
n

Identity Manager User Application: Design Guide
Novell

m

ovdocx (E
N

U
)  01 February 2006
www . n o v e l l . c o

Designer for Identity Manager
1 . 2
J u l y  1 4 ,  2 0 0 6

I D E N T I T Y  M A N A G E R  U S E R  
A P P L I C A T I O N :  D E S I G N  G U I D E



novdocx (E
N

U
)  01 February 2006
Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and 
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose. 
Further, Novell, Inc. reserves the right to revise this publication and to make changes to its content, at any time, 
without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims 
any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc. 
reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to 
notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the 
trade laws of other countries. You agree to comply with all export control regulations and to obtain any required 
licenses or classification to export, re-export or import deliverables. You agree not to export or re-export to entities on 
the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export laws. 
You agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses. Please 
refer to www.novell.com/info/exports/ for more information on exporting Novell software. Novell assumes no 
responsibility for your failure to obtain any necessary export approvals.

Copyright © 2006 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied, 
stored on a retrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc. has intellectual property rights relating to technology embodied in the product that is described in this 
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S. 
patents listed at http://www.novell.com/company/legal/patents/ and one or more additional patents or pending patent 
applications in the U.S. and in other countries.

Novell, Inc.
404 Wyman Street, Suite 500
Waltham, MA 02451
U.S.A.
www.novell.com

Online Documentation: To access the online documentation for this and other Novell products, and to get 
updates, see www.novell.com/documentation.



novdocx (E
N

U
)  01 February 2006
Novell Trademarks

For Novell trademarks, see the Novell Trademark and Service Mark list (http://www.novell.com/company/legal/
trademarks/tmlist.html).

Third-Party Materials

All third-party trademarks are the property of their respective owners.

http://www.novell.com/company/legal/trademarks/tmlist.html


novdocx (E
N

U
)  01 February 2006



novdocx (E
N

U
)  01 February 2006
About This Guide

This guide describes how to use the Designer to create user application components. It explains how 
to work with the provisioning view, the directory abstraction layer editor, and the provisioning 
request definition editor. 

Audience

This guide is intended for designers responsible for creating workflow-based provisioning 
applications that run on Identity Manager.

Feedback

We want to hear your comments and suggestions about this manual and the other documentation 
included with this product. Please use the User Comments feature at the bottom of each page of the 
online documentation, or go to www.novell.com/documentation/feedback.html and enter your 
comments there.

Additional Documentation

For documentation on other Identity Manager features, see the Identity Manager Documentation 
Web site  (http://www.novell.com/documentation/idm).

Documentation Conventions

In Novell documentation, a greater-than symbol (>) is used to separate actions within a step and 
items in a cross-reference path.

A trademark symbol (®, TM, etc.) denotes a Novell trademark. An asterisk (*) denotes a third-party 
trademark.

When a single pathname can be written with a backslash for some platforms or a forward slash for 
other platforms, the pathname is presented with a backslash. Users of platforms that require a 
forward slash, such as Linux or UNIX, should use forward slashes as required by your software.
5

http://www.novell.com/documentation/idm
http://www.novell.com/documentation/idm


6 Identity Man

novdocx (E
N

U
)  01 February 2006
ager User Application: Design Guide



1
novdocx (E

N
U

)  01 February 2006
1Introduction to the User 
Application Design Tools

This section provides an overview of the tools available for designing the user application. Topics 
include: 

• Section 1.1, “About the Provisioning View,” on page 7
• Section 1.2, “About the Directory Abstraction Layer Editor,” on page 7
• Section 1.3, “About the Provisioning Request Definition Editor,” on page 8
• Section 1.4, “About the ECMA Expression Builder,” on page 8
• Section 1.5, “Documenting a Project,” on page 8

1.1  About the Provisioning View
The provisioning view provides persistent access to Designer’s provisioning features. Use the 
provisioning view to perform these actions on provisioning objects:

• Import object definitions from the Identity Vault or the local file system.
• Export object definitions to the local file system.  
• Validate local object definitions.
• Deploy object definitions to the Identity Vault.
• Compare the objects on the local file system with those in the Identity Vault.
• Access the directory abstraction layer editor.
• Access the provisioning request defintions editor.

Double-clicking an item from the provisioning view opens the editor for that item.

1.2  About the Directory Abstraction Layer Editor
The directory abstraction layer editor allows you to define directory abstraction layer definitions. 
Use the directory abstraction layer editor to modify the user application’s behavior by: 

• Adding new entities (Identity Vault objects).
• Defining the set of attributes for an entity.
• Specifying the contents of lists.
• Modeling relationships among entities.
• Defining automatic lookups between entitites.
Introduction to the User Application Design Tools 7



8 Identity Man

novdocx (E
N

U
)  01 February 2006
1.3  About the Provisioning Request Definition 
Editor
The provisioning request definition editor allows you to create custom provisioning request 
definitions by using a rich set of Eclipse-based design tools. Use the provisioning request definition 
editor to: 

• Define the basic characteristics of the provisioning request.
• Design the associated workflow.
• Define the request and approval forms.
• Configure the activities and flow paths.

1.4  About the ECMA Expression Builder
Designer incorporates an ECMAScript interpreter and expression editor, which allows you create 
script expressions that refer to and modify workflow data. For example, you can use scripting to:

• Create new data items needed in a workflow under the flowdata element.
• Perform basic string, date, math, relational, concatenation, and logical operations on data.
• Call standard or custom Java classes for more sophisticated data operations.
• Use expressions for runtime control to: 

• Modify or override form field labels.
• Initialize form field data.
• Customize e-mail addresses and content.
• Set entitlement grant/revoke rights and parameters. 
• Evaluate any past Activity data to conditionally follow a workflow path using the 

Condition Activity.
• Write different log messages that are conditionally triggered using a single Log Activity.

1.5  Documenting a Project
Designer provides a document generator that helps you quickly generate customized documentation 
for your Designer projects. You can define your own document style, but Designer ships with a 
default provisioning style. The default provisioning style includes sections for the user application, 
such as the directory abstraction layer and the provisioning request definitions. The directory 
abstraction layer documentation includes the following sections:  

• Entities—including access properties, auxiliary classes, and LDAP classes. 
• Global lists—including key and display label.
• Relationships—including key, parent key, parent attribute, child key, and child attribute.
• Configuration—including default entity key, default locale, and container classes.

The documentation for a provisioning request definition includes:

• A table containing the definition’s category, status, and e-mail notification.
• An image of the workflow’s structure.
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
• A section for each activity with a table that lists the data mappings for the activity or the 
expression (if supported by the activity type).  

• A section for each form. 
Introduction to the User Application Design Tools 9



10 Identity Man

novdocx (E
N

U
)  01 February 2006
ager User Application: Design Guide



2
novdocx (E

N
U

)  01 February 2006
2Working with the Provisioning 
View

This section provides details on using the Provisioning view. Topics include: 

• Section 2.1, “Setting Up a Provisioning Project,” on page 11
• Section 2.2, “Setting Provisioning View Preferences,” on page 12
• Section 2.3, “Importing Provisioning Objects,” on page 15
• Section 2.4, “Exporting Provisioning Objects,” on page 16
• Section 2.5, “Validating Provisioning Objects,” on page 17
• Section 2.6, “Deploying Provisioning Objects,” on page 17
• Section 2.7, “Comparing Provisioning Objects,” on page 20

2.1  Setting Up a Provisioning Project
The Provisioning View is only available for projects that contain a User Application driver. Follow 
these steps to set up a provisioning project: 

Table 2-1   Provisioning Project Setup Steps

2.1.1  Completing the User Application Driver Configuration
Follow these steps to complete the User Application driver configuration:  

1 Drop a User Application driver on the canvas. 
2 When prompted select UserApplication.xml (the default) as the driver configuration file, then 

click OK.
3 Specify how the wizard should handle validation of your entries by clicking Yes or No.

Step Task Description

1 Create an Identity Manager project For more information, see the section on 
creating a project in Designer help.

2 Configure the Identity Vault and the driver 
set

For more information, see the section on 
configuring objects in Designer help. 

3 Add and configure a User Application driver You can find the User Application driver in the 
provisioning folder of the Modeler palette.

For configuration details, see Section 2.1.1, 
“Completing the User Application Driver 
Configuration,” on page 11.

5 Open the provisioning view See Section 2.1.2, “Accessing the 
Provisioning View,” on page 12.
Working with the Provisioning View 11



12 Identity Man

novdocx (E
N

U
)  01 February 2006
4 Fill in the fields as follows:

5 Click OK.

2.1.2  Accessing the Provisioning View
You can access the provisioning view in several ways. 

• Select Window > Show View > Provisioning View.
• In the Modeler window, select User Application, right-click and select Show View > 

Provisioning View.
• Select Project > Provisioning > Show Provisioning View.
• Select Provisioning View from the FastView toolbar.

The provisioning view displays all of the provisioning projects located in the same workspace.

TIP: If you do not see the user applications that you expect, it might be because the project is 
corrupt. If your project is corrupt, you must re-create it. 

2.2  Setting Provisioning View Preferences
You can customize some provisioning view behaviors by setting preferences. You access the 
preferences page through Windows > Preferences > Provisioning. The preferences include:  

Property What to Specify

Driver Name The name of an existing User Application driver 
(the driver specified during the user application 
installation), or the name of a new User 
Application driver.

Authentication ID The DN of the User Application Administrator.

Application password/Reenter password The password for the User Application 
Administrator (above).

Application context The name of the user application context, for 
example, IDM.

Host The host name or IP address of the application 
server where the Identity Manager user 
application is deployed. This information is used:

• To trigger workflows on the application 
server to connect to access workflows 
(terminate, retract, and so on).

• To update cached data definitions.

Port The port for the Host above.
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
Table 2-2   Provisioning View Preferences

Preference 
Category Setting Description

General Prompt for deletion of User Application 
Configuration

When this is selected and you delete a User 
Application from the Modeler, Designer asks 
whether you want to delete the provisioning 
objects on disk as part of the delete operation. 
If you do not delete the provisioning objects, 
they are left on disk, even though the user 
application is deleted. 

Set delete from Identity Vault as default 
for all “Confirm Delete” dialogs

When you delete an object in the provisioning 
view or the directory abstraction layer editor, 
you are prompted to confirm the deletion. This 
preference determines whether the check box 
labeled Delete object in Identity Vault on 
deploy in the confirmation dialog box is 
selected by default.

Selecting this preference means that the 
check box is selected and the default is to 
delete the Identity Vault object. The local 
object is always deleted.

Show Provisioning View when new User 
Application is created or imported

Select this option if you want Designer to 
launch the provisioning view when you create 
a new User Application driver or import an 
existing one.

Driver 
Configuration 
File

Select Driver Configuration File for User 
Application Driver

Select Default when you want to use the 
original User Application driver configuration 
file shipped with Designer.

Select Custom when you want to upload a 
new user application driver configuration file. 
You might obtain a User Application driver 
configuration file when performing an upgrade 
or installing localization or template updates. 
Working with the Provisioning View 13



14 Identity Man

novdocx (E
N

U
)  01 February 2006
Import Delete local object on import when object 
has been deleted in Identity Vault

Select this option if you want Designer to 
delete local objects if the corresponding 
Identity Vault objects were deleted. This 
ensures that the Identity Vault and local files 
are in sync. 

Deselect this option if you want to leave the 
local files alone. 

Import runtime configuration (objects 
used at runtime but not editable through 
Designer)

Select this option if you are importing the 
driver from a test environment and want to 
deploy to a production environment. The User 
Application driver runtime relies on objects 
stored in the driver that you are not able to 
access in Designer. If you deploy a driver that 
does not contain these objects, it does not  
work properly. 

Deselect this option if you are importing the 
driver, modifying it, and deploying it back to 
the same driver set because the driver 
already has the runtime configuration objects. 

Deploy Allow deployment of objects with 
validation errors

Select this option if you want to deploy objects 
that fail validation checks. At deployment, 
Designer validates the definitions being 
deployed following the validation rules 
outlined in Section 2.5, “Validating 
Provisioning Objects,” on page 17. Deselect 
this option to prevent deployment of 
definitions that fail validation.

Prompt for deployment of runtime 
configuration (objects used by User 
Application but not editable through 
Designer)

Select this option if you want Designer to  
prompt you to include runtime configuration 
objects in the deploy. You should include 
runtime configuration objects when you are 
moving a driver set from a test environment to 
a production environment (or any time you 
want a complete copy of an existing 
environment). If you are simply redeploying 
some updated objects to an existing driver, 
then you do not need to include the runtime 
configuration objects at deployment because 
they already exist.

Preference 
Category Setting Description
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
2.3  Importing Provisioning Objects
The provisioning view’s import feature lets you import provisioning objects from: 

• A driver configuration file 
• An Identity Vault

This feature is useful when you begin a new project based on one or more definitions from an 
existing project, or when you want to share definitions with other developers working on the same 
project.

NOTE: When you change the Identity Vault or DriverSet’s deploy context, you must save the 
project before performing an import. If you do not save the change, Designer continues to use the 
old deploy context for import operations.   

Localization Locale and Language Establishes the set of languages that 
Designer developers are allowed to localize 
display labels and form control tooltips. The 
languages specified here are displayed in the 
localize dialog boxes used in the directory 
abstraction layer editor and provisioning 
request definition editor.

Click the button to access the Add/Remove 
Languages dialog box. Once you apply the 
change, the language is available in Designer. 
Removing a language from this list does not 
cause any translated strings for the language 
to be removed. They are still stored with the 
object, the language is just not displayed in 
the localization dialog boxes. 

Workflows Form Templates Use this dialog box to remove or preview 
existing form templates. 

Diagram Preferences Show Activity ID—Select this preference 
when you want the Workflow tab of the 
provisioning request definition editor to 
display the Activity IDs for each activity in the 
flow. Activity IDs are used by the ECMA 
expression builder and are written to the user 
application’s error logs. 

Connection This is the amount of time (in milliseconds) for 
Designer to connect to the Identity Vault. If 
this is set too low, you might encounter an 
error when trying to set Trustee Rights on a 
provisioning request definition or when trying 
to access the Identity Vault via the ECMA 
expression builder. 

Preference 
Category Setting Description
Working with the Provisioning View 15



16 Identity Man

novdocx (E
N

U
)  01 February 2006
2.3.1  Importing from a Driver Configuration File
To import objects from a driver configuration file:

1 Open the provisioning view.
2 Select the root node representing the type of object you want to import. 
3 With the container selected, right-click and select Import from File. Confirm the import 

operation (which might overwrite existing definitions of the same name) by clicking OK.
4 Specify the name of the driver configuration file you want to import, then click OK.

2.3.2  Importing from an Identity Vault
1 Open the provisioning view and select the container into which you want to import the 

definitions. 

To import a specific provisioning object, select that node in the provisioning view. To import all 
objects of a specific type, select the root node representing that type. 

2 With the container selected, right-click and select: 
• Import Object.to import the specified object and any of its children.
• Import All to import all of the objects of a selected container.

3 Provide the Identity Vault credentials and click OK.
4 Navigate to the Identity Vault container or object that you want to import and click OK.
5 Review the Import Summary page to determine how you want to proceed. To complete the 

import, click Import, or click Cancel. If you choose Import, Designer performs the operation 
and displays a summary of the completed operation.

2.4  Exporting Provisioning Objects
The provisioning view’s export feature allows you to move project components from one project to 
another without re-creating the contents. It also allows you to clone a project. You can use it to 
export provisioning objects (and their children) to an XML-based driver configuration file. You use 
the resulting file as the input to the import from file feature enabling you to easily share the contents 
of your provisioning project with other developers.

2.4.1  Exporting to a Driver Configuration File
1 Open the provisioning view and select the object containing the definitions to export.   

To export a specific provisioning object, select that node in the provisioning view. To export all 
of the objects of a specific type, select the root node representing that type. 

2 With the container or object selected, right-click and select Export to File.
3 Provide the name and location of the file to generate, then click OK.

The default name for the file reflects the contents of the file. For example, if you export lists, 
the default name for the file is lists.xml. You can change the name as needed.
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
2.5  Validating Provisioning Objects
The validation feature allows you to validate provisioning objects on the local file system before you 
deploy. The validation runs Designer’s project checker and displays the results in the Project 
Checker View. 

For directory abstraction layer objects, Designer does the following:

• Verifies that the XML is well-formed and complies with the schema that defines the elements 
needed for entities, attributes, lists, relationships, and so on.

• Checks every entity to ensure that references to other entities and global lists are valid. 
For example when validating an entity and its attributes, the validator checks that all references 
to other entities via the Edit Entity, DNLookup, and Detail Entity reference entities that 
actually exist.

• Ensures that every entity has at least one attribute defined.
• Ensures that every local and global list contains at least one item.

For Provisioning Request Definitions, Designer does the following:

• Validates that every Provisioning Request Definition has at least one request form and one 
approval form. 

• Ensures that the Condition Activity has both an outbound true flow path and an outbound false 
flow path.

• Ensures that the Entitlement Activity Data Item Mapping of DirXML-Entitlement-DN is valid. 
• Ensures that the Final Timeout Action property (for User Activities) has a matching flow path 

link leading from the activity. For example, if Final Timeout Action=denied, there must be a 
denied link. 

• For Branch and Merge activities, ensures that a workflow has an equal number of Branch and 
Merge activities. It also ensures that all paths descending from a Branch activity merge into one 
Merge activity, that all merge activities have a branch activity, and that all Merge activities 
have a branch-activity-id attribute. 

To validate objects from the provisioning view, right-click a node and click Validate. 

To validate objects from the directory abstraction layer editor, click Validate Abstraction Layer from 
the editor’s toolbar, or select DAL > Validate from Designer’s menu. 

To validate objects from the provisioning request definition editor, select PRD > Validate from 
Designer’s menu.

NOTE: Validation does not check the Identity Vault for the existence of any object.

2.6  Deploying Provisioning Objects
The provisioning view’s deploy feature deploys your provisioning objects to the specified user 
application driver. You must deploy any changes you’ve made to the provisioning objects in the 
design environment before you see them reflected in the Identity Manager user application. The 
provisioning view allows you to deploy a container and all its children (for example, all entities or 
all lists), or to deploy just a single provisioning object (such as a single list element). When you 
select an item to deploy, Designer compares it to the same item in the Identity Vault. If they are 
Working with the Provisioning View 17



18 Identity Man

novdocx (E
N

U
)  01 February 2006
equal, Designer prevents you from deploying. When there are differences, Designer displays them 
and allows you to proceed or to cancel the deployment.

NOTE: When you change the Identity Vault or DriverSet’s deploy context, you must save the 
project before performing a deploy. If you do not save the change, Designer continues to use the old 
deploy context for deploy operations.   

2.6.1  Deploying Provisioning Objects
1 Save any changes.

If the objects contain unsaved changes, Designer displays the unsaved definitions and prompts 
you to save them. If you do not, Designer still deploys the objects but does not deploy the 
unsaved changes. Choosing not to save the changes does not cancel the deployment.

2 Open the provisioning view, select the object to deploy, right-click and select Deploy or Deploy 
All.
To deploy a specific provisioning object, select that node in the provisioning view. To deploy 
all of the objects of a specific type, select the root node representing that type. 
Designer prompts you for Identity Vault credentials, validates the objects, and writes any 
messages to the project checker view. 

2.6.2  Deploying Provisioning Request Definitions

NOTE: If errors associated with activities are detected during deployment of a provisioning request 
definition, Designer identifies the activity in which the error occurred by activity ID. However, in 
the user interface, Designer by default displays activities by activity Name. To make it easier to 
identify the activity in an error message, you should turn on the display of activity IDs before you 
deploy the provisioning request definition. To turn on the display of activity IDs, right-click the 
Workflow canvas (see Section 7.1, “About the Workflow Tab,” on page 109) and select Show 
Activity IDs. 

1 In the provisioning request definition editor, right-click the Overview tab.
2 Select Active from the Status list.
3 In the provisioning view, right-click the name of the provisioning request definition that you 

want to deploy, then select Deploy.

Designer performs a validity check. If there are certain fatal errors (for example, a missing Start 
or Finish activity) a message notifying you of the fatal error displays immediately. If this is the 
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
case, correct the errors before attempting to deploy the provisioning request definition. If there 
are no fatal errors, the Deployment Summary is displayed. 

If the provisioning request definition with the same CN already exists in the Identity Vault, 
Deployment Summary displays the differences, and allows you to examine the differences 
before you decide to proceed.

4 Click Deploy to deploy the provisioning request definition. If an error occurs during 
deployment, a description of the error is displayed in the Deployment Summary: 

A common error (and the source of the error in the preceding illustration) occurs when you fail 
to replace a placeholder expression in an entitlement provisioning activity (see Section 8.1.8, 
“Entitlement Activity,” on page 132 for information about entitlement provisioning activities). 
If this is the case, correct the error, then try deploying the provisioning request definition again.

NOTE: Designer cannot evaluate expressions at design time, so you may receive a warning if 
you’ve used an expression for an entitlement that must be resolved at runtime. This is not a 
fatal error and the deployment will succeed.
Working with the Provisioning View 19



20 Identity Man

novdocx (E
N

U
)  01 February 2006
2.7  Comparing Provisioning Objects
The provisioning view’s Compare feature allows you to see the differences between the 
provisioning objects in the local file system and those that are running in the deployed User 
Application driver. When Designer encounters a difference it allows you to specify what action you 
want to take on that difference. You can ignore or reconcile it.   

NOTE: When you change the Identity Vault or DriverSet’s deploy context, you must save the 
project before performing a compare. If you do not save the change, Designer continues to use the 
old deploy context for compare operations.   

2.7.1  To Compare Provisioning Objects
1 Select a container or object in the provisioning view, right-click and select Compare.
2 If prompted, provide Identity Vault credentials, then click OK.

Designer displays the results of the comparison. By default, only the differences are displayed, 
but you can show the full comparison by unselecting Only show differences.

3 If there are differences, select one of the following actions:

Reconcile Status Description

Do not reconcile Do not change any definitions.

Update Designer Import the definitions from the Identity Vault.

Update eDirectory Deploy the definition from Designer to the Identity Vault.

Reconciled by parent For informational purposes. Specifies whether one of the parent objects is 
already being reconciled. It is always disabled and is only set if the parent 
object is already being reconciled to Designer or the Identity Vault. 
ager User Application: Design Guide



3
novdocx (E

N
U

)  01 February 2006
3Configuring the Directory 
Abstraction Layer

This section provides details on configuring the directory abstraction layer. Topics include: 

• Section 3.1, “About the Directory Abstraction Layer,” on page 21
• Section 3.2, “Working with Entities and Attributes,” on page 24
• Section 3.3, “Working with Lists,” on page 29
• Section 3.4, “Working with Relationships,” on page 32
• Section 3.5, “Working with Configuration Settings,” on page 34
• Section 3.6, “Localizing Display Text,” on page 35
• Section 3.7, “Directory Abstraction Layer Property Reference,” on page 36

3.1  About the Directory Abstraction Layer
The directory abstraction layer is a set of XML-based files that define a logical view of an Identity 
Vault for the user application. The directory abstraction layer defines: 

• The Identity Vault objects and attributes that the user application can display or modify.
• How the user application displays Identity Vault data.
• What relationships the user application can display.
• The provisioning request categories the user application can display.

You use the directory abstraction layer editor to define the contents of the directory abstraction layer. 

3.1.1  About the Directory Abstraction Layer Editor
The directory abstraction layer editor is a graphical tool for defining the directory abstraction layer 
files. When you add a User Application driver to an Identity Manager project, Designer creates an 
initial set of directory abstraction layer files. These base files are displayed when you start the 
directory abstraction layer editor.

To start the directory abstraction layer editor:

1 Open the Provisioning view and double-click the Directory Abstraction Layer node.
Configuring the Directory Abstraction Layer 21



22 Identity Man

novdocx (E
N

U
)  01 February 2006
Designer displays a tree containing Entities, Lists, Relationships, and Configuration nodes.

The following table describes the nodes.

Node Description

Entities Entities represent the Identity Vault objects available to the user application. 
There are two types of entities:

• Entities mapped from the schema: Entities that represent Identity Vault 
objects directly exposed to users via the user application. Users can 
typically create, search, and modify the attributes of these entities.

• Entities representing LDAP relationships: Called DN lookups, these entities 
represent indexed searches and are used to support particular types of 
attributes in the user application. DN lookup entities provide information 
about relationships between LDAP objects. DN lookup entities are:

• Used by the Org Chart portlet to determine relationships.

• Used in the Search List, Create, and Detail portlets to provide selection 
lists and DN contexts.

• Available to the workflow request and approval flow forms you define 
using the provisioning request definition editor.

Lists Defines the contents of global lists. Global lists are: 

• Associated with an attribute. The user application displays the attribute 
values as a drop-down list in the user application. 

• Used to display Resource Request categories. 

Relationships Lets you map hierarchical relationships among schema-based entities. Used by 
the Organization Chart action of the Identity Self-Service tab of the user 
application. 

Configuration General configuration parameters.
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
2 Use the left pane to navigate the directory abstraction layer nodes. When you select an item in 
the left pane, the right pane displays the attributes and settings for the selection.

3 Use the right pane to define the properties for the selection. For more information about the 
properties, see Section 3.7, “Directory Abstraction Layer Property Reference,” on page 36.

The following table describes the directory abstraction layer toolbar:

Table 3-1   Directory Abstraction Layer Toolbar

3.1.2  About Directory Abstraction Layer Editor Files
The directory abstraction layer files you work with are stored in the Designer project’s 
Provisioning\AppConfig\DirectoryModel directory. The filenames are derived from 
the object key. 

Toolbar button Description

Launches the Add Entity Wizard.

Launches the Add Attribute Wizard.

Launches the New List Wizard.

Launches the New Relationship Wizard.

Runs the Validation Checker.

Launches the Set Global Access Modifiers dialog box.

Launches the Set Global Localization dialog box.

Sets focus on the next or previous location.
Configuring the Directory Abstraction Layer 23



24 Identity Man

novdocx (E
N

U
)  01 February 2006
Table 3-2   Local Directory Abstraction Layer Directories

Designer creates the base set of directory abstraction layer files for each provisioning project. An 
identical set is deployed to the User Application driver when the user application is installed. 

To customize the Identity Manager user application, you change the directory abstraction layer 
objects and deploy the changes to the User Application driver. Some entities, attributes, lists, and 
relationships are required for the user application to function properly. The editor displays a lock 
next to the definitions that you should not delete. From the list below, you can see that you should 
not delete the Task Group entity or any of its attributes.

Figure 3-1   The Task Group Entity Attributes

3.2  Working with Entities and Attributes
You can customize your user application by adding objects and their attributes based on the content 
of your own Identity Vault. You do this by adding new entities and attributes to the directory 
abstraction layer and deploying them to the User Application driver. 

To modify the entity files installed by default, see Section 3.2.1, “Adding Entities,” on page 25 and 
Section 3.2.2, “Adding Attributes,” on page 27. To modify the entity files of an already deployed 
project or a set of files defined by another developer, you must first import the files to your design 
environment. For information on importing files, see Section 2.3, “Importing Provisioning Objects,” 
on page 15.

Directory name Description

ChoiceDefs Contains the files that define global lists. Files have the .choice extension.

EntityDefs Contains the files that define the entities and attributes. Files have the 
.entity extension.

RelationshipDefs Contains the files that define the relationships available to the Org Chart 
portlet. These files have the .relation extension. 
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
3.2.1  Adding Entities
You add entities through the Add Entity Wizard (described next) or by clicking the Add Entity 
button (from the editor’s toolbar). 

NOTE: When using the Add Entity button, you are prompted to select the object class of the entity 
to create, and the editor automatically adds the required attributes to the entity. Use the Add 
Attribute dialog box to complete the entity definition. 

To add an entity using the Add Entity Wizard:

1 Launch the Add Entity Wizard in one of these ways:

From Designer’s menus:
• Select File > New > Provisioning. Choose Directory Abstraction Layer Entity, then click 

Next. 

From the provisioning view:
• Select the Entities node, right-click, then choose New.

From the directory abstraction layer editor:
• Select DAL > New > Entity, or 
• Select the Entities node, right-click, then choose New Entity-Attributes Wizard.

The New Entity dialog box displays.

NOTE: If launched from the File menu, the dialog box contains the additional fields shown 
below.
Configuring the Directory Abstraction Layer 25



26 Identity Man

novdocx (E
N

U
)  01 February 2006
2 Fill in the fields as follows: 

Field Description

Identity Manager Project and 
Provisioning Application

The Identity Manager project and the provisioning 
application where you want to add the entity and 
attributes.

NOTE: These fields display when you launch the wizard 
from the File menu.

Entity Key A unique identifier for the entity.

Display Label The string displayed when the entity is displayed by the 
user application. You can localize this label. For more 
information, see Section 3.6, “Localizing Display Text,” 
on page 35.
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
3 Click Next. The New Entity dialog box displays:

4 Choose the entity’s object class and add the attributes you want by double-clicking them in the 
Available Attributes list.

TIP: If the entity’s object class is not shown in the Available Object Classes list, you should 
update Designer’s local schema file following the steps described in “Updating the Schema 
Elements List” on page 29.

5 Click Finish.
The property page displays for editing. For more information, see “Entity Properties” on 
page 36. You must deploy the entity before it is available to the user application.

3.2.2  Adding Attributes
1 Select an entity.
2 Add an attribute by:

• Right-click then select Add Attribute.
Configuring the Directory Abstraction Layer 27



28 Identity Man

novdocx (E
N

U
)  01 February 2006
or
• Clicking the Add Attribute button.

or
• Select DAL > New > Attribute.

You are prompted to choose classes and attributes. 

3 Add attributes by double-clicking them in the Available Attributes for Entity Class list.

TIP: If the attribute you want to add is not displayed in the Available Attributes from Entity 
Class list, you should update Designer’s local schema file by following the procedure in 
“Updating the Schema Elements List” on page 29. LDAP operational attributes are not 
supported by the directory abstraction layer editor or user application.

4 Click OK. The property page displays for editing. For more information, see “Attribute 
Properties” on page 39. To make an attribute available to the user application, you must deploy 
it.
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
3.2.3  Updating the Schema Elements List
1 With the Identity Manager project open, select your Identity Vault, right-click and select Live > 

Import Schema.
2 Choose Import from eDirectory and provide the specifications for the eDirectory host.
3 Click Next.
4 Select the classes and attributes to import, then click Finish.

NOTE: LDAP operational attributes are not supported by the directory abstraction layer editor or 
user application so you will not see them in any attribute lists after importing schema. 

3.3  Working with Lists
The lists node lets you define the contents of global lists. Global lists are used by the Identity 
Manager user application to:

• Provide a list of values for an attribute. When the attribute is displayed for editing in the user 
interface, the possible values are displayed as a drop-down list. 

• Define the Preferred Locale list, for details, see Section 3.3.1, “About the Preferred Locale 
List,” on page 32.

• Define the categories available to the Provisioning Request Configuration plug-in to iManager. 
This is a special list. For details, see Section 3.3.2, “About the Provisioning Category List,” on 
page 32.

To create a new global list:

1 Launch the New List Wizard in one of these ways:

From Designer’s menus:
• Select File > New > Provisioning, then choose Directory Abstraction Layer List, then 

click Next.
When launched from the File menu, the dialog box contains fields not displayed when 
launched in other ways.

• Select DAL > New > List.

From the provisioning view:
• Select the Lists node, right-click and choose New.

From the directory abstraction layer editor:
• Click New List.
• Select the Lists node, right-click and choose Add List.
Configuring the Directory Abstraction Layer 29



30 Identity Man

novdocx (E
N

U
)  01 February 2006
The New List dialog box displays. 

2 Fill in the fields as follows: 

Field Description

Identity Manager Project and Provisioning 
Application

Select the Identity Manager project and 
provisioning application where you want to add 
the list.

NOTE: These fields display when you launch the 
wizard from the File menu.

List Key The unique identifier for the list.

Display Label The string used when the list is displayed in the 
user application. You can localize this label. For 
more information, see Section 3.6, “Localizing 
Display Text,” on page 35.
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
3 Click Finish.The Global Lists property page displays for editing.

4 Fill in the fields as follows: 

The following table describes the wizard’s buttons:

5 Save the project. 

Field Description

Display Label The name of the list as shown in Designer.

Labels The text for the list item to display in the user application.

Values The list item value stored in the Identity Vault. Valid characters include 
letters, numbers, and the underscore (_) character.

Button Description

Adds a new Value

Moves the row up or down in the list. This order specifies how the labels are 
displayed in the user application at runtime.

Displays the localization dialog box. For more information on using the dialog 
box, see Section 3.6.2, “Localizing Text,” on page 35.

Deletes the row.
Configuring the Directory Abstraction Layer 31



32 Identity Man

novdocx (E
N

U
)  01 February 2006
6 Deploy the list to make it available in the runtime environment.

3.3.1  About the Preferred Locale List
The Preferred Locale list represents the default language for the user application when the browser 
language is not a supported language. The user application’s default configuration of the Edit User 
action displays the Preferred Locale list.   

3.3.2  About the Provisioning Category List
The Provisioning Category list defines the set of categories that help you organize provisioned 
resources (entitlements) and provisioning requests. The categories in this list display in:

• Designer—Provisioning request definition editor plug-in
• iManager—Provisioning Request Configuration plug-in
• user application—Requests and Approvals tab

You cannot change the Provisioning Category list key, but you can add more items to the list or 
change the existing category values and labels.

To modify the contents of the Provisioning Category list:

1 Choose the Lists node.
2 Select Provisioning Category.
3 Use the global list property pane to make your modifications. 

NOTE: The Values field is used to populate the category key. The Values field restricts you to 
letters, numbers, and underscore (_)characters because these are the valid characters in the 
category key (which is used internally as an identifier for the category). 

4 Save, then deploy your changes. Remember to update the application server’s cache. 
After your changes are deployed, they are reflected in the user application and the iManager 
plug-in. They are reflected in Designer when saved.

3.4  Working with Relationships
The Relationships node allows you to define relationships between entities defined in the directory 
abstraction layer. The relationship can be between like entities (such as user/user) or unlike entities 
(such as user/device). The relationships are used by the Org Chart portlet. 

The following relationships are defined, by default, for the user application:

• Group’s membership
• Manager-Employee
• User groups

To successfully deploy a relationship, all of the components (entities and attributes) of the 
relationship must already be deployed.

To create a new relationship:
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
1 You can create a new relationship in any of these ways:

From Designer’s menus:
• Select File > New > Provisioning. Choose Directory Abstraction Layer Relationship, then 

click Next.
• Select DAL > New > Relationship.

From the provisioning view:
• Select Relationships, right-click and choose Add. 

From the directory abstraction layer editor:
• Click the Add Relationship button.
• Select Relationships node right-click and choose Add Relationship. 

The New Relationship dialog box displays.

NOTE: When launched from the File menu, the dialog box contains fields not displayed when 
launched in other ways.

2 Fill in the fields as follows:

Field What to do

Identity Manager Project and 
Provisioning Application

Select the correct Identity Manager project and Provisioning 
Application.

NOTE: This field displays when you create relationships from 
the File menu.

Relationship Key Type a unique value for the relationship key.
Configuring the Directory Abstraction Layer 33



34 Identity Man

novdocx (E
N

U
)  01 February 2006
3 Click Finish.
The editor creates the relationship and opens the property page for editing.

For property definitions, see Section 3.7.3, “Relationship Properties,” on page 48.

To delete a relationship:

1 Select the relationship you want to delete.
2 Right-click and choose Delete.

3.5  Working with Configuration Settings
The Configuration node allows you to set general configuration properties for the user application.

Table 3-3   Configuration Settings

Display Label Type the string to display when the relationship displays in 
the user application.

Property Description

Default ‘My Profile’ Entity Defines the entity to display when the user clicks My Profile in the 
user interface. 

This field is restricted to show only entities whose object class is 
user (or LDAP inetOrgPerson). 

Field What to do
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
3.6  Localizing Display Text
The directory abstraction layer editor provides an easy way to localize the display text for: 

• Entity and attribute display labels
• Relationship names
• Global and local list items

3.6.1  Supported Languages
You can localize the display text in any language supported by the Java Locale class. You can set the 
languages you want to localize through Designer’s localization preference (Windows > Preferences 
> Provisioning > Localization). For more information, see Section 2.2, “Setting Provisioning View 
Preferences,” on page 12.

3.6.2  Localizing Text
The directory abstraction layer editor provides multiple ways to localize abstraction layer 
definitions. You can access the localization dialog boxes in these ways: 

Table 3-4   Ways to Access the Localization Dialog Boxes

Default Locale Defines the default language to use for the display labels in the 
user application. If the browser is set to an unsupported language 
this locale is used instead. 

NOTE: The browser locale overrides the default locale for the 
supported languages.

Container Classes This provides the Create User or Group action with the contents of 
a selection list of container classes. The user selects a container 
from the selection list as the location for the newly created object. 

To define the localization text for Action

Every localizable item in the directory 
abstraction layer

Select DAL > Set Global Localization.

or

Click Set Global Localization (from the editor’s toolbar), then 
select the Target Language before entering the localized 
text in the Target field.

A specific entity, relationship or list From the tree view select the object to localize, right-click 
and select Localize, then select the Target Language before 
entering the localized text in the Target field.

A single display label Select a specific entity or attribute, then click Localize 
Display Label (beside the Display Label field in the Property 
pane).

Property Description
Configuring the Directory Abstraction Layer 35



36 Identity Man

novdocx (E
N

U
)  01 February 2006
Each dialog box prompts you for the following localization information: 

Table 3-5   Localization Information

3.7  Directory Abstraction Layer Property 
Reference
The section provides definitions for the properties for the following abstraction layer nodes:

• Section 3.7.1, “Entity Properties,” on page 36
• Section 3.7.2, “Attribute Properties,” on page 39
• Section 3.7.3, “Relationship Properties,” on page 48

3.7.1  Entity Properties
You can set the following kinds of properties on entities:

• “Entity Access Properties” on page 36
• “Entity General Properties” on page 37
• “Entity Search Properties” on page 37
• “Entity Create Properties” on page 38
• “Entity Edit Properties” on page 38
• “Entity Password Management Properties” on page 39
• “Using Predefined Parameters” on page 39

Entity Access Properties

Access Properties control how the user application interacts with the entity. 

NOTE: You can also access the access properties by selecting DAL > Set Global Access.

Table 3-6   Entity Access Properties

Field Description

Origin This is typically the object type (such as entity, list, 
or relationship) and key.

Source The text to translate (such as display label).

Target Language One of the supported languages.

Target The translation text.

Property Name Description

Create When selected, this object can be created by the user application.
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
Entity General Properties

Table 3-7   Entity General Properties

Entity Search Properties

Table 3-8   Entity Search Properties

Edit When deselected, this object is not changeable by the user application 
regardless of the underlying ACLs. 

When selected, this object might be changeable, but the Identity Vault ACLs 
are used to determine this.

View When selected, this object can be displayed by the user application.

Remove When selected, this object can be deleted by the user application.

Property Name Description

Key The unique identifier for this entity. It defines the way the user application 
references this object. 

Display Label Defines how the object is shown in the user interface. 

Class Name The eDirectory object class name.

LDAP Name The LDAP object class name. 

Include in Search When selected, this entity is searchable in the user application. Entities used in 
queries by identity portlets (such as Entity Search List or Entity Org Chart) must 
be selected (true).

Auxiliary Classes A list of zero or more auxiliary classes for this entity.   If adding auxiliary 
classes, you must specify the auxiliary class LDAP Name, Class Name, and 
whether or not it can be searched.

Property Name Description

Search Container The distinguished name of the LDAP node or container where 
searching starts (the search root). For example: 

ou=sample,o=ourOrg

You can browse the Identity Vault to select the container, or you 
can use one of the predefined parameters described in “Using 
Predefined Parameters” on page 39.

Property Name Description
Configuring the Directory Abstraction Layer 37



38 Identity Man

novdocx (E
N

U
)  01 February 2006
Entity Create Properties

Table 3-9   Entity Create Properties

Entity Edit Properties

Table 3-10   Entity Edit Properties

Search Scope Specifies where the search occurs in relation to the search root. 
Values are:

<Default>: This search scope is the same as selecting Containers 
and subcontainers.

Container: Search occurs in the search root DN and all entries at 
the search root level.

Container and subcontainers: Search occurs in the search root DN 
and all subcontainers. This is the same as selecting <Default>.

Object: Limits the search to the object specified. This search is 
used to verify the existence of the specified object.

Search Time Limit [ms] Specify a value in milliseconds or specify 0 for no time limit.

Max Search Entries Specify the maximum number of search result entries you want 
returned for a search. Specify 0 if you want to use the runtime 
setting. Recommendations: Set between 100 and 200 for 
greatest efficiency. Do not set over 1000

Property Name Definition

Create Container The name of the container where a new entity of this type is created. 

You can browse the Identity Vault to select the container, or you can use 
one of the predefined parameters described in “Using Predefined 
Parameters” on page 39.

If you do not specify this value, then the Create portlet prompts the user to 
specify a container for the new object. The portlet uses the search root 
specified in the entity definition as the base and allows the user to drill 
down from there. If there is no search-root specified in the entity definition 
then it uses the root DN specified during the user application installation.

Naming Attribute The naming attribute of the entity. It is the relative distinguished name 
(RDN). This value is only necessary for entities where the access 
parameter Create is selected. 

Property Name Definition

Alternate Edit Entity This entity defines the attributes displayed in the edit mode of the Detail 
portlet.

Select a name from the drop-down list, or select None if this entity is not 
displayed by the Detail portlet. 

Property Name Description
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
Entity Password Management Properties

Table 3-11   Entity Password Management Properties

Using Predefined Parameters

The directory abstraction layer editor allows you to use predefined parameters for certain values. 

Table 3-12   Predefined Parameters

3.7.2  Attribute Properties
You can set the following kinds of properties on attributes:

• “Attribute Access Properties” on page 39
• “Attribute Required Properties” on page 41
• “Attribute Filter and Format Properties” on page 41
• “Attribute UI Control Properties” on page 41
• “Understanding DNLookup Attributes” on page 45

Attribute Access Properties

NOTE: You can set attribute access for all of an entity’s attributes selecting DAL > Set Attribute 
Access.

Property Name Definition

Password Attribute Choose the attribute for storing the password for 
this entity. 

Password required when attribute is created If this property is selected, a password is required 
when this entity is created. 

Predefined Parameter Description

%driver-root% Represents the Provisioning Driver DN. This value is specified during 
the user application configuration during installation or a later 
configuration. It is stored in the user application’s realm configuration.

%user-root% Represents the User Container DN. This value is specified during the 
user application configuration during installation or a later configuration. 
It is stored in the user application’s realm configuration.

%group-root% Represents the Group Container DN.This value is specified during the 
user application configuration during installation or a later configuration. 
It is stored in the user application’s realm configuration.
Configuring the Directory Abstraction Layer 39



40 Identity Man

novdocx (E
N

U
)  01 February 2006
Table 3-13   Attribute Access Properties

Name Description

Edit When selected, this attribute can be edited/modified by the user application. Even if 
it is selected (true), the attribute might still not be editable if the underlying Identity 
Vault ACLs/effective rights prevent it.

Enable When deselected, this attribute cannot be used by the user application. It is the 
same as removing the entry from the file. 

Hide Controls whether the Hide check box in the user application is enabled or disabled. 
The Hide check box allows users to control whether an attribute (such as their photo) 
is displayed by the application. 

When deselected, the Hide check box is disabled for this attribute, so the user 
cannot choose to hide this attribute.

When selected, the Hide check box can be enabled in the user application. 
However, the following must also be true of the logged-in user. They:

• Are either the owner of the attribute or a User Application Administrator.

• Have Trustee rights to update the srvprvHideAttributes attribute on the Identity 
Vault. 

If these requirements are not met, then the Hide check box is disabled in the 
user interface even if this setting is selected (true).

TIP: When a user hides an attribute that contains an image, users who have viewed 
the image might continue to see it until their browser cache is refreshed.

Multivalue Specifies whether this attribute can be multivalued, for example, a phone number.

When selected, the attribute can be multivalued.

Read When selected, the user application can query this attribute. For most attributes this 
should be selected (true), but for some attributes, like password, it should be 
deselected. 

Require When selected, the attribute must be supplied. 

Search When selected, the user application can search on this attribute. Attributes that are 
used in queries by identity portlets (such as Entity Search List or Entity Org Chart) or 
request and approval forms must be selected. 

TIP: If an attribute used in a search is also indexed in eDirectory, the search is faster. 

View When selected, the user application can display this attribute. In most cases this is 
selected, but for attributes like password, it should be deselected. If you specify it in 
a request or approval form, view must be selected. 
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
Attribute Required Properties

Table 3-14   Attribute Required Properties

Attribute Filter and Format Properties

Table 3-15   Attribute Filter and Format Properties

Attribute UI Control Properties

Table 3-16   Attribute UI Control Properties

Property Name Description

Key The unique identifier for the attribute.

Display Label The label that is displayed in the user application. 

Attribute Name The eDirectory name for this attribute.

LDAP Name The LDAP name for this attribute.

Property Name Description

Filter: WHERE Attribute Lets you specify an LDAP filter on the Identity Vault search for this 
attribute.

Enable When selected, the filter is enabled. 

Property Name Description

Data Type Choose a data type from the following list:

• Binary

• Boolean

• DN

• Integer

• LocalizedString

• String

• Time
Configuring the Directory Abstraction Layer 41



42 Identity Man

novdocx (E
N

U
)  01 February 2006
Format Type Used by the user application to format data. Format types include:

• None

• AOL IM

• Email

• Groupwise IM

• Image

• Phone Number

• Yahoo IM

• Image URL

• Date

• DateTime

The Format Types are dependent on the data type. For example, a Time data 
type can only be associated with Date and DateTime formats.

Property Name Description
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
Control Type Types include:

DNLookup—Defines that this attribute contains a DN reference. Use when you 
want to:

• Populate a list with the results of a DN search among related entities.

• Maintain referential integrity across DN referenced attributes during 
updates and deletes.

• Use the attribute in an object selector dialog box. Object selectors are used 
by certain identity portlets, such as detail, and are also availabl to the form 
controls you can define for provisioning request and approval forms.

The user application uses this information to generate special user interface 
elements (such as an object selector), and to perform optimized searches based 
on the DNLookup definition.

For more information on defining this property, see the “DNLookup Property 
Reference” on page 44. For more information on the object selector dialog box, 
see Section 6.6.2, “Controlling the Object Selector,” on page 104.

Global List—Display this attribute as a drop-down list whose contents are 
defined in a file outside of this attribute definition.

For more information, see Section 3.3, “Working with Lists,” on page 29.

Local List—Display this attribute as a drop-down list whose contents are defined 
with this attribute. To define a local list:

1. With the attribute selected, set the control type to Local List.

2. Click the Add button to add more values. Use the up-arrow and down-
arrow buttons to change the position of the item in the list.

In the Value column, type the value to write to the Identity Vault. It can  
include letters, numbers, and underscore (_) character.

3. In the Labels column, type the text you want displayed in the user 
interface.

Range—Use the Range control type with Integer data types to restrict user input 
to a sequential range of values. You supply the range’s start and end values. 

Property Name Description
Configuring the Directory Abstraction Layer 43



44 Identity Man

novdocx (E
N

U
)  01 February 2006
DNLookup Property Reference

Table 3-17   DNLookup Display Properties

Table 3-18   DNLookup Detail Properties

The DNLookup Relational Integrity properties are used for synchronizing data between two objects 
such as groups and group members.

Table 3-19   DNLookup Relational Integrity Properties

Property Name Description

Lookup Entity The name of the entity to search, for example, the Task Group 
entity contains an attribute for Task Manager. To populate that 
field, you’d need to know which users are Task Managers. 

Lookup Attributes Choose one or more attributes to display when a search is 
performed.

Perform Automatic Query Defines how the Lookup Attributes are displayed. 

• When selected, the form or portlet performs an 
automatic query of the entity and presents the results in 
a selectable list. This option is not recommended if a 
large amount of data can be returned because it forces 
the user to scroll through a large result set. 

• When deselected, allows the user to specify the search 
criteria for the entity query, then presents the results in a 
selectable list.

Property Name Description

Detail entity The key of the entity whose details you want displayed if the 
user requests more information by clicking a hypertext link in 
the user application. When you define a DNLookup, the 
identity portlets are able to provide a hypertext link that allows 
users to display the details of the linked object. 

Property Name Description

Source Attributes to Update Name of the attribute to update. The attribute must contain a DN 
reference to the Target Attributes to Update. This is required to 
synchronize attributes on two different objects.

Target Attributes to Update Name of the attribute that must be updated along with the Source 
Attributes to Update. This is an LDAP attribute name. This is 
required to synchronize attributes on two different objects. The 
attribute must contain a DN reference.

Target Auxiliary Classes Needed, if 
any

Name of the auxiliary class that contains the Target Attributes to 
Update. 
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
Understanding DNLookup Attributes

When you define an attribute as a DNLookup control type, it means that: 

• This attribute can be used in an object selector dialog which allows users to select from a list of 
possible values when searching on this attribute.

• When this attribute is created, populated, or deleted through the user application, an attribute on 
a related entity is updated appropriately depending on the user action (create, delete, update) to 
maintain referential integrity.

DNLookups for Object Selectors 

The DNLookup Display properties for a particular attribute define the contents of the object 
selectors in the user application. Object selectors are displayed by the Identity Self-Service portlets 
and in workflow request and approval forms. They provide a convenient way for users for users to 
search and select objects that represent DNs (such as users or groups). The object selector displays a 
drop-down list of attributes; the user can select one of the attributes and then enter search criteria for 
that attribute. In this example, the user searches for groups by group description.

Figure 3-2   Sample Object Selector
Configuring the Directory Abstraction Layer 45



46 Identity Man

novdocx (E
N

U
)  01 February 2006
The result of the users selection looks like this: 

Figure 3-3   Sample Object Selector Results

The DNLookup display properties control the contents of the object selector and the result set. The 
object selector, shown above, displays this way because it was based on the group attribute of the 
user entity. The group attribute is defined as a DNLookup control type as shown here: 

Figure 3-4   Group DNLookup Definition

This definition also controls the way identity portlets provide a selection lists of groups for a user. 
For example, a user might choose to do a Directory Search to find a user in a group, but the group 
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
name is unknown. The user would select User as the object to search for and select group as the 
search critieria like this:

Because the members attribute is a DNLookup for the user entity, the Lookup icon displays. If the 
user selects it, then a list of possible groups displays.  
Configuring the Directory Abstraction Layer 47



48 Identity Man

novdocx (E
N

U
)  01 February 2006
The user can select a group from the list and all of the members of that group are displayed. 

NOTE: When the Perform Automatic Query property is not selected (false), the object selector is 
not populated when first displayed to the user and the user must enter selection criteria. The example 
above illustrates the object selector that displays when the Perform Automatic Query property is 
selected (true). 

DNLookups for Referential Integrity

DNLookups for updates and synchronization are important because LDAP allows group 
relationships to map in both directions. For example, your data might be set up so that:

• The User object contains a group attribute. The group attribute is multi-valued and lists all of 
the groups to which a user belongs.

• The Group object contains a user attribute. The user attribute is multi-valued and lists all of the 
users that belong to the group.

This means that you can have an attribute on the user object that shows all the groups a user belongs 
to, and on the Group object you have a DN attribute that includes all the members of that group. 

When the user requests an update, the user application must honor the relationships and ensure that 
the target and source attributes are synchronized. In the DNLookup, you specify both attributes that 
must be synchronized. You can use this technique to provide synchronization between any objects 
that are related not just group structural objects. Create this kind of DNLookup control type by 
specifying the advanced DNLookup properties described in the DNLookup Relational Integrity 
properties reference. 

3.7.3  Relationship Properties

Table 3-20   Relationship Properties

Property Name Description

Key The read-only unique identifier for the relationship. 

TIP: You specify this value in the Org Chart Portlet preference sheet. 

Display Label Specify a name to display when this relationship is displayed in the user 
application. For example, this value is displayed when users click Choose 
Org Chart from the Detail portlet.

Click Localize to provide the translation for the display label text.

Parent Entity Choose an entity from the drop-down list. 

The entity that you choose becomes the parent object in the organization 
chart hierarchy. In a Manager-Employee relationship, the Parent Entity is 
User. For a Group-Member relationship, the Parent Entity is Group. 

Directory abstraction layer requirements—The entities in this list are a 
subset of the entities defined in the directory abstraction layer. Parent 
entities must have the view access property selected (true).
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
NOTE: The Org Chart portlet does not fully support dynamic groups; you cannot define a dynamic 
group as the Parent entity, but you can define a dynamic group as the child entity. 

Parent Attribute Choose an attribute from the drop-down list. 

This attribute is used to find matching child entities. When the value of 
this attribute matches a corresponding value on an attribute of the child 
entity (see Child Attribute below), then a relationship can be established. 

Directory abstraction layer requirements—This list of attributes is 
populated using the selected Parent Entity’s attributes. It includes only 
the attributes defined as the DNLookup control type

Child Entity Choose the entity for the child object in the hierarchy. In a Manager-
Employee relationship, it is user. For an Employee-Resources 
relationship, it is Devices.

This entity must contain the attribute that is related to the Parent attribute.

Child Attribute Choose the attribute that matches the Parent Attribute. 

This is the child entity’s attribute used to find matching parent entities. 
When the value of this attribute matches a corresponding value on the 
parent entity (see Parent Attribute above), then a relationship can be 
established. 

Property Name Description
Configuring the Directory Abstraction Layer 49



50 Identity Man

novdocx (E
N

U
)  01 February 2006
ager User Application: Design Guide



4
novdocx (E

N
U

)  01 February 2006
4Working with the Provisioning 
Request Definition Editor

This section provides general guidelines for using the provisioning request definition editor. Topics 
include:

• Section 4.1, “About the Provisioning Request Definition Editor,” on page 51
• Section 4.2, “Basic Steps for Creating a Provisioning Request Definition,” on page 57
• Section 4.3, “Guidelines for Creating Workflows,” on page 58
• Section 4.4, “Working with the Installed Templates,” on page 63
• Section 4.5, “Debugging a Workflow,” on page 66

4.1  About the Provisioning Request Definition 
Editor
The provisioning request definition editor allows you to create custom provisioning request 
definitions by using a rich set of Eclipse-based design tools. The provisioning request definition 
editor lets you define the basic characteristics of the provisioning request, design the associated 
workflow, and model the initial request and approval forms.   

Identity Manager ships with a set of provisioning request templates that you can use to create your 
definitions. The templates model some common workflow design patterns. However, if you want 
complete control over the behavior of your workflows, you can create your provisioning request 
definitions from scratch.

NOTE: For details on using the templates, see Section 4.4, “Working with the Installed Templates,” 
on page 63.

4.1.1  How the Provisioning Request Definition Editor Fits into 
the Identity Manager Architecture
A key feature of Identity Manager is workflow-based provisioning, which is the process of 
managing user access to secure resources in an organization. These resources can include digital 
entities such as user accounts, computers, and databases. Provisioned resources are mapped to 
Identity Manager entitlements or to entities in the directory abstraction layer.

Identity Manager can service a wide range of provisioning requests. Provisioning requests are user 
or system actions intended to grant or revoke access to organizational resources. They can be 
initiated directly by the end user through the Identity Manager user application, or indirectly in 
response to events occurring in the Identity Vault (eDirectoryTM).   

When a provisioning request requires permission from one or more individuals in an organization, 
the request starts a workflow. The workflow coordinates the approvals needed to fulfill the request. 
Some provisioning requests require approval from a single individual; others require approval from 
several individuals. In some instances, a request can be fulfilled without any approvals.
Working with the Provisioning Request Definition Editor 51



52 Identity Man

novdocx (E
N

U
)  01 February 2006
Some workflows require that processing proceed in a sequential fashion, with each approval step 
being performed sequentially. Other workflows provide support for parallel processing. When you 
define a provisioning request, you specify whether you want the workflow to support sequential or 
parallel processing.

To configure a provisioning request, you create a provisioning request definition, which binds a 
resource to a workflow. Identity Manager provides the provisioning request definition editor to give 
the designer complete control over the behavior of a provisioning request and its associated 
workflow. Identity Manager also includes a set of iManager plug-ins that the administrator can use 
to customize provisioning request definitions that have already been deployed. The iManager tools 
let the administrator make minor changes to the behavior of a provisioning request definition and 
also manage workflows that are in process. 

Figure 4-1 on page 52 shows how the provisioning request definition editor fits into the workflow-
based provisioning system included with Identity Manager:

Figure 4-1   Provisioning Request Definition Editor and the Workflow Architecture

4.1.2  Provisioning and Workflow Example
Suppose a user needs an account on an IT system. To set up the account, the user initiates a request 
through the Identity Manager user application. This request starts a workflow, which coordinates an 
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
approval process. When the necessary approvals have been granted, the request is fulfilled. The 
process includes four basic steps:

• “Step 1: Initiating the Request” on page 53
• “Step 2: Approving the Request” on page 53
• “Step 3: Fulfilling the Request” on page 56
• “Step 4: Completing the workflow” on page 57

Step 1: Initiating the Request

In the Identity Manager user application, the user browses a list of resources by category and selects 
one to provision. In the Identity Vault, the provisioned resource selected is associated with a 
provisioning request definition. The provisioning request definition is the most prominent object in a 
provisioning system. It binds a provisioned resource to a workflow, and acts as the means by which 
the workflow process is exposed to the end user. The provisioning request definition provides all the 
information required to display the initial request form to the user, and to start the flow that follows 
the initial request. 

In this example, the user selects the New Account resource. When the user initiates the request, the 
Web application retrieves the initial request form and the description of the associated initial request 
data from the Provisioning System, which gets these objects from the provisioning request 
definition.

When a provisioning request is initiated, the Provisioning System tracks the initiator and the 
recipient. The initiator is the person who made the request. The recipient is the person for whom the 
request was made. In some situations, the initiator and the recipient can be the same individual.

Each provisioning request has an operation associated with it. The operation specifies whether the 
user wants to grant or revoke the resource.

Step 2: Approving the Request

After the user has initiated the request, the Provisioning System starts the workflow process. The 
workflow process coordinates the approvals. In this example, two levels of approvals are required, 
one from the user’s manager, and a second from the manager’s supervisor. If approval is denied by 
any user in a workflow, the flow terminates and the request is denied.

Workflows can process approvals in a sequential manner, or in a parallel manner. In a sequential 
workflow, as shown in Figure 4-2, each approval task must be processed before the next approval 
Working with the Provisioning Request Definition Editor 53



54 Identity Man

novdocx (E
N

U
)  01 February 2006
task begins. In a parallel workflow, as shown in Figure 4-3, users can work on the approval tasks 
simultaneously.

Figure 4-2   Sequential Workflow with Two Approvals

Figure 4-3   Parallel Workflow with Two Approvals

NOTE: The display labels (First approval, Second approval, and so on) can easily be changed to 
suit your application requirements. For parallel flows, you might want to specify labels that do not 
imply sequential processing. For example, you might want to assign labels such as One of Three 
Parallel Approvals, Two of Three Parallel Approvals, and so on.

The workflow definition is made up of the components shown in Table 4-1 on page 55: 
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
Table 4-1   Workflow Definition Components

Start activity: The workflow process begins with the execution of the Start activity. This activity 
displays the initial request form to the user. Once the user has provided the initial request data, it 
initializes a work document using this data. The Start activity also binds several system values such 
as the initiator and recipient, so that these can be used in script expressions.  

Approval activities: After the Start activity finishes execution, the Workflow System forwards 
processing to the first Approval activity in the flow. The Approval activity sends an e-mail to the 
approver, notifying this user that their attention is needed. When the user claims the task, the 
Approval activity displays an approval form, which gives the user the ability to act on the request. In 
the workflow examples shown above, “First approval” and “Second approval” are examples of 
Approval activities. The display labels for Approval activities can be localized to satisfy 
international requirements.

An Approval activity has five possible outcomes, each represented by a different flow path exiting 
the activity:

• Approved
• Denied
• Refused

Process Components Description

Activities An activity is an object that represents a task. An activity can present 
information to the user and respond to user interactions, or perform 
background functions that are not visible to the user. 

In a workflow diagram, the activities are represented by boxes.

In the Identity Manager user application, the activities that handle the 
approval process are referred to as tasks. An end user can see the list of 
tasks in his or her queue by clicking My Tasks in the My Work group of 
actions. To see which workflow activities have been processed for a 
particular task, the user can select the task and click the View Comment 
History button on the Task Detail form. 

To see which workflow activities have been processed for a particular 
provisioning request, the user can click My Requests, select the request, 
and click the View Comment and Flow History button on the Request Detail 
form. 

For more information on the My Tasks and My Requests actions, see the 
Identity Manager User Application: User Guide (http://www.novell.com/
documentation/idm/index.html).

Flow paths Flow paths are what tie the activities in a workflow together. A flow path 
represents a path to be followed between two activities.

An activity can have multiple incoming flow paths and multiple outgoing 
flow paths. When an activity has more than one outgoing flow path, the flow 
path selected often depends on the outcome of the activity. The outcome is 
the end result of processing performed by the activity. For example, an 
approval activity can have an outcome of approved or denied, depending 
on the action taken by the user.

In a workflow diagram, the flow paths are represented by arrows.
Working with the Provisioning Request Definition Editor 55

http://www.novell.com/documentation/idm/index.html
http://www.novell.com/documentation/idm/index.html


56 Identity Man

novdocx (E
N

U
)  01 February 2006
• Error
• Timeout

NOTE: The Error and Timeout outcomes can occur without any action being taken by the user.

If the user approves the request, the workflow follows the approved flow path to the next activity in 
the flow. If no further approvals are needed, the resource can be provisioned. If the user denies the 
request, the workflow follows the denied flow path to the next activity in the flow. Alternatively, the 
user can reassign the task (if he or she is an Organizational Manager or User Application 
Administrator), which puts the task in another user’s queue.

The user to whom an Approval activity has been assigned is referred to as the addressee. The 
addressee for an activity can be notified of the assigned task via e-mail. To perform the work 
associated with the activity, the addressee can click the URL in the e-mail, find the task in the work 
list (queue), and claim the task. 

The addressee must respond to an Approval activity within a specified amount of time, or the 
activity times out. Typically the timeout interval is expressed in hours or days, to allow the user 
sufficient time to respond.

When an activity times out, the workflow process might try to complete the activity again, 
depending on the retry count specified for the activity. In some situations, the workflow process 
might be configured to escalate an activity that has timed out to another user. In this case, the 
activity is reassigned to a new addressee (the user’s manager, for example) to give this user an 
opportunity to finish the work of the activity. If the last retry times out, the activity might be marked 
as approved or denied, depending on how the workflow was configured. 

Log activity: The Log activity is a system activity that writes messages to a log. To log information 
about the state of a workflow process, the Workflow System interacts with Novell® Audit. During 
the course of its processing, a workflow might log information about various events that have 
occurred. Users can use the Novell Audit reporting tools to look at logging data.

Condition activity: During the course of execution, a workflow process might perform a test and 
check the outcome to see what to do next. The Condition activity provides this capability. Condition 
activities use a scripting expression to define the condition to evaluate. In the workflow examples 
shown above, “Approval Condition” is an example of a Condition activity.

The Condition activity supports three possible outcomes or exit paths:

• True
• False
• Error

Branch and Merge activities In a workflow that supports parallel processing, the Branch activity 
allows two users to act on different areas of the work item in parallel. Once the users have completed 
their work, the Merge activity synchronizes the incoming branches in the flow.

Step 3: Fulfilling the Request

When a provisioning request has been approved, the Workflow System can begin the provisioning 
step. At this point, control passes back to the Provisioning System. 
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
To fulfill the provisioning request, the Provisioning System can execute an Identity Manager 
entitlement or directly manipulate an eDirectory object and its attributes. These actions are 
performed by either the Entitlement activity or the Entity activity.  

Entitlement activity: The Entitlement activity fulfills the provisioning request by granting or 
revoking an entitlement. This activity is not normally executed unless all of the necessary approvals 
had been given.

Entity activity: The Entity activity fulfillls the provisioning request by directly manipulating an 
eDirectory object and its attributes. This activity is not normally executed unless all of the necessary 
approvals have been given. 

Step 4: Completing the workflow

When all other activities have terminated, the workflow executes the Finish activity.

Finish activity: The Finish activity is the final activity in a workflow. When all the activities in a 
flow have been completed and the final result of the flow is available, the Finish activity is executed. 
The Finish activity sends a final e-mail notification to inform participants of the completion of the 
workflow. 

4.2  Basic Steps for Creating a Provisioning 
Request Definition
 Table 4-2 walks you through defining a provisioning request.

Table 4-2   Basic Steps for Defining a Provisioning Request

Task Action For  More Information

Step 1: Use the wizard to create 
the provisioning request definition

Provide a name for the 
provisioning request and define 
its basic characteristics. Then, 
specify whether you want to use a 
template to create the request. 

Provisioning request definitions 
are stored locally in the 
Provisioning\AppConfig\R
equestDefs directory within 
your workspace. 

See Chapter 5, “Creating a 
Provisioning Request Definition,” 
on page 67.

Step 2: Create the forms Create the initial request and 
approval forms for the workflow. 
By creating the forms first, you 
can ensure that the user interface 
is correct before proceeding to 
the implementation details. In 
addition, you can greatly simplify 
the process of mapping the form 
fields to the application data.

See Chapter 6, “Creating Forms 
for a Provisioning Request 
Definition,” on page 77.

Step 3: Create the workflow 
diagram

Add the activities to the workflow 
diagram and connect them with 
flow paths.  

See Chapter 7, “Creating the 
Workflow for a Provisioning 
Request Definition,” on page 109
Working with the Provisioning Request Definition Editor 57



58 Identity Man

novdocx (E
N

U
)  01 February 2006
4.3  Guidelines for Creating Workflows
To create well-formed workflows, you need to understand the rules for adding activities and flow 
paths. In addition, you need to understand how to manipulate workflow data. These topics are 
discussed below:

• Section 4.3.1, “Rules for Activities,” on page 58
• Section 4.3.2, “Rules for Flow Paths,” on page 58
• Section 4.3.3, “Understanding Workflow Data,” on page 60

NOTE: You can validate a provisioning request definition before you deploy it. For more 
information, see Section 2.5, “Validating Provisioning Objects,” on page 17.

4.3.1  Rules for Activities
When you’re adding activities to a workflow, you need to follow these rules:

• A workflow must have only one Start activity and only one Finish activity.
• A workflow can have zero or more of the following activity types: 

Approval activity
Branch activity
Condition activity
Log activity
Merge activity

• Each Branch activity must have a corresponding Merge activity. 
• To ensure that the provisioning step is performed, a workflow must have at least one 

Entitlement or Entity activity. 

4.3.2  Rules for Flow Paths
When you’re adding flow paths to a workflow, you need to follow these rules:

• With the exception of the Start activity, all activities can have one or more incoming flow paths. 
The Start activity cannot have any incoming flow paths.   

• The Finish activity cannot have any outgoing flow paths.  
• There can be only one flow path out of the Start activity. The flow path type must be forward. 
• There can be between one and five flow paths out of the Approval activity. The valid flow path 

types are approved, denied, refused, timedout, and error. At runtime, only one of the flow paths 
is executed. 

Step 4: Configure the activities 
and flow paths

Specify the properties, data item 
mappings, and e-mail notification 
settings for the activities. Then, 
define the semantics for the flow 
paths. 

See Chapter 8, “Configuring the 
Workflow Activities and Flow 
Paths,” on page 119

Task Action For  More Information
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
• There can be only one flow path out of the Entitlement, Entity, Log, and Merge activities. The  
flow path type must be forward. 

• There can be two or three flow paths out of the Condition activity. The valid flow path types are 
true, false, and error. The true and false flow paths are required; the error flow path is optional.  

• There can be one or more flow paths out of the Branch activity. The flow path type must be 
forward for each path. At runtime, all of the flow paths execute. 

The table below summarizes the rules for adding flow paths into and out of an activity:

Table 4-3   Number of Flow Paths Permitted for Each Activity

The table below summarizes which activity types can be a source or target for each of the available 
flow path types:

Table 4-4   Flow Path Types Allowed for Each Activity

Activity Inbound Paths Outbound Paths

Start 0 1 

Must always be forward.

Approval 1 to n 1 to 5 

Approved, denied, refused, 
timedout, or error.

Entitlement 1 to n 1 

Must always be forward.

Entity 1 to n 1  

Must always be forward.

Log 1 to n 1  

Must always be forward.

Condition 1 to n 2 to 3 

True and false are required; error 
is optional.

Branch 1 to n 1 to n

Merge 1 to n 1 

Must always be forward.

Finish 1 to n 0

Activity Forward Approved Denied Refused Timedout True False Error

Start Source

Approval Target Source/
Target

Source/
Target

Source/
Target

Source/
Target

Target Target Source/
Target
Working with the Provisioning Request Definition Editor 59



60 Identity Man

novdocx (E
N

U
)  01 February 2006
4.3.3  Understanding Workflow Data
When you’re creating a workflow, you can manipulate workflow data to suit the needs of your 
provisioning application. 

The workflow uses a single process object to manage information about the process. A separate 
activity object is created for each activity in the workflow and form data is maintained for each 
activity that provides for user interaction. 

The data objects associated with each user interface control on a form (text field, drop down list, and 
so forth) can be modified immediately prior to the execution of the corresponding activity (Start 
activity or Approval activity). In addition, this data can be retrieved immediately after execution of 
the activity. Once control has been passed to the next activity, the form control data is no longer 
available. For this reason, the workflow provides a special object called flowdata that allows you to 
define your own data items. You can add your own variables to this object to keep track of 
information that is important to your workflow, including form data that would otherwise be lost.  

The following table summarizes the categories of workflow data: 

Table 4-5   Categories of Workflow Data

NOTE: The workflow designer is the person who creates the workflow in Designer.

The following table describes the variables for each type of object:

Entitlement Source/
Target

Target Target Target Target Target Target Target

Entity Source/
Target

Target Target Target Target Target Target Target

Log Source/
Target

Target Target Target Target Target Target Target

Condition Target Target Target Target Target Source/
Target

Source/
Target

Source/
Target

Branch Source/
Target

Target Target Target Target Target Target Target

Merge Source/
Target

Target Target Target Target Target Target Target

Finish Target Target Target Target Target Target Target Target

Data object Lifetime Editable Creator

process Workflow No System

activities Workflow No System

activity forms Activity Yes System and workflow designer

flowdata Workflow Yes Workflow designer

Activity Forward Approved Denied Refused Timedout True False Error
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
Table 4-6   Data Variables in a Workflow

You can reference these objects in ECMAScript expressions. Script expressions in a workflow can 
at any time refer to data items that are bound upstream in the flow. However, workflow expressions 
cannot refer to data items that are created downstream (because these data items don’t exist yet), or 
to data bound on other branches in a flow that supports parallel processing (because these branches 
could be executing concurrently with the current activity).

Creating New Data Items

You can create a new data item on the flowdata object by specifying a post-activity target expression 
on the Data Item Mapping tab for the Start or Approval activities. If you specify a name for a new 
data item in the Target Expression column, this automatically creates the variable. Any activity 
executed after this activity can then access the data item. 

Object Variable Description

process approvalStatus The current status of the process. 

initiator The distinguished name of the 
person who initiated the request.

locale The current locale. 

name The workflow process name.

recipient The distinguished name of the 
intended target of the provisioned 
resource.

requestID The ID for the provisioning 
request.

timestamp The time the process was 
initiated.

approval-activity-name action The action taken by the user.  

addressee The current addressee for the 
approval activity.

name The name of the activity.

timestamp The time that the activity was 
queued on the work list.

form-name custom-form-controls Any user interface control you 
add to a form.

flowdata custom-variables Any custom variables you create 
to hold data needed for the 
workflow.

If you use one of the installed 
templates to create your 
workflow, the flowdata object can 
have a variable called reason, 
which contains text copied from 
the reason field on the initial 
request form.
Working with the Provisioning Request Definition Editor 61



62 Identity Man

novdocx (E
N

U
)  01 February 2006
For example, you might want to map the form field called reason to the target expression 
flowdata.myReason. The variable myReason then becomes a new data item that is available to all 
activities executed later in the workflow.  

Modifying Data Items

You can modify a data item by specifying a pre-activity expression on the Data Item Mapping tab 
for the Start or Approval activities. For example, to prepend a dollar to a price, you might map the 
following source expression to a target form field called Price:

"$" + flowdata.get(’cost’)

When the form displays to the user, the Price data appears as follows:

$xx.xx

Another example might be computing the total cost by adding the tax to the base cost. To do this, 
you could map the following source expression to a target form field called TotalCost:

flowdata.get(’cost’) + flowdata.get(’tax’) 

Working with Complex Data Item Mappings

All data in the flowdata object is maintained in XML, so you can create data items in a hierarchical 
fashion as well. For example, suppose you have a workflow form that allows a user to ask for access 
to two internal systems, one for accounts payable and one for receivables. Suppose the form has 
(among other fields) two Yes/No fields named Acct_Pay and Acct_Rec. In the post-activity data item 
mappings, you might create two mappings as follows:

Table 4-7   Complex Data Item Mapping Examples

This would create an XML element named SystemAccess with two child elements named 
AcctPay and AcctRec. One reason to structure data in this way is for clearer organization and 
management of data in complex work flows containing many forms and data items. To retrieve data 
from these hierarchies, the following syntax would be used: 

flowdata.get(’SystemAccess/AcctPay’).

For complete details on building ECMAScript expressions, see Chapter 9, “Working with ECMA 
Expressions,” on page 139.

Moving Form Control Data to Flowdata

All form controls you create are automatically made available for use in pre-activity and post-
activity expressions on the Data Item Mapping tab for the activity that uses the form. For example, 
suppose you want to make a user’s entry data in control ACONTROL on form AFORM in 
AACTIVITY available for use in a subsequent activity. To do this, you would select AACTIVITY 
in the workflow, select the Data Item Mapping tab, and click the Post Activity Mapping radio button. 

Source Form Field Target Expression

Acct_Pay flowdata.SystemAccess/AcctPay

Acct_Rec flowdata.SystemAccess/AcctRec
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
Next to the source form field ACONTROL, you would then enter a target expression in the 
following format: 

flowdata.my_ACONTROL

Any subsequent activity in the workflow would then be able to access this data by using pre-activity 
source expressions such as these:

flowdata.get(’my_ACONTROL’)

flowdata.getObject(’my_ACONTROL’)

Moving Flowdata to Form Controls

You can also move flowdata values into form controls. The simplest case is moving a single text 
value into a form control. For example, in the example above, suppose ACONTROL is a simple text 
entry field. In this case, to move it into another text entry field in an activity called ZACTIVITY, you 
would select ZACTIVITY in the workflow, select the Data Item Mapping tab, and click the Pre 
Activity Mapping radio button. Next to the target form field, you would then enter this source 
expression:  

flowdata.my_ACONTROL

To move more complex form control data (for example, a MultiValue DN control) into another form 
control, you can use the getObject() expression syntax. For example, assuming ACONTROL is a 
MultiValue DN control, you could use this source expression: 

flowdata.getObject(’my_ACONTROL’)

To move data into a form control, you need to be aware of type constraints. For example, you should 
not try to move text-based data into a numeric control, or a boolean value into a DN control.

4.4  Working with the Installed Templates
Identity Manager ships with a set of preconfigured provisioning request definitions and workflows. 
You can use these as templates for building your own provisioning system.To set up your system, 
you define new objects based on the installed templates and customize these objects to suit the needs 
of your organization.

The installed templates let you determine the number of approval steps required for the request to be 
fulfilled. You can configure a provisioning request to require:

• No approvals
• One approval step
• Two approval steps
• Three approval steps
• Four approval steps
• Five approval steps

You can also specify whether you want to support sequential or parallel processing, and whether you 
want to approve or deny the request in the event that the workflow times out during the course of 
processing. 

Table 4-8 lists the templates included with Identity Manager.
Working with the Provisioning Request Definition Editor 63



64 Identity Man

novdocx (E
N

U
)  01 February 2006
Table 4-8   Preconfigured Provisioning Request Definitions and Workflows

Template Description

Self Provision Approval Allows a provisioning request to be fulfilled without any 
approvals.

One Step Approval (Timeout Approves) Requires a single approval for the provisioning request 
to be fulfilled. If an activity times out, the activity 
approves the request and the work item is forwarded 
to to the next activity.

Two Step Sequential Approval (Timeout 
Approves)

Requires two approvals for the provisioning request to 
be fulfilled. If an activity times out, the activity 
approves the request and the work item is forwarded 
to to the next activity.

This template supports sequential processing.

Three Step Sequential Approval (Timeout 
Approves)

Requires three approvals for the provisioning request 
to be fulfilled. If an activity times out, the activity 
approves the request and the work item is forwarded 
to to the next activity.

This template supports sequential processing.

Four Step Sequential Approval (Timeout 
Approves)

Requires four approvals for the provisioning request to 
be fulfilled. If an activity times out, the activity 
approves the request and the work item is forwarded 
to to the next activity.

This template supports sequential processing.

Five Step Sequential Approval (Timeout 
Approves)

Requires five approvals for the provisioning request to 
be fulfilled. If an activity times out, the activity 
approves the request and the work item is forwarded 
to to the next activity.

This template supports sequential processing.

One Step Approval (Timeout Denies) Requires a single approval for the provisioning request 
to be fulfilled. If an activity times out, the workflow 
denies the request.

Two Step Sequential Approval (Timeout Denies) Requires two approvals for the provisioning request to 
be fulfilled. If an activity times out, the workflow denies 
the request.

This template supports sequential processing.

Three Step Sequential Approval (Timeout 
Denies)

Requires three approvals for the provisioning request 
to be fulfilled. If an activity times out, the workflow 
denies the request.

This template supports sequential processing.

Four Step Sequential Approval (Timeout Denies) Requires four approvals for the provisioning request to 
be fulfilled. If an activity times out, the workflow denies 
the request.

This template supports sequential processing.
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
Five Step Sequential Approval (Timeout Denies) Requires five approvals for the provisioning request to 
be fulfilled. If an activity times out, the workflow denies 
the request.

This template supports sequential processing.

Two Step Parallel Approval (Timeout Approves) Requires two approvals for the provisioning request to 
be fulfilled. If an activity times out, the activity 
approves the request and the work item is forwarded 
to to the next activity.

This template supports parallel processing.

Three Step Parallel Approval (Timeout 
Approves)

Requires three approvals for the provisioning request 
to be fulfilled. If an activity times out, the activity 
approves the request and the work item is forwarded 
to to the next activity.

This template supports parallel processing.

Four Step Parallel Approval (Timeout Approves) Requires four approvals for the provisioning request to 
be fulfilled. If an activity times out, the activity 
approves the request and the work item is forwarded 
to to the next activity.

This template supports parallel processing.

Five Step Parallel Approval (Timeout Approves) Requires five approvals for the provisioning request to 
be fulfilled. If an activity times out, the activity 
approves the request and the work item is forwarded 
to to the next activity.

This template supports parallel processing.

Two Step Parallel Approval (Timeout Denies) Requires two approvals for the provisioning request to 
be fulfilled. If an activity times out, the workflow denies 
the request.

This template supports parallel processing.

Three Step Parallel Approval (Timeout Denies) Requires three approvals for the provisioning request 
to be fulfilled. If an activity times out, the workflow 
denies the request.

This template supports parallel processing.

Four Step Parallel Approval (Timeout Denies) Requires four approvals for the provisioning request to 
be fulfilled. If an activity times out, the workflow denies 
the request.

This template supports parallel processing.

Five Step Parallel Approval (Timeout Denies) Requires five approvals for the provisioning request to 
be fulfilled. If an activity times out, the workflow denies 
the request.

This template supports parallel processing.

Template Description
Working with the Provisioning Request Definition Editor 65



66 Identity Man

novdocx (E
N

U
)  01 February 2006
4.5  Debugging a Workflow
When you’re testing a workflow, you might need to see the values of the variables you’re using in 
the flow. There are several ways to do this. One approach is to use the Log activity to display  
messages containing the variables you need to look at. Once you’ve configured the Log activity, you 
can then see the messages in the console. In the Log activity, you can use scripting expressions in the 
Message property to retrieve the values you need. For example, you might use this expression to log 
a message containing the value of a variable defined on the flowdata object:    

flowdata.get(’my_variable’)

For details on using the Log activity, see Section 8.1.3, “Log Activity,” on page 128.

Another approach is to look in the workflow database to see how the data associated with the 
flowdata object changes as the workflow progresses from one activity to the next. To see this data, 
you can look at the afdocument table.

A final approach you can use during the debugging process is to change the log levels associated 
with the workflow system (com.novell.soa.af.impl) and the provisioning requests component of the 
user application (com.novell.srpr.apwa). This approach may generate more information than you 
need, but sometimes it can be helpful. To change logging levels, go to the Logging page within the 
Administration tab of the user application. 
ager User Application: Design Guide



5
novdocx (E

N
U

)  01 February 2006
5Creating a Provisioning Request 
Definition

This section provides details about creating a provisioning request definition. Topics include:

• Section 5.1, “About the Wizard and the Overview Tab,” on page 67
• Section 5.2, “Using the Wizard to Create a Provisioning Request Definition,” on page 70
• Section 5.3, “Using the Overview Tab to Modify Basic Settings,” on page 73
• Section 5.4, “Localizing Display Text,” on page 74

5.1  About the Wizard and the Overview Tab
You create provisioning request definitions in three main steps:

• You create the basic information about the provisioning request definition (for example, the 
name of the provisioning request definition, the category to which it belongs, who can access 
it) using the Create A New PRD Wizard. After you have created the basic provisioning request 
definition, the basic information is displayed in the Overview tab.

• You create the forms that interact with the workflow participants using the Forms tab.
• You design the workflow using the Workflow tab.

To add a provisioning request definition: 

1 Launch the Create A New PRD Wizard in one of these ways:
• From the Provisioning view, right-click the Provisioning Request Definitions node and 

choose New.
• From the Provisioning view, click a user application or provisioning request container, 

then select Insert > Provisioning Request Definition.
• Select File > New > Provisioning. 
• Choose Provisioning Request Definition, then click Next. 
Creating a Provisioning Request Definition 67



68 Identity Man

novdocx (E
N

U
)  01 February 2006
The first page of the Create A New PRD Wizard is displayed.

2 Fill in the fields as follows:

Field Description

Identity Manager Project

Provisioning Application

Select the Identity Manager project and Provisioning Application in 
which you want to add the provisioning request definition.

NOTE: These fields display when you launch the wizard from the File 
menu.

Identifier (CN) The CN identifier for the provisioning request definition.

Display Name The display name for the provisioning request definition. This is the 
name that is displayed in the provisioning view.

Description A description of the provisioning request definition.
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
3 Click Next. The next page of the wizard is displayed.

You can create new provisioning request definitions based on a template, or you can build the 
provisioning request definition from concept to finished product. You use the next panel of the 
wizard to specify whether or not to base this provisioning request definition on a template.

4 Perform one of these steps:
• If you want to base this provisioning request definition on a template, select Create a 

provisioning request definition using one of the templates, then select the desired template 
(for example, TemplateSingleApproval_TA) from the Available Templates list, then click 
Next.

• If you want to build this provisioning request definition from concept to finished product, 
click Next.
Creating a Provisioning Request Definition 69



70 Identity Man

novdocx (E
N

U
)  01 February 2006
You use the next panel of the wizard to specify the trustees who can access the provisioning 
request definition.

5 Click the plus (+) icon to add a trustee. 
Designer displays a panel that you use to browse the Identity Vault to select a trustee. You can 
select an individual trustee, or select a group.

6 Select the trustee, then click OK. 
Designer returns you to the previous panel. If desired, add additional trustees by repeating the 
previous step. When you have finished adding trustees, click Finish. Designer displays the 
Provisioning Request Definition Details panel on the Overview tab (see Section 5.3, “Using the 
Overview Tab to Modify Basic Settings,” on page 73). 

5.2  Using the Wizard to Create a Provisioning 
Request Definition
You can create a provisioning request definition using a template, or from concept to finished 
product. We recommend that you use an existing template to create new provisioning request 
definitions. This saves time and allows you to make targeted changes to an existing provisioning 
request definition. However, if no existing provisioning request definition resembles new work that 
you want to do, you can create a new provisioning request from concept to finished product.

This section includes the following topics:

• Section 5.2.1, “Using a Template,” on page 71
• Section 5.2.2, “From Concept to Finished Product,” on page 72
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
5.2.1  Using a Template
To create a provisioning request definition using a template:

1 Create the basic information for a new provisioning request definition (see Section 5.1, “About 
the Wizard and the Overview Tab,” on page 67). In step Step 4 on page 69, select Create a 
provisioning request definition using one of the templates, then select the desired template. 
When you are finished, the Overview tab for the new provisioning request is displayed.

2 Click the Workflow tab. The Workflow panel is displayed. 

The provisioning request definition template includes some default values that you will want to 
customize for your environment. For example, the Entitlement Provisioning Activity contains 
placeholder values for several data item mapping properties. You need to replace the 
placeholder values with the actual values for your provisioning request.

3 Click the Entitlement Provisioning Activity, then click the Data Item Mapping tab.

4 Double-click in the Source Expression field for the DirXML-Entitlement-DN target field, then 
click the button that appears in the field to display the ECMA expression builder. 
Creating a Provisioning Request Definition 71



72 Identity Man

novdocx (E
N

U
)  01 February 2006
See Chapter 9, “Working with ECMA Expressions,” on page 139 for information about the 
ECMA expression builder. 

5 Use the ECMA expression builder to replace the placeholder expression with an expression 
that specifies the entitlement that you would like to provision with this provisioning request.

6 Replace the placeholder expression in the Source Expression field for the DirXML-Entitlement-
Parameter.

7 Click on the Forms tab and customize the forms for the provisioning request to your needs.
See Chapter 6, “Creating Forms for a Provisioning Request Definition,” on page 77.The 
template includes predefined request and approval forms. You may want to add additional 
forms, or to add or remove form controls.

8 Click on the Workflow tab and customize the properties of the workflow to your needs.
See Chapter 7, “Creating the Workflow for a Provisioning Request Definition,” on page 109 
and Chapter 8, “Configuring the Workflow Activities and Flow Paths,” on page 119. 

5.2.2  From Concept to Finished Product
Whenever possible, use an existing template (or save an existing provisioning request definition 
under a new name) to create new provisioning request definitions. This saves you time and allows 
you to make targeted changes to an existing provisioning request definition. However, if no existing 
provisioning request definition resembles the new work that you want to do, then you need to build 
a provisioning request definition from concept to finished product. You can still save time and effort 
by re-using forms from other workflows.

To create a provisioning request definition:

1 Create the basic information for a new provisioning request definition (see Section 5.1, “About 
the Wizard and the Overview Tab,” on page 67). In step Step 4 on page 69, do not select Create 
a provisioning request definition using one of the templates, and do not select a template. When 
you are finished, the Overview tab for the new provisioning request is displayed.

2 Create the forms for the provisioning request definition. After you have created the basic 
provisioning request definition, the next step is to create the forms that are presented to the 
provisioning request users. It’s important to define forms before you create the workflow 
topology, so that data bindings can be set up automatically for each activity when you create 
activities.
There are two types of forms:
request: Used by the person requesting the resource to specify the item or capability that is 
being requested. One request form can be defined for a workflow. The request form is always 
associated with the Start Activity.
approval: Used by the person receiving the provisioning request to approve, refuse, or 
comment on the provisioning request. One or more approval forms can be defined. You must 
associate each form with an Approval activity. You associate an approval form with an 
Approval activity using the properties for the activity. 
To create the forms, see Section 6.3, “Creating forms,” on page 80.

3 Click the Workflow tab and create the workflow topology. 
You create the topology of a workflow by creating and linking activities into the desired 
workflow pattern, and by assigning rules to the flowpaths between activities. For information 
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
about creating a workflow topology, see Chapter 7, “Creating the Workflow for a Provisioning 
Request Definition,” on page 109. 

4 Specify the details (properties, data item mappings, e-mail notification) for each workflow 
activity.
To specify workflow activity details, see Section 8.1, “Configuring Activities,” on page 119. 

5 Configure the flowpaths between workflow activities.
To configure flowpaths, see Section 8.2, “Configuring Flow Paths,” on page 135.

5.3  Using the Overview Tab to Modify Basic 
Settings
You use the Overview tab to define the basic information (for example, the name of the provisioning 
request definition, the category to which it belongs, who can access it) about the provisioning 
request definition. 

Figure 5-1   Overview Tab

The following table describes each property that you can configure on the Overview tab.

Table 5-1   Overview Properties

Property Description

Identifier (CN) Displays the CN of the provisioning request definition. The CN cannot be 
changed.
Creating a Provisioning Request Definition 73



74 Identity Man

novdocx (E
N

U
)  01 February 2006
5.4  Localizing Display Text
You can provide localized string values for activity and form properties that are displayed to the 
user. Localized string values are stored within the provisioning request definition .prd file. You can 
provide localized string values whenever you see this button displayed in a property field:

Display Name Specifies the display name of the provisioning request definition. This is the name 
that is displayed to the user in Designer and Identity Manager.

Description Specifies the description of the provisioning request definition.

Category Specifies the category to which the provisioning request definition belongs from 
the list of Provisioning Categories defined in the directory abstraction layer.

Status Specifies the status of the provisioning request definition: 

Active: Select to make the provisioning request definition available for use in the 
user application.

Inactive: Select to make the provisioning request definition temporarily 
unavailable for use in the user application. You can use this option when you want 
keep the roles of the person who develops and deploys the provisioning request 
definition separate from the person who activates the provisioning request 
definition. For example, a developer could deploy the provisioning request 
definition as Inactive, and an administrator could be responsible for changing the 
status to Active.

Template: Select if you want to use this provisioning request definition as the 
basis for other provisioning request definitions. Templates are not available for 
use in the user application.

Retired: Select to mark the provisioning request definition as permanently 
unavailable for use in the user application (you can still change the status of the 
provisioning request definition at any time). This status provides a way of keeping 
a historical record of a provisioning request definition that is no longer in use.

Notify participants by 
email

Specifies whether approvers are notified by e-mail about pending approval tasks, 
and whether initiators are notified by e-mail of workflow completion. If Notify 
participants by email is not checked, then users must look at the Requests and 
Approvals tab in the User Application for notifications about tasks.

For information about selecting an e-mail template and customizing e-mail 
template parameters, see Section 8.1.7, “Finish Activity,” on page 131.

Trustee Rights Specifies the users and groups that can use the provisioning request definition.

Property Description
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
When you click this button, the Localization dialog box is displayed:

You can select the languages that are listed in this dialog box using Preferences (see Section 2.2, 
“Setting Provisioning View Preferences,” on page 12).

To provide localized string values:

1 Select the item (for example, a form control or a workflow activity) for which you would like 
to specify localized string values.

2 Click the Properties tab.
3 Click in the Value column for a text attribute, then select the button that is displayed in the 

Value column:

A dialog box that you use to provide localized strings is displayed.
4 Specify the localized strings, then click OK.
Creating a Provisioning Request Definition 75



76 Identity Man

novdocx (E
N

U
)  01 February 2006
ager User Application: Design Guide



6
novdocx (E

N
U

)  01 February 2006
6Creating Forms for a Provisioning 
Request Definition

This section provides details on how you can create and customize the user application’s request and 
approval forms. Topics include: 

• Section 6.1, “About Forms,” on page 77
• Section 6.2, “About the Forms Tab,” on page 78
• Section 6.3, “Creating forms,” on page 80
• Section 6.4, “Action Reference,” on page 83
• Section 6.5, “Form Control Reference,” on page 85
• Section 6.6, “Working with Distinguished Names,” on page 104

6.1  About Forms
The Forms tab of the provisioning request definition editor lets you define the Form Detail section 
of the user application’s provisioning request definition forms. You use the Forms page to define: 

• Request forms—Allows users to initiate a resource request. 
• Approval forms—Allows users to approve or deny resource requests. 

6.1.1  About Request Forms
You can create one request form for a provisioning request definition.The request form is associated 
with the workflow’s start activity. 

Figure 6-1   Sample Resource Request Form
Creating Forms for a Provisioning Request Definition 77



78 Identity Man

novdocx (E
N

U
)  01 February 2006
6.1.2  About Approval Forms
You can define multiple approval forms for a provisioning request definition, but only one form per 
approval activity. You link an approval form to an approval activity in the properties for the activity. 

Figure 6-2   Sample Resource Approval Form

6.1.3  About Form Control Data Binding
All of the fields you define for a form are automatically available for data binding in the Data Item 
Mapping property sheet. Two bindings, or mappings, are possible for each form field: a pre-activity 
mapping to initialize or pre-load a form field with data, and a post-activity mapping to move 
modified form data into the work flow data-item called flowdata. For more information on data item 
mappings, see Section 7.2.2, “Defining the Data Item Mappings,” on page 113. 

Some form controls allow you to initialize their values from data sources other than workflow data. 
For example, some list controls allow you to specify the initial value as a property of the control. For 
more information about defining initial values, see Section 6.5, “Form Control Reference,” on 
page 85.

6.2  About the Forms Tab
You use the Forms tab of the provisioning request definition editor to define the appearance and 
behavior of your request and approval forms. The Forms page contains two sections: Form Selection 
and Form Controls. 
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
6.2.1  About Form Selection 
Use the Form Selection section to create, delete, or preview a form, or to create a form template. 

Figure 6-3   Form Selection

The Form Selection toolbar contains these options:

Table 6-1   Form Selection Toolbar Options

If you create a provisioning request definition from an existing template, and the template has forms 
associated with it, the Form Selection section displays them. You can modify the form instance 
using the Form Controls section. 

Button Description

Click to launch the New Form wizard.

Click to delete an existing form.

Click to save the form as a template. You can then base other forms on this template. 
Forms are saved as XML documents in the project directory. 

Templates are available only within the project in which you create them. 

Click to preview the form.

Request Select to access or create the request form.

Approval Select to access or create an approval form.

Form ID A name to identify the form. This name is used only within the design environment. 
Creating Forms for a Provisioning Request Definition 79



80 Identity Man

novdocx (E
N

U
)  01 February 2006
6.2.2  About Form Controls
Use the Form Controls section to define or modify the form’s appearance and behavior. Use the 
Fields tab to add, delete, and change the data type, control type, and layout order of the controls on 
the form.

Figure 6-4   Fields Tab

Define the actions the user can perform on the form in the Actions tab, shown below. Use the Actions 
toolbar to add, delete, and change the actions and layout order of the actions on the form. 

Figure 6-5   Actions Tab

6.3  Creating forms
This section describes how to create new forms and add controls to it. It includes these sections:

• Section 6.3.1, “Creating New Forms,” on page 80
• Section 6.3.2, “Working with Form Controls,” on page 81

6.3.1  Creating New Forms
1 With provisioning request definition editor open, click the Forms tab.
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
2 In the Form Selection section of the page, click Add to access the New Form wizard:

3 Fill in the fields as follows: 

4 Click OK to save the form or Cancel to exit without saving.

6.3.2  Working with Form Controls
Use the Form Controls section to define the content and layout of the form. 

Field Description

Form Name Type the name of the form as you want it to 
appear in Designer.

Create a form using one of the templates If you want to base the new form on an existing 
template, select this option and select one of the 
forms from the Form templates list.
Creating Forms for a Provisioning Request Definition 81



82 Identity Man

novdocx (E
N

U
)  01 February 2006
To add a control to a form:

1 Click Add. Designer adds a control named Field to the bottom line of the form. 

If you add more than one control of the same name to the form, Designer adds a unique number 
to the end of the control name.

2 Define the following properties for the control:

NOTE: Form field controls do not have Data Item Mappings or E-mail notifications property 
sheets.

3 For each control, specify its properties in the Properties tab (available via Window > Show 
View > Properties). For more information, see Section 6.5, “Form Control Reference,” on 
page 85.

4 Click the Actions tab to define what the user can do with the form. For example, you can add 
actions that allow the user to submit a form or cancel it.   

NOTE: A request form must have, at a minimum, a SubmitAction. Without a SubmitAction, 
the request will not process. It is also recommended that every form also have a CancelAction.  
Each approval form must have at least one action defined. 

5 In the Actions page, click Add to add a new Action. Fill in the fields as follows:

Field Description

Form Field Name A unique name for the field. The name is used in:

• The Workflow tab’s Data Item Mapping dialog box.

• The ECMA expression builder dialog box 

• An internal XML reference in the provisioning request definition file.

Consider the naming conventions you want to use for form fields to avoid 
confusion in the Data Item Mapping and ECMA expression builder dialog 
boxes. For example, the request and approval forms might both contain a 
field called Reason. To make it clear which field you are working with while 
performing data mappings, you can preface the field name with the name of 
the form where it is used. You might name one reason field Req_Reason and 
the other App_Reason.

Data Type The field’s data type. The data type determines the valid control types and the 
type of validation performed.   

Control Type The type of control used to display or edit the data. The selection list is 
filtered based on the selected data type. 
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
Controlling Form Layout

The Designer places form controls on the form top to bottom and left to right. Use the Line Break 
control type to force the controls to the next line of the form.

6.4  Action Reference
This section describes the actions you can add to forms. The actions are implemented as buttons. 
You can specify a custom display label for each button.

Table 6-2   Valid Actions

Field Description

Actions Location Choose the location for the action buttons you 
add to the form. 

Bottom. Places the action buttons on the bottom 
of the form. (Default.)

Top: Places the action buttons on the top of the 
form.

Top and Bottom: Places the buttons at both the 
top and bottom of the form. 

Action Command Choose an action for the button. For more 
information, see Section 6.4, “Action Reference,” 
on page 83.

Data Type The data type associated with the action 
command. Valid choices are: 

Button—Adds a button to the form.

Line Break—Allows you to define the layout of 
your action buttons. Adding a Line Break forces 
the buttons to the next line.

Control Type The visual representation of the action command 
and data type. Button is the only valid entry.

Action Name Form Type Description

ApprovalAction Approval Causes the Approval activity to complete and follow the 
approved flow path. When you use this action, you must set the 
Hide If Read Only form property to True or the form fails 
validation on deploy. 

TIP: An ApprovalAction requires the Approval Activity 
associated with the form to have an approved flow path exiting 
the activity.

CancelAction Request and 
Approval

Cancels a request. Returns an approval to the previous state. 
Creating Forms for a Provisioning Request Definition 83



84 Identity Man

novdocx (E
N

U
)  01 February 2006
CommentAction Approval forms Generates a button with the default label set to View Comment 
History. The button launches a Comments dialog box displaying 
the processing history for each activity from the workflow start to 
the present time. Data displayed includes: Date, Activity Name, 
User, and Comment as shown in the following example.

Comments are updated and persisted to the workflow database 
through the UpdateAction (described below).

NOTE: Any forms containing this action must also contain a field 
named apwaComment. 

DenyAction Approval Causes the Approval activity to complete and follow the denied 
flow path. When you use this action, you must set the Hide If 
Read Only form property to True or the form fails validation on 
deploy. 

TIP: A DenyAction requires the Approval Activity associated with 
the form to have an deny flow path exiting the activity.

RefusalAction Approval Causes the Approval activity to complete and follow the refused 
flow path. When you use this action, you must set the Hide If 
Read Only form property to True or the form fails validation on 
deploy. 

TIP: A RefusalAction requires the Approval Activity associated 
with the form to have a refusal flow path exiting the activity.

SubmitAction Request and 
Approval

Initiates the workflow and causes the workflow to execute the 
forward flow type. The workflow passes any user-entered data to 
the next activity in the workflow.

Action Name Form Type Description
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
The following table describes the properties you can set on actions.

Table 6-3   Action Properties

6.5  Form Control Reference
This section describes the controls you can add to a form. 

UpdateAction Approval Causes the Approval activity to write a user comment to the 
workflow database. You typically have a text area associated 
with an apwaComment. If the user enters text in this field and 
clicks this action, it is persisted to the afcomment table in the 
workflow database. The comment can be retrieved and viewed 
through the CommentAction (described above). This example 
shows a text area and an update action button (labeled 
UpdateAction): 

NOTE: The form must contain a field named apwaComment or 
the provisioning request definition fails validation.

For more information about apwaComment, see “Controls for 
User Entered Comments” on page 86.

Property Name Description

Display Label Specifies the text to display on the button.

Visible If true, specifies whether the action is visible at runtime.

Block On Error If true, specifies that the action is blocked if any of the form’s controls fail validation. 
This is recommended for the SubmitAction.

Do not set to false if the action button submits data, or invalid data can be 
submitted causing unexpected results.

Hide If Read Only If true, specifies that the action is hidden when the form is read-only. A form can be 
read-only when the user opens a task without claiming it first. If your form contains 
the ApprovalAction, DenyAction, or RefusalAction, this property must be set to true. 
If it is set to false, you will encounter a validation error and will not be able to deploy 
it. 

Action Name Form Type Description
Creating Forms for a Provisioning Request Definition 85



86 Identity Man

novdocx (E
N

U
)  01 February 2006
Table 6-4   Control Types and Supported Data Types

6.5.1  Controls for User Entered Comments
Designer supports a special internal control you can add to a form to allow users to add comments to 
a workflow or to view previously entered comments. They are required on forms that use 
CommentAction or UpdateAction. The comments are not part of the workflow data so you cannot 
access them via the flowdata object. The comments are special data items stored in the afcomment 
table of the workflow database. The comments are persisted as long as the row for the requestid in 
the afprocess table exists.

To create a form that supports user comments:

1 Add a control to your form. Select Comment as the data type. The Form Field name is 
automatically defined as apwaComment and the Control Type is TextArea. A single form can 
contain only one comment field. 

2 Add a CommentAction or UpdateAction to the form. 
For more information, see Section 6.4, “Action Reference,” on page 83.

6.5.2  General Properties
The properties in the following table are available for each control. 

Control Type
Data Types

Boolean Date Decimal DN Integer String Time

DatePicker x x

DNDisplay x

DNLookup x

DNMaker x

GlobalList x

MVCheckbox x x x x

MVEditor x x x x

PickList x x x x

StaticList x x x x

Text x x x

TextArea x

Title x

TrueFalseRadiobuttons x

TrueFalseSelectbox x
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
Table 6-5   General Properties

Sort Order

List-based controls sort content alphabetically. For DN-based lists, the sort order is alphabetical 
based on the Display expression property result. For all other types, the sort order is based on the  
display label. 

6.5.3  DatePicker
Use this control for display and entry of a date and time. It allows users to choose a date from a pop-
up calendar or type a date in a text field. At runtime, the form automatically validates the date using 
the format for the user’s locale and timezone. If the user enters an incorrect format, the form 
displays an error message. The DatePicker control’s tooltip displays the valid date format. The 
default DatePicker control looks like this:

Figure 6-6   Sample DatePicker Control

Property Name Description

Display label Specifies the label to display to identify the control. It is localizable.

Editable Specifies if the control is editable (true). Otherwise, it displays as read-only.

Multivalued This is a read-only property. It specifies if the control supports multivalue 
attributes (true).

Required Specifies whether the control requires user input (true).

Tooltip Specifies the text for the control’s tooltip. It is localizable.

Visible Specifies whether the control is displayed in the user interface (true).
Creating Forms for a Provisioning Request Definition 87



88 Identity Man

novdocx (E
N

U
)  01 February 2006
When the Show date picker property is true, the form displays the date field along with a button. 
When the user clicks the button, the form launches a calendar for the user to select the date. The 
calendar pop-up is shown here: 

Figure 6-7   Sample Calendar Control

Table 6-6   DatePicker Control Properties

6.5.4  DNDisplay
Use this control to display a read-only DN. You populate the control from flowdata. The control can 
display the full DN or a set of attributes associated with the DN depending on the properties you set. 

Figure 6-8   Sample DNDisplay

Property name Description

Datetime indicator When false, the Calendar pop-up does not display the time.

Day headers A comma-separated, single-quoted list of values displayed by the Calendar pop-
up to indicate the day of the week. This value is localizable.

Month names A comma-separated, single-quoted list of values displayed by the Calendar pop-
up to indicate the month name. This value is localizable.

Show date picker When true displays the calendar pop-up. If false, the calendar pop-up does not 
display. The user must type the date in the text field using the proper format for 
their locale.
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
Figure 6-9   Sample DNDisplay with Display Expression Specified

Table 6-7   DNDisplay control properties

6.5.5  DNLookup
Use this control to allow users to search and retrieve DNs from the Identity Vault. You can initialize 
the control with a DN from the flowdata. You set properties to control the entities and containers that 
the user can search and the format of the DN. 

Figure 6-10   Sample DNLookup Control

The buttons associated with the DNLookup control are described in the following table. 

Property name Description

Display expression Leave this value blank if you want to display the full DN or CN 
value. 

If you want to mask the DN by displaying attributes instead, 
launch the expression builder and select the desired attributes 
from the list. (You must first specify an Entity key for DN 
expression lookup.) 

For example, to show the user entity’s first and last name 
attributes, construct an expression like this: FirstName 
LastName.

Make sure the attribute’s View, Read, Search, and Required 
properties are set to true in the directory abstraction layer. See 
Section 3.7.2, “Attribute Properties,” on page 39.

Entity key for DN expression lookup Leave this value blank if you want to display the full DN or CN 
value retrieved from the Identity Vault.

If you want to mask the DN or CN by displaying attributes 
instead, choose the entity from the drop-down list and specify a 
set of attributes in the Display expression property. 

The entity you choose must: 

• Have the directory abstraction layer View property set to 
true. 

• Be the entity of the DN you are working with. 

See for more information, see Section 6.6, “Working with 
Distinguished Names,” on page 104.
Creating Forms for a Provisioning Request Definition 89



90 Identity Man

novdocx (E
N

U
)  01 February 2006
Table 6-8   DNLookup Control Buttons

Button Description

Launches a search dialog box called an Object Selector. You can define whether 
the Object Selector displays containers or objects via the Object Selector type 
property. This is an example of an object lookup. 

The attribute shown in the Object Selector’s drop-down list (Description in the 
above example) is specified in the directory abstraction layer. For more 
information, see the Entity Attribute Key for object lookup property. The availability 
of this button is controlled by the Show object selector property. 

Show history. Allows users to view the history of objects that they’ve searched. 
They can select from this list or clear its contents. The availability of this button is 
controlled by the Show object history button property.

Reset field. Deletes the field contents. The availability of this button is controlled 
by the Show clear history button property.
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
Table 6-9   DNLookup control properties

Property Name Description

Display expression This property only applies when you initialize the control from 
flowdata. Leave this value blank if you want to display the full DN 
or CN value.

If you want to mask the DN by displaying attributes instead, 
launch the expression builder and select the desired attributes 
from the list. (You must first specify an Entity key for DN 
expression lookup.) 

For example, to show the user entity’s first and last name 
attributes, construct an expression like this:  FirstName 
LastName.

Make sure the attribute’s View, Read, Search, and Required 
properties are set to true in the directory abstraction layer. See 
Section 3.7.2, “Attribute Properties,” on page 39.

Entity attribute key used for object 
lookup

Choose an attribute of the selected Entity key used for object 
lookup property. The attributes in the drop-down are the 
attributes whose directory abstraction layer Control type property 
is set to DNLookup. The DNLookup control type property 
controls the attributes displayed in the Object Selector dialog at 
runtime. 

If you leave this blank, the Object Selector displays all of the 
entity’s attributes that have the directory abstraction layer search 
and required properties set to true. 

Entity key for DN expression lookup This property only applies when you initialize the control from 
flowdata. Leave this value blank if you want to display the full DN 
or CN value retrieved from the Identity Vault.

If you want to mask the DN or CN by displaying attributes 
instead, choose the entity from the drop-down list then specify a 
set of attributes in the Display expression property. 

The entity you choose must: 

• Have the directory abstraction layer View property set to 
true. 

• Be the entity of the DN you are working with. 

For more information, Section 6.6, “Working with Distinguished 
Names,” on page 104.

Entity key used for object lookup A required field. Specify an entity to display in the Object 
Selector dialog. If you do not specify a value in the Entity 
attribute key used for object lookup, then you create a “general 
Object Selector”. You can find out more about general object 
selectors in Section 6.6, “Working with Distinguished Names,” on 
page 104.

This property is related to Entity attribute key used for object 
lookup and the Object selector type properties.
Creating Forms for a Provisioning Request Definition 91



92 Identity Man

novdocx (E
N

U
)  01 February 2006
Object Selector type Determines whether the Object Selector dialog box performs an 
Object Lookup or a Container Lookup. This is an example of an 
Object Lookup:

paramlist: Causes the Object Selector dialog to perform an 
object lookup. You specify the lookup criteria via the Entity key 
used for object lookup and the Entity attribute key used for object 
lookup properties. 

container: Causes the Object Selector dialog to display one or 
more containers for selection. The containers for searching are 
determined by the Search container property specified in the 
directory abstraction layer for the entity named in the Entity key 
used for object lookup property. For example, if the Entity key 
used for object lookup property is Group, the search container is 
set to %group-root% by default. If no search container is used, 
the search root specified during the user application install is 
used. 

Show clear button If true, the form displays the Reset field button.

Show object history button If true, the form displays the Show history button.

Show object selector button If true, the form displays the Object Selector button.

Property Name Description
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
6.5.6  DNMaker
Use this control to allow users to construct a DN value by specifying a naming value and choosing a 
container. 

Figure 6-11   Sample DNMaker Control

Table 6-10   DNLookup Control Buttons

Button Description

Launches an Object Selector for container searches like the one shown below. 

The container search root is defined for the entity specified in the Entity used for 
object lookup property. The availability of this button is controlled by the Show 
object selector property. 

Show history. Allows users to view the history of objects that they’ve searched. 
They can select from this list or clear its contents. The availability of this button is 
controlled by the Show object history button property.

Reset field. Deletes the field contents. The availability of this button is controlled 
by the Show clear history button property.
Creating Forms for a Provisioning Request Definition 93



94 Identity Man

novdocx (E
N

U
)  01 February 2006
Table 6-11   DNMaker Control Properties

6.5.7  Global List
Use this control to allow users to select a single entry from a drop-down list. The contents of the list 
are defined in a directory abstraction layer global list element.

Figure 6-12   Sample Global List Control

Table 6-12   Global List Properties

For more information about global lists, see Section 3.3, “Working with Lists,” on page 29.

Property Description

Entity key used for object lookup A required field. Choose an entity from the drop-
down. This will determine the root for the container 
search that is launched when the user clicks the 
Object Selector button. The root container for the 
entity is defined in the directory abstraction layer 
property called Search Container. If a search 
container is not specified for this entity, then the 
Root Container DN specified during the user 
application installation is used instead. 

Naming attribute The naming attribute used to construct the final DN. 
This value display next to the control’s display label 
as an extra hint to the user. 

Show clear button If true, the form displays the Reset field button.

Show object history button If true, the form displays the Show history button.

Show object selector button If true, the form displays the Object Selector button.

Property Name Description

DAL global list key Specifies the unique identifier of the global list. This 
must correspond to the key specified in the 
directory abstraction layer.
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
6.5.8  MVCheckbox
Use this control to display a set of labelled check boxes. You specify the label and its associated 
values through the List item property. A sample MVCheckbox control is shown below. 

Figure 6-13   Sample MVCheckbox Control

Table 6-13   MVCheckbox Control Properties

TIP: To retrieve user-entered values for this control, use flowdata.getObject() and not 
flowdata.get(). If you use flowdata.get(), you get only the first value.

For more information on preselecting values, see the Section 9.2.3, “Form Control Examples,” on 
page 148.

6.5.9  MVEditor
Use this control to allow users to display, edit, or add multiple values in a drop-down list box. You 
can load the data dynamically from the Identity Vault, or allow users to enter the values.   

The control’s appearance varies depending on the data type of the control and the properties that you 
specify. For example, if the data type is a DN, you can set properties that displaying specific 
attributes related to the DN. You can also enable an Object Selector button that allows users to 

Property Name Description

List item Allows you to define a set of static values that comprise the check 
box labels and values. Click the List property button to launch the 
list value dialog box shown here:
Creating Forms for a Provisioning Request Definition 95



96 Identity Man

novdocx (E
N

U
)  01 February 2006
search and select values by setting the Entity key used for object lookup and the Entity Attribute key 
used for object lookup properties. 

Figure 6-14   Sample MVEditor with Object Lookup Properties Set 

Table 6-14   MVEditor with Object Selector Properties Set Control Buttons

Button Description

Launches a search dialog box called an Object 
Selector. The Object Selector dialog box looks like 
this: 

The user can select a value from the list to populate 
the control. The attribute displayed in the drop-
down list (Description in the above example) is 
specified in the directory abstraction layer. You 
specify it in the attribute’s UIControl property. See 
“Attribute UI Control Properties” on page 41. The 
availability of this button is controlled by the Show 
object selector property. 

Show history. Allows users to view the history of 
objects that they’ve searched. They can select from 
this list or clear its contents. The availability of this 
button is controlled by the Show object history 
button property.
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
If you do not set the object lookup properties, the MVEditor displays a simple edit control. 

Figure 6-15   Sample MVEditor without Object Lookup Properties Set

The buttons associated with the simple edit control are: 

Table 6-15   MVEditor Control Buttons

TIP: When the MVEditor control’s Editable property is false, this control is read-only and the form 
does not display any MVEditor control buttons.

Table 6-16   MVEditor Control Properties

Reset field. Deletes the field contents. The 
availability of this button is controlled by the Show 
clear history button property.

Button Description

Adds an item to the end of the list.

Deletes the selected list item.

Edits the selected list item.

Property Name Description

Display expression Leave this value blank if you want to display the full DN or 
CN value. 

If you want to mask the DN or CN by displaying attributes 
instead, launch the expression builder and select the 
desired attributes from the list. (You must first specify an 
Entity key for DN expression lookup.) 

For example, to show the user entity’s first and last name 
attributes, construct an expression like this:  FirstName 
LastName.

Make sure the attribute’s View, Read, Search, and 
Required properties are set to true in the directory 
abstraction layer. See Section 3.7.2, “Attribute Properties,” 
on page 39.

Enforce uniqueness Forces user-entered list items to be unique.

Button Description
Creating Forms for a Provisioning Request Definition 97



98 Identity Man

novdocx (E
N

U
)  01 February 2006
Entity attribute key used for object Choose an attribute of the selected Entity key used for 
object lookup property. The attributes in the drop-down are 
the attributes whose directory abstraction layer Control 
type property is set to DNLookup. The DNLookup control 
type definition controls the attributes displayed in the 
Object Selector dialog at runtime. 

If you leave this blank, the Object Selector displays all of 
the entity’s attributes that have the directory abstraction 
layer search and required properties set to true. 

Entity key for DN expression lookup Leave this value blank if you want to display the full DN or 
CN value retrieved from the Identity Vault.

If you want to mask the DN or CN by displaying attributes 
instead, choose the entity from the drop-down list and 
specify a set of attributes in the Display expression 
property. 

The entity you choose must: 

• Have the directory abstraction layer View property set 
to true. 

• Be the entity whose DN you are retrieving from the 
Identity Vault. 

See Section 6.6, “Working with Distinguished Names,” on 
page 104 for more information. 

Entity key used for object lookup A required field. Specify an entity to display in the Object 
Selector dialog. If you do not specify a value in the Entity 
attribute key used for object lookup, then you create a 
general Object Selector. You can find out more about 
general Object Selectors in Section 6.6, “Working with 
Distinguished Names,” on page 104.

Ignore case If true, ignore case when enforcing uniqueness.

Lower bound (for numbers only) Minimum integer or decimal value.

Maximum length Maximum number of characters for string values.

Minimum length Minimum number of characters for string values.

Number of lines displayed The number of rows displayed.

Numbers only If true, only numbers can be entered.

Property Name Description
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
Object Selector type Determines whether the Object Selector dialog box 
performs an Object Lookup or a Container Lookup. This is 
an example of an Object Lookup:

paramlist: Causes the Object Selector dialog to perform an 
object lookup. You specify the lookup criteria via the Entity 
key used for object lookup and the Entity attribute key 
used for object lookup properties. 

container: Causes the Object Selector to display one or 
more containers for selection. The containers for searching 
are determined by the Search container property specified 
in the directory abstraction layer for the entity named in the 
Entity key used for object lookup property. For example, if 
the Entity key used for object lookup property is Group, the 
search container is set to %group-root% by default. If no 
search container is used, the search root specified during 
the user application install is used. 

Show object history button When true, displays the Object History button next to the 
control.

Show object selector button When true displays the Object Selector button next to the 
control.

Property Name Description
Creating Forms for a Provisioning Request Definition 99



100 Identity Man

novdocx (E
N

U
)  01 February 2006
TIP: To retrieve user-entered values for this control, use flowdata.getObject() and not 
flowdata.get(). If you use flowdata.get(), you get only the first value.

For more information about preselecting items, see Chapter 9, “Working with ECMA Expressions,” 
on page 139.

6.5.10  PickList
Use the PickList control to allow users to view and choose one or more values from a dynamically-
generated list of choices. The list items are DN or CN values retrieved from the Identity Vault. You 
can display the full DN or CN or use the PickList properties to specify the attributes to display 
instead. 

Figure 6-16   Sample PickList Control without DN Masking

Figure 6-17   Sample PickList Control with DN Masking

Table 6-17   PickList control properties

Upper bound (for Numbers only) The maximum numeric value users can enter.

Property Name Description

Allow multiple selections When true, the user can select more than one list 
value using their platform-specific multi-select keys.

Display expression Leave this value blank if you want to display the full 
DN or CN value. 

If you want to format the DN or CN by displaying 
attributes instead, launch the expression builder 
and select the desired attributes from the list. (You 
must first specify an Entity key for DN expression 
lookup.) 

For example, to show the user entity’s first and last 
name attributes, construct an expression like this:  
FirstName LastName.

Make sure the attribute’s View, Read, Search, and 
Required properties are set to true in the directory 
abstraction layer. See Section 3.7.2, “Attribute 
Properties,” on page 39.

Property Name Description
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
TIP: To retrieve user-entered values for this control, use flowdata.getObject() and not 
flowdata.get(). If you use flowdata.get(), you get only the first value.

For more information on displaying the control with a preselected option, see Section 9.2.3, “Form 
Control Examples,” on page 148.

6.5.11  Static List
Use this control to display a list of items in a drop-down list from which users can select a single 
item. The list items are static and are stored with the provisioning request definition. The text “Click 
here to select” only appears if the field is not set to Required.

Figure 6-18   Sample Static List Control

Entity key for DN expression lookup Leave this value blank if you want to display the full 
DN or CN value retrieved from the Identity Vault.

If you want to mask the DN or CN by displaying 
attributes instead, choose the entity from the drop-
down list and specify a set of attributes in the 
Display expression property. 

The entity you choose must: 

• Have the directory abstraction layer View 
property set to true. 

• Be the entity whose DN you are retrieving 
from the Identity Vault. 

Number of lines displayed The number of lines displayed by the control. This 
is not the number of records retrieved or displayed, 
but the vertical size of the control. If you set this 
number to 10 and there are only 5 records to 
display, the control size is still 10 lines. 

Property Name Description
Creating Forms for a Provisioning Request Definition 101



102 Identity Man

novdocx (E
N

U
)  01 February 2006
Table 6-18   Static List Properties

6.5.12   Text
Use the Text control for data display or user input. User input is validated depending on the control’s 
data type. 

Figure 6-19   Sample Text Control

Table 6-19   Text Control Properties

Property Name Description

List item Allows you to define a set of labels and values that comprise the 
static list. Click the List property button to launch the list value 
dialog box shown here:

Click Add to add list items. Each list item must have a unique key. 
The dialog automatically generates a unique key when you insert 
a new list item. You can click on the key name and change it. A 
blank key (null) is valid, so it is possible to have a list item with a 
blank key and a blank label. The displayed label is the one defined 
for the default language. 

Property Name Description

Lower bounds (for numbers only) The lowest number allowed for decimal or integer values.

Maximum length The maximum length for string values.

Minimum length The minimum length for string values.

Upper bound (for numbers only) The highest number allowed for decimal or integer values. 

Validation Mask (regular expression) An expression used for validating the field’s data. Valid masks 
include:

• [a-zA-Z]*$
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
6.5.13  Text Area
Use this control to display or accept input of multi-line data. Users can select multiple lines of data 
using multi-select key combination for their platform.

Figure 6-20   Sample Text Area Control

Table 6-20   Text area control properties

6.5.14  Title
Use this read-only control to label your form or provide instructions. 

Table 6-21   Title Control Properties

6.5.15  TrueFalseRadioButtons
Use this control to display a choice of True or False as a set of radio buttons.

Figure 6-21   Sample TrueFalseRadioButtons Control

This control has no custom properties.

Property Name Description

Number of columns displayed The width of the control; the number of characters 
wide.

Number of lines displayed The number of lines to display at one time.

Property Name Description

Font-size Specify one of these: small, medium, and large.

Style class Choose font style (such as bold) and colors from a palette.
Creating Forms for a Provisioning Request Definition 103



104 Identity Man

novdocx (E
N

U
)  01 February 2006
6.5.16  TrueFalseSelectBox
Use this control to display a choice of True or False in a drop-down. The text “Click here to select a 
value” displays only when the field is not required

Figure 6-22   Sample TrueFalseSelectBox Control

This control has no custom properties

6.6   Working with Distinguished Names
The following controls provide specialized support for DNs:

• DNDisplay
• DNLookup
• DNMaker
• MVEditor
• PickList

This section describes the specialized support including: 

• Section 6.6.1, “Formatting a DN,” on page 104.
• Section 6.6.2, “Controlling the Object Selector,” on page 104.

6.6.1  Formatting a DN
If you have a DN value, you can display either the DN or a set of attributes related to that DN. For 
example, if the control displays the DN of a user entity, you could display the user entity's First 
Name and Last Name attributes instead. The control's that support this feature are: DNDisplay, 
DNLookup, MVEditor and Picklist. 

You define the attributes to display in the control’s Display Expression property. This display 
expression resolves at runtime by replacing the attribute keys with the attribute values. 

6.6.2  Controlling the Object Selector
The Object Selector dialog box provides a convenient way to allow users to search and select objects 
or containers. You control the Object Selector’s contents through the properties described in the 
following table. 
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
Table 6-22   Properties for Defining the Object Selector Dialog Box

DNLookup Control type definitions and Object Selector Contents

When you specify an Entity key used for object lookup and an Entity attribute key used for object 
lookup, the Object Selector’s are defined the attribute’s DNLookup control type definition (in the 
directory abstraction layer). For example, if you specified the User entity as the object lookup and 

Property Description

Entity key used for object lookup This is the key to the directory abstraction layer entity whose 
DN you want to search for or display. This is a required field. 

Entity attribute key used for object 
lookup

This is the key to the attribute that you want to use in the 
Object Selector. 

When you leave this field blank, you create a general Object 
Selector. This means that the Object Selector displays all of 
the attributes of the entity (defined by the Entity key used for 
object lookup) whose Search and Required properties are set 
to true. 

When you specify an attribute, the contents of the Object 
Selector are defined by the attribute’s DNLookup Control type 
property (in the directory abstraction layer). 

Object selector type paramlist: Causes the Object Selector dialog to perform an 
object lookup. You specify the lookup criteria via the Entity key 
used for object lookup and the Entity attribute key used for 
object lookup properties. 

container: Causes the Object Selector dialog to display one or 
more containers for selection. The containers for searching 
are determined by the Search container property specified in 
the directory abstraction layer for the entity named in the 
Entity key used for object lookup property. For example, if the 
Entity key used for object lookup property is Group, the search 
container is set to %group-root% by default. If no search 
container is used, the search root specified during the user 
application install is used. 

Show object selector button If true, the Object Selector button shows up on the control. 
Otherwise, it does not.
Creating Forms for a Provisioning Request Definition 105



106 Identity Man

novdocx (E
N

U
)  01 February 2006
the manager as the attribute. The Object Selector would allow the user to search on the First Name 
and Last Name attributes.

Figure 6-23   Sample Object Selector

The Object Selector uses the manager’s DNLookup control type definition, to determine the lookup 
criteria.The DNLookup definition for the manager entity is shown below.

Figure 6-24   Manager Attribute on User DNLookup Property Definition
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
You can change the attributes that are used by the Object Selector by changing the Lookup 
attributes. To allow other attributes in the Object Selector:

1 Determine if the desired attribute is defined for the entity specified as the Lookup Entity. (In 
this example it is Manager Lookup.)

2 If the attribute you want is available on the lookup entity, you can just add it to the Lookup 
Attributes. Make sure that it has the Search and Read properties set to true or they do not show 
in the Object Selector dialog box.   

3 If the attribute does not already exist for the Lookup Entity, you must:
• Add the entity to the Lookup Entity. In the above example, you would add it to the 

Manager Lookup entity. For more information, see Section 3.2.2, “Adding Attributes,” on 
page 27.

• Add the attribute to the DNLookup definition. 
• Deploy the changed definitions. In this example, you’d redeploy the Manager-Lookup 

entity (if you added a new attribute to its definition) and the User entity because you 
changed the definition of the manager attribute). 

• Refresh the application server’s DirectoryAbstractionLayerDefinitions cache. 
Creating Forms for a Provisioning Request Definition 107



108 Identity Man

novdocx (E
N

U
)  01 February 2006
ager User Application: Design Guide



7
novdocx (E

N
U

)  01 February 2006
7Creating the Workflow for a 
Provisioning Request Definition

This section provides details on creating the workflow for a provisioning request definition. Topics 
include:

• Section 7.1, “About the Workflow Tab,” on page 109
• Section 7.2, “Adding Activities to a Workflow,” on page 112
• Section 7.3, “Working With Entity Activities,” on page 115
• Section 7.4, “Adding the Flow Paths,” on page 117

7.1  About the Workflow Tab
You use the Workflow tab to display the Workflow page. You use the Workflow page to define the 
behavior of the workflow for the provisioning request definition. The Workflow page consists of a 
canvas, a palette, and associated views. 

Figure 7-1   Workflow Page
Creating the Workflow for a Provisioning Request Definition 109



110 Identity Man

novdocx (E
N

U
)  01 February 2006
7.1.1  Canvas
The canvas provides a graphical view of the activities in the workflow. When you create a new 
provisioning request definition that is not based on a template, the canvas is blank except for a Start 
and Finish activity.

If you right-click anywhere on the canvas, a menu is displayed. The menu includes the following 
commands:

Table 7-1   Workflow Menu 

Item Description

Delete Deletes the selected activity or flow path.

 Show Activity IDs Switches the workflow editor between displaying activity names 
and activity IDs. Activity IDs are system defined and are not 
editable. However, if errors associated with activities are detected 
during validation, Designer identifies the activity in which the error 
occurred by activity ID. When this is the case, you need to turn on 
the display of activity IDs in order to locate the activity on the 
canvas. You can specify whether activity names or activity IDs are 
displayed by default by choosing Window > Preferences > 
Provisioning > Workflows > Diagram Preferences > Show Activity 
IDs. 

Show Flow Path Types Turns the display of flow path types (for example, forward, 
approved, denied) on and off. When Show Flow Path Types is 
turned on, a label is displayed on each flow path indicating the 
flow path type. 

Show Properties  Displays the Properties view for the selected activity.

 Show Data Item Mapping  Displays the Data Item Mapping view for the selected activity.

 Show Email Notification  Displays the Email Notification view for the selected activity.
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
7.1.2  Palette
The palette provides icons for activities that can be dragged onto the canvas to create the workflow, 
and also provides tools for manipulating the icons and for linking activities:

Figure 7-2   Workflow Palette

The palette includes the following tools:

Table 7-2   Workflow Palette 

Tool Description

Select Selects individual nodes or flow paths. To select a node, click the Select 
tool, then click a node.

Marquee Selects multiple nodes or flow paths. Use this tool to move items as a 
group. To select multiple items, click the Marquee tool, then click in an area 
outside of the items that you want to select. Hold down the mouse button 
and drag over the items that you want to select, then release the mouse 
button.

When multiple items are selected, only the properties for the first item 
selected are displayed in the Properties view (see Section 7.1.3, “Views,” 
on page 112 for information about Views).

Flow Path Creates flow paths between nodes. Flow paths provide connection logic for 
connecting nodes. For information about connecting nodes, see Section 
7.4, “Adding the Flow Paths,” on page 117.

Activities (for example, 
Start, Approval, Log.)

Inserts the selected activity into the workflow. For information about adding 
activities, see Section 7.2, “Adding Activities to a Workflow,” on page 112. 
For detailed descriptions of the activities, see Chapter 8, “Configuring the 
Workflow Activities and Flow Paths,” on page 119.
Creating the Workflow for a Provisioning Request Definition 111



112 Identity Man

novdocx (E
N

U
)  01 February 2006
7.1.3  Views
The Workflow page also includes the Properties, Data Item Mapping, and Email Notification views:

Figure 7-3   Workflow Views

You can right-click the icon for an activity to select a view from a context menu. Not all activities 
utilize all views. The following table identifies the views and the activities that use them:

Table 7-3   Views for Activities 

7.2  Adding Activities to a Workflow
1 Click the Workflow tab. A graphical representation of the workflow for the provisioning 

request definition is displayed: 

Because every workflow must have a Start and Finish activity, these activities are added to the 
canvas automatically. The Start Activity is connected to the Finish Activity with a forward link. 

Activity Properties Email Notification Data Item Mapping

Start X X

Approval X X X

Log X

Branch X

Merge X

Condition X

Finish X X

Entitlement X X

Entity X X
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
2 To add an activity to the workflow, click the icon for the desired activity in the palette and drag 
the icon onto the workspace. 
You can insert an activity between activities that are linked by a flow path by dropping the 
activity onto the flow path. For information about defining flow paths between activities, see 
Section 7.4, “Adding the Flow Paths,” on page 117. After you have added an activity to the 
workflow, you should set the properties of the activity (see Section 7.2.1, “Setting the General 
Properties of an Activity,” on page 113).

7.2.1  Setting the General Properties of an Activity
1 Right-click the activity icon for which you want to set properties and select Show Properties 

from the menu.

The Properties view is displayed:

2 Click in the column for a property to set the property. For information about the properties for 
each activity, see Section 8.1, “Configuring Activities,” on page 119.

7.2.2  Defining the Data Item Mappings
You use the Data Item Mapping view to map data from the data flow into fields in a form (pre-
activity mapping), and from the form back to the data flow (post-activity mapping). 

1 Right-click the activity icon for which you want to set properties and select Show Data Item 
Mapping from the menu.
Creating the Workflow for a Provisioning Request Definition 113



114 Identity Man

novdocx (E
N

U
)  01 February 2006
The Data Item Mapping view is displayed:

2 For pre-activity mapping, click in the Source Expression field for the item that you want to 
map, then specify an expression. For post-activity mapping, click in the Target Expression field 
for the item that you want to map, then specify an expression. 
Pre-activity maps can be used for:

• Initializing form control values
• Setting default values for form controls
• Populating complex form controls with data lists derived from LDAP Queries
• Passing data from form controls of a previous activity to a form control in the current 

activity
• Calling external Java* classes to process data

Post-activity maps can be used for:
• Creating new data items in flowdata
• Moving form control data from an activity into flowdata
• Calling external Java* classes to process data

For information about data item mapping, see Section 8.1, “Configuring Activities,” on 
page 119.
The Start Activity can have hard coded strings, system variables like process locale and 
recipient, and Identity Vault expressions (created using the ECMA expression builder VDX 
Expr Panel) in pre-activity maps. 
Leave the Source Expression blank in pre-activity maps for form fields that the user is expected 
to fill in. Alternatively, create a source expression to supply a default value for form fields that 
the user is expected to fill in. In either case the form field needs to be defined as editable. See 
Section 6.5.2, “General Properties,” on page 86 for information about setting the properties of 
form fields.

7.2.3  Defining the Email Notification Settings
You use the Email Notification view to select an e-mail template, and to specify expressions to 
provide values for named parameters included in the e-mail template. E-mails are sent when a new 
Approval activity starts (to notify the approver that they have work to do) and when the Finish 
activity completes (to notify the initiator that the workflow is done). 

1 Right-click the activity icon for which you want to set properties and select Show Email 
Notification from the menu.
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
The Email Notification view is displayed:

2 Click in the Email Template field, and select an e-mail template from the list of defined 
templates.

3 Click in the Source field for a Target token and specify an ECMAScript expression that assigns 
a value to the token. 
See Section 8.1, “Configuring Activities,” on page 119 for information about e-mail 
notification settings).

7.3  Working With Entity Activities
You use Entity activities to update entities in the Identity Vault. The procedures for working with 
Entity activities differ slightly from the procedures for working with other activity types. 

The section includes the following topics:

• Section 7.3.1, “Adding or Modifying an Entity,” on page 115
• Section 7.3.2, “Using an Entity Activity to Delete an Entity,” on page 116
• Section 7.3.3, “Using an Entity Activity to Delete an Attribute or Value,” on page 116

7.3.1  Adding or Modifying an Entity
1 From the Workflow page, click the Entity activity icon in the palette, then click on the canvas 

to insert the Entity activity into the workflow.
2 Click the Properties tab.
3 Click in the Value column of the Entity Type field, and select the Entity Type (for example, 

User, Group) that you want to create or modify. If the target object that you specify in Step 6 
already exists, the target object is modified; if the target object doesn't exist, it is created.

4 Click in the Value column of the Operation field, and select Create/Modify.
5 Click the Data Item Mapping tab.
6 Click the button next to the Entity dn field to display the ECMA expression builder, then 

specify an expression that identifies the target of the operation (for example, “recipient”).
7 Click OK to return to the Data Item Mapping view.
8 Specify expressions for other attributes as required to create the Entity. 

See Section 3.2, “Working with Entities and Attributes,” on page 24 for information about 
adding entities. If you are adding an entity, you must enter expressions for all required 
attributes.
Creating the Workflow for a Provisioning Request Definition 115



116 Identity Man

novdocx (E
N

U
)  01 February 2006
7.3.2  Using an Entity Activity to Delete an Entity
1 From the Workflow page, click the Entity activity icon in the palette, then click the canvas to 

insert the Entity Activity into the workflow.
2 Click the Properties tab.
3 Click in the Value column of the Entity Type field, and select the Entity Type (for example, 

User, Group) to which the entity that you want to delete belongs.
4 Click in the Value column of the Operation field, and select Delete entity.
5 Click the Data Item Mapping tab.
6 Click the button next to the Entity dn field to display the ECMA expression builder, then 

specify an expression that identifies the Entity that you want to delete.
7 Click OK to return to the Data Item Mapping view.

7.3.3  Using an Entity Activity to Delete an Attribute or Value
1 From the Workflow page, click the Entity activity icon in the palette, then click the canvas to 

insert the Entity Activity into the workflow.
2 Click the Properties tab.
3 Click in the Value column of the Entity Type field, and select the Entity Type (for example, 

User, Group) of the entity to which the attribute or value that you want to delete belongs.
4 Click in the Value column of the Operation field, and select Delete attribute/value.
5 Click the Data Item Mapping tab.
6 Click on the button next to the Entity dn field to display the ECMA expression builder, then 

specify an expression that identifies the entity that contains the attribute or value that you want 
to delete.

7 Click OK to return to the Data Item Mapping view.
8 Click in the Delete Type field for the attribute to which you want the operation to apply, then 

select the operation from the list: 
• Select Delete Attribute for single value attributes 
• Select either Delete Attribute or Delete Value for multi-value attributes. Selecting Delete 

Value for multi-value attributes also requires that you to enter an expression to identify the 
value that you want to delete.

9 To delete a value, click in the Delete Value Expression field for the attribute to which you want 
the operation to apply and specify an expression that resolves to the value of the attribute that 
you want to delete.
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
7.4  Adding the Flow Paths
1 Click the Flow Path tool in the palette:

The mouse pointer turns into a flow path pointer:

2 Click the activity from which you want the flow path to begin, then click the activity on which 
you want the flow path to end:

The activities are connected. 
3 To configure the flow path, click the Select tool in the palette, right-click the flow path, then 

select Show Properties. 
For information about configuring flow paths, see Section 8.2, “Configuring Flow Paths,” on 
page 135.
Creating the Workflow for a Provisioning Request Definition 117



118 Identity Man

novdocx (E
N

U
)  01 February 2006
ager User Application: Design Guide



8
novdocx (E

N
U

)  01 February 2006
8Configuring the Workflow 
Activities and Flow Paths

This section provides details on configuring the workflow activities and flow paths. Topics include:

• Section 8.1, “Configuring Activities,” on page 119
• Section 8.2, “Configuring Flow Paths,” on page 135

8.1  Configuring Activities
After you’ve added an activity to the workflow diagram, you can specify the properties, data 
mappings, and e-mail notification settings associated with the activity. For details on adding 
activities to a workflow, see Section 7.2, “Adding Activities to a Workflow,” on page 112.
Configuring the Workflow Activities and Flow Paths 119



120 Identity Man

novdocx (E
N

U
)  01 February 2006
To configure a workflow activity:

1 Click the activity in the workflow diagram.
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
2 Set the property values for the activity on the Properties tab.  

If the Properties tab is not displayed, right-click the activity in the workflow diagram and select 
Show Properties.

TIP: You can also display the Properties tab by selecting Show Properties from the PRD 
menu.

3 Set the data mappings on the Data Item Mappings tab.

If the Data Item Mappings tab is not displayed, right-click the activity in the workflow diagram 
and select Show Data Item Mapping.

TIP: You can also display the Data Item Mappings tab by selecting Show Data Item Mapping 
from the PRD menu.
Configuring the Workflow Activities and Flow Paths 121



122 Identity Man

novdocx (E
N

U
)  01 February 2006
4 Specify the e-mail notification settings on the Email Notification tab.

If the Email Notification tab is not displayed, right-click the activity in the workflow diagram 
and select Show Email Notification.

TIP: You can also display the Email Notification tab by selecting Show Email Notification 
from the PRD menu.

Editing an e-mail template You can edit an e-mail template in Designer. To do this, select an 
Identity Vault in the Modeler, then scroll to Default Notification Collection in the Outline View. 
Right-click a template, then select Edit Template.   

8.1.1  Start Activity
The Start activity is the first activity to execute in a workflow. It begins execution when the user 
makes a request to provision a resource. After the user makes the request, the Start activity displays 
the initial request form to the user. On the initial request form, the user may be asked to specify a 
comment that indicates the reason for the request. 

You can customize the initial request form to suit your application requirements. For details on 
customizing forms, see Chapter 6, “Creating Forms for a Provisioning Request Definition,” on 
page 77.

Before displaying the form to the user, the Start activity performs any pre-activity data mappings 
specified for the activity. 

After the user submits the form, the Start activity performs any post-activity data mappings specified 
for the activity. These mappings typically include copying data from form fields into the flowdata 
object.  
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
Properties

The Start activity has the following property:

Table 8-1   Start Activity Property

Data Item Mapping

To bind the data items associated with the Start activity, you define pre-activity and post-activity 
mappings. The pre-activity mappings initialize data in the request form with constants or values 
retrieved from the flowdata object. The post-activity mappings move form data back into the 
flowdata object.

Table 8-2   Start Activity Data Item Mappings

For details on building ECMA expressions, see Chapter 9, “Working with ECMA Expressions,” on 
page 139.

Property Name Description

Name Provides a name for the activity.

Setting Description

Pre-Activity Allows you to specify one or more pre-activity mappings. 
When this option is selected, you can double-click a cell in the 
Source Expression column to specify where the initial request 
form gets data for a particular target form field.  

NOTE: When the Pre-Activity option is selected, the cells in 
the Target Form Field column are not editable. 

Post-Activity Allows you to specify one or more post-activity mappings. 
When this radio button is selected, you can double-click on a 
cell in the Target Expression column to  specify where data 
from a form field should be copied after the form has been 
processed.  

NOTE: When the Post-Activity option is selected, the cells in 
the Source Form Field column are not editable. 

Source Expression Specifies a source expression for a pre-activity mapping. 
When you click a cell in the Source Expression column, the 
ECMA expression builder displays to help you define your 
expression. 

Target Expression Specifies a target expression for a post-activity mapping.  
When you click a cell in the Target Expression column, the 
ECMA expression builder displays to help you define your 
expression.
Configuring the Workflow Activities and Flow Paths 123



124 Identity Man

novdocx (E
N

U
)  01 February 2006
Email Notification

Not supported with this activity.

8.1.2  Approval Activity
The Approval activity is a user-facing activity that displays an approval form to the user. On the 
approval form, the user can approve, deny, or refuse a provisioning request. The Approval activity 
can have multiple outgoing flow paths, but only one of the paths is executed at runtime.

You can customize the approval form to suit your application requirements. For details on 
customizing forms, see Chapter 6, “Creating Forms for a Provisioning Request Definition,” on 
page 77.

Before displaying the form to the user, the Approval activity performs any pre-activity data 
mappings specified for the activity. 

After the user submits the form, the Approval activity performs any post-activity mappings specified 
for the activity. These mappings typically include copying data from form fields into the flowdata 
object.  

Properties

The Approval activity has the following properties:

Table 8-3   Approval Activity Properties

Property Name Description

Name Provides a name for the activity.

Addressee Specifies a dynamic expression that identifies the 
addressee for the activity. The addressee is 
determined at runtime, based on how the 
expression is evaluated. 

TIP: To simplify the process of testing a new 
workflow, you can set the addressee to be the 
recipient. This removes the need to log out of the 
user application and log in again as a manager 
each time you want to test your forms. This 
technique is particularly useful when the workflow 
involves multiple levels of approval. Once the 
testing phase is complete, you can change the 
addressee to the correct value. 

For details on building ECMA expressions, see 
Chapter 9, “Working with ECMA Expressions,” on 
page 139. For descriptions of the system variables 
available in a workflow, see Section 4.3.3, 
“Understanding Workflow Data,” on page 60.
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
Alternate Specifies a dynamic expression that identifies the 
user who should get this task if the timeout limit has 
been reached.

The alternate addressee is determined at runtime, 
based on how the expression is evaulated.

For details on building ECMA expressions, see 
Chapter 9, “Working with ECMA Expressions,” on 
page 139. For descriptions of the system variables 
available in a workflow, see Section 4.3.3, 
“Understanding Workflow Data,” on page 60.

Final Timeout Action Determines the final state of the request in the 
event that the workflow times out. The choices are:  

• approved

• denied

• refused

• timedout

• error

Timeout Interval Specifies a dynamic expression that defines the 
period of time allotted for the addressee to 
complete the task. The timeout interval applies 
each time the activity is executed by the addressee.

For details on building ECMA expressions, see 
Chapter 9, “Working with ECMA Expressions,” on 
page 139. For descriptions of the system variables 
available in a workflow, see Section 4.3.3, 
“Understanding Workflow Data,” on page 60.

Time Units Determines the unit of measure used for the 
timeout interval. The choices are: 

• Days

• Hours

• Minutes

• Seconds

Retries Specifies the number of times to retry the activity in 
the event of a timeout.

When an activity times out, the workflow process 
can try to complete the activity again, depending on 
the retry count specified for the activity. With each 
retry, the workflow process can escalate the activity 
to another user. In this case, the activity is 
reassigned to another user (the user’s manager, for 
example) to give this user an opportunity to finish 
the work of the activity. If the last retry times out, the 
activity can be marked as approved, denied, 
refused, timedout, or in error, depending on the 
final timeout action specified for the activity.

Property Name Description
Configuring the Workflow Activities and Flow Paths 125



126 Identity Man

novdocx (E
N

U
)  01 February 2006
Data Item Mapping

To bind the data items associated with the Approval activity, you define pre-activity and post-
activity mappings. The pre-activity mappings initialize data in the approval form with constants, 
values retrieved from the flowdata object, system process variables, system activity variables, and/or 
data retrieved via expression calls to the directory abstraction layer. The post-activity mappings 
move form data back into the flowdata object.

Table 8-4   Approval Activity Data Item Mappings

Form Specifies the name of the approval form to display 
to the user. 

An Approval activity must have a form associated 
with it. If no form is specified, an error message is 
displayed at runtime. 

Setting Description

Pre-Activity Allows you to specify one or more pre-activity mappings. 
When this option is selected, you can double-click on a cell in 
the Source Expression column to specify where the approval 
form gets data for a particular target form field.  

NOTE: When the Pre-Activity choice is selected, the cells in 
the Target Form Field column are not editable. 

Post-Activity Allows you to specify one or more post-activity mappings. 
When this option is selected, you can double-click on a cell in 
the Target Expression column to specify where data from a 
form field should be copied after the form has been 
processed.  

The form for an Approval activity includes a special internal 
control called apwaComment. This control causes user 
comments to be written to the workflow database. It should 
not have a post-activity mapping. For more information on this 
control, see Section 6.5.6, “DNMaker,” on page 93.

NOTE: When the Post-Activity option is selected, the cells in 
the Source Form Field column are not editable. 

Source Expression Specifies a source expression for a pre-activity mapping. 
When you click a cell in the Source Expression column, the 
ECMA expression builder displays to help you define your 
expression. 

Target Expression Specifies a target expression for a post-activity mapping.  
When you click a cell in the Target Expression column, the 
ECMA expression builder displays to help you define your 
expression.

Property Name Description
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
For details on building ECMA expressions, see Chapter 9, “Working with ECMA Expressions,” on 
page 139.

E-mail Notification

To enable e-mail notification for the Approval activity, you need to specify the e-mail template to 
use, as well as source expressions for target tokens in the e-mail body. 

Table 8-5   E-mail Notification Settings for the Approval Activity

NOTE: E-mail notification is only supported when the Notify participants by email check box is 
selected on the Overview tab. 

Setting Description

Email Template Specifies the name of the e-mail template to use. 
By default, the Approval activity uses the 
Provisioning Notification template.

You can edit an e-mail template in Designer. For 
more information, see “Editing an e-mail template” 
on page 122. 

Source/Target Specifies the source expressions for target tokens 
in the e-mail body. 

The list of target tokens is determined by the 
selected e-mail template. You cannot add new 
tokens,  but you can assign values to the 
predefined tokens by building your own source 
expressions. At runtime, the source expressions 
are evaluated to determine the value of each token.

The available target tokens for the Provisioning 
Notification e-mail template are listed below:

• CC

• BCC

• recipientFullName

• initiatorFullName

• requestTitle

• userFirstName

If you use a provisioning request definition template 
to create your workflow, each token has a default 
source expression. The default expressions 
retrieve values from the workflow process (the 
process object) or from the data expression layer 
(IDVault object). You can modify these expressions 
to suit your application requirements.  

For details on building ECMA expressions, see 
Chapter 9, “Working with ECMA Expressions,” on 
page 139.
Configuring the Workflow Activities and Flow Paths 127



128 Identity Man

novdocx (E
N

U
)  01 February 2006
8.1.3  Log Activity
The Log activity is a system activity that writes messages to a log.

To log information about the state of a workflow process, the Workflow System interacts with 
Novell® Audit. During the course of its processing, a workflow can log information about various 
events that have occurred. Users can then use the Novell Audit reporting tools to look at logged data.

NOTE: During the course of workflow execution, many system events are logged that are not 
controlled by the Log Activity. For example, the Workflow System writes a message to the log 
whenever a workflow is started or stopped, or when it is approved, denied, or refused. For a 
complete list of the system events logged during workflow execution, see the chapter on setting up 
logging in the Identity Manager User Application: Administration Guide.

Properties

The Log activity has the following properties:

Table 8-6   Log Activity Properties

Data Item Mapping

Not supported with this activity.

Property Name Description

Name Provides a name for the activity.

Audit Specifies whether log messages should be sent. 
When this property is set to true, messages are 
sent to all log4j channels, including Novell Audit. 
When this property is set to false, no log messages 
are sent.

For details on logging setup and configuration, see 
the Identity Manager User Application: 
Administration Guide. 

Author Defines the author for the message. By default, the 
author is the initiator of the provisioning request.

Message Specifies an ECMA expression that defines text for 
the log message. Typically, this text indicates where 
this Log activity is being executed within the 
process and provides other information that makes 
the log easy to understand.

For details on building ECMA expressions, see 
Chapter 9, “Working with ECMA Expressions,” on 
page 139. For descriptions of the system variables 
available in a workflow, see Section 4.3.3, 
“Understanding Workflow Data,” on page 60.
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
E-mail Notification

Not supported with this activity.

8.1.4  Branch Activity
In a workflow that supports parallel processing, the Branch activity allows multiple users to act on 
different areas of the work item in parallel. After the users have completed their work, the Merge 
activity synchronizes the incoming branches in the flow. 

A workflow can have multiple Branch activities, but each Branch activity must have an associated 
Merge activity. All flow paths leading out of a Branch activity will execute.  

Properties

The Branch activity has the following property:

Table 8-7   Branch Activity Properties

Data Item Mapping

Not supported with this activity.

E-mail Notification

Not supported with this activity.

8.1.5  Merge Activity
In a workflow that supports parallel processing, the Merge activity synchronizes the incoming 
branches in the flow. The Merge activity is used in conjunction with the Branch activity, which 
allows two users to act on different areas of the work item in parallel. After the users have completed 
their work, the Merge activity synchronizes the incoming branches. 

A workflow can have multiple Branch activities, but each Branch activity must have an associated 
Merge activity. 

Properties

The Merge activity has the following property:

Table 8-8   Merge Activity Properties

Property Name Description

Name Provides a name for the activity.

Property Name Description

Name Provides a name for the activity.
Configuring the Workflow Activities and Flow Paths 129



130 Identity Man

novdocx (E
N

U
)  01 February 2006
Data item mapping

Not supported with this activity.

Email notification

Not supported with this activity.

8.1.6  Condition Activity
The Condition activity lets you add conditional logic to a workflow. This logic can be used to 
control what happens when the workflow executes. In the Condition activity, you define logic as an 
ECMA expression that evaluates to a boolean value.

Each Condition activity must have two outgoing flow paths, one that handles conditions that 
evaluate to true and another that handles conditions that evaluate to false. Optionally, a third flow 
path can be added to handle error conditions that occur if the ECMA expression evaluation fails.  

Properties

The Condition activity has the following properties:

Table 8-9   Condition Activity Properties

Property Name Description

Name Provides a name for the activity.

Condition Expression Specifies an ECMA expression that returns true or 
false. The value returned determines which flow 
path is followed after the activity has finished 
executing.

TIP: If you need to test whether two objects are 
equal in a conditional expression, you should 
normally use the == operator, rather than the 
equals() method, unless you are certain that the 
objects being compared are Java objects of the 
same type. For instance, use this expression: 

(approval_A.getAction() == 
"DENIED")

instead of this one: 

(approval_A.getAction()).equals("D
ENIED")

For details on building ECMA expressions, see 
Chapter 9, “Working with ECMA Expressions,” on 
page 139. For descriptions of the system variables 
available in a workflow, see Section 4.3.3, 
“Understanding Workflow Data,” on page 60.
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
Data Item Mapping

Not supported with this activity.

Email Notification

Not supported with this activity.

8.1.7  Finish Activity
The Finish activity marks the completion of a workflow. When the Finish activity executes, an e-
mail message is sent to notify participants that the workflow has finished.

Properties

The Finish activity has the following property:

Table 8-10   Finish activity properties

Data Item Mapping

Not supported with this activity.

E-mail Notification

To enable e-mail notification for the Finish activity, you need to specify the e-mail template to use, 
as well as source expressions for target tokens in the e-mail body. 

Table 8-11   Email notification settings for the Finish activity

Property Description

Name Provides a name for the activity.

Setting Description

Email Template Specifies the name of the e-mail template to use. 
By default, the Finish activity uses the Provisioning 
Approval Completed Notification template.

You can edit an e-mail template in Designer. For 
more information, see “Editing an e-mail template” 
on page 122. 
Configuring the Workflow Activities and Flow Paths 131



132 Identity Man

novdocx (E
N

U
)  01 February 2006
NOTE: E-mail notification is only supported when the Notify participants by email check box is 
selected on the Overview tab. 

8.1.8  Entitlement Activity
The Entitlement activity grants or revokes an entitlement for a user or other entity type.

A workflow must have at least one Entitlement or Entity activity. 

Properties

The Entitlement activity has the following properties:

Source/Target Specifies the source expressions for target tokens 
in the e-mail body. 

The list of target tokens is determined by the 
selected e-mail template. You cannot add new 
tokens,  but you can assign values to the 
predefined tokens by building your own source 
expressions. At runtime, the source expressions 
are evaluated to determine the value of each token.

The available target tokens for the Provisioning 
Approval Completed Notification e-mail template 
are listed below:

• CC

• BCC

• requestStatus

• requestSubmissionTime

• requestID

• recipientFullName

• initiatorFullName

• requestTitle

If you use a provisioning request definition template 
to create your workflow, each token has a default 
source expression. The default expressions 
retrieve values from the workflow process (the 
process object) or from the data expression layer 
(IDVault object). You can modify these expressions 
to suit your application requirements.  

For details on building ECMA expressions, see 
Chapter 9, “Working with ECMA Expressions,” on 
page 139.

Setting Description
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
Table 8-12   Entitlement Activity Properties

Data Item Mapping

To bind the data items associated with the Entitlement activity, you define mappings for several 
DirXML® attributes. 

Table 8-13   Entitlement Activity Data Item Mappings

For details on building ECMA expressions, see Chapter 9, “Working with ECMA Expressions,” on 
page 139.

E-mail Notification

Not supported with this activity.

Property Name Description

Name Provides a name for the activity.

Entity Type Specifies the target entity type for the entitlement. 

Setting Description

Source Expression Specifies a source expression for a DirXML mapping. When you click a cell in 
the Source Expression column, the ECMA expression builder displays to help 
you define your expression.

The DirXML mappings for the Entitlement are described below:

• dn is the distinguished name for the recipient of the entitlement.

• DirXML-Entitlement-DN is the distinguished name of the entitlement to 
execute. For example, the entitlement might be identified as follows: 

'CN=Groups,CN=GroupEntitlementLoopback,CN=TestDr
ivers,O=novell'

You can use the ECMA expression builder’s ECMAScript Variable panel to 
see a list of all the entitlements in the driver. To select an entitlement, 
double-click the full distinguished name of the entitlement.

• DirXML-Entitlement-Action indicates whether the entitlement is granted or 
revoked. If the operation grants the entitlement, the value must be 1;  if it 
revokes the entitlement, the value must be 0.

• DirXML-Entitlement-Parameter specifies a parameter required by the 
entitlement driver.  For example, if the entitlement operation grants access 
to the Sales group, the parameter might specify the group as follows:

'\\MYTREE\\novell\\idmsample-doc\\groups\\Sales'

• DirXML-Entitlement-MultiValueAllowed indicates whether the entitlement 
supports multiple values. If it supports multiple values, the value must be 
true; otherwise, it must be false.
Configuring the Workflow Activities and Flow Paths 133



134 Identity Man

novdocx (E
N

U
)  01 February 2006
8.1.9  Entity Activity
The Entity activity updates an entity in the Identity Vault. You can use this activity to create, modify, 
or delete attributes on an entity. You can also use this activity to create or delete an entity.

A workflow must have at least one Entitlement or Entity activity. 

Properties

The Entity activity has the following properties:

Table 8-14   Entity Activity Properties

Data Item Mapping

To bind the data items associated with the Entity activity, you define mappings for the attributes 
associated with the target entity type.

Property Name Description

Name Provides a name for the activity.

Entity Type Specifies the target entity type. 

Operation Indicates what kind of operation will be performed 
on the target entity:

• Create/Modify

• Delete attributes/values

• Delete entity

To create or modify attributes of an entity or to 
create a new entity, select create/modify. To delete 
attributes of an entity, select delete.

To delete an entity, select delete object.
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
Table 8-15   Entity Activity Data Item Mappings

Email notification

Not supported with this activity.

8.2  Configuring Flow Paths
After you’ve added a flow path to a workflow diagram, you can specify the path type. For details on 
adding flow paths to a workflow, see Section 7.4, “Adding the Flow Paths,” on page 117.

Setting Description

Entity dn Identifies the entity that is the target of the operation. The 
default value is recipient. 

To create a new object, specify a distinguished name that 
does not yet exist.

TIP: The output of the DNMaker control can be used as input 
for the Entity dn value. The DNMaker control constructs the 
DN by allowing the user to enter the naming attribute in a text 
field and presenting an interface for picking a container. Once 
this data has been captured in a request form, the output can 
be mapped to a variable in the flowdata object. In the 
definition for the Entity activity, this flowdata variable can be 
accessed in the Entity dn setting with an expression such as:    

flowdata.get(‘groupdn’);

For details on using the DNMaker control, see Section 6.5.6, 
“DNMaker,” on page 93. 

Modify Type Indicates how the mapping should be performed for an 
attribute. The choices are: 

• Append Value

• Replace Value

• Replace All Values

For many attributes, Replace Value is the only option that 
makes sense; therefore, this option is selected automatically 
and cannot be changed.

You must specify the Modify Type setting before specifying 
the Modify Value Expression setting.

Modify Value Expression Specifies a source expression for an attribute. When you click 
a cell in the Modify Value Expression column, the ECMA 
expression builder displays to help you define your 
expression. The list of attributes available varies depending 
on which entity type was selected on the Properties tab.

NOTE: The cells in the Target Attribute column are not 
editable.
Configuring the Workflow Activities and Flow Paths 135



136 Identity Man

novdocx (E
N

U
)  01 February 2006
To configure a flow path:

1 Click the flow path in the workflow diagram.
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
2 Set the flow type on the Properties tab by selecting one of the options in the Type drop-down 
list.  

The flow path types are described below:

Flow Type Description

forward Forwards control to the next activity in a workflow.

The forward flow path is available after all activities except:

• Approval

• Condition

• Finish

approved Determines what happens when a user approves a request. 

The approved flow path is valid only after the Approval activity. 

denied Determines what happens when a user denies a request. 

The denied flow path is valid only after the Approval activity. 

refused Determines what happens when a user refuses a request. 

The refused flow path is valid only after the Approval activity. 

timedout Determines what happens when an Approval activity times out because 
the user did not respond. 

The timedout flow path is valid only after the Approval activity. 

error Determines what happens when an Approval or Condition activity 
terminates with an error. 

The error flow path is valid only after the Approval and Condition 
activities. 

true Determines what happens when a conditional expression evaluates to 
true.

The true flow path is valid only after the Condition activity.
Configuring the Workflow Activities and Flow Paths 137



138 Identity Man

novdocx (E
N

U
)  01 February 2006
If the Properties tab is not displayed, right-click the flow path in the workflow diagram and 
select Show Properties.

false Determines what happens when a conditional expression evaluates to 
false.

The false flow path is valid only after the Condition activity.

Flow Type Description
ager User Application: Design Guide



9
novdocx (E

N
U

)  01 February 2006
9Working with ECMA Expressions

This section provides details on using the ECMA expression builder. Topics include: 

• Section 9.1, “About the ECMA Expression Builder,” on page 139
• Section 9.2, “ECMAScript Examples,” on page 147
• Section 9.3, “ECMAScript API,” on page 149

9.1  About the ECMA Expression Builder
Designer incorporates an ECMAScript interpreter and expression editor, which allows you create 
script expressions that refer to and modify workflow data. For example, you can use scripting to:

• Create new data items needed in a workflow under the flowdata element.
• Perform basic string, date, math, relational, concatenation, and logical operations on data.
• Call standard or custom Java classes for more sophisticated data operations.
• Use expressions for runtime control to: 

• Modify or override form field labels.
• Initialize form field data.
• Customize e-mail addresses and content.
• Set entitlement grant/revoke rights and parameters. 
• Evaluate any past activity data to conditionally follow a work flow path using the 

Condition activity.
• Write different log messages that are conditionally triggered using a single Log activity.

This section discusses some of the techniques and capabilities applicable to the use of scripting.

NOTE: To define expressions for a workflow, you need to understand how workflow activities are 
configured. In addition, you need to understand the various types of data that are available within a 
workflow. For details on configuring workflow activities, see Section 8.1, “Configuring Activities,” 
on page 119. For descriptions of the system variables available in a workflow, see Section 4.3.3, 
“Understanding Workflow Data,” on page 60.

9.1.1  About ECMAScript
ECMAScript is an object-oriented scripting language for manipulating objects in a host environment 
(in this case, Designer). ECMAScript (ECMA-262 and ISO/IEC 16262) is the standards-based 
scripting language underpinning both JavaScript* (Netscape*) and JScript* (Microsoft*). It is 
designed to complement and extend existing functionality in a host environment such as Designer’s 
graphical user interface. As a host environment, Designer provides ECMAScript access to various 
objects for processing. ECMAScript in turn provides a Java-like language that can operate on those 
objects.

The extensibility of ECMAScript, and its powerful string-handling tools (including regular 
expressions) make it an ideal language to extend the functionality of Designer. 
Working with ECMA Expressions 139



140 Identity Man

novdocx (E
N

U
)  01 February 2006
NOTE: You can find detailed information about ECMAScript at the European Computer 
Manufacturers Association (ECMA) Web site (http://www.ecma-international.org).

9.1.2  ECMAScript Capabilities
In addition to enabling you to incorporate finely-tuned custom logic into your workflow, scripting 
gives you a great deal of flexibility in manipulating data, because of the various DOM- and XPath-
related objects and methods available in the ECMAScript extensions incorporated into the 
Expression Builder. 

The usefulness of ECMAScript is especially apparent when dealing with in-memory DOMs. The 
ECMA expression builder constructs XML documents as in-memory objects according to the W3C 
DOM Level 2 specification. The DOM-2 specification, in turn, defines an ECMAScript binding (see 
the W3C Recommendation ECMAScript Language Binding (http://www.w3.org/TR/DOM-Level-2-
Core/ecma-script-binding.html), with numerous methods and properties that provide ready access to 
DOM-tree contents. The flowdata DOM is recognized by the ECMA expression builder, and any of 
the W3C-defined ECMAScript extensions that apply to DOMs can be used.

ECMAScript also provides bridges to other expression languages such as XPath. This allows you to 
use XPath syntax on a DOM to address various elements within its document structure.

9.1.3  Using the ECMA Expression Builder
Designer provides access to ECMAScript in various places in the User Application design tools. The 
most common form of access is through the Expression Builder, which can be displayed whenever 
you see this button:
ager User Application: Design Guide

http://www.ecma-international.org
http://www.ecma-international.org
http://www.w3.org/TR/DOM-Level-2-Core/ecma-script-binding.html


novdocx (E
N

U
)  01 February 2006
The button can be found in Designer displays, such as the Properties for a Condition activity, or the 
Data Item Mapping view for an Entitlement Provisioning activity. Click the button to display the 
ECMA expression builder.

Figure 9-1   ECMA Expression Builder

The ECMA expression builder provides pick lists of available objects, methods, and properties in 
the top panes (all of which are resizable), with rollover tool tips to help you build ECMAScript 
statements. Double-clicking any item in any pick list causes a corresponding ECMAScript statement 
to appear in the edit pane in the lower portion of the window. In the figure, the process pick list has 
been selected in the ECMAScript Variables pane, and the name variable has been double-clicked. 
The ECMAScript expression that can access the contents of this workflow variable is inserted 
automatically in the edit pane.

This section includes the following topics:

• “Checking Syntax” on page 141
• “Selecting a DN” on page 142
• “ECMAScript Variables” on page 142
• “Functions/Methods” on page 142
• “ECMAScript Operators” on page 143
• “VDX Expr” on page 145

Checking Syntax

The ECMA expression builder includes a Check Syntax button. Clicking the button causes the 
ECMAScript interpreter to check the syntax of the expression. If there are problems involving 
ECMAScript syntax, an error message is displayed. You can then edit the expression and validate 
again as needed. Validation is optional.
Working with ECMA Expressions 141



142 Identity Man

novdocx (E
N

U
)  01 February 2006
NOTE: The syntax checking process does not execute your expression. It just checks syntax. 
Because ECMAScript is an interpreted language, syntax checking doesn’t check any runtime-
dependent expressions, other than to see if they conform to valid ECMAScript syntax.

Selecting a DN

The ECMA expression builder also includes an Identity Vault button that is displayed when you are 
working with activities (for example, Start, Approval, and Entitlement activities) that may require 
selecting a dn from the Identity Vault.

Figure 9-2   Identity Vault Button

The Identity Vault button displays a dialog box that you use to navigate the Identity Vault to select a 
dn. The Identity Vault button is grayed (to indicate that it is unavailable) if you are not connected to 
the Identity Vault.

ECMAScript Variables

This pane displays the names of variables that are relevant in the current context. For example, if 
you are working in the provisioning request definition editor, you see system variables for the 
current workflow process, system variables for the current activity, and flowdata variables created in 
the current workflow. Double-click the name of a variable to insert that variable into your script. For 
descriptions of the system variables available in a workflow, see Section 4.3.3, “Understanding 
Workflow Data,” on page 60.

The ECMA expression builder provides two methods for reading flowdata variables.

Table 9-1   Methods for Reading Flowdata Variables

Functions/Methods

For a description of the functions and methods available in the ECMA expression builder, see 
Section 9.3, “ECMAScript API,” on page 149.

Method Description

flowdata.get(variable-name) Returns a string as the node value for a variable 
(representing an XPath expression) in the workflow 
document. 

flowdata.getObject(variable-name) Returns an object as a node value for a variable 
(representing an XPath expression) in the workflow 
document. Use this method to retrieve the values of 
multivalued controls.
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
ECMAScript Operators

The following tables provide descriptions of the operators supported by the ECMA expression 
builder.

Table 9-2   Math 

Table 9-3   Assignment 

Operator Description

+ Add Returns the sum of two numerical values (either literals or 
variables).

- Subtract Subtracts one number from another 

 * Multiply Returns the product of two numerical values (either literals or 
variables).

/ Divide Divides one number by another.

Operator  Description

 = Assignment Assigns value of right operand to the left operand.

+= Add to this Adds the left and right operands and assigns the result to the 
left operand. For example, a += b is the same as a = a + b.

-= Subtract from this  Subtracts the right operand from the left operand and assigns 
the result to the left operand. For example, a -= b is the same 
as a = a - b.

 *= Multiply to this Multiplies the two operands and assigns the result to the left 
operand. For example, a *= b    is the same as a = a * b.

/= Divide this to Divides the left operand by the right operand and assigns the 
result to the left operand. For example, a /= b is the same as a 
= a / b.

%= Modulus Divides the left operand by the right operand and assigns the 
remainder to the left operand. For example, a %= b is the same 
as a = a % b.

&= Apply bitwise AND to this Performs bitwise AND on operands and assigns the result to 
the left operand. For example, a &= b is the same as a = a & b.

|= Apply bitwise OR to this Performs bitwise OR on operands and assigns the result to the 
left operand. For example, a |= b is the same as a = a | b.

 <<= Apply bitwise left shift to this Performs bitwise left shift on operands and assigns the result to 
the left operand. For example, a <<= b is the same as a = a << 
b. 

 >>= Apply bitwise signed right shift to 
this

 Performs bitwise right shift on operands and assigns the result 
to the left operand. For example, a >>= b is the same as a = a 
>> b. 
Working with ECMA Expressions 143



144 Identity Man

novdocx (E
N

U
)  01 February 2006
Table 9-4   Other

Table 9-5   Relational

 >>>= Apply bitwise unsigned right shift 
to this

Performs bitwise unsigned right shift on operands and assigns 
the result to the left operand. For example, a >>>= b is the 
same as a = a> >> b. 

Operator  Description

% Modulus Divides the left operand by the right operand and returns the 
integer remainder. 

++ Autoincrement Increments the operand by one (can be used before or after the 
operand).

-- Autodecrement Decrements the operand by one (can be used before or after 
the operand).

~ Bitwise NOT Inverts the bits of its operand.

& Bitwise AND Returns a 1 in each bit position for which the corresponding bits 
of both operands are ones.

| Bitwise OR Returns a 1 in each bit position for which the corresponding bits 
of either or both operands are ones.

^ Bitwise XOR Returns a 1 in each bit position for which the corresponding bits 
of either but not both operands are ones.

<< Bitwise left shift Shifts the digits of the binary representation of the first operand 
to the left by the number of places specified by the second 
operand. The spaces created to the right are filled in by zeros, 
and any digits shifted to the left are discarded. 

>> Signed bitwise right shift Shifts the digits of the binary representation of the first operand 
to the right by the number of places specified by the second 
operand, discarding any digits shifted to the right. The copies of 
the leftmost bit are added on from the left, preserving the sign 
of the number.

>>> Unsigned bitwise right shift Shifts the binary representation of the first operand to the right 
by the number of places specified by the second operand. Bits 
shifted to the right are discarded and zeroes are added to the 
left. 

 Operator Description 

== Equal Assigns the value of the right operand to the left operand.

!= Not Equal Returns a Boolean true if both the operands are not equal.

< Less than Returns true if the left operand is less than the right operand.

> Greater than Returns true if the left operand is greater than the right 
operand.

Operator  Description
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
Table 9-6   Logical

Table 9-7   String

VDX Expr 

This pane allows you to insert Entity definitions (see Section 3.2, “Working with Entities and 
Attributes,” on page 24) that are defined in the Identity Vault into your scripts. Both system and 
user-defined entities are available. The format of an expression to retrieve data from the Identity 
Vault is:

IDVault.get(dn, object-type, attribute)

For example if you want the recipient's manager for a data item, you would open the User node in 
the VDX Expr Panel and double-click the Manager item, which inserts IDVault.get({ enter 
dn expression here }, 'user', 'manager'). This expression evaluates to the string 
for the manager's dn (LDAP distinguished name).

9.1.4  About Java Integration
Java is integrated into the workflow process through the ECMA expression builder, which provides 
a bridge to external Java objects. To access a Java class through the ECMA expression builder, the 
class must be in the classpath of the workflow engine. To accomplish this, you must add the Java 
class to the WEB-INF\lib directory in the user application WAR file (IDM.war). 

<= Less than or equal Returns true if the left operand is less than or equal to the right 
operand.

>= Greater than or equal Returns true if the left operand is greater than or equal to the 
right operand.

 Operator Description

&& AND Returns a Boolean true if both the operands are true; 
otherwise, returns false.

|| OR Returns true if either operand is true. Returns false when both 
operands are false.

! NOT Returns false if its single operand can be converted to true (or 
if it is a non-Boolean value). Returns true if its operand can be 
converted to false. 

Operator Description

 + Concatenate  Concatenates two string operands, returning a string that is 
the union of the two operand strings.

 Operator Description 
Working with ECMA Expressions 145



146 Identity Man

novdocx (E
N

U
)  01 February 2006
Adding the Java Class to the User Application WAR

1 Use a WAR file utility to open the IDM.war file. The IDM.war file is located in the 
application server \server\IDM\deploy directory.

2 Copy the Java class into the WEB-INF\lib directory.

Accessing Java from ECMAScript

To access a Java class, create a function inline in the ECMA expression builder. Instantiate the 
function, then within the function, using ECMAScript syntax, call your Java methods. The 
following example creates a vector:

function list() { v=new java.util.Vector(); v.add('{Enter Item 1}'); 
v.add('{Enter Item 2}'); return v; };  list();

To access a custom Java class, you must preface the class name with “Packages”. For example:

v = new Packages.com.novell.myClass("value");

9.1.5  About XPath Integration
A provisioning request definition workflow supports a special object called flowdata (see Section 
4.3.3, “Understanding Workflow Data,” on page 60). The flowdata object is a DOM (an XML 
document constructed as an object in memory). You can use XPath syntax to navigate the structure 
of the flowdata DOM, and add, modify or delete elements and contents.

To add an object to flowdata:

To get an object from flowdata:

For information about the flowdata.get() and flowdata.getObject() methods, see Table 9-1 on 
page 142.

9.1.6  Performance Considerations
ECMAScript is an interpreted language, which means that every line of script in an expression must 
be parsed and translated to the Java equivalent before it can be executed. This adds considerable 
overhead to the code and results in overall slower execution of scripts than pure Java. Before using 
ECMAScript, you should think about the possible performance ramifications. 

Syntax Examples

flowdata.parent/child[1]

flowdata.reason

Syntax Examples

flowdata.getObject('parent/
child[1]')

flowdata.get('reason')
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
The following guidelines will help you to achieve optimal performance in your components and 
services:

• Consider whether a task can be accomplished using a custom Java class (which you can call 
from ECMAScript). 

• When you need the fine control offered by scripting, use ECMAScript.

Bear in mind that the key to good performance is always a good implementation (for example, 
choosing the correct algorithm, attention to reuse of variables). Good code written in a slow 
language often outperforms bad code written in a fast language. Writing something in Java does not 
guarantee that it will be faster than the equivalent logic written in ECMAScript, because Java has its 
own overhead constraints. For example, constructor call-chains (when you call a constructor for a 
Java object that inherits from other objects, the constructors for all ancestral objects are also called).

ECMAScript’s core objects (String, Array, Date, etc.) have many built-in convenience methods for 
data manipulation, formatting, parsing, sorting, and conversion of strings and arrays. These methods 
are implemented in highly optimized Java code inside the interpreter. It is to your advantage to use 
these methods whenever possible, rather than create customized data-parsing or formatting 
functions. For example, suppose you want to break a long string into substrings, based on the 
occurrence of a delimiter. You could create a loop that uses the String methods indexOf() and 
substring() to parse out the substrings and assign them to slots in an array. But this would be a very 
inefficient technique when you could simply do:

var myArrayOfSubstrings = bigString.split( delimiter );

The ECMAScript String method split() breaks a string into an array of substrings based on whatever 
delimiter value you supply. It executes in native Java and requires the interpreter to interpret only 
one line of script. Trying to do the same thing with a loop that iteratively calls indexOf() and 
substring() would involve a great deal of needless interpreter and function-call overhead, with the 
accompanying performance hit.

Skillful use of built-in ECMAScript methods pays worthwhile performance dividends. If you use 
scripts extensively, take time to learn about the fine points of the ECMAScript language, because 
this can help you eliminate performance bottlenecks.

9.2  ECMAScript Examples
This section provides examples of common operations that you can perform using ECMAScript.

9.2.1  General Examples
This section presents examples that illustrate basic scripting techniques.

Using a Function

To create a function in the ECMA expression builder, create the function inline:

function abc() { var v1 = "" ; for ( i = 0; i < 9 ; i++) v1 += "$"; 
return v1; } ; abc();

9.2.2  Flowdata Examples
This section presents scripting examples that show the use of the flowdata object. 
Working with ECMA Expressions 147



148 Identity Man

novdocx (E
N

U
)  01 February 2006
Getting the Value of a Flowdata Variable

In the previous example, you entered information about an approval status into the flowdata by 
creating an XML element named start_reason with a child element named approval_reason and an 
attribute named ApprovalStatus. Use the following expression, in a pre-activity map, to retrieve the 
value of the ApprovalStatus attribute:

flowdata.get('start_reason/approval_reason/@ApprovalStatus')

You can enter this expression by expanding the flowdata nodes in the ECMAScript Variables pane 
of the ECMA expression builder, and double-clicking the ApprovalStatus attribute.

Figure 9-3   Selecting an Attribute

Creating an XML Element With Child Element and Add it to the Flowdata

In the previous example, you retrieved user input to the form field ApprovalStatus. Now we want to 
add this information to the flowdata so that it can be used by a downstream activity. Use the 
following expression in a post-activity map:

flowdata.start_reason/approval_reason/@ApprovalStatus

9.2.3  Form Control Examples
This section presents several examples of scripting with form controls. 

Retrieving the Value of a Form Field

For example, create a form field named ApprovalStatus. To get the value of this field, use the 
following expression in a pre-activity map:

process.get('ApprovalStatus')

You can enter this expression by opening the Process node in the ECMAScript Variables pane of the 
ECMA expression builder, and double-clicking ApprovalStatus.

Getting an Individual Value From a Multivalued Control

To get an individual value from a multivalued control (for example, a check box named colors), you 
first need to get the control into the flowdata. In the post-activity mapping for an upstream activity, 
use:

flowdata.colors

To get a value from colors (for example, the first value), use the following expression on a 
downstream activity:

flowdata.getObject(‘colors[1]’)
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
Populating a List or Checkbox Item

To populate list controls (for example, PickList or MVEditor) or the MVCheckbox control using 
script, use an expression like this in the pre-activity mapping:  

function list() {var l=new 
java.util.Vector();l.add(‘Blue’);l.add(‘Red’); l.add(‘Green’); return 
l;} list();

9.2.4  Error Handling Examples 
This section presents scripting examples that show how to deal with errors during runtime 
execution.

Handling Errors

The approach to handling errors differs between pre-activity and post-activity maps. For post-
activity maps, you can use an error flow path from an Approval or Condition activity to catch errors 
that occur during post-activity mapping. This approach doesn’t work for pre-activity maps, because 
any errors that occur in the process of getting data happen before the form is displayed to the user. 
When this occurs, an error message similar to the following appears in place of form controls in the 
bottom portion of forms displayed to the user:

XXXX FAILED to generate form due to: No data items are available!

In this scenario, you can use a try-catch statement in a source expression for a field in a pre-activity 
map:

function getTheData() 

{

   var theData;

   try {

      theData = IDVault.get( 'cn=jsmith,ou=users,ou=idmsample1,o=acme' 
, 'user', 'FirstName') + ' ' + IDVault.get ( 
'cn=jsmith,ou=users,ou=idmsample1,o=acme'  , 'user', 'LastName'); 

    }

   catch (error) { theData = 'Error retrieving data.'; }

   return theData;

};

getTheData();

9.3  ECMAScript API
This section includes the following topics:

1. Section 9.3.1, “Array Object,” on page 150
Working with ECMA Expressions 149



150 Identity Man

novdocx (E
N

U
)  01 February 2006
2. Section 9.3.2, “Boolean Object,” on page 151
3. Section 9.3.3, “Date Object,” on page 151
4. Section 9.3.4, “Function Object,” on page 156
5. Section 9.3.5, “Global,” on page 157
6. Section 9.3.6, “Math Object,” on page 158
7. Section 9.3.7, “Number Object,” on page 162
8. Section 9.3.8, “Object,” on page 164
9. Section 9.3.9, “String Object,” on page 164

10. Section 9.3.10, “Global Functions,” on page 167

9.3.1  Array Object
Lets you work with arrays.

Array(item0, item1, . . .)

Array()

Constructor

join(separator)

Array join(separator)

The elements of the array are converted to strings, and these strings are then concatenated, separated 
by occurrences of the separator. If no separator is provided, a single comma is used as the separator.

length

Array length The length property of this Array object

reverse()

reverse()

The elements of the array are rearranged so as to reverse their order. The operation is done in-place, 
meaning that the original array is modified.

sort(comparefn)

Array sort()

The elements of this array are sorted. The sort is not necessarily stable. If comparefn is supplied, it 
should be a function that accepts two arguments x and y and returns a negative value if x < y, zero if 
x = y, or a positive value if x > y.

toString()

Array toString()
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
The elements of this object are converted to strings, and these strings are then concatenated, 
separated by comma characters. The result is the same as if the built-in join method were invoked 
for this object with no argument.

9.3.2  Boolean Object
There is seldom a need to use the object version of Boolean in place of true/false literal values. This 
object is provided for completeness. It is specified in ECMA-262.

Boolean()

Boolean( [true/false] )

Constructor. Optionally takes one of true or false as an argument.

toString()

Boolean toString()

If this Boolean value is true, then the string “true” is returned. Otherwise, this Boolean value must 
be false, and the string “false” is returned.

valueOf()

Boolean valueOf()

Returns this Boolean value.

9.3.3  Date Object
Lets you work with dates and times.

Date()

Date()

The constructor of the Date can have various signatures. The date constructor format can accept up 
to 7 parameters. Here is the format: new Date(year,month,date,hrs,mins,secs,ms)

getDate()

getDate()

Returns DateFromTime(LocalTime(t)).

getDay()

getDay()

Returns WeekDay(LocalTime(t)). The days of week are numbered from 0 -6. The number 0 
represents Sunday and 6 represents Saturday.
Working with ECMA Expressions 151



152 Identity Man

novdocx (E
N

U
)  01 February 2006
getFullYear()

getFullYear()

Returns YearFromTime(LocalTime(t)).

getHours()

getHours()

Returns HourFromTime(LocalTime(t)).

getMilliseconds()

getMilliseconds()

Returns msFromTime(LocalTime(t)).

getMinutes()

getMinutes()

Returns MinFromTime(LocalTime(t)).

getMonth()

getMonth()

Returns MonthFromTime(LocalTime(t)). The months are returned as an integer value from 0-11. 
The number 0 represents January and 11 represents December.

getSeconds()

getSeconds()

Returns SecFromTime(LocalTime(t)).

getTime()

getTime()

Returns a number, which is this time value. The number value is a millisecond representation of the 
specified Date object.

getTimezoneOffset()

getTimezoneOffset()

Returns (t * LocalTime(t)) / msPerMinute. The difference is in minutes between (GMT) and local 
time.

getUTCDate()

getUTCDate()

Returns DateFromTime(t).
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
getUTCDay()

getUTCDay()

Returns WeekDay(t). The days of week are numbered from 0 -6. The number 0 represents Sunday 
and 6 represents Saturday.

getUTCFullYear()

getUTCFullYear()

Returns YearFromTime(t). There is no getYearUTC method, so this method must be used to obtain a 
year from an UTC Date object.

getUTCHours()

getUTCHours()

Returns HourFromTime(t).

getUTCMilliseconds()

getUTCMilliseconds()

Returns msFromTime(t).

getUTCMinutes()

getUTCMinutes()

Returns MinFromTime(t).

getUTCSeconds()

getUTCSeconds()

Returns SecFromTime(t).

getYear()

getYear()

Returns YearFromTime(LocalTime(t))—1900. \The function getFullYear() is preferred for nearly all 
purposes, because it avoids the year 2000 problem.

parse(string)

parse(string)

Applies the ToString operator to its argument and interprets the resulting string as a date; it returns a 
number, the UTC time value corresponding to the date. The string is interpreted as a local time, a 
UTC time, or a time in some other time zone, depending on the contents of the string.

setDate(date)

setDate(date)
Working with ECMA Expressions 153



154 Identity Man

novdocx (E
N

U
)  01 February 2006
Sets the day of the month, using an integer from 1 to 31, for the supplied date according to local 
time. 

setFullYear(year[,mon[,date]])

setFullYear(year[,mon[,date]])

Sets the [Value] property of this value to UTC ECMAScript.Date. Returns the value of the [Value] 
property of this value.

setHours(hour[,min[,sec[,ms]]])

setHours(hour[,min[,sec[,ms]]])

Sets the [Value] property of this value to UTC time. Returns the value of the [Value] property of this 
value. When entering a value for hours, an hour value greater than 23 is added to the exisitng hour 
value, not set.

setMilliseconds(ms)

setMilliseconds(ms)

Computes UTC from argument and sets the [Value] property of this value to 
TimeClip(calculatedUTCtime). Returns the value of the [Value] property of this value.

setMinutes(min[,sec[,ms]])

setMinutes(min[,sec[,ms]])

Sets the [Value] property of this value to UTC time. Returns the value of the [Value] property of this 
value.

setMonth(mon[,date])

setMonth(mon[,date])

Sets the [Value] property of this value to UTC ECMAScript.Date. Returns the value of the [Value] 
property of this value. If the [Value] property of this exceeds 11, the [Value] property for this is 
added to the existing month, not set.

setSeconds(sec [, ms ] )

setSeconds(sec [, ms ] )

Sets the [Value] property of this value to UTC time. Returns the value of the [Value] property of this 
value.

setTime(time)

setTime(time)

Sets the [Value] property of this value to TimeClip(time). Returns the value of the [Value] property 
of this value. The [Value] property of this is a millisecond value that is converted by the 
TimeClip(time) method.
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
setUTCDate(date)

setUTCDate(date)

Sets the [Value] property of this value to ECMAScript.Date. Returns the value of the [Value] 
property of this value. If the [Value] property of this exceeds 30 or 31, the [Value] of this is added to 
the existing date value, not set.

setUTCFullYear(year[,mon[,date]])

setUTCFullYear(year[,mon[,date]])

Sets the [Value] property of this value to ECMAScript.Date. Returns the value of the [Value] 
property of this value.

setUTCHours(min[,sec[,ms]])

setUTCHours(min[,sec[,ms]])

Sets the [Value] property of this value to time. Returns the value of the [Value] property of this 
value. When entering a value for hours, an hour value greater than 23 is added to the exisitng hour 
value, not set.

setUTCMilliseconds(ms)

setUTCMilliseconds(ms)

Sets the [Value] property of this value to time and returns the value of the [Value] property of this 
value.

setUTCMinutes(min[,sec[,ms]])

setUTCMinutes(min[,sec[,ms]])

Sets the [Value] property of this value to time. Returns the value of the [Value] property of this 
value.

setUTCMonth(mon[,date])

setUTCMonth(mon[,date])

Sets the [Value] property of this value to ECMAScript.Date. Returns the value of the [Value] 
property of this value. If the [Value] property of this exceeds 11, the [Value] property for this is 
added to the existing month, not set

setUTCSeconds(sec [, ms ] )

setUTCSeconds(sec [, ms ] )

Sets the [Value] property of this value to time. Returns the value of the [Value] property of this 
value.

setYear(year)

setYear(year)
Working with ECMA Expressions 155



156 Identity Man

novdocx (E
N

U
)  01 February 2006
Sets the [Value] property of this value to UTC ECMAScript.Date. Returns the value of the [Value] 
property of this value. 

toLocaleString()

toLocaleString()

Returns a string value. The contents of the string are implementation-dependent, but are intended to 
represent the Date in a convenient, human-readable form appropriate to the geographic or cultural 
locale.

toString()

toString()

Returns this string value. The contents of the string are implementation-dependent, but are intended 
to represent the Date in a convenient, human-readable form in the current time zone.

toUTCString()

toUTCString()

Returns a string value. The contents of the string are implementation-dependent, but are intended to 
represent the Date in a convenient, human-readable form in UTC.

UTC()

UTC()

This method can accept number of different arguments. The UTC function differs from the Date 
constructor in two ways: it returns a time value as a number, rather than creating a Date object, and 
it interprets the arguments in UTC rather than as local time.

valueOf()

valueOf()

Returns a number, which is this time value. The valueOf() function is not generic, so it generates a 
runtime error if the object is not a Date object.

9.3.4  Function Object
Used to work with the Function Object.

Function(p1, p2, . . . , pn, body)

Function Constructor. The last argument specifies the body (executable code) of a function; any 
preceding arguments specify formal parameter.

length

The value of the length property is usually an integer that indicates the “typical” number of 
arguments expected by the function. However, the language permits the function to be invoked with 
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
some other number of arguments. The behavior of a function when invoked on a number of 
arguments other than the number specified by its length property depends on the function.

toString()

String toString()

An implementation-dependent representation of the function is returned. This representation has the 
syntax of a FunctionDeclaration. The use and placement of whitespace, line terminators, and 
semicolons within the representation string is implementation-dependent.

9.3.5  Global
ECMAScript provides certain “top-level” methods and properties, so-called because they are 
available from any context: They are not parented by any particular object. 

escape(string)

String escape()

The escape function computes a new, URL-legal version of a string in which certain URL-illegal 
characters have been replaced by hexadecimal escape sequences.

eval(x)

eval()

When the eval function is called with one argument x, the following steps are taken:

1. If x is not a string value, return x. 
2. Parse x as an ECMAScript Program. If the parse fails, generate a runtime error.
3. Evaluate the program from Step 2.
4. If Result(3) is “normal” completion after value “V”, return the value V. 
5. Return undefined.

Infinity

A special primitive value representing positive infinity.

isFinite(number)

isFinite()

Applies Number( ) to its argument, then returns false if the result is NaN, +*, or **; otherwise, 
returns true.

isNaN( value )

isNan()

Returns true if the argument evaluates to NaN (“not a number”); otherwise, returns false.
Working with ECMA Expressions 157



158 Identity Man

novdocx (E
N

U
)  01 February 2006
NOTE: Any form of logical comparison of NaN against anything else, including itself, returns 
false. Use isNaN( ) to determine whether a variable (or a return value, etc.) is equal to NaN.

NaN

The primitive value NaN represents the set of IEEE standard “Not-a-Number” values.

parseFloat(string)

number parseFloat()

Produces a floating-point number by interpretation of the contents of the string argument. If the 
string cannot be converted to a number, the special value NaN (see “NaN” on page 158) is returned.

parseInt(string, radix)

number parseInt()

Produces an integer value dictated by interpretation of the contents of the string argument, according 
to the specified radix. 

unescape(string)

String unescape()

Computes a new version of a string value in which escape sequences that might be introduced by the 
escape function are replaced with the character they represent.

9.3.6  Math Object
All of the Math object’s properties and methods are static, which means you should prepend “Math” 
to the property or method name in your code. For example, use “Math.PI,” not simply “PI.” 

E

The number value for e, the base of the natural logarithms, which is approximately 
2.7182818284590452354.

LN10

The number value for the natural logarithm of 10, which is approximately 2.302585092994046.

LN2

The number value for the natural logarithm of 2, which is approximately 0.6931471805599453.

LOG2E

The number value for the base-2 logarithm of e, the base of the natural logarithms; this value is 
approximately 1.4426950408889634. The value of Math.LOG2E is approximately the reciprocal of 
the value of Math.LN2.
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
LOG10E

The number value for the base-10 logarithm of e, the base of the natural logarithms; this value is 
approximately 0.4342944819032518. The value of Math.LOG10E is approximately the reciprocal 
of the value of Math.LN10.

PI

The number value for *, the ratio of the circumference of a circle to its diameter, which is 
approximately 3.14159265358979323846.

SQRT1.2

The number value for the square root of 1/2, which is approximately 0.7071067811865476. The 
value of Math.SQRT1_2 is approximately the reciprocal of the value of Math.SQRT2.

SQRT2

The number value for the square root of 2, which is approximately 1.4142135623730951.

abs(x)

Number abs(x)

Returns the absolute value of the argument x; in general, the result has the same magnitude as the 
argument but has positive sign. The input value x can be any number value. 

Example: 

Math.abs(-123.23940) = 123.23940

acos(x)

Number acos(x)

This function returns an implementation-dependent approximation to the arc cosine of the argument. 
The result is expressed in radians and ranges from +0 to +PI(3.14159...)radians. The input value x 
must be a number between -1.0 and 1.0:

Example: 

 PI/4 = 0.785 Math.acos(0.785) = 0.6681001997570769

asin(x)

Number asin(x)

This function returns an implementation-dependent approximation to the arc sine of the argument. 
The result is expressed in radians and ranges from -PI/2 to +PI/2. The input value x must be a 
number between -1.0 and 1.0. 

Example: 

PI/4 = 0.785 Math.asin(0.785) = 0.9026961270378197
Working with ECMA Expressions 159



160 Identity Man

novdocx (E
N

U
)  01 February 2006
atan(x)

Number atan(x)

This function returns an implementation-dependent approximation to the arc tangent of the 
argument. The result is expressed in radians and ranges from -PI/2 to +PI/2. The input value x can be 
any number. 

Example: 

3PI/4 = 2.355 Math.atan(2.355) = 1.169240427545485

atan2(x,y)

Number atan2(x,y)

This function returns an implementation-dependent approximation to the arc tangent of the quotient 
y/x of the arguments y and x, where the signs of the arguments are used to determine the quadrant of 
the result. It is intentional and traditional for the two-argument arc tangent function that the 
argument named y be first and the argument named x be second. The result is expressed in radians 
and ranges from -PI to +PI. The input value x is the x-coordinate of the point. The input value y is 
the y-coordinate of the point. 

Example: 

PI/2 = 1.57 Math.atan2(1.57,-1.57) = 2.356194490192345

ceil(x)

Number ceil(x)

This function returns the smallest (closest to -infinity) number value that is not less than the 
argument and is equal to a mathematical integer. If the argument is already an integer, the result is 
the argument itself. The input value x can be any numeric value or expression. The Math.ceil(x) 
function property is the same as -Math.floor(-x). Example: 

Example: 

Math.ceil(123.78457) = 123

cos(x)

Number cos(x)

This function returns an implementation-dependent approximation to the cosine of the argument. 
The argument must be expressed in radians. 

exp(x)

Number exp(x)

This function returns an implementation-dependent approximation to the exponential function of the 
argument (e raised to the power of the argument, where e is the base of the natural logarithms). The 
input value x can be any numeric value or expression greater than 0. 

Example: 
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
Math.exp(10) = 22026.465794806718

floor(x)

Number floor(x)

This function returns the greatest (closest to +infinity) number value that is not greater than the 
argument and is equal to a mathematical integer. If the argument is already an integer, the result is 
the argument itself. The input value x can be any numeric value or expression.

Example: 

Math.floor(654.895869)=654

log(x)

Number log(x)

This function returns an implementation-dependent approximation to natural logarithm of the 
argument. The input value x can be any numeric value or expression greater than 0. 

Example: 

Math.log(2) = 0.6931471805599453

max(x,y)

Number max(x,y)

This function returns the larger of the two arguments. The input values x and y can be any numeric 
values or expressions. 

Example: 

Math.max(12.345,12.3456)= 12.3456

min(x,y)

Number min(x,y)

This function returns the smaller of the two arguments. The input values x and y can be any numeric 
values or expressions. 

Example: 

Math.min(-12.457,-12.567)= -12.567

pow(x,y)

Number pow(x,y)

This function returns an implementation-dependent approximation to the result of raising x to the 
power of y. The input value x must be the number raised to a power. The input value y must be the 
power to which x is raised. 

Example: 

Math.pow(2,4) = 16
Working with ECMA Expressions 161



162 Identity Man

novdocx (E
N

U
)  01 February 2006
random()

Number random()

 This method takes no arguments and returns a pseudo-random number between 0 and 1. The 
number value has approximately uniform distribution over that range, using an implementation-
dependent algorithm or strategy. This function takes no arguments. 

Example: 

Math.random()=0.9545176397178535

round(x)

Number round(x)

This function returns the number value that is closest to the argument and is equal to a mathematical 
integer. If two integer number values are equally close to the argument, then the result is the number 
value that is closer to +infinity. If the argument is already an integer, the result is the argument itself. 
The input value x can be any number. 

Example: 

Math.round(13.53) = 14

sin(x)

Number sin(x)

This function returns an implementation-dependent approximation to the sine of the argument. The 
argument is expressed in radians. The input value x must be an angle measured in radians. 

sqrt(x)

Number sqrt(x)

This function returns an implementation-dependent approximation to the square root of the 
argument. The input value x must be any numeric value or expression greater than or equal to 0. If 
the input value x is less than zero, the string “NaN” is returned. (NaN stands for “Not a Number”.) 

Example: 

Math.sqrt(25) = 5

tan(x)

Number tan(x)

This function returns an implementation-dependent approximation to the tangent of the argument. 
The argument is expressed in radians. The input value x must be an angle measured in radians. 

9.3.7  Number Object
Lets you work with numeric values. The Number object is an object wrapper for primitive numeric 
values.
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
MAX_VALUE

The largest positive finite value of the number type (approximately 1.7976931348623157e308).

Example:

Number.MAX_VALUE 

MIN_VALUE

The smallest positive nonzero value of the number type, (approximately 5e-324).

Example:

Number.MIN_VALUE 

NaN

The primitive value NaN represents the set of IEEE Standard “Not-a-Number” values.

Example:

Number.NaN 

NEGATIVE_INFINITY

 The value of negative infinity.

Example:

Number.NEGATIVE_INFINITY

Number()

Number()

The constructor of Number has two forms: Number(value) and Number().

POSITIVE_INFINITY

The value of positive infinity.

Example:

Number.POSITIVE_INFINITY 

toString(radix)

toString()

If the radix is the number 10 or is not supplied, then this number value is given as an argument to the 
ToString operator; the resulting string value is returned. If the radix is supplied and is an integer 
from 2 to 36, but not 10, the result is a string, the choice of which is implementation-dependent. The 
toString function is not generic; it generates a runtime error if its this value is not a Number object. 
Therefore, it cannot be transferred to other kinds of objects for use as a method.
Working with ECMA Expressions 163



164 Identity Man

novdocx (E
N

U
)  01 February 2006
valueOf()

valueOf()

Returns this number value. The valueOf function is not generic; it generates a runtime error if its 
value is not a Number object. Therefore, it cannot be transferred to other kinds of objects for use as 
a method.

9.3.8  Object 
Used to work with objects. Object is the primitive JavaScript object type. All ECMAScript objects 
are descended from object. That is, all ECMAScript objects have the methods defined for object.

Object( )

Constructor for object. 

toString()

Object toString()

When the toString method is called on an arbitrary object, the following steps are taken: 

1. Get the [[Class]] property of this object.
2. Compute a string value by concatenating the three strings “[object “, Result(1), and “]”.
3. Return Result(2).

valueOf()

Object valueOf()

The valueOf method for an object usually returns the object; however, if the object is a “wrapper”

for a host object, as might be created by the Object constructor, the contained host object should be 
returned.

9.3.9  String Object
Used to work with String Objects.

String(x)

String(x)

The constructor of the string.

charAt(pos)

charAt(pos)

Returns a string containing the character at position pos in the string resulting from converting this 
object to a string. If there is no character at that position, the result is the empty string. The result is 
a string value, not a string object.
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
charCodeAt(pos)

charCodeAt(pos)

Returns a number (a nonnegative integer less than 2^16) representing the Unicode* code point 
encoding of the character at position pos in the string resulting from converting this object to a 
string. If there is no character at that position, the result is NaN.

fromCharCode(char0, char1, . . .)

fromCharCode(char0, char1, . . .)

Returns a string value containing as many characters as the number of arguments. Each argument 
specifies one character of the resulting string, with the first argument specifying the first character, 
and so on, from left to right. An argument is converted to a character by applying the operation 
ToUint16 and regarding the resulting 16-bit integer as the Unicode code point encoding of a 
character. If no arguments are supplied, the result is the empty string.

indexOf(searchString, pos)

indexOf(searchString, pos)

If the given searchString appears as a substring of the result of converting this object to a string, at 
one or more positions that are at or to the right of the specified position, then the index of the 
leftmost such position is returned; otherwise, -1 is returned. If position is undefined or not supplied, 
0 is assumed, in order to search all of the string.

lastIndexOf(searchString, pos)

lastIndexOf(searchString, pos)

If the given searchString appears as a substring of the result of converting this object to a string, at 
one or more positions that are at or to the left of the specified position, then the index of the 
rightmost such position is returned; otherwise, -1 is returned. If position is undefined or not 
supplied, the length of the string value is assumed, in order to search all of the string.

length

Returns the length of the String.

match(RegExp)

String match(RegExp)

Takes a regular expression object as argument. It returns an array of matches; otherwise, returns 
null.

replace(RegExp, String)

String replace(RegExp, String)

Takes a regular expression and a replacement string. It returns the original string with replacements 
accomplished.
Working with ECMA Expressions 165



166 Identity Man

novdocx (E
N

U
)  01 February 2006
search(RegExp)

String search(RegExp)

Takes a regular expression as the sole arg and returns the offset of the first substring that matches, or 
-1 on no match.

split(separator)

split(separator)

Returns an Array object, into which substrings of the result of converting this object to a string have 
been stored. The substrings are determined by searching from left to right for occurrences of the 
given separator; these occurrences are not part of any substring in the returned array, but serve to 
divide the string value. The separator may be a string of any length.

substring(start, end)

substring(start, end)

Returns a substring of the result of converting this object to a string, starting from character position 
start and running to the position end of the string. If the second parameter is not present, the end 
position is considered the end of the string. The result is a string value, not a string object.

toLowerCase()

toLowerCase()

Returns a string equal in length to the length of the result of converting this object to a string. The 
result is a string value, not a string object. Every character of the result is equal to the corresponding 
character of the string, unless that character has a Unicode 2.0 lowercase equivalent, in which case 
the lowercase equivalent is used instead. The canonical Unicode 2.0 case mapping must be used, 
which does not depend on implementation or locale.

toString()

toString()

Returns this string value. When concerned with the placement and use of whitespace line 
terminators and semicolons within the representation, the string value is implementation-dependent.

toUpperCase()

toUpperCase()

Returns a string equal in length to the length of the result of converting this object to a string. The 
result is a string value, not a string object. Every character of the result is equal to the corresponding 
character of the string, unless that character has a Unicode 2.0 uppercase equivalent, in which case 
the uppercase equivalent is used instead. The canonical Unicode 2.0 case mapping must be used, 
which does not depend on implementation or locale.

valueOf()

valueOf()
ager User Application: Design Guide



novdocx (E
N

U
)  01 February 2006
Returns this string value. The valueOf() function is not generic, so it generates a runtime error if the 
object is not a String object.

9.3.10  Global Functions
Global functions in ECMAScript are functions that are independent of any particular object. The 
Expression Builder supports the following Global functions:

getEnvironmentCountry

getEnvironmentCountry()

Function returns a 2-character string (for example, US) that represents the location that is currently 
selected on the user’s computer.

getEnvironmentLanguage

getEnvironmentLanguage()

Function returns a 2-character string (for example, EN) that represents the input language that is 
currently selected on the user’s computer.
Working with ECMA Expressions 167


	Identity Manager User Application: Design Guide
	About This Guide
	1 Introduction to the User Application Design Tools
	1.1 About the Provisioning View
	1.2 About the Directory Abstraction Layer Editor
	1.3 About the Provisioning Request Definition Editor
	1.4 About the ECMA Expression Builder
	1.5 Documenting a Project

	2 Working with the Provisioning View
	2.1 Setting Up a Provisioning Project
	2.1.1 Completing the User Application Driver Configuration
	2.1.2 Accessing the Provisioning View

	2.2 Setting Provisioning View Preferences
	2.3 Importing Provisioning Objects
	2.3.1 Importing from a Driver Configuration File
	2.3.2 Importing from an Identity Vault

	2.4 Exporting Provisioning Objects
	2.4.1 Exporting to a Driver Configuration File

	2.5 Validating Provisioning Objects
	2.6 Deploying Provisioning Objects
	2.6.1 Deploying Provisioning Objects
	2.6.2 Deploying Provisioning Request Definitions

	2.7 Comparing Provisioning Objects
	2.7.1 To Compare Provisioning Objects


	3 Configuring the Directory Abstraction Layer
	3.1 About the Directory Abstraction Layer
	3.1.1 About the Directory Abstraction Layer Editor
	3.1.2 About Directory Abstraction Layer Editor Files

	3.2 Working with Entities and Attributes
	3.2.1 Adding Entities
	3.2.2 Adding Attributes
	3.2.3 Updating the Schema Elements List

	3.3 Working with Lists
	3.3.1 About the Preferred Locale List
	3.3.2 About the Provisioning Category List

	3.4 Working with Relationships
	3.5 Working with Configuration Settings
	3.6 Localizing Display Text
	3.6.1 Supported Languages
	3.6.2 Localizing Text

	3.7 Directory Abstraction Layer Property Reference
	3.7.1 Entity Properties
	3.7.2 Attribute Properties
	3.7.3 Relationship Properties


	4 Working with the Provisioning Request Definition Editor
	4.1 About the Provisioning Request Definition Editor
	4.1.1 How the Provisioning Request Definition Editor Fits into the Identity Manager Architecture
	4.1.2 Provisioning and Workflow Example

	4.2 Basic Steps for Creating a Provisioning Request Definition
	4.3 Guidelines for Creating Workflows
	4.3.1 Rules for Activities
	4.3.2 Rules for Flow Paths
	4.3.3 Understanding Workflow Data

	4.4 Working with the Installed Templates
	4.5 Debugging a Workflow

	5 Creating a Provisioning Request Definition
	5.1 About the Wizard and the Overview Tab
	5.2 Using the Wizard to Create a Provisioning Request Definition
	5.2.1 Using a Template
	5.2.2 From Concept to Finished Product

	5.3 Using the Overview Tab to Modify Basic Settings
	5.4 Localizing Display Text

	6 Creating Forms for a Provisioning Request Definition
	6.1 About Forms
	6.1.1 About Request Forms
	6.1.2 About Approval Forms
	6.1.3 About Form Control Data Binding

	6.2 About the Forms Tab
	6.2.1 About Form Selection 
	6.2.2 About Form Controls

	6.3 Creating forms
	6.3.1 Creating New Forms
	6.3.2 Working with Form Controls

	6.4 Action Reference
	6.5 Form Control Reference
	6.5.1 Controls for User Entered Comments
	6.5.2 General Properties
	6.5.3 DatePicker
	6.5.4 DNDisplay
	6.5.5 DNLookup
	6.5.6 DNMaker
	6.5.7 Global List
	6.5.8 MVCheckbox
	6.5.9 MVEditor
	6.5.10 PickList
	6.5.11 Static List
	6.5.12 Text
	6.5.13 Text Area
	6.5.14 Title
	6.5.15 TrueFalseRadioButtons
	6.5.16 TrueFalseSelectBox

	6.6 Working with Distinguished Names
	6.6.1 Formatting a DN
	6.6.2 Controlling the Object Selector


	7 Creating the Workflow for a Provisioning Request Definition
	7.1 About the Workflow Tab
	7.1.1 Canvas
	7.1.2 Palette
	7.1.3 Views

	7.2 Adding Activities to a Workflow
	7.2.1 Setting the General Properties of an Activity
	7.2.2 Defining the Data Item Mappings
	7.2.3 Defining the Email Notification Settings

	7.3 Working With Entity Activities
	7.3.1 Adding or Modifying an Entity
	7.3.2 Using an Entity Activity to Delete an Entity
	7.3.3 Using an Entity Activity to Delete an Attribute or Value

	7.4 Adding the Flow Paths

	8 Configuring the Workflow Activities and Flow Paths
	8.1 Configuring Activities
	8.1.1 Start Activity
	8.1.2 Approval Activity
	8.1.3 Log Activity
	8.1.4 Branch Activity
	8.1.5 Merge Activity
	8.1.6 Condition Activity
	8.1.7 Finish Activity
	8.1.8 Entitlement Activity
	8.1.9 Entity Activity

	8.2 Configuring Flow Paths

	9 Working with ECMA Expressions
	9.1 About the ECMA Expression Builder
	9.1.1 About ECMAScript
	9.1.2 ECMAScript Capabilities
	9.1.3 Using the ECMA Expression Builder
	9.1.4 About Java Integration
	9.1.5 About XPath Integration
	9.1.6 Performance Considerations

	9.2 ECMAScript Examples
	9.2.1 General Examples
	9.2.2 Flowdata Examples
	9.2.3 Form Control Examples
	9.2.4 Error Handling Examples 

	9.3 ECMAScript API
	9.3.1 Array Object
	9.3.2 Boolean Object
	9.3.3 Date Object
	9.3.4 Function Object
	9.3.5 Global
	9.3.6 Math Object
	9.3.7 Number Object
	9.3.8 Object 
	9.3.9 String Object
	9.3.10 Global Functions



