
Novell

m
w w w . n o v e l l . c o

exteNd
Director

5 . 2
U T I L I T Y T O OL S

Legal Notices
Copyright © 2004 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied, stored on a retrieval system, or
transmitted without the express written consent of the publisher. This manual, and any portion thereof, may not be copied without the express written
permission of Novell, Inc.

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and specifically disclaims any express
or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to revise this publication and to
make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims any express or implied warranties
of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to makes changes to any and all parts of Novell
software, at any time, without any obligation to notify any person or entity of such changes.

This product may require export authorization from the U.S. Department of Commerce prior to exporting from the U.S. or Canada.

Copyright ©1997, 1998, 1999, 2000, 2001, 2002, 2003 SilverStream Software, LLC. All rights reserved.

SilverStream software products are copyrighted and all rights are reserved by SilverStream Software, LLC

Title to the Software and its documentation, and patents, copyrights and all other property rights applicable thereto, shall at all times remain solely and
exclusively with SilverStream and its licensors, and you shall not take any action inconsistent with such title. The Software is protected by copyright
laws and international treaty provisions. You shall not remove any copyright notices or other proprietary notices from the Software or its
documentation, and you must reproduce such notices on all copies or extracts of the Software or its documentation. You do not acquire any rights of
ownership in the Software.

Patent pending.
Novell, Inc.
404 Wyman Street, Suite 500
Waltham, MA 02451
U.S.A.

www.novell.com
exteNd DirectorUtility Tools

June 2004
Online Documentation: To access the online documemntation for this and other Novell products, and to get updates, see
www.novell.com/documentation.

New http://www.novell.com/documentation/

Novell Trademarks
ConsoleOne is a registered trademark of Novell, Inc.

eDirectory is a trademark of Novell, Inc.

GroupWise is a registered trademark of Novell, Inc.

exteNd is a trademark of Novell, Inc.

exteNd Composer is a trademark of Novell, Inc.

exteNd Director is a trademark of Novell, Inc.

iChain is a registered trademark of Novell, Inc.

jBroker is a trademark of Novell, Inc.

NetWare is a registered trademark of Novell, Inc.

Novell is a registered trademark of Novell, Inc.

Novell eGuide is a trademark of Novell, Inc.

SilverStream Trademarks
SilverStream is a registered trademark of SilverStream Software, LLC.

Third-Party Trademarks
All third-party trademarks are the property of their respective owners.

Third-Party Software Legal Notices

The Apache Software License, Version 1.1
Copyright (c) 2000 The Apache Software Foundation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary
form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution. 3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment:
"This product includes software developed by the Apache Software Foundation (http://www.apache.org/)." Alternately, this acknowledgment may
appear in the software itself, if and wherever such third-party acknowledgments normally appear. 4. The names "Apache" and "Apache Software
Foundation" must not be used to endorse or promote products derived from this software without prior written permission. For written permission,
please contact apache@apache.org. 5. Products derived from this software may not be called "Apache", nor may "Apache" appear in their name,
without prior written permission of the Apache Software Foundation.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

JDOM.JAR
Copyright (C) 2000-2002 Brett McLaughlin & Jason Hunter. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, this list of conditions, and the following disclaimer. 2. Redistributions in
binary form must reproduce the above copyright notice, this list of conditions, and the disclaimer that follows these conditions in the documentation
and/or other materials provided with the distribution. 3. The name "JDOM" must not be used to endorse or promote products derived from this
software without prior written permission. For written permission, please contact license@jdom.org. 4. Products derived from this software may not
be called "JDOM", nor may "JDOM" appear in their name, without prior written permission from the JDOM Project Management (pm@jdom.org).

In addition, we request (but do not require) that you include in the end-user documentation provided with the redistribution and/or in the software
itself an acknowledgement equivalent to the following: "This product includes software developed by the JDOM Project (http://www.jdom.org/)."
Alternatively, the acknowledgment may be graphical using the logos available at http://www.jdom.org/images/logos.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE JDOM AUTHORS OR THE PROJECT CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Sun
Sun Microsystems, Inc. Sun, Sun Microsystems, the Sun Logo Sun, the Sun logo, Sun Microsystems, JavaBeans, Enterprise JavaBeans, JavaServer

Pages, Java Naming and Directory Interface, JDK, JDBC, Java, HotJava, HotJava Views, Visual Java, Solaris, NEO, Joe, Netra, NFS, ONC, ONC+,
OpenWindows, PC-NFS, SNM, SunNet Manager, Solaris sunburst design, Solstice, SunCore, SolarNet, SunWeb, Sun Workstation, The Network Is
The Computer, ToolTalk, Ultra, Ultracomputing, Ultraserver, Where The Network Is Going, SunWorkShop, XView, Java WorkShop, the Java
Coffee Cup logo, Visual Java, and NetBeans are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other
countries.

Indiana University Extreme! Lab Software License
Version 1.1.1

Copyright (c) 2002 Extreme! Lab, Indiana University. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1.
Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary
form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution. 3. The end-user documentation included with the redistribution, if any, must include the following acknowledgment:
"This product includes software developed by the Indiana University Extreme! Lab (http://www.extreme.indiana.edu/)." Alternately, this
acknowledgment may appear in the software itself, if and wherever such third-party acknowledgments normally appear. 4. The names "Indiana
University" and "Indiana University Extreme! Lab" must not be used to endorse or promote products derived from this software without prior written
permission. For written permission, please contact http://www.extreme.indiana.edu/. 5. Products derived from this software may not use "Indiana
University" name nor may "Indiana University" appear in their name, without prior written permission of the Indiana University.

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE AUTHORS, COPYRIGHT HOLDERS OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Phaos
This Software is derived in part from the SSLavaTM Toolkit, which is Copyright ©1996-1998 by Phaos Technology Corporation. All Rights
Reserved. Customer is prohibited from accessing the functionality of the Phaos software.

W3C
W3C® SOFTWARE NOTICE AND LICENSE

This work (and included software, documentation such as READMEs, or other related items) is being provided by the copyright holders under the
following license. By obtaining, using and/or copying this work, you (the licensee) agree that you have read, understood, and will comply with the
following terms and conditions.

Permission to copy, modify, and distribute this software and its documentation, with or without modification, for any purpose and without fee or
royalty is hereby granted, provided that you include the following on ALL copies of the software and documentation or portions thereof, including
modifications: 1.The full text of this NOTICE in a location viewable to users of the redistributed or derivative work. 2.Any pre-existing intellectual
property disclaimers, notices, or terms and conditions. If none exist, the W3C Software Short Notice should be included (hypertext is preferred, text
is permitted) within the body of any redistributed or derivative code. 3. Notice of any changes or modifications to the files, including the date changes
were made. (We recommend you provide URIs to the location from which the code is derived.)

THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO REPRESENTATIONS OR
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE OR DOCUMENTATION WILL NOT INFRINGE ANY
THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF ANY USE OF THE SOFTWARE OR DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or publicity pertaining to the software without specific, written prior
permission. Title to copyright in this software and any associated documentation will at all times remain with copyright holders.

Contents

About This Book. 11

1 Development Environment . 13
About the utility tools . 13
Basic panes . 14

Navigation Pane . 14
Edit Pane . 16
Output Pane . 16

Basic operations . 17
Starting the development environment . 17
Using proxy servers . 17
Opening, saving, and closing projects and files . 17
Getting product version information . 19

Basic wizards. 20
Basic editors . 21
Basic viewers. 21

Image Viewer . 21
Class Viewer . 22

Basic tools for Web Services . 22
Debugging facilities . 22
Managing toolbars . 23

Displaying toolbars . 23
Configuring toolbars . 23

Setting preferences . 24
General preferences . 25
Build preferences . 26
Display preferences . 26
Editing preferences . 27
File association preferences . 30
Printing preferences . 31
Deployment preferences . 31
Version control preferences . 31

Setting up profiles . 32
Server profile. 32
Database profile . 34
Registry profile . 35

Using version control . 35
Setting up access to version control . 36
Accessing version control . 39

Maintaining Todo lists . 39
Working in the Todo tab . 40
Working with generated items. 42

Using Ant . 43
What is Ant? . 43
Using the exteNd Ant tools . 43
Examples . 45

Internationalization support . 46
Specifying fonts. 46

Extending the development environment . 46
5

2 Projects and Archives . 47
About projects and archives . 47
Organizing projects . 48

Project design considerations . 48
Project directory structure considerations . 48

Creating projects and subprojects . 50
Creating a deploy-only project . 55
Working with existing source files . 56

Populating projects . 57
Creating source files . 57
Adding to projects . 58

Viewing projects . 62
Maintaining projects . 64

Opening a project. 64
Managing general project settings . 65
Managing project content settings . 66
Excluding individual files from a project directory. 69
Removing files, directories, and subprojects from projects . 70
Renaming a project . 71

Compiling, building, and archiving . 71
Specifying build settings. 72
Using the commands . 74

Validating archives . 75

3 Source Editors . 77
Common features . 77

Standard editing features . 78
Editor preferences . 78
Using text abbreviations. 78
Changing case . 79
Changing spaces, tabs, and indentation . 79
Searching across multiple files. 79
Regular expressions for text searches . 80

The NetBeans-based editors . 84
Color coding . 84
Code completion . 85
Adding files types edited by NetBeans-based editors . 87
Other editing support . 87

The native editors . 88
Changing line ending characters . 89
Multiple clipboard support . 89
Viewing and changing read-only and read-write attributes. 89
Using the native Java, JSP, or HTML editor . 89
Inserting custom tags in a JSP page . 90

PART I XML AND CSS . 93

4 XML Editors . 95
About XML . 95
XML in the development environment . 96
Using the XML Editor . 96

Using the Source View. 96
Using the Tree View. 97

Creating and opening XML documents. 99
Working with Schemas and DTDs . 100

Associating Schemas and DTDs with XML documents . 100
Converting a DTD to a Schema . 102
Creating and editing Schemas . 103
Using the Schema Guide . 103

Editing an XML document. 106
About context support . 106
6 exteNd Director Utility Tools

Adding elements . 109
Adding attributes . 109
Adding other nodes . 110
Editing nodes . 110

Validating an XML document. 111
Searching an XML document . 112
Styling an XML document . 112
Maintaining the XML catalog . 113

Adding to the catalog . 113
Using the XML Catalog Editor . 115

Keyboard shortcuts . 116
In Tree View . 116
In Source View . 117
In Catalog View (XML Catalog Editor). 120

5 XSL Editor . 121
About XSL . 121
XSL in the development environment . 121
Creating and opening XSL files . 122
Using the XSL Editor . 122

6 CSS Editor . 125
About CSS . 125
CSS in the development environment . 126
Creating and opening CSS files. 126
Using the CSS Editor. 127
Using the CSS Style Manager dialog . 128

PART II WEB SERVICES . 129

7 Web Service Basics. 131
About Web Services . 131
Web Service providers, consumers, and registries . 132
Providing Web Services. 132

Creating Web Service components. 132
Creating a WSDL file. 133
Publishing Web Service information . 133

Using Web Services . 134
Using Web Service registries. 134

About registries . 135
Registry data formats . 135
Public and local registries . 135

Learning more about Web Services . 135
Popular Web Service implementations . 136
Web Service development tools . 136

Web Services SDK . 136
Web Service Wizard . 137
Registry Manager . 137
WSDL Wizard and Editor . 137

8 Generating Web Services . 139
Basics . 139
Steps . 139

Preparing to generate . 140
Generating Web Service files . 141
Examining the generated files. 143
Editing the generated files. 146
Using the generated files . 147

Choosing an implementation model . 149
Tie model . 150
Skeleton model . 150
7

Scenario: starting with a Java class . 151
Project setup . 151
Input to the wizard . 152
Generated files for the Web Service . 155
Generated files for testing . 157
Deployment descriptor . 157
Runtime test result . 158

9 Generating Web Service Consumers . 159
Basics . 159
Steps. 160
Preparing to generate . 160
Providing a WSDL file . 161

Example: WSDL file for Autoloan .NET Web Service. 161
Understanding the WSDL . 163

Generating the consumer files . 164
Examining the generated files. 167

About generated file names . 167
Additional details of generation . 167
Example: generated consumer files for Autoloan .NET Web Service . 168

Editing the generated files . 169
Editing the xxxClient.java file . 169

Using the generated files . 171
Running the consumer program . 171

From the development environment . 171
From a command line . 172

10 Web Service Wizard . 173
About the wizard . 173
Using the wizard . 174
Panel sequence . 174
Panel details . 175

Project location. 176
WAR project selection . 178
Class selection . 178
WSDL file selection . 179
Multiple namespace mapping. 180
Web Service type mappings. 181
EJB home interface selection. 182
EJB lookup information . 183
Method selection . 184
Binding style. 185
Schema information . 186
Class-generation and SOAP options . 188

11 WSDL Editor . 193
About WSDL . 193
About the WSDL Editor. 193

Editor features . 193
Creating a WSDL document . 194
Adding elements to a WSDL document . 195

Adding a message element . 195
Adding a port type element . 196
Adding a binding element. 197
Adding a service element . 198

Validating a WSDL document . 199
Displaying a stylized view . 200
Publishing to a registry . 201
Generating Web Service files from WSDL . 201

12 Registry Manager . 203
About registry standards . 203
8 exteNd Director Utility Tools

About the Registry Manager . 203
Defining registry profiles . 204
Browsing registries . 206

Information displayed . 206
Popup menus . 207
Action buttons . 208
Searching by organization. 209
Searching by service. 211
Using wildcards in searches . 212

Retrieving WSDL from the registry . 212
Publishing to a registry . 213

PART III J2EE. 215

13 J2EE Wizards . 217
EJB Wizard . 217

About the EJB Wizard . 217
Starting the EJB Wizard . 217
Panel sequence . 218
Panel reference. 219

JSP Wizard . 240
About the JSP Wizard . 240
Starting the JSP Wizard . 241
Specifying the JSP page name and other options . 241
Specifying the project, directory, and package . 242
Specifying imports. 243
What happens. 243

Servlet Wizard . 243
About the Servlet Wizard . 243
Starting the Servlet Wizard . 244
Specifying the class name and other servlet options . 244
Specifying the project, directory, and package . 245
Specifying which HttpServlet methods to override . 246
Specifying which interfaces to implement . 246
Specifying which classes and packages to import . 246

Java Class Wizard . 247
About the Java Class Wizard . 247
Starting the Java Class Wizard . 247
Specifying the class name and other options . 247
Specifying which interfaces to implement . 248
Specifying which classes and packages to import . 248
Specifying the project, directory, and package . 248

JavaBean Wizard. 250
About the JavaBean Wizard . 250
Starting the JavaBean Wizard. 250
Specifying the class name and other options . 250
Specifying the data fields . 250
Specifying which interfaces to implement . 251
Specifying which classes and packages to import . 251
Specifying the project, directory, and package . 251

Tag Handler Wizard. 252
About the Tag Handler Wizard . 253
Starting the Tag Handler Wizard. 253
Specifying the class name and other options . 254
Specifying the project, directory, and package . 255
Specifying the tag library descriptor file . 256
Specifying the body type . 257
Specifying tag handler attributes. 257
Specifying tag handler scripting variables . 258
Specifying TagExtraInfo class. 258
9

What happens . 258

14 How to Handle J2EE Versions . 259
Support for J2EE versions . 259

What J2EE 1.2 servers support . 259
What J2EE 1.3 servers support . 260
What the development environment supports . 261

Your choices . 261
Project scenarios . 262
Approaching new development . 264
Deciding when to migrate. 264

Versions for new projects and components . 264
When creating projects . 264
When creating JSP tag libraries . 265
When creating EJB entity beans . 266

Migrating projects from J2EE 1.2 to 1.3 . 266
Using the Update Project Version command . 267
Using the Update Deployment Plan Version command . 269
Projects that require some manual migration. 269

exteNd Application Server considerations . 270
About the J2EE containers. 270
Deploying projects . 270
EJB deployment notes . 271

PART IV DEPLOYMENT . 273

15 Archive Deployment . 275
Supported J2EE servers . 275
Deployment types . 275

Rapid deployment . 276
Production deployment . 276
External deployment tools . 276

Deploying J2EE archives . 276
Archive contents. 277
Creating deployment settings. 278
Deploying a project . 281

What happens when you deploy. 281
Deploying Web Services. 283
Undeploying archives . 284

16 Deployment Descriptor Editor . 285
About deployment descriptors . 285
About the Deployment Descriptor Editor. 285
Using the Deployment Descriptor Editor. 286

17 Deployment Plan Editor . 289
About deployment plans . 289
Using the Deployment Plan Editor . 289

18 J2EE Deployment Descriptor DTDs . 293
DTD files . 293
Location . 293
Use . 293
Documentation . 295

19 exteNd Application Server Deployment Plan DTDs. 297
DTD location . 297
DTD files . 297

Novell exteNd Application Server DTD files . 298
SilverStream eXtend Application Server DTD files . 298

DOCTYPE statements . 298
SilverStream eXtend Application Server DOCTYPE statements . 299
10 exteNd Director Utility Tools

About This Book

Purpose

This book explains how to use the exteNd Director™ utility tools. The utility tools are basic project and
programming facilities provided to support your application development work in the Novell® exteNd
Director development environment.

Audience

The information in this book applies to application developers and application deployers.

Prerequisites

This book assumes that you are familiar with the following standard technologies used in Web
applications:

HTML, XML, XSL, and CSS

Java and J2EE

Learning materials on these topics are readily available from a variety of public and commercial sources.

Organization

Here’s a summary of what you’ll find in this book:

Topic Explains how to

Development
Environment

Use the basic features and common facilities of the exteNd Director
development environment

Projects and Archives Work with the projects you create to generate application archives

Source Editors Use the source editing capabilities that exteNd Director provides for
standard file types (including Java, XML, HTML, text)

XML and CSS Use the exteNd Director utility tools for working with XML and CSS files

Web Services Use the exteNd Director utility tools for working with Web Services

J2EE Use the exteNd Director utility tools for working with J2EE components

Deployment Use the exteNd Director utility tools for deploying J2EE archives
11

12 exteNd Director Utility Tools

1 Development Environment

This chapter introduces the utility tools and other basic facilities of the Novell exteNd Director
development environment. You’ll learn about the supporting features provided to assist you and your
application development work in the higher-level exteNd Director tools. Topics include:

About the utility tools

Basic panes

Basic operations

Basic wizards

Basic editors

Basic viewers

Basic tools for Web Services

Debugging facilities

Managing toolbars

Setting preferences

Setting up profiles

Using version control

Maintaining Todo lists

Using Ant

Internationalization support

Extending the development environment

For more information about performing basic project-level operations (such as creating a generic
project, adding files to a project, building a project, and creating an archive) see Chapter 2, “Projects and
Archives”.

About the utility tools
At its lowest level, the exteNd Director development environment is a file-system based toolset that
includes these utility tools and facilities:

Graphical and text-based editors for working on Java files, JSP files, XML files, XSL files, CSS
files, WSDL files, HTML files, plain text files, and deployment descriptors

Wizards that help create new files when needed and guide you through complex technologies
(such as J2EE)

Web Service facilities for developing, publishing, finding, and running Web Services

Project views that show the structure of a project’s source files and the structure of a project’s
generated archives

Project tools for building projects, generating and validating J2EE archives, and deploying
archives to supported J2EE servers

Version control integration that provides access from the exteNd Director development
environment to your version control system
Development Environment 13

Basic panes
The exteNd Director development environment includes three resizable panes:

Navigation Pane

Edit Pane

Output Pane

You can use the one-touch splitters to collapse or restore panes with a single click.

Navigation Pane

The Navigation Pane lets you access various aspects of projects and registries. It displays the following
tabs:

The Directory tab lets you access files from the file system

The Project tab shows the directory structure of source and archive layouts

The Registries tab lets you browse and publish to Web Service registries

The Structure tab lets you browse the class members of the Java source file currently selected in
the Edit Pane

The Structure tab appears only when a Java source file is open. When either the Project or Directory tab
is selected, the Navigation Pane consists of two subpanes: the top one shows the directories and the
bottom one lists the files in any directory that you select.
14 exteNd Director Utility Tools

Using the Navigation Pane

Here’s how to use the Navigation Pane:

Displaying additional information

You can see a file’s complete name and path by positioning the mouse pointer over it in the lower subpane
of the Directory or Project tab. This is particularly useful in the archive layout or archive contents view
of the Project tab for comparing a file as it conceptually exists in the archive (such as WEB-
INF/web.xml) to its file system name (such as C:\dev\proj4\web.xml).

In the Structure tab, pointing at a class member shows its signature.

To do this Use this Details

Open files Double-click After you select a directory in the upper subpane,
the lower subpane lists the files in the Directory and
Project tabs

Manipulate projects,
files, and directories in
the Navigation Pane

Right-click For example, depending on what you have selected,
you can open files, compile files, add files to a
project, remove files from a project, and so on

Switch between open
files

Tabs in Edit Pane Click the tab for the file you want to make active

Navigate to the next
and previous open
document

Window menu Use the Window menu to navigate between the Next
(Ctrl+F6) and Previous (Ctrl+Shift+F6) open
document

Switch between source
and archive views

Project tab You can compare how directories and files are
structured in the sources and in the generated
archive

For details, see “Viewing projects” on page 62.

For a Java source file,
view and navigate the
structure and see type
and visibility of its
members

Structure tab Click the Structure tab after you open a Java source
file in the Edit Pane. Use the drop down menu near
the top to sort the classes, methods, and fields of
the file in several ways. Double-click a class
member to position the cursor in the Edit Pane to the
source code for that member.
Development Environment 15

Structure tab icons

In the Structure tab, each item is identified with a double icon. The left icon indicates the visibility of the
item. The right indicates its type. The table below defines the icons:

Edit Pane

The Edit Pane is the file editor work area. It displays the contents of any file you have open. You can use
View menu items to hide the Output and Navigation Panes to gain additional work area.

Output Pane

The Output Pane provides several informational tabs that you can access:

The Todo tab displays and manages Todo list items

The Output tab displays output from the build, validate, and deploy processes

The Find tab displays search results

The Version Control tab (if enabled) displays messages from your version control system

Other types of messages and indicators display in the status bar, which is located below the Output Pane.

Icon category Icon Description

Visibility (Lock)

Protected

(Blue cube)

Package protected

(Key)

Private

No icon Public

Type (Document)

Class

(Gray cube)

Field

(Plus symbol)

Constructor

(Function symbol)

Method or function
16 exteNd Director Utility Tools

Basic operations
This section tells you about:

Starting the development environment

Using proxy servers

Opening, saving, and closing projects and files

Getting product version information

Starting the development environment

This section describes how to start and exit the exteNd Director development environment.

To start the development environment:

Depending on your platform, do one of the following:

To exit the development environment:

Select File>Exit from the exteNd Director menu bar.

Using proxy servers

If you are using a proxy server, you need to specify the proxy host and its port in xd.conf (in the Novell
exteNd™ tools\bin directory). Uncomment the following lines and specify your site’s values.

vmarg -DsocksProxyHost=proxy-host
vmarg -DsocksProxyPort=proxy-port-number
vmarg -Dhttp.proxyHost=proxy-host
vmarg -Dhttp.proxyPort=proxy-port-number

If there are hosts that don’t require a proxy, you can specify them (separated by |) with this property:

vmarg -Dhttp.nonProxyHosts=host1|host2...

Opening, saving, and closing projects and files

This section describes how to work with project files and source files in the exteNd Director development
environment:

Working with project files

Working with source files

Performing file system operations

For details about working with projects, see Chapter 2, “Projects and Archives”.

Working with project files

To work on an existing project, open its project file. exteNd Director project files have the extension
.SPF.

Platform What to do

Windows 1 Go to the list of all programs on the Windows Start menu.

2 Select Novell exteNd n.n>Director>Director Designer.

Windows,
Linux

1 Go to the Novell exteNd tools/bin directory.

2 Run the executable file named xd.
Development Environment 17

To open a project file:

1 Choose File>Open Project. A file selection dialog appears.

2 Navigate to the project’s SPF file.

3 Select the SPF file and click Open (or double-click the SPF file). exteNd Director displays the
project in the Project tab of the Navigation Pane.

You cannot have multiple projects open (though you can work with multiple subprojects of an open
project). If you have a project open and then you open another (unrelated) project, exteNd Director
closes the original project and any associated files before opening the second project.

Alternatively, you can:

1 Navigate to the project file in the Directory tab of the Navigation Pane.

2 Double-click the file (or right-click it and choose Open from the popup menu that appears).

If you have opened the project file recently, you can also select it from the list under File>Recent Files.

To save a project file:

No action is needed on your part to save a project. Whenever you modify the project contents or settings
(for example, by adding a directory to the project), the project file is saved automatically.

The project file must be writable before you can make changes to the project in the exteNd Director
development environment. Typically, this means that you must check out the project file from your
version control system.

To close a project file:

Choose File>Close Project.

Working with source files

This section describes how to open, save, and close source files—such as Java, JSP, XML, and plain text
files.

To open a source file:

1 Choose File>Open. A file selection dialog appears.

2 Navigate to the source file.

3 Select the file and click Open (or double-click the file). exteNd Director displays the file in the Edit
Pane using the appropriate source file editor (Java, JSP, XML, Text, etc.).

Alternatively, you can:

1 Navigate to the file in the Directory tab of the Navigation Pane. If you have a project open and the
file is included in that project, you can find it in the Project tab as well.

2 Double-click the file (or right-click it and choose Open from the popup menu that appears).

If you have opened the file recently, you can also select it from the list under File>Recent Files.

Working with open files One file is active at a time. By default, there is a tab for each open file in the
Edit Pane. Simply click a tab to make that file active. (You can customize and turn off the display of tabs.
See “Display preferences” on page 26.)

You can also make an open file the active file by using Window>More Windows to select it from the list
of open documents.
18 exteNd Director Utility Tools

To save a source file:

Choose File>Save.

File>Save As enables you to save the contents of the currently open file to another file.

TIP: You can also save a file by right-clicking its tab in the Edit Pane.

To close a source file:

To close the currently selected source file, select File>Close or click the Close button on its tab in
the Edit Pane.

TIP: You can also close a file by right-clicking its tab in the Edit Pane.

To close all open source files, select File>Close All.

If you have made changes to a source file, exteNd Director prompts you to save that file before closing
it, closing its parent project, or exiting the development environment.

Performing file system operations

You can delete and rename files from the exteNd Director development environment.

To delete one or more files:

1 Go to either the Project or Directory tab in the Navigation Pane and select the directory
containing the files.

2 Select the files to delete. You can select multiple files using Shift+Click and Ctrl+Click.

3 Right-click and select Delete.

4 Confirm the deletion.

The files are deleted from the file system.

If the files had been individually added to the current project (as opposed to being in the project
because they are in a directory included in the project), you are asked whether you want to delete
the entries from the project.

5 Click Yes to have the deleted files removed from the project.

To rename a file:

1 Go to either the Project or Directory tab in the Navigation Pane and select the directory
containing the file.

2 Select the file to rename.

3 Right-click and select Rename.

4 Specify the new name.

The file is renamed in the file system.

NOTE: If you had multiple files selected, only the first one is renamed.

If the file had been individually added to the current project (as opposed to being in the project
because it is in a directory included in the project), you are asked whether you want the project to
use the new file name.

5 Click Yes to have the project use the new file name.

Getting product version information

Use the About dialog (Help>About Director) to get version information about the exteNd Director
development environment and its tools (editors, wizards, viewers, and so on). This can be useful if you
need to check which product components you have installed.
Development Environment 19

Basic wizards
To assist your development work on various supporting application files, you can use the basic wizards
provided by the exteNd Director development environment:

Use these basic
wizards To do this

XML and CSS
wizards

Create XML files, XML Schema files, and XML catalog files

See Chapter 4, “XML Editors”.

Convert DTD files to XML Schema files

See Chapter 4, “XML Editors”.

Create XSL style sheet files

See Chapter 5, “XSL Editor”.

Create CSS style sheet files

See Chapter 6, “CSS Editor”.

Web Service
wizards

Generate the Java classes you need to create and access standard Web
Services

See Chapter 10, “Web Service Wizard”.

Create WSDL (Web Services Description Language) documents

See Chapter 11, “WSDL Editor”.

Generic J2EE
project wizards

Create projects for generic J2EE archives, including:

Enterprise archives (EAR)

Web archives (WAR)

EJB archives (JAR)

Application client archives (JAR)

Resource adapter archives (RAR)

Simple Java archives (JAR)

Deploy-only (nonbuildable) archives

See “Creating projects and subprojects” on page 50.

General J2EE
file wizards

Create standard J2EE components, including:

JavaServer Pages

Servlets

Java classes

Enterprise JavaBeans

JavaBeans

Tag handlers

See “Creating source files” on page 57 and Chapter 13, “J2EE Wizards”.

Deployment
wizards

Create deployment descriptors and exteNd deployment plans

See Chapter 16, “Deployment Descriptor Editor” and Chapter 17,
“Deployment Plan Editor”.
20 exteNd Director Utility Tools

utoolsComponentWizards.html#EJBWizard
utoolsComponentWizards.html#ServletWizard
utoolsComponentWizards.html#JSPWizard
utoolsComponentWizards.html#JavaClassWizard
utoolsComponentWizards.html#JavaBeanWizard
utoolsComponentWizards.html#TagHandlerWizard

Basic editors
When you open a source file in the exteNd Director development environment, the appropriate editor
automatically displays in the Edit Pane. Here’s a summary of the basic source editors you get:

To learn about the core functionality provided in all exteNd Director editors, see Chapter 3,
“Source Editors”.

Basic viewers
The exteNd Director development environment provides the following tools for viewing (but not editing)
some other file types:

Image Viewer

Class Viewer

Image Viewer

Opening a GIF, JPG, JPEG, or PNG file displays the Image Viewer in the Edit Pane. You can zoom the
image:

If you open The Edit Pane displays For more information, see

Java file Java Editor Chapter 3, “Source Editors”

JSP file JSP Editor Chapter 3, “Source Editors”

HTML file HTML Editor Chapter 3, “Source Editors”

Text file Text Editor Chapter 3, “Source Editors”

XML file XML Editor Chapter 4, “XML Editors”

XML Schema file Schema Editor Chapter 4, “XML Editors”

XML catalog file XML Catalog Editor Chapter 4, “XML Editors”

XSL file XSL Editor Chapter 5, “XSL Editor”

CSS file CSS Editor Chapter 6, “CSS Editor”

WSDL file WSDL Editor Chapter 11, “WSDL Editor”

J2EE deployment
descriptor file

Deployment Descriptor
Editor

Chapter 16, “Deployment Descriptor Editor”

exteNd deployment plan
file

Deployment Plan Editor Chapter 17, “Deployment Plan Editor”

JAR, J2EE archive, or ZIP
file

A read-only listing of the
contents

—

If you want to Do this

Zoom in Left-click or press +

Zoom out Ctrl+left-click or press -

Restore the image to its actual size Shift+left-click or press =
Development Environment 21

TIP: If you want these files to open in an external program, specify the file extensions and the program
in your preferences. For more information, see “File association preferences” on page 30.

Class Viewer

If you open a .class file, information about the .class file displays in the Class Viewer (exception: double-
clicking a .class file in the Project tab’s archive contents view opens the corresponding .java file in the
Java Editor). The Class Viewer displays the following information:

Name of the file, its corresponding source file, and the version of the compiler

The class’s package statement

The class’s declaration

List of all fields, sorted by visibility

List of all methods, sorted by visibility

The same information for all inner classes

Basic tools for Web Services
The basic Web Service facilities of the exteNd Director development environment include:

A Web Service Wizard to help you create Java-based Web Services and Web Service consumers
from Java classes or WSDL files

A WSDL Editor for creating, editing, and viewing WSDL files

A Registry Manager for publishing and discovering Web Services

For more information, see Chapter 10, “Web Service Wizard”, Chapter 11, “WSDL Editor”, and
Chapter 12, “Registry Manager”.

Debugging facilities
While working in the exteNd Director development environment, you can troubleshoot J2EE and other
Java code by running the debugger of your choice.

To use a debugger:

Select Tools>Launch Debugger.

It prompts for a command to launch your debugger, then executes it. (For guidelines, see
“Specifying the debugger command” below.)

You can specify a default debugger command on the General tab of the Preferences dialog.

To set a preference for your default debugger command:

1 Select Tools>Preferences.

2 In the Debugger command setting on the General tab, specify the command to launch your
debugger. (For guidelines, see “Specifying the debugger command” below.)

3 Click OK.

Specifying the debugger command Specify the operating system command that exteNd Director
should issue when you select Tools>Launch Debugger. See your debugger’s documentation for
information about how to invoke that debugger from the command line.
22 exteNd Director Utility Tools

You can include environment variables in the command by using the syntax %varname% or ${varname}.
exteNd Director substitutes the values of these variables when invoking the command.

In addition to environment variables set at the operating system, you can also use environment variables
that are predefined in the exteNd Director development environment:

You can use the same variables that the exteNd Director version control interface uses (see
“Predefined environment variables” on page 37).

The file-related environment variables (such as %_PATH%) refer to the file that is open and
currently active in the exteNd Director development environment.

Plus, you can use the following two predefined variables:

Managing toolbars
This section tells you how to control the use of toolbars in the exteNd Director development
environment:

Displaying toolbars

Configuring toolbars

Displaying toolbars

The Main Toolbar (which appears below the menu bar) is the global toolbar for the development
environment. Individual tools can have their own toolbars as well (in the Edit Pane). You can choose to
show or hide any of these toolbars.

To show or hide a toolbar:

Select View>Toolbars to list the available toolbars, then choose one to toggle it on or off.

OR

Right-click a toolbar to display the popup menu, then choose one of the listed toolbars to toggle it
on or off.

How tabs display Toolbars with one tab display as regular toolbars. Toolbars with more than one tab
display as tabbed toolbars.

Configuring toolbars

You can configure any toolbar to control the buttons and tabs it displays.

Variable Description

%_CLASSPATH% The semicolon-delimited list of the classpath entries
for the project and its subprojects

%_SOURCEPATH% The directory containing the project file
Development Environment 23

To configure a toolbar:

1 Right-click that toolbar and select Configure.

2 When the Toolbar Configuration dialog displays, use it to make one or more of these changes:

3 Click OK.

Setting preferences
You can configure your exteNd Director development environment by setting:

General preferences

Build preferences

Display preferences

Editing preferences

Abbreviation preferences

Backup preferences

If you want to Do this

Add buttons 1 Browse the categories at the top of the dialog to find a predefined button
you want.

2 If the toolbar has multiple tabs, make the appropriate tab current in the
toolbar canvas at the bottom of the dialog.

3 Drag your button to the toolbar canvas and drop it at the position you
want.

OR

Select your button and click the Add Button control to place it at the end
of the current tab.

TIP: The Miscellaneous category includes a separator (vertical bar) that
you can insert to visually organize toolbar buttons into groups.

Move buttons Drag and drop a button within the current tab in the toolbar canvas.

OR

Select a button in the toolbar canvas and click the Move Button Left or the
Move Button Right control.

Delete buttons Drag a button from the toolbar canvas and drop it anywhere outside.

OR

Select a button in the toolbar canvas and click the Remove Button control.

OR

Right-click a button in the toolbar canvas and select Delete.

Add tabs Click the Add Tab button, then specify the tab name and tool tip text.

Rename tabs 1 Make the appropriate tab current in the toolbar canvas.

2 Click the Modify Tab button, then change the tab name and/or tool tip
text.

Move tabs 1 Make the appropriate tab current in the toolbar canvas.

2 Click the Move tab - left button or the Move tab - right button.

Delete tabs 1 Make the appropriate tab current in the toolbar canvas.

2 Click the Delete Tab button.
24 exteNd Director Utility Tools

Editor association preferences

Code completion preferences

XML color preferences

File association preferences

Printing preferences

Deployment preferences

Version control preferences

To specify preferences:

1 Select Tools>Preferences.

The Preferences dialog displays.

2 Select the tab you want.

3 Set your preferences. See the following sections for information about specific preferences.

4 Click OK.

General preferences

Specify general preferences as follows:

Setting Description

Number of recent files Specifies how many recently open files appear in the File menu. Default is
10.

Number of recent
projects

Specifies how many recently open projects appear in the File menu. Default
is 5.

Reload open projects When starting, automatically reloads the projects that were open when you
last exited the exteNd Director development environment. Default is No.

Reload open files When starting, automatically reloads the files that were open when you last
exited the exteNd Director development environment. Default is No.

Enable Todo Specifies whether the Todo feature is enabled. When selected, exteNd
Director displays a Todo tab in the Output Pane where you can maintain a
Todo list of tasks.

For more information, see “Maintaining Todo lists” on page 39.

Web browser Specifies the Web browser to use when displaying exteNd product help.
Choose a browser by typing the path or clicking the button.

Debugger command Specifies the command that exteNd Director invokes when you select
Tools>Launch Debugger to run a debugger of your choice. See
“Debugging facilities” on page 22.

Help documentation
location

Specifies where the development environment will look for exteNd product
help when you request it. This can be either a path (typically on your local
disk) or an URL (typically on the Novell exteNd documentation Web site).
The installation program populates this setting with a default path or URL
(depending on whether you choose to install the help locally).

Reset “Don’t show me
this message again“
dialogs

Pressing the Reset button causes all dialogs that have a “Don’t show me
this message again“ checkbox to resume displaying.
Development Environment 25

Build preferences

Specify build preferences as follows:

Display preferences

Specify display preferences as follows:

Setting Description

Always save modified
files before compiling

When set (the default), automatically saves all modified files before
compiling, building, or rebuilding. When this property is not set, exteNd
Director prompts you about saving unsaved files.

For more save option preferences, see “Backup preferences” on
page 28.

Compiler Specifies the compiler. Default is Javac 1.3 (“Modern”).

If you choose Jikes for this setting, note that the Jikes compiler is not
provided when you install the exteNd Director development environment.
You must obtain the Jikes compiler yourself and add it to your system
PATH.

Generated class
version

Specifies which JRE version the compiler is to target. When you compile
for 1.4 (the default), your code can include 1.3 or 1.4 classes. When you
compile for 1.3, your code can include only 1.3 classes.

Compiler options Allows you to enable common command-line options for the compiler.

Setting Description

Directory tab Specifies how directories and files appear in the Directory tab. Compact mode
shows only the selected directory path and its related source files. Traditional
mode (the default) shows all directories.

Project tab Specifies how directories and files appear in the Project tab. Compact mode
shows only the selected directory path and its related source files for the project.
Traditional mode (the default) shows all directories.

For icons on
navigation panes

Specifies whether you want to show large or small icons, with or without text, in
the Navigation Pane.

In edit pane Specifies the following:

Whether the Edit Pane displays tabs for each open file

Where the tabs are displayed relative to the editor (top or bottom)

Use native look
and feel

Check this setting if you want the GUI characteristics (such as color scheme) of
your native operating system to apply in the exteNd Director development
environment. By default, the development environment uses its own look and
feel. (If you change this setting, you must restart the development environment
to see the result.)
26 exteNd Director Utility Tools

Editing preferences

Specify editing preferences as follows:

For additional text options, see Chapter 3, “Source Editors”.

Abbreviation preferences

You can define abbreviations that can be expanded to one or more lines of text—such as a word that
expands to a predefined language construct. Once you have defined an abbreviation, you can type its
name in an editor and press Ctrl+U (or right-click and select Text Tools>Complete Abbreviation) to
replace the abbreviation with the expanded text.

Use %c in an abbreviation’s definition to signify where the insertion point will be positioned when the
abbreviation has been expanded.

For example, the abbreviation main is predefined as follows and is meant to be used in Java files:

public static void main(String args[])
{
 %c
}

To define an abbreviation:

1 Select Tools>Preferences, click the Editing tab, and expand the Abbreviations section.

2 Click Add.

3 Type the abbreviation (shortcut) in the Abbreviation text box and click OK.

Abbreviations must be single words and are case-sensitive.

4 Click inside the Definition text box and type the text you want the abbreviation to expand to.

5 Click OK.

Setting Description

Font size Sets the screen font size in the Edit Pane. Default is 12. You can also set a
print font size from the Printing tab; see “Printing preferences” on page 31.

Spaces per tab
character

Sets the number of spaces entered for each tab. Default is 4.

Show line numbers Sets whether to hide (the default) or show line numbers in the Edit Pane.
You can also use Ctrl+L in a source editor to toggle between hiding and
showing line numbers for individual files.

Show vertical margin Displays the margin wrap guide (set at 80 characters) at the right of the
pane. Default is on.

Highlight matching
parentheses and
braces

As you type, highlights text within a matching set of parentheses and
braces. Default is on.

Use smart indenting When you create a new line, sets the indentation level of the new line based
on that of the current line. Default is on. (Not supported in the NetBeans-
based JSP and HTML editors.)

Use spaces instead of
tab characters

Uses spaces when the tab key is pressed. Default is off.

Use chromacoding Color-codes the text. When deselected, all text is black. Default is on.

Show horizontal
scrollbars

Choices are: only as needed (the default) or always.
Development Environment 27

To delete an abbreviation:

1 Select Tools>Preferences, click the Editing tab, and expand the Abbreviations section.

2 Select the abbreviation in the Abbreviations text box.

3 Click Delete.

4 Click OK.

To edit an abbreviation:

1 Select Tools>Preferences, click the Editing tab, and expand the Abbreviations section.

2 Select the abbreviation in the Abbreviations text box.

3 Click inside the Definition text box and change the abbreviation.

4 Click OK.

To use an abbreviation in your source code:

1 Type the abbreviation shortcut in the editor.

2 Position the cursor within the shortcut text or highlight it.

3 Press Ctrl+U (or right-click and select Text Tools>Complete Abbreviation). The shortcut text is
replaced with the expanded text defined for that abbreviation.

NOTE: If the abbreviation text is not defined, the Complete Abbreviation command is ignored.

Backup preferences

You can set preferences that control:

Autosave files—successive copies of a modified file (each successive save replaces the preceding
one). Autosave files are copies of any file in the Edit Pane that has been modified.

Backup files—the original file before it was modified and saved.

By default, autosave and backup operations are not enabled.

You can set global backup preferences that control how all projects are backed up. However, because
your projects may contain files with identical names, you may want to store separate backup and autosave
files for each project. To do so, specify a subdirectory relative to the file’s source directory for both
backup and autosave files. Files that are backed up in parallel backup directories won’t be overwritten.

NOTE: When you specify a relative name for a backup or autosave directory, it will be relative to the
source file.
28 exteNd Director Utility Tools

Specify autosave and/or backup preferences as follows:

To define how files are autosaved and/or backed up:

1 Select Tools>Preferences, click the Editing tab, and expand the Backup section.

2 Choose Auto save enabled and/or Backup enabled.

3 Specify autosave and/or backup file parameters as described above.

4 Click OK.

Editor association preferences

These preferences specify which types of files will be edited using the NetBeans-based editors in the
exteNd Director development environment.

See “Adding files types edited by NetBeans-based editors” on page 87 and “Using the native Java,
JSP, or HTML editor” on page 89.

Code completion preferences

See “Creating parser database files” on page 86.

Setting Description and parameters

Auto save
enabled

While you make changes to a source file in the exteNd Director development
environment, periodically save a copy of the file.

Auto save to same directory as
source file

(default)

Auto save directory Specifies another directory to contain saved
files

You can enter an absolute path or specify a path
that is relative to the source directory

Use Browse to search for a directory on the file
system

Auto save extension Specifies the extension of autosave files (default
is .SAV)

Auto save interval (minutes) Specifies how often you want files saved
(default is every five minutes)

Backup
enabled

When you save a source file in the exteNd Director development environment, make a
backup copy of the previous version of the file.

Backup to same directory as
source file

(default)

Backup directory Specifies another directory to contain backup
files

You can enter an absolute path or specify a path
that is relative to the source directory

Use Browse to search for a directory on the file
system

Backup extension Specifies the extension of backup files (default
is .BAK)
Development Environment 29

XML color preferences

You can specify the colors used in the XML Editor’s source view to display different types of information
in XML documents, such as tags, arguments, values, text, errors, and white space (listed in the dialog as
ws).

For each type of information, you can specify a foreground and a background color. You can pick from a
list of colors or define your own by clicking the ellipsis button. You can also specify whether to use a bold
font.

To specify colors used in the XML Editor:

1 Select Tools>Preferences, click the Editing tab, and expand the XML colors section.

2 Select the type of information whose color you want to specify, then specify a foreground and/or a
background color and specify whether you want to use a bold font.

File association preferences

exteNd Director lets you use third-party tools to edit specific file types. You can set preferences that let
you launch files in an external editor rather than opening them in the exteNd Director development
environment. Use the File Associations tab to associate file extensions with external editors. For each file
type, you can choose whether to open the file in:

The exteNd Director development environment

The system default editor for that file type (if you’re using Windows)

An external program you specify

To define how a file type is launched:

1 Select Tools>Preferences and click the File Associations tab.

2 Click Add.

3 Type the file extension in the dialog and click OK.

4 Specify one of the following preferences for the file type:

5 Click OK.

CAUTION: Consider the following when associating an external editor with the XML file extension: if you
use an external editor to edit exteNd deployment plans, you will not be able to take advantage of the
default setup that the exteNd Director editor provides and your project will not be associated with a
deployment plan.

Setting Description

Open in Director (The default) Opens files using the exteNd Director source editor.

Open using the
default Windows
program

(Windows only) Opens files using the Windows default editor for that file type
(same as double-clicking a file in Windows Explorer—for example, using
Notepad to open files with the .TXT extension).

Open using this
application

Opens files with the application you specify. You can type the path to the
application, or click Browse and navigate to the application.

NOTE: Because some editors launch a new program instance each time
you open a file, this setting is not always recommended.
30 exteNd Director Utility Tools

Printing preferences

Specify printing preferences as follows:

Deployment preferences

Deployment preferences are used by the Deployment Descriptor Editor and the Deployment Plan Editor.
When you open either of these editors, exteNd Director loads all of the project’s classes (including
subproject classes). The editor then uses information from the classes to populate the dialogs that display
lists of classes, methods, member variables, and so on. If the classes are not up to date, the information
the editors display can be incorrect or missing.

You can control whether exteNd Director automatically builds a project when you access the Deployment
Descriptor Editor or Deployment Plan Editor. You can specify one of the following build settings:

NOTE: You do not need to create the archives in order for the deployment editors to load class
information, because the editors load the classes directly from the file system, not from the archives.

You can also specify the following deployment preference:

Version control preferences

See “Using version control” on page 35.

Setting Description

Printing mode Sets mode to monochrome (the default) or color. For color printers, use color
mode.

Font size Sets print font size (default is 10). You can also set a screen font size in the
Editing tab; see “Editing preferences” on page 27.

Print line numbers Sets whether or not to print line numbers. Default is not to print numbers.

Setting Description

Always automatically
build my project

Builds the project automatically when the Deployment Descriptor Editor or
Deployment Plan Editor is opened.

This setting ensures that the editors always have access to all of the latest
classes.

Never automatically
build my project

None of the project’s files are built when the Deployment Descriptor Editor or
Deployment Plan Editor is opened. You must build the projects and
subprojects manually.

Use this setting when you don’t need anything to be built (such as when you
are editing in XML mode). In this case you can edit the XML files, but the list
of project classes in the editor may be blank or out of date.

Prompt me to build
my project

Prompts you to build the project each time you open one of the deployment
editors.

Use this setting when you want to specify when a project build should occur.

Setting Description

Default server versions Specifies the server version initially selected when you create a new
exteNd Application Server deployment plan. You can specify a server
version for J2EE 1.2 projects and a server version for J2EE 1.3 projects.

For more information, see Chapter 17, “Deployment Plan Editor”.
Development Environment 31

Setting up profiles
You can define the following types of profiles for use in the exteNd Director development environment:

Server profile

Database profile

Registry profile

Server profile

A server profile stores information about a J2EE server, including the server’s host name and port. When
selected at deployment time, the server profile tells exteNd Director which server to deploy to and
provides the information required for deployment to that server. A server profile applies to a specific
server. If you are deploying to multiple servers, you need to set up a separate profile for each.

Your server’s configuration determines how to specify the server profile information. For example, if
your server uses security certificates you will specify the https protocol. The server configuration may
also affect how you specify the server name, server port number, database name, and so on.

For information about configuring a particular J2EE server, see the product documentation for that
server.

To create a server profile:

1 Select Tools>Profiles.

2 On the Servers tab of the Profiles dialog, click New.

3 Specify settings in the Create a New Server Profile dialog as follows:

Setting Description

Profile name Enter a meaningful name to identify the profile. The name cannot contain the
period (.) character.

TIP: Define a naming scheme based on your own development
environment. For example, you might want to include project names, server
names, server types, database types, and so on.

Server type Select a server type from the list.

Server types are organized by brand and version number. The version
number indicates the lowest version supported by a given server type. A
server type is often valid for multiple subsequent versions as well.

As a rule, you should select the server type for your brand that is closest to
the target server’s version, without being higher.

Deployment tools
directory

Specify the directory that contains the server’s deployment tools—typically, a
path such as:

C:\Program Files\Novell\exteNdn\AppServer\bin

or:

C:\bea\wlserver6.1spn\bin

If the server is located on another machine, you need either network access
for running the tools or a copy of the tools in a local directory. For some
servers, exteNd Director doesn’t support remote deployment.
32 exteNd Director Utility Tools

4 Click OK to close the Create a New Server Profile dialog.

5 Click OK to close the Profiles dialog.

Setting rapid deployment directories This table shows the rapid deployment directory you should
specify in the Server Profile dialog:

Rapid
deployment
directory

For rapid deployment only.

Enter the directory where you want exteNd Director to write the files for rapid
deployment. Some servers require that files be written to a specific directory
for rapid deploys. Make sure you specify the appropriate location for your
server’s configuration. See “Setting rapid deployment directories” on
page 33 for the directory listings.

TIP: Rapid deployment handles J2EE code, such as JSP pages and
servlets. To quickly deploy resources such as components, images, and
rules, use the exteNd Director Hot Deploy feature, described in Dynamic
loading of resources and classes.

For more information on rapid deployment, see “Rapid deployment” on
page 276.

Server name Set the server name using the following formats. For servers running http:

servername
http://servername[:port]

For servers running https:

https://servername[:port]

Specify the port number if the server is not listening on the default port.

Database name For exteNd application servers only.

Specify the name of the database on the server where you want to deploy
the archive. Typically you will deploy the archive to the SilverMaster
database, so that the URL for the application won’t need to include the
database name.

NOTE: You do not have to deploy the archive to the database you created
for exteNd Director application data (described in the section on deploying
an exteNd Director project in Developing exteNd Director Applications).

Target servers For BEA WebLogic servers only.

Enter the names of the target servers.

Server Rapid deployment directory

Novell exteNd Application Server

SilverStream® eXtend Application Server

%INSTALL_DIR%\webapps

Apache Tomcat %INSTALL_DIR%\webapps

BEA WebLogic %INSTALL_DIR%\config\targetname\applications

Setting Description
Development Environment 33

cdResourceSet.html#Dynamicloadingofresourcesandclasses
cdResourceSet.html#Dynamicloadingofresourcesandclasses
cdDeploy.html
cdDeploy.html

Connecting to secure servers The exteNd Director development environment connects to the
target J2EE server at deployment time using the server profile. If the server profile indicates a secure
server, exteNd Director will make the SSL connection automatically. It uses the set of commercial
Certificate Authority certificates listed in agrootca.jar (located in the Novell exteNd Common\lib
directory). If the server you’re trying to deploy to uses a certificate issued by a CA certificate not listed
in agrootca.jar, exteNd Director will not successfully connect to the server. You can add the CA
certificate to agroootca.jar using any tool that allows you to modify the contents of a JAR file (for
example, Sun’s JAR utility or WinZip).

Database profile

You’ll need to set up a database profile to use tools that require database access in the exteNd Director
development environment. For example:

The database profile provides JDBC information that enables exteNd Director to connect to the
datasource and retrieve table and field information. You can create multiple profiles to support different
databases and JDBC drivers.

To create a database profile:

1 Select Tools>Profiles.

2 On the Databases tab of the Profiles dialog, click New.

Specify settings in the Create a New Database Profile dialog as follows:

In this tool You need a database profile

EJB Wizard When creating entity beans based on a database table

Deployment Plan Editor When mapping the persistent fields of a container-managed entity bean
to fields in a datasource

Setting Description

Profile name Enter any name to identify the profile.

JDBC Driver Enter the class name of the JDBC driver. You can specify any JDBC 2.0-
compliant driver.

To use the MySQL Connector/J driver (included with the exteNd Director
development environment), specify:

com.mysql.jdbc.Driver

To use the Sun JDBC-ODBC bridge driver (in the JRE included with the
exteNd Director development environment), specify:

sun.jdbc.odbc.JdbcOdbcDriver

If you specify any other JDBC driver, make sure that driver class can be
loaded by the exteNd Director development environment; see “To make the
driver class available:” below. (For the MySQL Connector/J driver and the Sun
JDBC-ODBC bridge driver, the classes are set up automatically.)

JDBC URL Enter an URL that specifies the database you want. For example:

jdbc:mysql://localhost:63306/SalesDB?profileSql=false&maxRows=
0

or:

jdbc:odbc:TestDB

NOTE: The text you enter after the first colon is driver specific.
34 exteNd Director Utility Tools

new http://www.mysql.com/
new http://java.sun.com/

3 Click Test to check the connection to the database specified by the JDBC URL.

This test makes a JDBC connection to the database. The test will fail when a connection is not
available or a setting is not correctly specified.

4 In the test dialog, enter your database user name and password, then click OK to verify access.

5 Click OK to close the Create a New Database Profile dialog.

6 Click OK to close the Profiles dialog.

To make the driver class available:

1 Obtain the JAR or other archive file that contains the JDBC driver.

2 Do one of the following:

Put the JAR in the Novell exteNd tools\lib\ext directory.

Edit the development environment configuration file (xd.conf in the Novell exteNd tools\bin
directory) to point to the driver archive by including the line addcp path/mydriver.jar. For
example:

addcp c:/sybase/SybJConnect.jar

3 Start the exteNd Director development environment.

Registry profile

The exteNd Director development environment provides a facility to define profiles for Web Service
registries. These profiles supply the information that allows you to search registries and publish Web
Services.

For more information on registry profiles, see “Defining registry profiles” on page 204.

Using version control
If you use a version control system, you can set up the exteNd Director development environment to
access it. This enables you to perform version control operations on the files in your projects while
working in the development environment.

Setting up access to version control

Accessing version control

Connection
Catalog

(Optional) Specify which SQL catalog (subset) of the database to connect to.
For example:

PayrollDB

If your database driver does not support catalogs, it will ignore this request.

If supported, the connection catalog lets you set up which database tables are
retrieved. Connection catalogs are useful when you are connecting to a very
large database or only want to connect to a subset of database tables (for
example, to exclude production database access).

Datasource
Name

Specify the name of the datasource to associate with this database profile. You
can enter either the datasource name, such as:

SilverBooks

or the full JNDI specification, such as:

java:pm/JDBC/SilverBooks

Setting Description
Development Environment 35

Setting up access to version control

Before you can perform version control operations in the exteNd Director development environment, you
need to adjust preference settings to enable version control and configure support for your version control
system.

To adjust version control settings:

1 Select Tools>Preferences to display the Preferences dialog, then go to the Version Control tab.

2 Check the Enable Version Control property.

This turns on the version control features of the development environment.

3 Select one of the available Version Control Systems.

In this property, you’re actually choosing a version control system definition that tells the
development environment which version control commands to support. exteNd Director comes
with definitions for several popular version control systems (ClearCase, CS-RCS, CVS, Visual
SourceSafe). If you choose one of these, you can use it as is or edit the commands it defines to suit
your needs and system configuration.

You also have the option of creating version control system definitions yourself. This lets you set
up development environment support for just about any version control system you might have.

Working with definitions The following topics provide more detail about working with version
control system definitions:

Editing a version control system definition

Creating a version control system definition

Distributing a version control system definition

Deleting a version control system definition

Editing a version control system definition

A version control system definition specifies a list of version control menu items that the development
environment is to display. Each menu item is mapped to a command-line operation of the chosen
version control system and also specifies details about how that operation is to be executed. You can edit
the list to modify, create, or delete menu items.

To edit a definition:

1 From the Version Control tab of the Preferences dialog, select a definition from the Version
Control Systems dropdown list.

2 Click the Setup button.

3 In the Setup dialog, make your changes to the list of version control menu items:

If you want to Do this

Change the behavior of a
menu item

Select that item from the Version Control Command listbox, then
edit its Command properties.

Change the name of a
selected menu item

Click the Edit button. The name can include letters, numbers,
spaces, and special characters.

You can also edit the mnemonic character to be used for keyboard
access to the menu item (when pressed in combination with the Alt
key).

Create a new menu item Click the Add button, then specify the item’s name and mnemonic
character. Your new item will be added to the end of the list.
36 exteNd Director Utility Tools

Command properties The following table describes the command-related properties you can specify
in the Setup dialog for version control menu items:

Predefined environment variables The following table describes the predefined environment
variables you can include in the command you specify for a version control menu item:

Delete a selected menu
item

Click the Remove button.

Switch the order of menu
items

Select an item you want to reposition, then use the arrow buttons
to move it up or down in the list.

Property Description

Command A command-line operation of your version control system that the menu
item is to execute.

You can include environment variables in the command by using the syntax
%varname% or ${varname}. exteNd Director substitutes the values of
these variables when the command executes. If the value of a variable
can’t be determined, an empty string is substituted.

Predefined environment variables are available via the expand button next
to the Command property. You can select a variable to insert it at the
current cursor position.

Reload when done Tells exteNd Director to try reloading the target file after the command
executes. This is useful for commands that might modify the file (such as
check in, check out, or get).

Wait for execution Tells exteNd Director to wait until the command finishes executing before
returning control to the user. Not waiting for execution can be appropriate
for commands such as diff or history where there’s no effect on the target
file.

Execute command in
directory of source file

Tells exteNd Director to execute the command relative to the directory of
the target file. If you don’t check this property, the command executes in the
current directory.

Variable Description

%_PATH% Full path and name of the target file. For example:

x:/com/myco/myfile.java

%_DIR% Directory of the target file. For example:

x:/com/myco

%_NAME% Name of the target file (without directory). For example:

myfile.java

%_BNAME% Base name of the target file (without directory and extension). For
example:

myfile

%_EXT% Extension of the target file. For example:

java

If you want to Do this
Development Environment 37

Creating a version control system definition

If the exteNd Director development environment doesn’t provide a definition for your version control
system, you can create one yourself.

To create a definition:

1 From the Version Control tab of the Preferences dialog, click the Add button.

2 When prompted, type a name for your version control system definition.

The definition name can include letters, numbers, spaces, and certain special characters. The name
you specify is added to the Version Control Systems dropdown list.

exteNd Director also creates an XML file to store your definition. The name of this file matches the
definition name you specify (except that spaces are replaced by underscores). exteNd Director
saves your definition XML file in the Novell exteNd tools\Resources\version_control_config
directory (along with the definition XML files it provides).

3 When the Setup dialog displays, specify the details of your version control system definition.

See Editing a version control system definition.

Distributing a version control system definition

Once you edit or create a version control system definition, you might want to copy it to other computers
where the exteNd Director development environment is installed.

To distribute a definition:

1 Find the XML file for your version control system definition in the Novell exteNd
tools\Resources\version_control_config directory.

2 Copy that file to the corresponding directory on each target computer.

When the development environment is run on those computers, the Version Control Systems
dropdown list (on the Version Control tab of the Preferences dialog) will automatically include
your copied definition.

Deleting a version control system definition

If you don’t need a particular version control system definition, you can remove it.

To delete a definition:

1 From the Version Control tab of the Preferences dialog, select a definition from the Version
Control Systems dropdown list.

2 Click the Remove button.

exteNd Director prompts you to confirm, then deletes that definition from the list. The definition’s
XML file is deleted from the Novell exteNd tools\Resources\version_control_config directory.

%_PROMPT prompt-text% Prompts the user for a value by displaying a dialog. The dialog
includes any prompt-text you specify.

The value of this variable is whatever the user types in the dialog input
field. If the user clicks the dialog’s Cancel button, the entire command
is canceled.

%_COMMENT% Prompts the user for a comment.

The comment is saved to a temporary file. The value of this variable is
the name of that temporary file.

Variable Description
38 exteNd Director Utility Tools

Accessing version control

When you use the exteNd Director development environment with version control access enabled, the
commands specified by the active version control system definition are available via a popup menu. You
just need to right-click one of the following:

Any file name on the Directory tab or Project tab of the Navigation Pane

An open file in the Edit Pane

When you execute a version control command, resulting text messages display on the Version Control tab
of the Output Pane.

Maintaining Todo lists
The exteNd Director development environment enables you to maintain a Todo list that organizes and
tracks your application development tasks. You maintain your Todo list in the Todo tab of the Output
Pane.
Development Environment 39

You can:

Create Todo items

Associate items with projects or mark them as independent of particular projects

Mark the completion status of items

Create a hierarchy of items

Reorganize the items in the hierarchy

Delete items

In addition, various wizards and tools generate items in your Todo list to point you to areas where work
needs to be done and to describe the nature of that work.

Working in the Todo tab

When you first click the Todo tab, the Todo list is empty (unless you have run a tool or wizard that
populates the list; see “Working with generated items” on page 42).

Creating items The first thing you’ll do is add one or more items, which can be tasks or folders.

To add an item:

1 Select the item following which you want to add an item, and either press Ins or right-click and
select Add Item.

TIP: You can also use Edit>Add Todo Item to insert an item at the end of the list, or press Shift+Ins
to add the item as a child of the selected item.

The Add Todo Item dialog displays.

2 Enter the following information:

3 Click OK.

The item is created. If you associated the item with a project, it is created as the last item in that
project’s list.

If you did not associate the item with a project, it is created as a sibling following the selected item
(unless no item was selected when you added the item, in which case the item is added as the first
item in the list, or unless you added the item with Shift+Ins, in which case the new item is a child of
the selected item).

New items appear with the description you entered, along with a checkbox. The checkbox indicates the
completion status of the item (see the next section).

Property Description

Description Text to display for the item in the Todo list.

Note (Optional) Additional information about the item. This text displays as part of the
item’s tool tip when the mouse pointer is over the item.

Add to open
project

If you want to associate this item with an open project, select the project from the
list.

If you select a project, the Todo item is added to the end of the list in the project’s
folder (the folder is created if necessary). A project’s Todo folder is a top-level
folder named:

projectFile in pathToProject

For example, if a project file is in c:\myProjects\myEAR\MyEAR.spf, the project
folder will be named:

MyEAR.spf in c:/myProjects/myEAR
40 exteNd Director Utility Tools

Editing items You indicate an item’s completion status, as well as revise its description and note, by
editing the item.

To edit an item:

1 Select the item.

2 Right-click and select Edit Item.

The Edit Todo Item dialog displays.

3 Update the information as appropriate. To indicate completion status, select a value from the
Percent done listbox or type a value.

4 Click OK.

An empty checkbox indicates that the task has not begun. A light check indicates partial completion. A
dark check indicates completion.

TIP: You can toggle an item’s completion status between 0 and 100 percent by selecting the item, right-
clicking, and selecting Toggle Item(s) Done. If the completion status was zero, it is set to 100; if it was
non-zero, it is set to zero. You can also do this simply by clicking the item’s checkbox.

Tool tips When you position the mouse pointer over an item, the item’s tool tip displays as:

percent done; Notes: noteText

Creating a hierarchy Todo lists can be hierarchical—items can contain other items. For example, you
can create a folder of related tasks.

To create a hierarchy:

Move one or more items under another item by selecting the item(s) and either pressing > or by
right-clicking and selecting Indent.
The item becomes a child of its previous sibling, which is now a folder.

Similarly, to outdent one or more items, select them and press < or right-click and select Outdent. If an
item no longer has children, it is no longer displayed as a folder.

Moving items You can move an item around with drag and drop: press and hold the mouse button on
an item and move the item within the list. A horizontal line indicates where the item will be moved to.
Release the mouse button to move the item. Moving a folder moves all of its contents as well.

You can move an item anywhere in the list.

TIP: You can drag more than one item at a time—as long as you drag as soon as you have selected the
last of the multiple entries. (If you click after selecting the last entry, it reverts to a single selection.)

Deleting items You can delete one or more items at a time.

To delete items:

1 Select the items you want to delete. You can select a folder to delete it and all its contents. You can
select multiple items anywhere in the list using Shift+Click and Ctrl+Click.

2 Press Del or right-click and select Delete item(s).

You are asked to confirm your deletion.

3 Click Yes to delete the items.
Development Environment 41

Using keyboard shortcuts The following keyboard shortcuts are supported in the Todo tab:

Disabling the Todo feature If you don’t want to use the Todo feature, you can disable it by
deselecting Enable Todo in General Preferences (Tools>Preferences). With Todo disabled, the Todo tab
does not display and the Edit>Add Todo Item menu item is disabled.

NOTE: Even after disabling the Todo feature, your Todo list remains intact and will be displayed when
you later reenable Todo.

Working with generated items

Various wizards and tools in the exteNd Director development environment generate Todo items and add
them to the corresponding project folder in your Todo list (remember that the Todo folder for a project is
a top-level folder named projectFile in pathToProject). For example, the Servlet Wizard adds items about
processing the servlet’s GET and POST requests and implementing any interface stub methods.

Key(s) Description

Up Arrow Move up one item

Down Arrow Move down one item

Home Move to first item in list

End Move to last displayed item in list

Right Arrow Expand item if on a collapsed folder; otherwise move to next item

Left Arrow Collapse item if on an expanded folder; otherwise move to parent

Enter Toggle the expand/collapse state for item

+ Expand all items

- Collapse all items

Ctrl+A Select all items

Ctrl+/ Select all items

Ctrl+\ Deselect all items

Shift+Up Arrow Extend selection up

Shift+Down Arrow Extend selection down

Shift+Home Extend selection to start of list

Shift+End Extend selection to end of list

Ctrl+Up Arrow Move focus up one item without changing selection status of items

Ctrl+Down Arrow Move focus down one item without changing selection status of items

Ctrl+Space Toggle selection status of item

Shift+Space Select range of items from currently selected item(s) to item having focus

> Indent selected items

< Outdent selected items

Ins Add item as sibling

Shift+Ins Add item as child

Del Delete selected items
42 exteNd Director Utility Tools

@todo comments In addition to populating the Todo list with items, the wizards include @todo
javadoc-style comments in the generated source files. These comments are of a finer granularity than the
items generated in the Todo list. The Todo list would be too cluttered if all the @todo comments appeared
in the list, but the @todo comments can be helpful to you in your detailed work.

Actions in generated items Generated items are just like the items you create in the Todo tab, with
one exception:

A generated item might have an action associated with it. If a generated item has an action associated
with it, you can invoke the action by doing either of the following:

Double-clicking the item

Right-clicking the item and selecting the first menu item, which describes the action

NOTE: If an item has no associated action, the first menu item is Launch Action and it is disabled.

Typically, the action is to open an associated file. For example, if you double-click the Todo item
generated by the Servlet Wizard about specifying the servlet’s GET request, exteNd Director opens the
servlet’s source file and positions the insertion point appropriately.

Using Ant
Internally, the exteNd Director development environment uses Apache Ant when you build a project by
selecting one of the Build commands on the Project menu (see “Compiling, building, and archiving” on
page 71). You don’t need to know anything about Ant if you only want to do builds that way. But direct
access to Ant is also provided so that you can accomplish the following:

Do project builds from the command line

Do your own customized Ant processing

If you want to do either of these tasks, read this section to learn about Ant and how to use it.

What is Ant?

Apache Ant is a Java-based build tool, much like make but without make’s foibles. A couple of key
differences between Ant and make are:

Instead of using makefiles, Ant uses XML-based buildfiles, which specify targets that define the
processing that you want.

Instead of using shell-based commands, Ant is extended using Java classes. It comes with a built-
in set of tasks, each implemented through a Java class. To define a new task, you define a new Java
class that extends the Ant Task class.

Ant is an open-source Apache subproject. To learn more about Ant, including details on defining your
own tasks and creating buildfiles, see ant.apache.org.

Using the exteNd Ant tools

You can use a couple of exteNd tools to invoke Ant from the command line. These Ant-based executables
are in the Novell exteNd tools\bin directory:

xdbuild allows you to build an exteNd Director project

xdant allows you to perform customized processing based on buildfiles (and possibly task classes)
that you have created

The difference between the two executables is that xdbuild takes an exteNd Director project file as input,
and xdant takes an Ant buildfile. You invoke these tools from the command line.
Development Environment 43

new http://ant.apache.org/

xdbuild syntax Here is the command syntax for xdbuild:

xdbuild projectFile target options

where:

xdant syntax Here is the command syntax for xdant:

xdant CustomizedTargets options

where:

Options Here are the options you can provide with xdbuild and xdant:

Argument Description

projectFile Path to the project (.spf) file. This file specifies, among other things, the name
of the Ant buildfile that builds and creates the archive(s) for your project.

target Specify one of these project buildfile targets:

build—Builds and creates the archive(s) for the specified project (equivalent
to selecting Project>Build and Archive)

rebuild—Rebuilds and creates the archive(s) for the specified project
(equivalent to selecting Project>Rebuild All and Archive)

clean—Removes all files from the project’s build directory and deletes the
archive(s) (no equivalent in the development environment)

options See below for information on the options.

Argument Description

CustomizedTargets Specify one or more of the targets you have defined in your buildfile.

options See below for information on the options.

Option Description

-help Prints usage information.

-projecthelp Prints the description of the project (if one exists), followed by the targets defined
in the buildfile.

-version Prints the version of Ant.

-quiet Be extra quiet.

-verbose Prints detailed information about the processing.

-debug Prints debugging information, including a mapping of tasks to Java classes and a
listing of properties and their values.

-emacs (xdant only) Prints logging information without adornments.

-logfile file Sends output to file instead of to the screen. This option creates file if it doesn’t
exist and overwrites file if it does exist.

-logger class Specifies the class to do the logging. The default logger is
org.apache.tools.ant.DefaultLogger. You can also specify another built-in logging
class (look in ant.jar in the Novell exteNd Common\lib directory for provided
classes) or specify a logging class you wrote yourself.

See the Ant documentation at ant.apache.org for details.
44 exteNd Director Utility Tools

new http://ant.apache.org/

Examples

xdbuild examples The following command builds and creates the archive(s) for the exteNd Director
project myApp (if changes have been made since the last time the project was built and archived):

xdbuild myApp.spf build

The following command rebuilds all the files and creates the archive(s) for the myApp project:

xdbuild myApp.spf rebuild

The following command removes all files from the build directory and deletes the archive(s):

xdbuild myApp.spf clean

xdant examples The following command performs the tasks defined for the default target in
build.xml in the current directory:

xdant

The following command performs the tasks defined for the purge target in build.xml in the current
directory:

xdant purge

The following command performs the tasks defined for the purge target in test.xml. If test.xml isn’t found
in the current directory, Ant searches for it in parent directories until it hits the root directory:

xdant purge -find test.xml

-listener class Adds class as a listener. A listener is notified when one of the following events
occur:

A build is started

A build is finished

A target is started

A target is finished

A task is started

A task is finished

A message is logged

There is no default listener. You can specify a built-in listener class (look in ant.jar
in the Novell exteNd Common\lib directory for provided classes) or specify a
listener class you wrote yourself.

See the Ant documentation at ant.apache.org for details.

-
Dproperty=value

Overrides property value set in the buildfile. Properties are defined as <property>
elements in the buildfile.

-buildfile file (xdant only) Specifies the buildfile to use. If this option is not specified, Ant uses
build.xml in the current directory.

(This option applies only to xdant, because xdbuild always uses the project
buildfile that the exteNd Director development environment creates for you
automatically.)

-find file (xdant only) Searches for buildfile file starting at the current directory. If it doesn’t
find it in the current directory, it searches the parent directory, up to the root
directory, until it finds file.

If file is not specified, it searches for build.xml.

Option Description
Development Environment 45

new http://ant.apache.org/

Internationalization support
This section describes support for internationalization in the exteNd Director development environment.

Specifying fonts

If some international characters are not displaying correctly (for example, they are displaying as boxes)
or if the font mapping on your system is poor, you can specify different fonts for the exteNd Director
development environment to use for its menus, labels, dialogs, and so on (note that the editors themselves
are not affected by changes you make as described next).

To change the fonts used by the development environment:

1 Select Tools>Preferences and click the Display tab.

2 Turn on the setting Use native look and feel.

3 Exit the exteNd Director development environment.

4 Specify alternate font names (and optionally sizes and colors) in the following lines of ide.props,
which is in the Novell exteNd tools\Resources\Preferences directory:
font-name-standard = font-name
font-size-standard = font-size
font-name-big = font-name
font-size-big = font-size
output-font-name = font-name
output-font-size = font-size
output-background-color = font-color
output-font-color = font-color

Font sizes are specified in points. Colors are specified as R,G,B integer values; for example, 255,255,255
is white and 0,0,0 is black.

The standard font is used to display all standard-sized text, menus, labels, and so on. The default
is 11-point Arial.

The big font is used to display title text in wizards as well as buttons in wizards and dialogs. The
default is 18-point Arial.

The output font is used to display text in the Output Pane. The default is 12-point Monospaced,
black on a gray background.

Sun recommends that you use Serif as the font name to provide the best font mapping on most systems.

Extending the development environment
The exteNd Director development environment can be extended (via an advanced extensibility API) to
add custom tools and facilities. To learn about obtaining and using the extensibility API for the
development environment, contact your Novell exteNd representative.
46 exteNd Director Utility Tools

2 Projects and Archives

Your work in the Novell exteNd Director development environment is organized into projects for
creating the J2EE and other archives that make up an exteNd Director application. Working in a project
involves editing sources (such as Java and data files), building classes, generating the archive, and
deploying the archive. This chapter describes the basics:

About projects and archives

Organizing projects

Creating projects and subprojects

Populating projects

Viewing projects

Maintaining projects

Compiling, building, and archiving

Validating archives

About projects and archives
A project is a collection of source files that you work with in the exteNd Director development
environment to create J2EE modules. A project can also be thought of as a series of rules that define how
parts come together to create an archive.

An archive is what gets generated from a completed project. A project can represent any of the following
types of archive:

Enterprise archive (EAR)

Web archive (WAR)

Application client archive (JAR)

EJB archive (JAR)

Java class archive (JAR)

Resource adapter archive (RAR)

Deploy-only (nonbuildable) archive

You aren’t limited to creating J2EE projects and archives. You can also develop and build nonarchive
projects (projects that simply build other files) and utility projects (such as class files stored in a ZIP or
JAR file) in the exteNd Director development environment.

What a project includes A project can include:

Source code that will be compiled (the resulting files will be put into an archive)

Content files that you put directly into the archive (JSP pages, XHTML or HTML pages, XML
files, images, and so on)

A deployment descriptor for the project archive

Server-specific deployment information

Other project files, called subprojects
Projects and Archives 47

Project file Each project and subproject has a project file (SPF file) that defines it. This file is
automatically created to store settings that you specify in the exteNd Director development environment.
The project file defines how the project references subprojects, where files are stored on disk, and how
files will be structured in the generated archive—and stores classpath entries and deployment settings.
Changes you make to a project are automatically reflected and saved in the project file. When you add or
move a component in a subproject, the change is updated in the subproject’s project file.

CAUTION: There is no reason to directly edit the project file. All settings can be defined within the
development environment. If you manually change the file incorrectly, you may compromise your ability to
open the project.

Organizing projects
When you create a project, you must specify which directories (or files) in your file system are to be
included in the project and where to save the Java archive that is to be built by the project.

You must also decide how to structure subprojects within a project. For example, a top-level EAR project
might contain various subproject modules such as WARs and EJB JARs that define an application’s user
interface, business logic, database access, and so on.

Project design considerations

Design decisions affect how you create the projects, subprojects, and components that make up your
application.

The exteNd Director development environment supports almost any method for creating projects and
components, including bottom-up (creating components first and then projects and subprojects) and
top-down (creating projects and subprojects first and then components). In most cases, you should
follow a top-down approach—first create the project and subproject structure and then create new
components and add them (and any existing components) to your project.

For information about creating an entirely new project, see “Creating projects and subprojects” on
page 50. For information about creating a project that contains existing source files and components, see
“Working with existing source files” on page 56.

For project considerations specific to exteNd Director applications, see the part on working with
projects in Developing exteNd Director Applications.

Project directory structure considerations

The exteNd Director development environment provides a lot of flexibility in defining the directory
structures for your project’s source files and the archive built from those source files.

Directory structure of your source files The directory structure of the source files on your file
system does not need to match the directory structure of the generated files in the archive. For example,
files in different source directories can be assigned to the same directory in the archive. To simplify
development, however, you may want to set up your project directories to mimic the directory tree
structure that will group J2EE components into archives.

You could create your project source file directory structure so that the project (SPF) file is located at the
root of that directory structure, and then create a project src directory (at the same level as the project file)
in which you can place all of the project source code. For example:
48 exteNd Director Utility Tools

cdPartToolsConfig.html
cdPartToolsConfig.html

myWebProject\
 myProject.spf
 src\
 dbAccess\
 addItem.java
 changeItem.java
 deleteItem.java
 queryDB.java
 loginProcessing\
 login.java
 user.java
 userInterface\
 intro.jsp
 login.jsp
 loginError.jsp
 welcome.jsp

When creating an enterprise archive (EAR) project with multiple subprojects (JARs, WARs, EJB JARs,
and so on), it may be easiest to have all the project files at the same level, and have the sources of each
subproject in separate src subdirectories. For example:

myWebProject\
 myProject.spf
 myProjectDB.spf
 myProjectLogin.spf
 myProjectUI.spf
 src\
 dbAccess\
 addItem.java
 changeItem.java
 deleteItem.java
 queryDB.java
 loginProcessing\
 login.java
 user.java
 userInterface\
 intro.jsp
 login.jsp
 loginError.jsp
 welcome.jsp

If your project package structure becomes too cumbersome, you can always move the subproject
components into separate subdirectories. You can structure projects using a single or a combined source
tree.

For more information on project settings, see “Managing project content settings” on page 66.

Directory structure of an archive The internal directory structure of a J2EE archive depends on the
archive type. Each type of archive has an XML descriptor that conforms to a particular DTD.

For example, when creating a Web archive (WAR), you must specify which files are accessible directly
through an URL (such as JSP pages and servlets) and which files are not (such as supporting class and
archive files). J2EE specifies that you locate files that are not to be made accessible through an URL in a
WEB-INF directory in the archive directory structure. This WEB-INF directory should be located
beneath the archive root directory and typically includes:

File or directory Contents

web.xml A required deployment descriptor file that tells the J2EE server how to interact
with the Web application

WEB-INF/classes/ A directory containing the compiled Java class files for the application

WEB-INF/lib/ A directory containing the JAR files used by the application
Projects and Archives 49

The JSP pages that are URL-accessible typically are located in the root directory of the archive. You may
want to hide some JSP pages (such as those used by Struts) from URL access. Files under the WEB-INF
directory are by default not accessible via URL, although you can configure them for URL access. The
locations of other files are up to you.

CAUTION: When you create the WEB-INF directory, you must ensure that the directory name is in all
uppercase text.

For more information This section has provided only a glimpse into some of the issues you may
encounter when designing your source file and archive directory structures.

To learn more about specifying archive directory structures and packaging archives for J2EE, see
the Sun J2EE Blueprints document.

For information about how you can specify source and archive directory structures in the exteNd
Director development environment, see “Managing project content settings” on page 66.

For project considerations specific to exteNd Director applications, see the part on working with
projects in Developing exteNd Director Applications.

Creating projects and subprojects
The projects (and subprojects) you can create fit into these categories:

exteNd Director projects, which you typically use for the bulk of your application development
work. These projects provide a wealth of functionality built in and ready to tailor to your needs.

To learn about creating exteNd Director projects, see the part on working with projects in
Developing exteNd Director Applications.

Generic projects, which you typically use when necessary to develop supporting modules. A
generic project can be an EAR, EJB JAR, WAR, RAR, JAR, deploy-only archive, or application
client.

As you create a generic project, you define a project name and a location for your source files.
exteNd Director maps all of these source files to names and locations that you define for the
archive. The following steps (using the New Project Wizard) apply to each type of generic project,
with exceptions noted.

For information on organizing the development workspace before beginning a project, see
“Project directory structure considerations” on page 48.

To create a generic project:

NOTE: If you are creating a subproject, you must open the parent project in the exteNd Director
development environment before starting this procedure.
50 exteNd Director Utility Tools

cdPartToolsConfig.html
cdPartToolsConfig.html
cdPartToolsConfig.html
new http://java.sun.com/j2ee/blueprints

1 Select File>New>Project. The New Project dialog displays:

2 On the Generic tab, choose a project type and click OK.

If you want to create a nonbuildable archive, select Deploy-only. For detailed instructions, see
“Creating a deploy-only project” on page 55.

If you are creating an EJB JAR and EJB client JAR pair, you should first create the parent WAR
or EAR for both so that both projects can be open at once. For detailed information on the
relationship between the EJB JAR and the client JAR, see “Specifying the EJB JAR
configuration” on page 221.

If you want to create a project that includes a completed archive (along with its source code)
from a third-party source, choose a project type and follow the instructions in “Working with
existing source files” on page 56.

NOTE: The following New Project Wizard panels (to create a WAR) apply to each type of project.
Projects and Archives 51

3 Specify project information as follows:

New project setting What you do

Project Name Specify the name you want to use for the project (the .SPF extension
is automatically appended). This name appears in the source layout.

As you enter a project name, the archive name is filled in
automatically. You can keep the same name for your archive or enter
another one.

Project Location Specify the directory where you want the project (and other source
files) to be located. exteNd Director creates a project file (with an
.SPF extension) in the project location.

As you enter a project location, the rest of the new project settings are
filled in automatically. You can change these settings.

You can click the ellipsis beside the Project Location field to select a
location, or type the project directory.

If you specify a project location directory that does not exist, the
wizard prompts you to create it.

If you do not specify an absolute path, the wizard locates the project
under the Novell exteNd tools\bin directory.

Archive Name Specify the name of the archive file that will be generated. The
resulting name will appear in the archive layout. An extension based
on the archive type will automatically be appended to the name. You
can keep the default archive name (that matches the project name) or
enter a new one.

To create a project based on an existing archive or to create a deploy-
only project, enter the name of the existing archive that you want to
include.

For information about creating projects based on existing
archives, see “Working with existing source files” on page 56. For
details about deploy-only archives, see “Creating a deploy-only
project” on page 55.

Archive Location Enter the location of the project archive or accept the default (the
project root directory).

The archive location appears in the archive layout of the Navigation
Pane after the project has been created.
52 exteNd Director Utility Tools

NOTE: All settings on this wizard panel are required—except the two deployment descriptor fields
and the J2EE version, which are not required (or displayed) for the Java or deploy-only archive.

4 Click Next.

Deployment Descriptor
Name

The wizard fills in a deployment name (based on the project type)
after you enter a project location. Each archive stores its own set of
deployment information in this XML deployment descriptor source file.
exteNd Director creates the default deployment descriptor name and
location (based on archive type) when you build and archive the
project.

In most cases you should accept the default name and location.

If you are converting an existing archive project (by creating a new
project file), enter the name of the deployment descriptor file on disk.

If you want to have multiple J2EE subprojects of the same type
sharing the same deployment descriptor directory location, see
Deployment Descriptor Location (below).

The deployment descriptor name you enter here affects only the
source file name—not the file name that is used in the JAR. When
exteNd Director builds the archive, it includes this deployment
descriptor file in the archive using the standard name and location
defined by the J2EE specification for the archive type.

For more information on deployment descriptor names, see
Chapter 15, “Archive Deployment” and Chapter 16, “Deployment
Descriptor Editor”.

Deployment Descriptor
Location

Enter the location of the deployment descriptor or accept the default.
Each archive type uses a required J2EE default directory location.

If you are converting an archive project, enter the location of its
deployment descriptor.

In most cases you should accept the default name and location.
However, if you want to have multiple J2EE subprojects of the same
type sharing the same deployment descriptor directory location, you
should either enter a different source file name for each deployment
descriptor or create a separate directory structure beneath the root
directory for each descriptor.

If you specify (or if exteNd Director finds) a deployment descriptor in
the project source location matching the one you specify, it prompts
whether or not you want to use the existing deployment descriptor. If
you answer no, you will need to change the deployment descriptor
name or location before continuing.

For more information on deployment descriptor default names
and locations, see Chapter 15, “Archive Deployment” and Chapter 16,
“Deployment Descriptor Editor”.

Project J2EE Version Specify the version of J2EE for this project.

For information on targeting your application at an appropriate
version of J2EE, see Chapter 14, “How to Handle J2EE Versions”.

New project setting What you do
Projects and Archives 53

5 If you have a project currently open, the wizard asks if you want to add the new project as a
subproject to that project or one of its subprojects.

If no project is currently open, this panel does not appear.

If you do not want to create this project as a subproject, deselect Add this project to the current
project and click Next. (You can proceed to Step 6.)

To create the project as a subproject of another project:

Select Add this project to the current project.

Select the parent project under Add to Project. This list contains the currently open project and
all subprojects associated with it.

Select Include in parent archive.

If you want to add the generated archive of this project to the parent archive (as opposed to
adding all of the generated files), select Add the generated archive of the subproject to the
parent archive.

If you want to add the generated files (instead of the generated archive) of this project to the
parent archive, select Add the contents (individual files) of the subproject to the parent
archive.

The wording of the next two options varies, depending on whether you choose to add the archive
or the individual files to the parent archive.

In either case, you are asked whether to add the archive or files to the root of the parent archive
or to specify some other location in the parent archive.

Click Next.

6 The wizard summarizes the project details. Click Finish to create the project.

You can see the new project in the Project tab of the Navigation Pane. If necessary, you can view or
change project names and locations using the Project Settings dialog.

Once you have defined how your projects and subprojects will be structured, you can start adding source
directories and files to a project, as described in “Adding to projects” on page 58.
54 exteNd Director Utility Tools

Creating a deploy-only project

You can validate and deploy an archive for which you have no source code by first creating a deploy-only
project for the archive. For example, if you received a completed EJB JAR archive from a third party
without any source code, you could create a deploy-only project for it. You cannot add to a deploy-only
project.

NOTE: If you receive a completed archive along with its source code, you should create a regular project,
not a deploy-only project.

An EAR can contain both deploy-only and regular projects. For example, you can create an EAR
containing an EJB JAR that you don’t have the source for and a regular WAR that calls that EJB JAR.

For more information, see “Working with existing source files” on page 56.

How you tell that a project is deploy-only When you open a deploy-only project:

The build commands on the Project menu are disabled. This prevents you from accidentally
overwriting the archive—which you would be unable to recreate.

The Contents tab of the Project Settings dialog is replaced by the following message:
The archive is deploy only. Its contents cannot be modified or examined.

To create a deploy-only project:

1 Select File>New>Project. The New Project dialog displays:
Projects and Archives 55

2 On the Generic tab, select Deploy-only and click OK.

3 In the New Project Wizard, specify project information as follows:

4 Click Next.

5 If you have a project open, the wizard asks if you want to add the new project as a subproject of that
project or one of its subprojects. For more information, see Step 5 under the preceding procedure
for creating a project.

Otherwise, the wizard summarizes the project details.

6 Click Finish to create the project.

You can see the new project in the Project tab of the Navigation Pane, but you cannot edit its contents. If
necessary, you can view or change project names and locations using the Project Settings dialog.

Working with existing source files

There are several ways you can use J2EE components and modules created with third-party tools in the
exteNd Director development environment:

If you want to create a nonbuildable archive that you validate and deploy in the exteNd Director
development environment, you must create a deploy-only archive (a completed archive without any
source code). For detailed instructions, see “Creating a deploy-only project” on page 55.

Deploy-only
project setting What you do

Archive File Enter or browse to the deploy-only archive file on which you wish to base the
project. By default, the Project Location is set to the directory of the specified
file when you select the archive.

Project Type Make sure the archive type and J2EE version are correct.

Project Name Enter a name to identify the deploy-only project. exteNd Director creates a
project file (with an .SPF extension) in the project location.

Project location Specify where you want the project to be located. The location identifies the
project root directory.

The Project Location is set to the directory of the specified file when you
select the archive, but you can change it.
56 exteNd Director Utility Tools

If you have source code files and want to build an editable archive, you should create a regular
project file as described below.

The following procedure describes one (directory-centric) approach where the resulting archive structure
mirrors the directory structure of the source files. You can create a new project in a deploy-only archive
using this same approach. The only difference is that you will not be able to add source files to this type
of archive later.

To create a project that includes existing source files:

1 Create a source directory structure and locate all your source files there.

When including existing archives, you may want to add the entire directory structure, since it is
easier to maintain your project source files if you add directories rather than individual files. Once
you have set up a project directory, files you add to it later will be automatically included in the
resulting archive.

2 Create a project, as described under “Creating projects and subprojects” on page 50.

3 Add the source directory you created in Step 1 to the project, as described under “Adding to
projects” on page 58.

Once you have added the source directory to the project, any changes you make later are
automatically included in the archive and you avoid possible duplication of files.

Populating projects
Once you have a project, you can populate it by doing either (or both) of the following:

Creating new files in the project

Adding existing files to the project

Creating source files

The exteNd Director development environment provides a wide selection of wizards that you can use to
create new source files for your projects. These wizards prompt for information about what you want to
generate and where (project and/or directory).

Source files include:

Source code, such as Java files that will be compiled into an archive

Content files that will be put directly into the archive, such as JSP pages, XHTML or HTML
pages, XML files, images, and so on

To create a source file:

1 (Optional) Open the project you want to add the file to.

2 Select File>New>File.
Projects and Archives 57

The New File dialog displays.

3 Go to the tab that matches your need (note that the tabs you see depend on your exteNd product
configuration).

4 Choose a file type and click OK. The wizard for that file type starts.

TIP: To sidestep the wizard and immediately open a new blank file in the appropriate source editor,
deselect the Use wizard checkbox (when supported).

5 Follow the prompts onscreen. For more information:

When the wizard finishes, a source editor containing the wizard-generated file(s) opens in the Edit
Pane.

For information about the source editors (text, Java, etc.), see Chapter 3, “Source Editors”.

Adding to projects

You can add source files, directories, and subprojects to an existing project.

Adding source files to a project

The following procedure describes how to add files and directories to a project.

To learn about See

Wizards for basic XML
and CSS files

Chapter 4, “XML Editors”

Chapter 5, “XSL Editor”

Chapter 6, “CSS Editor”

Wizards for basic Web
Service files

Chapter 10, “Web Service Wizard”

Chapter 11, “WSDL Editor”

Wizards for basic J2EE
and Java files

Chapter 13, “J2EE Wizards”

Chapter 16, “Deployment Descriptor Editor”

Chapter 17, “Deployment Plan Editor”

Wizards for exteNd
Director features

The appropriate subsystem guide in the exteNd Director help
58 exteNd Director Utility Tools

To add files and directories to a project:

1 Open the project you want to add to.

2 Select Project>Add to Project.

For other methods, see “Other ways to add files and directories to a project” on page 60.

3 Choose whether you want to add a file or a directory.

Typically, you add directories rather than individual files to your project.

4 Navigate to and choose the file or directory you want to add.

5 Click Open or OK.

6 Set the following options to specify how the file or directory will be added to the project and where
you want it to be located in the archive:

7 If you are adding a directory to your project, click Advanced.

File and directory setting Description or action

File Shows the (editable) path of the directory or file that you are adding to
the project.

Add to project Select the project that the specified item will be added to. Only the
top-level open project and associated subprojects appear on the
menu.

Include subdirectories When adding directories, select to add the contents of the
subdirectories as well as those of the specified directory.

Add the file(s) to the root
of the archive

Select to add the specified files to the root of the archive. Clicking this
option means you cannot remove the contents from the project
without manually deleting the contents from the file system.

Add the file(s) to the
archive at this location

Select to add the specified item to a specified location other than the
archive root.

You can also use relative paths or environment variables when
locating shared project files or referring to files located outside the
project’s directory structure.

For more information, see “Using environment variables” on
page 66 and “Using relative paths” on page 67.
Projects and Archives 59

The following project entry settings let you specify how to include Java sources (of the files or
directories) in the generated archive.

NOTE: You can also edit these project entries in the Edit archive entry dialog (by clicking Edit in
the Contents tab of the Project Settings dialog).

8 Click OK to add the file or directory to the project.

To see (or edit) how contents have been added to your project, click the Contents tab of the Project
Settings dialog.

For information about editing project contents, see “Managing project content settings” on
page 66.

Other ways to add files and directories to a project Using Project>Add to Project is only one
way to add files and directories to a project. Other ways include:

Clicking Add Entry or Add Directory on the Contents tab of the Project Settings dialog

Using the popup (right-mouse) menu on the file or directory you want to add in the Directory tab of
the Navigation Pane and choosing Add to Project
Using this technique, you can add multiple files at the same time: press Ctrl+Click to add multiple
noncontiguous files; press Shift+Click to add multiple contiguous files.

Notes about adding individual files You typically add entire directories to your project. However,
you can also add:

The entire contents of a directory

Individual file(s) in a directory

If you add a subproject as contents rather than as an entire project to a top-level project, the name will
appear grayed out and within parentheses in the archive layout view of the Navigation Pane.

Refreshing the Navigation Pane When you make changes in the exteNd Director development
environment, the Directory and Project tabs of the Navigation Pane automatically update. If you make
changes outside of the development environment, select View>Refresh or press F5 to see the changes.

Adding an entire directory

When you add a directory or directory tree to a project (as described in “Adding source files to a project”
on page 58), the structure of the files and directories in the archive matches the layout of the files and
directories of your (on-disk) source directories.

When you specify an entire directory, anything you later change, add, or remove within that on-disk
directory is automatically reflected in the project. To relocate archive files, you can simply move them
from the existing source directory structure on your file system. Any such changes will be automatically
reflected in your project, provided that you keep them within the source directory structure used by the
project.

Advanced setting Description or action

Include Java source
files in archive

Select if you want to include sources files in the generated archive.
For most production environments, you will not want to include Java
source code.

Add the files to the root
of the archive

Select to store source files in the archive root directory. Clicking this
option means you cannot remove the contents from the project
without manually deleting the contents from the file system.

Add the files to the
archive at this location

Select and then specify a directory in which to store source files.
60 exteNd Director Utility Tools

What gets excluded automatically When you add the entire directory to a project, exteNd Director
excludes the following types of files from the generated archive:

Any file ending in ~
Any file starting and/or ending with #
Any file starting and/or ending with %
Any file named cvsignore
Any files in a directory named CVS
Any files ending in JAVA (by default, though you can choose to include Java files when adding the
directory)

Any autosave and backup files ending in SAV and BAK

These are generally backup or version control information files and don't belong in the generated archive.

Choosing other files to exclude After you add a directory to a project, you can manually exclude
individual files that you don’t want to participate in the project.

For more information, see “Excluding individual files from a project directory” on page 69.

Adding subprojects to a project

The following procedure describes how to add a subproject to a project.

For details about creating subprojects, see “Creating projects and subprojects” on page 50.

To add a subproject to a project:

1 Open the project you want to add to.

2 Select Project>Add to Project>Subproject.

For other methods, see “Other ways to add files and directories to a project” on page 60.

A file selection dialog appears.

3 Navigate to and choose the subproject file you want to add.

4 Click Open. The Add to Project dialog appears.

5 In the Add to project field, select the project that the specified archive will be added to.

NOTE: Only the top-level project and any associated subprojects appear as choices.

6 Select Include in parent archive to add the contents of the subproject to the parent archive.

If Include in parent archive is not selected, the subproject will still be built before the parent
project, but none of its contents will be included in the parent archive.

7 If you want to add the generated archive of this project to the parent archive (as opposed to adding
all of the generated files), select Add the generated archive of the subproject to the parent
archive.
Projects and Archives 61

If you want to add the generated files (instead of the generated archive) of this project to the parent
archive, select Add the contents (individual files) of the subproject to the parent archive.

8 The wording of the last two options varies, depending on whether you choose to add the archive or
the individual files to the parent archive.

If you selected Add the generated archive of the subproject to the parent archive, set one of the
following options to determine how the specified archive will be added to the parent archive:

If you selected Add the contents (individual files) of the subproject to the parent archive, set
one of the following options to specify how the subproject contents (rather than the subproject’s
generated archive) will be added:

9 Click OK to add the child archive (or files) to the parent archive.

TIP: To see how contents have been added to your project, click the Contents tab of the Project Settings
dialog.

For more information about adding project contents, see “Modifying project entries” on page 67.

Viewing projects
You use the Project tab of the Navigation Pane to view projects. You can view projects in three ways to
see how directories and files are organized on the file system and in the archive:

Source layout view

Archive layout view

Archive contents view

Subproject setting Action

Add the child archive to the root of
the parent archive

Select to add the specified archive to the root directory of
the parent archive.

Add the child archive at this
location

Select (and enter a location) to add the specified archive to
a location other than the root directory of the parent archive.

You can also use relative paths or environment variables
when locating shared project files or referring to files located
outside the project’s directory structure.

For more information, see “Using environment
variables” on page 66 and “Using relative paths” on
page 67.

Subproject setting Action

Add the files to the root of the
parent archive

Select to add the archive contents to the root directory of
the parent archive.

Add the files to the archive with
this prefix

Select and then enter a prefix to add the archive contents to
a directory with the specified prefix.

You can also use relative paths or environment variables
when locating shared project files or referring to files
located outside the project’s directory structure.

For more information, see “Using environment
variables” on page 66 and “Using relative paths” on
page 67.
62 exteNd Director Utility Tools

Source layout view The source layout view reflects the organization of the project’s files and
directories on your hard disk. Subprojects are listed at the top level as folders.

Subprojects added as archives and as contents are both shown using the project name

Subprojects excluded from the parent archive are shown grayed out using the project name

The archive views The archive layout view and archive contents view both reflect the organization
of the archive that will result from building the project. The archive layout view presents a development-
oriented picture of how the project files and directories will be organized in the resulting archive, while
the archive contents view is the closest representation of what will be in the generated archive. The
differences between the two views are:

Archive layout shows the project’s source files (.java files), even though the archive actually
contains compiled files (.class files). Archive contents shows compiled files since they are what is
in the archive (double-clicking a .class file opens the corresponding source file in the Java Editor
for editing, unless the .java file can’t be found, in which case the .class file is opened in the Class
Viewer).

Archive layout lists all subprojects, even those subprojects that have been added as contents (as
opposed to being added as archives) and those subprojects excluded from the parent archive, to
give you an idea of how the projects are organized:

Subprojects added as archives are listed as the archive they generate

Subprojects added as contents are displayed grayed out using the name of the project

Subprojects excluded from the parent archive are shown grayed out, using the name of the
archive or the project name, depending on which state would result from reincluding the
subproject in the parent archive

In the following screen, the ResourceSet subproject has been added as an archive, so it displays
with its archive name. The Custom subproject has been added to the project as contents, so it is
grayed out. The Sandbox subproject has been excluded from the parent archive, so it too is grayed
out.

Archive contents lists subprojects as follows:

Subprojects added as archives are displayed using archive names

Subprojects added as contents are represented by the content itself, since that is how they will
appear in the parent project’s archive

Subprojects that are excluded from the parent archive are not represented at all

The following screen shows the archive contents view of the same project shown above:
Projects and Archives 63

utoolsBasics.html#ClassViewer
utoolsBasics.html#ClassViewer

Archive contents shows each inner class in a .java file, in addition to the file’s primary class.

TIP: You can see a file’s complete name and path by positioning the mouse over it in the lower subpane
of the Directory or Project tab. These tool tips are particularly useful in an archive view for comparing a file
as it exists in the archive (such as WEB-INF/web.xml) to its location on disk (such as
C:\dev\MyEAR\web.xml).

Maintaining projects
Your open project may be your top-level project or it may be a subproject. The exteNd Director
development environment allows you to manage the settings of any open project by adding or modifying
files, directories, subprojects, paths, classpaths, and so on. You can modify a project by:

Opening a project

Managing general project settings

Managing project content settings

Excluding individual files from a project directory

Removing files, directories, and subprojects from projects

Renaming a project

Opening a project

To open a project, open the project file (with the .SPF extension). Changes you make to a top-level
project file are automatically saved in that file along with any other subprojects that are part of the same
top-level project.

You can open multiple projects at a time, as long as they are all part of the same top-level project. For
example, you can simultaneously open an EAR, a WAR, an EJB JAR, and an application client provided
they are all part of the same top-level EAR.

NOTE: Whenever you add a component or subproject, the project file is automatically saved. The only
time you need to explicitly do a save is when you make changes to a source file using one of the editors.

To open a project:

1 Select File>Open Project.

2 Navigate to the project directory.

3 Select the project file (.SPF) and click Open.

In the upper left, the Navigation Pane displays the archive layout of the project. The files are
displayed in the lower subpane of the Navigation Pane.

TIP: You can also navigate to the project file in the Directory tab and double-click the file to open it.
64 exteNd Director Utility Tools

Managing general project settings

The General tab on the Project Settings dialog lets you view information about the open project and
change the location of the source directory that stores the project class files.

To view or modify project settings:

1 Open the project.

2 Choose Project>Project Settings.

3 Select the General tab and view or modify any of the options as follows:

Setting Description or action

Project Lists the project currently open.

Project type Lists the type of project you created.

Project directory Lists the open project’s root directory.

Project file Lists the file name and location of the open project.

Project version Lists the J2EE version.
Projects and Archives 65

Managing project content settings

You specify how files and directories are organized in the project’s source and archive layouts using the
Contents tab of the Project Settings dialog.

This dialog lets you define files and directories in terms of project entries in a table. Each entry defines
the location of a source file or directory in the file system and how it is added to the project archive.

When specifying file and directory locations, you can use environment variables and absolute and
relative pathnames.

Using environment variables

Environment variables are useful when a development team shares files (such as a single project file or
JARs) that are located outside the project’s directory structure. A shared project file must be able to refer
to files or directories that exist in different locations on different team members’ machines. You typically
use environment variables for locating files that are not under the project’s root directory.

Use source directory
for classes

Specifies whether you want to compile Java files into the same directory
as their corresponding source files.

By default, the check box is not selected and classes are compiled into
the build directory beneath the project’s root directory. You can change
the build directory by changing the Classes directory setting (below).

If you select the check box, all project classes are generated into the
source directory along with with their source files.

Classes directory Lists the root of the build directory where the project’s compiled class
files will be located. exteNd Director writes the generated classes to this
directory when it builds the archive.

The default is build/project_name-classes beneath the project’s root
directory. You can change the directory by typing or browsing to a
different directory.

Archive file path Lists the name and location of the archive. exteNd Director writes the
generated archive to this location, which is relative to the project root.

You defined this location when you created the project.

Setting Description or action
66 exteNd Director Utility Tools

You set environment variables in your operating system. You reference the variables in the exteNd
Director development environment by using the following syntax: %varname% or ${varname}. You
can use variables:

When editing or adding to a project using the Add to Project dialog

For example, change d:\utilproj\util.spf to %UTIL_PROJECT_DIR%\util.spf or
${UTIL_PROJECT_DIR}\util.spf.

When editing your project's classpath using the Classpath/Dependencies tab of the Project
Settings dialog

For example, add %UTIL_PROJECT_DIR%\util.jar or ${3RDPARTYJARS}\helpers.jar to the
classpath to include a subproject.

NOTE: You need to restart the development environment before the value of an environment variable
(set in your operating system) takes effect.

It may often be easier to use a relative path (instead of an environment variable) to locate any shared
project files that are in the project's directory tree. For example, you could specify a src directory to refer
to the directory named src under your project's directory.

Using relative paths

The project root is the directory on your hard disk that contains the project file, for example
C:\MyProj\Proverbs. You can use relative paths when referring to files within the project’s directory.
For example, to specify up two directory levels: .\..\mydir\file.jar.

By default, any paths you specify for files or directories are set relative to the project’s root directory,
provided the source directories are nested beneath the root directory. Otherwise, you must specify a
hardcoded path. Locations you set in the exteNd Director development environment are stored in the
project file.

Because location settings will be shared among subprojects and possibly other developers, you should try
to avoid absolute paths. If you need to share a project file and other source files that are not under your
project’s directory, use environment variables.

Modifying project entries

To modify project entries:

1 Choose Project>Project Settings.

2 Open the project to modify.

You can choose between the current project and any associated subprojects.

3 On the General tab, view (and if necessary modify) the classes directory and the archive directory.

NOTE: You cannot entirely modify the project type, directory, and file name within the exteNd
Director development environment. See “Renaming a project” on page 71.

4 Select the Contents tab.

A project entry can be a file or a directory. As shown below, each project entry is defined by its
source location and associated archive location.
Projects and Archives 67

For information on adding an entry or directory, see “Adding source files to a project” on
page 58. For information on removing entries, see “Removing files, directories, and subprojects
from projects” on page 70.

5 Select the project entry you want to modify by either double-clicking the entry or selecting the
entry and clicking Edit.

The Edit archive entry dialog that appears depends on whether you are modifying a file, a
directory, or a subproject entry.

Setting Description or action

Project The project to modify.

Source location The source location of the selected entry. A full path is listed whenever the
source of the entry is not relative to the project root directory.

Any files you later add to the source directory will also get included in the
project archive.

You can also use relative paths or environment variables when locating
shared project files or referring to files located outside the project’s directory
structure.

For more information, see “Using environment variables” on page 66
and “Using relative paths” on page 67.

Archive location The archive location of the contents of the selected entry. The archive
location can be the same as or different from the source location.

All archive locations are relative to the archive root directory.

Any path you specify identifies the directory structure in the archive. For
example, specifying src\com\proverb would include those files and
directories in the archive with src\com\proverb as the directory structure in
the archive.

An asterisk (*) indicates that you want to include all files in the specified
directory, but not any nested subdirectories.

Add Entry Lets you add a file to the project.

Add Directory Lets you add a directory (and optionally subdirectories) to the project.

Edit Lets you edit the selected entry name or location.

Delete Lets you remove the selected project entry.

Edit Excludes See “Excluding individual files from a project directory” on page 69.
68 exteNd Director Utility Tools

The following dialog appears if you selected a file. The settings on this dialog are the same as
on the Add to Project dialog. For more information, see “Adding to projects” on page 58.

The following dialog appears if you selected a directory. The settings on this dialog are the
same as on the Add to Project dialog. For more information, see “Adding to projects” on
page 58.

The following dialog appears if you selected a subproject. The settings on this dialog are the
same as on the Add to Project dialog. For more information, see “Adding subprojects to a
project” on page 61.

6 Click OK after you have modified the entry.

Excluding individual files from a project directory

Although it’s common practice to add entire directories to a project, you may sometimes have a few files
in such directories that don’t belong in the project. To handle this situation, you can exclude individual
files from any directory you've added to a project. You can also include a file once again if you need it.

To exclude/include files:

1 On the Project tab of the Navigation Pane, open a directory you've previously added.

2 Right-click a file you want to exclude, then select Exclude from Project from the popup menu.

Once a file is excluded, it is no longer used in the project. It appears gray (and in parentheses) on
the Project tab.
Projects and Archives 69

To bring an excluded file back into the project, you can right-click it and select Include in Project
from the popup menu.

Alternatively, you can exclude/include files by editing the exclusions list for a directory in the Project
Settings dialog:

To edit the exclusions list:

1 Choose Project>Project Settings.

2 Select the Contents tab.

3 Select the directory entry whose exclusions list you want to edit, then click the Edit Excludes
button.

4 When the Edit Exclude Definitions dialog displays, you can do the following:

5 Click OK to close the Edit Exclude Definitions dialog.

6 Click OK to close the Project Settings dialog.

Removing files, directories, and subprojects from projects

There are two ways to remove items from a project: using the Project Settings dialog or using the
Remove From Project popup menu in the Project tab. Removing a project’s source files or directories
in the exteNd Director development environment does not delete them from your hard disk. It just
removes the entry (or rule) that refers to the files or directories.

To remove a file using the Project Settings dialog:

1 Choose Project>Project Settings.

2 Select the Contents tab.

3 Select the entry or entries you want to remove from your project. Press Shift+Click to select
contiguous entries. Press Ctrl+Click to select noncontiguous entries.

4 Click Delete.

If you want to Do this

Add a file to the list (to exclude it from the
project)

Click Add, then choose that file in the target
directory.

Remove a file from the list (to include it in the
project once again)

Select that file from the list, then click Delete.
70 exteNd Director Utility Tools

5 Click OK to perform the deletion. Click Cancel to close the dialog without performing the
deletion.

If you clicked OK, exteNd Director removes the entry or entries so that they are no longer referred
to in the project.

Using the Remove From Project popup menu

You can also right-click the file or directory you want to remove in the Project tab of the Navigation Pane.
Choosing Remove From Project removes the project entry from the Project Settings definition (shown
above and also reflected in the SPF file) as follows:

When you remove an explicit file (one that does not refer to any other files contained in any nested
directories), exteNd Director simply removes the entry so that it is no longer referred to in the
project.

When you remove a directory that was added to a project as part of nested subdirectories, exteNd
Director prompts you to confirm that you want to remove the whole tree from the project.

You can remove a subproject by selecting it in the top part of the Navigation Pane (one subproject
at a time).

You get a list of the directory trees to be removed. For example, if you select to remove src\a\b\c, you are
prompted that this will cause the src directory tree entry to be removed; if you confirm that this is OK,
exteNd Director removes the entire tree from the project.

Renaming a project

In rare cases, you may need to rename a project (the name preceding .SPF). Although in general you
never directly edit a project file, you must do so in this situation.

To rename a project:

1 Using your operating system, rename the project file.

2 (Optional) On the Contents tab of the Project Settings dialog, change the classes directory to match
the revised project name. This ensures that the new project name will appear as a subdirectory of
the build directory.

3 (Optional) Update the project name in the deployed object and the URL element in the deployment
plan.

Step 2 and Step 3 are necessary only if you want to keep all project names consistent. The project will
build without them.

Compiling, building, and archiving
The exteNd Director development environment provides the tools you need to compile individual Java
source files, build a complete project, and package the components in a J2EE-compatible archive for
deployment to a J2EE server. This section describes the procedures for:

Specifying build settings

Using the commands
Projects and Archives 71

Specifying build settings

Specifying settings for your compiles and builds includes:

Defining the Java compiler

Defining the project classpath

Defining the Java compiler

By default, the exteNd Director development environment uses the Javac 1.3 compiler. You can use the
Build tab of the Preferences dialog to specify a different compiler. You can also specify options that you
want sent to the compiler each time a Java file is compiled.

For more information, see “Build preferences” on page 26.

Defining the project classpath

The project classpath defines where to find the components that your source code references. You can use
environment variables when editing a project classpath.

For more information, see “Using environment variables” on page 66.

exteNd Director constructs the project classpath using these values:

Parent project classpaths If you have a project that contains subprojects, exteNd Director builds the
components and constructs the parent project’s classpath as follows:

1 Builds any referenced projects before it builds the parent project.

The referenced projects are specified in the Contents tab or Classpath/Dependencies tab of the
Project Settings dialog.

Item Description

Defaults By default, the exteNd Director development environment uses:

The standard JDK default classpath (for all projects)

The JAR file that provides the J2EE API packages needed for compiling J2EE
projects. For J2EE 1.2 projects, the file is j2ee_api_1_2.jar; for J2EE 1.3
projects, the file is j2ee_api_1_3.jar.

If the J2EE API JAR file is accidentally removed from the classpath, you can
find it in the Novell exteNd tools\compilelib directory.

Project contents The Contents tab of the Project Settings dialog lists the components that you’ve
added to a project. exteNd Director adds these items to the project’s classpath in
the order you added them to the project.

Classpath If your project has build dependencies on classes (for example, a WAR that
contains a servlet that references an EJB), JARs (such as a Struts JAR), or
related project files (like an EJB JAR and an EJB-client JAR), you can list these
build dependencies using the Classpath/Dependencies tab of the Project Settings
dialog.

You can resolve the build dependency by adding either the related project’s SPF
file or its archive to the classpath. It is recommended that you put the project’s
SPF file on the classpath, because:

If you put the project file on the classpath, exteNd Director can determine when
the related project has changed and if the related project needs to be rebuilt.
This ensures that you always have the most recent archive.

If you put the archive on the classpath, exteNd Director cannot determine if the
project has changed (which might result in the use of outdated files).
72 exteNd Director Utility Tools

2 If the referenced projects build successfully, exteNd Director builds the parent project using the
following:

2a The parent project’s contents

2b The parent project’s classpath

2c The referenced project’s classpaths (which are constructed following the same rules—the
contents, the classpath, and any referenced projects)

Suppose you have an EAR project, and the EAR contains a WAR (a subproject), and the WAR
contains a utility JAR. exteNd Director constructs the JAR’s classpath first, then the WAR’s
classpath.

To add to a project classpath:

1 With the project open, choose Project>Project Settings.

2 Select the Classpath/Dependencies tab and select a classpath entry.

3 Click Add Entry or Add Directory.

A selection dialog displays.

4 If adding files, click Browse and navigate to the appropriate directory and select one or more files
(archives or project files) and click Open. You can press Ctrl+Click to add multiple noncontiguous
files and Shift+Click to add multiple contiguous files.

Instead of browsing to files in the dialog, you can also directly type one or more files to add to the
project’s classpath. Enclose each entry in quotes and separate the entries with spaces. When typing,
you can specify environment variables (see “Using environment variables” on page 66).

If adding a directory, type the directory (specifying environment variables if desired) or click
Browse and select the directory.

5 Click OK.

6 Repeat Step 3 and Step 4 for any other required items.

7 (Optional) To edit a single classpath entry:

7a Select the entry.

7b Click Edit and modify the entry in the dialog.

7c Click OK.

8 When you have added, positioned, and edited all required classpath entries, click OK to close the
Project Settings dialog.

You can now build the open project.
Projects and Archives 73

Using the commands

You can use the items on the Project menu to compile individual Java files, build an entire project, or
create a project archive—or you can right-click a file, project, or archive in the Navigation Pane to run
the popup menu items. The menu items are:

To compile a Java file:

With a Java file open, select Projects>Compile.

exteNd Director compiles the Java file and writes the compile messages to the Output tab of the
Output Pane.

To build a project:

With a project open, select Projects>Build.

exteNd Director writes any build messages to the Output tab of the Output Pane.

To create an archive:

With a project open, select Projects>Build and Archive.

exteNd Director writes any build or archive messages to the Output tab of the Output Pane.

Project menu item What it does

Compile Compiles the currently open Java file.

(Does not perform checking for interdependencies between the currently open
file and other files in the project and its subprojects.)

NOTE: Compile is not available in the popup menu that appears when you
right-click a project file in the Navigation Pane.

Build 1 Compiles all files in the currently open top-level project and any subprojects.
Performs dependency checking on modified files to avoid unnecessary
recompilations.

2 Saves the project’s modified files if the Always save modified files before
compiling preference setting is enabled. For more information, see “Setting
preferences” on page 24.

3 Writes the generated class files to the locations specified in the Project
Settings dialog.

Rebuild All 1 Compiles all files in the currently open top-level project and any subprojects
regardless of what has been modified.

2 Saves the project’s modified files if the Always save modified files before
compiling preference setting is enabled. For more information, see “Setting
preferences” on page 24.

3 Writes the generated class files to the locations specified in the Project
Settings dialog.

Build and Archive 1 Executes the functionality described under the Build command (recompiles
files subject to dependency checking).

2 Creates the archives defined by the top-level project and its subprojects.

Rebuild All and
Archive

1 Executes the functionality described under the Rebuild All command
(recompiles all files in the project).

2 Creates the archives defined by the top-level project and its subprojects.
74 exteNd Director Utility Tools

Building from the command line

You can use a command-line tool (xdbuild) to build projects outside of the exteNd Director development
environment.

To build a project from the command line:

1 Open a command window.

2 Make current the Novell exteNd tools\bin directory (it contains xdbuild).

3 Issue the following command:

xdbuild projectFile operation

where:

NOTE: xdbuild displays messages while it processes the project.

For example, the following command builds and creates the archive for the myApp exteNd Director
project (if changes had been made since the last time the project was built and archived):

xdbuild c:\myProjects\myApp\myApp.spf build

NOTE: The development environment and xdbuild use Apache Ant to do the build processing. For more
information on using Ant—including additional command-line options you can provide with xdbuild and
how to use Ant to do your own customized processing—see “Using Ant” on page 43.

Validating archives
You should validate your archive’s deployment descriptor before attempting to deploy the archive.
Selecting Project>Validate Archive runs Sun’s Verifier class.

Validation process When validating, exteNd Director:

1 Builds and archives the project.

2 Validates the deployment descriptor of the project archive against both the deployment descriptor
DTD (specified by the J2EE specification) and the contents of the archive.

3 Validates the deployment descriptors of any subproject or prebuilt archives specified in the top-
level deployment descriptor.

NOTE: Any subproject that is not listed in the parent project’s deployment descriptor will not be
verified.

4 Writes output messages.

Validation output Validate Archive writes information to:

The Output tab of the Output Pane

The projectname-chk.txt file (located in the project root directory)

Argument Description

projectFile Path to the project (.SPF) file for the project you want to build

operation One of the following:

build—Builds and creates the archive(s) for the specified project (equivalent
to selecting Project>Build and Archive)

rebuild—Rebuilds and creates the archive(s) for the specified project
(equivalent to selecting Project>Rebuild All and Archive)

clean—Removes all files from the project’s build directory and deletes the
archive(s) (no equivalent in the development environment)
Projects and Archives 75

In the Output tab of the Output Pane, you can double-click the line containing the string projectname-
chk.txt to open that file in the Text Editor. The projectname-chk.txt file displays:

The archive that was tested

The type of errors or warnings (if any) that were found

To validate a project archive:

1 With the project open, select Project>Validate Archive.

Selecting this menu item builds the archive and (if successful) validates it.

2 After the process runs, check the Output tab of the Output Pane.

3 If there are validation errors, double-click the following text in the Output Pane:
Look in file "projectdir\projectname-chk.txt" for detailed results on test
assertions.

The projectname-chk.txt file opens.

When you are through noting and fixing the errors, you can try validating the archive again.
76 exteNd Director Utility Tools

3 Source Editors

The Novell exteNd Director development environment provides two sets of editors, one set based on
open-source NetBeans editors and the other set native to the development environment:

This chapter describes the basic functionality of these editors:

Common features

The NetBeans-based editors

The native editors

Specialized features Other chapters in this guide cover the specialized features of the following
editors:

Chapter 4, “XML Editors”

Chapter 5, “XSL Editor”

Chapter 6, “CSS Editor”

Chapter 11, “WSDL Editor”

Chapter 16, “Deployment Descriptor Editor”

Chapter 17, “Deployment Plan Editor”

Common features
This section describes features common to all of the editors:

Standard editing features

Editor preferences

Using text abbreviations

Changing case

Changing spaces, tabs, and indentation

Searching across multiple files

In this set The editors are

NetBeans-based editors Java Editor

JSP Editor

HTML Editor

XML-related editors and CSS Editor

Native editors Text Editor

Text views of the Deployment Descriptor Editor and Deployment Plan
Editor

Nondefault versions of the Java, JSP, and HTML editors
Source Editors 77

Regular expressions for text searches

Standard editing features

All of the editors provide these text-editing features:

Editor preferences

Much of the editor display and behavior can be configured in the Editing tab of the Preferences dialog,
which you can access using Tools>Preferences. This tab contains settings such as font size displayed in
the editors, spaces per tab character, whether to show line numbers, and so on.

For details, see “Editing preferences” on page 27.

Using text abbreviations

You can define abbreviations that can be expanded to one or more lines of text. For example, you can
specify that a word can expand to a predefined language construct. The abbreviation main might be
defined to expand to this code in a Java file:

public static void main(String args[])
{

}

To perform this function Use this menu item

Cut, copy, and paste Under Edit:

Cut (or Ctrl+X)

Copy (or Ctrl+C)

Paste (or Ctrl+V)

Undo and redo Under Edit:

Undo (or Ctrl+Z)

Redo (or Ctrl+Y)

Select all text Under Edit:

Select All (or Ctrl+A)

Toggle the display of line
numbers

Under View:

Line Numbers (or Ctrl+L)

Find and replace Under Edit:

Find (or Ctrl+F)

Find Next (or F3)

Replace (or Ctrl+R)

NOTE: You can also search several files at once. See “Searching across
multiple files” on page 79.

NOTE: The native editors provide support for regular expression search.
See “Regular expressions for text searches” on page 80.

Move cursor to a line Under Edit:

Go To Line (or Ctrl+G)
78 exteNd Director Utility Tools

The abbreviations defined in the exteNd Director development environment appear on the Editing tab of
the Preferences dialog (Tools>Preferences). From this dialog you can define new abbreviations and
change or delete existing abbreviations. For details, see “Abbreviation preferences” on page 27.

Once you have defined an abbreviation, you can replace its name with the associated expanded text by
pressing Ctrl+U (or by right-clicking and selecting Text Tools>Complete Abbreviation).

Changing case

You can easily change the case of text.

Changing spaces, tabs, and indentation

You can manipulate spaces, tabs, and indentation in text.

Searching across multiple files

You can search across multiple files at once. You can search through:

All files open in the exteNd Director development environment

Files in all open projects

Files in a specified open project

Specified files on the file system

To search across multiple files:

1 Select Tools>Find in Files or press Ctrl+Shift+F.

The multiple-search Find dialog displays.

To perform this function Do this

Change case of word containing insertion
point

Right-click and select:

Text Tools>To Uppercase

Text Tools>To Lowercase

To perform this function Do this

Change spaces to tabs or
tabs to spaces

Right-click and select:

Text Tools>Spaces to Tabs

Text Tools>Tabs to Spaces

If you select text before choosing these menu items, only that text is
affected; if nothing is selected, the entire file is affected

Remove trailing whitespace Right-click and select:

Text Tools>Remove Trailing Whitespace

If nothing is selected, this action works on the current line; otherwise,
it acts on all selected lines

Change the indentation level Right-click and select:

Text Tools>Shift Right

Text Tools>Shift Left

You must select text on at least one line before you can select either
of these menu items
Source Editors 79

NOTE: You can also access the multiple-search feature from the standard Find dialog in the native
editors by clicking the Find in Files button.

2 Specify the following:

3 Click OK.

exteNd Director searches through the specified files. All lines of text containing matching text are
listed in the Find tab of the Output Pane.

4 To display the found text, double-click the line of text in the Output Pane. You can view each
instance of found text in its corresponding source file:

Select Tools>Next Occurrence (or press F4)

Select Tools>Previous Occurrence (or press Shift+F4)

Regular expressions for text searches

Sometimes searching for a literal string is too limiting. For example, you may want to search for a word
starting at the beginning of a line or two words separated by any number of spaces. The text-based editors
in the exteNd Director development environment support the use of regular expressions—patterns for
describing string matching—to augment the usual search capabilities. Regular-expression search is
available in the Tools>Find in Files dialog and in the Find dialog invoked from a native editor.

This section provides the following information:

Using regular expressions in search operations

Regular-expression reference

Using regular expressions in search operations

In addition to allowing you to type regular-expression syntax directly into the Search for text box, the
Find dialog has a regular expression helper menu you can use in constructing regular-expression
searches.

Selecting a helper menu item appends to the expression one or more characters that make up a syntactical
building block. For most regular-expression searches, you will need to use several of these syntactical
building blocks in combination with text you type directly into the Search for text box.

For more information on the regular expression helper menu items, see the “Regular-expression
reference” on page 81.

NOTE: When doing regular-expression searches, you will not be able to use all the Find dialog search
options. For example, the Match whole word option becomes meaningless, since this choice is made
within the regular expression itself.

Field Description

Search for The text to search for. You can select previously searched text.

Search in The set of files you want to search through.

Direction Whether to search forward or backward.

Match case Whether the found text must match the case of the search text.

Match whole word Whether the found text must be complete words.

Regular expression Regular expression to search for. For details, see “Regular expressions
for text searches” below.
80 exteNd Director Utility Tools

To use regular expressions in a search operation:

1 Select Tools>Find in Files or select Edit>Find in a native editor.

The Find dialog displays.

2 Select the Regular Expression check box.

OR

Click the right arrow to the right of the Search for text box and make a selection from the regular
expression helper menu.

3 Type a regular expression in the Search for text box, or use a combination of literal text and
selections from the regular expression helper menu to construct your regular expression.

For example:

4 Click OK to begin the search.

Text matching the search criteria appears highlighted in the editor.

Regular-expression reference

The tables in this section explain the syntactical building blocks of regular expressions supported in the
exteNd Director development environment. Many of these building blocks are available on the regular
expression helper menu.

There are several categories of building blocks for regular expressions:

Characters

Character classes

Standard POSIX character classes

Nonstandard POSIX-style character classes

Predefined classes

Boundary matchers

Closure operators

Backreferences

Characters

To match Enter

getText or setText [gs]etText

void followed by main, with any amount of white space between the two
words

void\s+main

Syntax Description

unicodeChar Matches any identical unicode character

\ Used to quote a metacharacter (like *)

\\ Matches a single slash (\) character

\0nnn Matches a given octal character

\xhh Matches a given 8-bit hexadecimal character

\\uhhhh Matches a given 16-bit hexadecimal character

\t Matches an ASCII tab character
Source Editors 81

Character classes

Standard POSIX character classes

Nonstandard POSIX-style character classes

Predefined classes

\n Matches an ASCII newline character

\r Matches an ASCII return character

\f Matches an ASCII formfeed character

Syntax Description

[abc] Simple character class

[a-zA-Z] Character class with ranges

[^abc] Negated character class

Syntax Description

[:alnum:] Alphanumeric characters

[:alpha:] Alphabetic characters

[:cntrl:] Control characters

[:digit:] Numeric characters

[:graph:] Characters that are both printable and visible (for example, a space is printable but not
visible, but an a is both printable and visible)

[:lower:] Lowercase alphabetic characters

[:print:] Printable characters (characters that are not control characters)

[:punct:] Punctuation characters (characters that are not letters, digits, control characters, or
space characters)

[:space:] Space characters (such as space, tab, and formfeed)

[:upper:] Uppercase alphabetic characters

Syntax Description

[:javastart:] Start of a Java identifier

[:javapart:] Part of a Java identifier

Syntax Description

. Matches any character other than newline

Syntax Description
82 exteNd Director Utility Tools

Boundary matchers

Closure operators

All closure operators (+, *, ?, {m,n}) are by default greedy, meaning that they match as many elements
of the string as possible without causing the overall match to fail.

Backreferences

You can refer to the contents of a parenthesized expression within a regular expression itself using a
backreference. The first backreference in a regular expression is denoted by \1, the second by \2, and so
on. For example, the expression:

([0-9]+)=\1

will match any string of the form n=n (like 0=0 or 2=2).

\w Matches a word character (alphanumeric plus "_")

\W Matches a nonword character

\s Matches a whitespace character

\S Matches a nonwhitespace character

\d Matches a digit character

\D Matches a nondigit character

Syntax Description

^ Matches only at the beginning of a line

$ Matches only at the end of a line

\b Matches only at a word boundary

\B Matches only at a nonword boundary

Syntax Description

A* Matches A zero or more times

A+ Matches A one or more times

A? Matches A zero or one time

A{n} Matches A exactly n times

A{n,} Matches A at least n times

A{n,m} Matches A at least n but not more than m times

Syntax Description
Source Editors 83

The NetBeans-based editors
The core editors in the exteNd Director development environment are based on NetBeans, an open-
source Java-based framework and set of editors. These editors are:

Java Editor

JSP Editor

HTML Editor

XML-related editors and CSS Editor (these editors have some different features than the other
NetBeans-based editors; see Chapter 4, “XML Editors”, Chapter 5, “XSL Editor”, Chapter 6, “CSS
Editor”, and Chapter 11, “WSDL Editor”)

NOTE: Previous releases of the exteNd Director development environment used native versions of the
Java, JSP, and HTML editors. The native versions are still provided and you can configure the
development environment to use them instead of the NetBeans versions. See “Using the native Java, JSP,
or HTML editor” on page 89.

The following sections describe the NetBeans-based editors:

Color coding

Code completion

Adding files types edited by NetBeans-based editors

Other editing support

Color coding

The NetBeans-based Java, JSP, and HTML editors color-code syntactic elements to make it easy for you
to read your code.

The Java Editor uses special colors for these elements:

The HTML Editor uses colors for these elements:

Syntactic element Color

Java keyword Blue

Method call Bold black

String literal Red

Numeric literal Gray

Matching brace Magenta

Comment Green italics

Syntactic element Color

Tag Blue

Tag attribute Green

Attribute value Red

Character reference Red

SGML declaration Orange

Matching brace Magenta

Comment Gray italics
84 exteNd Director Utility Tools

The JSP Editor uses the same colors for Java components as the Java Editor and the same colors for
HTML components as the HTML Editor, plus:

Code completion

As you code Java in the Java Editor (or on a JSP page in the JSP Editor), you can use the code completion
feature. As you type, you can display a list of possible classes, methods, variables, and so on that can be
used to complete the Java expression.

The elements displayed in the Java code completion box are defined by parser database files. The
exteNd Director development environment ships with predefined parser files that include the following
classes:

JDK 1.4

Ant 1.5

Novell exteNd Web Services SDK (com.sssw.jbroker.web packages)

You can create your own parser database files to make your own classes available for code completion.
For details, see “Creating parser database files” on page 86.

To complete a Java expression:

1 In the Java Editor or in a block of Java code in the JSP Editor, type the first few characters of the
expression, such as:

String srcname;
srcname.

2 Press Ctrl+Space or Ctrl+\, or pause after typing a period, a comma, or the keyword new or
import (followed by a space).

The code completion box is displayed, providing a scrolling list of possible classes, methods,
variables, and so on that can complete your expression.

In the preceding screen, the box lists methods and fields available for strings.

Syntactic element Color

Block of Java Orange background

JSP tag/directive Bold blue with gray background

JSP tag attribute Green

JSP tag attribute value Magenta

JSP comment Bold gray
Source Editors 85

For methods and fields, the code completion box displays only static or only nonstatic options,
depending on the context of your code. The options are color-coded:

Classes, methods, and exceptions are red

Interfaces are gray

Fields are blue

3 While the code completion box is displayed, you can do the following:

Inserting methods If you select a method with arguments, the method is inserted up to the point of
the first argument. If you specify that argument and type a comma, the completion box opens again so
you can insert in the next argument, and so on.

The code completion box displays the data type of the entered arguments in its title; it displays a question
mark if it can’t recognize the type. If you enter an argument that does not match any of the recognized
argument lists for the method name, all the recognized methods are displayed (along with their argument
list), and an asterisk (*) appears for the unrecognized argument(s) in the title of the code completion box.

Creating parser database files

The items displayed in the code completion box are defined by parser database files. You can have the
exteNd Director development environment create database files of your own classes so that they are
listed in the code completion box when appropriate.

To create the parser database files:

1 Open a project.

2 Build the project.

3 Select Tools>Preferences.

4 Select the Editing tab and expand the Code Completion section.

5 To add your parser files to the same database (directory) as the predefined files, select the directory
in the Java Completion Directories box. To put the files in a different database (directory), click
Add, specify the directory, and select it.

6 Click Create.

The Update Parser Databases dialog displays.

7 Specify the following information:

Do this In order to

Continue to type Dynamically update the list of items in the code completion
box based on your current entry

Select an item and press Enter Insert an item into your code and close the code completion
box

Select an item and press
Shift+Enter

Insert an item into your code and keep the code completion
box open

Press Tab Insert into your code the letters that are common to all the
items in the list, and keep the box open

Press Escape Close the box without inserting anything

Setting Description

Parser database file prefix The names of the parser files that will be created. exteNd
Director will create two files: prefix.jcb and prefix.jcs.
86 exteNd Director Utility Tools

8 Click OK to add the files to the parser database.

If you later make changes to your project and want the changes to be reflected in the code completion
lists, you must recreate the parser database files.

Adding files types edited by NetBeans-based editors

By default, the exteNd Director development environment is configured to edit .java, .jsp, and .html files
with the NetBeans-based editors. You can specify additional file types to edit with these editors. For
example, you might have .htm files that you want to edit with the NetBeans-based HTML Editor. You
would add .htm as a file type for the HTML Editor.

To edit additional file types with NetBeans-based editors:

1 Select Tools>Preferences.

2 Select the Editing tab and expand the Editor Associations section.

This lists the NetBeans kits that are installed and allows you to specify which you want to use.

The list at the bottom maps file extensions to a NetBeans kit.

3 To add a file type, click Add.

4 Specify the file extension (wild cards are not supported) and the appropriate NetBeans editor kit.

5 Click OK.

The additional file type is listed in the Extension mappings table. When you open a file with the
specified extension, it will open in the associated NetBeans-based editor.

NOTE: You can also specify that you do not want to use a NetBeans-based editor to edit .java, .jsp, or
.html files (in which case you get the corresponding native editor). For details, see “Using the native Java,
JSP, or HTML editor” on page 89.

Other editing support

The NetBeans-based editors also provide the following special editing features.

Navigating and selecting text

Java source file directory The root of the directory containing your project’s source files,
such as c:\myProject\src

Classes, Methods, and Fields The visibility of the objects you want to include in the database

Keys Description

Alt+Shift+T Moves the insertion point to the top of the window

Alt+Shift+M Moves the insertion point to the middle of the window

Alt+Shift+B Moves the insertion point to the bottom of the window

Alt+J Selects the word the insertion point is on, or deselects any selected text

Ctrl+Up Arrow Scrolls the window up without moving the insertion point

Ctrl+Down Arrow Scrolls the window down without moving the insertion point

Setting Description
Source Editors 87

Deleting text

Searching for text

Changing indentation

Bookmarks

The native editors
The core editors in the exteNd Director development environment are based on NetBeans and have the
features described above. The following editors are native to the development environment and have a
different feature set:

Text Editor

Text views of the Deployment Descriptor Editor and Deployment Plan Editor

Non-default versions of the Java, JSP, and HTML editors

The following sections describe the native editors.

Keys Description

Ctrl+E Deletes the current line

Ctrl+H Deletes the character preceding the insertion point

Ctrl+W Deletes the current word or the word preceding the insertion point

Keys Description

Ctrl+F3 Searches for the word the insertion point is in and highlights all
occurrences of that word

F3 Moves the insertion point to the next occurrence of the found word

Shift+F3 Moves the insertion point to the previous occurrence of the found word

Alt+Shift+H Toggles highlighting of words

Keys Description

Ctrl+T Shifts text in line containing the insertion point to the right

Ctrl+D Shifts text in line containing the insertion point to the left

Keys Description

Ctrl+F2 Sets or unsets a bookmark at current line

F2 Goes to next bookmark
88 exteNd Director Utility Tools

Changing line ending characters

Multiple clipboard support

Viewing and changing read-only and read-write attributes

Using the native Java, JSP, or HTML editor

Inserting custom tags in a JSP page

Changing line ending characters

You can right-click in the editor and select:

Text Tools>Convert to UNIX Line Endings to convert all DOS-style line ending characters to
UNIX-style line ending characters

Text Tools>Convert to DOS Line Endings to convert all UNIX-style line ending characters to
DOS-style line ending characters

NOTE: Changing line endings causes no visual change in the editor.

Multiple clipboard support

You can copy or move multiple instances of text. The editor keeps track of your most recently used
clipboards. Copying and cutting multiple times creates a clipboard with multiple listings. When you press
Control+Shift+V, the editor lets you select which text to paste.

Viewing and changing read-only and read-write attributes

When you open a file in a native editor, the bottom-right corner of the exteNd Director development
environment displays whether the file has read-only (RO) or read-write (RW) permission. If a file is in
RO mode, you cannot make changes to it in the editor. You can switch between RO and RW mode by
clicking on this indicator.

Switching from RO to RW mode enables you to make changes in the editor. However, the ability to write
to the file (for example, using File>Save) is still controlled by the file system permissions for that file.
You cannot save changes to a file unless the file is marked writable by the file system.

Using the native Java, JSP, or HTML editor

By default, the exteNd Director development environment uses NetBeans-based Java, JSP, and HTML
editors (see “The NetBeans-based editors” on page 84). If you want, you can use the native versions of
these editors in order to get the functionality described above for the native editors (plus, with the native
JSP Editor, you can use the Custom Tag Wizard; see “Inserting custom tags in a JSP page” on page 90).

To use the native Java, JSP, or HTML editors:

1 Select Tools>Preferences.

2 Select the Editing tab and expand the Editor Associations section.

This lists the NetBeans kits that are installed and allows you to specify which you want to use.

The list at the bottom maps file extensions to a NetBeans kit.

3 If you do not want to use the NetBeans-based editor for a file type (and instead want to use the
native editor), select the file type in the Extension mapping table and click Remove.

4 Click OK to confirm.

File types no longer in the list will use the corresponding native editor, providing the features described
for the native editors.
Source Editors 89

Inserting custom tags in a JSP page

In JSP pages, custom tags enable you to extend the functionality provided by standard JSP tags, either by
writing your own tag library or by using a tag library provided by a third party, such as the Jakarta project.
Tag libraries consist of the Java classes that provide functionality for the tags and a tag library descriptor
file, an XML document that describes the tag library.

You import a tag library into a JSP page using a taglib directive that specifies the location of the tag
library descriptor file and declares an identifier that you can use as a prefix to reference the various tags
in that library. For example:

<%@ taglib uri="/WEB-INF/tlds/app.tld" prefix="apptags" %>

references a tag library called app.tld, located in the /WEB-INF/tlds directory in the archive. You can
refer to tags in the library using the apptags prefix. For example, if the tag library contains a tag called
AskUserName, you could create an instance of that tag in the JSP page using this line:

<apptags:AskUserName></apptags:AskUserName>

The Custom Tag Wizard

The native JSP Editor provides a Custom Tag Wizard that enables you to easily insert custom tags into a
JSP page.

To insert JSP custom tags using the Custom Tag Wizard:

1 Create the classes and descriptor files for your tag library.

2 Add the classes and descriptor files to your project. A typical location for class files is a WEB-
INF/classes directory; for descriptor files, it is typically WEB-INF/tlds.

3 Edit the JSP file in which you want to use the custom tags, adding a taglib directive to import the
tag library.

4 Position the cursor at the point in the JSP file where you want to insert a custom tag.

5 Select Edit>Insert Custom Tag>Custom Tag Wizard.

NOTE: You must be using the native JSP Editor to access this wizard. See “Using the native Java,
JSP, or HTML editor” on page 89.

If the page has more than one taglib directive, a list of all tag libraries specified on the page
displays. For example:

Select the tag library you want to use and click Next.

6 If the wizard cannot find the tag library specified, it prompts you to locate that tag library on your
file system.
90 exteNd Director Utility Tools

new http://jakarta.apache.org

7 Once you have specified the tag library, a list of all tags contained in that library displays. For
example:

8 Select the tag you want to insert and click Finish. The custom tag code appears in the JSP file. For
example:

In this example, the following lines were added manually in Step 3:
<%@ taglib uri="SampleTags" prefix="Sample" %>
<%@ taglib uri="CustomTags" prefix="Custom" %>

The wizard added this line to instantiate the custom tag:
<Sample:AttributeTag message=""></Sample:AttributeTag>

9 If necessary, modify the code inserted by the wizard to complete the tag specification. For example,
in the tag in the preceding example you would specify a value for the message attribute.
Source Editors 91

92 exteNd Director Utility Tools

I XML and CSS

These chapters present the exteNd Director utility tools for working with XML and CSS files:

• Chapter 4, “XML Editors”
• Chapter 5, “XSL Editor”
• Chapter 6, “CSS Editor”
93

94 exteNd Director Utility Tools

4 XML Editors

This chapter describes the basic facilities that the Novell exteNd Director development environment
provides to work with XML and XML-related files. It contains the following topics:

About XML

XML in the development environment

Using the XML Editor

Creating and opening XML documents

Working with Schemas and DTDs

Editing an XML document

Validating an XML document

Searching an XML document

Styling an XML document

Maintaining the XML catalog

Keyboard shortcuts

About XML
XML (Extensible Markup Language) is a language designed to facilitate the exchange of data between
computer systems (which can be of different types) and applications on the Web. XML is a project of the
World Wide Web Consortium (W3C). It is a standard, public format.

Unlike HTML, XML is extensible. It is a metalanguage, a language that describes other languages.
With XML, you can define customized markup languages to describe any type of document structure.
XML can be used to specify the structure of anything from a recipe (which might consist of descriptions,
ingredients, preparation steps, and so on) to a Web application (J2EE deployment descriptors are XML
documents).

The definition of an XML document is specified by either a DTD (Document Type Definition) or a
Schema. DTDs, which are older, specify the structure of an XML document. They specify the names of
elements, attributes, and entities that can exist in a conforming XML document. DTDs also specify where
the elements can be used, whether they are required, and so on.

Schemas are more recent and more powerful. They can specify the structure as well as the content (data
types) allowed in XML documents. Unlike DTDs, Schemas are themselves XML documents.

The complete XML standard can be found at www.w3.org/XML.

TIP: If you are new to XML, you might want to read the XML FAQ at www.ucc.ie/xml. Among other topics,
it describes the differences between Schemas and DTDs.
XML Editors 95

new http://www.w3.org/XML
new http://www.ucc.ie/xml

XML in the development environment
The exteNd Director development environment provides broad support for working with XML files,
including:

XML-related wizards

XML File Wizard to create an XML file

XML Schema File Wizard to create a Schema file

DTD to Schema Wizard to convert a DTD to a Schema

XML Catalog File Wizard to create a catalog entry file

XSL File Wizard to create an XSL file

XML-related editors

XML Editor

XML Schema Editor

XML Catalog Editor

XSL Editor

You’ll learn about these XML facilities in this chapter and in the “XSL Editor” chapter.

Using the XML Editor
The XML Editor enables you to:

View and edit XML documents in a syntax-colored Source View or a Tree View

Create and modify document elements easily through the editor’s context-based code completion
and the Schema Guide window

Attach a Schema or DTD to an XML document

Detach a Schema or DTD
Validate an XML document against a Schema or DTD, and check for well-formedness

Convert a DTD to a Schema

Attach and edit a style sheet for an XML document by using the CSS Style Manager

Using the Source View

The Source View is a powerful XML source editor. In addition to standard text editing features (including
cut-and-paste editing, undo and redo, and searching and replacing text) it supports these specialized
features for editing XML files:

Context-sensitive code completion (see “Editing an XML document” on page 106)

Formatting of XML elements (see “Modifying text” on page 119 and “Changing indentation” on
page 120)

Navigating by XML elements (see “Moving the insertion point” on page 117)

Finding matching tags (see “Moving the insertion point” on page 117)

Bookmarks (see “Bookmarks” on page 120)

Specifying colors to display different types of information (see “XML color preferences” on
page 30)

The XML Editor displays the current XML document in Source View if you click the XML Source View
tab.
96 exteNd Director Utility Tools

Using the Tree View

The Tree View has special features designed to help you create valid XML documents quickly and easily
based on XML Schemas or DTDs. The Tree View supports:

Context-sensitive editing (see “Editing an XML document” on page 106)

Cut-and-paste editing (see “Editing nodes” on page 110)

Drag and drop (see “Editing nodes” on page 110)

Searching by name, value, XPath, or text (see “Searching an XML document” on page 112)

Finding matching elements (see “Navigation and display” on page 116)

The XML Editor displays the current XML document in Tree View if you click the XML Tree View tab.
XML Editors 97

Tree View controls

You can use these controls to manipulate and navigate the tree:

Tree View icons

Here’s an explanation of the icons that display in the tree:

Control Description

Expand all nodes.

You can also do this from the context menu; right-click a node and select View>Expand
All.

Collapse all nodes.

You can also do this from the context menu; right-click a node and select View>Collapse
All.

Display the Tree Filters dialog to show or hide particular types of nodes in the tree. The
default is to show all, but you can selectively show or hide any of the following:

Attributes

CDATA

Comments

Namespaces

Processing Instructions

Text

You can also do this from the context menu; right-click a node and select View>Filter.

XPath You can do either of the following:

Enter an XPath expression in this control to navigate to a corresponding node in the
tree

Highlight a node in the tree to see its XPath expression in this control

The XPath control in the XML Editor’s Tree View is a subset of the XPath Navigator
described in the chapter on working with scoped paths and XPaths in Developing exteNd
Director Applications. See that chapter to learn about XPath expressions and how to use
them.

Expand node.

You can also do this from the context menu; right-click a node and select View>Expand
Node.

Collapse node.

You can also do this from the context menu; right-click a node and select View>Collapse
Node.

Icon Description

Document

Element

Attribute

CDATA

Comment
98 exteNd Director Utility Tools

cdScopedPaths.html

Creating and opening XML documents
You can create new XML documents or work with existing ones.

To create a new XML document:

1 Select File>New>File.

2 On the XML tab, select XML file.

3 To create a blank XML document, deselect Use Wizard and click OK. An empty XML document
is created and displayed in the XML Editor.

To use the XML File Wizard, select Use Wizard and click OK. The XML File Wizard displays. Go
through the wizard as follows.

4 Specify the name of the XML file and click Next.

5 Specify a Schema or DTD to associate with the XML file. You can:

Select a Schema URI from the list of Schemas in the XML catalog; the corresponding file name
is displayed in the File Name field

Select a public or system identifier from the list of DTDs in the XML catalog; the corresponding
file name is displayed in the File Name field

Select a Schema or DTD directly from the file system by clicking the browse (...) button and
selecting the file

For more information about the XML catalog, see “Maintaining the XML catalog” on
page 113.

6 If you want the wizard to generate some skeletal contents for your XML file based on the selected
Schema or DTD, check the Create XML from XML Schema or DTD option; when you click
Next, the wizard will prompt you to choose a root element for the document.

7 Click Next.

8 Specify the location of the XML file and click Finish.

The XML Editor displays the Schema Guide.

9 You can use the Schema Guide, or click Close to edit the file manually.

For information about the Schema Guide, see “Using the Schema Guide” on page 103.

Namespace declaration

Processing instruction

Text value of an element; for example, the text value of

<myTag>some text</myTag>

is some text

Search result

Required attribute

Indicates that the XML cannot be parsed

Icon Description
XML Editors 99

To open an XML document:

1 Select File>Open.

2 In the Open dialog, select the XML file and click Open.

The file extension must be .XML or .TLD (for a tag library descriptor file). The selected file opens
in the XML Editor and the XML Editor menu appears on the menu bar.

NOTE: Other kinds of XML files may open in specialized XML editors, such as the XML Catalog
Editor or Deployment Descriptor Editor.

Finding Schemas and DTDs If the XML document specifies a Schema or DTD, the editor searches
for it when opening the document. If the editor finds the Schema or DTD, it attaches it to the XML
document. If the reference is unqualified, the editor first looks in the XML catalog; if the editor doesn’t
find the Schema or DTD there, it looks in the directory containing the XML document.

If the XML Editor cannot find the referenced Schema or DTD, you receive an error message in the
Output Pane and the document is opened without being attached to a Schema or DTD.

For more information, see “Associating Schemas and DTDs with XML documents” on page 100.

NOTE: The window title for an XML document specifies whether the document is attached to a Schema
or DTD.

Working with Schemas and DTDs
To work with the Schemas and DTDs for your XML documents, you need to know about these topics:

Associating Schemas and DTDs with XML documents

Converting a DTD to a Schema

Creating and editing Schemas

Using the Schema Guide

Associating Schemas and DTDs with XML documents

In order to use context-sensitive code completion and to validate an XML document, an XML Schema
(.XSD file) or a DTD (.DTD file) must be attached to the document. If the editor doesn’t attach a Schema
or DTD when opening your XML document, you can use the XML Editor menu to attach one, or you can
manually edit the document to specify a Schema or DTD (and then refresh).

Attaching a Schema or DTD to a document

You can attach a Schema or DTD that is in the XML catalog or elsewhere on the file system to an open
XML document. You can choose to attach the specified Schema or DTD either temporarily or
permanently.

For more information about the XML catalog, see “Maintaining the XML catalog” on page 113.
100 exteNd Director Utility Tools

To attach a Schema or DTD to an XML document:

1 Select XML Editor>Attach Schema or DTD.

2 Specify a Schema or DTD to associate with the XML document. You can:

Select a Schema URI from the list of Schemas in the XML catalog; the corresponding file name
is displayed in the File Name field

Select a public or system identifier from the list of DTDs in the XML catalog; the corresponding
file name is displayed in the File Name field

Select a Schema or DTD directly from the file system by clicking the browse (...) button and
selecting the file

3 Set the Permanent Attachment property to make this association either temporary or permanent:

If you uncheck Permanent Attachment, the Schema or DTD association is only for the purpose
of context editing and validation in the current XML Editor session. The XML document is not
modified.

If you check Permanent Attachment, the XML document is modified to reflect the Schema or
DTD association. Note that this may remove existing Schema references.

4 Click OK.

The Schema or DTD is now attached to your XML document. You can use the XML Editor’s
context support for editing, and you can validate your document.

Errors Any errors that occur when attaching a Schema or DTD are reported in the Output Pane.

Manually specifying a Schema or DTD in a document

Another way to permanently associate your document with a Schema or DTD is to manually edit the
XML and then make the XML Editor aware of the association.

To make a manual association and update the editor:

1 Edit the open XML document to specify the associated Schema or DTD. For example, to associate
the document with a DTD, edit its DOCTYPE statement.

2 Update the editor to use the association by selecting XML Editor>Refresh Schema Handler.

The XML Editor parses the XML document and updates the DTD or Schema information
associated with the document.

Errors Any errors that occur when updating the Schema or DTD information are reported in the Output
Pane.
XML Editors 101

Detaching a Schema or DTD

You can detach a Schema or DTD from an open XML document.

To detach a Schema or DTD:

Select XML Editor>Detach Schema or DTD.

The Schema or DTD definition is no longer used by the XML Editor. Context editing and
validation are no longer provided for the open document.

The Schema or DTD is not permanently detached. The next time you open the XML document, if the
document specifies a Schema or DTD that the editor can find, the Schema or DTD will be attached again.

Converting a DTD to a Schema

Schemas are more powerful than DTDs and are becoming the standard for defining the structure and
allowable content type for XML documents. Also, unlike DTDs, Schemas are themselves XML
documents and can be edited and validated in the XML editors.

The exteNd Director development environment provides support for converting DTDs to Schemas. You
can:

Convert a DTD on the file system to a Schema

Convert the DTD attached to an open XML document to a Schema

To convert a DTD on the file system to a Schema:

1 Select File>New>File.

2 On the XML tab, select DTD to Schema (in the Advanced section) and click OK.

3 Specify the DTD to convert. You can click the ellipsis button to browse the file system for the DTD
file. The file must have the extension .DTD.

4 Specify the name of the Schema file to generate. Don’t provide a file extension; the file will be
given the extension .XSD.

5 Specify the location to save the Schema file. You can click the ellipsis button to browse the file
system.

6 Specify whether you want the Schema opened in the Schema Editor after it is created.

7 Click Finish.

This converts the DTD to a Schema, stores the Schema in the specified location, and displays the
Schema in the Schema Editor (if you specified to open it).

To convert a DTD attached to an open document to a Schema:

1 Attach a DTD to an open XML document.

2 Select XML Editor>Convert DTD to Schema.

A file save dialog displays.

3 Specify the name and location of the Schema. Don’t provide a file extension; the file will be given
the extension .XSD.

4 Click Save.

The Schema is saved.

What to do next You can edit the generated Schema file in the Schema Editor and attach it to an XML
document for context editing and validation.
102 exteNd Director Utility Tools

Creating and editing Schemas

The exteNd Director development environment provides a wizard you can use when you need to create
a new Schema. When you need to modify a Schema, you can use the Schema Editor (which is simply a
more specialized version of the XML Editor).

To create a new Schema:

1 Select File>New>File.

2 On the XML tab, select XML Schema file.

3 To create a new Schema using the wizard, make sure Use Wizard is selected then click OK.

(Alternatively, you can deselect Use Wizard to skip the wizard and immediately get an empty,
untitled Schema in the Schema Editor.)

4 When the XML Schema File Wizard displays, specify a name and location for the new Schema
file then click Finish.

The wizard creates that file and opens it in the Schema Editor (which includes a Schema Editor
menu on the menu bar). You can now start developing your new, empty Schema by using either the
Tree View or the Source View.

To edit a Schema:

1 Select File>Open.

2 In the Open dialog, select the Schema (.XSD) file to edit and click Open.

The file opens in the Schema Editor (which includes a Schema Editor menu on the menu bar). You
can now manipulate this Schema as needed by using either the Tree View or the Source View.

Using the Schema Guide

The XML editors provide context editing functionality to help you work on XML documents. But
context editing doesn’t always supply all the information you might want. For example:

It doesn’t show exactly how a Schema (or DTD) is put together and which elements and
attributes are allowable at different locations.

It doesn’t indicate whether an element must include a sequence of child elements before it is
legal. For example, say element A must have elements B, C, and D as children to be valid. When
you insert an instance of A, the standard context support suggests element B as a valid subelement.
If B is inserted alone, the document becomes invalid until you have inserted C and D. With the
standard context support, you wouldn’t know this unless you performed a full validation of the
document.

If you’re looking for a specific element to insert (for instance, D in the example above), with the
standard context support you wouldn’t be informed about D unless you had inserted B and C first.

If an element contains illegal children, the standard context support doesn’t suggest new
elements to insert, so you must perform a full validation to find out where the problem is and then
correct it.

The Schema Guide addresses these situations.

To invoke the Schema Guide:

1 Go to the Tree View in an XML editor.

2 Do one of the following:

Right-click an element whose contents you want to edit and select Edit>Schema Guide.

Select an element and press Ctrl+Shift+G.

The Schema Guide opens in a new window.
XML Editors 103

The Schema Guide window

The Schema Guide window consists of four parts:

The top of the window displays the XPath for the selected element, its namespace, documentation
for the element’s type (if any, taken from comments in the DTD or annotation elements in the
Schema), and a textual DTD-like description of the element’s allowed contents

For more information about XPaths, see the chapter on working with scoped paths and
XPaths in Developing exteNd Director Applications.

The left side contains a graphical representation of the definition of the selected element

The right side contains a tree representation of the actual instance of the selected element,
including its attributes and children (but not its children’s children)

The bottom of the window contains wizard-style buttons

In the screen shown above, the sixth person element (/personnel/person[6]) was selected when the
Schema Guide was invoked.

About the left pane

The left pane shows the element’s subelements as well as the Schema model groups they belong to
(Choice, Sequence, or All) or the model group declarations (for example, schemaTop).

Choice groups are shown with a horizontal bracket above and below

Sequence groups are shown with a vertical bracket on the left and right

Attributes and All groups are displayed in boxes

The Schema Guide displays how many instances of each subelement and attribute are allowed (such as 0
or more, required, or optional). Positioning the mouse pointer over an element displays a tool tip
describing that element (if there is documentation for it in the Schema or DTD).

The Schema Guide is invoked automatically when you use the XML File Wizard to create an XML
document. You can also invoke it when the document is empty and has a Schema attached. In this
situation, the Schema Guide lists in the left pane possible root elements. If you are using a DTD, the
description in the header will show the suggested root elements (that is, those elements not in the content
model of other elements).

About the right pane

The right pane displays the standard Tree View to show the element that was selected when the Schema
Guide was invoked, its attributes, and its immediate children.
104 exteNd Director Utility Tools

cdScopedPaths.html
cdScopedPaths.html

Subelements that are not legal are shown with a red background. If the selected element contains an
illegal attribute, the element itself is marked red. Clicking a colored element displays a similarly colored
region of text along the bottom of the tree. The text describes the issue in more detail.

In many cases, the Schema Guide can fix validation errors, either by removing illegal elements or
attributes, or by moving an element from a wrong namespace into a correct one. In the following
example, the Schema Guide is indicating that the age element is invalid in the person element. You can
delete the invalid element by clicking Delete.

Namespace errors are treated separately. These errors are common when dealing with Schemas, because
Schemas can contain elements from several namespaces and have different rules for whether specific
elements or attributes are required to be in a namespace. An element that has the correct local name for
validation but whose namespace is incorrect is shown with a yellow background. You can edit the
element to specify the correct namespace.

Adding elements and attributes

Elements When you select an element in the left pane, the right pane shows where that element can be
legally inserted by displaying one or more green nodes in the tree. The following screen shows that an
email element can be legally inserted above or below the existing email element.
XML Editors 105

To insert an element, select one of the green nodes in the tree and click Insert. If you don’t want to insert
the element, simply select another object in the left pane to consider.

If you click an element in the left pane that cannot be legally inserted, you will not see any green nodes
in the right pane.

Attributes To add an attribute, select it in the left pane. If it is legal to add, you will see a green node
in the right pane. Click Insert and specify the attribute’s value.

Looking at different elements

You can navigate the element hierarchy by selecting a subelement in the right pane and clicking Go to.
That subelement becomes the selected element and its definition displays in the left pane; the tree
structure for the selected instance displays in the right pane. You can work with it the same way you
worked with the parent element.

The following screen shows the Schema Guide after you select the person element’s name subelement
and click Go to.

Click Back to return to working with the parent element.

Editing an XML document
You can edit an XML document in either Tree View or Source View. This section describes the editing
features you can use:

About context support

Adding elements

Adding attributes

Adding other nodes

Editing nodes

About context support

If you have attached a Schema or DTD, you can use the XML Editor’s context support. The editor
provides context support in both Tree View and Source View to help you edit your XML documents.
106 exteNd Director Utility Tools

Context support in Tree View

In Tree View, right-click at the appropriate location in the document. In the following illustration, a new
person is being added to the document, and the XML Editor detects from the Schema that the next valid
element is name.

Once the name has been added, the XML Editor presents the new list of valid elements, according to the
Schema.
XML Editors 107

Similarly, the editor presents valid attributes when you have an element selected.

Notice that the editor also provides the choice Other, allowing you to define an entry that does not
conform to the Schema. It displays a dialog to fill in:

Using the Schema Guide In addition to using the Tree View’s context menu to edit your XML
document, you can use the Schema Guide for more comprehensive context support. See “Using the
Schema Guide” on page 103.

Context support in Source View

In Source View, after you type < (to start an element tag) or a single space within an element (to define
an attribute), the editor displays the valid entries (if there are any). You can select the one you want to
insert it. For example:
108 exteNd Director Utility Tools

In the following example, a space is typed in an url element, which displays the valid attribute, href:

Adding elements

To add an element in Tree View:

1 Select the location where you want to insert the element.

2 Right-click and select one of the following:

Edit>Insert New Element to insert an element inside the current element

Edit>Insert New Element Before to insert an element before the current element at the same
level

If valid elements can be inferred from the definition of the document, they will be listed; select the
one you want. Alternatively, you can add an element yourself by choosing Other.

To add an element in Source View:

1 Position the insertion point where you want to insert the element.

2 Type <.

If valid elements can be inferred from the definition of the document, they will be listed; select the
one you want. Alternatively, you can add an element yourself by typing it.

Adding attributes

To add an attribute in Tree View:

1 Select the element to contain the new attribute.

2 Right-click and select Edit>Insert New Attribute.

If valid attributes can be inferred from the definition of the document, they will be listed; select the
one you want. Alternatively, you can add an attribute yourself by choosing Other.

3 Specify a value for the attribute, as appropriate.

To add an attribute in Source View:

1 Position the insertion point inside an element where you want to insert the attribute.

2 Type a space.

If valid attributes can be inferred from the definition of the document, they will be listed; select the
one you want. Alternatively, you can add an attribute yourself by typing it.

3 Specify a value for the attribute, as appropriate.
XML Editors 109

Adding other nodes

To add other nodes in Tree View:

1 Select the location where you want to insert the node.

2 Right-click and select one of the following from the Edit menu:

3 Specify the details for the node, as appropriate.

To add other code in Source View:

For entities other than elements and attributes, you must type the code yourself.

Editing nodes

To copy, move, or delete nodes in Tree View:

Drag and drop to move nodes

OR

Right-click and select one of the following from the Edit menu:

Delete Node to remove a selected node and its contents

Cut or Copy to place a node on the clipboard, then Paste to insert it as the last child of a selected
node or Paste Before to insert it before a selected node

TIP: Cut and Copy also place contents on the system clipboard, so you can paste a textual
representation of the tree contents into other applications. Similarly, you can paste textual XML
contents from other applications into Tree View.

In all cases, you will be informed if the edit would result in an invalid document. You can choose whether
to continue.

To copy, move, or delete code in Source View:

Use the standard editing features (including cut and paste) in the editor.

Reversing changes All editing actions can be undone by selecting Edit>Undo (Ctrl+Z) or redone
by selecting Edit>Redo (Ctrl+Y).

To add this Select one of these

Text Insert New Text

Insert New Text Before

CDATA Insert New CDATA

Insert New CDATA Before

Comment Insert New Comment

Insert New Comment Before

Processing instruction Insert New Processing Instruction

Insert New Processing Instruction Before

Namespace declaration Insert New Namespace Declaration
110 exteNd Director Utility Tools

Validating an XML document
As you type in Source View, the editor automatically highlights in red any areas of the document that are
not well formed. The Tree View creates well-formed documents by design.

You can also manually validate the document (for conformance to a Schema or DTD) and check it for
well-formedness.

To validate an XML document and check for well-formedness:

1 Open the XML document.

2 Select XML Editor>Validate.

NOTE: This menu item is enabled only if the XML document is attached to a Schema or DTD.

The editor validates the XML document against the attached Schema or DTD. It also checks the XML
document for well-formedness.

Results The report identifying any validation errors or malformed statements displays in the Output
Pane. References to errors are reported as XPaths.

In the example above, the id attribute is reported as missing from the first two person elements. The
XPath /personnel/person[1] indicates the first instance of person in the XML document. The XPath
/personnel/person[2] indicates the second instance of person.

For more information about XPaths, see the chapter on working with scoped paths and XPaths in
Developing exteNd Director Applications.

TIP: You can search for specific XPaths in Tree View. See “Searching an XML document” on page 112.

To check only for well-formedness:

1 Open the XML document.

2 Select XML Editor>Well-formedness Check.
XML Editors 111

cdScopedPaths.html

Searching an XML document
You can search your document in either Source View or Tree View.

To search an XML document:

1 In either Source View or Tree View, select Edit>Find or press Ctrl+F.

The Find dialog displays.

2 In Source View, you can perform standard text searches.

In Tree View, you can specify one of the following:

Element name

Attribute name and/or value

XPath (to learn about XPaths, see the chapter on working with scoped paths and XPaths in
Developing exteNd Director Applications)

Text (to search for a string in all attribute values, text nodes, and CDATA nodes)

3 Click OK to search.

If there is a match, the first is selected and all occurrences are indicated:

In Source View, matches are highlighted

In Tree View, matches are indicated with the search result icon

4 To go to the next occurrence, press F3.

Styling an XML document
You can style an XML document via CSS (Cascading Style Sheets). The exteNd Director development
environment provides a CSS Style Manager you can use to attach and edit a style sheet for your XML
document.

To style an XML document:

1 Open the XML document.

2 Select XML Editor>CSS Styling.

The CSS Style Manager displays.
112 exteNd Director Utility Tools

cdScopedPaths.html

For details on attaching and editing style sheets with the CSS Style Manager, see Chapter 6,
“CSS Editor”.

Maintaining the XML catalog
The exteNd Director development environment provides a built-in XML catalog of widely used
Schemas and DTDs. For example, the XML catalog includes the Schemas for XSL, WSDL, and XML
Schemas; the Sun J2EE DTDs; and the Novell exteNd Application Server deployment plan DTDs.

When you open an XML document that references a Schema or DTD, if the Schema or DTD is in the
XML catalog, the editor associates it with the XML document and enables context editing and validation.

Catalog standard The XML catalog is based on the OASIS XML catalog standard. This standard
specifies a format for mapping external identifiers (public and system identifiers) and URI references to
other URI references. This makes it possible to map, for example, a URI of a namespace to a local
Schema file. The standard specifies that catalogs consist of one or more catalog entry files, each file
specifying a set of catalog entries.

For information on the OASIS standard, see www.oasis-open.org/committees/entity/spec.html.

Catalog directories The built-in XML catalog consists of three directories in the Novell exteNd
Common\Resources directory:

SchemaCatalog, which contains a set of Schemas

DTDCatalog, which contains a set of DTD files

CatalogFiles, which contains catalog entry files

Catalog entry files There are four built-in catalog entry files:

dtdcatalog.xml, which lists all the preinstalled DTDs in the DTDCatalog directory

schemacatalog.xml, which lists all the preinstalled Schemas in the SchemaCatalog directory

user-dtdcatalog.xml and user-schemacatalog.xml, which are initially empty; you can use them to
add entries to the catalog

The two DTD-related catalog entry files both point to DTD files in the DTDCatalog directory (that is,
their base directory is ../DTDCatalog). Similarly, the two Schema-related catalog entry files both point
to Schemas in the SchemaCatalog directory (so their base directory is ../SchemaCatalog).

An example Say you are working with the personal.xsd document that contains this declaration:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

Because the built-in catalog entry file schemacatalog.xml lists this URI and maps it to XMLSchema.xsd
in the SchemaCatalog directory, when you open personal.xsd the editor locates its Schema in the local
catalog without having to go out to the Internet for it.

Adding to the catalog

You might have Schemas and/or DTDs that you want to add to the XML catalog so they can be located
when you open XML documents that use them. You can add Schemas and DTDs using the existing
catalog structure or by extending the structure.

Maintaining the existing structure

The easiest way to add entries to the XML catalog is by using the existing catalog directory structure.
XML Editors 113

new http://www.oasis-open.org/committees/entity/spec.html

To add to the XML catalog by using the existing structure:

1 Add the .DTD or .XSD file to the DTDCatalog directory or SchemaCatalog directory.

2 Open the corresponding user-editable catalog entry file in the CatalogFiles directory.

user-dtdcatalog.xml, whose base directory is DTDCatalog

user-schemacatalog.xml, whose base directory is SchemaCatalog

3 Add the catalog entries to the file.

You edit catalog entry files with the XML Catalog Editor, as described in “Using the XML
Catalog Editor” on page 115.

Extending the catalog structure

You can also add entries to the XML catalog by extending the directory structure—that is, by creating
additional directories of Schemas and DTDs and additional catalog entry files.

To add to the XML catalog by extending the directory structure:

1 Add the .DTD and/or .XSD files you want in the catalog to directories on your file system. You
can organize the DTDs and Schemas any way you want, but you will need to create a catalog entry
file for each directory containing DTDs or Schemas.

2 Create catalog entry files for each of the directories by using the XML Catalog File Wizard:

2a Select File>New>File.

2b On the XML tab, select XML Catalog file (in the Advanced section) and click OK.

The XML Catalog File Wizard displays.

2c Specify the name of the catalog entry file.

2d Specify its location. In order to have exteNd Director read the catalog entry file, locate this file
in the CatalogFiles directory.

2e Specify the base URI—that is, the path to the directory containing the DTD or Schema files. It
is through this base URI that exteNd Director is able to find the DTDs or Schemas listed in the
catalog entry file.

2f Click Finish.

The catalog entry file is opened in the XML Catalog Editor.

2g Add entries as described in “Using the XML Catalog Editor” below.
114 exteNd Director Utility Tools

Using the XML Catalog Editor

When you open a catalog entry file, it displays in the XML Catalog Editor. The XML Catalog Editor has
three views:

A Tree View and Source View, which are the same as the corresponding views in the core XML
Editor

A Catalog View, which presents an interface to the catalog entries

The Catalog View has one or more tabs:

A catalog entry file whose base directory is DTDCatalog has two tabs: Public Identifier and
System Identifier

A catalog entry file whose base directory is SchemaCatalog has one tab: Schema URI

A catalog entry file whose base directory is any other directory has three tabs: Schema URI,
Public Identifier, and System Identifier

To add a catalog entry:

Depending on whether the entry is for a Schema or a DTD, select the appropriate tab and click
Insert.

For a Schema, specify the Schema URI and the resolved URI

For a DTD, specify the public or system identifier and the resolved URI

You can also edit and remove entries from the catalog entry file.

CAUTION: Don’t delete preexisting DTDs or Schemas from the catalog; the exteNd Director
development environment may require them.

To edit an entry:

Double-click the entry and make the edits you want. If you double-click a resolved URI value, the
Browse button is enabled, allowing you to pick another file.

To delete an entry:

Select the entry and click Delete.

The entry is removed from the catalog entry file (the Schema or DTD itself is unaffected).
XML Editors 115

Keyboard shortcuts
Here are the keyboard shortcuts provided in the XML editors.

In Tree View

Navigation and display

Searching for text

Editing text

Keys Description

Ctrl+A Expands all

Ctrl+Shift+A Collapses all

Ctrl+E Expands element group

Ctrl+Shift+E Collapses element group

Up Arrow Navigates to previous visible node

Down Arrow Navigates to next visible node

Left Arrow Collapses element group

Right Arrow Expands element group

Alt+Up Arrow Navigates to previous sibling (element within an element group)

Alt+Down Arrow Navigates to next sibling

Alt+Left Arrow Navigates to parent

Alt+Right Arrow Navigates to first child

Ctrl+Shift+G Displays the Schema Guide for the selected element

Keys Description

Ctrl+F Shows Find dialog

F3 Navigates to next search result

Alt+Shift+H Toggles display of search result icon

Ctrl+Alt+Shift+H Clears the search

Keys Description

Ctrl+X (Cut) Cuts the current selection to the clipboard

Ctrl+C (Copy) Copies the current selection to the clipboard

Ctrl+V (Paste) Pastes the contents of the clipboard at the insertion point
116 exteNd Director Utility Tools

In Source View

Moving the insertion point

Ctrl+Shift+V Pastes the contents of the clipboard as the last child of the selected element

Delete (Delete) Deletes the current selection

F5 Refreshes and collapses the tree

Ctrl+Z Reverses editor actions (except save)

Ctrl+Y Reverses Undo actions

Ctrl+L Inserts new element as last child

Ctrl+D Inserts new CDATA as last child

Ctrl+Shift+L Inserts new element before selected node

Ctrl+Shift+D Inserts new CDATA before selected node

Ctrl+K Inserts new attribute

Ctrl+M Inserts new namespace declaration

Keys Description

Left Arrow, Right
Arrow

Moves the insertion point one character to the left or right

Ctrl+Right Arrow Moves the insertion point one word to the right

Ctrl+Left Arrow Moves the insertion point one word to the left

Home Moves the insertion point to the beginning of the line

End Moves the insertion point to the end of the line

Up Arrow Moves the insertion point one line up

Down Arrow Moves the insertion point one line down

Alt+Shift+T Moves the insertion point to the top of the window

Alt+Shift+M Moves the insertion point to the middle of the window

Alt+Shift+B Moves the insertion point to the bottom of the window

Ctrl+Home Moves the insertion point to the beginning of the document

Ctrl+End Moves the insertion point to the end of the document

PgUp Moves the insertion point one page up

PgDn Moves the insertion point one page down

Alt+Shift+F8 Moves the insertion point to matching begin/end tag

Alt+Up Arrow Moves the insertion point to previous sibling (element within an element
group)

Alt+Down Arrow Moves the insertion point to next sibling

Keys Description
XML Editors 117

Selecting text

Scrolling text

Alt+Right Arrow Moves the insertion point to first child

Alt+Left Arrow Moves the insertion point to parent

Ctrl+G Displays Go to Line dialog

Ctrl+L Toggles display of line numbers

Keys Description

Ctrl+A Selects all text in the document

Shift+Right Arrow Selects the character to the right of the insertion point

Shift+Left Arrow Selects the character to the left of the insertion point

Alt+J Selects the word the insertion point is on, or deselects any selected text

Ctrl+Shift+Right Arrow Selects the word to the right

Ctrl+Shift+Left Arrow Selects the word to the left

Shift+Home Selects text to the beginning of the line

Shift+End Selects text to the end of the line

Shift+Up Arrow Selects text to the previous line

Shift+Down Arrow Selects text to the next line

Ctrl+Shift+Home Selects text to the beginning of the document

Ctrl+Shift+End Selects text to the end of the document

Shift+PgUp Selects text one page up

Shift+PgDn Selects text one page down

Keys Description

Alt+U T Scrolls line containing insertion point to top of window

TIP: Press and release Alt+U, then press T

Alt+U M Scrolls line containing insertion point to middle of window

TIP: Press and release Alt+U, then press M

Alt+U B Scrolls line containing insertion point to bottom of window

TIP: Press and release Alt+U, then press B

Ctrl+Up Arrow Scrolls the window up without moving the insertion point

Ctrl+Down Arrow Scrolls the window down without moving the insertion point

Keys Description
118 exteNd Director Utility Tools

Modifying text

Cutting, copying, pasting, and deleting text

Keys Description

Insert Switches between insert text and overwrite text modes

Alt+U U Makes the selected characters or the character to the right of the insertion point
uppercase

TIP: Press and release Alt+U, then press U

Alt+U L Makes the selected characters or the character to the right of the insertion point
lowercase

TIP: Press and release Alt+U, then press L

Alt+U R Reverses the case of the selected characters or the character to the right of the insertion
point

TIP: Press and release Alt+U, then press R

F11 Reformats the tag the insertion point is on

Shift+F11 Reformats the entire document

Keys Description

Ctrl+Z (Undo) Reverses (one at a time) a series of editor actions, except Save

Ctrl+Y (Redo) Reverses (one at a time) a series of Undo commands

Ctrl+X (Cut) Cuts the current selection and places it on the clipboard

Ctrl+C (Copy) Copies the current selection to the clipboard

Ctrl+V (Paste) Pastes the contents of the clipboard at the insertion point

Delete (Delete) Deletes the current selection

Ctrl+E Deletes the current line

Ctrl+H Deletes the character preceding the insertion point

Ctrl+Shift+Backspace Deletes text in the following sequence:

1 Text preceding insertion point on same line

2 Indentation on same line

3 Line break

4 Text on previous line

Ctrl+W Deletes the current word or the word preceding the insertion point
XML Editors 119

Searching for text

Changing indentation

Bookmarks

In Catalog View (XML Catalog Editor)

Modifying text

Keys Description

Ctrl+F3 Searches for the word the insertion point is in and highlights all occurrences of that
word

F3 Moves the insertion point to the next occurrence of the found word

Shift+F3 Moves the insertion point to the previous occurrence of the found word

Alt+Shift+H Toggles highlighting of words

Ctrl+F Displays Find dialog

Ctrl+R Displays Replace dialog

Keys Description

Tab Shifts all text to right of insertion point to the right

Ctrl+T Shifts text in line containing the insertion point to the right

Ctrl+D Shifts text in line containing the insertion point to the left

Keys Description

Ctrl+F2 Sets or unsets a bookmark at current line

F2 Goes to next bookmark

Keys Description

Ctrl+B Displays dialog for changing the base URI (the path to the directory containing the
DTD or Schema files for the catalog entry file)
120 exteNd Director Utility Tools

5 XSL Editor

This chapter describes the facilities that the Novell exteNd Director development environment provides
to work with XSL files. It contains the following topics:

About XSL

XSL in the development environment

Creating and opening XSL files

Using the XSL Editor

About XSL
XSL (eXtensible Stylesheet Language) is a standard language for expressing style sheets. You can
develop and use XSL style sheets to control how the contents of XML documents are displayed.

XSL includes the following features:

XSLT, a language for transforming XML documents

XPath, a language for specifying parts of an XML document

XSL Formatting Objects, a vocabulary for formatting XML documents

The complete XSL standard can be found at www.w3.org/Style/XSL.

The power of XSLT Document transformation is the most important feature of XSL. The XSLT
language was originally provided to perform complex styling operations, but you are now more likely to
use it as a general purpose XML processing language. In particular, XSLT is useful for transforming an
XML document into a different XML, XHTML, HTML, or other document.

XSLT works by transforming the XML input document (represented as a source tree) into the output
document (represented as a result tree). You define templates that:

Select (via XPaths) which parts of the source to process

Specify the transformations to perform on those parts

XSL in the development environment
The exteNd Director development environment provides the following tools for working with XSL:

XSL File Wizard for creating an XSL (style sheet) file

XSL Editor for developing and testing an XSL file, including the transformations (XSLT
processing) you want it to perform
XSL Editor 121

new http://www.w3.org/Style/XSL/

Required files With either tool, you’ll need the following files before you begin (unless you plan to
write your XSLT code manually):

Creating and opening XSL files
You can create new XSL files or work with existing ones.

To create a new XSL file:

1 Select File>New>File.

2 On the XML tab, select XSL file.

3 To create a blank XSL file, deselect Use Wizard and click OK. An empty XSL file is created and
displayed in the XSL Editor.

To use the XSL File Wizard, select Use Wizard and click OK. The XSL File Wizard displays. Go
through the wizard as follows.

4 Specify the name of the XSL file and click Next.

5 Specify the location of the XSL file and click Next.

6 Specify the XML source document and click Next.

7 Specify the XML result document and click Finish.

The XSL Editor displays with your new XSL file open.

To open an XSL file:

1 Select File>Open.

2 In the Open dialog, select the XSL file and click Open.

The file extension must be .XSL. The selected file opens in the XSL Editor and the XSL Editor
menu appears on the menu bar.

Using the XSL Editor
The XSL Editor provides two views for working with an XSL file:

The Designer tab displays a set of panes that work together to help you develop and test your XSL
file and its XSLT processing in a graphical way:

You map nodes from the Source tree pane to nodes in the Result tree pane to create template
rules

The template rules you create display in the Transformation pane

When you test your transformations, the Debugging pane displays the output

The XSL Source View tab displays a source editor that you can use to examine and edit your XSLT
code directly. The XSL Source View offers the same standard text editing features that are available
in the XML Editor’s Source View (for details, see Chapter 4, “XML Editors”).

Here’s an example of using the XSL Editor’s Designer to develop a style sheet that transforms one XML
file (containing information about birds) into another XML file with a different format:

File Purpose

XML source document Provides the XML to be transformed

XML result document Provides a sample of the XML to be produced; you’ll map the source
document’s XML tree to the result document’s XML tree in order to
generate the XSLT code you need
122 exteNd Director Utility Tools

XSL Editor 123

124 exteNd Director Utility Tools

6 CSS Editor

This chapter describes the facilities that the Novell exteNd Director development environment provides
to work with CSS files. It contains the following topics:

About CSS

CSS in the development environment

Creating and opening CSS files

Using the CSS Editor

Using the CSS Style Manager dialog

About CSS
CSS (Cascading Style Sheets) is a mechanism for applying styles (such as fonts, colors, and spacing) to
Web documents (including HTML, XHTML, and XML files). You define a style sheet to specify the
styling you want for a document. That style sheet can either be embedded in the document, or stored
externally in a separate CSS file and attached to the document. The advantage of CSS files is that they
enable you to reuse a style sheet with multiple documents.

The complete CSS standard can be found at www.w3.org/Style/CSS.

Inside a style sheet A style sheet consists of rules, which identify specific parts of a document and
the styling to apply to them. Here’s a typical rule:

.glossaryitem {font-weight: bold; color: slategray;}

In this rule:

.glossaryitem is a selector that specifies a class of entities in the document; this rule will apply
only to those entities. CSS provides several different kinds of selectors to give you flexibility when
targeting your styling.

font-weight is a style property to set. CSS provides many different properties to give you control
over each aspect of style.

bold is the value to set for the property.

Multiple rules in a style sheet can apply to a particular entity in a document. When this happens, the
styling defined by those rules cascades to affect multiple properties of the entity.

Sample style sheet The following style sheet defines several different rules; these rules use various
kinds of selectors and properties to specify what to style and how.

body {margin-top: 0pt;}

h1
 {
 font-family: arial, verdana, helvetica, sans-serif;
 font-size: 12pt;
 text-align: left;
 margin-top: 0pt;
CSS Editor 125

new http://www.w3.org/Style/CSS/

 margin-bottom: 9pt;
 padding-top: 0pt;
 padding-bottom: 0pt;
 }

p, ol, ul, dl, dt, dd, table, td, th, select, input
 {
 font-size: 8pt;
 font-family: verdana, arial, helvetica, sans-serif;
 }

p.tablepara
 {
 padding-top: 0pt;
 padding-bottom: 0pt;
 margin-top: 1pt;
 margin-bottom: 1pt;
 }

.glossaryitem {font-weight: bold; color: slategray;}

#title
 {
 position: absolute;
 top: 25px;
 left: 4px;
 width: 208px;
 visibility: visible
 }

CSS in the development environment
The exteNd Director development environment provides the following tools for working with CSS:

CSS File Wizard for creating a CSS (style sheet) file

CSS Editor for examining and editing a CSS file

CSS Style Manager, a dialog that you can access from other exteNd Director tools when CSS
styling is called for

Creating and opening CSS files
You can create new CSS files or work with existing ones.

To create a new CSS file:

1 Select File>New>File.

2 On the Portlet tab, select CSS file.

3 To create a blank CSS file, deselect Use Wizard and click OK. An empty CSS file is created and
displayed in the CSS Editor.

To use the CSS File Wizard, select Use Wizard and click OK. The CSS File Wizard displays. Go
through the wizard as follows.

4 Specify the name of the CSS file.

5 Select which wizard pages you want to see to specify style sheet features:

Template

Vocabulary
126 exteNd Director Utility Tools

Basic appearance

Button appearance

Link appearance

Headings appearance

This enables you to focus on just those style sheet features you want to specify right now. (You can
always specify others later in the CSS Editor.)

6 Click Next.

7 Specify the location of the CSS file and click Next.

8 The wizard now displays the pages you selected, in order. Complete each page and click Next.

9 When you complete the last page, click Finish.

The CSS Editor displays with your new CSS file open.

To open a CSS file:

1 Select File>Open.

2 In the Open dialog, select the CSS file and click Open.

The file extension must be .CSS. The selected file opens in the CSS Editor and the CSS Editor
menu appears on the menu bar.

Using the CSS Editor
The CSS Editor provides two views for working with a CSS file:

The CSS View tab enables you to develop and examine your style sheet in a graphical way. You
can:

Manipulate the list of rules for the style sheet

Specify the selectors for any rule

Set the properties for any rule

The Source View tab displays a source editor that you can use to examine and edit your CSS code
directly. The Source View offers the same standard text editing features that are available in the
XML Editor’s Source View (for details, see Chapter 4, “XML Editors”).

Here’s an example of using the CSS Editor’s CSS View to develop a simple style sheet:
CSS Editor 127

Using the CSS Style Manager dialog
The CSS Style Manager is a dialog you can access from other exteNd Director tools when CSS styling is
called for (such as while you’re editing an XML file or XHTML file). This dialog enables you to:

Attach a new or existing style sheet

Detach a style sheet

Edit a style sheet (either in the dialog or by opening the CSS Editor)
128 exteNd Director Utility Tools

II Web Services

These chapters present the exteNd Director utility tools for working with Web Services:

• Chapter 7, “Web Service Basics”
• Chapter 8, “Generating Web Services”
• Chapter 9, “Generating Web Service Consumers”
• Chapter 10, “Web Service Wizard”
• Chapter 11, “WSDL Editor”
• Chapter 12, “Registry Manager”

Related link:

• Novell exteNd Web Services SDK
129

new ../../../Start_WSSDK_Help.html

130 exteNd Director Utility Tools

7 Web Service Basics

Web Services enable businesses to share application functionality regardless of the source language,
operating system, or hardware used to create that functionality. Web Services overcome implementation
incompatibilities by using standard Internet protocols and XML-based messaging to provide
intercomponent communication.

This chapter gives an overview of Web Service technologies and how the Novell exteNd Director
development environment supports the creation and use of Web Services. Topics include:

About Web Services

Web Service providers, consumers, and registries

Providing Web Services

Using Web Services

Using Web Service registries

Learning more about Web Services

Popular Web Service implementations

Web Service development tools

About Web Services
Web Services are modular software components whose application functionality is accessible over the
Web using Simple Object Access Protocol (SOAP), a standardized XML-based messaging protocol.

Applications invoke Web Services like remote procedure calls, except that the procedure call and
response are handled using SOAP messages embedded in HTTP requests and responses. An
application calls a Web Service by sending a SOAP message embedded in an HTTP request to a Web
location associated with that service. The Web Service performs the application logic for that message
and then returns any application output in the form of another SOAP message embedded in an HTTP
response.

To learn more about SOAP messages, see www.w3.org/TR/SOAP.
Web Service Basics 131

new http://www.w3.org/TR/SOAP

Web Service providers, consumers, and registries
The Web Service architecture typically consists of Web Service providers, consumers, and registries:

A Web Service provider is an organization that creates and hosts Web Services. Typically, a provider
publishes information about their organization and the services they offer in a Web Service registry that
can be queried by members of the organization or possibly by other businesses.

A Web Service consumer finds a Web Service (typically by querying a Web Service registry) then runs
the service by establishing a connection to the provider. This is called binding to a Web Service.

A Web Service registry is a collection of business and service information that is readily accessible to
providers and consumers, through programmatic publishing and querying interfaces.

Providing Web Services
A Web Service provider:

1 Creates and deploys Web Service components

2 Creates a WSDL file to describe the Web Service

3 Publishes information about the Web Service so prospective consumers can discover and use it

Creating Web Service components

A provider creates the application logic components and deploys them to a network-accessible location,
typically using a Web application server. To make these logic components into a Web Service, the
provider creates and deploys a SOAP message-handling interface that enables HTTP requests
containing well-defined SOAP messages to invoke the appropriate Web Service functionality.

When a consumer application accesses the service by sending a SOAP message embedded in an HTTP
request, the provider runs the application logic and returns any application output in another SOAP
message embedded in an HTTP response. For example:
132 exteNd Director Utility Tools

Creating a WSDL file

To specify information about a Web Service in a standard form, the provider creates a Web Services
Description Language (WSDL) document describing its characteristics. WSDL is an XML-based
format that describes a Web Service by using these elements:

In WSDL, an endpoint specifies a network address as well as the protocol and data format of messages
exchanged with that address.

Given the flexibility of the WSDL specification, the information in a WSDL document can become
complicated. For easier understanding, think of a WSDL document as essentially specifying the interface
and port location of a Web Service.

To learn more about WSDL, see www.w3.org/TR/wsdl.

Publishing Web Service information

Once a Web Service has been created and deployed, the provider can publish information about the
service and the provider organization in one or more registries. This enables prospective consumers to
discover that the service is available and learn how to use it.

For details, see “Using Web Service registries” on page 134.

Element Contains definitions of

Type Data types specified in message content

Message Data formats of messages

Port type Endpoint types and the operations they support

Binding Message formats and protocol details for a particular port type

Port A network address for each endpoint

Service Groups of related endpoints
Web Service Basics 133

new http://www.w3c.org/TR/wsdl

Another way to publish Web Service information is to provide the information directly to specific
consumers by using Web pages, e-mail, personal communications, and so on. This is called direct
publishing.

Using Web Services
A Web Service consumer creates applications that use Web Services. Typically, a consumer finds an
appropriate Web Service by querying a Web Service registry (see “Using Web Service registries” on
page 134).

From the WSDL information provided, the consumer can create the SOAP message-handling code
needed to use the Web Service. When the consumer application calls the Web Service, the SOAP
message-handling code binds to that service, as follows:

1 Establishes an HTTP connection to the provider

2 Creates and sends a SOAP message embedded in an HTTP request, instructing the provider to
invoke the appropriate Web Service application logic

3 If the HTTP response contains a SOAP message, converts that message (into a data format
understandable to the consumer application) then returns the data to the application

To the consumer application, this is similar to calling a remote method. However, the interaction between
the application code and the Web Service uses SOAP messaging embedded in a standard HTTP request
and response. For example:

Using Web Service registries
A Web Service registry is a repository of Web Service information that can be accessed programmatically
over a network. Both providers and consumers can use Web Service registries:

Providers can publish information about their organization and services to registries, making
them visible to prospective consumers.

Consumers can query registries to find the services and businesses that fit their needs and to
retrieve provider-supplied information about those services (such as where and how to access them,
the WSDL representation, and so on).
134 exteNd Director Utility Tools

About registries

A registry can contain these kinds of information:

Registry data formats

Registries store their business and service information in a standard XML-based format such as
Universal Description, Discovery and Integration (UDDI) or Electronic Business XML (ebXML).
Businesses hosting registries typically provide Web page, GUI, or programmatic interfaces for
publishing to and querying the registry (so providers and consumers don’t need to know details about the
internal registry implementation).

To learn more about UDDI, see www.uddi.org. To learn more about ebXML, see www.ebxml.org.

Public and local registries

Businesses may use public or local registries:

A public registry is typically visible to anyone on the Web and contains information about
numerous companies and services. It may implement varying degrees of authentication and
authorization security for publishing and querying.

A local registry might be limited to local network access, enabling a business to share Web
Services internally without exposing them to consumers outside the organization.

Learning more about Web Services
Here’s a summary of Web sites you can visit to find out more about specific Web Service technologies:

Category Includes

Business information Name, industry or product category, geographic location, and business
identification numbers (such as NAICS or DUNS numbers)

Web Service information General description, business process or category, and technical
information (about connecting to and communicating with the Web
Services for a given business)

Business service
information

Corporate home page URL, sales and technical support contact
information, business services not hosted on the Web, and so forth

Specification pointers URL addresses of WSDL for services and other technical documents

Topic Site

SOAP www.w3.org/TR/SOAP

HTTP www.w3.org/Protocols

WSDL www.w3.org/TR/wsdl

UDDI www.uddi.org

ebXML www.ebxml.org
Web Service Basics 135

new http://www.w3.org/TR/SOAP
new http://www.w3c.org/Protocols
new http://www.w3c.org/TR/wsdl
new http://www.uddi.org
new http://www.ebxml.org
new http://www.uddi.org
new http://www.ebxml.org

Popular Web Service implementations
While it’s important to know about the underlying Web Service technologies (SOAP, WSDL, UDDI,
ebXML, and so on), it’s usually not efficient to develop applications at that level. As a result, higher-level
implementations have emerged to make those technologies more accessible by wrapping them in familiar
constructs. These implementations include:

J2EE Java 2 Enterprise Edition provides Web Service support through its JAX-RPC (Java API
for XML-based RPC) specification.

.NET Microsoft provides Web Service support through its .NET platform.

For example, a programmer familiar with J2EE can more easily use a JAX-RPC implementation to
develop and access Web Services. There’s no need to become a SOAP expert or process SOAP messages
manually.

When properly designed and built, Web Services should be interoperable across different
implementations. For instance, a JAX-RPC client should be able to access a .NET Web Service and a
.NET client should be able to access a JAX-RPC Web Service.

Web Service development tools
The exteNd Director development environment provides tools for creating, deploying, and maintaining
Web Services based on the JAX-RPC standard. That means Web Services are packaged in J2EE Web
archives (WARs) that can be deployed to a J2EE server. You can also develop Java-based Web Service
consumers that comply with JAX-RPC.

To help you implement Web Services and Web Service consumers, the development environment
includes the following core facilities:

On top of those features, exteNd Director adds higher-level facilities that make it easy to take full
advantage of Web Services in your applications.

To learn about these other Web Service facilities of exteNd Director, see the Pageflow and Form
Guide.

Web Services SDK

The Novell exteNd Web Services SDK is a JAX-RPC implementation that includes compilers and a
runtime environment for developing and executing Web Service provider and consumer applications.

The Web Service Wizard uses the Web Services SDK compilers to create Web Service components
(skeletons, ties, stubs) and WSDL files. Developers can also invoke these compilers separately from the
command line.

Facility Description

Web Services SDK Core technologies for exteNd Web Service support, including compilers
and SOAP runtime based on JAX-RPC

Web Service Wizard Tool that helps you invoke the Web Services SDK compilers to generate
Java classes and WSDL files for Web Services and Web Service
consumers

Registry Manager Tool for querying and publishing to Web Service registries

WSDL Wizard and Editor Tools for creating and editing WSDL files
136 exteNd Director Utility Tools

PageFlowGuideTOC.html
PageFlowGuideTOC.html
new http://java.sun.com/xml/jaxrpc
new http://www.microsoft.com/net

Both provider and consumer deploy wssdk.jar (and some supporting JARs) with their applications to
provide the necessary runtime environment. This includes the SOAP engine that runs when stub and
skeleton components pass SOAP messages between consumer and provider applications.

For more information, see the Web Services SDK help.

Web Service Wizard

The Web Service Wizard enables you to create Web Service components from Java classes or WSDL
files. It generates the Java remote interface for accessing an object as well as skeleton, tie, and stub Java
classes that handle SOAP message communication between a consumer application and a Web Service.
The generated code is based on JAX-RPC.

The provider deploys a Web Service as a Web archive (WAR) in which the skeleton and tie classes
implement a servlet that processes incoming SOAP messages. A consumer application accesses Web
Service functionality by calling methods in the stub class, which sends SOAP messages to the server.

For more information, see:

Chapter 8, “Generating Web Services”

Chapter 9, “Generating Web Service Consumers”

Chapter 10, “Web Service Wizard”

Registry Manager

The Registry Manager helps providers publish to Web Service registries. It helps consumers query Web
Service registries.

For more information, see Chapter 12, “Registry Manager”.

WSDL Wizard and Editor

The WSDL Wizard helps providers create new WSDL documents. The WSDL Editor helps providers
edit and use existing WSDL documents.

For more information, see Chapter 11, “WSDL Editor”.
Web Service Basics 137

new ../../../Start_WSSDK_Help.html

138 exteNd Director Utility Tools

8 Generating Web Services

This chapter walks you through the basic steps and typical scenarios for using the Web Service Wizard
to generate Web Services from a variety of sources. Topics include:

Basics

Steps

Choosing an implementation model

Scenario: starting with a Java class

To learn about the steps and scenarios for using the wizard when you want a program to access Web
Services, see Chapter 9, “Generating Web Service Consumers”.

Basics
You can use the Web Service Wizard of the Novell exteNd Director development environment to develop
standard (SOAP-based) Web Services that are implemented as Java remote objects (using RMI). The
wizard generates Java source files based on JAX-RPC (Java API for XML-based RPC) and the Novell
exteNd Web Services SDK (the JAX-RPC implementation included with Novell exteNd). JAX-RPC is
the J2EE specification that provides Web Service support.

The generated files include a servlet to handle access to your Web Service and its methods from HTTP
SOAP requests. You can use the generated files as is or modify them when necessary. The advantage of
this Java-oriented approach is that you can deal with Web Services using the familiar technologies of
RMI and J2EE instead of coding lower-level SOAP APIs.

For an introduction to Web Service concepts, standards, and technologies, see Chapter 7, “Web
Service Basics”.

For detailed documentation on the wizard, see Chapter 10, “Web Service Wizard”.

Steps
The complete development process involves:

1 Preparing to generate

2 Generating Web Service files

3 Examining the generated files

4 Editing the generated files

5 Using the generated files
Generating Web Services 139

new http://java.sun.com/xml/jaxrpc
new ../../../Start_WSSDK_Help.html

Preparing to generate

To prepare for using the Web Service Wizard, you:

1 Set up a WAR project in the exteNd Director development environment.

For each Web Service you generate, the wizard creates a servlet to handle access to that Web
Service (from HTTP SOAP requests). As a result, a WAR is required to package your Web Services
(one or more per WAR) for deployment to a J2EE server where they will run.

A possible variation is to set up a JAR subproject in your WAR and use that JAR to contain the
servlet and other classes for a Web Service. In any case, the servlet mapping will be in the WAR’s
deployment descriptor (web.xml).

(Note that the approach of using a JAR subproject is not currently supported by the Web Service
Wizard when you generate a Web Service from a WSDL file. In this situation, it only supports a
WAR project.)

2 Add these files to the project:

Files Details

Source files, classes, or archives
from which your Web Services are
to be generated

You can generate a Web Service from any one of the
following:

A JavaBean or other Java class

An EJB session bean

A Java remote interface

A WSDL file

No matter which one you provide, it should (at minimum)
declare the methods you want your generated Web
Service to expose.

Compile your Java files If you provide any Java files,
make sure you compile them in your project before starting
the Web Service Wizard (because the wizard works from
compiled classes).

No overloaded methods Overloaded method names
are not allowed in Web Service interfaces (as of WSDL
1.2). If you’re generating from:

A JavaBean or other Java class, the wizard lets you pick
no more than one method with a given name

An EJB, remote interface, or earlier WSDL file, you must
remove any overloaded method names defined in that
file before you start the wizard
140 exteNd Director Utility Tools

3 Edit the classpath of your project so you can compile your Web Service classes once they’re
generated and edited. You’ll need to include:

wssdk.jar and the supporting JARs listed in Step 2 (as appropriate)

j2ee_api_1_n.jar (automatically added when you create a WAR project)

Any application-specific entries (such as an EJB-client JAR file you’ve provided for a session
bean Web Service)

Generating Web Service files

Once you’ve set up your WAR project, you’re ready to use the Web Service Wizard. The wizard produces
one Web Service at a time, so you’ll need to use it multiple times if you have several to develop.

Each time you launch the wizard, it takes input from you about the kind of Web Service to produce. It
then generates a set of source files that together make up the Web Service. Here’s a summary of the
process:

1 Select File>New>File to display the New File dialog and go to the Web Services tab.

2 Launch the Web Service Wizard by doing one of the following:

3 When the wizard prompts you for project location information, specify:

Archives required by the Web
Services SDK:

wssdk.jar, which contains the
Web Services SDK API classes
needed at runtime

jakarta-regexp-1.2.jar (when
using a pre-1.4 JDK and XML
Schema with patterns)

xercesImpl.jar (when using
SilverStream eXtend Application
Server 4.x)

xmlParserAPIs.jar (when using
SilverStream eXtend Application
Server 4.x)

xmlsec.jar (when using XML
Signature)

You’ll find these JARs in the Novell exteNd
tools\compilelib directory. Depending on your J2EE
server configuration, you should do one of the following:

Add them to the WEB-INF/lib directory of your WAR
project

Add them to the server classpath of your J2EE server

For more information, see “Deploying Web Services”
on page 283.

To generate a Web Service from Select

One of these:

A JavaBean or other Java class

An EJB session bean

A Java remote interface

New Web Service

A WSDL file Existing Web Service

As its name suggests, this item is mainly used to generate
Web Service consumers that access deployed Web
Services (based on their WSDL files). But it can also be
used to read WSDL files as blueprints and generate the
matching Web Services themselves.

Files Details
Generating Web Services 141

The WAR or JAR project you set up to contain the generated Web Service files (if you’re
generating from a WSDL file, the wizard currently requires you to specify a WAR project here)

The target directory and package in that project (if you’re generating from a Java class, you
won’t have to fill in some of these settings; the wizard will automatically handle them for you)

If you specify a JAR project to contain the generated Web Service files, the wizard will also ask
you for a WAR project to map the Web Service’s servlet.

4 When the wizard prompts you, select the class or WSDL file to generate the Web Service from.

The wizard then asks for additional information based on your selection:

5 When the wizard prompts you for class-generation and SOAP options, you need to choose and
configure the set of source files to generate for your Web Service.

The most important choice is whether to generate skeletons to be tie-based or not. The answer
depends on the architectural model you want the implementation of your Web Service to follow.
See “Choosing an implementation model” on page 149.

You can choose to generate stubs (which come with a simple client application) for testing your
Web Service. When generating from a Java class, you can also request a WSDL file (for publishing
the Web Service to a registry) as well as specify the service address (URL) for the Web Service.
When generating from a WSDL file, you can override the default service address if necessary.

NOTE: Support for jBroker™ Web 1.x applications is available via a backward-compatibility
option. For more information, see “If you choose jBroker Web 1.x compatibility” on page 145.

6 Click Finish when you’re done specifying options for the Web Service.

If you select The wizard prompts you to specify

A JavaBean or other Java
class

Which methods to expose in the generated Web Service (in
contrast, when you generate from an EJB, remote interface,
or WDSL file, all methods are automatically exposed)

Binding style (document or RPC)

Schema information (when appropriate)

Class-generation and SOAP options

The home interface of an EJB
session bean

Lookup information for the EJB

Binding style (document or RPC)

Schema information (when appropriate)

Class-generation and SOAP options

The remote interface of an
EJB session bean or the
SessionBean class itself

The home interface of the EJB session bean

Lookup information for the EJB

Binding style (document or RPC)

Schema information (when appropriate)

Class-generation and SOAP options

A Java remote interface Binding style (document or RPC)

Schema information (when appropriate)

Class-generation and SOAP options

A WSDL file Namespace-to-package mappings (when there are multiple)

Web Service type mappings

Class-generation and SOAP options
142 exteNd Director Utility Tools

Examining the generated files

When you finish the wizard, it generates everything you’ve specified for your Web Service and updates
other parts of your project with supporting changes:

What the wizard generates Details

Java source file for remote
interface

xxxWS.java This file is automatically generated whenever your input
to the wizard is not a remote interface (such as when you start from a
JavaBean, Java class, EJB session bean, or WSDL file). That’s
because a remote interface (which extends java.rmi.Remote and
declares the methods to expose) is required to construct your Web
Service.

When you start from a WSDL file, the name of the generated remote
interface is simply xxx.java.

Java source file for
skeletons

xxx_ServiceSkeleton.java Abstract servlet class that handles
access to the Web Service (from HTTP SOAP requests).

In the tie model, xxx_ServiceTieSkeleton extends this class. In the
skeleton model, you extend it yourself (with an implementation of your
remote interface).

Java source files for tie-
based skeletons

xxx_ServiceTieSkeleton.java Abstract servlet class that extends
xxx_ServiceSkeleton.

xxxTie.java Servlet that’s used in the tie model as the front end for
the Web Service. It extends xxx_ServiceTieSkeleton to handle access
to the Web Service (from HTTP SOAP requests). It delegates to one of
the following to process method calls for the Web Service:

If you start with a JavaBean, Java class, or EJB session bean,
xxxTie instantiates xxxDelegate and delegates to it.

If you start with a Java remote interface or WSDL file, you must edit
the xxxTie.java file to specify a class of your own to instantiate and
delegate to.

xxxDelegate.java This file is generated if you start with a JavaBean,
Java class, or EJB session bean that implements the methods for your
Web Service. xxxDelegate instantiates that implementation class and
calls those methods on it.

With an EJB session bean, xxxDelegate does a lookup and create to
get the remote interface object. Then it uses that object to make the
method calls.
Generating Web Services 143

About generated file names

When generating file names, the Web Service Wizard follows the naming rules specified by JAX-RPC.
If you start with a Java class, the resulting file names are based on the name of that class. If you start with
WSDL, the resulting file names are based on the definitions in that WSDL.

For simplicity, this documentation uses xxx to represent the portion of a generated Web Service file name
that’s derived from a class name or WSDL definition.

Additional details of generation

Under the covers, the Web Service Wizard uses the Web Services SDK compilers when generating the
Web Service files listed above. In some cases, these compilers may generate additional code or files to
support requirements specific to your application, such as:

Type mapping

Faults

Multiple portType definitions

For more information, see the Web Services SDK help.

Java source files for stubs xxxService.java Service interface used by JAX-RPC clients to obtain
the stub for the target Web Service.

xxxServiceImpl.java Service implementation class that handles
instantiation of the stub (xxx_Stub). It also supports alternative ways of
accessing the target Web Service, including dynamic (stubless) calls.

(Note that when you start from a WSDL file, the names generated for
the service interface and implementation class depend on your WSDL
and may omit the text Service.)

xxx_Stub.java Facilitates method calls from a Java-based consumer
to the target Web Service. xxx_Stub implements the remote interface
corresponding to the Web Service by sending an appropriate HTTP
SOAP request for each method call.

xxxClient.java Simple client application that works as a consumer of
the target Web Service. It obtains the stub (via the Service object), then
uses the stub to call Web Service methods.

You can run xxxClient from the exteNd Director development
environment (select Tools>Run Web Service Client Class) or from a
command line.

WSDL file xxx.wsdl For use when publishing your Web Service to a registry. It
describes the Web Service in a standard format.

Updates to deployment
descriptor

In the tie model (when you generate tie-based skeletons), the wizard
updates your WAR project’s web.xml file to declare xxxTie as the
servlet to handle HTTP SOAP requests for your Web Service.

In the skeleton model, you must edit web.xml yourself to declare the
servlet to use (your class that extends xxx_ServiceSkeleton).

Updates to project
contents

The wizard updates your project to add generated files (and other
application-specific files) to it.

Updates to project
classpath

The wizard updates your project classpath to include application-
specific files as needed.

What the wizard generates Details
144 exteNd Director Utility Tools

new ../../../Start_WSSDK_Help.html

If you choose jBroker Web 1.x compatibility

The current version of the Web Services SDK provides a high degree of backward compatibility with
earlier versions. However, some changes introduced to support the JAX-RPC standard may require you
to modify code when upgrading an application that originated in jBroker Web 1.x. These changes involve
the conventions used for:

File names JAX-RPC specifies rules for naming certain Web Service files. In order to follow
these rules while keeping all generated names simple and consistent, new name patterns were
adopted (for details, see Generated 1.x-compatible files below).

Stub access in client code With JAX-RPC, clients use a Service object to instantiate the stub
instead of looking up the stub directly via JNDI.

Although it’s recommended that you upgrade to the current Web Services SDK and JAX-RPC
conventions, it’s not required. By using the jBroker Web 1.x compatibility option in the Web Service
Wizard, you can generate Web Service files according to the original jBroker Web conventions for file
names and stub access. This enables you to take advantage of all the other improvements in the latest
version of the Web Services SDK without altering your existing 1.x applications.

Generated 1.x-compatible files The following table describes the files generated when you use the
jBroker Web 1.x compatibility option:

With 1.x compatibility on, you
get

With 1.x compatibility off, this
is named Details

xxx_REMOTE.java

Example:

MyObject_REMOTE.java

xxxWS.java

Example:

MyObjectWS.java

Generated remote interface

_xxx_ServiceSkeleton.java

Example:

_MyObject_REMOTE_Servi
ceSkeleton.java

xxx_ServiceSkeleton.java

Example:

MyObjectWS_ServiceSke
leton.java

Abstract servlet class

_xxx_ServiceTieSkeleton.java

Example:

_MyObject_REMOTE_Servi
ceTieSkeleton.java

xxx_ServiceTieSkeleton.java

Example:

MyObjectWS_ServiceTie
Skeleton.java

Abstract tie servlet class

xxx_TIE.java

Example:

MyObject_TIE.java

xxxTie.java

Example:

MyObjectWSTie.java

Servlet for the Web Service (in the
tie model)

xxx_SERVICE.java

Example:

MyObject_SERVICE.java

xxxDelegate.java

Example:

MyObjectWSDelegate.ja
va

Delegate class for the tie servlet

xxxService.java

Example:

MyObjectREMOTEService.
java

xxxService.java

Example:

MyObjectWSService.jav
a

Service interface for the stub

This class is not used in 1.x-style
stub access. It is generated in case
you want to upgrade your client
code to the JAX-RPC approach.
Generating Web Services 145

Editing the generated files

Follow these guidelines when editing the files generated by the Web Service Wizard:

It’s OK to edit any of the other generated files, but not typically required.

In some cases, completing the implementation of your Web Service may require you to add one or more
manually coded files to work with the generated ones. See “Creating additional files” on page 147.

Editing the xxxTie.java file

The generated xxxTie.java file includes an init() method you may need to edit.

xxxServiceImpl.java

Example:

MyObjectREMOTEServiceI
mpl.java

xxxServiceImpl.java

Example:

MyObjectWSServiceImpl
.java

Service implementation class for
the stub

This class is not used in 1.x-style
stub access. It is generated in case
you want to upgrade your client
code to the JAX-RPC approach.

_xxx_ServiceStub.java

Example:

_MyObject_REMOTE_Servi
ceStub.java

xxx_Stub.java

Example:

MyObjectWSBinding_Stu
b.java

Stub for the Web Service

xxx_CLIENT.java

Example:

MyObject_CLIENT.java

xxxClient.java

Example:

MyObjectWSClient.java

Client application for consuming the
Web Service

The 1.x-compatible client obtains
the stub directly via a JNDI lookup.
In contrast, the JAX-RPC client
obtains the stub indirectly via the
Service object.

xxx.wsdl

Example:

MyObject_REMOTE.wsdl

xxx.wsdl

Example:

MyObjectWS.wsdl

WSDL file for the Web Service

Guideline Details

File you may need to edit xxxTie.java

See “Editing the xxxTie.java file” on page 146.

File you must edit xxxClient.java

See “Editing the xxxClient.java file” on
page 147.

Files you should not edit xxx_ServiceSkeleton.java

xxx_ServiceTieSkeleton.java

xxxService.java

xxxServiceImpl.java

xxx_Stub.java

With 1.x compatibility on, you
get

With 1.x compatibility off, this
is named Details
146 exteNd Director Utility Tools

If you start with a JavaBean or Java class, init() is generated to call the setTarget() method of
xxx_ServiceTieSkeleton and pass an instance of xxxDelegate (to delegate to it). If xxxDelegate provides
an empty constructor, the generated code uses that constructor to do the instantiation.

But if no implicit or explicit empty constructor is available, you must modify the code to indicate which
one to use. You may also want to modify it to use a constructor that expects an argument.

The wizard automatically generates calls to setTarget() for every public constructor of xxxDelegate. Each
line is commented out—except the one that uses the empty constructor (if available). Uncomment the
line with the constructor you want and make any related changes:

//super.setTarget(new MyObjectWSDelegate(java.lang.String arg0));
//super.setTarget(new MyObjectWSDelegate(java.lang.String arg0, java.lang.String arg1));
super.setTarget(new MyObjectWSDelegate());

If you start with a Java remote interface or WSDL file, init() is always generated with the setTarget() call
commented out. In this case, you must provide a class of your own to instantiate and delegate to:

//super.setTarget(new CONSTRUCT_YOUR_SERVICE_OBJECT_HERE);

If you start with an EJB session bean, you shouldn’t need to edit the generated init() method.

Editing the xxxClient.java file

Before you can test your Web Service with xxxClient, you must edit the generated xxxClient.java file to
call one or more methods of the Web Service. Look for the process() method in this file and you’ll find
comments listing all of the possible method calls:

// System.out.println("Test Result = " + remote.getString());
// System.out.println("Test Result = " + remote.setString(java.lang.String));
// System.out.println("Test Result = " + remote.sayHello());

Uncomment the method call(s) you want to test and supply appropriate argument values, as needed:

// System.out.println("Test Result = " + remote.getString());
System.out.println("Test Result = " + remote.setString(args[0]));
System.out.println("Test Result = " + remote.sayHello());

For additional changes you may want to make to the generated xxxClient.java file, see Chapter 9,
“Generating Web Service Consumers”.

Creating additional files

In many scenarios, once the wizard finishes generating, you’ll have all of the Java source files you need
for your Web Service. But there are cases where you must code additional classes yourself:

Using the generated files

To use the Web Service files generated by the wizard, you:

In this case You must add

When using the skeleton model A class that extends the generated servlet xxx_ServiceSkeleton
and implements the remote interface for your Web Service. You’ll
use this manually coded class as the servlet for the Web Service.

When using the tie model and
starting with a Java remote
interface or WSDL file

A class that implements the remote interface for your Web Service.
You must edit the generated xxxTie.java file to instantiate this
manually coded class and delegate to it.
Generating Web Services 147

1 Update the deployment descriptor, if necessary.

When you use the tie model, the wizard automatically updates the WAR project’s web.xml file with
the appropriate servlet mapping for your Web Service. But with the skeleton model, you must edit
web.xml yourself to supply this information.

In the following example, MyService is the servlet class that the developer has coded for the Web
Service MyRemote:

<servlet>
<servlet-name>MyService</servlet-name>
<servlet-class>com.exsamp.rem.MyService</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>MyService</servlet-name>
<url-pattern>/MyRemote</url-pattern>

</servlet-mapping>

Another reason to edit web.xml is to enable or disable the browser-based test environment for your
Web Service.

For details, see “Testing your Web Service from a browser” on page 149.

2 Update the project, if necessary.

As the wizard works, it automatically adds files to your project classpath and contents, as needed.
But you should also check yourself to make sure the project has everything it requires to compile
and run.

For instance, if your Web Service accesses an EJB session bean, the EJB-client JAR file should be
on your project’s classpath.

For details on setting up the required classpath and contents for your project (including what
the Web Services SDK needs), see “Preparing to generate” on page 140.

3 Build and archive the project.

When you complete this step, you’ll have a WAR file containing the Web Service(s) you’ve
generated.

4 Set up for deployment to your J2EE server.

Prepare the server-specific deployment information required to deploy the WAR to your J2EE
server. For example, if you’re going to deploy to the Novell exteNd Application Server, create an
exteNd deployment plan file.

If you’re going to deploy from the exteNd Director development environment, you should also set
up a server profile for your J2EE server.

5 Deploy the WAR to your J2EE server.

When you complete this step, each Web Service in the WAR will be accessible as a servlet that can
respond to standard HTTP SOAP requests for your exposed methods.

6 Test your Web Service(s) running on the J2EE server.

If you’ve generated, edited, and compiled the xxxClient class for a Web Service, you can use it for a
quick test of your method calls. To run xxxClient from the exteNd Director development
environment, select Tools>Run Web Service Client Class. The Web Service Wizard Client
Runner displays, offering you a list of client classes from the current project to choose from.

You can also run xxxClient from a command line (providing that you include the appropriate
directories and archives on your system classpath).

For further details on running xxxClient, see Chapter 9, “Generating Web Service
Consumers”.
148 exteNd Director Utility Tools

Testing your Web Service from a browser

The Web Services SDK provides a feature to help you test your Web Services from a Web browser. Once
you develop and deploy a Web Service, you can browse to the URL for that service to:

View the WSDL file that describes the Web Service

View the remote interface for the Web Service

Run test forms for each available method; from there you can enter any required parameters,
invoke the Web Service, and see the result

Runtime availability of this testing feature is controlled via an environment entry named
wssdk.test.disable in your WAR's deployment descriptor (web.xml). When you create a generic WAR
project in the exteNd Director development environment, the New Project Wizard automatically includes
wssdk.test.disable in web.xml and sets it to true. To enable the feature, you must set wssdk.test.disable
to false before you deploy.

<env-entry>
<env-entry-name>wssdk.test.disable</env-entry-name>
<env-entry-value>false</env-entry-value>
<env-entry-type>java.lang.Boolean</env-entry-type>

</env-entry>

Choosing an implementation model
There are two basic implementation models you can choose from when developing with the Web Service
Wizard. This section explores these choices to help you select the one that’s most appropriate for the Web
Services you generate:

Tie model

Skeleton model
Generating Web Services 149

Tie model

Here’s an overview of the tie model and when to use it:

It’s possible (but not as common) to use the tie model when you have only a Java remote interface or
WSDL file to provide as input to the Web Service Wizard. In this case, the wizard output leaves the
delegation part of the model for you to complete later. You’ll then need to code an implementation class
and edit the generated tie class to instantiate it and delegate to it.

Skeleton model

Here’s an overview of the skeleton model and when to use it:

Topic Details

Typical use The tie model is typically used when you have an implementation class to
provide as input to the Web Service Wizard. That might be a JavaBean, Java
class, or EJB session bean that already implements the methods you want to
expose as a Web Service.

How it works The tie model uses a delegation approach to hand off method calls from the
generated Web Service classes (which handle the HTTP SOAP processing for
your Web Service) to your implementation class (which handles the method
processing).

Advantages The tie model enables you to keep your implementation class (business logic)
separate from the generated infrastructure classes that support your Web
Service. A related benefit is that you can reuse existing implementation classes
currently accessible via other protocols.

How to generate it When you specify class-generation and SOAP options in the Web Service
Wizard, check both of these items:

Generate skeletons

Tie-based

Files generated If you start with a JavaBean, Java class, or EJB session bean, the wizard
generates:

xxxWS.java (remote interface)

xxxDelegate.java

xxxTie.java

xxx_ServiceTieSkeleton.java

xxx_ServiceSkeleton.java

Topic Details

Typical use The skeleton model is typically used when you know the methods you want to
expose as a Web Service, but don’t yet have an implementation of them. In this
case, you tell the Web Service Wizard about these methods by providing a
Java remote interface or WSDL file as input, then implement them later in the
context of the generated Web Service files.

How it works In the skeleton model, you implement your Web Service methods by
subclassing the servlet that the wizard generates to handle HTTP SOAP
processing. As a result, the same class that supports the logistics of your Web
Service also processes the method calls.
150 exteNd Director Utility Tools

Scenario: starting with a Java class
In this scenario, you’ll see how the Web Service Wizard can be used to generate a Web Service based on
an existing Java class that implements the methods to expose:

Project setup

Input to the wizard

Generated files for the Web Service

Generated files for testing

Deployment descriptor

Runtime test result

Implementation model This scenario illustrates use of the tie model. For an overview of that
architecture, see “Choosing an implementation model” on page 149.

Project setup

The WAR project for this scenario is set up as follows:

The name of this project is:
WebServiceSample.spf

The archive resulting from this project will be:
WebServiceSample.war

The initial content of this project is:
WEB-INF

lib
wssdk.jar

classes
com

exsamp
obj

MyObject.java
web.xml

Advantages The skeleton model is relatively simple, involving fewer classes to understand
and maintain. At runtime, having less object overhead may also offer
performance benefits.

How to generate it When you specify class-generation and SOAP options in the Web Service
Wizard, check both of these items:

Generate skeletons

Not tie-based

Files generated If you start with a Java remote interface, the wizard generates:

xxx_ServiceSkeleton.java

If you start with a WSDL file, the wizard generates:

xxx.java (remote interface)

xxx_ServiceSkeleton.java

File you add When the wizard is done, you must code a class that extends the generated
servlet xxx_ServiceSkeleton and implements the remote interface for your Web
Service. You’ll use this manually coded class as the servlet for the Web
Service.

Topic Details
Generating Web Services 151

The classpath needed for this project is:
...\WEB-INF\lib\wssdk.jar
...\exteNdn\tools\compilelib\j2ee_api_1_n.jar

Input to the wizard

Here’s the input provided to the Web Service Wizard for this scenario:

MyObject class

Project location panel

Class selection panel

Method selection panel

Binding style panel

Class-generation and SOAP options panel

MyObject class

MyObject is an existing Java class from which the Web Service is to be generated. It implements the
methods to expose. MyObject.java contains the following code (which must be compiled before you start
the wizard):

package com.exsamp.obj;

public class MyObject {

 private String s;

 public MyObject() {
 }

 public MyObject(String xxx) {
 }

 public MyObject(String xxx, String yyy) {
 }

 public String getString() {
 return s;
 }

 public boolean setString(String s) {
 this.s = s;
 return true;
 }

 public String sayHello() {
 return "Hello there, I am on the server";
 }
}

Project location panel

This wizard panel is completed as follows:
152 exteNd Director Utility Tools

Class selection panel

This wizard panel is completed as follows:

Method selection panel

This wizard panel is completed as follows:
Generating Web Services 153

Binding style panel

This wizard panel is completed as follows:

Class-generation and SOAP options panel

This wizard panel is completed as follows:
154 exteNd Director Utility Tools

Generated files for the Web Service

Based on the input provided for this scenario, the Web Service Wizard generates these files to implement
the Web Service:

MyObjectWS.java is the remote interface for the Web Service.

MyObjectWS_ServiceSkeleton.java is the abstract servlet class that handles access to the Web
Service.

MyObjectWS_ServiceTieSkeleton.java is an abstract class that extends
MyObjectWS_ServiceSkeleton to support the tie model.

MyObjectWSTie.java extends the abstract servlet classes to function as the front end for the Web
Service. To process requests (method calls) it receives, this servlet instantiates and delegates to
MyObjectWSDelegate.

MyObjectWSDelegate.java instantiates the implementation class (MyObject) and makes the
requested method calls against that instance.

MyObjectWS.wsdl describes the Web Service in standard WSDL format (useful when publishing
to a registry).

Examining MyObjectWS.wsdl

Here’s the generated WSDL for this new Web Service:

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="MyObjectWSService"
 targetNamespace="urn:com.exsamp.obj.MyObject"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:tns="urn:com.exsamp.obj.MyObject"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <types/>
 <message name="setStringRequest">
 <part name="arg0" type="xsd:string"/>
 </message>
 <message name="setStringResponse">
 <part name="result" type="xsd:boolean"/>
 </message>
 <message name="getStringRequest"/>
 <message name="getStringResponse">
 <part name="result" type="xsd:string"/>
 </message>
Generating Web Services 155

 <message name="sayHelloRequest"/>
 <message name="sayHelloResponse">
 <part name="result" type="xsd:string"/>
 </message>
 <portType name="MyObjectWS">
 <operation name="setString" parameterOrder="arg0">
 <input message="tns:setStringRequest"/>
 <output message="tns:setStringResponse"/>
 </operation>
 <operation name="getString">
 <input message="tns:getStringRequest"/>
 <output message="tns:getStringResponse"/>
 </operation>
 <operation name="sayHello">
 <input message="tns:sayHelloRequest"/>
 <output message="tns:sayHelloResponse"/>
 </operation>
 </portType>
 <binding name="MyObjectWSBinding" type="tns:MyObjectWS">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="setString">
 <soap:operation soapAction="urn:com.exsamp.obj.MyObject/setString"/>
 <input>
 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="urn:com.exsamp.obj.MyObject" use="encoded"/>
 </input>
 <output>
 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="urn:com.exsamp.obj.MyObject" use="encoded"/>
 </output>
 </operation>
 <operation name="getString">
 <soap:operation soapAction="urn:com.exsamp.obj.MyObject/getString"/>
 <input>
 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="urn:com.exsamp.obj.MyObject" use="encoded"/>
 </input>
 <output>
 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="urn:com.exsamp.obj.MyObject" use="encoded"/>
 </output>
 </operation>
 <operation name="sayHello">
 <soap:operation soapAction="urn:com.exsamp.obj.MyObject/sayHello"/>
 <input>
 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="urn:com.exsamp.obj.MyObject" use="encoded"/>
 </input>
 <output>
 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="urn:com.exsamp.obj.MyObject" use="encoded"/>
 </output>
 </operation>
 </binding>
 <service name="MyObjectWSService">
 <port binding="tns:MyObjectWSBinding" name="MyObjectWSPort">
 <soap:address location="http://localhost/WebServiceSampleDB/WebServiceSample/MyObject"/>
 </port>
 </service>
</definitions>
156 exteNd Director Utility Tools

Generated files for testing

Based on the input provided for this scenario, the Web Service Wizard generates these files so you can
test the Web Service once it’s deployed:

MyObjectWSService.java is the service interface that’s used in JAX-RPC to help clients obtain
the stub for the Web Service.

MyObjectWSServiceImpl.java is the service implementation class that handles instantiation of
the stub (MyObjectWSBinding_Stub).

MyObjectWSBinding_Stub.java is used by clients as a proxy for accessing the Web Service. This
stub class implements the remote interface (MyObjectWS) to handle the logistics of each method
call.

MyObjectWSClient.java is a simple client application that accesses the Web Service by:

Instantiating MyObjectWSService via JNDI lookup

Using the MyObjectWSService object to obtain the stub (MyObjectWSBinding_Stub)

Calling Web Service methods via the MyObjectWSBinding_Stub object

Editing MyObjectWSClient.java

The process() method of MyObjectWSClient must be edited to uncomment the Web Service method call
to be tested. Here’s the change:

// System.out.println("Test Result = " + remote.getString());
// System.out.println("Test Result = " + remote.setString(java.lang.String));
System.out.println("Test Result = " + remote.sayHello());

Deployment descriptor

Because this scenario uses the tie model, the Web Service Wizard automatically updates the web.xml file
to declare MyObjectWSTie as the servlet class to handle requests for the MyObject Web Service:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
 "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">
<web-app>

<servlet>
<servlet-name>MyObject</servlet-name>
<servlet-class>com.exsamp.obj.MyObjectWSTie</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>MyObject</servlet-name>
<url-pattern>/MyObject</url-pattern>

</servlet-mapping>

<env-entry>
<env-entry-name>wssdk.test.disable</env-entry-name>
<env-entry-value>true</env-entry-value>
<env-entry-type>java.lang.Boolean</env-entry-type>

</env-entry>
</web-app>

Also note that, in this case, the developer has chosen to disable the Web Services SDK browser-based test
environment for this Web Service. Instead, the Web Service will be tested by running the generated
MyObjectWSClient application.

For more information on the browser-based test environment, see “Testing your Web Service from
a browser” on page 149.
Generating Web Services 157

Runtime test result

Once this project is built and the WAR file is created and deployed to the J2EE server, the MyObject Web
Service is ready for a test run. Here’s the result of using the Client Runner in the exteNd Director
development environment to execute the MyObjectWSClient application:
158 exteNd Director Utility Tools

9 Generating Web Service Consumers

This chapter walks you through the basic steps and a typical scenario for using the Web Service Wizard
to generate a Web Service consumer (a program that accesses a Web Service). Topics include:

Basics

Steps

Preparing to generate

Providing a WSDL file

Generating the consumer files

Examining the generated files

Editing the generated files

Using the generated files

Running the consumer program

To learn about the steps and scenarios for using the wizard when you want to create a Web Service,
see Chapter 8, “Generating Web Services”.

Basics
You can use the Web Service Wizard of the Novell exteNd Director development environment to
generate the code needed for a Java-based consumer program to access any standard (SOAP-based)
Web Service. The generated code handles all HTTP SOAP processing under the covers, enabling the
consumer program to call the Web Service as a Java remote object (using RMI) and invoke its methods.

For input, the wizard requires a WSDL file that describes the Web Service to access. It can handle a wide
variety of Web Service implementations, including:

Document-style and RPC-style bindings

Basic and complex types

J2EE providers, Microsoft .NET providers, and others

The wizard generates Java source files based on JAX-RPC (Java API for XML-based RPC) and the
Novell exteNd Web Services SDK (the JAX-RPC implementation included with Novell exteNd). JAX-
RPC is the J2EE specification that provides Web Service support.

You can use the generated files as is or modify them when necessary. The advantage of this Java-oriented
approach is that you can deal with Web Services using the familiar technologies of RMI and J2EE instead
of coding lower-level SOAP APIs.

For an introduction to Web Service concepts, standards, and technologies, see Chapter 7, “Web
Service Basics”.

For detailed documentation on the wizard, see Chapter 10, “Web Service Wizard”.
Generating Web Service Consumers 159

new http://java.sun.com/xml/jaxrpc
new ../../../Start_WSSDK_Help.html

Steps
The process of developing your consumer program involves:

1 Preparing to generate by setting up your project

2 Providing a WSDL file that describes the Web Service for which you want the wizard to generate
consumer code

3 Generating the consumer files by using the wizard

4 Examining the generated files that the wizard creates, including Java source for:

A remote interface, service classes, and a stub class that facilitate the Web Service access

Any type classes needed for method arguments and return values

A simple Java client class that uses the other classes to make method calls

5 Editing the generated files to adjust the method calls to make and the Web Service location to point
to

6 Using the generated files either as is or by including the consumer code in some other Java
application

7 Running the consumer program in your development environment (for testing) and in the
production environment

Preparing to generate
To prepare for using the Web Service Wizard, you:

1 Set up an appropriate project in the exteNd Director development environment.

The type of project you should create depends on how you ultimately plan to use the consumer
code that the wizard will generate. For instance:

2 Add the archives required by the Web Services SDK to your project:

wssdk.jar, which contains the Web Services SDK API classes needed at runtime

activation.jar

commons-httpclient.jar

commons-logging.jar

CSHelper.jar

xercesImpl.jar

xmlParserAPIs.jar

agrootca.jar (when using SSL and the Novell exteNd trusted root certificates)

jakarta-regexp-1.2.jar (when using a pre-1.4 JDK and XML Schema with patterns)

mail.jar (when using attachments and javax.mail.internet.MimeMultipart)

Phaos_Crypto_FIPS.jar, Phaos_Security_Engine.jar, and Phaos_SSLava.jar (when using SSL;
note that these JARs are already on the classpath of the exteNd Application Server)

If you plan to use the consumer code in You should create

A standard Java application (perhaps based on the simple Java client
class that the wizard generates)

A JAR project

A J2EE application client A CAR project

A JSP page or servlet A WAR project

An Enterprise JavaBean An EJB JAR project
160 exteNd Director Utility Tools

xmlsec.jar (when using XML Signature)

You’ll find these JARs in the Novell exteNd tools\compilelib directory.

3 Edit the classpath of your project so you can compile your consumer classes once they’re
generated and edited. You’ll need to include:

wssdk.jar and the supporting JARs listed in Step 2 (as appropriate)

Any application-specific entries

For J2EE projects, you’ll also need j2ee_api_1_n.jar (it’s included automatically when you create a
J2EE project in the exteNd Director development environment).

Providing a WSDL file
To generate consumer code, you’ll need to provide the Web Service Wizard with a WSDL file that
describes the target Web Service. It’s a good idea to obtain the file location or URL of this WSDL file
before you start the wizard.

These are common scenarios:

For a Web Service developed in your organization, you might have the WSDL file on your file
system or even in your project.

For an external Web Service, you should be able to get the WSDL file’s URL from the
appropriate Web site or registry.

Example: WSDL file for Autoloan .NET Web Service

Suppose you want to generate consumer code to use the Autoloan .NET Web Service, which is listed on
the XMethods public registry under the name Equated Monthly Instalment (EMI) Calculator. That
Web Service calculates and returns the monthly loan payment for a given term (number of months),
interest rate, and loan amount.

In this case, you can go to the Web site www.xmethods.net to discover the URL for the corresponding
WSDL file:

http://upload.eraserver.net/circle24/autoloan.asmx?wsdl

When you provide this URL to the Web Service Wizard, it will read the WSDL file to learn what it needs
to know about the Autoloan Web Service:

<?xml version="1.0" encoding="utf-8"?>
<definitions xmlns:s="http://www.w3.org/2001/XMLSchema"
 xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
 xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
 xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:s0="http://circle24.com/webservices/"
 targetNamespace="http://circle24.com/webservices/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
 <types>
 <s:schema attributeFormDefault="qualified" elementFormDefault="qualified"
 targetNamespace="http://circle24.com/webservices/">
 <s:element name="Calculate">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="1" maxOccurs="1" name="Months" type="s:double" />
 <s:element minOccurs="1" maxOccurs="1" name="RateOfInterest" type="s:double" />
 <s:element minOccurs="1" maxOccurs="1" name="Amount" type="s:double" />
 </s:sequence>
 </s:complexType>
Generating Web Service Consumers 161

new http://www.xmethods.net

 </s:element>
 <s:element name="CalculateResponse">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="1" maxOccurs="1" name="CalculateResult" nillable="true"
 type="s:string" />
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name="string" nillable="true" type="s:string" />
 </s:schema>
 </types>
 <message name="CalculateSoapIn">
 <part name="parameters" element="s0:Calculate" />
 </message>
 <message name="CalculateSoapOut">
 <part name="parameters" element="s0:CalculateResponse" />
 </message>
 <message name="CalculateHttpGetIn">
 <part name="Months" type="s:string" />
 <part name="RateOfInterest" type="s:string" />
 <part name="Amount" type="s:string" />
 </message>
 <message name="CalculateHttpGetOut">
 <part name="Body" element="s0:string" />
 </message>
 <message name="CalculateHttpPostIn">
 <part name="Months" type="s:string" />
 <part name="RateOfInterest" type="s:string" />
 <part name="Amount" type="s:string" />
 </message>
 <message name="CalculateHttpPostOut">
 <part name="Body" element="s0:string" />
 </message>
 <portType name="AutoloanSoap">
 <operation name="Calculate">
 <input message="s0:CalculateSoapIn" />
 <output message="s0:CalculateSoapOut" />
 </operation>
 </portType>
 <portType name="AutoloanHttpGet">
 <operation name="Calculate">
 <input message="s0:CalculateHttpGetIn" />
 <output message="s0:CalculateHttpGetOut" />
 </operation>
 </portType>
 <portType name="AutoloanHttpPost">
 <operation name="Calculate">
 <input message="s0:CalculateHttpPostIn" />
 <output message="s0:CalculateHttpPostOut" />
 </operation>
 </portType>
 <binding name="AutoloanSoap" type="s0:AutoloanSoap">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"
 style="document" />
 <operation name="Calculate">
 <soap:operation soapAction="http://circle24.com/webservices/Calculate"
 style="document" />
 <input>
 <soap:body use="literal" />
 </input>
 <output>
 <soap:body use="literal" />
 </output>
 </operation>
 </binding>
162 exteNd Director Utility Tools

 <binding name="AutoloanHttpGet" type="s0:AutoloanHttpGet">
 <http:binding verb="GET" />
 <operation name="Calculate">
 <http:operation location="/Calculate" />
 <input>
 <http:urlEncoded />
 </input>
 <output>
 <mime:mimeXml part="Body" />
 </output>
 </operation>
 </binding>
 <binding name="AutoloanHttpPost" type="s0:AutoloanHttpPost">
 <http:binding verb="POST" />
 <operation name="Calculate">
 <http:operation location="/Calculate" />
 <input>
 <mime:content type="application/x-www-form-urlencoded" />
 </input>
 <output>
 <mime:mimeXml part="Body" />
 </output>
 </operation>
 </binding>
 <service name="Autoloan">
 <documentation>This Web Service mimics a Simple Autoloan calculator.</documentation>
 <port name="AutoloanSoap" binding="s0:AutoloanSoap">
 <soap:address location="http://upload.eraserver.net/circle24/autoloan.asmx" />
 </port>
 <port name="AutoloanHttpGet" binding="s0:AutoloanHttpGet">
 <http:address location="http://upload.eraserver.net/circle24/autoloan.asmx" />
 </port>
 <port name="AutoloanHttpPost" binding="s0:AutoloanHttpPost">
 <http:address location="http://upload.eraserver.net/circle24/autoloan.asmx" />
 </port>
 </service>
</definitions>

Understanding the WSDL

In the Autoloan WSDL, you can ignore the definitions for HttpGet and HttpPost (including message,
portType, binding, and service port). Only the Soap definitions apply to the Web Service consumer
program you’re developing.

Notice that this Web Service exposes one method named calculate(). It takes a Calculate object
containing three doubles (Months, RateOfInterest, and Amount) and returns a CalculateResponse object
containing one string (CalculateResult). The Web Service Wizard will generate a corresponding remote
interface in Java to support calling this method.

The types section specifies the XML Schema definitions for Calculate and CalculateResponse. The Web
Service Wizard will generate corresponding type classes in Java to represent these objects.

There’s a twist in how those Calculate and CalculateResponse classes will be used in the generated
Autoloan consumer code. The Autoloan WSDL happens to follow the wrapper pattern defined by JAX-
RPC, which dictates that method parameters in the remote interface should use basic types directly rather
than the objects that wrap them. As a result, the calculate() method will be generated to take the three
doubles (instead of Calculate) and return the string (instead of CalculateResponse). The wrapping and
unwrapping of Calculate and CalculateResponse will be handled under the covers by the generated
Autoloan stub class.
Generating Web Service Consumers 163

If you look in the binding section for AutoloanSoap, you’ll see that this Web Service is defined as
document style (as opposed to RPC style). That’s typical of .NET Web Services. Binding style describes
the format of SOAP messages and can affect interoperability with other Web Service environments:

The Web Service Wizard will generate the Java code needed to handle the specified binding style.

The port definition for AutoloanSoap (at the end of the WSDL file) specifies the address (URL) where
the Web Service can be accessed:

http://upload.eraserver.net/circle24/autoloan.asmx

The Web Service Wizard will use this URL in the service and stub classes it generates for calling the Web
Service.

Generating the consumer files
Once you’ve set up your project and located the appropriate WSDL file, you’re ready to use the Web
Service Wizard. The wizard produces one Web Service consumer at a time, so you’ll need to use it
multiple times if you have several to develop.

Each time you launch the wizard, it uses the WSDL file and other input you provide to generate a set of
consumer source files. Here’s a summary of the process:

1 Select File>New>File to display the New File dialog and go to the Web Services tab.

2 Launch the Web Service Wizard by selecting Existing Web Service.

3 When the wizard prompts you for project location information, specify:

The project you set up to contain the generated Web Service consumer files

The target directory and package in that project

Binding style What it means

Document (with literal use) The SOAP message body contains just the XML document being
exchanged, and message parts map to elements literally defined in the
WSDL file’s XML Schema.

RPC (with encoded use) The SOAP message body contains argument and return values,
individually wrapped in ad hoc elements that the recipient must interpret
by applying specified encoding rules to each message part’s type.
164 exteNd Director Utility Tools

For example, suppose you’re generating a consumer for the Autoloan Web Service. You might
specify WebServiceConsumerSample as the target JAR project and com.exsamp.net as the package
for generated classes:

4 When the wizard prompts you, specify the WSDL file that describes your target Web Service.

For example, when generating a consumer for the Autoloan Web Service, you specify the WSDL
file URL obtained from the XMethods public registry:

5 When the wizard prompts you for Web Service type mappings, specify how data types defined in
the WSDL (via XML Schema) are to be represented in the generated Java code.
Generating Web Service Consumers 165

The default is to create specific Java types for all of the complex XML types in the WSDL. That’s
usually appropriate and it’s the right choice here for the Autoloan Web Service example:

6 When the wizard prompts you for class-generation and SOAP options, you must specify details
about the code to create:

To get the files needed for a Web Service consumer, check Generate stubs (and leave Generate
skeletons unchecked).

If necessary, you can override the default Service address (obtained from the WSDL) by
specifying a different URL for the Web Service.

For example, these options will generate the appropriate consumer source files for the Autoloan
Web Service:

NOTE: Support for jBroker Web 1.x applications is available via a backward-compatibility option.
For more information, see If you choose jBroker Web 1.x compatibility (in the preceding chapter).

7 Click Finish when you’re done specifying options for the Web Service consumer.
166 exteNd Director Utility Tools

Examining the generated files
Once you finish the wizard, it generates everything you’ve specified for your Web Service consumer and
updates other parts of your project with supporting changes:

About generated file names

When generating file names, the Web Service Wizard follows the naming rules specified by JAX-RPC.
For a Web Service consumer, the resulting file names are based on the definitions in the WSDL.

For simplicity, this documentation uses xxx to represent the portion of a generated Web Service consumer
file name that’s derived from a WSDL definition.

Additional details of generation

Under the covers, the Web Service Wizard uses the Web Services SDK compilers when generating the
Web Service consumer files listed above. In some cases, these compilers may generate additional code or
files to support requirements specific to your application, such as:

Type mapping

Faults

Multiple portType definitions

For more information, see the Web Services SDK help.

What the wizard generates Details

Java source file for
remote interface

xxx.java An interface that extends java.rmi.Remote and declares the
methods exposed by the target Web Service (as determined from the
WSDL file). The generated stub class xxx_Stub implements this
interface to support method calls for the Web Service.

Java source files for stubs xxxService.java Service interface used by JAX-RPC clients to obtain
the stub for the target Web Service.

xxxServiceImpl.java Service implementation class that handles
instantiation of the stub (xxx_Stub). It also supports alternative ways of
accessing the target Web Service, including dynamic (stubless) calls.

(Note that the names generated for the service interface and
implementation class depend on your WSDL and may omit the text
Service.)

xxx_Stub.java Facilitates method calls from a Java-based consumer
to the target Web Service. xxx_Stub implements the generated remote
interface by sending an appropriate HTTP SOAP request for each
method call.

xxxClient.java Simple client application that works as a consumer of
the target Web Service. It obtains the stub (via the Service object) and
then uses the stub to call Web Service methods.

You can run xxxClient from the exteNd Director development
environment (select Tools>Run Web Service Client Class) or from a
command line.

Updates to project
contents

The wizard updates your project to add generated files to it.
Generating Web Service Consumers 167

new ../../../Start_WSSDK_Help.html

Example: generated consumer files for Autoloan .NET Web Service

The consumer code that the Web Service Wizard generates for the Autoloan Web Service consists of
these standard files for Web Service access:

AutoloanSoap.java is the remote interface used by the stub class to support method calls for the
Autoloan Web Service.

Autoloan.java is the service interface that’s used in JAX-RPC to help clients obtain the stub for the
Web Service.

AutoloanImpl.java is the service implementation class that handles instantiation of the stub
(AutoloanSoap_Stub).

AutoloanSoap_Stub.java is the stub class. It passes method calls to the Autoloan Web Service as
HTTP SOAP requests.

AutoloanSoapClient.java is a simple client application that obtains the stub (via the Service
object) and then uses it to call the calculate() method of the Autoloan Web Service. (Note that this
method call is generated as a comment. You’ll learn what to do with it a little later, in “Editing the
generated files” on page 169.)

And these application-specific files for mapping the complex types defined in the WSDL:

Calculate.java is a class that represents the complex type Calculate that’s defined in the WSDL.

CalculateMarshaler.java is a class that handles serialization and deserialization for Calculate.

CalculateHolder.java is the Holder class required by JAX-RPC to implement type mapping
support for Calculate. Note that this class is generated in the holders subdirectory.

CalculateResponse.java is a class that represents the complex type CalculateResponse that’s
defined in the WSDL.

CalculateResponseMarshaler.java is a class that handles serialization and deserialization for
CalculateResponse.

CalculateResponseHolder.java is the Holder class required by JAX-RPC to implement type
mapping support for CalculateResponse. Note that this class is generated in the holders
subdirectory.

autoloan.asmx.xmlrpc.type.mappings specifies settings that tell the Web Services SDK how to
configure the type mappings for Calculate and CalculateResponse. These mappings apply when
data is converted from XML to Java or vice versa.

Since the generated stub and service classes automatically configure the mappings, this mappings
file is not typically needed. It is provided for special situations (such as when you want to override
a mapping).

The mappings file is generated in the base directory of the source tree (src).

When creating these files, the wizard adds them to your project on the directory path you’ve specified:
168 exteNd Director Utility Tools

Editing the generated files
Follow these guidelines when editing the files generated by the Web Service Wizard:

It’s OK to edit any of the other generated files, but not typically required.

Editing the xxxClient.java file

Before using the generated xxxClient.java file, you:

Must edit the process() method to call one or more methods of the target Web Service

May need to edit the getRemote() method to specify the correct location (binding) for accessing
the target Web Service

process() method

The process() method is where the generated client application calls methods of the Web Service. Here
you’ll find commented code for calling each method defined in the generated remote interface and
displaying return values on the console. For example:

Guideline Details

File you must edit xxxClient.java

Files you should not edit xxxService.java

xxxServiceImpl.java

xxx_Stub.java
Generating Web Service Consumers 169

public void process(String[] args) throws Exception
{
 AutoloanSoap remote = getRemote(args);

 // The following code has been generated for your testing convenience. In
 // order to successfully test your Web Service, you must uncomment one or
 // more of these lines and supply meaningful arguments where necessary.
 // Once you have modified the test method(s) below, compile this class and
 // execute it from a command line with your class path set appropriately.

 // System.out.println("Test Result = " + remote.calculate(double, double, double));

}

You need to modify this code as follows:

1 Uncomment one or more method calls you want to execute.

2 Provide appropriate arguments for each method call, either as hardcoded values or as parameters
to be furnished at runtime. For runtime arguments, you may also want to add code that validates the
values supplied.

3 Check the return data type to make sure it can be converted using toString(). If not, use an
alternative to System.out.println for displaying the data returned.

Here’s what the line with the calculate() method call looks like after editing:

System.out.println("Autoloan Web Service\n " +
 "Loan input data:\n 24 months, 8%, $15000\n " +
 "Output from the Web Service:\n " +
 remote.calculate(24, 8, 15000));

getRemote() method

This section explains the basic use of the getRemote() method and how to modify it when you need to
specify binding information.

Basic use The getRemote() method is where the generated client application obtains the remote object
to handle its method calls to the Web Service. That remote object is an instance of the generated stub class
(xxx_Stub). To create the stub instance, getRemote() does the following:

1 Instantiates the Service object (from the service interface and implementation classes, xxxService
and xxxServiceImpl) via JNDI lookup

2 Calls a method that the Service object provides (in the service interface) to get the stub

Here’s an example of the typical code generated for getRemote(). Normally, you don’t need to edit it:

public AutoloanSoap getRemote(String[] args) throws Exception
{
 InitialContext ctx = new InitialContext();

 String lookup = "xmlrpc:soap:com.exsamp.net.Autoloan";
 Autoloan service = (Autoloan)ctx.lookup(lookup);
 AutoloanSoap remote = (AutoloanSoap)service.getAutoloanSoap();

 return remote;
}

Specifying binding information The wizard includes the binding information for your target Web
Service in the generated stub class (xxx_Stub.java) and service implementation class
(xxxServiceImpl.java). The binding provides the service endpoint address where the Web Service can
be accessed. In a WSDL file, this address is the URL in the soap:address location element.
170 exteNd Director Utility Tools

As an alternative, you can specify the binding to use when creating the stub instance in the getRemote()
method. This enables you to override the binding in the stub class (such as when the Web Service has
moved to a new location). You just need to add a line of code to set the address property for the stub:

public AutoloanSoap getRemote(String[] args) throws Exception
{
 InitialContext ctx = new InitialContext();

 String lookup = "xmlrpc:soap:com.exsamp.net.Autoloan";
 Autoloan service = (Autoloan)ctx.lookup(lookup);
 AutoloanSoap remote = (AutoloanSoap)service.getAutoloanSoap();

 ((javax.xml.rpc.Stub)remote)._setProperty("javax.xml.rpc.service.endpoint.address",
 "http://upload.eraserver.net/circle24/autoloan.asmx");

 return remote;
}

Using the generated files
How you use the Web Service consumer code that you have at this point depends on the nature of the
application you’re developing. Sometimes you might want to enhance the generated xxxClient.java file
and include it in your application. At other times you may just copy syntax from xxxClient.java into your
own classes. But in either case, you’ll always need the generated remote interface, service, and stub files.

Before you start any application-specific coding, it’s a good idea to test the basic xxxClient to make sure
your consumer code works as expected. You’ll first need to build your project to compile the source files.
Then you can run xxxClient, as described in the next section.

Running the consumer program
The generated Web Service consumer program xxxClient is a standard Java application. You can run it in
either of these ways:

From the development environment

From a command line

From the development environment

To help you test your generated client quickly and easily, the exteNd Director development environment
provides the Web Service Wizard Client Runner. This facility lists the client applications in your
current project and lets you select one to execute. For each run, it automatically sets the classpath to
include all required files and lets you supply command-line arguments.

To use the Client Runner:

1 Open the project that contains the compiled client class you want to run.

2 Select Tools>Run Web Service Client Class to display the Client Runner window.

3 Select a client from the Client class to run dropdown.

This dropdown lists every compiled class in your project that has a main() method.
Generating Web Service Consumers 171

4 Check Show command line if you want to:

See the complete command line that the Client Runner uses to execute your client (it will appear
in the display console portion of the window after you click Run)

Optionally copy that command line to the system clipboard by clicking Copy command line
(after a run)

5 Type any command-line Arguments required by your client (use a space to separate each
argument).

6 Click Run to execute your client and see its output in the display console portion of the window.

For example, here’s what it looks like to execute the generated AutoloanSoapClient class using the Client
Runner:

When AutoloanSoapClient runs, it calls the calculate() method of the Autoloan Web Service and passes
a Calculate object containing loan data (term, rate, amount). The calculate() method returns a
CalculateResponse object containing a string of payment information, which AutoloanSoapClient
displays on the screen:

Running com.exsamp.net.AutoloanSoapClient...

Autoloan Web Service

Loan input data:
24 months, 8%, $15000

Output from the Web Service:
Equated Monthly Instalment (EMI) For the Amount $15000 is $678

From a command line

You can also execute the generated client from the command prompt of your operating system. Doing so
demands that you set the classpath to include all required files (such as the generated consumer classes,
wssdk.jar, and so on).

The recommended approach is to use the Web Service Wizard Client Runner to display and copy the
command line for your client (as described in the preceding section). Then you can paste that line to your
command prompt and run it.

If you plan to run the client on other computers (beyond your development machine), make sure they
have access to all of the files listed in this command line.
172 exteNd Director Utility Tools

10 Web Service Wizard

This chapter describes the Web Service Wizard of the Novell exteNd Director development environment,
which you can use to generate files for implementing and invoking Web Services. Topics include:

About the wizard

Using the wizard

Panel sequence

Panel details

For an introduction to Web Service concepts, standards, and technologies, see Chapter 7, “Web
Service Basics”.

About the wizard
The Web Service Wizard can perform either of these tasks for you:

Generate a standard (SOAP-based) Web Service that’s implemented as a Java remote object.
The wizard creates a servlet to handle access to your Web Service and its methods from HTTP
SOAP requests.

Generate the code needed for a Java-based consumer program to access any standard (SOAP-
based) Web Service. The generated code handles all HTTP SOAP processing under the covers,
enabling your consumer program to call the Web Service as a Java remote object and invoke its
methods.

In both cases, the wizard produces Java source files based on JAX-RPC (Java API for XML-based RPC)
and the Novell exteNd Web Services SDK (the JAX-RPC implementation included with Novell exteNd).
JAX-RPC is the J2EE specification that provides Web Service support.

You can use the generated files as is or modify them when necessary. The advantage of this Java-oriented
approach is that you can deal with Web Services using the familiar technologies of RMI and J2EE instead
of coding lower-level SOAP APIs.

How it works Behind the scenes, the Web Service Wizard uses several different compilers to generate
the output you request:

The wizard uses this compiler To generate

Remote interface generator A Java remote interface from a JavaBean, Java class, or
EJB session bean

wsdl2java (from the Web Services SDK) A Java remote interface from a WSDL file

xsd2java (from the Web Services SDK) Type classes (JavaBeans, marshalers) and mapping files
from complex types defined in a WSDL file’s XML Schema

rmi2soap (from the Web Services SDK) Skeleton and tie classes, stub and service classes, as well
as marshalers (for complex types) from a Java remote
interface

rmi2wsdl (from the Web Services SDK) A WSDL file from a Java remote interface
Web Service Wizard 173

new http://java.sun.com/xml/jaxrpc
new ../../../Start_WSSDK_Help.html

The wizard determines which compilers to run and in what order depending on the type of input you
provide and options you select when filling in its panels.

Alternatives to the wizard You can also run the individual wsdl2java, xsd2java, rmi2soap, and
rmi2wsdl compilers manually from a command line. For more information, see the Web Services SDK
help.

Using the wizard
Here’s where you’ll learn about preparing to use the Web Service Wizard, running it, and working with
its output:

Panel sequence
This section lists the panels you need to complete in the Web Service Wizard, depending on your
scenario:

For instructions on See

Using the wizard to create a new Web Service
based on one of these:

A JavaBean or other Java class

An EJB session bean

A Java remote interface

A WSDL file

Chapter 8, “Generating Web Services”

Using the wizard to create code for accessing an
existing Web Service based on its WSDL file

Chapter 9, “Generating Web Service Consumers”

If you start with You step through these panels

A JavaBean or other Java
class

1 Project location (and possibly WAR project selection)

2 Class selection

3 Method selection

4 Binding style (and possibly Schema information)

5 Class-generation and SOAP options

The home interface of an EJB
session bean

1 Project location (and possibly WAR project selection)

2 Class selection

3 EJB lookup information

4 Binding style (and possibly Schema information)

5 Class-generation and SOAP options

The remote interface of an
EJB session bean or the
SessionBean class itself

1 Project location (and possibly WAR project selection)

2 Class selection

3 EJB home interface selection

4 EJB lookup information

5 Binding style (and possibly Schema information)

6 Class-generation and SOAP options
174 exteNd Director Utility Tools

new ../../../Start_WSSDK_Help.html
new ../../../Start_WSSDK_Help.html

Panel details
This section describes the options on each panel of the Web Service Wizard. The panels are:

Project location

WAR project selection

Class selection

WSDL file selection

Multiple namespace mapping

Web Service type mappings

EJB home interface selection

EJB lookup information

Method selection

Binding style

Schema information

Class-generation and SOAP options

A Java remote interface 1 Project location (and possibly WAR project selection)

2 Class selection

3 Binding style (and possibly Schema information)

4 Class-generation and SOAP options

A WSDL file 1 Project location

2 WSDL file selection (and possibly Multiple namespace mapping)

3 Web Service type mappings

4 Class-generation and SOAP options

If you start with You step through these panels
Web Service Wizard 175

Project location

This panel is used to specify details about the project location (project, directory, package) where the
wizard is to store Web Service files it generates. There are two variations of this panel:

If you start with a WSDL file, you’ll see:

If you start with anything else (JavaBean, Java class, EJB session bean, or Java remote interface),
you’ll see:

In this variation, you don’t specify a package (because the wizard will get this information from
your class or interface, which you supply on an upcoming panel).
176 exteNd Director Utility Tools

To complete this panel:

1 Specify the project:

2 Specify the directory and package:

3 Click Next.

Option What to do

Add to open
project

Select a project where the wizard is to store generated files. This option lets
you choose from a list of the projects currently open.

If you’re generating a Web Service, you’ll typically select a WAR project.

When appropriate, you can select a JAR project instead, but then the wizard
will prompt for a WAR project to map the Web Service’s servlet. See “WAR
project selection” on page 178.

(When you generate a Web Service from a WSDL file, the wizard does not
currently support selecting a JAR project. It requires you to select a WAR
project.)

If you’re generating a Web Service consumer, you can select any type of
project.

Create project Click this button if you want to create a new project to use. It displays the New
Project dialog.

See “Creating projects and subprojects” on page 50.

No project -- just
write files to the
disk

(This option is disabled. In the Web Service Wizard, generated files must be
added to an open project.)

Option What to do

Base directory The default base directory is a src subdirectory located right under the
project directory on your file system. If you want to select a different file
system location, click Browse.

Package (If enabled) Specify the fully qualified Java package name to be used for
generated classes (for example, com.myco.mypkg).

File directory This informational field shows the file system location where generated files
will be stored. It is the result of combining Base directory and Package.

Add the files to
the root of the
archive

(If enabled) Choose this option to place the generated files (and their
package path, if any) at the root of the project archive.

Add the files to
the archive with
this prefix

Choose this option to place the generated files (and their package path, if
any) under a specified directory structure (prefix) in the project archive.

For a WAR project, the prefix is automatically set to WEB-INF/classes.

The files will be
added to this
location in the
archive

(If displayed) This informational field shows the project archive location where
generated files will be stored. It is the result of combining Prefix and
Package.
Web Service Wizard 177

WAR project selection

This panel is used to specify the required WAR project for a Web Service stored in a JAR project. The
wizard will update this WAR’s deployment descriptor (web.xml) with the servlet mapping for the Web
Service.

To complete this panel:

1 Specify the following:

2 Click Next.

Class selection

This panel is used to select a compiled class from which the wizard is to generate Web Service files.
Supported choices include:

A JavaBean or other Java class

An EJB session bean interface or class

A Java remote interface

NOTE: This panel won’t let you select an EJB or remote interface that defines overloaded method
names. Overloaded method names are not allowed in Web Service interfaces (as of WSDL 1.2). You
must remove them from your class before starting the wizard.

Option What to do

WAR project Select the WAR project for the Web Service’s servlet mapping. This option lets
you choose a WAR project that’s currently open.

Create project Click this button if you want to create a new WAR project to use. It displays the
New Project dialog.

See “Creating projects and subprojects” on page 50.
178 exteNd Director Utility Tools

By default, this panel finds the compiled classes in the selected project’s build directory and lists them in
the Available Classes box. For a WAR project, this list comes specifically from WEB-INF/classes in the
build directory.

To select from the current list:

1 Click an item in the Available Classes list.

2 Click Next.

To refine the current list:

Click one of the Class Filter radio buttons to narrow the Available Classes list to classes of a
particular kind.

To list classes from another location:

Click the browse (...) button for Class location (directory or JAR) to select a different directory or
JAR file.

This refreshes the Available Classes list to show just the compiled classes from that new location.

WSDL file selection

This panel is used to select a WSDL file from which the wizard is to generate Web Service files. You can
select it from your project, from your file system, or from the Web (by specifying an URL).

NOTE: This panel won’t let you select a WSDL file that defines overloaded method names. Overloaded
method names are not allowed in Web Service interfaces (as of WSDL 1.2). You must remove them from
your WSDL file before starting the wizard.
Web Service Wizard 179

By default, this panel finds the .wsdl files in the selected project and lists them in the WSDL Files In
Project box.

To select from the current list:

1 Click an item in the WSDL Files In Project list to make it the WSDL file to use.

2 Click Next.

To select from the file system:

1 Click the browse (...) button for WSDL file or URL to use to select a WSDL file from your file
system.

2 Click Next.

To specify a file by URL:

1 Type the URL for the target WSDL file in WSDL file or URL to use. For example:
http://upload.eraserver.net/circle24/autoloan.asmx?wsdl

2 Click Next.

Multiple namespace mapping

This panel is used when you’re generating from a WSDL file that uses multiple namespaces for the
complex types in its XML Schema. It lets you map each namespace to a separate Java package.

NOTE: The mappings on this panel are used only if the option Create new Java types for complex
XML types is selected on the Web Service type mappings panel.
180 exteNd Director Utility Tools

This panel lists the appropriate namespaces and fills in a default package name for each one. You can edit
any or all of these package names. Just make sure you specify a unique package name for each
namespace.

To edit the namespace-to-package mappings:

1 Double-click any name in the Package column to edit it, then type the text you want.

(You can’t edit the names in the Namespace column.)

2 When you’re done editing package names, click Next.

Web Service type mappings

This panel is used to specify how data types are to be mapped when you’re generating from a WSDL file.
It provides choices for handling the complex types and simple types defined in the WSDL (via XML
Schema).
Web Service Wizard 181

To specify how data types are to be mapped:

1 Do one of the following:

2 Click Next.

EJB home interface selection

This panel is used to select the home interface that corresponds to an EJB session bean class or remote
interface you’ve specified on the class selection panel.

If you want to Do this

Map the complex types
defined in the selected
WSDL file to specific Java
types

1 Select the radio button Create new Java types for complex
XML types.

If the WSDL file specifies RPC as the binding style, this radio
button is automatically selected; you can't unselect it.

2 Uncheck the option JAX-RPC 1.0 compatibility for simple
XML types unless you need it to avoid changing code in an
existing project.

Checking this option tells the wizard to handle simple types
(and any affected complex types) the way it did prior to exteNd
5.2 (when the Web Services SDK followed JAX-RPC 1.0).
That means it will generate a JavaBean for each simple type.

Unchecking this option tells the wizard to handle simple types
according to the latest supported JAX-RPC specification. That
means simple types will be mapped directly to the most basic
types they specify.

If you’re regenerating an existing project that includes simple
type JavaBeans and you don’t want to disrupt code that
accesses those JavaBeans, you should check this option.

For more information, see the Web Services SDK help.

Map all complex types to
one selected built-in type
that lets you access the Web
Service data as XML
(instead of Java classes)

1 Select the radio button Use a single built-in type for
complex XML types.

2 Select one of the following radio buttons to specify which built-
in type to use:

java.lang.Object

org.w3c.dom.Element

javax.xml.transform.Source
182 exteNd Director Utility Tools

new ../../../Start_WSSDK_Help.html

By default, this panel looks in the location of the EJB session bean class or remote interface to find home
interfaces (compiled classes that extend javax.ejb.EJBHome). If there are any, it lists them in the
Available Classes box.

To select from the current list:

1 Click an item in the Available Classes list.

2 Click Next.

To list classes from another location:

Click the browse (...) button for Class location (directory or JAR) to select a different directory or
JAR file.

This refreshes the Available Classes list to show just the compiled classes from that new location.

EJB lookup information

This panel is used to specify information that the Web Service will need to do a JNDI lookup for a
selected EJB session bean. (JNDI is the Java Naming and Directory Interface.)
Web Service Wizard 183

This panel displays default initial context values appropriate for looking up a session bean deployed to
the Novell exteNd Application Server. For information on what other J2EE servers require, consult their
documentation.

To complete this panel:

1 Specify the Deployed JNDI Name:

The wizard includes this information in the ejb-ref declaration it generates within the deployment
descriptor web.xml. To learn how it is used at runtime to do a JNDI lookup, see the
getSessionBean() method of xxxDelegate.java (the delegate class generated for the tie servlet).

2 Specify Initial Context Information:

The wizard includes this information in the servlet declaration it generates within the deployment
descriptor web.xml. To learn how these values are used at runtime, see the getInitialContext()
method of xxxDelegate.java.

3 Click Next.

Method selection

This panel is used to select the methods you want to expose when generating a Web Service from a
JavaBean or other Java class.

NOTE: Overloaded method names are not allowed in Web Service interfaces (as of WSDL 1.2). As a
result, this panel lets you select no more than one method with a given name.

Option What to do

Lookup String Specify the subcontext and JNDI name under which the session bean is
registered on the target J2EE server. For example, to look up the session bean
whose JNDI name is SBMyEJB in the ejb subcontext:

ejb/SBMyEJB

Option What to do

Factory Class Specify the package prefix and name of an InitialContext factory class that’s
appropriate for the target J2EE server.

Provider URL Specify the URL for the JNDI namespace of the target J2EE server.

User ID Specify a valid user name that has authority to log on to the target J2EE server
and access the session bean.

Password Specify the password for User ID.
184 exteNd Director Utility Tools

This panel examines the selected class and lists its eligible methods in the Available Methods box.

To select methods to expose:

1 Use the Add and Add All buttons to move one or more items from Available Methods to Selected
Methods.

If necessary, you can use Remove and Remove All to move one or more items back.

2 Click Next.

Binding style

This panel is used to specify the binding style when generating a Web Service from a JavaBean, Java
class, EJB session bean, or Java remote interface.

To specify the binding style:

1 Choose one of the following:

Document style & literal encoding In this format, the SOAP message body contains just the
XML document being exchanged and message parts map to elements literally defined in the
WSDL file's XML Schema

RPC style & SOAP encoding In this format, the SOAP message body contains argument and
return values, individually wrapped in ad hoc elements that the recipient must interpret by
applying specified encoding rules to each message part's type
Web Service Wizard 185

When making this choice, consider the requirements of any other Web Service environments your
Web Service must interoperate with. In most cases either style should work, but some environments
may favor a particular style.

2 Click Next.

Schema information

These panels are used to specify XML Schema information to include in the WSDL file you generate for
a Web Service. The Web Service Wizard prompts for this information if:

You’re generating from a class (JavaBean, Java class, EJB session bean, or Java remote interface)
that defines method parameters (arguments or return values) of type org.w3c.dom.Element
AND

You specified the Document style & literal encoding option on the Binding style panel

There are two related Schema information panels:

On the Schema includes panel, you specify the path or URL of zero or more Schema (XSD) files
to include in the generated WSDL.

On the Method type mapping panel, you specify how each Element method parameter maps to a
qualified name in one of those Schemas.
186 exteNd Director Utility Tools

As an alternative, you can map a parameter to a sample XML instance data file. In that case, the
wizard generates the Schema information for you based on the instance data.

NOTE: The information on these panels is used only if the option Generate WSDL file is checked on the
Class-generation and SOAP options panel.

To specify Schema includes:

1 Use the Add button to specify the path or URL of each Schema (XSD) file to include in the list.

If necessary, you can use the Delete button to remove one or more selected files from the list.

2 Click Next.
Web Service Wizard 187

To specify method type mapping:

1 For each method parameter listed on the panel, do one of the following:

2 Click Next.

Class-generation and SOAP options

This panel is used to select the Web Service files to generate (including skeleton, tie, and stub classes)
and to specify SOAP implementation details to encode in those files. There are two variations of this
panel:

If you start with a WSDL file, you’ll see:

If you start with anything else (JavaBean, Java class, EJB session bean, or Java remote interface),
you’ll see:

If you want to Do this

Map a method parameter to
a qualified name in a listed
Schema

1 Select the row of information for that parameter.

2 In the Element Type Details section, select the Schema radio
button.

3 Select a qualified name from the Schema element list.

Map a method parameter to
an instance data file

1 Select the row of information for that parameter.

2 In the Element Type Details section, select the Sample XML
Data radio button.

3 Use the browse (...) button to select the XML file containing
the appropriate instance data.

Skip mapping a method
parameter

1 Select the row of information for that parameter.

2 In the Element Type Details section, select the Unspecified
radio button.

The parameter will be represented as type any in the
generated WSDL.
188 exteNd Director Utility Tools

Only this variation provides the ability to generate a WSDL file.

NOTE: When you create a new Web Service from WSDL, the Web Service Wizard does not generate a
new or updated copy of that WSDL file for you. That means you must edit the WSDL yourself if you want
it to reflect changes you’ve specified via the wizard (such as an override of the default Service address
URL).

To complete this panel:

1 Specify Generation Options:

Option What to do

Generate stubs Check this option to generate classes for consuming the Web Service,
including service classes, a stub class, and a simple client application. You’ll
get the following source files:

xxxService.java

xxxServiceImpl.java

xxx_Stub.java

xxxClient.java

Generate
skeletons

Check this option to generate classes for implementing the Web Service.
Then choose one of these implementation models:

Tie-based Generates skeleton and tie servlet classes used to handle
requests for your Web Service and delegate method calls to a separate
implementation class. You’ll get the following source files:

xxx_ServiceSkeleton.java

xxx_ServiceTieSkeleton.java

xxxTie.java

If you start with a JavaBean, Java class, or EJB session bean, you’ll also
get this source file (used to delegate to your class):

xxxDelegate.java

Not tie-based Generates just a skeleton servlet class used to handle
requests for your Web Service. You’ll get the following source file:

xxx_ServiceSkeleton.java
Web Service Wizard 189

Generate WSDL
file

(If displayed) Check this option to generate the following file:

xxx.wsdl

It describes your Web Service in standard WSDL format, which is useful
when publishing to a registry. The wizard stores this file in the base directory
of your source tree (commonly named src).

Generate
jBroker Web 1.x
compatible
classes

Check this option to generate the specified files according to the original
jBroker Web (Version 1.x) conventions for:

File names

Stub access in client code

Except for these conventions, the generated files will conform to the latest
version of the Web Services SDK.

This option is appropriate only if you’re maintaining an application that
originated in jBroker Web 1.x and aren’t yet ready to switch to the current
conventions (which are based on JAX-RPC and may require some changes
to existing code).

For details on what this option generates, see “If you choose jBroker
Web 1.x compatibility” on page 145.

Directory with
local XSD files

(If displayed) When the selected WSDL file relies on imported XSD files for its
type definitions, you can optionally specify a local directory that contains
copies of them. If the wizard can’t access a particular XSD file based on the
location specified in the WSDL file, it will look for that XSD file in your local
directory.

For more information about XSD files, see the WSDL specification.

Option What to do
190 exteNd Director Utility Tools

new http://www.w3.org/TR/wsdl

2 Specify SOAP Options:

3 Click Finish.

Option What to do

Target
namespace

(If displayed) Specify the target namespace for SOAP messages produced
by the generated stub and skeleton classes. Method and parameter names
are scoped to this namespace when SOAP messages go over the wire.

You can accept the default value or specify any string for the namespace. It
doesn’t have any special semantics beyond providing a scope for SOAP
messages.

When generating a WSDL file, the wizard uses this value for the
targetNamespace definition.

Service address Specify the URL to be used as the binding for accessing your Web Service.
The wizard includes this binding information in the following generated files:

The stub class (xxx_Stub.java) and service implementation class
(xxxServiceImpl.java) use it as the default URL for binding to the Web
Service.

The WSDL file (xxx.wsdl) uses it as the SOAP address in the service
definition.

If you are generating from WSDL, you can override the default value of
Service address (which is obtained from the WSDL) by specifying a different
URL in this option.

If you are generating from Java, the default value for this option includes the
name of the selected WAR project and the servlet mapping for the Web
Service. For example:

http://localhost/WebServiceSample/MyObject

If you plan to deploy the Web Service to the Novell exteNd Application
Server, you need to insert the name of the target database in the URL:

http://localhost/WebServiceSampleDB/WebServiceSample/MyObject
Web Service Wizard 191

192 exteNd Director Utility Tools

11 WSDL Editor

The WSDL Editor provides a quick and easy way to create, edit, and view WSDL documents. This
chapter contains the following topics:

About WSDL

About the WSDL Editor

Creating a WSDL document

Adding elements to a WSDL document

Validating a WSDL document

Displaying a stylized view

Publishing to a registry

Generating Web Service files from WSDL

About WSDL
WSDL (Web Services Description Language) is a general-purpose XML vocabulary for describing
Web Services. Using WSDL, it’s possible to describe (concisely and in a standardized manner) the
interface, protocol bindings, and deployment details of Web-based services, at a level of detail sufficient
for businesses to begin interacting online.

For the complete WSDL standard, go to www.w3.org/TR/wsdl.

About the WSDL Editor
The WSDL Editor lets you:

Create and edit WSDL documents (files with the .wsdl extension)

Insert any of the four canonical WSDL document elements (message, port type, binding, or
service)

Validate WSDL documents

View WSDL documents in a stylized format

Publish WSDL documents to Web Service registries

Editor features

The WSDL Editor is based on the XML Editor and its features, including:

XML Source View tab for text editing of WSDL documents

XML Tree View tab for visual editing of WSDL documents

The WSDL Editor also provides its own Stylized View tab for formatted display of WSDL documents.
WSDL Editor 193

new http://www.w3.org/TR/wsdl

To learn about using the basic editing features of the XML Source View and XML Tree View
tabs, see Chapter 4, “XML Editors”.

Creating a WSDL document

To create a WSDL document:

1 Select File>New>File.

2 On the Web Services tab, select WSDL and click OK.

The WSDL Wizard displays.

3 Enter a Definition Name.
194 exteNd Director Utility Tools

4 Complete the rest of the panel as needed:

(Optional) Enter a Target Namespace. This can be the Uniform Resource Name associated
with this WSDL document. You cannot specify a relative URN.

(Optional) Enter a File Location. You can use the browse (...) button to select a target directory
on your file system. If you don’t specify a File Location, the new file will be saved to the root of
your hard drive.

(Optional) In the Documentation text box, enter any human-readable comment or descriptive
language you would like to associate with the definition element.

Check Include WSDL template if you want a skeleton document to be created for you using
values provided in this wizard. Uncheck it to start with a blank document.

5 Click Finish.

A new WSDL document opens in the WSDL Editor.

Adding elements to a WSDL document
WSDL documents can contain four standard element types: message, port type, binding, and service.
These element types build on one another with cascading references; so when you create a WSDL file,
you should create the message section first, followed by the port type section, then the binding section,
and finally the service section.

The WSDL Editor offers dialog-based assistance in creating each of the four types.

Adding a message element

Adding a port type element

Adding a binding element

Adding a service element

Adding a message element

In WSDL, a message is an abstract definition of the data being exchanged.

To add a message element to a WSDL document:

1 In the XML Source View, position the insertion point where you want to insert the definition, then
right-click.

A popup menu displays.
WSDL Editor 195

2 Select Insert WSDL Element>Message.

3 Specify the following information in the Message dialog:

4 Click OK.

A new message section is added to your document.

Adding a port type element

A WSDL port type is an abstract definition of the operations supported by a service and the
communications mode (one-way, request-response, and so on) that will be used in the service.

To add a port type to a WSDL document:

1 In the XML Source View, position the insertion point where you want to insert the definition, then
right-click.

A popup menu displays.

Option What to do

Name Specify the value of the name attribute of the <message> element.

Documentation (Optional) Specify any human-readable comment or descriptive language
you would like to associate with this message.

Parts Specify this information for each <part> element of your message:

The name attribute

The typing value (Element or Type)

Under Value, the element attribute

To add another part entry to the message, click Add. To remove an entry,
select the entry and click Delete.
196 exteNd Director Utility Tools

2 Select Insert WSDL Element>Port Type.

3 Specify the following information on the Port Type dialog:

4 Click OK.

A new port type section is added to your document.

Adding a binding element

A WSDL binding specifies concrete protocol and data format specifications for the operations and
messages defined by a particular port type.

To add a binding to a WSDL document:

1 In the XML Source View, position the insertion point where you want to insert the definition, then
right-click.

A popup menu displays.

Option What to do

Name Specify the value of the name attribute of the <portType> element.

Documentation (Optional) Specify any human-readable comment or descriptive language
you would like to associate with this port type.

Operations Specify this information for each <operation> element of your port type:

The name attribute

The type (One-way, Request-response, Solicit-response, or Notification)

Under Formats, click the Define button to specify the operation’s
messages using the Define dialog

The dialog has several control groups. Only those that are appropriate to
the type of operation are enabled. For example, if you chose Notification
as the type, only the Output control group is enabled. For each enabled
group, you must specify a Name and Message appropriate to the
operation for Input and Output. Specifying values for the Fault group is
optional.

To add another operation entry to the port type, click Add.
To remove an entry, select the entry and click Delete.
WSDL Editor 197

2 Select Insert WSDL Element>Binding.

3 Specify the following information on the Binding dialog:

4 Click OK.

A new binding section is added to your document.

Adding a service element

A WSDL service names the entry-point address (or addresses) for the Web Service in question. These
addresses are in the form of URIs and constitute ports.

To add a service to a WSDL document:

1 In the XML Source View, position the insertion point where you want to insert the definition, then
right-click.

A popup menu displays.

Option What to do

Name Specify the value of the name attribute of the <binding> element.

Documentation (Optional) Specify any human-readable comment or descriptive language
you would like to associate with this binding element.

Port Type Specify the port type for this binding. The dropdown list displays the names
of the port types that you have created for this document (see “Adding a port
type element” on page 196).

SOAP Binding If your WSDL document will specify a SOAP binding, select SOAP Binding,
then select a Style (RPC or Document) and specify a Transport value.

HTTP Binding If an HTTP binding will be used, select HTTP Binding and enter the
appropriate Verb (GET or POST).

User Defined Select if you want to specify a custom binding protocol manually.
198 exteNd Director Utility Tools

2 Select Insert WSDL Element>Service.

3 Specify the following information on the Service dialog:

4 Click OK.

A new service entry is added to your document.

Validating a WSDL document
When a WSDL document is displayed in the XML Source View, you can validate the document by
clicking the Validate toolbar button (which looks like a check mark). If the document is validated, you
see this dialog:

Otherwise, you see a dialog giving information identifying the malformed statement(s) in the document.

Option What to do

Name Specify the value of the name attribute of the <service> element

Documentation (Optional) Specify any human-readable comment or descriptive language
you would like to associate with this service.

Ports Specify this information for each <port> element of your service:

The name attribute

The binding value; the dropdown list displays the names of the bindings
you have created for this document (see “Adding a binding element” on
page 197)

The address type (None, SOAP, or HTTP)

The location (the URI by which your service will be available)

To add another port entry to the service, click Add.
To remove an entry, select the entry and click Delete.
WSDL Editor 199

CAUTION: You should carefully review your WSDL even if the document validation is successful. The
W3C WSDL specification allows for extensibility elements throughout all levels of a WSDL document. So
if you build the document without using the dialogs or do a lot of cut-and-paste from other sources, it is
possible that the document will test as valid but not be what you want.

Displaying a stylized view
For easier reading, you can display your WSDL document in the Stylized View, which applies an XSL
style sheet to the document. The WSDL Editor comes with two built-in style sheets: Summary and
Details.

To display a stylized view of a WSDL document:

1 Open the WSDL document.

2 Click the Stylized View tab at the bottom of the WSDL Edit Pane.

The view changes to stylized.

In this example, the Summary style sheet has been applied to the document.

To choose a different style for the stylized view:

1 With the Stylized View tab selected, right-click in the WSDL Edit Pane.

A popup menu displays.

2 Select an item from the Stylesheets submenu:

Details provides a detail-oriented plain-text view of the WSDL document (with no XML tags)

Summary provides a more concise view of WSDL contents

Custom opens a dialog that allows you to choose your own XSL style sheet for rendering a
custom view, and/or setting a default style sheet
200 exteNd Director Utility Tools

Choose one of the following:

TIP: You can optionally select the Set as default check box to apply the style sheet you’ve
chosen as the default in stylized views. Your preference will persist across development
environment sessions.

Publishing to a registry
When you have created a WSDL document, you can publish it to a registry.

For more information, see “Publishing to a registry” on page 213.

Generating Web Service files from WSDL
A WSDL document describes a Web Service. You can invoke the Web Service Wizard from the WSDL
Editor to generate the Java classes needed to implement or consume that Web Service.

To generate Java classes:

1 Make sure a project is open.

2 Open the WSDL document in the XML Source View.

3 Click the Generate Java Class button.

The Web Service Wizard is invoked.

For more information, see Chapter 10, “Web Service Wizard”.

Option What to do

System Select to use one of the built-in style sheets (Summary or Details) as the basis
for the stylized view

Custom Select to use the style sheet of your choice, then enter the path to the style
sheet (or use the Browse button to open a standard file navigation dialog)
WSDL Editor 201

202 exteNd Director Utility Tools

12 Registry Manager

This chapter describes the registry browsing and publishing functionality provided by the Novell exteNd
Director development environment. It contains the following topics:

About registry standards

About the Registry Manager

Defining registry profiles

Browsing registries

Retrieving WSDL from the registry

Publishing to a registry

About registry standards
The exteNd Director development environment supports the following registry standards:

About the Registry Manager
The exteNd Director development environment provides a Registry Manager (accessible through the
Registries tab in the Navigation Pane) and a facility for defining registry profiles. The registry
capabilities include:

Defining registry profiles

Selecting registries to include in the search process

Viewing business information on selected organizations in a given registry

Viewing information on Web Services offered by a given organization

Searching for organizations or services within a registry or group of registries, optionally using
extended query parameters

Registry
standard Description

UDDI Universal Description, Discovery, and Integration

UDDI is designed to give businesses a uniform way to describe their Web Services,
discover other companies’ services, and understand the methods needed to conduct e-
business in an automated or semiautomated way with remote partners.

ebXML Electronic Business using eXtensible Markup Language

The ebXML Registry and Repository, like UDDI, enables the storing and sharing of
information between parties to allow e-business collaboration.

WSIL Web Services Inspection Language (also known as WS-Inspection)

WSIL is designed to be more lightweight and portable than UDDI. It’s an emerging
standard intended to pick up where UDDI leaves off.
Registry Manager 203

new http://www.uddi.org
new http://www.ebxml.org/
new http://www-106.ibm.com/developerworks/webservices/library/ws-wsilspec.html

Publishing services or organizations to a registry

Deleting services or organizations from a registry

Defining registry profiles
Registries are specified by URL and can be local or Web-based. Before accessing a registry in the exteNd
Director development environment, you define a profile for that registry. Some predefined registry
profiles are provided.

To define a registry profile:

1 Select Tools>Profiles from the menu.

The Profiles dialog opens.

2 Select the Registries tab.

3 If you are editing or deleting an existing profile, select it from the Profile name list box and click
Edit or Delete. If you are creating a new profile, click New.

4 When the New (or Edit) dialog displays, first specify the following:

Option Description

Profile name Name of the profile

Registry type Type of registry: ebXML, UDDI, or WSIL

The dialog displays different options depending on which
registry type you select.
204 exteNd Director Utility Tools

5 If you select ebXML or UDDI as the registry type, the dialog displays:

Complete the dialog as follows:

If you select WSIL as the registry type, the dialog displays:

ebXML/UDDI option Description

Inquiry URL The URL through which the registry can be queried

Publish URL The URL through which new services can be published to the
registry

User name and Credential The information (if any) that the registry provider assigned to you
for publishing access

Include in Registry Search Specifies whether you want to include this registry in the default
search set
Registry Manager 205

Complete the dialog as follows (use the + and - buttons to add or delete entries in the WSIL
registry list):

6 Click OK.

Once you have defined a registry profile, you can use the Registry Manager to browse the registry and
you can publish services to the registry.

Browsing registries
The Registry Manager allows you to browse registries through the Registries tab in the Navigation Pane.
There are two subpanes within the Registries tab: the Organization Pane and the Service Pane.

Information displayed

The Registry Manager displays the following types of information.

Organization Pane The organization section of a registry might include these types of information:

WSIL option Description

Organization A name for the organization

WSIL URL The fully qualified WSIL URL, ending in inspection.wsil

User name and Credential The information (if any) that the registry provider assigned to you
for publishing access

Include in Registry Search Specifies whether you want to include this registry in the default
search set

Information Icon Description

Organization name Organization name used in this registry

Description Short phrase describing the organization
206 exteNd Director Utility Tools

Service Pane A service entry in a registry might include these types of information:

Popup menus

Each pane in the Registry Manager has a popup menu.

Organization Pane To view the popup menu for Organization, place the cursor in an entry in the
Organization Pane and right-click. The following menu displays.

Categories Categories to which the organization belongs

Classification schemes come from at least three sources: NAICS codes
for industry segments, UNSPSC for product and service classifications,
and geographic information

Identifiers Information about the organization, such as a DUNS number

Services A list of services offered by the organization, such as Web Services
callable via HTTP and other services such as sales and technical
support contact information

You can select a service name to display its details in the Service Pane

Information Icon Description

Service name The name of the service

Organization name The organization offering the service

Description A short phrase describing the service

Binding The URL for invoking the service

tModel Data describing the service

A UDDI registry stores the data as a tModel, which is a set of
name/value pairs; the tModel node may be followed by a description

Overview URL The URL of a document describing how to use the tModel data

For a Web Service, this is usually a WSDL document

Categories Categories for the service

The categorization has two parts: a name (for example, uddi-org:types)
and a value (for example, wsdlSpec). The value wsdlSpec specifies that
a WSDL document is available for the service. Other types of services
can use other classification schemes.

Menu item Description

Copy Text Allows you to copy text from the currently selected organization tree node to
another area or file

Clear Tree Clears the pane of organization information that you retrieved from your
search

Delete Organization Deletes the selected organization (if you have permission). Asks you to
confirm before deleting the organization.

Information Icon Description
Registry Manager 207

Service Pane To view the popup menu for Service, place the cursor in an entry in the Service pane and
right-click. The following menu displays.

Action buttons

The following illustration shows the location of the various action buttons on the Organization and
Service panes.

Advanced Search Allows you to perform a sophisticated search by organization

For more information, see “Searching by organization” on page 209

Menu item Description

Copy Text Allows you to copy text from the currently selected service tree node to another
area or file

Clear Tree Clears the pane of service information that you retrieved from your search

Retrieve WSDL Retrieves the WSDL for the selected service from the registry. You can also do
this using the Retrieve WSDL button.

Delete Service Deletes the selected service (if you have permission). Asks you to confirm
before deleting the service.

Advanced Search Allows you to perform a sophisticated search by service

For more information, see “Searching by service” on page 211

Menu item Description
208 exteNd Director Utility Tools

Searching by organization

You search by organization in the Organization Pane.

To search organizations by name or keyword:

1 Enter a complete or partial organization name or keyword in the text box below Organization.

TIP: You can also enter a group of organization names separated by a vertical bar, which allows you
to search for multiple groups of organizations. For example: XMethods|IBM|Sun.

2 Click the Search button (shaped like a downturned arrow).

While the search is under way, the Stop button (normally grayed out) is red. The search can take
several minutes. To interrupt the search, click the Stop button; partial search results will display in
the Organization Pane.

A list of matching organizations appears in tree-view form. Each top-level node in the tree is a
registry, each child of a registry is an organization name, and below each organization is detail
information consisting of descriptions, categories, and services.

Clicking a service entry in the (upper) Organization tree causes that service’s detail information to
appear in tree form in the (lower) Service Pane.

To set advanced organization search criteria:

1 Leave the keyword text box blank.

2 Click the Advanced Search button (shaped like binoculars).
Registry Manager 209

The Organization Discovery Criteria dialog displays.

3 Select one of the search-criteria options:

Organization Name—Enter a complete or partial organization name or list of names separated
by a vertical bar (|) in the Starting with text box.

Identifier—Select one of the following: D-U-N-S or Thomas Register (catalog names) from the
dropdown list. Enter a key from the catalog (partial or complete) in the Starting with text box;
this entry can contain numeric values and dashes.

Locator—Select one of the following from the dropdown list: NAICS (North American
Industry Classification System), UNSPSC (United Nations Standard Products and Services
Classification), or GEO (geographical).

Enter a key from the catalog (partial or complete) in the Starting with text box if you selected
NAICS or UNSPSC; this entry can contain numeric values. Enter a country (region)
abbreviation for GEO. If you selected NAICS or UNSPSC, you can click the ellipsis and pick
an item from a list of choices.

Service Type Name—Select to search organizations associated with a particular tModel.

Discovery URL—Enter an IP address or portion of an IP address for the URL in the Starting
with text box.

4 Select search and sort options:

In Sort By, specify whether to sort by name or date, in ascending or descending order. The most
common technique is to sort by name (alphabetically) in ascending order or by date
(numerically) in descending order. Sorting by date works within groups of organizations with
identical names.

In Options, select Ignore Case and/or Exact Match.

5 Under Profiles, select the registry or registries to search from the list. Those you specified in the
Profiles dialog for automatic searching are already selected. To override the search list, select one
or all of the registries in the list. To return to the original (default) registries, click Reset.

6 Click OK.

The search begins.
210 exteNd Director Utility Tools

Searching by service

You search by service in the Service Pane.

To search services by name or keyword:

1 Enter a complete or partial service name or keyword in the text box below Service.

TIP: You can also enter a group of service names separated by a vertical bar, which allows you to
search for multiple groups of services.

2 Click the Search button (shaped like a downturned arrow).

While the search is under way, the Stop button (normally grayed out) is red. The search can take
several minutes. To interrupt the search, click the Stop button; partial search results display in the
Service Pane.

A list of matching services appears in tree-view form. Each top-level node in the tree is the registry
that was searched; each immediate child of a registry is a service name; and children of the service
node(s) contain detail information consisting of the organization name associated with the service,
a description of the service, and bindings for the service.

Clicking a service node in the (lower) Service tree causes that organization’s detail information to
appear in tree form in the (upper) Organization Pane.

To set advanced service search criteria:

1 Leave the keyword text box blank.

2 Click the Advanced Search button (shaped like binoculars).

The Service Discovery Criteria dialog displays.

3 Select one of the search-criteria options:

Service Name—Enter a complete or partial service name in the Starting with text box.

Locator—Select one of the following: NAICS (North American Industry Classification
System), UNSPSC (United Nations Standard Products and Services Classification),
UDDITYPE, or GEO (geographical) from the dropdown list.

Enter a key from the catalog (partial or complete) in the Starting with text box if you selected
NAICS, UNSPSC, or UDDITYPE; this entry can contain numeric values. Enter a country
(region) abbreviation for GEO. If you selected NAICS, UNSPSC, or UDDITYPE, you can
click the ellipsis and pick an item from a list of choices.

Service Type Name—Allows the search of services associated with a particular tModel.
Registry Manager 211

4 Select search and sort options:

In Sort By, specify to sort by name or date, in ascending or descending order. The most common
technique is to sort by name (alphabetically) in ascending order or by date (numerically) in
descending order. Sorting by date works within groups of services with identical names.

In Options, select Ignore Case and/or Exact Match.

5 Under Profiles, select the registry or registries to search from the list. Those you specified in the
Profiles dialog for automatic searching are already selected. To override the search list, select one
or all of the registries in the list. To return to the original (default) registries, click Reset.

6 Click OK.

The search begins.

Using wildcards in searches

While searching in the Registry Manager, you can use the percent sign (%) as a wildcard symbol,
meaning one or more of any character. This is especially useful when you want to search for organization
or service names that contain a particular word but might not start with that word.

The default search logic is Start With. So a search on Books will turn up BooksRUs but not ABC
Booksellers or Used Books. The way to override this behavior is to search instead on %Books%, which
will turn up all three.

You can also use the | (pipe) symbol as a logical OR to look for hits that contain any combination of
specified words. You can chain together any number of keywords this way. For example:

%Booking% | %Travel% | %Airline%

returns all names that contain at least one of these words, no matter where in the name that word appears.

Retrieving WSDL from the registry
After you have found the service you searched for, you can retrieve the WSDL definition for this service
from the registry. For this you use the Service Pane.

To retrieve a WSDL definition from the registry:

1 Highlight the service node.

2 Click the Retrieve WSDL button in the Service Pane.

If a definition for the service exists, the WSDL Editor displays the WSDL information.
212 exteNd Director Utility Tools

For information about the WSDL Editor, including different ways to view the WSDL, see Chapter
11, “WSDL Editor”.

Publishing to a registry
When you have created a WSDL document, you can publish it to a registry via the WSDL Editor.

For information about the WSDL Editor, see Chapter 11, “WSDL Editor”.

To publish WSDL to a registry:

1 Open the WSDL document in the WSDL Editor.

2 Click the Publish to Registry button on the toolbar.

The WSDL Publishing Options dialog displays.

3 Specify these options:

Registry Profile—Select the registry you want to publish to.

Organization Name—Specify the organization to associate the service with. Click the Lookup
button to look up organizations in the registry.

WSDL Publish URL—Specify the URL to which the service will be published.

4 Click OK.

If your service is successfully published, you see a confirmation dialog. Otherwise, you see a dialog
describing the error.

If you want to publish an organization to a registry, you can do that from the Organization Pane of the
Registry Manager.

To publish an organization to a registry:

1 Go to the Registry Manager.

2 Click the Publish Organization button in the Organization Pane.
Registry Manager 213

The Publish Organization dialog displays.

3 Specify these options:

Registry Profile—Select the registry you want to publish to.

Name—Specify a name for the organization.

Description—Specify text that describes the organization.

4 Click OK.

If your organization is successfully published, you see a confirmation dialog. Otherwise, you see a
dialog describing the error.
214 exteNd Director Utility Tools

III J2EE

These chapters present the exteNd Director utility tools for working with J2EE components:

• Chapter 13, “J2EE Wizards”
• Chapter 14, “How to Handle J2EE Versions”

Related links:

• Sun J2EE home
• Sun J2EE documentation
215

new http://java.sun.com/j2ee/
new http://java.sun.com/j2ee/docs.html

216 exteNd Director Utility Tools

13 J2EE Wizards

To speed project development, use the following wizards when creating standard J2EE components and
other Java classes:

EJB Wizard

JSP Wizard

Servlet Wizard

Java Class Wizard

JavaBean Wizard

Tag Handler Wizard

You access these wizards by selecting File>New>File from the menu.

EJB Wizard
Use the EJB Wizard to create EJB1.1 entity and session beans or EJB2.0 entity, session, and message
beans. The following sections describe:

About the EJB Wizard

Starting the EJB Wizard

Panel sequence

Panel reference

About the EJB Wizard

The EJB Wizard can speed your EJB development effort by providing:

A skeleton of the bean implementation class

The home, remote, local, and localhome interfaces (as needed)

A primary key class (as needed)

Once you have created the EJB using the EJB Wizard, you can modify it in the Java Editor by opening its
Java source files from the Project tab of the Navigation Pane.

Starting the EJB Wizard

To start the EJB Wizard:

1 Select File>New>File.

2 On the General tab, choose EJB (in the Advanced section) and click OK. (Alternatively, you can
double-click EJB.)

3 The steps you follow depend on the type of bean you want to generate; see “Panel sequence”
(below) for details.
J2EE Wizards 217

Panel sequence

This section lists the panels you need to complete in the EJB Wizard, depending on the type of bean you
want to create. Click the link to display more information about how to complete the panel.

If you want to create You step through these panels

A stateful or stateless session
bean

1 Specifying the EJB type

2 Specifying the EJB JAR configuration

3 Specifying the project, package, and directory

4 Specifying the EJB source

Specifying the source class or interface

5 Specifying the EJB class and interface names

6 Specifying methods

7 Specifying additional classes or packages to import

8 Completing the EJB

A message-driven bean 1 Specifying the EJB type

2 Specifying the EJB JAR configuration

3 Specifying the project, package, and directory

4 Specifying the EJB source

Specifying the source class or interface

5 Specifying the EJB class and interface names

6 Specifying methods

7 Specifying additional classes or packages to import

8 Completing the EJB

A BMP entity bean 1 Specifying the EJB type

2 Specifying the EJB JAR configuration

3 Specifying the project, package, and directory

4 Specifying the EJB source

Specifying the source class or interface

or

Specifying the source database and Selecting a database
table

5 Specifying the EJB class and interface names

6 Specifying persistent (data) fields

7 Specifying primary key fields

8 Specifying fields that require get/set methods

9 Specifying create() methods

10 Specifying find() methods

11 Specifying additional classes or packages to import

12 Specifying resource references

13 Completing the EJB
218 exteNd Director Utility Tools

Panel reference

This section describes the options on each panel of the EJB Wizard. The panels are:

Specifying the EJB type

Specifying the EJB JAR configuration

Specifying the project, package, and directory

Specifying the EJB source

Specifying the source database

Selecting a database table

A 1.x CMP entity bean 1 Specifying the EJB type

2 Specifying the EJB JAR configuration

3 Specifying the project, package, and directory

4 Specifying the EJB source

Specifying the source class or interface

or

Specifying the source database and Selecting a database
table

5 Specifying the EJB class and interface names

6 Specifying persistent (data) fields

7 Specifying primary key fields

8 Specifying fields that require get/set methods

9 Specifying create() methods

10 Specifying find() methods

11 Specifying additional classes or packages to import

12 Completing the EJB

A 2.x CMP entity bean 1 Specifying the EJB type

2 Specifying the EJB JAR configuration

3 Specifying the project, package, and directory

4 Specifying the EJB source

Specifying the source class or interface

or

Specifying the source database and Selecting a database
table

5 Specifying the EJB class and interface names

6 Specifying persistent (data) fields

7 Specifying primary key fields

8 Specifying fields that require get/set methods

9 Specifying relationships

10 Specifying create() methods

11 Specifying find() methods

12 Specifying additional classes or packages to import

13 Completing the EJB

If you want to create You step through these panels
J2EE Wizards 219

Specifying the source class or interface

Specifying the EJB class and interface names

Specifying methods

Specifying persistent (data) fields

Specifying primary key fields

Specifying fields that require get/set methods

Specifying create() methods

Specifying relationships

Specifying find() methods

Specifying additional classes or packages to import

Specifying resource references

Completing the EJB

Specifying the EJB type

This panel lets you specify the type of EJB you want to create.
220 exteNd Director Utility Tools

To complete this panel:

1 Specify the EJB type:

2 Click Next to continue.

Return to “Panel sequence” on page 218.

Specifying the EJB JAR configuration

This panel lets you specify whether the wizard should create one EJB JAR or an EJB JAR and an EJB-
client JAR.

Option What to do

Entity EJB, container-
managed persistence
Version 1.x

Select this option when you want the EJB Wizard to create an entity
bean that uses container-managed persistence (CMP) defined by
the EJB1.1 specification

Entity EJB, container-
managed persistence
Version 2.x

Select this option when you want the EJB Wizard to create an entity
bean that uses container-managed persistence (CMP) defined by
the EJB2.0 specification

Entity EJB, bean-
managed persistence

Select this option when you want the EJB Wizard to create an entity
bean that uses bean-managed persistence (BMP)

Session EJB, stateless Select this option when you want the EJB Wizard to create a
stateless session bean

A stateless session bean is released to the instance pool after each
method call completes, so it is not guaranteed that a client will have
the same instance on subsequent method calls

Session EJB, stateful Select this option when you want the EJB Wizard to create a stateful
session bean

A stateful session bean is bound to the client session that creates it,
so it can be used to maintain values associated with that client
session

Message-driven EJB Select this option when you want the EJB Wizard to create a
message-driven bean
J2EE Wizards 221

To complete this panel:

1 Specify the EJB JAR configuration:

2 Click Next to continue.

Return to “Panel sequence” on page 218.

How EJB JARs and EJB-client JARs are related in a project An EJB-client JAR project is a
peer to its EJB JAR project—it is not a subproject of the EJB JAR project. The EJB JAR and EJB-client
JAR are linked in the following ways:

EJB JAR project classpath includes EJB-client JAR project

EJB JAR has a manifest file that includes a Class-Path entry for the EJB-client JAR archive

The EJB JAR’s deployment descriptor contains an <ejb-client-jar> element containing the name of
the EJB-client JAR archive

If you create an EJB JAR as a subproject, its EJB-client JAR will also be made a subproject of the same
parent project. The EJB-client JAR will have the same project location, same archive location, same
subproject status, and same inclusion in its parent archive as the EJB JAR.

Specifying the project, package, and directory

This panel is used to specify details about the project location (project, directory, package) where the
wizard is to store the EJB files it generates.

If you chose to use both an EJB JAR and an EJB-client JAR, you are prompted to provide the
project/package/directory information for the EJB-client JAR on a panel similar to this one:

Option What to do

Create separate EJB-
client & EJB JARs

Select this option if you want the wizard to use these two JARs:

EJB JAR—Contains the bean implementation classes, any utility
classes that are private to the implementation, and a deployment
descriptor in the META-INF directory.

EJB-client JAR—Contains the EJB home and remote interfaces, a
primary key class, and any utility classes that a client might require to
use the EJB. The EJB-client JAR is a plain archive file; it does not
contain a deployment descriptor. If you have EJBs that are used by
other EJBs in the EJB JAR (like helper EJBs) but are not used by
clients, then do not put the home and remote interfaces of the helper
EJBs in the EJB-client JAR.

Create a single JAR
for all EJB classes

Select this option if you want the wizard to use a single EJB JAR that
will contain all of the EJB classes and interfaces.
222 exteNd Director Utility Tools

To complete this panel:

1 On the top portion of this panel of the EJB Wizard, specify one of the following three project
association options:

2 On the bottom portion of this panel of the EJB Wizard, specify the following:

Option What to do

Add to open EJB JAR
project

If you currently have one or more EJB projects open, you can add the
EJB to one of those projects by selecting it from the dropdown list. If the
project that you want to associate the EJB with is not currently open,
you must open the target project before starting up the EJB wizard.

If the EJB project is defined as an EJB1.1 project, you cannot add EJBs
that use EJB2.0 features—and the wizard prevents you from doing so.

Create project Click Create project to start the New Project Wizard.

When you create a new EJB project, you are prompted to specify
whether it is an EJB1.1 or EJB2.0 project. You can add EJB1.1 beans
to an EJB2.0 project, but not vice versa.

For details, see “Creating projects and subprojects” on page 50.

No project -- just write
files to the disk

If you do not want to associate the EJB with a project, you can still use
the wizard to create the class in a nonproject directory on the file
system.

Option What to do

Base directory If you specified an EJB project, the default base directory is the project
directory. Otherwise, this field is empty. (Click Browse to specify a file
system location.)

Package Specify the EJB’s package name. This is required.

File directory The contents of Base directory and Package are combined to specify the
location of the EJB source file, which is displayed under the File directory.

This is the file system location where the wizard creates the bean source file
and home and remote interfaces.
J2EE Wizards 223

3 Click Next to continue.

Return to “Panel sequence” on page 218.

Specifying the EJB source

This panel is used to identify whether the EJB source that the wizard generates should be completely new,
based on an existing source file, or (for entity beans) a database table.

To complete this panel:

1 Choose one of the following options:

2 Click Next to continue.

Return to “Panel sequence” on page 218.

Specifying the source database

This panel is used to specify the information that the wizard needs to connect to a database. Once
connected to the database, it is able to get the list of database tables so that you can pick the database table
on which the entity bean should be based.

Option What to do

Create EJB from scratch Select this option if you want to create a new EJB

Create EJB from database Select this option to create an entity bean whose fields are
based on the fields in a specific database table

Create EJB from an existing
Java class or interface

Select this option to use the properties of an existing EJB class
or interface as the starting point for your EJB
224 exteNd Director Utility Tools

To complete this panel:

1 Specify:

2 Click Next to continue.

Return to “Panel sequence” on page 218.

Option What to do

Database Select a database profile from the dropdown list box. If the dropdown is not
populated or if the existing profiles are unsuitable, you must create a
database profile by clicking New (or by leaving the wizard to select
Tools>Profiles and click the Databases tab).

When you complete this panel (by clicking Next), the wizard creates a client
connection to the database. This means that the database driver (specified in
the database profile) must be available to the exteNd Director development
environment.

For more information on database profiles and driver setup
requirements, see “Database profile” on page 34.

Database
username and
Database
password

Type a user name and password that you can use to connect directly to the
specified database. This user name and password combination must allow
access to the database’s system tables so that the wizard can access the
database’s metadata.
J2EE Wizards 225

Selecting a database table

This panel presents a list of database tables. You can select the database table that you want to use as the
basis for your entity bean.

To complete this panel:

1 Specify the following two options:

2 Click Next to continue.

Return to “Panel sequence” on page 218.

Option What to do

Catalog/Creator/Schema Select the Catalog/Creator/Schema containing the database table
you want to use for the entity bean

Table Select the database table that contains the fields you want to include
in the entity bean
226 exteNd Director Utility Tools

Specifying the source class or interface

This panel lets you choose an existing Java class or interface that the wizard should use as the basis for
your EJB.

To complete this panel:

1 Specify:

2 Click Next to continue.

Return to “Panel sequence” on page 218.

Specifying the EJB class and interface names

This panel lets you specify a name for the EJB classes and interfaces that the wizard generates.

How the wizard names EJBs The EJB Wizard generates names for the EJB’s implementation
classes and interfaces based on a Base name that you supply in this wizard panel. It follows these rules
when naming the EJB components:

Option What to do

Existing file Click Browse to locate the remote interface or EJB class that you want to use as
the starting point for your EJB

The file you specify can only be a class file for a bean implementation or remote
interface

EJB component Naming conventions Example

Bean class Prepends EB, SB, or MB and appends Bean to
the base name

SBCalculatorBean

Remote interface Prepends EB or SB to the base name SBCalculator

Home interface Prepends EB or SB and appends Home to the
base name

SBCalculatorHome

Local interface

(EJB2.x only)

Prepends EB or SB and appends Local to the
base name

SBCalculatorLocal
J2EE Wizards 227

To complete this panel:

1 On the top portion of this panel of the EJB Wizard, specify values for the following components:

2 If you are creating an entity or session bean that uses CMP 2.x, you are prompted to select the radio
button (on the bottom portion of this panel) that represents the set of interfaces that you want the
wizard to generate.

Local home interface

(EJB2.x only)

Prepends EB or SB and appends LocalHome to
the base name

SBCalculatorLocalHome

Primary key classes

(entity beans only)

Prepends EB and appends PK to the base
name

EBCustomerPK

Option What to do

Base name Specify a legal name for the EJB class and interfaces. This name is used
to construct the names for the other EJB components

If you are creating an entity bean based on a database table, the wizard
defaults these names to the database table name as the Base name and
then uses the rules defined in “How the wizard names EJBs” on page 227
just above

Logical EJB name Accept the default or provide a legal name

This name is used:

For comments in the wizard-generated code

As the <ejb-name> element in the deployment descriptor (when used
within the scope of an open project)

Implementation
class

Accept the default or specify a legal Java class name

Create primary key
class

Check this when you want the EJB Wizard to create a separate primary
key class

Primary key class Accept the default or specify a legal Java class name

EJB component Naming conventions Example
228 exteNd Director Utility Tools

3 Accept the default names for the set of interfaces, or specify legal Java names.

4 Click Next to continue.

Return to “Panel sequence” on page 218.

Specifying methods

This panel lets you specify the methods that the wizard will add to the bean implementation class and the
remote and/or local interface. Methods on the remote and/or local interface can be called by the EJB’s
client.

To complete this panel:

1 On this panel of the EJB Wizard, click Add and specify the details of one method at a time:

2 Click OK to create the methods.

3 Repeat these steps to create other methods or click Next to continue.

Return to “Panel sequence” on page 218.

Option What to do

Method name Specify a legal method name

Scope This value must be public so that the method will be available to external
clients; use the Java Editor to specify any nonpublic methods

Return type Select the method’s return type

Parameters Click Add to specify the following values for the parameter:

Type—Specify the parameter’s data type

Name—Specify a legal name for the parameter

Exceptions Click Add to specify the Exceptions that are thrown by this method

You do not need to add the java.rmi.RemoteException; it is added to the
remote interface by default
J2EE Wizards 229

Specifying persistent (data) fields

This panel lets you specify the CMP entity bean’s persistent fields or the BMP entity bean’s data fields.
This panel is already populated if you base the bean on a database table. Otherwise, you’ll have to use the
Add button to add the fields you want.

NOTE: The EJB2.0 specification requires CMP field names to begin with a lowercase letter. If you base
your entity bean on a table with field names that begin with uppercase (like Customer) or are all uppercase
(CUSTOMER), the wizard generates lowercase variable names to comply with the specification. The
wizard does not modify the names for BMP beans, because the specification does not require it.

To complete this panel:

1 Specify:

2 Click Next to continue.

Return to “Panel sequence” on page 218.

Option What to do

Persistent field If the fields that should be managed by the container are listed, make sure
the check box in the container-managed column is checked

Use the Check All/ Uncheck All and Add/Delete buttons to manage the list
of container-managed data fields

Use the Up/Down buttons to move the fields to the appropriate position if the
entity bean should have a composite key

Container-managed fields are listed in the deployment descriptor and can be
mapped to a database field at deployment time

Type When adding a new field, provide the Java data type. The data type must be
the Java type that corresponds to the field’s JDBC type. For a list of the data
types, see the javadoc for java.sql.Types.

Container
managed

Check or uncheck the fields as needed
230 exteNd Director Utility Tools

Specifying primary key fields

This panel lets you specify the fields that make up the entity bean’s primary key.

To complete this panel:

1 Specify the following information for each field that is part of a primary key field:

2 Click Next to continue.

Option What to do

Field Move the cursor to the field

Primary Key Depends on how you responded to the Create primary key checkbox on the
wizard panel described in “Specifying the EJB class and interface names” on
page 227. If you:

Checked the Create primary key class checkbox, you can check one or
more fields to be included in the primary key class that the wizard will
generate.

If you select a single field for the primary key, you must also select the
Use this single field... checkbox at the bottom of the wizard panel
described below.

Did not check the Create primary key class checkbox, you can do either
of the following:

Select a single field for the primary key. You must also select the Use
this single field... checkbox at the bottom of the wizard panel
described below.

Unselect any primary key fields. The wizard will generate code that
uses a primary key class of type java.lang.Object. You will have to
specify the primary key class type at deployment.

Use this single
field directly as
the primary key

Check this if you’ve selected a single field that the wizard should use as the
primary key.

The field must be a String or a wrapper class for a primitive type (such as
java.lang.Integer). The wizard generates the code so that the wrapper-class
type is in the deployment descriptor’s <prim-key-class> element and the
primary key field name is in the <primkey-field> element.
J2EE Wizards 231

Return to “Panel sequence” on page 218.

Specifying fields that require get/set methods

This panel lets you specify the fields for which the wizard should generate accessor (get/set) methods.

To complete this panel:

1 Specify the following information for each field that requires a get or set method:

2 Click Next to continue.

Return to “Panel sequence” on page 218.

Option What to do

Field Move the cursor to the field

Get method Specify whether the wizard should generate (checked) a get method for this data
field

If your entity bean will be doing any kind of read-only or read-write data access
on this data field, you should have the wizard generate a get method

Set method Specify whether the wizard should generate (checked) a set method for this data
field

If your entity bean will be doing updates on this data field, you should have the
wizard generate a set method
232 exteNd Director Utility Tools

Specifying create() methods

This panel lets you specify the create() methods that the wizard should generate.

To complete this panel:

1 Click Add to define a new create() method.

OR

Highlight an existing create() method and click Edit.

The Create Method Detail panel appears.

2 On the Create Method Detail panel, specify:

3 Click OK to return to the create() methods panel.

4 Click Next to continue.

Return to “Panel sequence” on page 218.

Option What to do

Field Move the cursor to the field and check or uncheck the fields that should
be included in the create() method generated by the EJB Wizard

Do not delegate—
generate code for this
create method

For bean-managed entity beans only

Click this radio button if you want the EJB Wizard to generate skeleton
code for this create() method using the checked fields

Delegate to another
create method

For bean-managed entity beans only

Click this radio button if you do not want the EJB wizard to generate
skeleton code for this create() method, then select the method to call
instead from the dropdown
J2EE Wizards 233

Specifying relationships

This panel lets you specify values for the <relationships> node in the EJB deployment descriptor.
Relationships exist between two entity beans with container-managed persistence. However, when you
use the EJB Wizard, you are creating a single bean at a time—so you can only define the <relationship>
node entries for the bean you are currently creating. You can define a relationship from the current bean
to a preexisting bean or a not-yet-defined bean. For the related bean, you can use the name you know you
will be giving it later, or you can use the default name EBUnspecified. When you use EBUnspecified,
the wizard generates an incomplete relationship node in the deployment descriptor.

Relationships can be defined as bidirectional or unidirectional.

How to define bidirectional and unidirectional relationships In a bidirectional relationship,
each bean knows about the other bean in the relationship. Each bean has methods for accessing the
relationship field of the other bean. The wizard can generate these accessor methods when you define a
relationship field for boths sides of the relationship. The relationship field is represented in the wizard as
the CMR field name.

In a unidirectional relationship, only one bean in the relationship knows about the other bean. An
example of a unidirectional relationship is between a lineitem and a product. The lineitem needs to know
about the product, but the product does not know about the lineitem. In a unidirectional relationship, you
would define a relationship field (a CMR field name) for the lineitem bean, but not for the product.

Editing bean relationships The wizard allows you to edit only the relationships listed in the
deployment descriptor that are considered incomplete and that:

Have the same bean name as the bean you are creating

OR

Use a bean name that does not already exist

To complete this panel:

1 To add a relationship, choose Add.

2 To edit or delete a relationship, highlight the relationship and choose the button appropriate to the
action you want.

The Relationship Detail panel The wizard requires the following elements to generate accessor
methods if this is part of a bidirectional relationship, or if it is unidirectional and is the bean that knows
about the other bean:
234 exteNd Director Utility Tools

The CMR field name for the bean you are creating

Whether you require a get and/or a set method

The get/set methods return/param type

You can fill in all of the other information later using the Deployment Descriptor Editor.
J2EE Wizards 235

To complete this panel:

1 Specify:

Option What to do

Relationship name Enter a unique name that identifies the relationship you are
constructing.

This corresponds to the <ejb-relation-name> element in the
Deployment Descriptor. This element is not required by the Deployment
Descriptor or the wizard.

For each relationship, you must specify two beans.

Relationship role 1

Multiplicity Enter the cardinality of the relationship from the current bean (the one
you are creating) to the related bean; it can be One or Many.

This corresponds to the <multiplicity> element in the deployment
descriptor.

EJB name Enter the bean name. The bean name entered here must always match
an <ejb-name> element in the enterprise-beans section of the
deployment descriptor.

The wizard adds this entry to the <ejb-name> element of the
<relationship-role-source> element in the deployment descriptor.

Cascade delete Check this if you want the current bean to be deleted when the related
bean is deleted.

This is available only when the related bean’s multiplicity is One.

This corresponds to the <cascade-delete> element of the deployment
descriptor.

CMR field name If this bean is in a bidirectional relationship or is in a unidirectional
relationship and knows about the related bean, enter a name that
begins with a lowercase letter.

The wizard uses the name to generate methods for accessing the
related bean. This corresponds to the <cmr-field-name> element of the
cmr-field node in the deployment descriptor.

Access methods If a cmr-field is specified, you must create set and/or get methods.
Otherwise, no accessor methods are needed.

Return/param type The return type must be the local interface of the related bean or a
java.util.Collection type (depending on the related bean’s multiplicity.

Relationship role 2

Multiplicity Enter the cardinality of the relationship of the related bean to the bean
you are creating. It can be One or Many.

EJB name Enter the bean name.

This should match an <ejb-name> element in the enterprise-beans
section of the deployment descriptor (although it may not exist yet).

Cascade delete Check this check box if you want this bean removed when the current
bean is removed.
236 exteNd Director Utility Tools

2 Click OK to return to the relationship panel.

3 Click Next to continue.

Return to “Panel sequence” on page 218.

Specifying find() methods

This panel lets you define the bean’s finder methods.

To complete this panel:

1 On this panel of the EJB Wizard, click Add to define a new find() method.

OR

Highlight an existing find() method and click Edit.

The Find Method Detail panel appears.

2 On the Find Method Detail panel, specify:

3 Click OK to return to the find() methods panel.

CMR field name If this bean is in a bidirectional relationship or is in a unidirectional
relationship and knows about the current bean, enter a name that
begins with a lowercase letter.

The wizard uses the name to generate methods for accessing the
related bean. This corresponds to the <cmr-field-name> element of the
cmr-field node in the deployment descriptor.

Option What to do

Method name Specify a legal Java method name

Returns Click the radio button associated with the Java type that is returned

Method parameters Click Add to enable the Type and Name text boxes and then:

Specify the Java data type of the parameter.

Specify a legal Java parameter name.

Option What to do
J2EE Wizards 237

4 Click Next to continue.

Return to “Panel sequence” on page 218.

Specifying additional classes or packages to import

This panel is used to specify any other classes or packages you want the wizard to generate import
statements for. The wizard does not import any packages by default.

To complete this panel:

1 Click Add to specify classes or packages to import.

2 Type the fully qualified path name of the Java class or the full package name in the text field.

3 When you are done adding or removing additional classes or packages, click Next to continue.

Return to “Panel sequence” on page 218.
238 exteNd Director Utility Tools

Specifying resource references

This panel lets you specify the resource reference that you’ll use as a substitute for the database table
name in the bean’s source code, the connection factory class, and the type of authentication.

To complete this panel:

1 Specify:

2 Click Next to continue.

Return to “Panel sequence” on page 218.

Option What to do

Database
resource
reference name

Specify the name that will be put in the JNDI environment and looked up by
anyone trying to get the named resource

The EJB specification recommends that this be prefaced with jdbc/—for
example:

jdbc/MyDataSource

The deployer will later map this reference to the appropriate database

Connection
factory class

Specify the Java type of the factory (not of the resource)

Database
authentication

Specify who performs the login to the resource:

Specifying container means the container signs onto the resource
manager in order to obtain the resource factory

Specifying application means the code in the EJB signs onto the
resource manager programmatically
J2EE Wizards 239

Completing the EJB

This panel shows all of the classes and interfaces that the wizard will generate. Review it carefully to
make sure that you have specified everything you wanted to. If you find a mistake, you can click the Back
button to return to a panel and make the appropriate change.

To complete the EJB:

1 Check the values in the Summary panel to make sure you have specified everything correctly, and
then click Finish.

2 When the Summary panel reports the wizard is done creating the EJB, click OK.

Now the EJB implementation class and the interfaces are open for editing in the Java Editor.

Return to “Panel sequence” on page 218.

JSP Wizard
Use the JSP Wizard to create JSP pages. The following sections describe:

About the JSP Wizard

Starting the JSP Wizard

Specifying the JSP page name and other options

Specifying the project, directory, and package

Specifying imports

What happens

About the JSP Wizard

Use the JSP Wizard to quickly specify a variety of attributes for your JSP page and add your JSP page to
an open project.
240 exteNd Director Utility Tools

Starting the JSP Wizard

To start the JSP Wizard:

1 Select File>New>File.

2 On the General tab, choose JSP and click OK. (Alternatively, you can double-click JSP.)

3 Continue as described in “Specifying the JSP page name and other options” (below).

Specifying the JSP page name and other options

To specify the JSP page name and other options:

1 On the first panel of the JSP Wizard, specify the following options:

2 Click Next to proceed to the next wizard panel. See “Specifying the project, directory, and
package”.

Option What to do

JSP name Specify the name for the JSP page. You don’t need to specify the .JSP
extension.

Page title Specify the text for the JSP page’s title.

Generated as <title>text</title>.

Content type Specify the MIME-type of the response generated by the JSP page. Choose
from the list provided.

The default is HTML.

Generated as the contentType attribute of the page directive.

Template Specify a code-generation template if you want to use one other than the
default. Depending on your exteNd product configuration, you may have a
choice of templates (which tailor class generation for different needs).

Use session Specify whether the JSP page participates in session management (in other
words, is part of a session).

Generated as the session attribute of the page directive.

Thread safe Specify whether the JSP page, once compiled into a servlet, can respond to
multiple simultaneous requests. If not, deselect the check box.

Generated as the isThreadSafe attribute of the page directive.

Form-based
page

Specify whether a simple HTML form is generated on the JSP page (enabled
only if you are generating an HTML or XHTML page).

Create error
page

Specify whether an error page is generated for this JSP page (enabled only if
you are generating an HTML or XHTML page). The error page is displayed if
an uncaught error occurs when the server is processing the JSP page.

Generated as the errorPage attribute of the page directive.

Specify import
values

Specify whether you want to specify Java classes and packages to import so
that you can reference classes in the JSP page without having to explicitly
specify package names. If you select this option, you will see an additional
panel in the wizard where you can specify the classes and packages.
J2EE Wizards 241

Specifying the project, directory, and package

To specify the project, directory, and package:

1 On this panel of the JSP Wizard, specify the following options:

2 If on the first panel you specified that you want to specify import values, click Next to proceed to

Option What to do

Add to open WAR project If you currently have one or more Web archive (WAR) projects
open, you can add the JSP page to one of those projects by
selecting it from the list.

Create project If you do not have a WAR project open but want to associate the
JSP page with a WAR project, click Create project to start the
New Project Wizard.

See “Creating projects and subprojects” on page 50 for
details.

No project—just write files
to the disk

Choose this option if you do not want to associate the JSP page
with a project; the wizard will create the JSP page in a nonproject
directory on the file system.

Base directory If you specified a WAR project, the default base directory is the
jsps subdirectory of the project directory. Otherwise, this field is
empty.

Click Browse to specify a file system location.

You can add one or more subdirectories to the default base
directory.

Package Specify a package hierarchy (with levels separated by periods) to
place the JSP page in a subdirectory of the base directory.

This affects only the directory where the JSP page is saved and
the default URL for accessing the JSP page. The JSP page itself is
unaffected.

For example, if the base directory is ProjectDir/jsps and you
specified com.myco as the package, the JSP page will be created
in ProjectDir/jsps/com/myco.

File directory The contents of Base directory and Package are combined to
specify the location of the JSP page, which is displayed under File
directory.

This is the file system location where the wizard creates the JSP
page.

You cannot change the contents of this field directly; you must
change Base directory and/or Package.

Add the files to the root of
the archive

When generating the project archive, place the JSP page at the
root of the archive (taking into account any package structure you
specified).

Add the files to the archive
with this prefix

When generating the project archive, place the JSP pages in a
directory tree as specified in the prefix (taking into account any
package structure you specified).

The files will be added to
this location in the archive

The location in the archive of the JSP page, as specified by the two
preceding selections, is reflected in this field.

You cannot change the contents of this field directly; you must
change the preceding two selections.
242 exteNd Director Utility Tools

the next panel. See “Specifying imports”.

Otherwise, you are done. Click Finish. When the final wizard panel reports that it has finished
creating the JSP page, click OK. See “What happens”.

Specifying imports

To specify classes and packages to import:

1 On this panel of the JSP Wizard, specify which classes you want to reference in the JSP page
without having to specify their package names.

Classes or packages you specify here are generated as the import attribute of the page directive.
This directive corresponds to import statements in a Java source file.

NOTE: As a convenience, every JSP page automatically imports all the classes from these
packages: java.lang, javax.servlet, javax.servlet.http, and javax.servlet.jsp.

To add a class or package, click Add and specify the class or package. You can add as many classes
or packages as you want.

2 Click Finish. When the final wizard panel reports it has finished creating the JSP page, click OK.
See “What happens”.

What happens
The JSP page is generated and appears in the JSP Editor. If you specified that you wanted an error
page associated with the JSP page, the error page is generated in the same directory with the name
JSPPageNameErrorPage.jsp and is specified in the JSP page’s errorPage attribute of the page
directive.

The wizard adds the JSP page (and error page if present) to the open project if you selected that
option.

Servlet Wizard
Use the Servlet Wizard to create servlet Java class files. The following sections describe:

About the Servlet Wizard

Starting the Servlet Wizard

Specifying the class name and other servlet options

Specifying the project, directory, and package

Specifying which HttpServlet methods to override

Specifying which interfaces to implement

Specifying which classes and packages to import

About the Servlet Wizard

The Servlet Wizard provides an automated mechanism for creating Java servlet source files. The wizard
provides options to specify these attributes of a Java servlet class:

The content type of the HTTP response document, such as HTML, XML, and so on

Whether to implement the single- or multi-threaded model interface

Whether to include the servlet in an existing project, in a new project, or not in any project

Whether the servlet is to be a member of a package (that is, whether to specify a package
definition)
J2EE Wizards 243

The directory structure for the Java source files and for the generated classes in the archive

Whether to override specified HttpServlet methods

Whether to implement any interfaces

Whether to import any classes or packages

Once you have created a servlet using the Servlet Wizard, you can modify that servlet in the Java Editor.

Starting the Servlet Wizard

To start the Servlet Wizard:

1 Select File>New>File.

2 On the General tab, choose Servlet and click OK. (Alternatively, you can double-click Servlet.)

3 Continue as described in “Specifying the class name and other servlet options” (below).

Specifying the class name and other servlet options

To specify the class name and other servlet options:

1 On the first panel of the Servlet Wizard, specify the following options:

2 Click Next to go to the next wizard panel. See “Specifying the project, directory, and package”.

Option What to do

Class name Specify an appropriate name for the servlet class.

Content type Specify the type of the document content of the HTTP response the
servlet is to generate.

The default is HTML.

Template Specify a code-generation template if you want to use one other than the
default. Depending on your exteNd product configuration, you may have a
choice of templates (which tailor class generation for different needs).

Implement
SingleThreadModel

Specify whether the servlet class is to implement the SingleThreadModel
interface.

Implementing this interface guarantees that no more than one request
thread accesses a single instance of your servlet. While this can
guarantee that servlet fields are accessed by only one thread at a time,
there can be significant performance costs if your servlet is accessed
frequently.

The default is to allow multithreaded access to the servlet.
244 exteNd Director Utility Tools

Specifying the project, directory, and package

To specify the project, directory, and package:

1 On the second panel of the Servlet Wizard, specify the following options:

2 Click Next to go to the next wizard panel. See “Specifying which HttpServlet methods to
override”.

Option What to do

Add to open WAR project If you currently have one or more Web archive (WAR) projects
open, you can add the servlet to one of those projects by
selecting it from the list.

Create project If you do not have a WAR project open but want to associate the
servlet with a WAR project, you can click Create project to start
the New Project Wizard.

For details, see “Creating projects and subprojects” on
page 50.

No project—just write files to
the disk

If you do not want to associate the servlet with a project, you can
still use the wizard to create a servlet class anywhere on the file
system.

Base directory If you specified a WAR project, the default base directory is a src
subdirectory located directly under the project directory.
Otherwise, this field is empty.

Click Browse to specify a file system location.

You can add one or more subdirectories to the default base
directory.

Package If your servlet is to be a member of a package (for example,
com.mwbi.welcome), specify the package name in this field.

File directory The contents of Base directory and Package are combined to
specify the location of the servlet source file, which is displayed
under File directory.

This is the file system location where the wizard creates the
servlet source file.

You cannot change the contents of this field directly; you must
change Base directory and/or Package.

Add the files to the root of the
archive

When generating the project archive, place the generated class
files for the servlet at the root of the archive.

Add the files to the archive
with this prefix

When generating the project archive, place the generated class
files for the servlet in a directory tree as specified in the prefix.

The default is to place the servlet classes in a WEB-INF/classes
directory under the root of the archive.

If you specified a package name, the directory structure
associated with that package is added to the prefix to determine
the final archive path for the generated classes.

The files will be added to this
location in the archive

The location in the archive of the generated servlet class files, as
specified by the two preceding selections, is reflected in this
field.

You cannot change the contents of this field directly; you must
change the preceding two selections.
J2EE Wizards 245

Specifying which HttpServlet methods to override

To specify which HttpServlet methods you want to override:

1 On this panel of the Servlet Wizard, specify which methods in the HttpServlet class to override in
the servlet.

Typically, you want to override the doGet and doPost methods. This panel enables you to override
these HttpServlet methods:

doGet

doPost

doPut

doDelete

init

destroy

getServletInfo

Choosing any of these methods causes the wizard to insert the basic structure for that method into
the servlet code it generates so that you can easily add the appropriate processing logic later using
the Java Editor.

2 Click Next to go to the next wizard panel. See “Specifying which interfaces to implement”.

Specifying which interfaces to implement

To specify which interfaces to implement:

1 On this panel, specify any interfaces that the servlet will implement. Click Add to specify an
interface. You must specify the fully qualified name of the interface. For each interface, you can
specify whether you want the wizard to generate stub methods.

2 You can rearrange the list of interfaces by clicking Up or Down. You can specify that you want stub
methods for all or none of the interfaces by clicking Check All or Uncheck All.

The wizard will generate the following for each interface you specify:

An entry in the servlet’s implements statement

All necessary imports

Stub code for all interfaces where you checked Generate Stub Code

3 Click Next to go to the next wizard panel. See “Specifying which classes and packages to import”.

Specifying which classes and packages to import

To specify which classes and packages to import:

1 On this panel, specify any additional classes or packages that the servlet should import.

The wizard will generate an import statement for each entry you make here.

2 Once you have specified the imports, click Finish.

The Servlet Wizard creates a Java servlet class based on what you specified.

3 When the wizard reports that it is done creating the servlet, click OK.

The servlet code appears in the Java Editor.

If you specified that the servlet is to be associated with a WAR project, the wizard adds the servlet
to that project.
246 exteNd Director Utility Tools

Java Class Wizard
Use the Java Class Wizard to create general-purpose Java class files. The following sections describe:

About the Java Class Wizard

Starting the Java Class Wizard

Specifying the class name and other options

Specifying which interfaces to implement

Specifying which classes and packages to import

Specifying the project, directory, and package

About the Java Class Wizard

With the Java Class Wizard you specify a variety of class attributes such as scope and whether to create
a class or an interface. The wizard lets you add the new source file to an existing project, create a new
project to add the new source file to, or simply write the new class file to disk.

Starting the Java Class Wizard

To start the Java Class Wizard:

1 Select File>New>File.

2 On the General tab, choose Java file and click OK. (Alternatively, you can double-click Java file.)

3 Continue as described in “Specifying the class name and other options” (below).

Specifying the class name and other options

To specify the class name and other options:

1 On the first panel of the Java Class Wizard, specify the following options:

2 Click Next to go to the next wizard panel. See “Specifying which interfaces to implement”.

Option What to do

Class name Specify an appropriate name for the Java class.

Base class Specify the base class, if any. You can enter a simple or a fully
qualified name.

Create class or interface? Specify whether to create a class or an interface.

Template Specify a code-generation template if you want to use one other
than the default. Depending on your exteNd product configuration,
you may have a choice of templates (which tailor class generation
for different needs).

Bottom group (check
boxes)

Use any of the following check boxes to further specify class
attributes:

Public scope

Create a default constructor

Create main() method

Serializable
J2EE Wizards 247

Specifying which interfaces to implement

To specify which interfaces to implement:

1 On this panel, specify any interfaces that the class will implement. Click Add to specify an
interface. You must specify the fully qualified name of the interface. For each interface, you can
specify whether you want the wizard to generate stub methods.

2 You can rearrange the list of interfaces by clicking Up or Down. You can specify that you want stub
methods for all or none of the interfaces by clicking Check All or Uncheck All.

The wizard will generate the following for each interface you specify:

An entry in the class’s implements statement

All necessary imports

Stub code for all interfaces where you checked Generate Stub Code

3 Click Next to go to the next wizard panel. See “Specifying which classes and packages to import”.

Specifying which classes and packages to import

To specify which classes and packages to import:

1 On this panel, specify any additional classes or packages that the class should import.

The wizard will generate an import statement for each entry you make here.

2 Click Next to go to the next wizard panel. See “Specifying the project, directory, and package”.

Specifying the project, directory, and package

To specify the project, directory, and package:

1 On the top portion of this panel of the Java Class Wizard, specify one of the following three project
association options:

Option What to do

Add to open project If you currently have one or more projects open, you can add the class
file to one of those projects by selecting it from the list.

Create project If you do not have a project open but want to associate the class file with
a project, click Create project to start the New Project Wizard.

When you are through, the new project is selected as the project to add
the new class file to.

For more information, see “Project design considerations” on
page 48.

No project—just
write the files to the
disk

Choose this option if you do not want to associate the class file with a
project; the wizard will create the class file in a nonproject directory on
the file system.
248 exteNd Director Utility Tools

2 On the lower portion of this Java Class Wizard panel, specify the following options:

3 Click Finish.

4 When the final wizard panel reports it’s done creating the Java class, click OK.

The code appears in the Java Editor. (The Java class is added to the open project only if you
selected that option.)

The wizard creates the Java class source file. After you write the methods that implement the specific
functionality for this new class (as well as any import statements), you can add the new class file to a
project.

For more information, see “Adding to projects” on page 58.

Option What to do

Base directory If you specified a project, the default base directory is a src
subdirectory located directly under the project directory. Otherwise,
this field is empty.

Click Browse to specify a file system location.

The Base directory is the project root combined with whatever other
directories are in the project directory structure above the package
path.

Package Specify the fully-qualified Java package name for the new class. You
can specify a package hierarchy with levels separated by periods.

The Java class you are creating is saved in the Base directory
combined with the Package directory.

For example, if the base directory is ProjectDir/classes and you
specified com.myco as the package, the class will be created in
ProjectDir/classes/com/myco.

File directory The contents of Base directory and Package are combined to
specify the location of the Java class source file, which is displayed
under File directory.

This is the file system location where the wizard creates the Java
class source file.

You cannot change the contents of this field directly; you must change
Base directory and/or Package.

Add the files to the root
of the archive

Adds the compiled Java class file to the archive root combined with
the package path when generating the project archive.

Add the files to the
archive with this prefix

Adds the compiled Java class file to the specified archive directory
combined with the package path when generating the project archive.

If you specified a package name, the directory structure associated
with that package is added to the prefix to determine the final archive
path for the generated class.

The files will be added
to this location in the
archive

The location in the archive of the generated Java class file, as
specified by the two preceding selections, are reflected in this field.

You cannot change the contents of this field directly; you must change
the preceding two selections.
J2EE Wizards 249

JavaBean Wizard
Use the JavaBean Wizard to create JavaBeans. The following sections describe:

About the JavaBean Wizard

Starting the JavaBean Wizard

Specifying the class name and other options

Specifying the data fields

Specifying which interfaces to implement

Specifying which classes and packages to import

Specifying the project, directory, and package

About the JavaBean Wizard

Use the JavaBean Wizard to quickly create a skeleton for a JavaBean and add it to an open project.

Starting the JavaBean Wizard

To start the JavaBean Wizard:

1 Select File>New>File.

2 On the General tab, choose JavaBean (in the Advanced section) and click OK. (Alternatively, you
can double-click JavaBean.)

3 Continue as described in “Specifying the class name and other options” (below).

Specifying the class name and other options

To specify the class name and other options:

1 On the first panel of the JavaBean Wizard, specify the following options:

2 Click Next to go to the next wizard panel. See “Specifying the data fields”.

Specifying the data fields

To specify the data fields for the JavaBean:

1 Define each data field by clicking Add and specifying the name and data type.

The generated Java file will define the fields in the order in which they are listed here. You can
reorder the list by selecting a field and clicking Up or Down.

Option What to do

Class name Specify the name for the JavaBean. You don’t need to specify the .Java
extension.

Base class If the JavaBean is inherited from a base class, specify the name of the base
class. You can specify a simple or fully qualified name.

Generated as extends class.

Template Specify a code-generation template if you want to use one other than the default.
Depending on your exteNd product configuration, you may have a choice of
templates (which tailor class generation for different needs).
250 exteNd Director Utility Tools

2 Click Next to go to the next wizard panel. See “Specifying which interfaces to implement”.

Specifying which interfaces to implement

To specify which interfaces to implement:

1 On this panel, specify any interfaces that the bean will implement. Click Add to specify an
interface. You must specify the fully qualified name of the interface. For each interface, you can
specify whether you want the wizard to generate stub methods.

2 You can rearrange the list of interfaces by clicking Up or Down. You can specify that you want stub
methods for all or none of the interfaces by clicking Check All or Uncheck All.

The wizard will generate the following for each interface you specify:

An entry in the bean’s implements statement

All necessary imports

Stub code for all interfaces where you checked Generate Stub Code

3 Click Next to go to the next wizard panel. See “Specifying which classes and packages to import”.

Specifying which classes and packages to import

To specify which classes and packages to import:

1 On this panel, specify any additional classes or packages that the bean should import.

The wizard will generate an import statement for each entry you make here.

2 Click Next to go to the next wizard panel. See “Specifying the project, directory, and package”.

Specifying the project, directory, and package

To specify the project, directory, and package:

1 On the top portion of this panel of the JavaBean Wizard, specify one of the following three project
association options:

Option What to do

Add to open project If you currently have one or more projects open, you can add the bean to
one of those projects by selecting it from the list.

Create project If you do not have a project open but want to associate the bean with a
project, click Create project to start the New Project Wizard.

When you are through, the new project is selected as the project to add
the new bean to.

For more information, see “Project design considerations” on
page 48.

No project—just write
the files to the disk

Choose this option if you do not want to associate the bean with a
project; the wizard will create the bean in a nonproject directory on the
file system.
J2EE Wizards 251

2 On the lower portion of this JavaBean Wizard panel, specify the following options:

3 Click Finish.

4 When the final wizard panel reports it’s done creating the JavaBean, click OK.

The code appears in the Java Editor. (The JavaBean is added to the open project only if you
selected that option.)

The wizard creates the skeleton of the JavaBean source file. The skeleton includes an empty constructor,
declarations for all the data fields (as m_name), and get and set methods for all the fields.

Tag Handler Wizard
Use the Tag Handler Wizard to create tag handler classes for custom JSP tags. The following sections
describe:

About the Tag Handler Wizard

Starting the EJB Wizard

Specifying the class name and other options

Option What to do

Base directory If you specified a project, the default base directory is a src subdirectory
located directly under the project directory. Otherwise, this field is empty.

Click Browse to specify a file system location.

The Base directory is the project root combined with whatever other
directories are in the project directory structure above the package path.

Package Specify the fully qualified Java package name for the new bean class.
You can specify a package hierarchy with levels separated by periods.

The bean you are creating is saved in the Base directory combined with
the Package directory.

For example, if the base directory is ProjectDir/classes and you specified
com.myco as the package, the bean will be created in
ProjectDir/classes/com/myco.

File directory The contents of Base directory and Package are combined to specify
the location of the bean, which is displayed under File directory.

This is the file system location where the wizard creates the bean source
file.

You cannot change the contents of this field directly; you must change
Base directory and/or Package.

Add the files to the
root of the archive

Adds the compiled JavaBean to the archive root combined with the
package path when generating the project archive.

Add the files to the
archive with this
prefix

Adds the compiled JavaBean to the specified archive directory combined
with the package path when generating the project archive.

If you specified a package name, the directory structure associated with
that package is added to the prefix to determine the final archive path for
the generated bean.

The files will be
added to this
location in the
archive

The location in the archive of the generated JavaBean, as specified by
the two preceding selections, is reflected in this field.

You cannot change the contents of this field directly; you must change the
preceding two selections.
252 exteNd Director Utility Tools

Specifying the project, directory, and package

Specifying the tag library descriptor file

Specifying the body type

Specifying tag handler attributes

Specifying tag handler scripting variables

Specifying TagExtraInfo class

What happens

About the Tag Handler Wizard

The Tag Handler Wizard can speed your JSP development effort by:

Creating a skeleton of the tag handler class

Creating or modifying the associated tag library descriptor file (TLD)

Updating the web.xml file to include the required information

You can edit the tag handler class using the Java Editor. You can modify the TLD or the web.xml files
using the XML Editor. Both files are on the Project tab of the Navigation Pane.

Starting the Tag Handler Wizard

An open project is required before you start this wizard.

To start the Tag Handler Wizard:

1 Select File>New>File.

2 On the General tab, choose Tag handler (in the Advanced section) and click OK. (Alternatively,
you can double-click Tag handler.)

3 Continue as described in “Specifying the class name and other options” (below).
J2EE Wizards 253

Specifying the class name and other options

To specify the class name and other options:

1 On the first panel of the Tag Handler Wizard, specify the following options:

2 Click Next to go to the next wizard panel. See “Specifying the project, directory, and package”.

Option What to do

Class name Specify the name for the tag handler. The name must be a valid Java name. You
do not need to specify the .java extension.

This value is added to the TLD file in the <tagclass> element.

Tag name Specify the name of the custom tag.

This will appear in the <name> element of the tag definition in the tag library
descriptor file (TLD).

Template Specify a code-generation template if you want to use one other than the
default. Depending on your exteNd product configuration, you may have a
choice of templates (which tailor class generation for different needs).

Attributes Select this check box if the custom tag should support tag element attributes.

If you select this option, you will see an additional wizard panel where you can
specify the details of the attribute(s).

Scripting
Variables

Select this check box if the custom tag should support scripting variables.

If you select this option, you will see an additional wizard panel where you can
specify the details of the scripting variable(s).

Body Tag Select this check box if the custom tag will use the content of the tag element’s
body in a JSP page.

If you select this option, you will see an additional wizard panel where you can
specify the details of the body tag(s).
254 exteNd Director Utility Tools

Specifying the project, directory, and package

To specify the project, directory, and package:

1 On the top portion of this panel of the Tag Handler Wizard, specify one of the following three
project association options:

2 On the lower portion of this panel, specify the following options:

Option What to do

Add to open project If you currently have one or more projects open, you can add the class file
to one of those projects by selecting it from the list.

Create project If you want to associate the class file with a new project, click Create
project to start the New Project Wizard.

When you are through, the new project is selected as the project to add
the new class file to.

For more information, see “Project design considerations” on
page 48.

No project—just
write the files to the
disk

Disabled—you must associate the tag handler class with a project

Option What to do

Base directory The default base directory is the project’s src subdirectory located directly
under the project directory.

Click Browse to specify a file system location.

The Base directory is the project root combined with whatever other
directories are in the project directory structure above the package path.

Package Specify the fully qualified Java package name for the new tag handler
class. You can specify a package hierarchy (with levels separated by
periods).

File directory This is the file system location where the wizard creates the tag handler
source file and the TagExtraInfo class source file, if any.

The tag handler class you are creating is saved in the Base directory
combined with the Package directory.

For example, if the base directory is ProjectDir/classes and you specified
com.myco as the package, the class will be created in
ProjectDir/classes/com/myco.

You cannot change the contents of this field directly; you must change
Base directory and/or Package.

Add the files to the
root of the archive

Adds the compiled tag handler class file to the archive root combined with
the package path when generating the project archive.

Add the files to the
archive with this
prefix

Adds the compiled tag handler class file to the specified archive directory
combined with the package path when generating the project archive.

If you specified a package name, the directory structure associated with
that package is added to the prefix to determine the final archive path for
the generated class.
J2EE Wizards 255

3 Click Next to proceed to the next wizard panel. See “Specifying the tag library descriptor file”.

Specifying the tag library descriptor file

To specify the tag library descriptor file:

1 On the top portion of this panel of the Tag Handler Wizard, choose one of the following options:

2 If you chose Create New TLD, complete the following fields:

3 Click Next to go to the next wizard panel. What panel displays next depends on whether you
checked the attributes, scripting variables, or body tag check boxes on the first wizard panel.
Follow the first option that fits:

If the custom tag uses the tag element’s body content, see “Specifying the body type” on
page 257.

If the custom tag uses tag element attributes, see “Specifying tag handler attributes” on
page 257.

The files will be
added to this
location in the
archive

The location in the archive of the generated tag handler class file, as
specified by the two preceding selections, is reflected in this field.

You cannot change the contents of this field directly; you must change the
preceding two selections.

Option What to do

Use Existing TLD Choose this option when you are adding new custom tags to an existing
TLD, then specify the TLD name and disk location.

Create New TLD Choose this option when you are creating a new TLD and specify the
remaining fields.

Option What to do

Taglib Short Name Specify the value to be used in the Tab Library Descriptor <short-name>
element.

Taglib URI Specify a URI that is used in the WAR's deployment descriptor. This is not
the URI for the TLD file.

This URI can be used in the JSP taglib directives to refer to this taglib—for
example: /mytags.

TLD file name Specify the name of the TLD to create.

TLD directory Specify the directory location where the wizard should create the TLD file.

Archive location Specify the directory location for the TLD within the archive:

When deployed inside a JAR file, the TLD must be in the META-INF
directory

When deployed directly in a WAR file, TLDs are usually placed in the
\WEB-INF directory or a separate \WEB-INF\tlds directory

JSP Version to
support

Choose the radio button that represents the version of the JSP
specification that the TLD will support.

If you are using a WAR project for J2EE 1.2 (servlet2.2 and JSP1.1), you
cannot change the wizard’s choice of JSP1.1.

Option What to do
256 exteNd Director Utility Tools

If the custom tag uses or creates scripting variables, see “Specifying tag handler scripting
variables” on page 258.

Otherwise, see “Specifying TagExtraInfo class” on page 258.

Specifying the body type

To specify the body type:

1 Specify values for the following options:

2 Click Next to go to the next wizard panel. What panel displays next depends on whether you
checked the attributes or scripting variables check boxes on the first wizard panel.

If the custom tag uses tag element attributes, see “Specifying tag handler attributes” on
page 257.

If the custom tag uses or creates scripting variables, see “Specifying tag handler scripting
variables” on page 258.

Otherwise, see “Specifying TagExtraInfo class” on page 258.

Specifying tag handler attributes

To specify the tag handler attributes:

1 Specify values for the following options:

2 Click Next to go to the next wizard panel. What panel displays next depends on whether you
checked the scripting variables check box on the first wizard panel.

If the custom tag uses or creates scripting variables, see “Specifying tag handler scripting
variables” on page 258.

Otherwise, see “Specifying TagExtraInfo class” on page 258.

Option What to do

JSP Specify this option when you want to use JSP code, HTML tags, plain text,
other custom tags, and any other valid Web page content in the body of the
custom tag.

Tag dependent Specify this option when you want to use non-JSP code (like SQL) in the body
of the custom tag. The tag’s body content will be passed directly to the tag
handler class without any runtime evaluation.

Option What to do

Attribute Specify the name of the attribute.

This value corresponds to the <attribute> element’s <name> element within the
TLD entry for this custom tag.

Type Specify the data type of the attribute. The value must be a nonprimitive type.

Required Specify whether the attribute is required when the custom tag is used. When
checked, the attribute is required. Corresponds to the TLD file’s <required>
element.

Runtime
expression

Specify whether you can use a JSP scriptlet expression in the JSP page to set the
value of the attribute. This corresponds to the TLD file’s <rtexprvalue> element.
J2EE Wizards 257

Specifying tag handler scripting variables

To specify tag handler scripting variables:

1 Specify the values for the following options:

2 Click Next to go to the next wizard panel. See “Specifying TagExtraInfo class”.

Specifying TagExtraInfo class

To specify whether or not to create a TagExtraInfo class:

1 Specify values for the following options:

2 Click Finish. When the final wizard panel reports it has finished creating the TagExtraInfo class,
click OK.

See “What happens”.

What happens

When you click Finish, the wizard:

Generates the tag handler class and displays it in the Java Editor.

Generates the TagExtraInfo class associated with the tag handler (if specified). The class is
generated in the same directory with the name TagHandlerClassNameExtraInfo.java.

Adds the tag handler class (and theTagExtraInfoClass if present) to the specified project.

Creates a new TLD file (and the WAR’s deployment descriptor is modified) or updates an existing
TLD file, depending on what you chose.

Option What to do

Variable Enter the variable’s name.

Type Enter the variable’s data type.

New Object Specify whether the variable refers to a new or existing object instance.

Scope Specify the availability of the variable. Values can be:

NESTED—The variable is available between the start and end tags

AT_BEGIN—The variable is available from the start tag until the end of the
page

AT_END—The variable is available after the end tag until the end of the page

Option What to do

Do not create
TagExtraInfo class

Choose this option if you do not want the wizard to create a TagExtraInfo
class.

Create TagExtraInfo
class

Choose this option if you want the wizard to create a TagExtraInfo class.
This option might be disabled if your tag’s configuration requires a
TagExtraInfo class.

(Optional) Choose the appropriate checkbox if you want the wizard to
implement either of the following methods:

getVariableInfo()

isValid()
258 exteNd Director Utility Tools

14 How to Handle J2EE Versions

This chapter helps you target your application at an appropriate version of J2EE (Java 2 Platform,
Enterprise Edition). It is especially useful if you need to know when and how to migrate existing projects
to a newer J2EE version. Topics include:

Support for J2EE versions

Your choices

Versions for new projects and components

Migrating projects from J2EE 1.2 to 1.3

exteNd Application Server considerations

For an overview of J2EE, see the Sun J2EE Web site.

Support for J2EE versions
Choices you make about J2EE versions are largely determined by the J2EE server(s) you deploy to. To
begin, find out whether your J2EE server is compatible with J2EE 1.2 or 1.3. Then read the following
topics to learn what that means for your application and how you handle it in the Novell exteNd Director
development environment:

What J2EE 1.2 servers support

What J2EE 1.3 servers support

What the development environment supports

What J2EE 1.2 servers support

If you develop applications for deployment to J2EE 1.2 servers, you can use J2EE 1.2 archives and J2EE
1.2 technologies. But J2EE 1.2 servers do not support J2EE 1.3 archives and J2EE 1.3 technologies.

J2EE 1.2 archives The J2EE 1.2 archives are:

J2EE 1.2 technologies The J2EE 1.2 technologies include:

Java Servlets 2.2

JavaServer Pages (JSP) 1.1

Enterprise JavaBeans (EJB) 1.1

Name and version Description

EAR 1.2 Enterprise (application) archive

WAR 2.2 Web archive (for servlets and JSP pages)

EJB JAR 1.1 Enterprise JavaBean (EJB) archive

Client JAR 1.2 Application client archive (CAR)
How to Handle J2EE Versions 259

new http://java.sun.com/j2ee/

JDBC Standard Extension 2.0

Java Transaction API (JTA) 1.0

JavaMail 1.1

Java Messaging Service (JMS) 1.0

Java Naming and Directory Interface (JNDI) 1.2

RMI-IIOP

What J2EE 1.3 servers support

If you develop applications for deployment to J2EE 1.3 servers, you can use either of the following:

J2EE 1.2 archives and J2EE 1.2 technologies

J2EE 1.3 archives and J2EE 1.3 technologies

In other words, J2EE 1.3 servers support J2EE 1.2 applications as well as J2EE 1.3 applications. For
further flexibility, you also have the option of mixing J2EE 1.2 modules and features into your J2EE 1.3
applications as follows:

J2EE 1.3 archives The J2EE 1.3 archives are:

J2EE 1.3 technologies The J2EE 1.3 technologies include:

Java Servlets 2.3

JavaServer Pages (JSP) 1.2

Enterprise JavaBeans (EJB) 2.0

J2EE Connector 1.0

JDBC Standard Extension 2.0

Java Transaction API (JTA) 1.0

JavaMail 1.2

Java Messaging Service (JMS) 1.0.2

Java API for XML Parsing (JAXP) 1.1

Java Authentication and Authorization Service (JAAS) 1.0

The following technologies previously included with J2EE are now included with the Java 2 Platform,
Standard Edition (J2SE): JNDI, RMI-IIOP.

These J2EE 1.3
archives Can contain

EARs Both J2EE 1.2 modules (WARs, EJB JARs, client JARs) and J2EE 1.3 modules

EJB JARs Entity beans that use either 1.x or 2.x container-managed persistence (CMP)

Name and version Description

EAR 1.3 Enterprise (application) archive

WAR 2.3 Web archive (for servlets and JSP pages)

RAR 1.0 Resource adapter archive (for Connector architecture)

EJB JAR 2.0 Enterprise JavaBean (EJB) archive

Client JAR 1.3 Application client archive (CAR)
260 exteNd Director Utility Tools

What the development environment supports

The exteNd Director development environment provides built-in support for multiple versions of J2EE,
including 1.2 and 1.3. It helps you handle version-related tasks throughout the life cycle of a project,
including development, migration, and deployment:

Your choices
This section examines specific kinds of projects and offers advice about making J2EE version choices for
them. It covers:

Project scenarios

Approaching new development

Deciding when to migrate

Task What you can do

Development You can use the development environment to develop projects for any of the
following:

J2EE 1.2 archives

J2EE 1.3 archives

This includes the ability to add J2EE 1.2 and 1.3 modules to a 1.3 EAR as well
as add 1.x and 2.x CMP entity beans to a 2.0 EJB JAR.

See “Versions for new projects and components” on page 264.

Migration You can use the development environment to migrate existing projects to a newer
J2EE version. Scenarios include:

Migrating a J2EE 1.2 project (and any 1.2 subprojects it contains) to 1.3

Migrating the J2EE 1.2 subprojects of a 1.3 project to 1.3

See “Migrating projects from J2EE 1.2 to 1.3” on page 266.

Deployment You can deploy projects to J2EE servers by using the development environment (or,
if necessary, vendor deployment tools). Scenarios include:

Deploying a J2EE 1.2 project to a 1.2 or 1.3 server

Deploying a J2EE 1.3 project to a 1.3 server

For details on selecting an appropriate J2EE server and deploying to it, see
Chapter 15, “Archive Deployment”.
How to Handle J2EE Versions 261

Project scenarios

Use the following table to find the project scenarios that apply to you and learn how you can handle them
in the exteNd Director development environment:

If you have this You can

Source files for a J2EE 1.2
module or application (but
no project)

Create one or more J2EE 1.2 projects for the source files, specifying
appropriate project types and versions. Possible choices are:

EAR 1.2

WAR 2.2

EJB 1.1

CAR 1.2

Source files for a J2EE 1.3
module or application (but
no project)

Create one or more J2EE 1.3 projects for the source files, specifying
appropriate project types and versions. Possible choices are:

EAR 1.3

WAR 2.3

RAR 1.0

EJB 2.0

CAR 1.3

Packaged J2EE 1.2 archive
(but no source files or
project)

Create a J2EE 1.2 deploy-only project for the archive, specifying an
appropriate project type and version. Possible choices are:

EAR 1.2

WAR 2.2

EJB 1.1

CAR 1.2

Packaged J2EE 1.3 archive
(but no source files or
project)

Create a J2EE 1.3 deploy-only project for the archive, specifying an
appropriate project type and version. Possible choices are:

EAR 1.3

WAR 2.3

RAR 1.0

EJB 2.0

CAR 1.3

J2EE 1.2 enterprise archive
project (EAR 1.2)

Do any of the following:

Edit it and its subprojects (J2EE 1.2 modules) as needed, while
adhering to the J2EE 1.2 APIs and specifications

Deploy it to a J2EE 1.2 or 1.3 server

Add subprojects to it (J2EE modules you add must be 1.2
modules)

Migrate it and its subprojects (J2EE 1.2 modules) from J2EE 1.2 to
1.3:

EAR 1.2 to EAR 1.3

WAR 2.2 to WAR 2.3

EJB 1.1 to EJB 2.0

CAR 1.2 to CAR 1.3
262 exteNd Director Utility Tools

utoolsProjects.html#Creatingadeploy-onlyproject
utoolsProjects.html#Creatingprojectsandsubprojects
utoolsProjects.html#Creatingprojectsandsubprojects
utoolsProjects.html#Creatingadeploy-onlyproject

J2EE 1.3 enterprise archive
project (EAR 1.3)

Do any of the following:

Edit it and its subprojects as needed, according to these guidelines:

For the EAR itself and its J2EE 1.3 modules, adhere to the J2EE
1.3 APIs and specifications

For its J2EE 1.2 modules, adhere to the J2EE 1.2 APIs and
specifications

Deploy it to a J2EE 1.3 server

Add subprojects to it (J2EE modules you add can be 1.2 or 1.3
modules)

Migrate it if you want to migrate the J2EE 1.2 modules
(subprojects) it contains to J2EE 1.3:

WAR 2.2 to WAR 2.3

EJB 1.1 to EJB 2.0

CAR 1.2 to CAR 1.3

J2EE 1.2 project for any
module:

Web archive (WAR 2.2)

Enterprise JavaBean
archive (EJB 1.1)

Application client archive
(CAR 1.2)

Do any of the following:

Edit it as needed, while adhering to the J2EE 1.2 APIs and
specifications

Deploy it to a J2EE 1.2 or 1.3 server

Add it as a subproject to a J2EE 1.2 or 1.3 EAR project

Migrate it from J2EE 1.2 to 1.3:

WAR 2.2 to WAR 2.3

EJB 1.1 to EJB 2.0

CAR 1.2 to CAR 1.3

J2EE 1.3 project for any
module:

Web archive (WAR 2.3)

Resource adapter
archive (RAR 1.0)

Enterprise JavaBean
archive (EJB 2.0)

Application client archive
(CAR 1.3)

Do any of the following:

Edit it as needed, while adhering to the J2EE 1.3 APIs and
specifications

Deploy it to a J2EE 1.3 server

Add it as a subproject to a J2EE 1.3 EAR project

J2EE 1.2 deploy-only
project (EAR 1.2, WAR 2.2,
EJB 1.1, or CAR 1.2)

Do any of the following:

Deploy it to a J2EE 1.2 or 1.3 server

Add it as a subproject to a J2EE 1.2 or 1.3 EAR project (if it’s a
WAR, EJB, or CAR module)

Migrate it from J2EE 1.2 to 1.3

J2EE 1.3 deploy-only
project (EAR 1.3, WAR 2.3,
RAR 1.0, EJB 2.0, or CAR
1.3)

Do either of the following:

Deploy it to a J2EE 1.3 server

Add it as a subproject to a J2EE 1.3 EAR project (if it’s a WAR,
RAR, EJB, or CAR module)

If you have this You can
How to Handle J2EE Versions 263

Approaching new development

When you start work on a new application or module, a good rule of thumb is to use the latest J2EE
version and technologies supported by your target J2EE server(s). This typically provides a more mature
platform, including:

J2EE improvements such as additional features, architecture enhancements, and other updates

Server improvements that accompany the newer J2EE implementation, such as faster deployment,
better runtime performance, and easier maintenance

For example, if your deployment target is a J2EE 1.3 server, you should develop J2EE 1.3 archives for it
(even though 1.2 archives are also supported). Within your archives, it’s also recommended that you code
to the latest standards available. If you develop EJB entity beans with container-managed persistence,
that means using 2.x CMP instead of 1.x CMP.

Deciding when to migrate

Use the following table to decide when to migrate an existing J2EE archive project to a newer J2EE
version:

For example, suppose you have a J2EE 1.2 WAR project and want to add servlet filters to it. In that case,
you must first migrate this project to J2EE 1.3 (in other words, from WAR 2.2 to WAR 2.3).

Versions for new projects and components
Because the exteNd Director development environment supports multiple versions of J2EE, it offers you
a choice of versions when you create parts of an application. This applies:

When creating projects

When creating JSP tag libraries

When creating EJB entity beans

When creating projects

When you create a generic J2EE project, you can specify the J2EE version (1.2 or 1.3) of the archive that
the project represents. The default is J2EE 1.3.

For example, suppose you need a new Web archive project. To create it, you select File>New>Project
and choose WAR (on the Generic tab) as the project type. Then the New Project Wizard prompts for
details about the project, including its J2EE version:

Decision When it applies

Migrate If the project needs to use new features or other enhancements of the more recent
J2EE version

If you want to take advantage of improvements that your J2EE server introduces
with its implementation of the more recent J2EE version

Don’t migrate If you need to deploy the project to a J2EE server that does not support the more
recent J2EE version
264 exteNd Director Utility Tools

utoolsProjects.html#Creatingprojectsandsubprojects

When you create other types of generic J2EE archive projects (EAR, RAR, EJB, CAR), the New Project
Wizard adjusts the list of J2EE version choices accordingly. For deploy-only projects, you specify project
type and J2EE version at the same time by choosing from a combined list:

How your J2EE version choice affects a project When a project is created, your J2EE version
choice is reflected in several places:

When creating JSP tag libraries

You can use the Tag Handler Wizard to develop a new or existing JSP tag library. If you ask to create a
new tag library, the wizard requires you to specify which JSP version (1.1 or 1.2) to support in it.

In this part of the
project Your J2EE version choice affects

Project (SPF) file The following project settings:

The j2eeVersion and moduleVersion attributes in the SPF file. They record
the current version status of the project. For example:

j2eeVersion="j2ee 1.3" moduleVersion="war 2.3"

The project classpath entry for the JAR file that provides the J2EE API
packages (needed for compiling). For J2EE 1.2 projects, the entry is
j2ee_api_1_2.jar; for J2EE 1.3 projects, the entry is j2ee_api_1_3.jar.

Deployment
descriptor

Which version of the appropriate J2EE deployment descriptor is created for the
project. Depending on the project’s J2EE version, you get a 1.2 or 1.3
deployment descriptor for your project type: EAR, WAR, RAR, EJB, or CAR.
You can examine the DOCTYPE statement of the deployment descriptor to
determine which DTD it follows.

For details, see Chapter 18, “J2EE Deployment Descriptor DTDs”.

(Note that deployment descriptors are not created for deploy-only projects
because their archive contents are static.)

Deployment plan
(for exteNd
Application Server
4.x or 5.x)

Which version of the appropriate exteNd deployment plan you get by default if
you create one for the project.

If you specify SilverStream 4.x as the server type:

Depending on the project’s J2EE version, the default is a 1.2 or 1.3
deployment plan for your project type: EAR, WAR, RAR, EJB, or CAR. You
can examine the DOCTYPE statement of the deployment plan to determine
which DTD it follows.

If you specify Novell exteNd 5.x as the server type:

Whether your project’s J2EE version is 1.2 or 1.3, you always get a 1.3
deployment plan for your project type.

For details, see Chapter 19, “exteNd Application Server Deployment Plan
DTDs”.
How to Handle J2EE Versions 265

utoolsComponentWizards.html

To start the Tag Handler Wizard, you select File>New>File and choose Tag handler. It then prompts for
several panels of information, including details about the tag library descriptor (TLD) file. The JSP
version is one of those details (for a new TLD file):

Your JSP version choice is recorded in the TLD file via the jsp-version element. This choice also
determines which DTD is used for the TLD file:

WAR 2.3 projects support both JSP 1.1 and 1.2 tag libraries (although JSP 1.2 is recommended). WAR
2.2 projects support only JSP 1.1 tag libraries.

When creating EJB entity beans

You can use the EJB Wizard to add various kinds of Enterprise JavaBeans to an EJB project. That
includes entity beans using container-managed persistence, with a choice of 1.x or 2.x CMP.

To start the EJB Wizard, you select File>New>File and choose EJB as the component to create. It then
prompts for the kind of EJB you want:

For an EJB 2.0 project, you can choose either version of CMP entity bean (although 2.x CMP is
recommended). Your CMP version choice is recorded in the project’s deployment descriptor via the
cmp-version element.

EJB 1.1 projects support only 1.x CMP.

Migrating projects from J2EE 1.2 to 1.3
The exteNd Director development environment provides an Update Project Version command that you
can select to migrate an existing J2EE 1.2 project to 1.3. For most kinds of projects, this command does
the entire migration for you. In a few cases, it will notify you about additional migration tasks that you
need to perform manually. The development environment also provides a command for when you just
want to update an exteNd deployment plan from J2EE 1.2 to 1.3.

If you have one or more projects to migrate, read the following topics:

Using the Update Project Version command

Using the Update Deployment Plan Version command

Projects that require some manual migration

JSP version TLD DTD

1.1 web-jsptaglibrary_1_1.dtd

1.2 web-jsptaglibrary_1_2.dtd
266 exteNd Director Utility Tools

utoolsComponentWizards.html

Using the Update Project Version command

This section describes the steps to follow once you’ve decided to migrate a project. For background
information on when and what to migrate, see these earlier sections:

“Deciding when to migrate” on page 264

“Project scenarios” on page 262

To migrate a project:

1 In the development environment, open a J2EE archive project (EAR, WAR, EJB, or CAR) that
you want to migrate.

2 On the Project tab of the Navigation Pane, right-click the project (SPF) file to display the popup
menu.

3 Select Update Project Version.

First, the update utility checks the J2EE version of your selected SPF file. If it is already set to J2EE
1.3, the update utility notifies you, asking if you want to proceed. Migrating such a project can
make sense if it includes J2EE 1.2 items (deployment descriptors, deployment plans, or
subprojects) that you want to update to 1.3. The update utility will migrate just those items that
need it.

Once past the SPF check, the update utility prompts you for confirmation before migrating the
project. Files that are modified during the migration will be backed up first only if you have
enabled backup in your development environment preferences.

For information about enabling backup, see “Backup preferences” on page 28.

4 Click Yes to start the migration.

The update utility migrates the project from J2EE 1.2 to 1.3, then displays status information about:

Changes it made to the project

Unresolved issues (if any) that require you to make some manual changes to the project
How to Handle J2EE Versions 267

This status information appears on the Output tab of the Output Pane. For example:

If you migrate an EAR project, the update utility automatically migrates the J2EE archive
subprojects (WARs, EJBs, and CARs) that the EAR contains as well. The update utility includes
details about these migrations in the status information it displays:

How migration affects a project When a project is migrated, the update utility makes changes in
several places to reflect the new J2EE version:

In this part of the
project Migration affects

Project (SPF) file The following project settings:

The j2eeVersion and moduleVersion attributes in the SPF file. When
you migrate, the update utility sets these to J2EE 1.3 values. For
example:

j2eeVersion="j2ee 1.3" moduleVersion="war 2.3"

The project classpath entry for the JAR file that provides the J2EE API
packages (needed for compiling). When you migrate, the update utility
sets this to:

j2ee_api_1_3.jar
268 exteNd Director Utility Tools

Using the Update Deployment Plan Version command

In addition to the Update Project Version command, the exteNd Director development environment
provides an Update Deployment Plan Version command on the popup menu for a J2EE project (SPF
file). Update Deployment Plan Version works just like Update Project Version except that it only updates
the project’s exteNd deployment plan.

Update Deployment Plan Version is useful when you want to deploy J2EE 1.2 projects (including deploy-
only projects) to Novell exteNd Application Server 5.x, which requires 1.3 deployment plans. When you
invoke this command, it migrates the deployment plans of those projects from 1.2 to 1.3 format, but
leaves other project characteristics unchanged.

Projects that require some manual migration

When you use the Update Project Version command or the Update Deployment Plan Version command
to migrate certain kinds of projects, the update utility may not be able to resolve all issues automatically.
In that case, it displays information about changes you need to make to the project yourself.

Deployment descriptor The following descriptor items:

DOCTYPE statement. When you migrate, the update utility edits it to use
the 1.3 deployment descriptor DTD for your project type: EAR, WAR,
EJB, or CAR.

The cmp-version element for entity beans using container-managed
persistence. When you migrate an EJB project, the update utility adds
this element for each CMP entity bean, specifying the version as 1.x.

The res-auth element for WARs. When you migrate a WAR project, the
update utility finds any of these that use 1.2 constant values (SERVLET
or CONTAINER) and edits them to use the 1.3 equivalents (Application
or Container).

See Chapter 18, “J2EE Deployment Descriptor DTDs”.

(Note that deployment descriptors are not updated for deploy-only projects
because their archive contents are static.)

Deployment plan, if
present (for exteNd
Application Server)

The following plan items:

DOCTYPE statement. When you migrate, the update utility edits it to use
the 1.3 deployment plan DTD for your project type: EAR, WAR, EJB, or
CAR.

EJB plan structure. When you migrate an EJB project, the update utility
restructures the deployment plan in accordance with the 1.3 deployment
plan DTD (which has changed significantly to support EJB 2.0 features).

One major change involves persistenceInfo, a new element for
deployment details about entity beans using container-managed
persistence. The update utility moves existing field mapping information
for CMP entity beans into this element.

EAR plan structure. When you migrate an EAR project, the update
utility restructures the deployment plan in accordance with the EJB
changes described above.

See Chapter 19, “exteNd Application Server Deployment Plan DTDs”.

In this part of the
project Migration affects
How to Handle J2EE Versions 269

The need for manual migration typically occurs with EJB and EAR projects containing CMP entity
beans. While updating exteNd deployment plans for such projects, the update utility does not handle
some items, including:

Complex CMP fields

CMP fields that map to foreign beans

Database profiles for persistence information

You should edit the updated deployment plan to specify these items and check for any other changes that
may be needed.

exteNd Application Server considerations
This section presents J2EE version issues specific to the exteNd Application Server (specifically,
Novell exteNd Application Server 5.x and SilverStream eXtend Application Server 4.x). It includes some
details on the server’s implementation of J2EE 1.2 and 1.3 that may help you make decisions about
deploying and migrating projects:

About the J2EE containers

Deploying projects

EJB deployment notes

About the J2EE containers

The 4.x and 5.x servers are compatible with J2EE 1.3. To implement this support, they provide J2EE 1.3
versions of the Web, client, and EJB containers:

The Web and client containers for J2EE 1.3 are used when you deploy J2EE 1.3 projects (WAR
2.3, CAR 1.3) as well as J2EE 1.2 projects (WAR 2.2, CAR 1.2).

The EJB container for J2EE 1.3 is used when you deploy J2EE 1.3 projects (EJB 2.0) and, in
normal cases, when you deploy J2EE 1.2 projects (EJB 1.1).

Because of container implementation changes introduced to support EJB 2.0, some EJB 1.1
deployments can’t use the J2EE 1.3 version of the EJB container. For these scenarios, the 4.x server
also provides a J2EE 1.2 version of this container. In the 5.x server, that older EJB container is no
longer provided, so you’ll need to adjust such projects before deploying.

Deploying projects

The following table summarizes the possible project deployment scenarios and shows which version of
the appropriate container is used in each case:

Project Deployment plan Container

WAR 2.2 WAR 2.2 (4.x server only) J2EE 1.3 Web container

WAR 2.2 WAR 2.3 J2EE 1.3 Web container

WAR 2.3 WAR 2.3 J2EE 1.3 Web container

CAR 1.2 CAR 1.2 (4.x server only) J2EE 1.3 client container

CAR 1.2 CAR 1.3 J2EE 1.3 client container

CAR 1.3 CAR 1.3 J2EE 1.3 client container

EJB 1.1 EJB 1.1 (4.x server only) J2EE 1.2 EJB container
270 exteNd Director Utility Tools

EJB deployment notes

In some situations, you may want (or need) to deploy an EJB 1.1 project to the J2EE 1.3 EJB container.
One reason is that this lets you take advantage of performance improvements and other implementation
enhancements introduced with the newer container version.

For EJB 1.1 projects containing session beans or BMP entity beans, you just need to create an EJB
2.0 deployment plan or include the project in a J2EE 1.3 EAR deployment. No other modifications to the
project are required. This simple approach is not possible for EJB 1.1 projects that contain CMP entity
beans and use SilverStream extensions to specify CMP details (such as expressions, foreign bean
mappings, and complex fields). These extensions are supported by the EJB 1.1 deployment plan, but not
the 2.0 plan.

There are also some limitations to note for EJB 2.0 projects containing CMP entity beans. In such
projects, beans with 1.x CMP can’t use elements specific to EJB 2.0 (such as abstract schema names,
local interfaces, and queries). In addition, these beans can’t use SilverStream extensions to specify CMP
details (because, as mentioned above, the EJB 2.0 deployment plan doesn’t support them).

EJB 1.1 EJB 2.0 (for limitations, see EJB deployment notes) J2EE 1.3 EJB container

EJB 2.0 EJB 2.0 (for limitations, see EJB deployment notes) J2EE 1.3 EJB container

EAR 1.2 EAR 1.2 (4.x server only) J2EE 1.3 Web container

J2EE 1.3 client container

J2EE 1.2 EJB container

EAR 1.2 EAR 1.3 (for limitations, see EJB deployment notes) J2EE 1.3 Web container

J2EE 1.3 client container

J2EE 1.3 EJB container

EAR 1.3 EAR 1.3 (for limitations, see EJB deployment notes) J2EE 1.3 Web container

J2EE 1.3 client container

J2EE 1.3 EJB container

RAR 1.0 RAR 1.0 J2EE 1.3 containers

Project Deployment plan Container
How to Handle J2EE Versions 271

272 exteNd Director Utility Tools

IV Deployment

These chapters present the exteNd Director utility tools for deploying J2EE archives:

• Chapter 15, “Archive Deployment”
• Chapter 16, “Deployment Descriptor Editor”
• Chapter 17, “Deployment Plan Editor”
• Chapter 18, “J2EE Deployment Descriptor DTDs”
• Chapter 19, “exteNd Application Server Deployment Plan DTDs”
273

274 exteNd Director Utility Tools

15 Archive Deployment

To make your J2EE application available to users, you deploy the archive on a J2EE server. This chapter
describes how to deploy J2EE archives using the Novell exteNd Director development environment and
includes the following topics:

Supported J2EE servers

Deployment types

Deploying J2EE archives

What happens when you deploy

Deploying Web Services

Undeploying archives

Supported J2EE servers
The exteNd Director development environment provides built-in support for deploying archives to the
following J2EE servers:

See the Novell exteNd Release Notes for the latest information on the supported server versions.

NOTE: IBM WebSphere does not provide built-in support for direct deployment. You must use
WebSphere’s deployment tools.

Deployment types
To deploy the archives you generate in the exteNd Director development environment, you can use the
following:

Rapid deployment

Production deployment

External deployment tools

Server Server archive support

Novell exteNd Application Server

SilverStream eXtend Application
Server

Allows you to directly deploy application clients, EARs, EJB
JARs, RARs, and WARs.

BEA WebLogic Allows you to directly deploy application clients, EARs, EJB
JARs, RARs, and WARs.

Apache Tomcat Allows you to directly deploy WARs.
Archive Deployment 275

new ../../exteNd/relnotes.html

Rapid deployment

When developing, testing, and refining your application, you want fast turnaround—you want to make a
change to your application and immediately see the result without having to redeploy the application. The
exteNd Director development environment lets you do this using rapid deployment. You specify rapid
deployment by simply checking a checkbox in the Deployment Settings dialog (described in “Creating
deployment settings” on page 278). When you deploy the application, this uses the target server’s native
file system deployment facilities.

Rapid deployment is most useful for changes to Web applications that involve JSP pages, HTML pages,
images, JARs in the WEB-INF\lib, or classes in the WEB-INF\classes directories. If you make changes
to other application components (such as a WAR tag library or a deployment descriptor), exteNd Director
automatically performs a full deployment.

For more information about setting up a rapid deployment environment, see “Creating deployment
settings” on page 278. For more information about the target server’s native file system deployment, see
“What happens when you deploy” on page 281.

exteNd Director can only support rapid deploy if this feature is supported by the application server
vendor. The following table lists the J2EE servers that support a rapid deploy feature and the kind of
archives that you can rapid deploy.

Production deployment

When you’ve completely tested your application and are ready to put it into production, you can deploy
the application to the server by unchecking the rapid deploy checkbox in the deployment settings for the
target server. exteNd Director uses the target server’s native deployment tools to deploy the application
in the appropriate production deployment directory.

External deployment tools

Alternatively, you can take your generated archives and deploy them outside of the exteNd Director
development environment, using instead the deployment facilities provided by your J2EE server. That’s
because exteNd Director generates standard J2EE archives.

Deploying J2EE archives
To deploy a J2EE archive using the exteNd Director development environment, the archive must:

Be properly structured according to the J2EE specification (see “Archive contents” on page 277)

Reside in a project (see Chapter 2, “Projects and Archives”)

You must supply:

A server profile (see “Server profile” on page 32)

Server-specific deployment information (see “Server deployment information” on page 278)

Deployment settings (see “Creating deployment settings” on page 278)

Server EAR WAR EJB CAR RAR

Novell exteNd Application Server

SilverStream eXtend Application Server

Yes Yes No No No

BEA WebLogic Yes Yes Yes No No

Apache Tomcat No Yes No No No
276 exteNd Director Utility Tools

The development environment requires:

Access to the target server

Permission to write to the server’s deployment area

Permission to write temporary files when deploying to a Novell exteNd Application Server or
SilverStream eXtend Application Server

exteNd Director invokes SilverCmd, which generates temporary files on disk. These files are
created in the server’s installation directory, unless you have defined a HOME environment
variable. If you have a HOME variable defined, it must point to a reachable and writable location.
The temporary file location is:

When all of these requirements are met, see “Deploying a project” on page 281.

Archive contents

Sun’s J2EE specifications define how different J2EE archives must be packaged for deployment. Before
you try to deploy, make sure that your archive meets these requirements. The following table briefly lists
the requirements. For more detailed information, see the J2EE Blueprints at:
java.sun.com/j2ee/docs.html.

Server Home environment variable

Novell exteNd Application Server NOVELL_EXTEND_APPSERVER_HOME\.appsrv

SilverStream eXtend Application Server SILVERSTREAM_HOME\.silverstream

J2EE module Standard archive requirements

Application
client

A JAR file containing:

The Java classes that implement the application client

A deployment descriptor called application-client.xml located in the JAR’s /META-
INF directory

A manifest file with a Main-Class entry

EAR An EAR file containing:

The component archive files (such as EJB JAR files, WAR files, and application
client JAR files); each of these components must include its own deployment
descriptor

A deployment descriptor for the EAR called application.xml located in the EAR’s
/META-INF directory

EJB JAR A JAR file containing:

The bean implementation class, the remote and home interfaces, the primary key
classes (if necessary), and any other utility classes

A deployment descriptor called ejb-jar.xml located in the JAR’s /META-INF
directory

RAR A RAR file containing:

The classes needed to implement the resource adapter

A deployment descriptor called ra.xml located in the JAR’s /META-INF directory
Archive Deployment 277

new http://java.sun.com/j2ee/docs.html

For more information, see Chapter 18, “J2EE Deployment Descriptor DTDs”.

Server deployment information

Each J2EE server needs runtime information, and each has its own format for this information. The
following table lists the deployment documents needed by each supported server:

When specifying server deployment information, you can override information in your J2EE deployment
descriptors, enabling you to customize a particular deployment as needed.

Creating deployment settings

Before you can deploy a project, you need to define the project’s deployment settings. They provide
information about the server where you plan to deploy the project.

To create deployment settings:

1 Choose Project>Deployment Settings.

NOTE: If you are deploying to an exteNd application server and the project’s current deployment
plan is not associated with a server profile, you will be told that you need to specify one in the
Deployment Settings dialog.

WAR A WAR file containing:

JSP source files, Web Services, servlet classes, other supporting Java
components, HTML documents, images, and other files required by the application

A deployment descriptor called web.xml located in the WAR’s /WEB-INF directory

Helper classes in the WAR’s /WEB-INF/classes directory

Helper libraries in the WAR’s /WEB-INF/lib directory

J2EE server Archives Server deployment information

Novell exteNd
Application
Server

SilverStream
eXtend
Application
Server

Application
client
(CAR)

EAR

EJB

RAR

WAR

Each type of archive uses an XML-based document called a
deployment plan. The deployment plan can have any file name
and can reside in any location outside the archive file. The server
defines a DTD for each archive type.

For more information, see Chapter 19, “exteNd Application
Server Deployment Plan DTDs”.

You use the Deployment Plan Editor to create and populate the
deployment plan.

For more information, see “Deployment Plan Editor” on
page 289.

BEA WebLogic Application
client

EAR

EJB

RAR

WAR

Each type of archive (except EAR) requires a special XML-based
document. The EAR does not require a specific deployment
document, but each individual module included in the EAR must
have the appropriate WebLogic deployment document.

For more information, see your WebLogic documentation.

Apache Tomcat WAR No specific file is needed.

J2EE module Standard archive requirements
278 exteNd Director Utility Tools

2 In the Server Profiles tab, specify the following information:

3 Select the Deployment Info tab.

4 Specify the following for servers that support rapid deployment:

5 Specify server-specific information.

For Novell exteNd application servers and SilverStream eXtend application servers, specify
the following:

Option What to do

Profile name Select a server profile from the list or click New to create a
new profile.

For more information on server profiles, see “Server
profile” on page 32.

Use this server profile as the
default for all projects

Select this option to make the current server profile the
default profile in new projects.

User name and Password If you have a secure server, fill in the User name and
Password text boxes with an authorized user name and
password for the server.

Option What to do

Enable Rapid
Deployment

Check this box when you want to deploy the archive using the rapid deployment
feature for testing. Uncheck it when you want to do a production deploy.

What happens When this checkbox is checked, exteNd Director writes files to
the rapid deployment directory specified in the server profile.

NOTE: If you have not set a rapid deployment directory in the server profile,
you are prompted for one. This directory is a location on disk where you want
the server to write the deployment files and is defined by the application server
vendor. Many servers require a specific directory; see “Server profile” on
page 32 for the list.

Further action exteNd Director manages updates to the deployment area on
subsequent rapid deploys. You do not have to do any manual procedure (as you
would have to when directly using the server’s rapid deployment).

When to use Use rapid deployment during the development/test/refinement
stage of your application development cycle. Do not use it when you deploy
your application to a production environment.

For more information on rapid deployment and how each server supports
this feature (plus any special requirements), see “What happens when you
deploy” on page 281.

Option What to do

Deployment Plan Specify the file name and disk location of the deployment plan.

Overwrite
existing
deployment

Check this box when you want the current deployment to overwrite any
previously deployed objects of the same type and name.

If you deselect this box and objects of the same name and type already exist
on the server, the deployment will fail.

Verbosity Specify the level of informational messages to display.

Values range from 0 (for no messages) to 5 (for the most messages).
Archive Deployment 279

For BEA WebLogic servers, specify:

Ignore JSP
compile errors

Applies only to WARs and to EARs containing WARs.

Check this box when you want the deployment to ignore any errors when
compiling JSP pages and to deploy only those items that build successfully.

If this box is not checked and a compile error occurs, deployment fails.

SilverCmd Flags (Optional) Specify command-line arguments for the deployment command.

For more information on the deployment commands that are executed,
see “What happens when you deploy” on page 281.

If you specify multiple arguments, use spaces as the delimiters. If you want to
pass VM arguments, you must precede them with +. For example:

+Xmx256

All of the values entered here are appended to the end of the deployment
command that gets constructed.

Option What to do

WebLogic Application
Name

Specify the deployment name for your application; this is the name
your users will use in the URL for the application.

If this is a rapid deploy, this is the directory name under the
deployment directory.

The default is the project name.

Generate Targets Click this button to automatically create a list of components to deploy
to the target servers specified in the server profile. The list is displayed
in the Components and Targets text box.

Components and
Targets

Do one of the following:

Accept the values created when the Generate Targets button is
clicked.

Edit the values created when the Generate Targets button is
clicked.

Manually type the names of the components and their target
servers using proper WebLogic syntax.

Deployment options Choose one of these options:

deploy—Deploys the application. Use this option when deploying
the application for the first time. If rapid deploy is checked, this
option performs a rapid deploy; otherwise, it performs a production
deploy.

update—Updates a deployed application. Use this option for all
redeployments, updates to an already deployed archive, or to
enable a disabled application. (Not available for all server
versions.)

undeploy—Disables the application with the option to delete it.

list—Provides a list of all deployed applications on the server
specified by the current project’s server profile.

user defined—Allows you to specify a WebLogic command. When
this value is specified, exteNd Director uses only the command in
the WebLogic options text field (described below).

Option What to do
280 exteNd Director Utility Tools

6 Click OK to store the deployment settings with the project file.

Deploying a project

To deploy a project:

1 Open the project.

Any archive that you want to deploy must be defined in a project. If you created the archive using
another IDE, you must create a project for it before you can deploy it.

2 Make sure you have the server-specific deployment information in the appropriate format and
location for your target server.

For more information, see “Server deployment information” on page 278.

3 Define the deployment settings for the project.

For more information, see “Creating deployment settings” on page 278.

4 Select Project>Deploy Archive.

NOTE: The deployment fails if your server is not running.

What happens when you deploy
When you deploy a project, exteNd Director uses the deployment settings to determine the J2EE server.
Then:

1 It compiles the Java files and creates an archive. (JSP files are compiled during deployment or
when their URLs are invoked from a browser.)

2 When the compilation is successful, it calls the appropriate deploy command for the target server.

JVM options Specify command-line arguments for the server’s JVM using spaces
to delimit the options.

These values are appended to the end of the deployment command
that gets constructed.

WebLogic options Specify server-specific options using spaces to delimit them. You must
supply the complete command for the action you want the WebLogic
server to perform. For example:

-unprepare -name War23

Make sure that user defined (under Deployment options) is selected
or exteNd Director ignores the values you enter in this text box.

These values are appended to the end of the deployment command
that gets constructed.

exteNd Director does no error checking, but error messages returned
by the server are displayed in the Output Pane.

debug Check this option when you want to see the debug information
produced by the WebLogic deploy tool.

Option What to do
Archive Deployment 281

The following table lists the deploy command that is called for each server:

Server Archive Deploy command description

Novell
exteNd
Application
Server

SilverStream
eXtend
Application
Server

CAR Standard/Production deploy: SilverCmd DeployCAR

Rapid deploy: Not supported for CARs

EAR Standard/Production deploy: SilverCmd DeployEAR

NOTE: To deploy individual modules from within an EAR, pass
the -m option as a SilverCmd Flag.

Rapid deploy: Supports the rapid deployment of WARs in the
EAR. It works like this:

When a JSP page, an HTML page, a CLASS file, or a JAR
file in a WAR within the EAR changes, exteNd Director
invokes the server’s JSP/FS deployment.

When other files in the EAR are changed (such as the EAR
deployment plan, EAR deployment descriptor, EJB archive,
client archive, WAR deployment plan, or WAR tag library),
exteNd Director invokes the standard/production
deployment.

exteNd Director manages updates to the deployment area
on subsequent rapid deploys (so you do not need to do any
manual procedure that you might have to when directly using
the server’s rapid deployment).

EJB JAR Standard/Production deploy: SilverCmd DeployEJB

Rapid deploy: Not supported for EJBs

WAR Standard/Production deploy: SilverCmd DeployWAR

Rapid deploy: JSP/FS

During the JSP/FS process:

exteNd Director expands the WAR file in the server’s
/webapps/DBname/URL directory, where DBname is the
name of the database containing the application deployed to
the file system, and URL is the URL specified in the
deployment plan for the application (if you have specified
more than one, the first one is used).

exteNd Director manages updates to the deployment area
on subsequent rapid deploys (so you do not need to do
anything manually that you might have to when directly using
the server’s rapid deployment, such as creating the
RELOAD file).

exteNd Director updates the <deployToFileSystem> attribute
automatically when you specify a rapid deploy.

BEA
WebLogic

All supported
archives

Standard/Production deploy: weblogic.deploy or
weblogic.deployer (depending on the server version)

Rapid deploy: The exteNd Director development environment
uses the server’s native utilities to provide rapid deployment of
EARs, EJBs, and WARs. You’ll need to enable WebLogic Auto-
Deployment through the WebLogic Management console
before performing a rapid deploy. For more information on
setting Auto-Deployment, see your WebLogic documentation.

During a rapid deploy, exteNd Director copies the modified
files to the user-specified deployment directory and touches
the REDEPLOY file.
282 exteNd Director Utility Tools

3 The target server’s deployment command creates the appropriate deployment objects on the target
server.

4 exteNd Director displays a message stating the status (success/failure) or any warning/error
messages in the Output tab of the Output Pane.

Deploying Web Services
When you create a Web Service in the exteNd Director development environment by using the Web
Service Wizard or by using the Novell exteNd Web Services SDK directly, a servlet is generated to
handle access to that Web Service (from HTTP SOAP requests). As a result, a WAR is required to
package your Web Services (one or more per WAR) for deployment to a J2EE server where they will run.

You deploy that WAR in the usual way (as described earlier in this chapter). In addition, you must make
sure it has runtime access to the archives required by the Web Services SDK:

How you set up this access depends on the type of J2EE server you use:

If you deploy to one of the following servers, you must add the required JARs to the server’s classpath.
(Consult your server documentation to learn about adding to the classpath.)

BEA WebLogic

IBM WebSphere

Apache Tomcat

If you deploy to the Novell exteNd Application Server or SilverStream eXtend Application Server
there’s no need to add the required JARs to the server’s classpath as long as you include them in the
WEB-INF/lib directory of your WAR. If you don’t include the required JARs in the WAR, you must add
them to the server’s AGCLASSPATH environment variable or specify them with the classpathJars
deployment plan element. (For more information about AGCLASSPATH and classpathJars, see your
server’s help.)

You can obtain the required JARs by copying them from the Novell exteNd tools\compilelib directory.

Apache
Tomcat

WAR Standard/Production deploy: copy

Copies the archive to the server’s \webapps directory

You must restart the server after a standard deploy

Rapid deploy: copy

Explodes the archive then copies the contents to a
deployment directory specified by the user

On subsequent rapid deploys, only the changed files are
copied to the deployment directory

You do not need to restart the server after a rapid deploy

For a list of the JARs
required by See

A Web Service Preparing to generate in the chapter on Generating Web Services

A Web Service consumer Preparing to generate in the chapter on Generating Web Service
Consumers

Server Archive Deploy command description
Archive Deployment 283

Undeploying archives
Depending on the deployment server, you can disable or delete deployed archives on the server from
within the exteNd Director development environment.

exteNd Director doesn’t directly perform the undeployment; it calls server facilities to do the work. So,
for example, if a server supports deletion but not disabling of archives, then you can delete but not disable
archives from the development environment.

Typically, disabling leaves the files on the server but makes them unavailable, and deleting physically
removes the files from the server. However, since exteNd Director simply executes the server’s
undeployment facility, exactly what happens depends on the server. For example, undeploying an
application that had been deployed with rapid deployment does not necessarily delete or rename the
deployment directory; the server might just delete the references to that application from its metadata.
See your server documentation for information about exactly what happens when you undeploy an
archive.

Here’s a summary of the server undeployment support provided in the exteNd Director development
environment:

To undeploy an archive:

1 With the project open, select Project>Undeploy Archive.

NOTE: The menu item is disabled if the deployment server does not provide an undeploy feature.

The dialog that displays depends on the type of server specified in your project’s deployment
settings:

If your deployment server supports both disabling and deleting archives, you are asked which
action you want to perform

If your deployment server supports only disabling archives, you are asked to confirm the
disabling action

If your deployment server supports only deleting archives, you are asked to confirm the
deletion

2 Respond to the dialog.

The archive is either disabled or deleted. You can see the commands issued by looking in the
Output tab of the Output Pane.

Server Disable? Delete? Notes

Novell exteNd Application Server

SilverStream eXtend Application
Server

No Yes

BEA WebLogic Yes Yes

Apache Tomcat No Yes Undeploy deletes the WAR and the
web application directory from the
webapps directory
284 exteNd Director Utility Tools

16 Deployment Descriptor Editor

The Deployment Descriptor Editor provides a quick and easy way to construct and populate J2EE-
compatible deployment descriptors. This chapter describes the Deployment Descriptor Editor and
includes these topics:

About deployment descriptors

About the Deployment Descriptor Editor

Using the Deployment Descriptor Editor

About deployment descriptors
A deployment descriptor is an XML document that provides information about the components of a
J2EE module (such as a WAR or an EJB JAR) or application (EAR). The deployment descriptor provides
data that is required for both of the following:

Application assembly—to describe how a component is or should be used

Deployment—to define deployment needs such as roles and resource references

Sun has defined the contents and structure of a deployment descriptor for each J2EE archive. For more
information, see Chapter 18, “J2EE Deployment Descriptor DTDs”.

How deployment descriptors are created exteNd Director automatically constructs and adds a
J2EE-compatible deployment descriptor file to your project in the appropriate location, as follows:

As you add J2EE components to a project, exteNd Director adds the corresponding elements to the
deployment descriptor when it has enough information to do so.

About the Deployment Descriptor Editor
The Deployment Descriptor Editor allows you to fine-tune the deployment descriptor by modifying or
completing entries that exteNd Director is unable to complete automatically.

J2EE archive Deployment descriptor file Directory location

Application client application-client.xml /META-INF

EAR application.xml

EJB JAR ejb-jar.xml

RAR ra.xml

WAR web.xml /WEB-INF
Deployment Descriptor Editor 285

The Deployment Descriptor Editor displays the deployment descriptor elements as expandable nodes.
The nodes correspond to elements of the deployment descriptor DTD. All possible deployment
descriptor entries are represented graphically, so you can use the interface to help you add the appropriate
entries without having to memorize the DTD.

Here’s a sample of the Deployment Descriptor Editor for an EAR project:

TIP: You can view or edit the deployment descriptor in raw XML by choosing the XML tab. The
Deployment Descriptor Editor opens in the mode (raw XML or tree view) that was in use when you last
saved.

Nodes displayed in bold (such as Modules and Roles) allow child nodes to be added or removed. You can
add or remove these nodes by right-clicking and selecting from the popup menu.

Many of the nodes require additional information, which you can provide by completing a property sheet.
To display the Property Inspector for a node, highlight the node, right-click, and select Properties.

To save your changes to the deployment descriptor file in the archive, select File>Save (or click the Save
icon).

Using the Deployment Descriptor Editor
You can use the Deployment Descriptor Editor either to fine-tune the default deployment descriptor
created by exteNd Director or to create a new deployment descriptor.

To create a deployment descriptor:

1 Open the project for which you want to create the new deployment descriptor.

2 Select File>New>File.

3 Select the General tab.

4 Select Deployment Descriptor and click OK.

This constructs the deployment descriptor shell based on the contents of the project and displays
the shell in the Edit Pane.
286 exteNd Director Utility Tools

To associate a deployment descriptor with a project:

NOTE: If you created a deployment descriptor outside of the exteNd Director development environment,
you can still use it with a project by following these steps.

1 Open the project that you want to associate the deployment descriptor with.

2 Go to the Directory Pane.

3 Double-click the deployment descriptor you want.

You are prompted to associate the descriptor with the current project or a different project (which
you can choose)—or to edit the deployment descriptor in XML mode.

4 Choose the option to associate the descriptor with the current project, then click OK.

This opens the deployment descriptor in the Deployment Descriptor Editor.

5 Save the deployment descriptor to complete the association.

To modify a deployment descriptor:

1 Open the project whose deployment descriptor you want to modify.

2 Highlight the project (SPF) file, right-click, and select Open Deployment Descriptor from the
popup menu.

You are prompted for build preferences. Once you specify your build preferences, the Deployment
Descriptor Editor opens the file ready for editing.

To add a deployment descriptor element:

1 Open the deployment descriptor for editing.

2 Highlight the descriptor element, right-click, and choose Add from the popup menu.

The editor adds a new element with the title UntitledXXX.

3 Highlight the new element, right-click, and choose Properties from the popup menu to launch the
Property Inspector (so you can define any necessary values).

To remove a deployment descriptor element:

1 Open the deployment descriptor for editing.

2 Make sure the Descriptor tab (not the XML tab) is selected.

3 Highlight the descriptor element you want to remove, right-click, and select Delete from the popup
menu.

NOTE: If Delete is not available as a menu option, that means the element is not removable.

Validating a deployment descriptor The Deployment Descriptor Editor automatically checks your
work as follows:

But you can force validation anytime.

To force validation of a deployment descriptor:

Select Validate Archive from the Project menu.

This validates both the deployment descriptor and the archive.

When you The Deployment Descriptor Editor

Switch mode (from graphical to XML
and vice versa)

Checks the syntax of the deployment descriptor

Save a deployment descriptor Validates the deployment descriptor against the
corresponding DTD
Deployment Descriptor Editor 287

288 exteNd Director Utility Tools

17 Deployment Plan Editor

The Deployment Plan Editor provides a quick and easy way to construct and populate deployment plans
needed for deploying J2EE modules and applications to an exteNd application server. This chapter
describes how to use the Deployment Plan Editor and includes these topics:

About deployment plans

Using the Deployment Plan Editor

About deployment plans
A deployment plan is an XML document that describes how a J2EE module (such as a WAR or an EJB
JAR) or application (EAR) should run in the Novell exteNd Application Server or the SilverStream
eXtend Application Server environment.

A deployment plan allows you to map declarative data from the deployment descriptor to the appropriate
resource in the target server environment. For example, you can map resource references to data sources
or map roles to users and groups. Settings in a deployment plan override those in the deployment
descriptor, enabling you to customize a particular deployment as needed.

For more information on the contents and structure of the deployment plans for each J2EE archive,
see Chapter 19, “exteNd Application Server Deployment Plan DTDs”.

NOTE: Other J2EE servers require different types of information (possibly in different formats) for
deployment. To deploy J2EE archives on another J2EE server, see the server vendor’s documentation.

Using the Deployment Plan Editor
This section describes how to use the Deployment Plan Editor to perform these tasks:

Create a deployment plan

Modify a deployment plan

Associate a deployment plan with a project

Validate a deployment plan

To create a deployment plan:

1 Make sure you have built the archive and added appropriate items to the deployment descriptor.

2 Open the project for which you want to create the deployment plan.

3 Select File>New>File.

4 Select the General tab.

5 Select exteNd Server Deployment Plan and click OK.
Deployment Plan Editor 289

The Select Project For Deployment Plan dialog displays.

6 Choose a project from the Select project dropdown.

NOTE: When the project is an EAR, you see multiple files in the dropdown.

7 Choose the destination server type from the server type dropdown and click OK.

NOTE: The server type listed when the dialog opens is the one specified as the default in
Deployment preferences (Tools>Preferences). For more information, see “Deployment
preferences” on page 31.

The Deployment Plan Editor constructs a deployment plan based on the project type. The editor
uses the project’s compiled code and the deployment descriptor to determine the deployment plan
elements to create. (If you later change the deployment descriptor, exteNd Director updates the
deployment plan accordingly the next time you edit it.)

The deployment plan elements are displayed in a tree structure. Here’s a sample deployment plan
for an EAR:

TIP: You can view or edit the deployment plan in raw XML by choosing the XML tab. The
Deployment Plan Editor opens in the mode (raw XML or tree view) that was in use when you last
saved.

8 Select File>Save (or click the Save icon).

If there are other deployment plans associated with this project, you will be asked whether you
want to make the new deployment plan the current one.

9 Click Yes to make it the current deployment plan.
290 exteNd Director Utility Tools

To modify an existing deployment plan:

1 Open the project whose deployment plan you want to modify.

2 Highlight the project (SPF) file, right-click, and select Open Deployment Plan from the popup
menu.

3 If your project has more than one deployment plan, choose the one you want from the dropdown
and click OK.

This displays the deployment plan in the Edit Pane.

4 Highlight a deployment plan element, then right-click and select Properties from the popup menu.

Use the Property Inspector to modify values for different elements. In some cases, you can double-
click an element to open a dialog that lets you enter data more quickly than through the Property
Inspector.

To associate a deployment plan with a project:

NOTE: If you created a deployment plan outside of the exteNd Director development environment, you
can still use it with a project by following these steps.

1 Open the project you want to associate the deployment plan with.

2 Go to the Directory Pane.

3 Double-click the deployment plan you want.

You are prompted to associate the plan with the current project or a different project (which you can
choose)—or to edit the deployment plan in XML mode.

4 Choose the option to associate the plan with the current project, then click OK.

This opens the deployment plan in the Deployment Plan Editor.

5 Save the deployment plan to complete the association.

6 Click Yes when prompted to mark the deployment plan as current.

Validating a deployment plan The Deployment Plan Editor automatically checks your work as
follows:

But you can force validation anytime.

To force validation of a deployment plan:

Select Validate Archive from the Project menu.

This validates both the deployment plan and the archive.

When you The Deployment Plan Editor

Switch mode (from graphical to
XML and vice versa)

Checks the syntax of the deployment plan

Save a deployment plan Validates the deployment plan against the
corresponding DTD
Deployment Plan Editor 291

292 exteNd Director Utility Tools

18 J2EE Deployment Descriptor DTDs

This chapter provides information about the DTDs for the standard J2EE deployment descriptors. It
includes these sections:

DTD files

Location

Use

Documentation

DTD files
Each type of J2EE archive has its own corresponding deployment descriptor and DTD:

Location
These DTD files are located in the lib\dtds directory of your J2EE SDK installation. Copies of them are
also provided in the Novell exteNd Common\Resources\DTDCatalog directory.

Use
The deployment descriptor DTDs are used when you package J2EE archives. These DTDs (XML
document type definitions) describe the structure you must follow when writing deployment descriptors
(XML files) to supply declarative data and assembly instructions for your archives.

J2EE version
Deployment
descriptor type DTD file

1.2 EAR application_1_2.dtd view

WAR web-app_2_2.dtd view

EJB JAR ejb-jar_1_1.dtd view

Client JAR application-client_1_2.dtd view

1.3 EAR application_1_3.dtd view

WAR web-app_2_3.dtd view

RAR connector_1_0.dtd view

EJB JAR ejb-jar_2_0.dtd view

Client JAR application-client_1_3.dtd view
J2EE Deployment Descriptor DTDs 293

new ../../../../Common/Resources/DTDCatalog/application_1_2.dtd
new ../../../../Common/Resources/DTDCatalog/web-app_2_2.dtd
new ../../../../Common/Resources/DTDCatalog/ejb-jar_1_1.dtd
new ../../../../Common/Resources/DTDCatalog/application_1_3.dtd
new ../../../../Common/Resources/DTDCatalog/web-app_2_3.dtd
new ../../../../Common/Resources/DTDCatalog/connector_1_0.dtd
new ../../../../Common/Resources/DTDCatalog/ejb-jar_2_0.dtd
new ../../../../Common/Resources/DTDCatalog/application-client_1_2.dtd
new ../../../../Common/Resources/DTDCatalog/application-client_1_3.dtd

The deployment descriptors you write must adhere to these guidelines:

Deployment
descriptor type Guidelines

EAR File name: application.xml

Stored in: META-INF directory of the archive

DOCTYPE statement (J2EE 1.2):

<!DOCTYPE application PUBLIC
"-//Sun Microsystems, Inc. //DTD J2EE Application 1.2//EN"
"http://java.sun.com/j2ee/dtds/application_1_2.dtd">

DOCTYPE statement (J2EE 1.3):

<!DOCTYPE application PUBLIC
"-//Sun Microsystems, Inc.//DTD J2EE Application 1.3//EN"
"http://java.sun.com/dtd/application_1_3.dtd">

WAR File name: web.xml

Stored in: WEB-INF directory of the archive

DOCTYPE statement (J2EE 1.2):

<!DOCTYPE web-app PUBLIC
"-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
"http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

DOCTYPE statement (J2EE 1.3):

<!DOCTYPE web-app PUBLIC
"-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">

RAR File name: ra.xml

Stored in: META-INF directory of the archive

DOCTYPE statement (J2EE 1.3):

<!DOCTYPE connector PUBLIC
"-//Sun Microsystems, Inc.//DTD Connector 1.0//EN"
"http://java.sun.com/dtd/connector_1_0.dtd">

EJB JAR File name: ejb-jar.xml

Stored in: META-INF directory of the archive

DOCTYPE statement (J2EE 1.2):

<!DOCTYPE ejb-jar PUBLIC
"-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 1.1//EN"
"http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd">

DOCTYPE statement (J2EE 1.3):

<!DOCTYPE ejb-jar PUBLIC
"-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN"
"http://java.sun.com/dtd/ejb-jar_2_0.dtd">

Client JAR File name: application-client.xml

Stored in: META-INF directory of the archive

DOCTYPE statement (J2EE 1.2):

<!DOCTYPE application-client PUBLIC
"-//Sun Microsystems, Inc.//DTD J2EE Application Client 1.2//EN"
"http://java.sun.com/j2ee/dtds/application-client_1_2.dtd">

DOCTYPE statement (J2EE 1.3):

<!DOCTYPE application-client PUBLIC
"-//Sun Microsystems, Inc.//DTD J2EE Application Client 1.3//EN"
"http://java.sun.com/dtd/application-client_1_3.dtd">
294 exteNd Director Utility Tools

Documentation
DTDs For detailed information on these DTDs (including the elements they define for use in your
deployment descriptors):

1 Go to the table of DTD files at the beginning of this chapter.

2 Click view to display a DTD file (the copy provided with the Novell exteNd Director development
environment).

3 Read the comments in the DTD file (if you need additional DTD documentation, see the Sun J2EE
specifications).

Support for deployment descriptors To learn about development environment support for writing
and using deployment descriptors, see:

Chapter 15, “Archive Deployment”

Chapter 16, “Deployment Descriptor Editor”
J2EE Deployment Descriptor DTDs 295

new http://java.sun.com/j2ee/
new http://java.sun.com/j2ee/

296 exteNd Director Utility Tools

19 exteNd Application Server Deployment Plan
DTDs

Deployment plan DTD files are used when you deploy J2EE archives to the Novell exteNd Application
Server or the SilverStream eXtend Application Server. The DTDs (XML document type definitions)
describe the structure you must follow when writing deployment plans (XML files) for particular
archives.

This chapter includes these topics:

DTD location

DTD files

DOCTYPE statements

DTD location
The DTD files are located in the Novell exteNd Common\Resources\DTDCatalog directory. You can
learn about the DTDs by looking at:

The DTD files themselves (for comments about the elements they define)

The chapter on deployment plan DTDs in the application server’s help system (for more detailed
reference documentation about each element and how to structure them in your XML files)

To learn about support for writing and using deployment plans in the exteNd Director development
environment, see:

Chapter 15, “Archive Deployment”

Chapter 17, “Deployment Plan Editor”

DTD files
For each type of J2EE archive, there’s a corresponding deployment plan DTD. The specifics of the DTD
depend on which server and version you are deploying to. This section includes:

Novell exteNd Application Server DTD files

SilverStream eXtend Application Server DTD files
exteNd Application Server Deployment Plan DTDs 297

Novell exteNd Application Server DTD files

They are as follows:

SilverStream eXtend Application Server DTD files

They are as follows:

DOCTYPE statements
The deployment plan must reference the correct DOCTYPE.

Authoring the plan with the Deployment Plan Editor When you author the deployment plan
using the Deployment Plan Editor in the exteNd Director development environment, the editor inserts the
correct DOCTYPE statement based on the project’s server profile. If you change the server profile, the
Deployment Plan Editor will ask if it should update the deployment plan’s DOCTYPE statement.

Authoring the plan with your own editor If you author the deployment plan in a different editor,
make sure it references the correct DOCTYPE. The DTD files supplied with the exteNd Director
development environment include the DOCTYPE statement as a comment at the beginning of the file.
This DOCTYPE is for use with the Novell exteNd Application Server. If you deploy to the SilverStream
eXtend Application Server, see the section below for the correct statement to use.

Server
version

Deployment plan
type DTD file

5.x EAR deploy-ear_1_3.dtd view

WAR deploy-war_2_3.dtd view

EJB JAR deploy-ejb_2_0.dtd view

Client JAR deploy-car_1_3.dtd view

RAR deploy_rar_1_0.dtd view

Server
version

Deployment plan
type DTD file

4.x EAR deploy-ear_1_3.dtd view

WAR deploy-war_2_3.dtd view

EJB JAR deploy-ejb_2_0.dtd view

Client JAR deploy-car_1_3.dtd view

RAR deploy_rar_1_0.dtd view
298 exteNd Director Utility Tools

new ../../../../Common/Resources/DTDCatalog/deploy-car_1_3.dtd
new ../../../../Common/Resources/DTDCatalog/deploy-ejb_2_0.dtd
new ../../../../Common/Resources/DTDCatalog/deploy-ear_1_3.dtd
new ../../../../Common/Resources/DTDCatalog/deploy-war_2_3.dtd
new ../../../../Common/Resources/DTDCatalog/deploy-rar_1_0.dtd
new ../../../../Common/Resources/DTDCatalog/deploy-ear_1_3.dtd
new ../../../../Common/Resources/DTDCatalog/deploy-war_2_3.dtd
new ../../../../Common/Resources/DTDCatalog/deploy-ejb_2_0.dtd
new ../../../../Common/Resources/DTDCatalog/deploy-car_1_3.dtd
new ../../../../Common/Resources/DTDCatalog/deploy-rar_1_0.dtd

SilverStream eXtend Application Server DOCTYPE statements

These are the DOCTYPE statements for SilverStream eXtend Application Server 4.x:

Deployment plan
type DOCTYPE statement

Application client <!DOCTYPE carJarOptions PUBLIC "-//SilverStream Software,Inc.
//DTD J2EE CAR Deployment Plan 1.3//EN" "deploy-car_1_3.dtd">

EAR <!DOCTYPE earJarOptions PUBLIC "-//SilverStream Software,Inc.
//DTD J2EE EAR Deployment Plan 1.3//EN" "deploy-ear_1_3.dtd">

EJB <!DOCTYPE ejbJarOptions PUBLIC "-//SilverStream Software,Inc.
//DTD J2EE EJB Deployment Plan 2.0//EN" "deploy-ejb_2_0.dtd">

RAR <!DOCTYPE rarJarOptions PUBLIC "-//SilverStream Software,Inc.
//DTD J2EE RAR Deployment Plan 1.0//EN" "deploy-rar_1_0.dtd">

WAR <!DOCTYPE warJarOptions PUBLIC "-//SilverStream Software,Inc.
//DTD J2EE WAR Deployment Plan 2.3//EN" "deploy-war_2_3.dtd">
exteNd Application Server Deployment Plan DTDs 299

300 exteNd Director Utility Tools

Index
A
abbreviations

see source files
actions

in Todo lists 43
Apache Ant 43
Apache Tomcat

deploying archives to 281
deployment documents 278

application client archives (CARs)
see archives

archive contents view 62
archive layout view 62
archives

about 47
creating 74
creating projects for 20
defining deployment settings 278
deleting 284
deploying 276, 278, 281
deploying Web Services as WAR files 137
deployment descriptors 285, 293
deployment documents 278
deployment plans 289
directory structure considerations 48, 49
disabling 284
managing content 66, 277
projects for 20, 47
rapid deployment 278
undeploying 284
validating 75

autosave files
setting preferences 28

B
backup files

setting preferences 28
BEA WebLogic server

deploying archives to 281
deployment documents 278
deployment settings 278

bindings
from consumers to Web Services 169

bookmarks in NetBeans-based editors 88
browser preference 25
Build command 74
building projects 71

C
CARs (application client archives)

see archives
catalog entry files 113
catalog, XML 113
class files

opening in the development environment 22
Class Viewer 22
classpaths

specifying the project classpath 72
Client Runner facility

for testing Web Service consumers 171
code completion for Java expressions 85
color scheme

setting for the development environment 26
colors, setting in XML Editor 30
Compile command 74
compiler preferences 26
compilers

Jikes 26
specifying the Java compiler 72

compiling projects 71
components

see J2EE, source files
Connector/J driver

accessing MySQL with 34
consumers

see Web Services
CSS Editor

about 125
CSS File Wizard 126
CSS Style Manager

about 128
using in XML Editor 112

Custom Tag Wizard 90
custom tags

see also JSP pages

D
databases

creating profiles 34
making a driver class available 34
MySQL 34

debugger
launching 22
specifying 22

Debugger command preference 22
301

deployment
Novell exteNd Application Server 297
production/full 276
rapid 276
SilverStream eXtend Application Server 297
types 275
using external tools 276

Deployment Descriptor Editor
about 285
setting preferences 31

deployment descriptors
about 285
associating with projects 287
creating 286
DTD reference 293
validating against archives 75

deployment documents
about 278
listing for different application servers 278

Deployment Plan Editor
about 289
setting preferences 31

deployment plans
about 289
associating with projects 291
creating 289
exteNd DTD reference 297
modifying 291
Novell exteNd Application Server 278
SilverStream eXtend Application Server 278
validating 291

deployment settings
creating 278

deploy-only projects
see projects

directories
adding to projects 58, 60
excluding files from 69

display preferences 26
documentation

help location preference 25
driver classes

see databases
DTD catalog 113
DTDs (Document Type Definitions)

attaching to XML documents 100
converting to Schemas 102
exteNd deployment plan 297
J2EE deployment descriptor 293

E
ebXML

see Web Services
EJB archives (EJB JARs)

see archives
EJB Wizard 217
Electronic Business XML (ebXML)

see Web Services
Enable Todo preference 42

enterprise archives (EARs)
see archives

Enterprise JavaBeans (EJBs)
CMP version support 260, 266, 268, 271

environment variables
using for project settings 66

exclusions list
editing for a project directory 69

F
files

excluding from directories 69
specifying editor to use on 30
see also source files

fonts
used by the development environment, specifying 46
used in native editors 27

full deployment 276

G
graphics

opening in the development environment 21

H
help

documentation location preference 25

I
IBM WebSphere server

deploying archives to 275
Image Viewer 21
inner classes, listing 64
internationalization support 46

J
J2EE

archives 20
components 20
creating components 217
deployment descriptors 20, 285, 293
META-INF directories 285
version support 259
Web Services 20
WEB-INF directories 49, 285

Java archives (JARs)
see archives

Java class files
opening in the development environment 22

Java Class Wizard 247
Java Editor 77
Java expressions, code completion in editors 85
JavaBean Wizard 250
302

JAX-RPC
about 136
generating consumers for 159
support for 139

Jikes compiler
setup requirements 26

JSP Editor 77
JSP pages

editing 77, 90
inserting custom tags 90
JSP Editor 77
see also JavaServer Pages (JSP)

JSP Wizard 240

L
Launch Action command 43
layout view 62
line numbers

displaying in editors 27
printing 31

M
META-INF directories

see J2EE
Microsoft .NET

about 136
generating consumers for 159

migration
to a newer J2EE version 259
Update Deployment Plan Version command 269
Update Project Version command 266

MySQL
database profiles for 34

N
native editors, editing files with 88
native look and feel

setting for the development environment 26
Navigation Pane

refreshing 60
NetBeans-based editors

adding file types edited with 87
using 84

Novell exteNd Application Server
deploying archives to 281
deployment 297
deployment plans 278
deployment settings 278
J2EE version support 270

Novell exteNd Director development environment
about 13
basic operations 17
creating profiles 32
exiting 17
extending tools and services 46
printing 31
setting preferences 24, 28
specifying the Java compiler 72
specifying the project classpath 72
starting 17

O
OASIS XML catalog standard 113
one-touch splitters 14

P
panes

in the development environment 14
splitters for resizing 14

preferences
abbreviations 27
autosave 28
backup 28
build 26
deployment 31
display 26
editing 27
file association 30
general 25
printing 31
setting 24
version control 31
XML Editor colors 30

printing
specifying preferences 31

production deployment 276
profiles

creating 32
creating database profiles 34
creating registry profiles 204
creating server profiles 32

project files
about 48
closing 18
opening 18, 64
saving 18
working with 17
303

projects
about 47
adding multiple files at the same time 60
adding source files and directories 58, 60, 67
adding subprojects 61
adding to the project classpath 73
compiling, building, and archiving 71, 74
creating 20, 50
creating a project that includes existing source files 56
creating source files 57
defining deployment settings 278
deploying 276, 281
deployment plans 289
deploy-only projects 55
designing 48
displaying in the Navigation Pane 14, 62
excluding files from directories 69
maintaining 64
managing content 66, 67, 70
migrating to a newer J2EE version 259
modifying project entries 67
opening 64
organizing 48
populating 57
Project menu 74
refreshing contents of 60
removing files 70
renaming 71
setting preferences 25
settings 65, 66, 67
specifying the classpath 72
subprojects 48, 50
tracking tasks 39
Update Deployment Plan Version command 269
Update Project Version command 266
using relative directory paths 67
using the project popup menu 71
viewing 62
working with existing source files 56
working with project files 17, 48

providers
see Web Services

proxy servers
using with the development environment 17

Q
quick deployment 276

R
rapid deployment 276

see archives
Rebuild command 74
Refresh command 60
Refresh Schema Handler 101
registries

see Web Services

regular expressions for text searches
about 80

rmi2soap compiler
in Web Service Wizard 173

rmi2wsdl compiler
in Web Service Wizard 173

S
Schema catalog 113
Schema Guide 103
Schemas

attaching to XML documents 100
creating from DTDs 102

server
deployment 297

servers
creating deployment settings 278
creating profiles 32
using secure servers, SSL, and HTTPS protocol 34

Servlet Wizard 243
SilverStream eXtend Application Server

deploying archives to 281
deployment 297
deployment plans 278
deployment settings 278
J2EE version support 270

skeleton model
for Web Services 149

SOAP (Simple Object Access Protocol)
see Web Services

source control
see version control

source files
abbreviations in 27, 78
about 20
adding to projects 58, 60
bookmarks (NetBeans-based editors) 88
browsing in the Structure tab 14
catalog entry files 113
changing case (native editors) 79
changing DOS and UNIX line endings (native editors) 89
changing read-only and write-only attributes (native editors) 89
changing spaces, tabs, and indentation (native editors) 79
clipboard support (native editors) 89
closing 19
code completion for Java expressions (NetBeans-based editors)

85
color coding (NetBeans-based editors) 84
compiling a Java file 74
creating 57
creating components 20, 217
defining how a file type is launched 30
deleting 19
directory structure considerations 48
displaying in the Edit Pane 14
editing 21, 77
graphics, opening in the development environment 21
inserting JSP tags (native editor) 90
opening 18
304

regular expressions for text searches 80
renaming 19
saving 19
searching 78, 80
searching (NetBeans-based editors) 88
searching across multiple files 79
setting editing preferences 27
setting preferences 25, 30
src directories 48
using NetBeans-based editors 84
using the native editors 88
using the native editors for Java, JSP, and HTML files 89
working with 18

source layout view 62
SPF files

see project files
splitters to resize panes 14
src directories 48
subprojects

adding to projects 61
creating 50
displayed in Navigation Pane 62
parent project classpaths 72

T
tabs

using in source editor 27
Tag Handler Wizard 252
tag libraries

JSP version support 265
Text Editor 77
tie model

for Web Services 149
Todo lists 39
toolbars

configuring 23
displaying 23

U
UDDI

see Web Services
undeploying archives 284
Update Deployment Plan Version command

using 269
Update Project Version command

using 266

V
validation of archives 75
validation of XML documents 111
version control

accessing 39
setting up access 35
using 35

version information for the development environment 19

versions of J2EE
1.2 259
1.3 260
support for 259

W
Web archives (WARs)

see archives
Web Service consumers

binding style 163
binding to services 169
generating 159
J2EE 159
Microsoft .NET 159
packaging wssdk.jar with 160
running 171
type mapping 163
using JAX-RPC 159

Web Service Wizard
about 173
Client Runner facility 171
compilers 173
generating consumers with 159
generating Web Services with 139
implementation model choices 149
panel details 175
panel sequence 174
using wssdk.jar with 140, 160

Web Services
about 131, 135
browsing registries 134, 206
consumers 132
creating components 132, 137
creating registry profiles 204
ebXML 134, 135, 203
generating 139
HTTP 131, 132, 134, 135, 137
implementation models for 149
JAX-RPC 136, 139
local registries 135
Microsoft .NET 136
packaging wssdk.jar with 140
providers 132
publishing to registries 133, 134, 213
registries 132, 133, 134, 135, 203
retrieving WSDL files from registries 212
SOAP 131, 132, 134, 135, 137
testing from a browser 149
tools provided in the development environment 22, 136
UDDI 134, 135, 203
using 134, 159
WSDL 132, 134, 135
WSDL Editor 22, 193
WSIL 203

Web Services SDK
browser-based test feature 149
compilers used by Web Service Wizard 173
packaging wssdk.jar with generated consumers 160
packaging wssdk.jar with generated Web Services 140
305

WEB-INF directories
see J2EE

wizards
J2EE 217

WSDL (Web Services Description Language)
see Web Services

wsdl2java compiler
in Web Service Wizard 173

WSIL
see Web Services

X
XML catalog 113
XML Catalog Editor 115
XML Catalog File Wizard 113
XML Editor

about 95
catalog, used by 113
code completion 106
context editing support 106
keyboard shortcuts 116
Schema Guide 103
setting colors 30
styling documents 112
validating documents 111

XML File Wizard 99
XML Schema Editor 103
XML Schema File Wizard 103
xsd2java compiler

in Web Service Wizard 173
XSL Editor

about 121
XSL File Wizard 122
306

307

308

309

310

	About This Book
	1 Development Environment
	About the utility tools
	Basic panes
	Navigation Pane
	Edit Pane
	Output Pane

	Basic operations
	Starting the development environment
	Using proxy servers
	Opening, saving, and closing projects and files
	Getting product version information

	Basic wizards
	Basic editors
	Basic viewers
	Image Viewer
	Class Viewer

	Basic tools for Web Services
	Debugging facilities
	Managing toolbars
	Displaying toolbars
	Configuring toolbars

	Setting preferences
	General preferences
	Build preferences
	Display preferences
	Editing preferences
	File association preferences
	Printing preferences
	Deployment preferences
	Version control preferences

	Setting up profiles
	Server profile
	Database profile
	Registry profile

	Using version control
	Setting up access to version control
	Accessing version control

	Maintaining Todo lists
	Working in the Todo tab
	Working with generated items

	Using Ant
	What is Ant?
	Using the exteNd Ant tools
	Examples

	Internationalization support
	Specifying fonts

	Extending the development environment

	2 Projects and Archives
	About projects and archives
	Organizing projects
	Project design considerations
	Project directory structure considerations

	Creating projects and subprojects
	Creating a deploy-only project
	Working with existing source files

	Populating projects
	Creating source files
	Adding to projects

	Viewing projects
	Maintaining projects
	Opening a project
	Managing general project settings
	Managing project content settings
	Excluding individual files from a project directory
	Removing files, directories, and subprojects from projects
	Renaming a project

	Compiling, building, and archiving
	Specifying build settings
	Using the commands

	Validating archives

	3 Source Editors
	Common features
	Standard editing features
	Editor preferences
	Using text abbreviations
	Changing case
	Changing spaces, tabs, and indentation
	Searching across multiple files
	Regular expressions for text searches

	The NetBeans-based editors
	Color coding
	Code completion
	Adding files types edited by NetBeans-based editors
	Other editing support

	The native editors
	Changing line ending characters
	Multiple clipboard support
	Viewing and changing read-only and read-write attributes
	Using the native Java, JSP, or HTML editor
	Inserting custom tags in a JSP page

	I XML and CSS
	4 XML Editors
	About XML
	XML in the development environment
	Using the XML Editor
	Using the Source View
	Using the Tree View

	Creating and opening XML documents
	Working with Schemas and DTDs
	Associating Schemas and DTDs with XML documents
	Converting a DTD to a Schema
	Creating and editing Schemas
	Using the Schema Guide

	Editing an XML document
	About context support
	Adding elements
	Adding attributes
	Adding other nodes
	Editing nodes

	Validating an XML document
	Searching an XML document
	Styling an XML document
	Maintaining the XML catalog
	Adding to the catalog
	Using the XML Catalog Editor

	Keyboard shortcuts
	In Tree View
	In Source View
	In Catalog View (XML Catalog Editor)

	5 XSL Editor
	About XSL
	XSL in the development environment
	Creating and opening XSL files
	Using the XSL Editor

	6 CSS Editor
	About CSS
	CSS in the development environment
	Creating and opening CSS files
	Using the CSS Editor
	Using the CSS Style Manager dialog

	II Web Services
	7 Web Service Basics
	About Web Services
	Web Service providers, consumers, and registries
	Providing Web Services
	Creating Web Service components
	Creating a WSDL file
	Publishing Web Service information

	Using Web Services
	Using Web Service registries
	About registries
	Registry data formats
	Public and local registries

	Learning more about Web Services
	Popular Web Service implementations
	Web Service development tools
	Web Services SDK
	Web Service Wizard
	Registry Manager
	WSDL Wizard and Editor

	8 Generating Web Services
	Basics
	Steps
	Preparing to generate
	Generating Web Service files
	Examining the generated files
	Editing the generated files
	Using the generated files

	Choosing an implementation model
	Tie model
	Skeleton model

	Scenario: starting with a Java class
	Project setup
	Input to the wizard
	Generated files for the Web Service
	Generated files for testing
	Deployment descriptor
	Runtime test result

	9 Generating Web Service Consumers
	Basics
	Steps
	Preparing to generate
	Providing a WSDL file
	Example: WSDL file for Autoloan .NET Web Service
	Understanding the WSDL

	Generating the consumer files
	Examining the generated files
	About generated file names
	Additional details of generation
	Example: generated consumer files for Autoloan .NET Web Service

	Editing the generated files
	Editing the xxxClient.java file

	Using the generated files
	Running the consumer program
	From the development environment
	From a command line

	10 Web Service Wizard
	About the wizard
	Using the wizard
	Panel sequence
	Panel details
	Project location
	WAR project selection
	Class selection
	WSDL file selection
	Multiple namespace mapping
	Web Service type mappings
	EJB home interface selection
	EJB lookup information
	Method selection
	Binding style
	Schema information
	Class-generation and SOAP options

	11 WSDL Editor
	About WSDL
	About the WSDL Editor
	Editor features

	Creating a WSDL document
	Adding elements to a WSDL document
	Adding a message element
	Adding a port type element
	Adding a binding element
	Adding a service element

	Validating a WSDL document
	Displaying a stylized view
	Publishing to a registry
	Generating Web Service files from WSDL

	12 Registry Manager
	About registry standards
	About the Registry Manager
	Defining registry profiles
	Browsing registries
	Information displayed
	Popup menus
	Action buttons
	Searching by organization
	Searching by service
	Using wildcards in searches

	Retrieving WSDL from the registry
	Publishing to a registry

	III J2EE
	13 J2EE Wizards
	EJB Wizard
	About the EJB Wizard
	Starting the EJB Wizard
	Panel sequence
	Panel reference

	JSP Wizard
	About the JSP Wizard
	Starting the JSP Wizard
	Specifying the JSP page name and other options
	Specifying the project, directory, and package
	Specifying imports
	What happens

	Servlet Wizard
	About the Servlet Wizard
	Starting the Servlet Wizard
	Specifying the class name and other servlet options
	Specifying the project, directory, and package
	Specifying which HttpServlet methods to override
	Specifying which interfaces to implement
	Specifying which classes and packages to import

	Java Class Wizard
	About the Java Class Wizard
	Starting the Java Class Wizard
	Specifying the class name and other options
	Specifying which interfaces to implement
	Specifying which classes and packages to import
	Specifying the project, directory, and package

	JavaBean Wizard
	About the JavaBean Wizard
	Starting the JavaBean Wizard
	Specifying the class name and other options
	Specifying the data fields
	Specifying which interfaces to implement
	Specifying which classes and packages to import
	Specifying the project, directory, and package

	Tag Handler Wizard
	About the Tag Handler Wizard
	Starting the Tag Handler Wizard
	Specifying the class name and other options
	Specifying the project, directory, and package
	Specifying the tag library descriptor file
	Specifying the body type
	Specifying tag handler attributes
	Specifying tag handler scripting variables
	Specifying TagExtraInfo class
	What happens

	14 How to Handle J2EE Versions
	Support for J2EE versions
	What J2EE 1.2 servers support
	What J2EE 1.3 servers support
	What the development environment supports

	Your choices
	Project scenarios
	Approaching new development
	Deciding when to migrate

	Versions for new projects and components
	When creating projects
	When creating JSP tag libraries
	When creating EJB entity beans

	Migrating projects from J2EE 1.2 to 1.3
	Using the Update Project Version command
	Using the Update Deployment Plan Version command
	Projects that require some manual migration

	exteNd Application Server considerations
	About the J2EE containers
	Deploying projects
	EJB deployment notes

	IV Deployment
	15 Archive Deployment
	Supported J2EE servers
	Deployment types
	Rapid deployment
	Production deployment
	External deployment tools

	Deploying J2EE archives
	Archive contents
	Creating deployment settings
	Deploying a project

	What happens when you deploy
	Deploying Web Services
	Undeploying archives

	16 Deployment Descriptor Editor
	About deployment descriptors
	About the Deployment Descriptor Editor
	Using the Deployment Descriptor Editor

	17 Deployment Plan Editor
	About deployment plans
	Using the Deployment Plan Editor

	18 J2EE Deployment Descriptor DTDs
	DTD files
	Location
	Use
	Documentation

	19 exteNd Application Server Deployment Plan DTDs
	DTD location
	DTD files
	Novell exteNd Application Server DTD files
	SilverStream eXtend Application Server DTD files

	DOCTYPE statements
	SilverStream eXtend Application Server DOCTYPE statements

	Index

