents to get a view of how content will appear to users
of the Web site. Using the preview function, document reviewers verify the accuracy, structure, and
layout of content before it is published.

To preview the latest version of content:

1 Enter content mode by clicking the Content button in the toolbar.

2 Select the Folder View tab.

Your folders appear in the content tree view. You may need to expand some of these containers to
see the complete view.

3 Click to select the folder that contains the content of interest.

A list of documents appears in the content list.

4 Select the document of interest to open its Property Inspector.

5 Click the Preview button.

The latest version of the document’s content opens in the Content Reader window:

To preview a specific version of content:

1 Enter content mode by clicking the Content button in the toolbar.

2 Select the Folder View tab.

Your folders appear in the content tree view. You may need to expand some of these containers to
see the complete view.

3 Click to select the folder that contains the content of interest.

A list of documents appears in the content list.

4 Select the document of interest to open its Property Inspector.

5 Select the Versions tab.

A list of content versions appears, ordered from most recent to earliest.

The currently published version of content appears with the published-version icon:

If no version has been published, all versions appear with the default document icon:

6 Click to select a version.

The version name appears highlighted.
180 exteNd Director Content Management Guide

7 Click the Preview button.

The selected version of the document’s content opens in the Content Reader window:

NOTE: If no version of this document has been published, no dynamic content appears in the
Content Reader. Instead, a message appears at the bottom of the Content Reader window
indicating that there is no currently published content for the document. For information about
publishing content, see “Administering version control” on page 198.

Editing content
Users with READ and WRITE permission can edit content. Documents must be checked out before they
can be modified. The CMS Administration Console applies edits to the latest version of a document and
saves the modifications as a new (later) version.

To edit content:

1 Enter content mode by clicking the Content button in the toolbar.

2 Select the Folder View tab.

Your folders appear in the content tree view. You may need to expand some of these containers to
see the complete view.

3 Click to select the folder that contains the content of interest.

A list of documents appears in the content list.

4 Select the document of interest to open its Property Inspector.

5 Click the Check-Out button.

6 Click the Edit button.

An edit window appears in which metadata, fields, and dynamic content can be modified.

7 Edit the content, then click Update The Content.

NOTE: To undo your edits, click the Reset button to return the document to its original state.

The updated content is saved in a new version of the document.

8 Check the document back in by clicking Check-In.

For more information about checking documents in and out, see “Checking documents in and out”
on page 194.
Maintaining Content 181

Modifying properties
Users with READ, WRITE, and LIST permissions can modify the properties of the following CM
elements in the CMS Administration Console:

Folders

Taxonomies

Categories

Documents

Values of document fields

To modify properties:

1 Select the CM element of interest and open its Property Inspector.

Here’s how to access the Property Inspector for each element:

2 In the Property Inspector, modify properties as needed.

TIP: Some properties cannot be edited.

3 Record your changes:

For more information about checking documents out and in, see “Checking documents in and out”
on page 194.

CM element How to access

Folder 1 Click the Content button.

2 Select the Folder View tab.

3 Select the folder of interest.

Taxonomy and category 1 Click the Content button.

2 Select the Category View tab.

3 Select the taxonomy or category of interest.

Document 1 Click the Content button.

2 Select the Folder View tab.

3 Expand the folder that contains the document of interest.

4 Select the document.

5 Check out the document by clicking Check-Out.

Document field 1 Click the Templates button.

2 Select a document type that contains the field of interest.

3 Select the field and click the Properties button.

For Do this

Folders, taxonomies, categories, and documents Click Save.

Document fields 1 Click Update.

2 Check the document back in by clicking
Check-In.
182 exteNd Director Content Management Guide

Assigning a document’s folder, categories, and taxonomies
You can change the folder, categories, and taxonomies anytime for any document for which you have
READ, WRITE, and LIST permissions.

To change a document’s folder:

1 Enter content mode by clicking the Content button in the toolbar.

2 Select the Folder View tab.

Your folders appear in the content tree view. You may need to expand some of these containers to
see the complete view.

3 Click the folder that contains the document of interest.

A list of documents appears in the content list.

4 Select the document of interest to open its Property Inspector.

5 Click the Check-Out button.

6 Click the Edit button.

An edit window appears.

7 Click the ellipsis next to the Folder field.

The Folder Selector window opens:

8 Navigate to the new folder, click the folder name, and click Done.

The name of the new folder replaces the old one in the Folder field of the edit window.

9 Click Update The Content.

10 Click Check-In.

To assign a document to categories or taxonomies:

1 Enter content mode by clicking the Content button in the toolbar.

2 Select the Folder View tab.

Your folders appear in the content tree view. You may need to expand some of these containers to
see the complete view.

3 Click the folder that contains the document of interest.

A list of documents appears in the content list.

4 Select the document of interest to open its Property Inspector.

5 Click the Check-Out button.

6 Click the Edit button.

An edit window appears.

7 Click the ellipsis next to the Categories field.
Maintaining Content 183

The Category Selector window opens:

8 Navigate to an appropriate category or taxonomy and click the name.

The name of the new category appears in the Categories field of the edit window.

You can click additional categories and taxonomies to add the document to them.

TIP: If you click a category or taxonomy that already contains the document, that document is
removed from that category or taxonomy. (In the Edit Document dialog, the document’s name is
removed from the Categories listing.)

9 When you have finished specifying categories and taxonomies, click Done.

The Category Selector window closes and your choices are reflected in the Categories listing.

10 Enter other content as needed and click Update And Close.

The Edit Document dialog closes.

11 In the Content Property Inspector, click Check-In.

To change a document’s categories or taxonomies:

1 Enter content mode by clicking the Content button in the toolbar.

2 Select the Category View tab.

Your taxonomies and categories appear in the content tree view. You may need to expand some of
these containers to see the complete view.

3 Click the category or taxonomy that contains the document of interest.

A list of documents appears in the content list.

4 Select the document of interest to open its Property Inspector.

5 Click Check-Out.

6 Click Edit.

An edit window appears.

7 Select the ellipsis next to the Categories field.

The Category Selector window opens:

8 Navigate to the appropriate category or taxonomy and click the name.

The name of the new category appears in the Categories field of the edit window.

You can click additional categories and taxonomies to add the document to them.

To remove the document from a category or taxonomy, click that category or taxonomy. (In the Edit
Document dialog, the document’s name is removed from the Categories listing.)

9 When you have finished specifying categories and taxonomies, click Done.
184 exteNd Director Content Management Guide

The Category Selector window closes and your choices are reflected in the Categories listing.

10 Click Update The Content.

11 Click Check-In.

Modifying display styles
Authorized users can modify a display style by uploading changes to its XSL style sheets. The CMS
Administration Console stores these updates as new versions of the style sheets. Users then publish the
version they want to apply to content.

This section describes the procedure for modifying style sheets in a display style.

NOTE: Before you begin, make sure you have updated the style sheet in an external editor and can
access the file containing these modifications from your local file system, the network, or the CMS
Administration Console.

To modify a display style:

1 Enter content mode by clicking the Content button in the toolbar.

2 Select the Folder View tab.

Your folders appear in the content tree view. You may need to expand some of these containers to
see the complete view.

3 Navigate to the folder that contains the XSL style sheet you want to modify.

TIP: Style sheets appear as system resources.

4 Select the style sheet of interest to open its Property Inspector.

5 Click the Check-Out button.

The style sheet is checked out and appears with the checked-out document icon:

6 Switch to templates mode by clicking the Templates button in the toolbar.

A panel appears listing all document types that have been defined.

7 Select the document type that contains the display style you want to change.

A document type Property Inspector appears.

8 Click the XSL Style Sheets tab.

Two panes appear. The Default Display Styles pane lists the display styles that have been created
for the document type, and the Properties pane displays the properties of a selected display style.

9 In the Default Display Styles pane, expand the display style you want to modify to display its
associated XSL style sheets.

10 Select the style sheet you want to modify and click Upload.

The Update Style Sheet window opens:
Maintaining Content 185

11 Enter the name of the updated XSL style sheet using one of these methods:

Browse the network for an external file.

OR

Select Choose Existing Document to search for an updated XSL file that has already been
uploaded to the CMS Administration Console.

A new version of the XSL style sheet is created.

12 Enter content mode by clicking the Content button in the toolbar.

The style sheet document should still be selected with its Property Inspector open.

13 Check the style sheet back in by clicking Check-In.

For more information about checking documents in and out, see “Checking documents in and out”
on page 194.

NOTE: To apply the updated style sheet to content, you must publish the new version, as described in
“Administering version control” on page 198.

Editing document types
Authorized users can edit document types. All changes apply to legacy documents as well as new
documents of the designated type.

To edit a document type:

1 Enter templates mode by clicking the Templates button in the toolbar.

A panel appears listing the document types that have been defined.

2 Select the document type you want to modify and click Edit.

The Edit This Document Type window opens:

NOTE: If you created the document outside of the CMS Administration Console using the CM
APIs, you might not be able to access the document type and associated data. The CMS
Administration Console requires that certain meta data be included. For more information, refer to
EbiContentMgmtDelegate in the on-line API Reference section.

3 (Optional) Click Extended Options to display additional document type options.

4 Edit fields and options as needed.

For details about the individual options, see “Creating document types” on page 146.

5 Click Update Document Type.
186 exteNd Director Content Management Guide

Editing document fields
Authorized users can edit fields, but only from within the document types where the fields were
originally created.

To edit a document field:

1 Enter templates mode by clicking the Templates button in the toolbar.

A panel appears listing all document types that have been defined.

2 Select the document type in which the field was created.

The fields defined for that document type appear along with the list of all available fields.

NOTE: If you created the document outside of the CMS Administration Console using the CM
APIs, you might not be able to access the document fields. The CMS Administration Console
requires that meta data from the document fields be included. For more information, refer to
EbiContentMgmtDelegate in the on-line API Reference section.

The Available Fields list displays the parent document type in parentheses next to each field. Use
this information to verify that you are editing the field in its parent document type.

3 Select the field you want to edit and click Properties.

The Property Inspector opens.

4 Edit the properties of the field as appropriate and click Update.

Setting document expiration dates
There are occasions when a content administrator needs to set an expiration date for a documents that has
a limited life span. The CMS Administration Console allows users with WRITE permission to set or
change this date anytime after the document is created.

When expiration dates are set, developers can write queries in portlets to remove expired content, or write
a scheduled business object to check expiration dates and take specified actions if content is obsolete.

To set the expiration date of a document:

1 Enter content mode by clicking the Content button in the toolbar.

2 Select the Folder View tab.

Your folders appear in the content tree view. You may need to expand some of these containers to
see the complete view.

3 Click to select the folder that contains the document of interest.

A list of documents appears in the content list.

4 Select the document of interest to open its Property Inspector.

5 Click the Check-Out button.

6 In the Expiration Date field, enter an expiration date of the form:
YYYY-MM-DD HH:MM:SS

7 Click Save.

8 Click the Check-In button.

For more information about checking documents in and out, see “Checking documents in and out”
on page 194.
Maintaining Content 187

Deleting content
Authorized users can delete certain CM elements in the CMS Administration Console. This section
describes procedures for:

Deleting folders

Deleting taxonomies and categories

Deleting documents

Deleting display styles

Deleting document types

Deleting and removing document fields

Deleting folders

When you delete a folder, all folders and documents it contains are also deleted.

To delete a folder:

1 Enter content mode by clicking the Content button in the toolbar.

2 Select the Folder View tab.

Your folders appear in the content tree view. You may need to expand some of these containers to
see the complete view.

3 Select the folder of interest to open its Property Inspector.

4 Click Delete.

5 When a confirmation window appears, click OK.

Deleting taxonomies and categories

When you delete a taxonomy or category, all categories it contains are also deleted. Documents are
always retained in their parent folder, even if their assigned taxonomies or categories have been removed.

To delete a taxonomy or category:

1 Enter content mode by clicking the Content button in the toolbar.

2 Select the Category View tab.

Your taxonomies and categories appear in the content tree view. You may need to expand some of
these containers to see the complete view.

3 Select the taxonomy or category of interest to open its Property Inspector.

4 Click Delete.

5 When a confirmation window appears, click OK.

Deleting documents

You must check out a document before you can delete it. When you delete a document, all versions are
removed.

To delete a document:

1 Enter content mode by clicking the Content button in the toolbar.

2 Select the Folder View tab.

Your folders appear in the content tree view. You may need to expand some of these containers to
see the complete view.
188 exteNd Director Content Management Guide

3 Navigate to the document of interest and select it to open its Property Inspector.

4 In the Property Inspector, select the General tab and click Check-Out.

The Property Inspector refreshes to display new function buttons.

5 Click Delete.

6 When a confirmation window appears, click OK.

For more information about checking documents in and out, see “Checking documents in and out”
on page 194.

When you delete a document, the Director DRE Administrator reflects the change in the number of
documents immediately, but the number of terms remains the same. The number of terms will not change
until the DRECOMPACT command is executed. DRECOMPACT is not run immediately on delete
because of the impact on query performance. You can find out more about DRECOMPACT in your
Autonomy documentation.

Deleting display styles

When you delete a display style, the CMS Administration Console also removes all XSL style sheets that
have been created for that display style.

To delete a display style:

1 Enter templates mode by clicking the Templates button in the toolbar.

A panel appears listing all document types that have been defined.

2 Select the document type that contains the display style to delete.

3 Select the XSL Style Sheets tab.

A list of the document type’s display styles appears in the Default Display Styles pane.

4 Select the display style you want to delete.

5 Click Delete under the Properties pane.

6 When a confirmation window appears, click OK.

Deleting document types

When you delete a document type, the CMS Administration Console also removes all documents that
have been created using that document type.

There is another side effect of deleting document types: any fields that were created within that document
type are adopted by a new parent—the system document type—that appears in the Document Types list
as _PmcSystemDefaultType.

Once adopted, these fields remain part of the available pool of fields but can be edited only from within
_PmcSystemDefaultType. You can easily identify adopted system fields: they appear in the Available
Fields pool with the suffix --System Field appended to their names.

In the following example, Multiple Choice is an adopted system field:
Maintaining Content 189

To delete a document type:

1 Enter templates mode by clicking the Templates button in the toolbar.

A panel appears listing all document types that have been defined.

2 Select the document type to delete.

3 Click Delete under the Document Types pane.

4 When a confirmation window appears, click OK.

The CMS Administration Console deletes the document type and all documents that have been
created using that document type.

Deleting and removing document fields

There are two separate operations:

Operation Description

Permanently deleting fields—from the
CMS Administration Console

Deletes fields from all documents and from pool or available
fields

Removing fields—from the parent
document type

Removed fields from all documents—but leaves fields in
pool of available fields
190 exteNd Director Content Management Guide

Permanently deleting fields—from the CMS Administration Console

You can delete document fields permanently from the CMS Administration Console, but only from
within the document types where they were originally defined. When you delete a field from the CMS
Administration Console, the field is removed from all existing documents in which it appeared and from
the pool of available fields.

CAUTION: Although this is a convenient way of applying one deletion to multiple documents, be aware
that the effect is global and irreversible.

To permanently delete a document field from the CMS Administration Console:

1 Enter templates mode by clicking the Templates button in the toolbar.

A panel appears listing the document types that have been defined.

2 Select the document type for which the field was defined.

3 Select the field in the Available Fields pane.

4 Click Delete under the Available Fields pane.

5 When a confirmation window appears, click OK.

The CMS Administration Console deletes the field from the Available Fields pane and from all
documents that have been created using document types that contain the field.

Removing fields—from the parent document type

You can remove a document field from the document types where it was originally defined but leave it in
the available pool of fields for later use.

When a field is removed from its parent document type, it is adopted by the system document type
_PmcSystemDefaultType. You can then add the field to any document type, but edit it only from the
system document type.

What happens to legacy documents when you remove a field from its parent document type? There are
two scenarios:

For more information about the Clean Up Data option, see “Creating document types” on
page 146.

If you The CMS Administration Console

Selected the Clean Up Data option
in the parent document type

Deletes the field from legacy documents of the designated type

Did not select the Clean Up Data
option in the parent document type

Preserves the field in legacy documents of the designated
type, but does not allow you to edit the field

NOTE: You will see the legacy field when you preview the
document, but not when you edit the document.
Maintaining Content 191

To remove a document field from a document type (but leave it available):

1 Enter templates mode by clicking the Templates button in the toolbar.

A panel appears listing the document types that have been defined.

2 Select the document type for which the field was defined.

3 Select the field in the Fields pane and then click the Remove Field button:

The field is removed from the Fields pane and refreshes in the Available Fields pane as a system
field.

4 Click Save.
192 exteNd Director Content Management Guide

17 Administering Content

This chapter describes how to check documents in and out and administer version control. It has these
sections:

About content administration

Flow of operations

Checking documents in and out

Administering version control

About content administration
In organizations responsible for developing and maintaining exteNd Director applications, CM is a
dynamic process that often involves multiple users interacting concurrently with a shared set of files
within a common infrastructure.

To preserve the integrity of data in this type of environment, the CMS Administration Console provides
a number of safeguards for effectively administering content:

Ability to lock documents using checkin and checkout functions

Version control

Flow of operations
Here is a workflow that illustrates the recommended order of operations for administering content in the
CMS Administration Console:
Administering Content 193

Checking documents in and out
To prevent concurrent access to documents in a multiuser environment, the CMS Administration Console
provides checkin and checkout capability to users with READ, WRITE, and LIST permissions—
typically the users who are content developers and administrators.

Authorized users must check out documents before they can make any changes to the content, including:

Modifying properties

Changing field values

Updating HTML content

Adding child documents

Adding attachments

These rules also apply to XSL style sheets, which when uploaded to the CMS Administration Console
are managed in the same way as documents that are created in the CMS Administration Console.

This section describes what happens during checkin and checkout and explains how to perform the
following tasks:

Check out a document

Check in a document

Enable automatic checkin

What happens during checkout

Checking out a document locks it, preventing other users from modifying the content. Users with READ
permission can view the currently published content of checked-out documents.

The CMS Administration Console marks checked-out documents for easy identification with a
checkmark icon and displays the name of the user who has locked the content. In the following example,
the document PSAT3 has been checked out by user administrator:
194 exteNd Director Content Management Guide

In this example, the user dba now becomes the owner of the document and the only user with
authorization to save, delete, edit, and check in the document. If other users try to access PSAT3, they will
not see the Save, Delete, Edit, or Check In buttons on the Property Inspector—even if they have WRITE
permission for PSAT3—and they will see only the Preview button if they have READ permission for
PSAT3.

When a document is checked out, the latest version is locked for editing by the owner. The only way to
modify an earlier version of a document is to roll back to that version, as described in “Administering
version control” on page 198.

Using the check-outs view The Content tab contains a check-outs view that displays checkouts for
either the current user or other users. Here is a sample check-outs view display, with a single file checked
out to the current user:
Administering Content 195

Using the check-outs view, you can:

View checkouts for the current user or for other exteNd Director users

View the Property Inspector for the checked-out document by selecting it in the list

Check in all documents displayed in the list

What happens during checkin

When a document is checked in by its owner, any content modifications are saved as a new version,
accessible from the Versions tab in the document’s property sheet. Other authorized users are then free to
check out the document for editing and will get the most up-to-date version of the content.

Content administrators can implement an automatic checkin feature when they create document types.
When this feature is enabled, the CMS Administration Console automatically checks in any document of
the specified type after it is edited.

Checkin and checkout procedures

To check out a document:

1 Enter content mode by clicking the Content button in the toolbar.

2 Select the Folder View tab.

Your folders appear in the content tree view. You may need to expand some of these containers to
see the complete view.
196 exteNd Director Content Management Guide

3 Navigate to the document of interest and select it to open its Property Inspector.

4 In the Property Inspector, select the General tab and click Check-Out.

The CMS Administration Console checks out the latest version of the document, indicating who
has locked the content and changing the document icon to the checked-out icon:

To check in a document:

1 Enter content mode by clicking the Content button in the toolbar.

2 Select the Folder View tab.

Your folders appear in the content tree view. You may need to expand some of these containers to
see the complete view.

3 Navigate to the checked-out document of interest and select it to open its Property Inspector.

4 In the Property Inspector, select the General tab and click Check-In.

The CMS Administration Console checks in the document, making the most current version of the
content available for other users to edit.

To enable automatic checkin for an existing document type:

This option is available only to administrators.

NOTE: You can also set this parameter when you create a new document type, as described in “Creating
document types” on page 146.

1 Enter templates mode by clicking the Templates button in the toolbar.

A panel appears listing all document types that have been defined.

2 Select the document type for which you want to set automatic check-in, then click Edit.

The Edit This Document Type window opens:

3 Check the Auto-Checkin check box and click Update Document Type.

When you edit a document of this type, the CMS Administration Console automatically checks in
your modifications.
Administering Content 197

Administering version control
The CMS Administration Console provides version control to systematically maintain a history of
changes to documents and ensure that the correct content is published.

Administrator tasks The version control system allows administrators with PUBLISH permissions
to perform the following tasks:

What version you see By default, you receive the latest version of content when you check out and
edit a document in the CMS Administration Console. If you want to revert to and modify earlier content,
you can roll back to a previous version. Rolling back deletes all later versions of content and sets the
target version as the most current.

You must check out a document before you can publish, unpublish, or roll back versions of that
document. If you have not checked the document out, you can only preview versions of the content.

Any user who opens a document will see a Versions tab in the document’s Property Inspector. Here is an
example of what the Versions panel looks like:

In this example, any user who selects the document PSAT1 can preview its two versions.

Publish features Users with PUBLISH permission can check out PSAT1 and gain the ability to
publish, unpublish, and roll back versions, as shown in the refreshed Property Inspector:

Task Description

Publish Approve the designated content version and make the content available for viewing by
other users with appropriate permissions. The published version of a document is the
content that is returned by the method getContent().

Unpublish Hide the designated version from public view.

Roll back Delete all versions of content created after a specified version.
198 exteNd Director Content Management Guide

Content administrators can also implement an automatic publish feature when they create document
types. When this feature is enabled, the CMS Administration Console automatically publishes the
content of any document of the specified type if that content is changed.

What’s in this section This section explains how to perform the following version control tasks:

Publish a version

Unpublish a version

Roll back to a previous version

Enable automatic publishing

Set publish dates

To publish a version:

You can publish any version, even if it is not the latest. The CMS Administration Console allows only
one version of a document to be published at any given time.

1 Enter content mode by clicking the Content button in the toolbar.

2 Select the Folder View tab.

Your folders appear in the content tree view. You may need to expand some of these containers to
see the complete view.

3 Navigate to the document of interest and select it to open its Property Inspector.

4 In the Property Inspector, select the General tab and click Check-Out.

The CMS Administration Console checks out the latest version of the document.

5 Select the Versions tab, then select the document version you want to publish.

6 Click Publish.

The CMS Administration Console publishes the version you selected, marking it with the
published-version icon:

7 Return to the General tab and click Check-In.
Administering Content 199

The published version cannot be edited, even when the document is checked out.

To unpublish a version:

1 Enter content mode by clicking the Content button in the toolbar.

2 Select the Folder View tab.

Your folders appear in the content tree view. You may need to expand some of these containers to
see the complete view.

3 Navigate to the document of interest and select it to open its Property Inspector.

4 In the Property Inspector, select the General tab and click Check-Out.

The CMS Administration Console checks out the latest version of the document.

5 Select the Versions tab, then select the published version you want to unpublish.

Published versions appear with this icon:

6 Click Unpublish.

The CMS Administration Console unpublishes the version you selected, marking it with the default
document icon:

7 Return to the General tab and click Check-In.

To roll back to a previous version:

1 Enter content mode by clicking the Content button in the toolbar.

2 Select the Folder View tab.

Your folders appear in the content tree view. You may need to expand some of these containers to
see the complete view.

3 Navigate to the document of interest and select it to open its Property Inspector.

4 In the Property Inspector, select the General tab and click Check-Out.

The CMS Administration Console checks out the latest version of the document.

5 Select the Versions tab, select the version you want to roll back to, then click Rollback.

6 When a confirmation window opens, click OK.

The CMS Administration Console deletes all versions created after the selected version—even if
one of these later versions was already published. The selected version becomes the latest version.

7 Return to the General tab and click Check-In.

To enable automatic publish:

Only users with administrative permissions can implement this feature. Enabling automatic publish
produces the following effects:

Whenever you edit the dynamic content of a document, the CMS Administration Console
automatically publishes a new version of the document.

If you edit only the metadata and field portions of a document, the CMS Administration Console
automatically updates and publishes the latest version of the document.
200 exteNd Director Content Management Guide

To enable automatic publish:

1 Enter templates mode by clicking the Templates button in the toolbar.

A panel appears listing the document types that have been defined.

2 Select the document type for which you want to set automatic checkin, and click Edit.

The Edit This Document Type window opens:

3 Check the Auto-Publish check box and click Update Document Type.

When you edit and save a document of this type, the CMS Administration Console automatically
publishes your modifications as a new version of the content. This latest version becomes the
published version, regardless of whether an earlier version was already published or no earlier
versions were published.

NOTE: You can also enable automatic publish when you create a new document type, as described in
“Creating document types” on page 146.

To set publish dates:

The CMS Administration Console does not automatically set publish dates, although content
administrators with WRITE permission can set publish dates manually anytime to mark documents for
publication. After that, developers can write scheduled business objects that publish documents based on
these dates.

1 Enter Content mode by clicking the Content button in the toolbar.

2 Select the Folder View tab.

Your existing folders appear in the content tree view. You may need to expand some of these
containers to see the complete view.

3 Navigate to the document of interest and select it to open its Property Inspector.

4 In the Property Inspector, select the General tab and click Check-Out.

The CMS Administration Console checks out the latest version of the document.

5 In the Publish Date field, enter a publish date of the form:
YYYY-MM-DD HH:MM:SS

6 Click Save to record the date.
Administering Content 201

202 exteNd Director Content Management Guide

18 Searching Content

This chapter describes how to use the Autonomy search engine to search content in the CMS
Administration Console. It has these sections:

Setting up the CMS Administration Console search facility

Using the search facility in the CMS Administration Console

Search options

Setting up the CMS Administration Console search facility
The search facility of the CMS Administration Console uses the Autonomy search engine (Dynamic
Reasoning Engine, or DRE). The Autonomy DRE uses conceptual pattern matching, which is a more
sophisticated form of searching than keyword-based full-text searching.

Before you can use the search facility in the CMS Administration Console, you must:

Configure the Autonomy DRE to interface properly with your server.

For instructions on configuring Autonomy for use with your server and the CM subsystem,
see the section on configuring your environment in the Content Search Guide.

Configure the CM subsystem to link to the Search service for your exteNd Director EAR project.

You can make search configuration settings when you create your project. After you have created a
project, you can change search configuration settings for the CM subsystem in the exteNd Director
EAR configuration tool.

NOTE: For changes in content to be immediately available to the CMS Administration Console’s
search facility, you must set Synchronization Mode to immediate and select which document
operations you want to trigger immediate synchronization (for example, checkin and publish). In
batch mode, changes are propagated to the DRE by the synch task.

If you have made configuration changes in an existing project, redeploy your project.

After you have configured you environment for the Autonomy DRE and configured the search options
for your project, you can use the search facility in the CMS Administration Console.

Using the search facility in the CMS Administration Console

To perform a search in the CMS Administration Console:

1 Enter content mode by clicking the Content button in the toolbar.

2 Select the Search View tab.

3 In the Search Pane:

3a Enter the word or phrase you want to search for in the Search Text box.

3b (Optional) Set any other search options you want to use to refine your search. See “Search
options” on page 205.
Searching Content 203

srcIntro.html#OverviewofAutonomy-basedconceptualsearching
srcConfigure.html
cdConfigServicesEdit.html
cdConfigServicesEdit.html

3c Click the Search button:

The search view In the search view:

The Search Pane replaces the content tree.

Documents found by the search are listed in the content list. If you click a document to select it
from the list, the Content Property Inspector appears, as shown in Step 2 above.

In the content list, there is a Weight column between the Name and Description columns. The
numbers in the Weight column indicate the relevance of each found document to the search criteria,
expressed as a percentage:

If you are not getting the results you expect If the search facility is not finding documents you
expect it to find:

Make sure you have created or imported content into your repository.

Review the synchronization settings for your project. You can do this in the exteNd Director EAR
Configuration tool.

If you are using immediate synchronization, make sure you have made your documents available to
the search engine by performing one or more of the operations you chose when you configured
immediate synchronization on each of the documents.
204 exteNd Director Content Management Guide

cdConfigServicesEdit.html
cdConfigServicesEdit.html

Search options
In the Search Pane you can set a number of options to refine your search:

The following table explains how to use the search options:

Option How to use the option

Search Text Enter the word or phrase you want to search for.

Query Type Select the type of search you want to perform:

Conceptual or keyword search (the default)—When this type is selected, the
DRE uses conceptual pattern matching by default.

If you use semicolon notation (for example: silk;+worm;) the search engine
performs a keyword search based on the number of occurrences of the terms,
rather than on their conceptual relevance.

Proper Name Search—When this type is selected, the search engine treats the
search text as a proper name, and performs a conceptual search accordingly.

Min. weight Enter the minimum weight for a document to be displayed in the content list.

The weight of a found document is a measure of its relevance to the search text.
The search engine assigns a percentage value to each document, with 100%
representing the greatest possible relevance.

Max. number of
results

Enter a number that specifies the greatest number of documents you want to be
displayed in the content list.
Searching Content 205

srcIntro.html#OverviewofAutonomy-basedconceptualsearching

Sort by Select a sort order from the dropdown list. The available choices are:

weight (the default)

date

weight and date

Search Within
Date Range

Select this check box if you want to restrict the search to documents created
within a specified time period. For both the From and To dates, enter the day,
month, and year in the corresponding text boxes.

Batch Mode Check this check box if you want a subset of the found documents to appear in
the content list.

When using batch mode, it is helpful to think of the full set of found documents as
an array, ordered according to the sort order you indicate in the Sort by box.

The documents that are displayed are selected from the full set of found
documents, based on the numeric values you enter in the Start and Size boxes:

Start—Specifies the position of the first document (from the full set of found
documents) to be displayed in the content list. Like array elements, the order of
the documents in the full set of found documents begins with 0.

Size—Specifies the total number of documents you want to be displayed in the
content list, beginning with the document specified by the Start value.

Example Say you perform a search without using batch mode that returns six
documents. Then you repeat the search in batch mode, indicating a Start value of
1 and a Size value of 3.

The search now returns the second, third, and fourth documents from the original
set of found documents, based on the order in which they initially appeared in the
content list.

Option How to use the option
206 exteNd Director Content Management Guide

Field Search Enter a field search expression.

The syntax of a field search expression is:

fieldname1=value1 operator fieldname2=value2 ...

where:

fieldname is the name of an extension metadata field you have created, or one
of these standard metadata fields:

AUTHOR

CONTENTSIZE

CREATED

DOCABSTRACT

DOCID

DOCNAME

DOCTYPEID

DOCTYPENAME

EXPIRATIONDATE

FOLDERID

LOCKEDBY

MIMETYPE

PARENTDOCID

PUBLISHDATE

PUBLISHSTATUS

STATUS

SUBTITLE

TITLE

UPDATETIME

value is the field value you are searching for

operator is either:

AND

or

OR

Example If you want to limit your search to all HTML documents written by user
admin, the field search expression you would use is:

author=admin AND mime-type=text/html

Suggest More If you want to find documents related to a document that was found by previous
search, select that document in the content list and click the Suggest More button.

The list of documents found by the previous search is replaced by a list consisting
of the selected document and any related documents.

Option How to use the option
Searching Content 207

208 exteNd Director Content Management Guide

19 Managing Content Security

This chapter describes how to secure access to content using the CMS Administration Console. It has
these sections:

About content security

Flow of operations

Permissions for content access

User permissions required for CM operations

Cascading security

Setting security on CM elements

For background information, see Chapter 4, “Securing Content”.

About content security
The CMS Administration Console allows administrators—and other users with PROTECT permission—
to control access to CM elements. Administrators can assign users and groups various levels of access
permission on an element-by-element basis to the following types of content:

Document

Folder

Taxonomy

Category

When users with PROTECT permission open one of these CM elements in the CMS Administration
Console, they will see a Security tab in the Property Inspector. The Security tab displays controls for
assigning levels of access to the selected CM element.

For example, here is what the Security tab looks like after assigning the ContentAdmins Group WRITE
access to the document PSAT1:
Managing Content Security 209

The CMS Administration Console provides security-sensitive controls as part of its user interface. It
gives you only those CM capabilities that are permitted by the security privileges assigned to you for each
CM element.

For example, if you have WRITE permission for all documents, you can check out and edit any document
in the CMS Administration Console. If you do not have WRITE permission for documents in a
confidential folder, you will never see Edit and Check-Out controls in the Property Inspectors of
documents residing in that folder.

Flow of operations
Here is the basic task for securing content in the CMS Administration Console:

This chapter explains how to manage security in the CMS Administration Console and includes the
following topics:

Permissions for content access

User permissions required for CM operations

Cascading security

Setting security on CM elements
210 exteNd Director Content Management Guide

Permissions for content access
Administrators with PROTECT permission can assign users various levels of content access based on
their roles in the organization.

The CMS Administration Console allows authorized users to assign the following access permissions:

While each of these access permissions is assigned to CM elements individually (as described in “Setting
security on CM elements” on page 213), it is not necessary to explicitly set access permissions on each
element. A CM element can inherit access permissions from its parent element.

For more information on setting CM element permissions through inheritance, see “Cascading
security” on page 212.

User permissions required for CM operations
The following table describes which permissions are required for performing specific CM operations in
the CMS Administration Console:

Permission Allows you to

READ View any data and/or metadata associated with the designated CM element—for
example, preview a document or view the metadata associated with a folder

WRITE Create, modify, and save the designated CM element

PROTECT Set security on a designated CM element

LIST View lists of documents in a folder or category

NOTE: This permission applies to folders or categories only, not to documents.

PUBLISH Publish a document

NOTE: This permission applies to documents only, not to folders or categories.

Element Operation Permission

Document View content or metadata READ

Modify content or metadata WRITE

Publish PUBLISH

Set security PROTECT

Folder View metadata READ

Modify folder metadata

Add subfolder

Add document

WRITE

List contents LIST

Set security PROTECT
Managing Content Security 211

For information on giving users and groups levels of access to individual CM elements, see
“Setting security on CM elements” on page 213.

Cascading security
Generally, security settings cascade from parent to child in the hierarchical relationships of CM elements.
The following content hierarchies exist in the CMS Administration Console:

Physical hierarchy of root folders , folders , and documents :

Category View metadata READ

Modify category metadata

Add subcategory

Add document

WRITE

List contents LIST

Set security PROTECT

Field View metadata READ

Modify metadata WRITE

Set security PROTECT

Document type View metadata READ

Modify metadata WRITE

Set security PROTECT

List fields that belong to the document type LIST

Layout style View metadata READ

Modify metadata WRITE

Set security PROTECT

Element Operation Permission
212 exteNd Director Content Management Guide

Logical hierarchy of taxonomies , categories , and documents :

Inherited security When a new child is created in either hierarchy, it inherits the parent’s security
settings. Child elements can also inherit changes to a parent’s access permissions, but you must explicitly
enable this behavior, as described in “Setting security on CM elements” on page 213.

Setting security on CM elements
Users with PROTECT permission can set security on the following CM elements:

Documents

Folders

Categories

Taxonomies

To set security on documents and folders:

1 Enter content mode by clicking the Content button in the toolbar.

2 Select the Folder View tab.

Your folders appear in the content tree view. You may need to expand some of these containers to
see the complete view.

3 Navigate to the folder or document of interest and select it to open its Property Inspector.

4 Select the Security tab.

5 Select a permission from the dropdown list.

6 Assign this permission to the appropriate users and groups by following these steps:

To Do this

Assign individual users
and groups

1 Select users or groups one at a time from Available Users.

2 Click the single-arrow button to move each selection to Selected
Users.

NOTE: You cannot multiselect users and groups from Available
Users.

Assign all users and
groups

Click the double-arrow button.

NOTE: All groups move from Available Users to Selected Users.
Managing Content Security 213

7 To allow existing children of the selected folder to inherit the new security setting, check Apply
Security To Existing Children.

IMPORTANT: This option is available only to administrators.

8 Click Save.

To set security on categories and taxonomies:

1 Enter content mode by clicking the Content button in the toolbar.

2 Select the Category View tab.

Your categories and taxonomies appear in the content tree view. You may need to expand some of
these containers to see the complete view.

3 Navigate to the category or taxonomy of interest and select it to open its Property Inspector.

4 Select the Security tab.

5 Select a permission from the dropdown list.

6 Assign this permission to the appropriate users and groups by following these steps:

7 To allow existing children of the selected folder to inherit the new security setting, check Apply
Security To Existing Children.

IMPORTANT: This option is available only to administrators.

8 Click Save.

To Do this

Assign individual users
and groups

1 Select users or groups one at a time from Available Users.

2 Click the single-arrow button to move each selection to Selected
Users.

NOTE: You cannot multiselect users and groups from Available Users.

Assign all users and
groups

Click the double-arrow button.
214 exteNd Director Content Management Guide

20 Importing and Exporting Content

This section describes how to import and export content using the CMS Administration Console:

About the import and export facilities

Summary of CMS Administration Console import and export behavior

Exporting content

Importing content

Structure of the data import or export archive

Best practices and prerequisites

For background information about how the functions work and how to customize the import and
export functions, see Chapter 7, “Importing and Exporting Content”.

About the import and export facilities
The CMS Administration Console allows you to export CM data from your repository, beginning from
any point in the Content Tree. You can also export the entire contents of a CM system from the toolbar.

Similarly, the CMS Administration Console allows you to import CM data at any point in the Content
Tree, or the entire contents of a CM system from the toolbar.

Uses for the import and export facilities include:

Moving or copying folders, categories, and documents within a repository

Moving CM data between different stages of development

Integrating with third-party vendors

Backing up and restoring CM data

Debugging and data analysis

Import and export of CM infrastructure It is also possible to export and import all or part of the
supporting infrastructure of your CM subsystem, such as fields or document types.

Import and export of archives When you export CM data from the CMS Administration Console, it
is stored in a ZIP file that serves as a structured export archive. When you import CM data using the CMS
Administration Console, it must be imported from a ZIP file that follows the same structure as the export
archive. When you import CM data that has been exported from a CM repository, you import directly
from the export archive.
Importing and Exporting Content 215

Summary of CMS Administration Console import and export
behavior

Here is what happens when you export or import CM data, depending on the starting point for the
operation:

For more information on what goes into the export archive and how the archive is structured, see
“Structure of the data import or export archive” on page 221.

Exporting content
This section explains how to export CM data from the toolbar and the Property Inspectors.

NOTE: Before you export data, be sure to review the section “Best practices and prerequisites” on
page 222.

Starting point
Export:
what goes into the ZIP file

Import:
where the contents of the
ZIP file are placed

Toolbar The entire contents of the CM subsystem
including:

The Content Admin element

Taxonomies

Categories

Display styles

Document types

Fields

Folders

Documents

Document versions

OR

A subset of the CM subsystem, as specified by
a document export descriptor (DED)

The Default folder

Repository Property
Inspector

All folders, documents, document versions,
fields, and document types contained in the
repository

The Default folder

Folder Property
Inspector

The selected folder and all its contents,
including:

Documents and associated versions, fields,
and document types

Subfolders of the selected folder, and their
contents

The selected folder

Content Property
Inspector

All versions of the selected document, plus any
document type and fields associated with it

Not applicable
216 exteNd Director Content Management Guide

Exporting from the toolbar

The Export button on the toolbar allows you to export the entire contents of your CM subsystem, or to
perform a customized export using a descriptor file called the data export descriptor (DED).

To export content from the toolbar:

1 Click the Export button on the CMS Administration Console toolbar.

The Export Pane displays:

2 Choose Export using a specific Data Export Descriptor.

3 Click the Browse button and navigate to the DED file you want to use for this export.

4 Click the Export button.

5 Click OK in the question box that appears:

6 In the File Download dialog, click Save:

7 In the Save As dialog, navigate to the folder where you want to store the export archive, give the
archive file a unique name, and click Save.
Importing and Exporting Content 217

For more information about the archive, see “Structure of the data import or export archive”
on page 221.

Exporting from a Property Inspector

To export content from a Property Inspector:

1 Enter Content mode by clicking the Content button on the CMS Administration Console toolbar.

2 Select the starting point for the export by doing one of the following:

In the Content Tree, click the Default folder. The Repository Property Inspector displays:

OR

In the Content Tree, click any folder other than the Default folder. The Folder Property Inspector
displays:

OR

In the content list, click a document. The Content Property Inspector displays:

3 Click the Export button in the Property Inspector.

4 Follow Step 5, Step 6, and Step 7 in “To export content from the toolbar:” on page 217 to name and
save your export archive.

For a description of the contents of the export archive file, see “Structure of the data import or
export archive” on page 221.
218 exteNd Director Content Management Guide

Customizing exports

You can configure and customize the export process by editing the DED.

For more information, see “Customizing imports and exports” on page 82.

Importing content
This section describes the import process and explains how to import data into your CM subsystem from
the toolbar and the Property Inspectors.

NOTE: Before you import data, be sure to review the section “Best practices and prerequisites” on
page 222.

Data not previously exported If you want to import data that was not previously exported from a
CM repository, you can do this manually by assembling an import ZIP file, or programmatically using
the CM API. For more information, see “Customizing imports and exports” on page 82.

Data previously exported If you are importing data that was previously exported from a CM
repository—for example, as part of a moving or copying process—you import directly from the export
archive so that the archive will automatically follow the required structure.

Configuring the import process

Unlike with exporting content (when you can configure the process only from the toolbar), when you are
importing content you can configure the process regardless of the starting point. You do this by adding a
data import descriptor (DID) to the import archive file or editing the existing file before performing the
import.

NOTE: When you are importing previously exported CM data, the import archive will always contain a
DID (called contentmgmt_did.xml) in the contentmgmt-inf folder.

For more information about the DID, see “Customizing the data import descriptor (DID)” on
page 82.

Importing from the toolbar

The Import button on the toolbar allows you to import CM data from an import archive into the Default
folder of a repository.

To import content from the toolbar:

1 Click the Import button on the CMS Administration Console toolbar.

The Import Pane displays:
Importing and Exporting Content 219

2 Click the Browse button.

3 In the Choose File dialog, browse to the import archive you want to use and click Open:

4 In the Import Pane, click Import.

Importing from a Property Inspector

You can import from the Repository Property Inspector and the Folder Property Inspector (but not from
the Content Property Inspector).

To import content from a Property Inspector:

1 Enter content mode by clicking the Content button on the CMS Administration Console toolbar.

2 Select the starting point for the import by doing either of the following:

In the Content Tree, click the Default folder. The Repository Property Inspector displays:

OR

In the Content Tree, click any folder other than the Default folder. The Folder Property Inspector
displays:

3 In the Property Inspector, click the Import tab.

4 Click Browse.
220 exteNd Director Content Management Guide

5 In the Choose File dialog, browse to the import archive you want to use and click Open:

6 In the Import pane, click Import.

Structure of the data import or export archive
The following table shows the internal folder structure of a data import or export archive file and explains
what each folder contains:

Folder name Contains

Included when exporting from:

Toolbar
(entire
system)

Repository, Folder, or
Content property
inspector

contentmgmt-inf contentmgmt_did.xml (the DID)

admin_metadata ContentAdmin.xml (the Content Admin element)

categories_metadata XML descriptor files for each taxonomy and category,
organized according to the structure of the taxonomy(ies)

styles_metadata An XML descriptor for each style, registering its name and
listing the document type it is associated with

fields_metadata An XML descriptor for each field, registering the field name
and the data type of its value

fields_data The application-specific data associated with each
extension metadata field; for fields created with the CMS
Administration Console, this consists of an XML descriptor
for each field listing its properties, including its control type
and (if applicable) its possible values

doctypes_metadata An XML descriptor for each document type, listing the
fields associated with it

doctypes_data The application-specific data associated with each
document type; for document types created with the CMS
Administration Console, this consists of an XML descriptor
for each document type describing its properties

folders_metadata An XML descriptor for each folder, registering the folder
and listing its parent folder, if any

docs_metadata An XML descriptor for each document containing the
names and values of the fields associated with the
document, organized according to the folder structure
Importing and Exporting Content 221

Best practices and prerequisites
This section provides some notes on best practices for importing and exporting CM data.

Planning for large-scale import/export operations

If you are planning to export or import a very large amount of CM data, it is important to keep the
memory capacity of your machines in mind as you plan your operation.

During an import or export operation, all objects representing elements of the repository must be present
in memory at the same time. That means the amount of available memory imposes a practical limit on the
size of a repository you can process in a single operation.

The best way to approach a large-scale operation is to export or import your source repository in logical
chunks. For example, you might export all your document types in one operation, your fields in another
operation, and so on, ending with exporting or importing your document content in manageable chunks
according to the folder structure of your repository.

Security considerations

This section applies primarily to importing CM data that has been exported from another repository.

Permissions to establish in the import target The user who performs the export from the source
repository must exist and must have the SearchAdmin WRITE permission in the target repository.

Users to create in the import target You need to make sure that if any documents were checked out
at the time of export, the users to whom they are checked out have been created in the repository into
which you are importing.

If these users do not exist in the import repository, the import will fail.

docs_content Files containing the published content of each exported
document, organized according to the folder structure

docs_content_versions Files containing the content of each version of exported
document, organized according to the folder structure

Folder name Contains

Included when exporting from:

Toolbar
(entire
system)

Repository, Folder, or
Content property
inspector
222 exteNd Director Content Management Guide

21 Administering Automated Tasks

Tasks mode in the CMS Administration Console allows you to view, start, and stop automated CM tasks
from the CMS Administration Console. This chapter includes these topics:

The task display

Starting and stopping tasks

Several tasks are installed with the CM subsystem. You can modify these installed tasks and/or create
new, custom tasks to meet the specific needs of your application.

For more information, see Chapter 5, “Managing Tasks”.

The task display
You enter tasks mode by clicking the Tasks button on the CMS Administration Console toolbar. The task
display appears, as in this example:
Administering Automated Tasks 223

This display provides the following information about the tasks defined on your server:

Starting and stopping tasks
Tasks are not persistent across application server sessions. Each time you restart your server, you must
restart each of your tasks.

To start or stop a task:

1 Enter tasks mode by clicking the Tasks button in the toolbar.

2 Click anywhere in a task description to select it.

3 Click the Start Task button to start the task or the Stop Task button to stop the task.

Task property Details Example

Name and
description

As defined in the task object. —

Type The task type, from a scheduling point of
view. Possible types are:

Periodic: a task that is scheduled to run
multiple times at regularly scheduled
intervals.

For example, a periodic task could be a
repository backup utility that runs every
24 hours (86,400,000 milliseconds).

Scheduled: a task that is scheduled to
run at one or more fixed points in time.

For example, a scheduled task could
be a content publishing task that is
scheduled to run at three publication
deadlines, such as:

Monday, June 24, 2002 at 9 a.m.

Wednesday, June 26, 2002 at 5
p.m.

Friday, June 28, 2002 at midnight

Status The execution status of the task. Possible
values are:

Stopped: Task is not yet running or has
been halted.

Started: Task is currently running.

—

224 exteNd Director Content Management Guide

IV Applications

Describes how to use the Content Query and RSS portlet application

• Chapter 22, “Content Query Application”
225

226 exteNd Director Content Management Guide

22 Content Query Application

This chapter describes how to use the Content Query action and related artifacts to query the Content
Management subsystem. It has these sections:

About Content Query

Using the Content Query action

NOTE: To use this application your project must include the Content Management and the Rule
subsystems.

About Content Query
The Content Query action (CQA) allows you to query published documents in the Content Management
(CM) subsystem. You can query by folder, category, document type, or by specific document. Searches
can be designated as either inclusive or exclusive. The results of the query are captured in XML and
processed as a query in the CM subsystem.

Content Query consists of a portlet and sample rules that use the installed Content Query action. The
application artifacts are provided in your exteNd Director directory at:

Portal/WEB-INF/lib/cqa-portlets.jar

Application contents The CQA-Portlets JAR includes:

Using the Content Query action
The Content Query action provides a custom user interface in the Rule Editor for specifying the folders,
categories, document types, and documents to include (or exclude) in the query results. It also provides
an interface for selecting the properties (content fields) that should be displayed in the query output and
for specifying sort rules. The Content Query action also includes a query builder to allow you to specify
selection criteria.

CQA Artifact Description

ContentListPortlet.class Portlet that displays the results of a query using the Content Query action.

ContentList.xml Sample rule that executes a general document query against the CM
subsystem.

See Using the Content Query action.

MyDocuments.xml Sample rule that executes a query for documents created or modified by
the logged-in user

NewDocuments.xml Sample rule that executes the SetDateonWhiteboard action and executes
a query for documents created or modified on the current date
Content Query Application 227

To edit and run a query:

1 If you have not yet created content, you need to add some content using the Director
Administration console (DAC) or WebDAV.

2 Start your server and open the ContentList rule in exteNd Director.

For more information, see Using the Rule and Macro Editors in the Rules Guide.

NOTE: You can also create a new rule and add the Query action. If you are creating your own rule,
skip the next step.

3 Select the Edit query against the content management system action, then right-click and select
Edit from the popup menu.

A popup asks you to specify the URL to your project’s ContentMgmtService folder.

4 Specify the correct URL—for example:
http://localhost/MyDirectorProj/ContentMgmtService/

The Content Query Property Inspector displays:

5 On the Search tab, specify which documents you want to include (or exclude) in your query:

Each property panel allows you to specify an URL to a whiteboard key for the documents:

You can either enter the value or specify a whiteboard key that holds the value you want. Use this
format:

!valueOf.keyname

You can also specify a key that holds the name of another key. To get a value from another key,
specify !valueOf.anotherkey.

To select one or more Click the

Folders to be included or excluded Folders button

Categories to be included or excluded Categories button

Document types to be included or excluded Doc Types button

Documents to be included or excluded Documents button
228 exteNd Director Content Management Guide

reEditorMacros.html

For more information about the !valueOf construct, see the section on using whiteboard
values in the Rules Guide.

6 To build a query condition, click the Whose button:

The Whose query builder lets you specify selection criteria for individual CM properties. To build a
query condition:

The query specifications you provide on the Search tab are ANDed together. That means that to be
included in the result set for the query, a document must satisfy all criteria specified on the Search
tab.

7 On the Properties tab, select the document properties that you want to appear in the query output.
You can select one or more properties from the list on the left and add them to the list on the right
by using the arrows. You can also move the properties up or down to adjust the display order by
using the arrows on the right side of the dialog.

TIP: You must select at least one property on the Properties tab to see data in the query output. In
the ContentList rule, some properties are selected by default.

Step Action

1 If you’ve already added one or more conditions to the query, select a logical operator
(and or or).

2 Select Standard Document Properties.

3 Select a property (such as Author).

4 Select an operator (such as ends with).

5 Select <literal>.

TIP: Only literal strings or whiteboard keys are supported at this time.

6 Enter a value that will be used for the expression. You can either enter the literal
value or a whiteboard key that holds a value. Use this format:

!valueOf.keyname

You can also specify a key that holds the name of another key. To get a value from
another key, specify !valueOf.anotherkey.

For more information about the !valueOf construct, see the chapter on using
whiteboard values in the Rules Guide.

7 Click Add to add the condition.
Content Query Application 229

reRulesPipeDev.html#Usingwhiteboardvalues
reRulesPipeDev.html#Usingwhiteboardvalues
reRulesPipeDev.html#Usingwhiteboardvalues
reRulesPipeDev.html#Usingwhiteboardvalues

8 On the Sort tab, specify how the data will be sorted in the query output. For each property you
select, you can specify the sort order (ascending or descending).

9 Once you’ve finished editing the action, click Exit.

10 To save your changes, click Yes.

11 Save the rule.

12 To test your query, add the ContentList portlet to a portal page and test the page.
230 exteNd Director Content Management Guide

V Reference

Describes how to use the Content Management (CM) JSP tag library

• Chapter 23, “Content Management Tag Library”
231

232 exteNd Director Content Management Guide

23 Content Management Tag Library

This chapter describes the tags in the Content Management (CM) tag library:

For background information, see the chapter on using the exteNd Director tag libraries in
Developing exteNd Director Applications.

Content Management tags:

checkIn

checkOut

findDocuments

getChildDocuments

getContent

getDirectory

getDirectoryList

getDocType

getDocument

getFieldInfo

getFields

getLinkedDocuments

getVersionHistory

publish

unCheckOut

updateDocument

Alphabetical list of tags

checkIn

Description Checks a document in to the CM subsystem for the current user and saves a new content version. If the
save is successful, the tag returns an integer representing the new version.

This tag wraps the checkinDocument() method on the EbiContentMgmtDelegate interface.

Syntax <prefix:checkIn docid="docID" mime="mime" content="content" comment="comment"

keepcheckedout="keepcheckedout" id="ID" />
Content Management Tag Library 233

cdUsingTagLib.html

Example <% taglib uri="/cm" prefix="cm" %>
...
<%
String content = "this is my new content";
byte myarray[] = content.getBytes();
%>
...
<cm:checkIn docid="addd2545931b11d48e130010a4e70c5f" id="version" comment="checking in
my changes" content="<%=myarray%>" keepcheckedout="true" mime="text/html" />
<%=pageContext.getAttribute("version")%>

checkOut

Description Checks out a document for the current user, returning true if successful and false if unsuccessful.

This tag wraps the checkoutDocument() method on the EbiContentMgmtDelegate interface.

Syntax <prefix:checkOut docid="docID" id="ID" />

Attribute Required?

Request-time
expression
values
supported? Description

docid Yes Yes Specifies the UUID for a document in the CM
subsystem.

mime Yes Yes Specifies the MIME type of the new version.

content Yes Yes Specifies the new content data.

comment No Yes Specifies a checkin comment.

keepcheckedout Yes Yes Indicates whether the new version should be kept
checked out.

If true, the new version is inserted but the document
remains checked out to the user.

If false, the lock is released and the document is
made available for changes by other users.

id No No Specifies the name of the variable used to store the
result of the operation. If the checkin is successful,
this variable holds the new version.

If no value is specified, a default id of version is
used.

Attribute Required?

Request-time
expression
values
supported? Description

docid Yes Yes Specifies the UUID for a document in the CM subsystem.

id No No Specifies the name of the variable that is used to store the
result of the operation.

If no value is specified, a default id of checkout is used.
234 exteNd Director Content Management Guide

Example <% taglib uri="/cm" prefix="cm" %>
...
<cm:checkOut docid="addd2545931b11d48e130010a4e70c5f" id="result" />
<%=pageContext.getAttribute("result")%>

findDocuments

Description Retrieves documents that match the criteria specified in tag attributes (as described below), returning
either a list of EbiDocument objects or an XML string.

This tag wraps either the findElements() or the findFilteredElements() method of the
EbiContentMgmtDelegate interface.

Syntax <prefix:findDocuments id="ID" secure="securitySetting" xml="xmlFormat"

authorFrom="authorFrom" authorTo="authorTo" authorLike="authorLike"
categoryID="categoryID" createDateFrom="createDateFrom" createDateTo="createDateTo"
expireDateFrom="expireDateFrom" expireDateTo="expireDateTo"
publishDateFrom="publishDateFrom" publishDateTo="publishDateTo"
docTypeName="docTypeName" folderID="folderID" docNameFrom="docNameFrom"
docNameTo="docNameTo" docNameLike="docNameLike" parentDocId="parentDocID"
titleFrom="titleFrom" titleTo="titleTo" titleLike="titleLike" orderAsc="orderAsc"
orderDesc="orderDesc"/>

Attribute Required?

Request-time
expression
values
supported? Description

id No No Specifies the name of the variable used to store the
list of EbiDocument objects.

If no value is specified, a default id of
foundDocuments is used.

secure No No Specifies whether the returned documents are filtered
according to security constraints.

If true (the default), the filter method is used and only
those documents to which the user has read access
are returned.

If false, all documents are returned.

xml No No Specifies that the document list is returned as an XML
string.

The DTD for the returned xml is contentmgmt-query-
results_3_0.dtd, which can be found under
templates\Director\library\ContentMgmtService/Conte
ntMgmtService-conf/DTD directory in the standard
exteNd Director installation directory.

If not specified, a list of EbiDocument objects is
returned.

authorFrom

authorTo

No Yes Search for documents based on a range of author
metadata.

authorLike No Yes Search for documents based on a match of author
metadata.

This attribute is case-insensitive, and may include
SQL wildcard characters % and _.
Content Management Tag Library 235

categoryID No Yes Limits the search to documents in a particular
category.

createDate
From

createDateTo

No Yes Search for documents based on creation date
metadata.

Date entries should have the format m/d/yyyy. For
example: 5/14/2001 is a valid date entry.

expireDate
From

expireDateTo

No Yes Search for documents based on expiration date
metadata.

Date entries should have the format m/d/yyyy. For
example: 5/14/2001 is a valid date entry.

publishDate
From

publishDateTo

No Yes Search for documents based on publication date
metadata.

Date entries should have the format m/d/yyyy. For
example: 5/14/2001 is a valid date entry.

docTypeName No Yes Limits the search to documents of a specific type.

folderId No Yes Limits the search to documents in a particular folder.

docName
From

docNameTo

No Yes Search for documents based on a range of document
name metadata.

docNameLike No Yes Search for documents based on a match of document
name metadata.

This attribute is case-insensitive, and may include
SQL wildcard characters % and _.

parentDocId No Yes Limits the search to documents that are children of a
particular document.

titleFrom

titleTo

No Yes Search for documents based on a range of title
metadata.

titleLike No Yes Search for documents based on a match of title
metadata.

This attribute is case-insensitive, and may include
SQL wildcard characters % and _.

orderAsc

orderDesc

No Yes Sorts the documents in ascending or descending
order, based on one of the search criteria.

Legitimate values for these attributes are:

author

createDate

docId

docName

expireDate

publishDate

title

Attribute Required?

Request-time
expression
values
supported? Description
236 exteNd Director Content Management Guide

Example <cm:findDocuments id="test2" secure="false" xml="false"
authorLike="administrator" orderAsc="DOCID" />

Found <%=test2.size()%> Documents

<% for (int x=0;x<test2.size();x++){

EbiDocument doc = (EbiDocument) test2.get(x); %>
Doc <%=x%> title = <%=doc.getTitle()%>

<% } %>

getChildDocuments

Description Retrieves the children of a document, returning a list of EbiDocument objects.

Depending on the setting for the secure attribute, this tag wraps either the getChildDocuments() or the
getFilteredChildDocuments() method on the EbiContentMgmtDelegate interface.

Syntax <prefix:getChildDocuments docid="docID" docpath="docPath" id="ID"

secure="securitySetting"/>

Example <cm:getChildDocuments docid="c373e9ea8d110d2c8f6a0000864ec468" id="test3"/>
Found <%=test3.size()%> Child Documents

Attribute Required?

Request-time
expression
values
supported? Description

docid No Yes Specifies the UUID for the parent document in the CM
subsystem.

If you do not specify a docid value, you must specify a
value for the docpath attribute.

docpath No Yes Specifies the path to the parent document in the CM
subsystem.

If you do not specify a docpath value, you must specify a
value for the docid attribute.

id No No Specifies the name of the variable used to store the
returned list of EbiDocument objects.

If no value is specified, a default id of childDocuments is
used.

secure No No Specifies whether the returned documents are filtered
according to security constraints.

If true (the default), the filter method is used and only
those documents to which the user has read access are
returned.

If false, all documents are returned.
Content Management Tag Library 237

getContent

Description. Retrieves the contents of a document, returning a string.

This tag wraps the getContent() method on the EbiContentMgmtDelegate interface.

Syntax <prefix:getContent docid="docID" docpath="docpath" id="ID" version="version"

verid="verID" />

Example This example gets the latest version of the content for two documents by specifying the paths to the
documents. The content for each document is inserted in the page at the location where the corresponding
getContent tag appears:

<% taglib uri="/cm" prefix="cm" %>
...
<cm:getContent docpath="HR/Employee Forms/ESPP/ChangeOfAddress.html" id="doc1" />
content = <%=new String(((EbiDocContent)doc1).getData())%>
<cm:getContent docpath="HR/Employee Forms/ESPP/ChangeOfAddressInstructions.html"
id="doc2" />
content = <%=new String(((EbiDocContent)doc2).getData())%>
...

Attribute Required?

Request-time
expression
values
supported? Description

docid No Yes Specifies the UUID for a document in the CM subsystem.

If a docid value is not specified, you must specify a value
for the docpath attribute.

docpath No Yes Specifies the path to a document in the CM subsystem.

If a docpath value is not specified, you must specify a
value for the docid attribute.

id No No Specifies the name of the variable used to store the
EbiDocContent object.

If no value is specified, the document content is inserted
in the page at the location where the tag appears.

version No No Indicates whether to return a specified version of the
content.

If false (the default), or if this attribute is omitted, the
published version of the content is returned. If no version
is published, no content is returned.

If true, you must specify a version using the verid
attribute. The specified version is returned.

verid No Yes Specifies a version ID for the content that should be
returned.

If the version attribute is false, the verid attribute is
ignored.
238 exteNd Director Content Management Guide

getDirectory

Description. Retrieves a directory from the CM subsystem, returning an EbiDirectory object. This tag can be used to
retrieve folders as well as categories.

This tag wraps the getEntry() and lookupDirectoryEntry() methods on the EbiContentMgmtDelegate
interface.

Syntax <prefix:getDirectory id="id" roottype="roottype" dirname="dirname" dirid="dirid"

dirpath="dirpath" />

Example <%@ taglib uri="/cm" prefix="cm" %>
...
<cm:getDirectory roottype="category" dirpath="HR/Employee Forms/ESPP" >

ID for the directory is ...
<%=dirEntry.getID()%>

Attribute Required?

Request-time
expression
values
supported? Description

id No No Specifies the name of the variable used to store the
EbiDirectory object.

If no value is specified, the default name of dirEntry is
used for the variable.

roottype Yes Yes Specifies whether the tag is being used to retrieve a
folder or a category.

If the directory is a folder, specify folder as the value for
the roottype attribute. If it is a category, specify category
instead.

Typically, this attribute is used in conjunction with one of
the following attributes to specify the correct directory
object in the CM subsystem:

dirname

dirid

dirpath

If none of these attributes is specified, the root folder or
category is returned, depending on the setting of
roottype.

dirname No Yes Specifies the name of the directory you want to retrieve.

The directory specified must be a direct descendent of
the root.

The directory can be a folder or category in the CM
subsystem.

dirid No Yes Specifies the UUID for the directory you want to retrieve.

The directory can be a folder or category in the CM
subsystem.

dirpath No Yes Specifies the path to the directory you want to retrieve.

The directory can be a folder or category in the CM
subsystem.
Content Management Tag Library 239

getDirectoryList

Description Retrieves a list of directory contents from the CM subsystem, returning a collection of EbiDirectoryEntry
objects. Depending on the attributes specified, this collection can contain folder, category, and document
objects.

This tag wraps the getDirectoryList() and getFilteredDirectoryList() methods on the
EbiContentMgmtDelegate interface.

Syntax <prefix:getDirectoryList id="id" finddocuments="finddocuments" roottype="roottype"

parentdir="parentdir" iterate="iterate" findsubdirs="findsubdirs" dirname="dirname"
dirid="dirid" dirpath="dirpath" filter="documents" />

Attribute Required?

Request-time
expression
values
supported? Description

id No No Specifies the name of the variable used to store the
Collection object.

If a value is specified for the id attribute, that value
is used as the name for the resulting variable that
contains the collection. Otherwise, the default name
of dirList is used for the variable.

finddocuments No No Indicates whether to retrieve the documents that are
located in the specified directory.

If true, all documents located in the specified
directory are retrieved.

If false (the default), documents located in the
specified directory are not retrieved.

roottype No Yes Specifies whether to retrieve the contents of a folder
or a category. If the directory is a folder, specify
folder as the value for the root attribute. If it’s a
category, specify category.

Typically, this attribute is used in conjunction with
one of the following attributes:

dirname

dirid

dirpath

If the roottype attribute is specified by itself, the
directory for which contents will be retrieved is the
root.

If a value for this attribute is not specified, the
directory for which contents will be retrieved is
assumed to be the root folder.

parentdir No Yes Specifies the directory object for which the
document contents should be retrieved. The object
should be of type EbiDirectory.

If this attribute is specified, it is not necessary to
specify the roottype attribute.
240 exteNd Director Content Management Guide

Examples This example shows how to use the getDirectoryList tag with the iterate attribute set to true:

<%@ taglib uri="/cm" prefix="cm" %>
...
<cm:getDirectoryList roottype="category" dirpath="HR/Employee Forms/ESPP"
finddocuments="true" iterate="true">
Identifier = <%=identifier%>

Name = <%=name%>

Type = <%=type%>

iterate No No Indicates whether this tag operates as a body tag so
that each row can be processed separately.

If true, the following values can be accessed within
the getDirectoryList tag:

identifier

name

type

isdir

Each of these variables has a scope of NESTED.

If false (the default), this tag operates as a nonbody
tag. The tag returns an object of type Collection that
contains a collection of EbiDirectoryEntry objects.

findsubdirs No No Indicates whether to retrieve directories that are
child directories under the specified one.

If true (the default), all subdirectories of the
specified directory are retrieved.

If false, subdirectories of the specified directory are
not retrieved.

dirname No Yes Specifies the name of a directory from which
contents should be retrieved.

The directory specified must be a direct descendent
of the root.

The directory can be a folder or category in the CM
subsystem.

dirid No Yes Specifies the UUID for a directory from which
contents should be retrieved.

The directory can be a folder or category in the CM
subsystem.

dirpath No Yes Specifies the path to a directory from which contents
should be retrieved.

The directory can be a folder or category in the CM
subsystem.

filter No No Indicates whether to search using security filters.

If true (the default), the filter method is used and
only those objects to which the user has read
access are returned.

If false, all objects are returned.

Attribute Required?

Request-time
expression
values
supported? Description
Content Management Tag Library 241

Is this item a directory? = <%=isdir%>

</cm:getDirectoryList>

This example shows how to use the getDirectoryList tag with the iterate attribute set to false:

<%@ taglib uri="/cm" prefix="cm" %>
...
<cm:getDirectoryList iterate="false" filter="false"/>

<%= ((java.util.List)pageContext.getAttribute("dirList")).size() %> = the size of
the list...

getDocType

Description Retrieves a document type from the CM subsystem, returning an EbiDocType object.

Depending on whether you specify the typeid or name attribute, this tag wraps the
getDocumentTypeByID() or getDocumentTypeByName() method on the EbiContentMgmtDelegate
interface.

Syntax <prefix:getDocType typeid="docID" name="name" id="ID" />

Example <% taglib uri="/cm" prefix="cm" %>
...
<cm:getDocType typeid="addd2543931b11d48e130010a4e70c5f" id="test" />
...
Name for the doc type is ...
<%=test.getDocTypeName()%>

getDocument

Description Retrieves a document, returning an EbiDocument object.

This tag wraps the lookupDirectoryEntry() and getDocument() methods on the
EbiContentMgmtDelegate interface.

Syntax <prefix:getDocument docid="docID" docpath="docPath" id="ID" />

Attribute Required?

Request-time
expression
values
supported? Description

typeid No Yes Specifies the UUID for a document type in the CM
subsystem.

If you do not specify a typeid value, you must specify a
value for the name attribute.

name No Yes Specifies the name of a document type in the CM
subsystem.

If you do not specify a name value, you must specify a
value for the typeid attribute.

id No No Specifies the name of the variable used to store the
EbiDocType object.

If no value is specified, a default id of docType is used.
242 exteNd Director Content Management Guide

Example <% taglib uri="/cm" prefix="cm" %>
...
<cm:getDocument id="test" docid="addd2545931b11d48e130010a4e70c5f" />
Title for document is ...
<%=test.getTitle()%>

getFieldInfo

Description Retrieves the extension fields of a document, returning the field information as an EbiDocExtnMeta
object.

This tag wraps the getDocumentExtnMeta() method on the EbiContentMgmtDelegate interface.

Syntax <prefix:getFieldInfo docid="docID" docpath="docPath" id="ID"

iterate="iterateSetting"/>

Attribute Required?

Request-time
expression
values
supported? Description

docid No Yes Specifies the UUID for a document in the CM subsystem.

If you do not specify a docid value, you must specify a
value for the docpath attribute.

docpath No Yes Specifies the path to a document in the CM subsystem.

If you do not specify a docpath value, you must specify a
value for the docid attribute.

id No No Specifies the name of the variable used to store the
EbiDocument object.

If no value is specified, a default id of document is used.

Attribute Required?

Request-time
expression
values
supported? Description

docid No Yes Specifies the UUID for a document in the CM subsystem.

If you do not specify a docid value, you must specify a value
for the docpath attribute.

docpath No Yes Specifies the path to a document in the CM subsystem.

If you do not specify a docpath value, you must specify a
value for the docid attribute.

id No No Specifies the name of the variable used to store the
EbiDocExtnMeta object.

If no value is specified, a default id of docFields is used.
Content Management Tag Library 243

Example <cm:getFieldInfo docid="c373e9ea8d110d2c8f6a0000864ec468" id="test6" />
<% for (int x=0;x<test6.size();x++){

EbiDocExtnMetaInfo dmi = (EbiDocExtnMetaInfo) test6.get(x); %>
Field <%=x%> info = <%=dmi.getFieldName()%>

<% } %>

getFields

Description Retrieves fields from the CM subsystem, returning a collection of EbiDocField objects. You can use this
tag to retrieve all fields or fields for a given document type.

This tag wraps the getDocumentFields() and getFilteredDocumentFields() methods on the
EbiContentMgmtDelegate interface.

Syntax <prefix:getFields id="ID" doctypeid="doctypeID" doctypename="doctypename"

iterate="iterate" filter="filter" />

iterate No No Indicates whether this tag operates as a body tag so that
each row can be processed separately.

If true, the following values can be accessed within the
getDirectoryList tag:

fieldInfo

fieldName

fieldValues

Each of these variables has a scope of NESTED.

If false (the default), this tag operates as a nonbody tag.
The tag returns an EbiDocExtnMeta object.

Attribute Required?

Request-time
expression
values
supported? Description

id No No Specifies the name of the variable used to store the
collection of EbiDocField objects.

If no value is specified, a default name of fieldList is
used for the variable.

doctypeid No Yes Specifies the UUID for a document type in the CM
subsystem.

If you do not specify either a doctypeid or
doctypename value, all fields are retrieved.

doctypename No Yes Specifies the name of a document type in the CM
subsystem.

If you do not specify either a doctypeid or
doctypename value, all fields are retrieved.

Attribute Required?

Request-time
expression
values
supported? Description
244 exteNd Director Content Management Guide

Examples This example shows how to use the getFields tag with the iterate attribute set to true:

<%@ taglib uri="/cm" prefix="cm" %>
...
<cm:getFields doctypename="myDocumentType" iterate="true">
Identifier = <%=identifier%>

Name = <%=name%>

</cm:getFields>

This example shows how to use the getFields tag with the iterate attribute set to false:

<%@ taglib uri="/cm" prefix="cm" %>
...
<cm:getFields iterate="false" filter="false"/>

<%= ((java.util.List)pageContext.getAttribute("fieldList")).size() %> = the size
of the list...

getLinkedDocuments

Description Retrieves the documents linked to a particular document, returning a list of EbiDocument objects.

Depending on the attributes you specify for this tag, it wraps one of these methods on the
EbiContentMgmtDelegate interface:

getFilteredLinkChildDocuments()

getLinkChildDocuments()

getFilteredLinkParentDocuments()

getLinkParentDocuments()

Syntax <prefix:getLinkedDocuments docid="docID" docpath="docPath" id="ID"

secure="securitySetting" parentLinks="parentLinksSetting"/>

iterate No No Indicates whether this tag is to operate as a body tag
so that each row can be processed separately.

If true, the following values can be accessed within
the getFields tag:

identifier

name

Each of these variables has a scope of NESTED.

If false (the default), this tag operates as a nonbody
tag. In this case, the tag returns a collection of
EbiDocField objects.

filter No No Indicates whether to search using security filters.

If true (the default), the filter method is used and only
those fields to which the user has read access are
returned.

If false, all fields are returned.

Attribute Required?

Request-time
expression
values
supported? Description
Content Management Tag Library 245

Example <cm:getLinkedDocuments docid="c373e9ea8d110d2c8f6a0000864ec468"
id="test4" parentLinks="false"/>

Found <%=test4.size()%> Linked Documents

getVersionHistory

Description Retrieves the versions of a document, returning a list of EbiDocVersion objects.

This tag wraps the getDocumentContentVersions() method on the EbiContentMgmtDelegate interface.

Syntax <prefix:getVersionHistory docid="docID" docpath="docPath" id="ID"

includeContent="includeContent"/>

Attribute Required?

Request-time
expression
values
supported? Description

docid No Yes Specifies the UUID for a document in the CM subsystem.

If you do not specify a docid value, you must specify a value
for the docpath attribute.

docpath No Yes Specifies the path to a document in the CM subsystem.

If you do not specify a docpath value, you must specify a
value for the docid attribute.

id No No Specifies the name of the variable used to store the list of
EbiDocument objects.

If no value is specified, a default id of linkedDocuments is
used.

secure No No Specifies whether the returned documents are filtered
according to security constraints.

If true (the default), the filter method is used and only those
documents to which the user has read access are returned.

If false, all documents are returned.

parentLi
nks

No No Specifies whether you want to get documents that are linked
as parents or children to the specified document.

If true, return parent documents to which this document is
linked.

If false (the default), return child documents that are linked to
this document.

Attribute Required?

Request-time
expression
values
supported? Description

docid No Yes Specifies the UUID for a document in the CM subsystem.

If you do not specify a docid value, you must specify a value
for the docpath attribute.
246 exteNd Director Content Management Guide

Example <cm:getVersionHistory docid="c373e9ea8d110d2c8f6a0000864ec468"
id="test1" includeContent="false"/>

<% EbiDocVersion ver = (EbiDocVersion) test1.get(0); %>
Version mime-type is = <%=ver.getMimeType()%>

publish

Description Publishes a specified version of content for a document, returning true if successful or false if
unsuccessful.

This tag wraps the publishDocumentContentVersion() method on the EbiContentMgmtDelegate
interface.

Syntax <prefix:publish docid="docID" uselatest="uselatest" version="version"

overwrite="overwrite" force="force" />

docpath No Yes Specifies the path to a document in the CM subsystem.

If you do not specify a docpath value, you must specify a
value for the docid attribute.

id No No Specifies the name of the variable used to store the list of
EbiDocVersion objects.

If no value is specified, a default id of docVersions is used.

include
Content

No No Include the actual content in the returned EbiDocVersion
objects.

Attribute Required?

Request-time
expression
values
supported? Description

docid Yes Yes Specifies the UUID for a document in the CM subsystem.

uselatest Yes No Indicates whether to publish the latest version of the
document.

If true, the latest version is published.

If false, the version number specified in the version
attribute is published.

version No Yes Specifies the version to publish.

This attribute is required if the uselatest attribute is set to
false.

overwrite No No Indicates whether to replace any versions already
published.

If true (the default), the specified version overwrites any
published version for the document.

If false, an exception is thrown if a published version of the
document already exists.

Attribute Required?

Request-time
expression
values
supported? Description
Content Management Tag Library 247

Example <% taglib uri="/cm" prefix="cm" %>
...
<cm:publish docid="addd2545931b11d48e130010a4e70c5f" uselatest="true" />

unCheckOut

Description Unchecks out a document from the CM subsystem for the current user, returning true if successful or
false if unsuccessful.

NOTE: No data is saved. Any changes made between the original checkout and the uncheckout are lost.

This tag wraps the unCheckOutDocument() method on the EbiContentMgmtDelegate interface.

Syntax <prefix:unCheckOut docid="docID" id="ID" />

Example <% taglib uri="/cm" prefix="cm" %>
...
<cm:unCheckOut docid="addd2545931b11d48e130010a4e70c5f" id="done" />
<%=pageContext.getAttribute("done")%>

updateDocument

Description Updates a document in the CM subsystem, returning true if successful or false if unsuccessful.

This tag wraps the updateDocument() method on the EbiContentMgmtDelegate interface.

Syntax <prefix:updateDocument doc="document" checkout="checkoutSetting"

checkin="checkinSetting"/>

force No No Indicates whether to force an immediate publish,
regardless of the publish dates specified in the document
metadata.

If true, the version is published regardless of the publish
date value specified for the document.

If false (the default), the current data and time is compared
against the publish date and time specified for the
document. If it is too early or too late to publish, the
version is not published; otherwise, the version is
published. In either case, an application exception is
thrown.

Attribute Required?

Request-time
expression
values
supported? Description

docid Yes Yes Specifies the UUID for a document in the CM subsystem.

id No No Specifies the name of the variable used to store the result of
the operation.

If no value is specified, a default id of uncheckout is used.

Attribute Required?

Request-time
expression
values
supported? Description
248 exteNd Director Content Management Guide

Example <cm:getDocument id="test" docid="c373e9ea8d110d2c8f6a0000864ec468" />
...
<% test.setAbstract(test.getAbstract()+"a"); %>
<cm:updateDocument doc="<%=test%>" checkout="true" checkin="true"/>

Attribute Required?

Request-time
expression
values
supported? Description

doc No Yes Specifies a document (an object of class EbiDocument)
in the CM subsystem.

checkout No Yes Specifies that the document is to be checked out to the
current user before performing the update.

checkin No Yes Specifies that the document is to be checked in after
performing the update.
Content Management Tag Library 249

250 exteNd Director Content Management Guide

Index
A
access

permissions in Content Management subsystem 58
restricting 60

access control
in Content Management subsystem 57

access right types
and Content Management subsystem 58

ACLs
about 26
access methods for ContentAdmin 60
access methods in Content Management subsystem 59
adding (code examples) 61
inheriting 60
specifying for new objects 60

administrator
ContentAdmin 59
role 57

attachments
adding 177

author role 57
Auto Create utility for Content Management subsystem 167, 170
auto-checkin feature for documents

about 147
enabling 197

auto-publish feature for documents
about 147, 199
enabling 200

B
browsers

identifier strings 31

C
cascading security in CMS Administration Console 212
categories

assigning to documents 183
creating 163
deleting 188
managing 33

category parameter 19
category tree 35

child documents
adding 47, 176
getting 50
updating link 49

cleanup data feature for document types 148, 191
cm.sssw.cm.api package 23
CMS Administration Console

about 18
accessing 141
administering tasks 223
Auto Create utility 167
classifying content 19
content list 143
content tree view 143
content view tabs 142
context-sensitive toolbar 143
creating content 165
interactive controls 142
main page 141
Property Inspector 143
tasks 139
toolbar 142
using the internal HTML Editor 170

compound document relationship 46
compound linking

about 48
methods for 49

Content Management subsystem
API 23
auto-publish feature 199
changing data about content 24
checking documents in and out 194
creating and adding fields 149
creating categories 163
creating display styles 157
creating document types 146
creating documents 166
creating folders 145
creating relationships between documents 176
creating tasks 67
creating taxonomies 162
customizing tasks 66
default document type 18
document types, about 18
getting manager (code example) 23
installed tasks 63
layout styles, adding 31
logical infrastructure 17
physical infrastructure 17
251

publishing document versions 198
removing relationships between documents 178
repository 24
rolling back document versions 198
security for 57
security methods 59
setting security on content elements 213
system document type 189
tasks, managing 63
tasks, overview of 24
unpublishing document versions 198
users, roles for 57
version control 198

Content Query
sample application 227

Content Query action
in Content Query sample application 227

content security
access permissions 211
cascading 212
permissions required for Content Management tasks 211
setting 213

content, in Content Management subsystem
about display styles 19
classifying 19
compared to pages 16
creating 165
default formats in document types 147
defined 15, 165
defining structure and layout 18
deleting 188
dynamic 166
editing 181
exporting 79
exporting in the CMS Administration Console 216
importing 81
importing in the CMS Administration Console 219
previewing 180
securing 57
versions of 20

ContentAdmin group 59
ContentList

sample application 227
ContentList rule

editing 228
control types

for document fields 149

D
data export descriptor (DED)

about 82
samples 82

data import descriptor (DID)
about 82
sample 83

data types
about 25

default task 64

display styles
about 19
creating 157, 159
deleting 189
modifying 185

document fields
 see fields

document types
about 18
adding 28
cleanup data feature 148, 191
creating 146
default 18
deleting 189, 190
editing 186
system 189

documents
adding 37
adding category (code example) 34
adding child (code example) 47
adding fields 26
adding layout document 32
auto-checkin feature 147
auto-publish feature 147
categories (code example) 35
changing layout style 33
checking in 197
checking in and out 194, 196
child document, updating (code example) 49
child documents, getting (code example) 50
composite 54
compound document relationship 46
creating 166
creating relationships between 176
defined 16
deleting 188
displaying 53
extension metadata 41
field values, geting 43
field values, setting 41
fields by name 41
fields for document (code example) 43
fields for type (code example) 41
hierarchical relationship 46
HTML content, displaying 53
HTML, setting in a portlet 53
layout sets 45
layout styles, managing 29
managing folders and categories 33
metadata for 25, 37
methods for managing 44
modifying and publishing 51
parent, getting (code example) 50
publishing a version 199
removing relationships between 178
rolling back to a previous version 200
setting expiration dates 187
status of 52
status, setting (code example) 52
style sheets 29
252

types, managing 27
unpublishing a version 200
when to check out 194
XML content, displaying 54
XML layout, getting (code example) 54

E
EbiContentMgmtDelegate 59
elements

securable in Content Management subsystem 58
events

Content Management types 85
enabling in Content Management 90
enabling task 76
enabling WebDAV 136
in Content Management 85
registering in Content Management 88, 89
registering WebDAV 136
tasks and 75
types, in WebDAV 135
types, specifiying in Content Management 88
WebDav and 135

exceptions
handling (code example) 62

expire task 63
export behavior in the CMS Administration Console 216
exporting content

about 216
API 83
customizing 82
process overview 80

extension metadata
and documents 41
 see also fields

F
fields

adding 26
adding with document type 28
and document types 25
and values 25
creating and adding 149
deleting from document types 191
deleting from the CMS Administration Console 191
document (code example) 41
document type (code example) 41
editing 187
getting by name 41
getting for document 43
getting for document (code example) 43
getting values for (code example) 43
managing 25
setting values in document 41
system 189
values for a document, specifying 40
values, getting 43

folders
assigning to documents 183
creating 145
deleting 188
managing 33
specifying for documents 170

G
groups

in Content Management subsystem 57

H
hierarchical document relationship 46
hierarchical linking 47
HTML Editor

using in the CMS Administration Console 170
hyperlinks

creating in documents 174

I
images

inserting in documents 175
import behavior in the CMS Administration Console 216
importing content

about 219
API 83
customizing 82
process overview 81

J
janitor task 63
JavaScript

writing in the CMS Administration Console 152

L
layout document

adding 32
layout styles

adding 31
adding layout document descriptor 32
changing 33
layout sets 45
managing 29
setting up 30

legacy documents
removing fields from parent document types 191

linking
checking out target documents 48
compound 48
hierarchical 47

logical content infrastructure in CMS Administration Console 17
253

M
manager objects

getting for content (code example) 23
metadata

for documents 25, 37
for fields 25
list of predefined elements 166

methods
for managing documents 44
for version control and publishing 52

modes, in the CMS Administration Console 142

P
pages

compared to CMS Administration Console content 16
parent documents

getting 50
permissions

and Content Management subsystem elements 58
for ContentAdmin group 59

physical content infrastructure in CMS Administration Console 17
_PmcSystemDefaultType for content management 189, 191
portlets

HTML, setting in 53
properties

modifying 182
Property Inspector

exporting content from 218
publish task 63, 198
publishing

dates 201
methods for 52
publisher role 57

R
repository (Content Management)

changing information about 24
restricted access

in Content Management subsystem 60
roles

in Content Management subsystem 57
rolling back

defined 198

S
securable objects

access right types 58
accessing ACLs for 59
in Content Management subsystem 58

security
cascading 212
for Content Management tasks 211
for the Content Management subsystem 57
permissions for content access 211
setting on content elements 213

security exceptions
handling (code example) 62

style sheets
and CMS Administration Console display styles 19, 157
and Content Management subsystem 29, 31
creating 158
how managed by CMS Administration Console 157
layout sets for content 45
uploading to CMS Administration Console 160

synch task 63
system administrator

ContentAdmin 59
system document fields 189
system document type 189

T
tag libraries

Content Management tag library 233
tasks

administering in the CMS Administration Console 223
creating 67
customizing 66
default 64
events and 75
expire 63
installed 63
janitor 63
managing 63
publish 63
registering and configuring 64
synch 63

taxonomies
assigning to documents 183
creating 162
deleting 188

text
copying 173
cutting 173
formatting 173
pasting 173

U
unpublish task

defined 198
user agents 31
users

in Content Management subsystem 57
254

V
version control

auto-checkin feature 147, 197
auto-publish feature 147, 199
in Content Management subsystem 198
methods for 52
publishing 198
rolling back 198
unpublishing 198

views, in the CMS Administration Console 142

W
WebDAV

about 93
events and 135
exteNd Director support for 94
supported methods 97
what you can do 96

WebDAV client
about 99
adding a category reference to a document 108
classes 101
configuring your environment 100
constructing WebDAV requests that use Proppatch 106
deleting a document using a helper method (code example) 104
deleting a document using utility methods (code example) 106
helper methods 102
how exteNd Director manages versioning for 97
how exteNd Director secures content from 97
how exteNd Director stores content from 96
issuing WebDAV requests from a Java client 108
programming practices using helper methods 104
programming practices using utility methods 105
using 100
utility methods 102
WebDAV requests and responses 101
why build your own 100
working with resources, collections, and properties 101

WebDAV client, issuing WebDAV requests from a Java client
adding a category reference using a helper method (code

example) 108
adding a category reference using utility methods (code

example) 110
copying a document using a helper method (code example) 111
copying a resource or collection 111
creating a collection using a helper method (code example) 113
creating a document using a helper method (code example) 114
creating a new collection 112
creating a new document from a custom template 113
deleting a document 115
getting a document using utility methods (code example) 115
getting a resource or collection 115
getting allowed methods using utility methods (code example)

118
getting header information from a resource or collection 116
getting header information using utility methods (code example)

116

getting methods that can be called on a resource or collection
118

getting properties defined on a resource or collection 119
getting properties using utility methods (code example) 120
locking a document 121
locking a document using a helper method (code example) 121
moving a folder using a helper methods (code example) 122
moving a resource or collection 122
removing a category reference from a document 123
removing a category reference using a helper method (code

example) 123
removing a category reference using utility methods (code

example) 124
removing all category references from a document 126
removing all category references using a helper method (code

example) 126
removing all category references using utility methods (code

example) 127
renaming a document using a helper method (code example)

128
renaming a resource or collection 128
setting a field value using a helper method (code example) 129
setting a field value using utility methods (code example) 130
setting the value of a custom field in a document 129
unlocking a document 132
unlocking a document using a helper method (code example)

132
updating a document 133
updating a document using a helper method (code example) 133

WebDAV protocol
about 93
and distributed Web authoring 94
extensions to HTTP 94

WebDAV server
accessing 95

X
XML

document categories (code example) 35
getting for a document 54
255

256

257

258

	About This Book
	I Concepts
	1 About the Content Management Subsystem
	About content management
	About content
	About documents
	Content and pages

	Subsystem infrastructure
	Physical infrastructure
	Logical infrastructure
	Defining content structure and layout
	Classifying content

	Content life cycle
	Checking out documents
	Publishing a document

	Subsystem support functions
	Integration with other subsystems

	2 Developing Content Management Infrastructure
	About the CM API
	Getting a content manager object
	Changing repository data

	About the CM subsystem infrastructure
	Managing fields
	Adding a field
	Adding a field to a portlet
	Listing fields using different filters

	Managing document types
	Adding a document type with associated fields

	Managing layout styles
	User agents
	Adding a layout style
	Adding a layout document and a layout document descriptor
	Changing a layout style

	Managing folders and categories
	Adding a category

	Navigating the CM hierarchy

	3 Managing Documents
	About documents
	Accessing the CM API

	Adding documents
	Adding a document
	Adding multiple documents

	Specifying field values for a document
	Getting fields for the document type
	Getting a field object by name
	Setting a field value
	Getting all fields
	Getting field values for a single field

	Specifying layout sets for documents
	When to use a layout set
	Methods for managing layout sets

	Creating links between documents
	Two types of document relationships
	Hierarchical linking
	Adding a child document
	Compound linking
	Linking a child document
	Updating a link with a new document version
	Getting linked parent documents
	Getting linked child documents

	Modifying and publishing documents
	Tracking document status
	Methods for source control and publishing

	Displaying documents
	HTML content
	XML content
	Composite documents

	4 Securing Content
	About access control
	CM user groups

	ACL-based security
	Permissions
	Element types and associated permissions
	ContentAdmin group

	Methods for managing access control
	Accessing ACLs for existing elements
	Specifying ACLs for new elements
	Inheriting ACLs
	Accessing ACLs for ContentAdmin
	Restricting element access to administrators

	Examples of adding ACLs
	Example of handling a security exception

	5 Managing Tasks
	About tasks
	Installed tasks
	Custom tasks

	About how tasks are registered and configured
	tasktypes.xml
	Default_tasklist.xml
	services.xml

	Customizing an installed task
	Creating and implementing a new task
	Custom task sample code
	NewDocumentNotifier
	PeriodicNewDocumentNotifier

	Working with task events
	Task event types
	Registering for a task event
	Enabling or disabling a task event

	6 Managing Content Caching
	About caching in CM
	Summary of CM caching information
	Caching behavior
	Caching of folders, categories, and document metadata
	About document content and versions

	Controlling caching in the DAC

	7 Importing and Exporting Content
	About importing and exporting
	Using the import/export facilities

	About the export facility
	Export process

	About the import facility
	Import process

	Customizing imports and exports
	Customizing the data export descriptor (DED)
	Customizing the data import descriptor (DID)
	Accessing the import and export API

	8 Working with Content Management Events
	About CM events
	CM event types

	Registering for CM events
	Registering for events on directory elements
	Specifying event types
	Using the event helper class
	Event registration examples

	Enabling CM events

	II WebDav
	9 Using WebDAV Clients with exteNd Director for Collaborative Authoring
	What is WebDAV?
	Information elements for distributed Web authoring
	WebDAV extensions to HTTP

	About exteNd Director’s WebDAV support
	How you get WebDAV support
	Accessing the WebDAV server
	What you can do with exteNd Director and WebDAV
	How exteNd Director stores content from WebDAV clients
	How exteNd Director secures content from WebDAV clients
	How exteNd Director manages versioning for WebDAV clients

	Supported WebDAV methods
	Public WebDAV server

	10 Building Your Own WebDAV Client
	About the WebDAV client API
	Why build your own WebDAV client?
	Configuring your environment
	Using the WebDAV client API
	WebDAV requests and responses
	Working with resources, collections, and properties
	Classes
	Helper methods
	Utility methods

	Programming practices
	Programming practices using helper methods
	Programming practices using utility methods

	Issuing WebDAV requests from a Java client
	Adding a category reference to a document
	Copying a resource or collection
	Creating a new collection
	Creating a new document from a custom template
	Deleting a document
	Getting a resource or collection
	Getting header information from a resource or collection
	Getting methods that can be called on a resource or collection
	Getting properties defined on a resource or collection
	Locking a document
	Moving a resource or collection
	Removing a category reference from a document
	Removing all category references from a document
	Renaming a resource or collection
	Setting the value of a custom field in a document
	Unlocking a document
	Updating a document

	11 Working with WebDAV Events
	About WebDAV events
	Event types

	Registering for WebDAV events
	Enabling WebDAV events

	III CMS Administration Console
	12 About the CMS Administration Console
	What CM tasks you can do with the CMS Administration Console
	How to access the CMS Administration Console
	The main CMS Administration Console page
	Interactive controls

	13 Setting Up the Required Infrastructure
	Flow of operations
	Creating folders
	Creating document types
	Creating fields and adding them to a document type
	About fields
	Creating and manipulating fields

	Writing JavaScript for document types and fields

	14 Setting Up the Optional Infrastructure
	Flow of operations
	Creating display styles
	About display styles

	Specifying a style sheet for a document type
	Creating taxonomies
	Creating categories

	15 Creating Content
	About content
	Flow of operations
	Creating documents
	Creating a document
	Specifying a folder for a new document
	Using Auto Create to create a document
	Using the CMS Administration Console’s HTML Editor

	Creating relationships between documents

	16 Maintaining Content
	Flow of operations
	Previewing content
	Editing content
	Modifying properties
	Assigning a document’s folder, categories, and taxonomies
	Modifying display styles
	Editing document types
	Editing document fields
	Setting document expiration dates
	Deleting content
	Deleting folders
	Deleting taxonomies and categories
	Deleting documents
	Deleting display styles
	Deleting document types
	Deleting and removing document fields

	17 Administering Content
	About content administration
	Flow of operations
	Checking documents in and out
	What happens during checkout
	What happens during checkin
	Checkin and checkout procedures

	Administering version control

	18 Searching Content
	Setting up the CMS Administration Console search facility
	Using the search facility in the CMS Administration Console
	Search options

	19 Managing Content Security
	About content security
	Flow of operations
	Permissions for content access
	User permissions required for CM operations
	Cascading security
	Setting security on CM elements

	20 Importing and Exporting Content
	About the import and export facilities
	Summary of CMS Administration Console import and export behavior
	Exporting content
	Exporting from the toolbar
	Exporting from a Property Inspector
	Customizing exports

	Importing content
	Configuring the import process
	Importing from the toolbar
	Importing from a Property Inspector

	Structure of the data import or export archive
	Best practices and prerequisites
	Planning for large-scale import/export operations
	Security considerations

	21 Administering Automated Tasks
	The task display
	Starting and stopping tasks

	IV Applications
	22 Content Query Application
	About Content Query
	Using the Content Query action

	V Reference
	23 Content Management Tag Library
	Alphabetical list of tags
	checkIn
	checkOut
	findDocuments
	getChildDocuments
	getContent
	getDirectory
	getDirectoryList
	getDocType
	getDocument
	getFieldInfo
	getFields
	getLinkedDocuments
	getVersionHistory
	publish
	unCheckOut
	updateDocument

	Index

