Novell
ldentity Manager Fan-Out

Driver

3.5 @
‘ AP| DEVELOPER GUIDE

March 19, 2007

Novell.

Legal Notices

Novell, Inc. and Omnibond Systems LLC. make no representations or warranties with respect to the contents or use
of this documentation, and specifically disclaim any express or implied warranties of merchantability or fitness for
any particular purpose. Further, Novell, Inc. and Omnibond Systems LLC. reserve the right to revise this publication
and to make changes to its content, at any time, without obligation to notify any person or entity of such revisions or
changes.

Further, Novell, Inc. and Omnibond Systems LLC. make no representations or warranties with respect to any
software, and specifically disclaim any express or implied warranties of merchantability or fitness for any particular
purpose. Further, Novell, Inc. and Omnibond Systems LLC. reserve the right to make changes to any and all parts of
the software, at any time, without any obligation to notify any person or entity of such changes.

You may not export or re-export this product in violation of any applicable laws or regulations including, without
limitation, U.S. export regulations or the laws of the country in which you reside.

Copyright © 2004 Omnibond Systems, LLC. All Rights Reserved. Licensed to Novell, Inc. Portions Copyright ©
2004 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied, stored on a
retrieval system, or transmitted without the express written consent of the publisher.

The Solaris* standard IO library has kernel limitations that interfere with the operation of the Provisioning Manager.
Therefore, components for Solaris use the AT&T* SFIO library. Use of this library requires the following notice:

The authors of this software are Glenn Fowler, David Korn and Kiem-Phong Vo.
Copyright (c) 1991, 1996, 1998, 2000, 2001, 2002 by AT&T Labs - Research.

Permission to use, copy, modify, and distribute this software for any purpose without fee is hereby granted, provided
that this entire notice is included in all copies of any software which is or includes a copy or modification of this
software and in all copies of the supporting documentation for such software.

This software is being provided as is, without any express or implied warranty. in particular, neither the authors nor
AT&T Labs make any representation or warranty of any kind concerning the merchantability of this software or its
fitness for any particular purpose.

Novell, Inc.

404 Wyman Street, Suite 500
Waltham, MA 02451

U.S.A

www.novell.com

Online Documentation: To access the online documentation for this and other Novell products, and to get
updates, see www.novell.com/documentation.

Novell Trademarks

eDirectory is a trademark of Novell, Inc.

NetWare is a registered trademark of Novell, Inc. in the United States and other countries.

Novell is a registered trademark of Novell, Inc. in the United States and other countries.

Novell Directory Services and NDS are registered trademarks of Novell, Inc. in the United States and other countries.

Nsure is a trademark of Novell, Inc.

Third-Party Materials

All third-party trademarks are the property of their respective owners.

Contents

About This Guide 7
1 About the API 9
1.1 Using the APl in the MVS Environment. e 9
1.2 Usingthe APlona NetWare Server e 9
1.3 Using the APl inthe OS/400 Environment. i 10
1.4 Using the APl inthe UNIX Environment 10
1.5 APIFuUNction List o 10
2 C Language API Reference 13
ASC_ADMINRSTPASSWD . .. e 14
ASC _CHGPAS S D . . . i 17
ASC_CHKPASSWD . . .t e 19
AS C DAY S e 22
ASC_GETCONTEXT . .ot e e e e e e e 23
ASC_GRPMEM . .. 26
ASC INIT Lo 29
ASC INIT EXT . e e 31
ASC _LISTSEQV . .. o 33
ASC _READ AT T R. . . 36
ASC RIGHT S, . . 39
ASC_SECEQUAL.o e 42
ASC_STRERROR e 44
ASC _TERM .. 45
ASC_USER_INCLUDE_EXCLUDE e e e 47
3 Java Language API Reference 49
Class com.novell.asam.JAscAuth.JAscAuth 50
Classes Used by checkPassword. e e e 58
Exception Classes in com.novell.asam.JAscAuth 60
4 API Examples 63
4.1 Adding API Support to the Apache Web Server 63
4.2 Adding API Support to the QUALCOMM POP Server., 63
4.3 Adding API Supportto SASLo 63
4.4 Adding API Supportto SSH Secure Shell 64
4.5 Adding API Support to TACAC S o 64
A Troubleshooting the API 65

Contents 5

6 Identity Manager Fan-Out Driver 3.5 API Developer Guide

About This Guide

This guide describes the AS Client API of the Novell® Identity Manager Fan-Out driver. It also
describes simple modifications that you can make to several popular products to make use of the
APL

This guide assumes that you have knowledge of eDirectory™ and program development for the
operating system platform on which Platform Services is installed, and that you are familiar with the
concepts and facilities of the Identity Manager Fan-Out driver.

This guide is divided into the following sections:

¢ Chapter 1, “About the APL,” on page 9

¢ Chapter 2, “C Language API Reference,” on page 13

¢ Chapter 3, “Java Language API Reference,” on page 49
¢ Chapter 4, “API Examples,” on page 63

¢ Appendix A, “Troubleshooting the APL,” on page 65

Additional Documentation

The following publications contain information about the Identity Manager Fan-Out driver. These
publications are available at the Identity Manager Driver Web site (http://www.novell.com/
documentation/dirxmldrivers).

Concepts and Facilities Guide

Core Driver Administration Guide

Platform Services Planning Guide and Reference

Platform Services Administration Guide for Linux and UNIX
Platform Services Administration Guide for MVS

Platform Services Administration Guide for OS/400
NetWare Intercept and API Administration Guide

API Developer Guide

Messages Reference

Core Driver Quick Start Guide for Linux and Solaris

Core Driver Quick Start Guide for NetWare

Core Driver Quick Start Guide for Windows

Platform Services Quick Start Guide for AIX

Platform Services Quick Start Guide for FreeBSD, HP-UX, Linux, and Solaris
Platform Services Quick Start Guide for MVS CA-ACF2
Platform Services Quick Start Guide for MVS CA-Top Secret
Platform Services Quick Start Guide for MVS RACF
Platform Services Quick Start Guide for OS/400

NetWare Intercept and API Quick Start Guide

Documentation for related products, such as Identity Manager and eDirectory, is available at the
Novell Documentation Web site (http://www.novell.com/documentation).

About This Guide

http://www.novell.com/documentation/dirxmldrivers
http://www.novell.com/documentation

8

Documentation Updates

For the most recent versions of -Identity Manager Fan-Out driver documentation, see the Identity
Manager Driver Web site (http://www.novell.com/documentation/dirkmldrivers).

Documentation Conventions

In this documentation, a greater-than symbol (>) is used to separate actions within a step and items
within a cross-reference path.

A trademark symbol (®, ™ etc.) denotes a Novell trademark. An asterisk (*) denotes a third-party
trademark.When a single pathname can be written with a backslash for some platforms or a forward
slash for other platforms, the pathname is presented with a backslash. Users of platforms that require
a forward slash, such as UNIX*, should use forward slashes as required by your software.

User Comments

We want to hear your comments and suggestions about this manual and the other documentation
included with the driver. To contact us, send e-mail to namdoc@novell.com.

Identity Manager Fan-Out Driver 3.5 API Developer Guide

http://www.novell.com/documentation/dirxmldrivers
http://www.novell.com/documentation/dirxmldrivers

About the API

Novell® Identity Manager Fan-Out driver platforms provide an Authentication Services application
programming interface (API) that can be used by applications to access eDirectory™. This API is
compatible with the AS Client API that was provided in the NDS® Authentication Services and the
Account Management 3.0 products. In order to use this API, you must obtain and install the Identity
Manager Fan-Out driver.

The platform configuration file provides the information necessary for establishing communications
with a core driver. For details about the platform configuration file, see the Platform Services
Planning Guide and Reference.

In the C language environment, a call must be made to ASC_INIT() or ASC_INIT_EXT() to process
the platform configuration file and initialize the environment before API calls can be made to the
core driver. The header file ascauth.h provides the function prototypes for the API calls and their
return value definitions.

In the Java* environment, a call must be made to the init() method to process the platform
configuration file and initialize the environment before API calls can be made to the core driver.
Class com.novell.asam.JAscAuth.JAscAuth provides the methods used to call the API.

Topics in this section are

¢ Section 1.1, “Using the API in the MVS Environment,” on page 9

*

Section 1.2, “Using the API on a NetWare Server,” on page 9
Section 1.3, “Using the API in the OS/400 Environment,” on page 10
Section 1.4, “Using the API in the UNIX Environment,” on page 10

*

*

*

Section 1.5, “API Function List,” on page 10

1.1 Using the API in the MVS Environment

Access to the API in the MVS* (0OS/390%*, z/OS*) environment uses the ASCLIENT started task.
The caller must be APF authorized. The C header file is located in the MVS Platform Services
Samples Library member ASCAUTH. When link-editing applications that call the AP, include the
MVS Platform Services Load Library in your SYSLIB concatenation. Calls to ASC_INIT() and
ASC_INIT _EXT() must be made with the NULL parameter in place of the configuration file name,
because ASCLIENT processes the platform configuration file for the MVS environment.

For additional information about the MVS platform, see the Platform Services Administration Guide
for MVS.

1.2 Using the APl on a NetWare Server

Access to the C language AS Client API in the NetWare® environment is through calls to
ascauth.nlm. Access to the API using Java is through calls to the methods of class
com.novell.asam.JAscAuth.JAscAuth.

Ascauth.nlm, together with the files acsauth.h and ascauth.imp used for development in the C
environment and jascauth.jar used in the Java environment, are distributed in the AS Client API

About the API

9

distribution package at bin\platformservices\platformclient in the ASAM directory created during
Platform Services installation.

For additional information about the AS Client API on NetWare, see the NetWare Intercept and API
Administration Guide.

1.3 Using the API in the OS/400 Environment

Access to the API using C in the OS/400* environment is provided by the libascauth *SRVPGM in
the ASAM library. The C header file is located in /usr/local/ ASAM/bin.

The caller must have read privileges to the /usr/local/ASAM/data/PlatformServices/certs directory.

For additional information about the OS/400 platform, see the Platform Services Administration
Guide for OS/400.

1.4 Using the API in the UNIX Environment

Access to the API using C in the UNIX environment is through calls to the shared library. The
shared library and the C header file ascauth.h are copied to system-specific directories during the
UNIX Platform Services installation process.

Access to the API using Java is through calls to the methods of class
com.novell.asam.JAscAuth.JAscAuth. The jascauth.jar file is copied to the ASAM/bin/
PlatformServices/PlatformClient/Java directory during Platform Services installation.

The caller must have read access to the /ust/local/ASAM/data/PlatformServices/certs directory.

For additional information about the UNIX platform, see the Platform Services Administration
Guide for Linux and UNIX.

1.5 API Function List

API routines are provided to perform the following functions:

¢ Initialize the environment.
¢ C: “ASC _INIT” on page 29, “ASC_INIT EXT” on page 31
+ Java: “init” on page 54
¢ Terminate the environment.
¢ C: “ASC_TERM?” on page 45
¢ Java: “destroy” on page 52
¢ Validate a user ID and password combination .
¢+ C: “ASC_CHKPASSWD” on page 19
¢ Java: “checkPassword” on page 52
¢ Change a user's password, given the current password .
¢ C: “ASC_CHGPASSWD” on page 17

¢ Java: “changePassword” on page 51

10 Identity Manager Fan-Out Driver 3.5 AP| Developer Guide

Reset a user's password as an administrative user.
+ C: “ASC_ADMINRSTPASSWD” on page 14
¢ Java: “adminResetPassword” on page 51
Obtain the fully distinguished name for a user ID.
¢ C: “ASC_GETCONTEXT” on page 23
¢ Java: “getContext” on page 53
Determine if a user has security equal to a given object.
¢+ C: “ASC_SECEQUAL” on page 42
¢ Java: “securityEquals” on page 55

Determine if an object has the specified effective rights to the specified attribute of another
object.

¢+ C: “ASC _RIGHTS” on page 39
¢ Java: “cffectiveRights” on page 53
Obtain a list of members of a group.
¢+ C: “ASC_GRPMEM” on page 26
¢ Java: “groupMembers” on page 54
Obtain a list of security equivalences for a user.
¢ C: “ASC_LISTSEQV” on page 33
¢ Java: “listSecurityEquivalences” on page 54
Obtain attribute values for an object.
¢+ C: “ASC_READATTR” on page 36
¢ Java: “readAttribute” on page 55
Determine if a given user is in the Include/Exclude list.
¢ C: “ASC USER INCLUDE EXCLUDE” on page 47
¢ Java: “userIncludeExclude” on page 56
Decode API return values.
¢ C: “ASC_STRERROR” on page 44
¢ Java: “strError” on page 56
Convert number of seconds to number of days.
¢+ C: “ASC DAYS” on page 22

¢ Java: “secondsToDays” on page 55

About the API

1"

12 Identity Manager Fan-Out Driver 3.5 AP| Developer Guide

C Language API Reference

A description of each Novell® Identity Manager Fan-Out driver AS Client API function along with
example C code follows.

*

*

*

*

“ASC _ADMINRSTPASSWD” on page 14
“ASC_CHGPASSWD” on page 17
“ASC_CHKPASSWD” on page 19

“ASC _DAYS” on page 22
“ASC_GETCONTEXT” on page 23
“ASC_GRPMEM” on page 26
“ASC_INIT” on page 29

“ASC _INIT EXT” on page 31

“ASC _LISTSEQV” on page 33
“ASC_READATTR” on page 36
“ASC_RIGHTS” on page 39
“ASC_SECEQUAL” on page 42
“ASC_STRERROR” on page 44
“ASC_TERM” on page 45
“ASC_USER_INCLUDE EXCLUDE” on page 47

C Language API Reference

13

14

ASC_ADMINRSTPASSWD

Performs an administrative reset of a user's password. The new password is marked as being expired
unless it is non-expiring.

Syntax

#include <ascauth.h>
int ASC ADMINRSTPASSWD (ASCENV *asce, char *adminUser, char

*adminPassword,
char *user, char *newpass);

Parameters

asce The environment item returned from the call to ASC_INIT() or
ASC_INIT_EXT().

adminUser The Enterprise User ID of an administrative user with rights to change
the target user's password.

adminPassword The password of the administrative user ID.

user The Enterprise User ID whose password is to be changed.

newpass The new password for the user.

Return Values

Returns one of the following integer values defined in ascauth.h:

AS_OK Password changed

AS_NOUSER User inactive or not found in the Census

AS_BADCLIENT Local host not authorized to query the core driver

AS_NOAGENT No core driver could be contacted

AS_NOAUTHENV No environment has been established

AS_INVALIDREQ Call rejected by the core driver as not valid or not supported

AS_INVALIDARGS Invalid arguments supplied to the function

AS_KEYEXPIRED Old key rejected by the core driver because the expiration date has
passed

AS_INSUFFICIENTRIGHTS Administrative user does not exist, administrative user does not have
rights to change the password, or administrative user password not
valid

Identity Manager Fan-Out Driver 3.5 API Developer Guide

Example

#include <stdio.h>
#include <stdlib.h>
#include <ascauth.h>

main (int argc, char *argv[])
{
ASCENV *asce;
ASCUSER ascu;
char *adminUser, *adminPass, *user, *newpass;
int rc;

if (argc !'= 5) {
fprintf (stderr, "usage: %s <adminUser> <adminPass> <user>
<newpass>\n",
argv[0]);
exit (EXIT FAILURE) ;
}

adminUser = argv[1l];
adminPass = argv[2];
user = argv|[3];
newpass = argv[4];

/* initialize the authentication environment */
asce = ASC INIT (NULL) ;
if (asce == NULL) {
fprintf (stderr, "Error: cannot initialize authentication
environment\n") ;
exit (EXIT FAILURE) ;
}

/* change the user's password */
rc = ASC ADMINRSTPASSWD (asce, adminUser, adminPass, user, newpass);
if (rc == AS OK)

printf ("password has been changed\n");

else if (rc == AS NO)
printf ("password has not been changed\n");
else

printf ("RC=%d, %s", rc, ASC STRERROR(rc));
/* now terminate the authentication environment */

ASC_TERM (asce) ;
return O;

See Also

“ASC_INIT” on page 29
“ASC _INIT_EXT” on page 31

C Language API Reference

15

“ASC_TERM” on page 45

“ASC_STRERROR” on page 44

16 Identity Manager Fan-Out Driver 3.5 AP| Developer Guide

ASC_CHGPASSWD

Changes the password of a user.

Syntax

#include <ascauth.h>

int ASC CHGPASSWD (ASCENV *asce, char *user, char *oldpass, char

*newpass) ;

Parameters

asce The environment item returned from the call to ASC_INIT() or
ASC_INIT_EXTY().

user The Enterprise User ID whose password is to be changed.

oldpass The old password for the user.

newpass The new password for the user.

Return Values

Returns one of the following integer values defined in ascauth.h:

AS_OK
AS_NO

AS_NOUSER
AS_REVOKED
AS_INTRUDER
AS_PASSDUPLICATE
AS_PASSTOOSHORT
AS_BADCLIENT
AS_NOAGENT
AS_NOAUTHENV
AS_INVALIDREQ
AS_INVALIDARGS
AS_KEYEXPIRED

Password changed

Old password is invalid

User inactive or not found in the Census

User's password is okay, but the user is disabled
Intruder lockout is enabled for this user

New password has been used previously

New password is too short

Local host not authorized to query the core driver
No core driver could be contacted

No environment has been established

Call rejected by the core driver as not valid or not supported
Invalid arguments supplied to the function

Old key rejected by the core driver because the expiration date has
passed

C Language API Reference

17

18

Example

#include <stdio.h>
#include <stdlib.h>
#include <ascauth.h>

main (int argc, char *argv[])
{
ASCENV *asce;
ASCUSER ascu;
char *user, *oldpass, *newpass;
int rc;

if (argc !'= 4) {
fprintf (stderr, "usage: %s <user> <oldpass> <newpass>\n",
argv[0]);
exit (EXIT FAILURE) ;
}

user = argv([l];
oldpass = argv[2];
newpass = argv[3];

/* initialize the authentication environment */
asce = ASC INIT (NULL) ;
if (asce == NULL) {
fprintf (stderr, "Error: cannot initialize authentication
environment\n") ;
exit (EXIT FAILURE) ;
}

/* change the user's password */
rc = ASC CHGPASSWD (asce, user, oldpass, newpass);

if (rc == AS OK)

printf ("password has been changed\n");
else if (rc == AS NO)

printf ("password has not been changed\n");
else

printf ("RC=%d, %s", rc, ASC STRERROR(rc));

/* now terminate the authentication environment */
ASC _TERM (asce) ;
return 0O;

See Also
“ASC_INIT” on page 29
“ASC_INIT_EXT” on page 31
“ASC_TERM” on page 45
“ASC_STRERROR” on page 44

Identity Manager Fan-Out Driver 3.5 API Developer Guide

ASC_CHKPASSWD

Verifies the password of a user.

Syntax

#include <ascauth.h>

int ASC CHKPASSWD (ASCENV *asce, char *user, char *pass, ASCUSER
*ascu) ;

Parameters

asce The environment item returned from the call to ASC_INIT() or
ASC_INIT_EXTY().

user The Enterprise User ID to be checked.

pass The password to be checked for the user.

ascu The ASCUSER structure (defined in ascauth.h) to be filled in by

ASC_CHKPASSWHOD() if the password is valid.

Return Values

Returns one of the following integer values defined in ascauth.h:

AS_OK Password is okay

AS_NO User ID/Password combination is invalid

AS_NOUSER User inactive or not found in the Census

AS_REVOKED User's password is okay, but the user is disabled

AS_INTRUDER Intruder lockout enabled for this user

AS_BADCLIENT Local host is not authorized to query the core driver

AS_NOAGENT No core driver could be contacted

AS_NOAUTHENV No environment has been established

AS_INVALIDREQ Call rejected by the core driver as not valid or not supported

AS_INVALIDARGS Invalid arguments supplied to the function

AS_KEYEXPIRED Old key rejected by the core driver because the expiration date has
passed

If an AS OK return code is returned, the following fields in the ASCUSER structure contain
additional information about the authenticated user:

<ascu>.pass.expire Number of seconds until the password expires (or -1 if the password
does not expire)

C Language API Reference

19

<ascu>.pass.interval Password change interval in seconds (or -1 if the password does not
expire)

Ifan AS REVOKED code is returned, the following field in the ASCUSER structure contains
additional information about the user:

<ascu>.login.disabled User disabled flag

Example

#include <stdio.h>
#include <stdlib.h>
#include <ascauth.h>

main (int argc, char *argv[])
{

ASCENV *asce;

ASCUSER ascu;

char *user, *pass;

int rc;

if (argc !'= 3) {
fprintf (stderr, "usage: %s <user> <password>\n", argv([0]);
exit (EXIT FAILURE) ;

}

user = argv/[l];
pass = argvl[2];

/* initialize the authentication environment */
asce = ASC INIT (NULL) ;
if (asce == NULL) {
fprintf (stderr, "Error: cannot initialize authentication
environment\n") ;
exit (EXIT FAILURE) ;
}

/* check the user's password */
rc = ASC _CHKPASSWD (asce, user, pass, &ascu);

if (rc == AS OK)
printf ("password ok\n");
else if (rc == AS NO)
printf ("password invalid\n");

else
printf ("RC=%d, %s", rc, ASC STRERROR(rc));

/* now terminate the authentication environment */

ASC _TERM (asce) ;
return 0;

20 Identity Manager Fan-Out Driver 3.5 API Developer Guide

See Also

“ASC_INIT” on page 29
“ASC_INIT_EXT” on page 31
“ASC_TERM” on page 45
“ASC_STRERROR” on page 44

C Language API Reference

21

ASC_DAYS

Converts an integer number of seconds into an integer number of days.

Syntax

#include <ascauth.h>
long ASC DAYS(long secs);

Parameters

secs A number of seconds.

Return Values

Returns the integer number of days corresponding to the given number of seconds.

Example
#include <stdio.h>
#include <stdlib.h>

#include <ascauth.h>

printf ("*** CHKPASWD expire days=%1d, expire interval days=%1ld\n",
ASC DAYS (ascu.pass.expire), ASC DAYS (ascu.pass.interval));

22 |dentity Manager Fan-Out Driver 3.5 API Developer Guide

ASC_GETCONTEXT

Obtains a user's fully distinguished object name from the Census and copies it into the buffer
supplied by the caller.

Syntax

#include <ascauth.h>

int ASC GETCONTEXT (ASCENV *asce, char *user, char *buffer, u int
size);

Parameters

asce The environment item returned from the call to ASC_INIT() or
ASC_INIT_EXT().

user The Enterprise User ID.

buffer The buffer that is to receive the context. The result is truncated and the
call returns AS_TOOSMALL if the buffer size cannot hold the entire
result.

size The length in bytes of the buffer.

Return Values

Returns one of the following integer values defined in ascauth.h:

AS_OK Context was found

AS_NOUSER User inactive or not found in the Census

AS_BADCLIENT Local host not authorized to query the core driver

AS_NOAGENT No core driver could be contacted

AS_NOAUTHENV No environment has been established

AS_INVALIDREQ Call rejected by the core driver as not valid or not supported

AS_INVALIDARGS Invalid arguments supplied to the function

AS_TOOSMALL Size of the pre-allocated buffer is too small-result truncated

AS_KEYEXPIRED Old key rejected by the core driver because the expiration date has
passed

Remarks

The buffer is padded with nulls if needed.

The format of the returned login context is the simple dot form. For example: . jondoe.j.myorg

C Language API Reference

23

Example

#include <stdio.h>
#include <stdlib.h>
#include <ascauth.h>

#define MAX CONTEXT 512

main (int argc, char *argv[])
{

ASCENV *asce;

char *user, *context;

int rc;

if (argc != 2) {
fprintf (stderr, "usage: %s <user>\n", argv([0]);
exit (EXIT FAILURE) ;

}

user = argv[1l];

/* allocate buffer */
context = (char *) malloc (MAX CONTEXT) ;

/* initialize the authentication environment */
asce = ASC INIT (NULL) ;
if (asce == NULL) {
fprintf (stderr, "Error: cannot initialize authentication
environment\n") ;
exit (EXIT_ FAILURE) ;
}

/* get the user's context */
rc = ASC GETCONTEXT (asce, user, context, MAX CONTEXT) ;
if (rc == AS OK)
printf ("context is %s\n", context);
else
printf ("RC=%d, %s", rc, ASC STRERROR(rc));

free(context) ;
/* now terminate the authentication environment */

ASC _TERM (asce) ;
return 0;

See Also

“ASC_INIT” on page 29
“ASC_INIT_EXT” on page 31
“ASC_TERM” on page 45

24 |dentity Manager Fan-Out Driver 3.5 API Developer Guide

“ASC_STRERROR” on page 44

C Language API Reference 25

26

ASC_GRPMEM

Obtains a list of all members of the given group and places it in the buffer supplied by the caller.

Syntax

#include <ascauth.h>
int ASC GRPMEM (ASCENV *asce, char *object, char *buf, u int size);

Parameters

asce The environment item returned from the call to ASC_INIT() or
ASC_INIT_EXT().

object The fully distinguished group name whose membership list is to be
returned.

buf The buffer in which the membership list is to be returned. Member
names are separated by a newline ‘\n' character. The list is truncated
and the call returns AS_ TOOSMALL if the buffer size cannot hold the
entire list.

size The size of the buffer you provided.

Return Values

Returns one of the following integer values defined in ascauth.h:

AS_OK Member list successfully returned

AS_BADCLIENT Local host not authorized to query the core driver

AS_NOAGENT No core driver could be contacted

AS_NOAUTHENV No environment has been established

AS_INVALIDREQ Call rejected by the core driver as not valid or not supported

AS_INVALIDARGS Invalid arguments supplied to the function

AS_TOOSMALL Size of the pre-allocated buffer is too small-list truncated

AS_INVALIDOBJ Specified object does not exist

AS_KEYEXPIRED Old key rejected by the core driver because the expiration date has
passed

Remarks

The list is truncated, and the call returns AS_ TOOSMALL if the buffer size cannot hold the entire
list. You can retry with a larger buffer.

You can use ASC_SECEQUAL to see if an individual user is a member of a given group.

Identity Manager Fan-Out Driver 3.5 API Developer Guide

The groups a given user is a member of are included in the list returned by ASC_LISTSEQV.

Example

#include <stdio.h>
#include <stdlib.h>
#include <ascauth.h>

main (int argc, char *argv([])
{
ASCENV *asce;
char *group, buffer[2000];
int rc;

if (argc !'= 2) {
fprintf (stderr, "usage: $s <group>\n", argv([0]);
exit (EXIT FAILURE);

}

group = argv/[l];

/* initialize the authentication environment */
asce = ASC INIT (NULL) ;
if (asce == NULL) {
fprintf (stderr, "Error: cannot initialize authentication
environment\n") ;
eXit(EXIT_FAILURE);
}

/* Get group membership info */
rc = ASC_GRPMEM (asce, group, buffer, sizeof (buffer));

if (rc == AS OK)
printf ("Members of group %s:\n%s\n", group, buffer);
else if (rc == AS TOOSMALL) {

(
printf ("Members of group %s:\n%s\n", group, buffer);
printf ("** list was truncated because of lack of buffer space
*\n") ;
}

else
printf ("RC=%d, %s", rc, ASC STRERROR(rc)):;

/* now terminate the authentication environment */
ASC _TERM (asce) ;
return 0;

See Also

“ASC_INIT” on page 29
“ASC _INIT EXT” on page 31

“ASC_LISTSEQV” on page 33

C Language API Reference

27

“ASC_SECEQUAL” on page 42
“ASC_TERM?” on page 45

“ASC_STRERROR” on page 44

28 Identity Manager Fan-Out Driver 3.5 API Developer Guide

ASC_INIT

Reads the platform configuration file and initializes the environment so that calls can be made to a
core driver. This function or ASC_INIT_EXT() must be called before any other API function.

Syntax

#include <ascauth.h>
ASCENV *ASC INIT (char *filename) ;

Parameters

filename The name of the platform configuration file.

If you call ASC_INIT() with a NULL in place of the filename parameter
as in ASC_INIT(NULL), the default is as follows:

MVS: Always uses the ASCLIENT started task active configuration.
NetWare: sys:asam\data\asamplat.conf

08S/400: /usr/local/ASAM/data/asamplat.conf

UNIX: /usr/local/ASAM/data/asamplat.conf

Return Values

Returns a pointer to the API environment item created upon success. If an error has occurred, NULL
is returned.

Example

#include <stdio.h>
#include <stdlib.h>
#include <ascauth.h>

main ()

{
ASCENV *asce;

/* initialize the authentication environment */
asce = ASC INIT (NULL) ;
if (asce == NULL) {
fprintf (stderr, "Error: cannot initialize authentication
environment\n") ;
exit (EXIT FAILURE) ;
}

/* now you can make additional authentication calls here */

/* now terminate the authentication environment */
ASC _TERM (asce) ;

C Language API Reference

29

return 0;

See Also
“ASC _INIT _EXT” on page 31
“ASC_TERM” on page 45

30 Identity Manager Fan-Out Driver 3.5 API Developer Guide

ASC_INIT_EXT

Reads the platform configuration file and initializes the environment so that calls can be made to a
core driver. This function or ASC_INIT() must be called before any other API function.
ASC_INIT_EXT() differs from ASC_INIT() in that you can provide a buffer into which the API
places error messages if the API environment cannot be initialized.

Syntax

#include <ascauth.h>
ASCENV *ASC INIT EXT (char *filename, char *error msg, size t size);

Parameters

filename The name of the platform configuration file.

If you call ASC_INIT_EXT() with a NULL in place of the filename
parameter as in ASC_INIT_EXT(NULL, buffer, BUFSIZE), the default is
as follows:

MVS: Always uses the ASCLIENT started task active configuration.
NetWare: sys:asam\data\asamplat.conf

0S/400: /usr/local/ASAM/data/asamplat.conf

UNIX: /usr/local/ASAM/data/asamplat.conf

error_msg A buffer you provide into which an error message can be placed if the
environment cannot be initialized.

size The size of the error_msg buffer you have provided.

Return Values

Returns a pointer to the environment item created upon success. If an error has occurred, NULL is
returned, and a descriptive error message is placed into the error_msg buffer.

Example

#include <stdio.h>
#include <stdlib.h>
#include <ascauth.h>

#define BUFSIZE 256

main ()

{
ASCENV *asce;

/* initialize the authentication environment */
/* allocate buffer */
buffer = (char *) malloc (BUFSIZE);

C Language API Reference

31

asce = ASC INIT EXT(NULL, buffer, BUFSIZE);

if (asce == NULL) {
fprintf (stderr, "Error: cannot initialize authentication

environment\n") ;
fprintf (stderr, ™ %$s \n", buffer);
exit (EXIT_FAILURE) ;

}

/* now you can make additional authentication calls here */

/* now terminate the authentication environment */
ASC _TERM (asce) ;
return 0;

See Also

“ASC_INIT” on page 29

“ASC_TERM” on page 45

32 Identity Manager Fan-Out Driver 3.5 API Developer Guide

ASC_LISTSEQV

Obtains a user's Security Equals attribute list and places it in the buffer supplied by the caller.

Syntax

#include <ascauth.h>

int ASC LISTSEQV (ASCENV *asce, char *user, char *buf, u int size);

Parameters

asce The environment item returned from the call to ASC_INIT() or
ASC_INIT_EXT().

user The Enterprise User ID whose Security Equals list is to be returned.

buf The buffer in which the security equivalence list is to be returned. Object
names are separated by a newline ‘\n' character. The list is truncated
and the call returns AS_ TOOSMALL if the buffer size cannot hold the
entire list.

size The size of the buffer you provided.

Return Values

Returns one of the following integer values defined in ascauth.h:

AS_OK
AS_NOUSER
AS_BADCLIENT
AS_NOAGENT
AS_NOAUTHENV
AS_INVALIDREQ
AS_INVALIDARGS
AS_TOOSMALL
AS_INVALIDOBJ
AS_KEYEXPIRED

Security equivalence list successfully returned

User inactive or not found in the Census

Local host is not authorized to query the core driver

No core driver could be contacted

No environment has been established

Call rejected by the core driver as not valid or not supported
Invalid arguments supplied to the function

Size of pre-allocated buffer is too small-the list is truncated
Specified object does not exist

Old key rejected by the core driver because the expiration date has
passed

Remarks

The list is truncated, and the call returns AS_ TOOSMALL if the buffer size cannot hold the entire
list. You can retry with a larger buffer.

C Language API Reference

33

Example

#include <stdio.h>
#include <stdlib.h>
#include <ascauth.h>

main (int argc, char *argv[])
{
ASCENV *asce;
char *object, buffer[2000];
int rc;

if (argc != 2) {
fprintf (stderr, "usage: %s <object>\n", argv[0]);
exit (EXIT FAILURE) ;

}

object = argv[l];

/* initialize the authentication environment */
asce = ASC INIT (NULL) ;
if (asce == NULL) {
fprintf (stderr, "Error: cannot initialize authentication
environment\n") ;
exit (EXIT FAILURE) ;
}

/* Get security equivalence info */
rc = ASC LISTSEQV (asce, object, buffer, sizeof (buffer));
if (rc == AS OK)
printf ("Security equivalences of object %$s:\n%s\n", object,
buffer);
else if (rc == AS TOOSMALL) {
printf ("Security equivalences of object %$s:\n%s\n", object,
buffer);
printf ("** list was truncated because of lack of buffer space
**\n") ;
}
else
printf ("RC=%d, %s", rc, ASC STRERROR(rc));

/* now terminate the authentication environment */
ASC _TERM (asce) ;
return 0;

See Also
“ASC_INIT” on page 29
“ASC_INIT_EXT” on page 31
“ASC_TERM” on page 45

Identity Manager Fan-Out Driver 3.5 API Developer Guide

“ASC_STRERROR” on page 44

C Language API Reference 35

36

ASC_READATTR

Returns the value of the specified single-valued attribute for the specified object.

Syntax

#include <ascauth.h>

int ASC READATTR (ASCENV *asce, char *object, char *attribute,
char *buffer, u int bufsize);

Parameters

asce The environment item returned from the call to ASC_INIT() or
ASC_INIT_EXT().

object The Enterprise User ID or fully distinguished object name of the object
whose attribute value is to be returned.

attribute The single-valued attribute whose value is to be returned for the object.
Only the Home Directory attribute of a User object is supported at this
time.

buffer The buffer in which the object's attribute value is to be returned. The
results are truncated and the call returns AS_ TOOSMALL if the buffer
size cannot hold the entire attribute value.

bufsize The size of the buffer you provided.

Return Values

Returns one of the following integer values defined in ascauth.h:

AS_OK Attribute value has been placed in the buffer successfully

AS_BADCLIENT Local host not authorized to query the core driver

AS_ATTRNOTFOUND Attribute does not exist for the specified object

AS_NOAGENT No core driver could be contacted

AS_NOAUTHENV No environment has been established

AS_INVALIDREQ Call rejected by the core driver as not valid or not supported

AS_INVALIDARGS Invalid arguments supplied to the function

AS_TOOSMALL Size of the pre-allocated buffer is too small-results are truncated

AS_INVALIDOBJ Specified object does not exist

AS_KEYEXPIRED Old key rejected by the core driver because the expiration date has
passed

Identity Manager Fan-Out Driver 3.5 API Developer Guide

Remarks

The results are truncated, and the call returns AS TOOSMALL if the buffer size cannot hold the
entire attribute value. You can retry with a larger buffer.

Limitations

Only the Home Directory attribute of a User object is supported at this time.

Example

#include <stdio.h>
#include <stdlib.h>
#include <ascauth.h>

main (int argc, char *argv[])
{
ASCENV *asce;
char *user, buffer[2000];
int rc;

if (argc != 2) {
fprintf (stderr, "usage: %$s <UserObjectFDN>\n", argv[0]);
exit (EXIT FAILURE) ;

}

user = argv/[l];

/* initialize the authentication environment */
asce = ASC INIT (NULL) ;
if (asce == NULL) {
fprintf (stderr, "Error: cannot initialize authentication
environment\n") ;
exit (EXIT FAILURE) ;
}

/* Get User object's home directory info */
rc = ASC READATTR (asce, user, "HOME DIRECTORY", buffer,
sizeof (buffer));
if (rc == AS OK)
printf ("Home Directory for User object %$s:\n%$s\n", user, buffer);
else
printf ("RC=%d, %s", rc, ASC STRERROR(rc));

/* now terminate the authentication environment */

ASC _TERM (asce) ;
return 0;

See Also

“ASC_INIT” on page 29

C Language API Reference

37

“ASC _INIT _EXT” on page 31
“ASC_TERM?” on page 45

“ASC_STRERROR” on page 44

38 Identity Manager Fan-Out Driver 3.5 API Developer Guide

ASC_RIGHTS

Checks the specified effective rights of one object over another for a specific attribute.

Syntax

#include <ascauth.h>

int ASC RIGHTS (ASCENV *asce, char *objl, char *obj2,
char *attribute, char *rights);

Parameters

asce The environment item returned from the call to ASC_INIT() or
ASC_INIT_EXT().

obj1 The Enterprise User ID or fully distinguished object name whose
effective rights are to be tested.

obj2 The Enterprise User ID or fully distinguished object name for which
access by obj1 is to be tested.

attribute The name of an attribute of obj2 for which the effective rights of obj1 are
requested. The special attribute names All Attributes Rights, Entry
Rights, and SMS Rights can also be specified.

rights The rights to test. The characters specified must be in the following set:
[S,C,R,W,A]. These correspond to Supervisor, Compare, Read, Write,
and Add Self.

Return Values

Returns one of the following integer values defined in ascauth.h:

AS_OK User or object has the specified rights to the specified object attribute

AS_NO User or object does not have the specified rights to the specified object
attribute

AS_ATTRNOTFOUND Specified attribute could not be found

AS_INVALIDOBJ Specified user not found in the Census or the specified object does not
exist

AS_INVALIDOBJLEN Specified object exceeds maximum length

AS_BADCLIENT Local host not authorized to query the core driver

AS_NOAGENT No core driver could be contacted

AS_NOAUTHENV No environment has been established

AS_INVALIDREQ Call rejected by the core driver as not valid or not supported

AS_INVALIDARGS Invalid arguments supplied to the function

C Language API Reference

39

AS_KEYEXPIRED Old key rejected by the core driver because the expiration date has
passed

Example

#include <stdio.h>
#include <stdlib.h>
#include <ascauth.h>

main (int argc, char *argv[])

{
ASCENV *asce;
char *objl, *obj2, *attr, *rights;
int rc;

if (argc !'= 5) {
fprintf (stderr, "usage: %s <objl> <obj2> \
<attribute> <rights>\n", argv[0]);
exit(EXIT_FAILURE);
}

objl = argv[l];
obj2 = argv[2];
attr = argv[3];
rights = argv[4];

/* initialize the authentication environment */
asce = ASC_INIT (NULL) ;
if (asce == NULL) {
fprintf (stderr, "Error: cannot initialize authentication
environment\n") ;
exit(EXIT_FAILURE);
}

/* check for rights */
rc = ASC_RIGHTS (asce, objl, obj2, attr, rights);
if (rc == AS OK)
printf (“User has rights\n”);
else
printf ("RC=%d, %s", rc, ASC STRERROR(rc)):;

/* now terminate the authentication environment */

ASC _TERM (asce) ;
return 0;

See Also

“ASC_INIT” on page 29
“ASC INIT EXT” on page 31

“ASC_TERM” on page 45

40 |dentity Manager Fan-Out Driver 3.5 API Developer Guide

“ASC_STRERROR” on page 44

C Language API Reference 41

ASC_SECEQUAL

Checks to see if a user has security equivalence to the specified object.

Syntax

#include <ascauth.h>
int ASC SECEQUAL (ASCENV *asce, char *user, char *object);

Parameters

asce The environment item returned from the call to ASC_INIT() or
ASC_INIT_EXT().

user The Enterprise User ID to be tested.

Object The fully distinguished object name to test the user for security

equivalence.

Return Values

Returns one of the following integer values defined in ascauth.h:

AS_OK User has security equivalence to the specified object
AS_NO User does not have security equivalence to the object
AS_NOUSER User inactive or not found in the Census

AS_BADCLIENT
AS_NOAGENT
AS_NOAUTHENV
AS_INVALIDREQ
AS_INVALIDARGS
AS_INVALIDOBJ
AS_KEYEXPIRED

Local host not authorized to query the core driver

No core driver could be contacted

No environment has been established

Call rejected by the core driver as not valid or not supported
Invalid arguments supplied to the function

Specified object does not exist

Old key rejected by the core driver because the expiration date has

passed

Example

#include <stdio.h>
#include <stdlib.h>
#include <ascauth.h>

main (int argc, char *argv([])
{

ASCENV *asce;

char *user, *object;

42 |dentity Manager Fan-Out Driver 3.5 API Developer Guide

int rc;

if (argc !'= 3) {
fprintf (stderr, "usage: $s <user> <object>\n", argv[0]);
eXit(EXIT_FAILURE);

}

user = argv([l];

object argv([2];

/* initialize the authentication environment */
asce = ASC INIT (NULL) ;
if (asce == NULL) {
fprintf (stderr, "Error: cannot initialize authentication

environment\n") ;
eXit(EXIT_FAILURE);

}

/* check for security equivalence */
rc = ASC SECEQUAL (asce, user, object);
if (rc == AS OK)
printf ("User has security equivalence\n");

else
printf ("RC=%d, %s", rc, ASC STRERROR(rc)):;

/* now terminate the authentication environment */
ASC _TERM (asce) ;
return 0;

See Also

“ASC_INIT” on page 29

“ASC _INIT EXT” on page 31
“ASC_TERM” on page 45
“ASC_STRERROR” on page 44

C Language API Reference 43

44

ASC_STRERROR

Returns the error string for the specified ASC function error code.

Syntax

#include <ascauth.h>
const char *ASC STRERROR (int errnum);

Parameters

errnum The error return value from a call to an ASC__ function.

Return Values

Returns a static character string corresponding to the integer errnum value as defined in ascauth.h
for ASC function error codes.

Example

#include <stdio.h>
#include <stdlib.h>
#include <ascauth.h>

rc = ASC CHKPASSWD (asce, userid, password, &ascu);
strcpy (status, ASC_STRERROR(rc)) ;
printf ("\n*** CHKPASSWD return code = %d (%s)\n", rc,status);

Identity Manager Fan-Out Driver 3.5 API Developer Guide

ASC_TERM

Terminates and frees the environment that was created by a call to ASC_INIT() or

ASC _INIT EXT(). After the environment is terminated, no more calls to the core driver can be

made without first issuing another ASC_INIT() or ASC_INIT_EXT() call.

Syntax

#include <ascauth.h>
void ASC TERM(ASCENV *asce);

Parameters

asce The environment item returned from the call to ASC_INIT() or
ASC_INIT_EXT().

Return Values

No value is returned from this function.

Example

#include <stdio.h>
#include <stdlib.h>
#include <ascauth.h>

main ()

{
ASCENV *asce;

/* initialize the authentication environment */
asce = ASC INIT (NULL) ;
if (asce == NULL) {
fprintf (stderr, "Error: cannot initialize authentication
environment\n") ;
exit(EXIT_FAILURE);
}

/* now you can make additional authentication calls here */
/* now terminate the authentication environment */

ASC_TERM (asce) ;
return O;

See Also

“ASC_INIT” on page 29

C Language API Reference

45

“ASC _INIT _EXT” on page 31

46 |dentity Manager Fan-Out Driver 3.5 API Developer Guide

ASC_USER_INCLUDE_EXCLUDE

Determines if a given user matches an AS.USER.INCLUDE or AS.USER.EXCLUDE statement in
the platform configuration file.

Syntax

#include <ascauth.h>
int ASC USER INCLUDE EXCLUDE (ASCENV *asce, char *user);

Parameters

asce The environment item returned from the call to ASC_INIT() or
ASC_INIT_EXT().

user The Enterprise User ID of the user to be checked.

Return Values

Returns one of the following integer values defined in ascauth.h:

AS_NOMATCH The user does not match any INCLUDE/EXCLUDE statement.
Because“AS.USER.INCLUDE * is implicit in the absence of
AS.USER.EXCLUDE *, the user is included.

AS_INCLUDED User matches an AS.USER.INCLUDE statement.

AS_EXCLUDED User matches an AS.USER.EXCLUDE statement or an entry in the
built-in standard exclude list.

AS_NOAUTHENV No environment has been established.

Example

#include <stdio.h>
#include <stdlib.h>
#include <ascauth.h>

rc = ASC _USER INCLUDE EXCLUDE (asce, userid);
if (rc == AS NOMATCH)
printf ("%$s does not match an Include or Exclude statement\n",
userid) ;
else if
printf
else if
printf
else
printf ("RC=%d, %s", rc, ASC_STRERROR(rc));

rc == AS_INCLUDED)
"%$s matches an Include statement\n", userid);
rc == AS_EXCLUDED)

"%$s matches an Exclude statement\n", userid);

—~ o~ o~ —~

C Language API Reference

47

See Also

“ASC_INIT” on page 29
“ASC_INIT_EXT” on page 31

48 |dentity Manager Fan-Out Driver 3.5 API Developer Guide

Java Language API Reference

A description of the Novell® Identity Manager Fan-Out driver AS Client API Java implementation
follows.

+ “Class com.novell.asam.JAscAuth.JAscAuth” on page 50

¢ “Classes Used by checkPassword” on page 58

+ “Exception Classes in com.novell.asam.JAscAuth” on page 60

To view the reference documentation in JavaDoc format, see the

*

*

*

*

*

*

“adminResetPassword” on page 51
“changePassword” on page 51
“checkPassword” on page 52
“destroy” on page 52
“effectiveRights” on page 53
“getContext” on page 53
“getLastReturnCode” on page 54
“groupMembers” on page 54
“init” on page 54
“listSecurityEquivalences” on page 54
“readAttribute” on page 55
“secondsToDays” on page 55
“securityEquals” on page 55
“strError” on page 56

“userIncludeExclude” on page 56

asam\bin\platformservices\platformclient\java\javadoc directory on the platform system.

For code examples, see the asam\bin\platformservices\platformclient\java directory on the platform

system.

Java Language API Reference

49

Class com.novell.asam.JAscAuth.JAscAuth

Provides the methods you use to access the AS Client APL

Constructor

public JAscAuth ()

Fields

The following fields map the AS Client API return codes. For more information about return codes
from the AS Client API, see Appendix A, “Troubleshooting the APL,” on page 65.
public static int AS OK = 0

public static int AS NO 1

public static int AS NOUSER = 2

public static int AS NOAGENT= 3

public static int AS NOSERVER = 3

public static int AS BADCLIENT= 4

public static int AS REVOKED= 5

public static int AS INTRUDER= 6

public static int AS INVALIDARGS= 7
public static int AS INVALIDOBJ= 8
public static int AS INVALIDOBJLEN= 9
public static int AS PASSDUPLICATE= 10
public static int AS PASSTOOSHORT= 11
public static int AS TOOSMALL= 12

public static int AS ATTRNOTFOUND= 13
public static int AS WSOCKUP= 14

public static int AS WSOCKDOWN= 15
public static int AS NOAUTHENV= 16
public static int AS PRODUCTEXPIRED = 17
public static int AS INCLUDED= 18

public static int AS EXCLUDED= 19

public static int AS NOMATCH= 20

public static int AS NOLICENSE= 21
public static int AS INVALIDREQ= 22
public static int AS KEYEXPIRED= 23

Methods

The following methods invoke the API functions:

¢ “adminResetPassword” on page 51
¢ “changePassword” on page 51
¢ “checkPassword” on page 52

¢ “destroy” on page 52

50 Identity Manager Fan-Out Driver 3.5 API Developer Guide

+ “effectiveRights” on page 53

+ “getContext” on page 53

+ “getLastReturnCode” on page 54

¢ “groupMembers” on page 54

+ “init” on page 54

+ “listSecurityEquivalences” on page 54
+ “readAttribute” on page 55

+ “secondsToDays” on page 55

+ “securityEquals” on page 55

+ “strError” on page 56

¢ “userIncludeExclude” on page 56

adminResetPassword

Performs an administrative reset of a user's password. The new password is marked as being expired
unless it is non-expiring.

You must call the init method to initialize the JAscAuth environment before calling
adminResetPassword. For more information about init, see “init” on page 54.

For details about the exceptions that can be thrown, see “Exception Classes in
com.novell.asam.JAscAuth” on page 60.

Syntax

public void adminResetPassword (
java.lang.String adminUser,
java.lang.String adminPass,
java.lang.String user,
java.lang.String pass)

Parameters

adminUser The Enterprise User ID of an administrative user with rights to change
the target user's password

adminPass The password of the administrative user

user The Enterprise User ID whose password is to be changed

pass The new password for the user

changePassword

Changes the password of a user.

You must call the init method to initialize the JAscAuth environment before calling
changePassword. For more information about init, see “init” on page 54.

For details about the exceptions that can be thrown, see “Exception Classes in
com.novell.asam.JAscAuth” on page 60.

Java Language API Reference

51

52

Syntax

public void changePassword (
String user,
String oldPass,
String newPass)

Parameters

user The Enterprise User ID whose password is to be changed
oldPass The old password for the user

newPass The new password for the user

checkPassword

Verifies the password of a user.

You must call the init method to initialize the JAscAuth environment before calling checkPassword.
For more information about init, see “init” on page 54.

The checkPassword method can optionally return information about the user and password in a
JAscUser object. For details about the contents of JAscUser, see “Classes Used by checkPassword”
on page 58.

For details about the exceptions that can be thrown, see “Exception Classes in
com.novell.asam.JAscAuth” on page 60.

Syntax

public void checkPassword (
String user,
String pass)

public void checkPassword (
String user,
String pass,
JAscUser ascuser)

Parameters

user The Enterprise User ID whose password is to be verified

pass The password to be verified for the user

ascuser A JAscUser object to be filled with information about the user and
password

destroy

Destroys the JAscAuth environment and frees its underlying resources.

Syntax
public void destroy ()

Identity Manager Fan-Out Driver 3.5 API Developer Guide

See Also

“init” on page 54

effectiveRights
Checks the effective rights of one object over another for a specific attribute.

You must call the init method to initialize the JAscAuth environment before calling effectiveRights.
For more information about init, see “init” on page 54.

For details about the exceptions that can be thrown, see “Exception Classes in
com.novell.asam.JAscAuth” on page 60.

Syntax

public void effectiveRights (
String user,
String object,
String attribute,
String rights)

Parameters

user The Enterprise User ID or fully distinguished object name whose
effective rights are to be tested

object The Enterprise User ID or fully distinguished object name for which
access by user is to be tested

attribute The name of an attribute of object for which the effective rights of user
are tested. The special attribute names All Attributes Rights, Entry
Rights, and SMS Rights can also be specified.

rights The rights to test. The characters specified must be in the following set:
[S,C,R,W,A]. These correspond to Supervisor, Compare, Read, Write,
and Add Self.

getContext

Returns the fully distinguished object name from the Census for a given user.

You must call the init method to initialize the JAscAuth environment before calling getContext. For
more information about init, see “init” on page 54.

For details about the exceptions that can be thrown, see “Exception Classes in
com.novell.asam.JAscAuth” on page 60.

Syntax

public String getContext (String user)

Parameters

user The Enterprise User ID whose context is to be returned

Java Language API Reference

53

54

getLastReturnCode
Returns the return code from the last call to the AS Client API.

For details about return codes from the AS Client API, see Appendix A, “Troubleshooting the API,”
on page 65.

Syntax
public int getLastReturnCode ()

See Also

“strError” on page 56

groupMembers
Returns an enumeration of all members of a given Group.

You must call the init method to initialize the JAscAuth environment before calling groupMembers.
For more information about init, see “init” on page 54.

For details about the exceptions that can be thrown, see “Exception Classes in
com.novell.asam.JAscAuth” on page 60.

Syntax

public Enumeration groupMembers (String group)

Parameters

group The Enterprise Group or fully distinguished Group object name whose
members are to be returned

init

Initializes the JAscAuth environment using the platform configuration file.

You can optionally specify the location of the platform configuration file to be used. If you do not
specify the location of the platform configuration file, the default platform configuration file is used.

Call the destroy method to free the JAscAuth environment and its underlying resources when you
are finished. For more information about destroy, see “destroy” on page 52.

Syntax
public void init ()
public void init(java.lang.String filename)

Parameters

filename The path name of the platform configuration file to use

listSecurityEquivalences

Returns an enumeration of a given user's security equivalences.

Identity Manager Fan-Out Driver 3.5 API Developer Guide

You must call the init method to initialize the JAscAuth environment before calling
listSecurityEquivalences. For more information about init, see “init” on page 54.

For details about the exceptions that can be thrown, see “Exception Classes in
com.novell.asam.JAscAuth” on page 60.

Syntax

public Enumeration listSecurityEquivalences (String user)

Parameters

user The Enterprise User ID whose Security Equals attribute values are to
be returned

readAttribute

Returns an enumeration of the values of a specified attribute for a given object.

You must call the init method to initialize the JAscAuth environment before calling readAttribute.
For more information about init, see “init” on page 54.

For details about the exceptions that can be thrown, see “Exception Classes in
com.novell.asam.JAscAuth” on page 60.

Syntax

public Enumeration readAttribute (
String object,
String attribute)

Parameters

object The Enterprise User ID or fully distinguished object name of the object
whose attribute values are to be returned

attribute The single-valued attribute whose value is to be returned for the object.
Only the Home Directory attribute of a User object is supported at this
time.

secondsToDays

Returns the integer number of days for the given number of seconds.

Syntax

public long secondsToDays (long secs)

securityEquals
Checks to see if a user has security equivalence to the specified object.

You must call the init method to initialize the JAscAuth environment before calling securityEquals.
For more information about init, see “init” on page 54.

Java Language API Reference

55

56

For details about the exceptions that can be thrown, see “Exception Classes in
com.novell.asam.JAscAuth” on page 60.

Syntax

public void securityEquals (
String user,
String object)

Parameters

user The Enterprise User ID to be tested

object The fully distinguished object name for which the security equivalence
of user is to be tested

strError

Returns the string representation of the given AS Client API return code.

Syntax

public String strError (int rc)

Parameters

rc The AS Client API return code value whose string representation is to
be returned

See Also

“getLastReturnCode” on page 54

userincludeExclude

Determines if a given user matches an AS.USER.INCLUDE or AS.USER.EXCLUDE statement in
the platform configuration file.

Syntax

public int userIncludeExclude (String user)

Parameters

user The Enterprise User ID of the user to be checked

Return Values

AS_NOMATCH The user does not match any INCLUDE/EXCLUDE statement. Because
AS.USER.INCLUDE * is implicit in the absence of AS.USER.EXCLUDE
*. the user is included.

AS_INCLUDED User matches an AS.USER.INCLUDE statement.

Identity Manager Fan-Out Driver 3.5 API Developer Guide

AS_EXCLUDED User matches an AS.USER.EXCLUDE statement or an entry in the
built-in standard exclude list.

Java Language API Reference 57

Classes Used by checkPassword

The following topics describe classes used by the checkPassword method of JAscAuth to return
information.

Class com.novell.asam.JAscAuth.JAscUser

The checkPassword method of JAscAuth optionally returns a JAscUser object with information
about the user being authenticated.

Constructor

public JAscUser ()

Fields
public JAscLoginRestrict login Contains the user's login disabled flag
public JAscPassRestrict pass Contains the user's password expiration information

Class com.novell.asam.JAscAuth.JAscLoginRestrict

The checkPassword method of JAscAuth optionally returns a JAscUser object with information
about the user being authenticated. One of the fields in JAscUser is a JAscLoginRestrict object,
which contains the user's login disabled flag.

Constructor

public JAscLoginRestrict ()

Fields

public int disabled The user's login disabled flag
Methods

public int getDisabled() Returns the user's login disabled flag

Class com.novell.asam.JAscAuth.JAscPassRestrict

The checkPassword method of JAscAuth optionally returns a JAscUser object with information
about the user being authenticated. One of the fields in JAscUser is a JAscPassRestrict object, which
contains password expiration information.

Constructor

public JAscPassRestrict ()

58 Identity Manager Fan-Out Driver 3.5 API Developer Guide

Fields

public long interval

public long expire

The password change interval in seconds (or -1 if the password does
not expire)

The number of seconds until the password expires (or -1 if the
password does not expire)

Methods

public long getinterval()

public long getExpire()

Returns the password change interval in seconds (or -1 if the password
does not expire)

Returns the number of seconds until the password expires (or -1 if the
password does not expire)

Java Language API Reference

59

60

Exception Classes in com.novell.asam.JAscAuth

The following exceptions, along with java/lang/NullPointerException, are the exceptions that are
thrown by the methods of JAscAuth.

InvalidJAscException

Thrown when a method requires an authentication environment, but a valid authentication
environment does not exist.

Most methods of com.novell.asam.JAscAuth.JAscAuth require that you call the init method before
you call them. InvalidJAscException is thrown if you do not do so.

Corresponds to a return code of 16, AS NOAUTHENY, from the AS Client API. For more
information, see Appendix A, “Troubleshooting the API,” on page 65.

JAscAttrNotFoundException

Thrown when the attribute specified to the readAttr method was not found for the specified object.
Corresponds to a return code of 13, AS ATTRNOTFOUND, from the AS Client API. For more
information, see Appendix A, “Troubleshooting the API,” on page 65.

JAscAuthenticationException

Thrown when the password specified to the checkPassword method is not valid.
Corresponds to a return code of 1, AS_NO, from the AS Client API. For more information, see
Appendix A, “Troubleshooting the API,” on page 65.

JAscBadClientException

Thrown when the network address used by the platform to contact a core driver for a method call
does not match the network address listed in the Platform Configuration object in the ASAM System
container.

Corresponds to a return code of 4, AS BADCLIENT, from the AS Client API. For more
information, see Appendix A, “Troubleshooting the API,” on page 65.

JAscChangePasswordException

Thrown by changePassword when the password cannot be changed.
Also thrown by changePassword if the old password given is not valid.

Corresponds to a return code of 1, AS_NO, and a return code of 4, AS BADCLIENT, from the AS
Client API. For more information, see Appendix A, “Troubleshooting the API,” on page 65.

JAscException

Thrown by most method calls when an unexpected or indeterminate error condition occurs.

Identity Manager Fan-Out Driver 3.5 API Developer Guide

JAsclinsufficientRightsException

Thrown by adminResetPassword if the administrative user does not exist, if the administrative user
password specified is not valid, or if the administrative user does not have rights to change the
password.

Also thrown by adminResetPassword if the network address used by the platform to contact a core
driver does not match the network address listed in the Platform Configuration object in the ASAM
System container.

Corresponds to a return code of 24, AS INSUFFICIENTRIGHTS from the AS Client API. For
more information, see Appendix A, “Troubleshooting the API,” on page 65.

JAsclintruderException

Thrown by checkPassword and changePassword when the specified user is locked because of
intruder detection.

Corresponds to a return code of 6, AS INTRUDER, from the AS Client API. For more information,
see Appendix A, “Troubleshooting the API,” on page 65.

JAscinvalidArgsException

Thrown when a parameter passed to a method is null or not valid.

Corresponds to a return code of 7, AS_INVALIDARGS, from the AS Client API. For more
information, see Appendix A, “Troubleshooting the APL,” on page 65.

JAscinvalidObjException

Thrown when an object passed to a method is not found or is not of the correct type.

Corresponds to a return code of 8, AS_INVALIDOBJ, from the AS Client API. For more
information, see Appendix A, “Troubleshooting the API,” on page 65.

JAscinvalidObjLenException

Thrown when an object name passed to a method is longer than the maximum allowable name.

Corresponds to a return code of 9, AS_ INVALIDOBIJLEN, from the AS Client API. For more
information, see Appendix A, “Troubleshooting the API,” on page 65.

JAsclnvalidRegException

Thrown when a method call is not known by the core driver.

Corresponds to a return code of 22, AS INVALIDREQ, from the AS Client API. For more
information, see Appendix A, “Troubleshooting the APL,” on page 65.

JAscKeyExpiredException

Thrown when the DES encryption key used by a non-SSL platform has expired.

Java Language API Reference

61

62

Corresponds to a return code of 23, AS KEYEXPIRED, from the AS Client API. For more
information, see Appendix A, “Troubleshooting the API,”” on page 65.

JAscNoAgentException

Thrown when no core driver could be contacted to process a method call.

Corresponds to a return code of 3, AS NOAGENT, from the AS Client API. For more information,
see Appendix A, “Troubleshooting the APL,” on page 65.

JAscNoUserException

Thrown when the user specified to a method call is inactive or not in the Census.

Corresponds to a return code of 2, AS NOUSER, from the AS Client API. For more information,
see Appendix A, “Troubleshooting the API,” on page 65.

JAscPassDuplicateException

Thrown by changePassword when the new password has been previously used for the user object,
and the user is required to use unique passwords.

Corresponds to a return code of 10, AS PASSDUPLICATE, from the AS Client API. For more
information, see Appendix A, “Troubleshooting the APL,” on page 65.

JAscPassTooShortException

Thrown by changePassword when the new password is shorter than the minimum password length
set for the user.

Corresponds to a return code of 11, AS PASSTOOSHORT, from the AS Client API. For more
information, see Appendix A, “Troubleshooting the API,” on page 65.

JAscProductExpiredException

Thrown when the expiration date for the platform has passed.
Corresponds to a return code of 17, AS PRODUCTEXPIRED, from the AS Client API. For more
information, see Appendix A, “Troubleshooting the API,” on page 65.

JAscRevokedException

Thrown by checkPassword and changePassword when the specified user is disabled.

Corresponds to a return code of 5, AS REVOKED, from the AS Client API. For more information,
see Appendix A, “Troubleshooting the APL,” on page 65.

Identity Manager Fan-Out Driver 3.5 API Developer Guide

APl Examples

The following topics describe simple modifications to several popular products to enable them for
use with the Novell® Identity Manager Fan-Out driver.
¢ Section 4.1, “Adding API Support to the Apache Web Server,” on page 63
¢ Section 4.2, “Adding API Support to the QUALCOMM POP Server,” on page 63
Section 4.3, “Adding API Support to SASL,” on page 63
Section 4.4, “Adding API Support to SSH Secure Shell,” on page 64
Section 4.5, “Adding API Support to TACACS+,” on page 64

4.1 Adding API Support to the Apache Web
Server

The Apache HTTP Web Server software is one of the most popular Web servers in use today. It is
developed by the Apache Group and can be downloaded free from the Apache Software Foundation
Web site (http://www.apache.org). Apache provides the facility to configure additional modules to
handle specific functions, such as user authentication and locating a user's home directory.

*

*

*

You can install Platform Services on your Apache server and configure Apache to authenticate users
using the AS Client API. You can also configure Apache to use the AS Client API to find a user's
home directory on a NetWare® file system that is mounted on a Linux* Apache server. Example
modules are provided in the ASAM/bin/PlatformServices/PlatformClient/Apache directory created
by the Platform Services installation process.

4.2 Adding API Support to the QUALCOMM POP
Server

QUALCOMM* Incorporated distributes freeware UNIX POP3 software known as Qpopper* in C
source form. With no modifications, Qpopper can use Authentication Services for authentication
through PAM. Qpopper can also be modified to use Authentication Services for authentication
through the AS Client API.

You can obtain Qpopper from the QUALCOMM Web site (http://www.eudora.com).

You can install Platform Services on your POP server and use Qpopper to authenticate users using
Authentication Services through PAM or through the APIL.

Directions for modifying Qpopper to use the AS Client API can be found in the ASAM/bin/
PlatformServices/PlatformClient/POP directory created by the Platform Services installation
process.

4.3 Adding API Support to SASL

SASL, the Simple Authentication and Security Layer, is a generic authentication protocol. Many
connection-based protocols, such as SMTP, LDAP, IMAP, and POP3, support SASL. New
authentication mechanisms that support SASL are automatically supported by those protocols.

APl Examples

63

http://www.apache.org
http://www.apache.org
http://www.eudora.com

64

Furthermore, protocols that use SASL for authentication support Kerberos* authentication through
the Generic Security Services Application Programming Interface (GSSAPI).

A common open-source SASL library is Cyrus SASL, which is available at ftp://
ftp.andrew.cmu.edu/pub/cyrus-mail.

Directions for modifying Cyrus SASL to use the AS Client API for authentication can be found in
the ASAM/bin/PlatformServices/PlatformClient/sasl directory created by the Platform Services
installation process.

4.4 Adding API Support to SSH Secure Shell

SSH* Communications Security produces a secure login application known as SSH Secure Shell.
Source is available at ftp://ftp.ssh.com/pub/ssh. SSH Secure Shell is a commercial product. The
rules governing the commercial and non-commercial use of SSH Secure Shell can be found at the
SSH Communications Security Web Site (http://www.ssh.com).

You can install Platform Services on your server and modify the Secure Shell daemon, sshd, to use
the AS Client API to authenticate users.

The sshd using the -Identity Manager Fan-Out driver allows users to skip setting up passphrases,
because the authentication stage of setting up the Secure Shell connection is done with the driver
instead of public-private key cryptography. After you have authenticated, your Secure Shell session
is securely encrypted, as normal.

The Identity Manager Fan-Out driver provides sample instructions for modifying the Secure Shell
sshunixuser.c module. These instructions are distributed in the ASAM/bin/PlatformServices/
PlatformClient/SSH directory created by the Platform Services installation process.

4.5 Adding APl Support to TACACS+

TACACSH+ is a security protocol designed by Cisco Systems*, Inc. that is used to control dial-up
access into networks. An unsupported but freely available implementation of TACACS+ is available
in ftpeng.cisco.com in pub/tacacs.

You can install Platform Services on your server and modify TACACS+ to use the AS Client API to
authenticate users.

Directions for modifying TACACS+ to use the AS Client API for authentication can be found in the
ASAM/bin/PlatformServices/PlatformClient/ TACACS directory created by the Platform Services
installation process.

Identity Manager Fan-Out Driver 3.5 API Developer Guide

http://www.ssh.com

Troubleshooting the API

Most calls to the Novell® Identity Manager Fan-Out driver AS Client API return a value that
describes the outcome of the call. These return code values are defined in the C language ascauth.h
header file and are provided as fields in the JAscAuth class in the Java interface. The C language
API function ASC_STRERROR() and the Java interface method strError() can be used to return a
text string that corresponds to the return code. This text string is included in many of the messages
that are written to the platform log file for errors involving API calls.

The Java interface uses exceptions for most non-affirmative API call outcomes.

The following table lists the return codes and their corresponding text string, and suggests actions to

take for them.

Eztdu‘:n Symbol Text String Explanation and Suggested Action
0 AS_OK The operation returned a positive response. For calls such as
check password, this corresponds to an answer of “Yes.”
Action successful
1 AS NO The operation returned a negative response. For calls such as
check password, this corresponds to an answer of “No.”
Action not successful
2 AS_NOUSER The Enterprise User ID specified on the call is inactive or is
not in the Census.
Unknown user
Action: If you expect this user to be active in the Census,
see “Managing the Census” in the Core Driver Administration
Guide for additional information.
3 AS_NOAGENT No core drivers could be contacted to process the request.

No core drivers are available
for authentication

Action: This is generally caused by a configuration problem.

+ Ensure that the platform configuration file specifies the
correct network addresses for the core drivers.

+ Ensure that the core driver is running on the specified
servers and listening on the port specified in the platform
configuration file.

+ Ensure that the Platform Services Process is running or
that you have specified the
DIRECTTOAUTHENTICATION statement in your
platform configuration file.

+ Ensure that you have network connectivity to a core
driver server.

+ Ensure that driver has been activated or that the
evaluation period has not expired.

For more information, see the Platform Services Planning
Guide and Reference and the Core Driver Administration
Guide.

Troubleshooting the API

65

66

Return

Symbol Text String

Explanation and Suggested Action

Code
4 AS_BADCLIENT The network address used by the platform to contact a core
)) driver did not match the network address listed in the Platform

Local host is not authorized to configuration object in the ASAM System container.

query the core driver
Action: For information about managing Platform objects
with the Web interface, see the Core Driver Administration
Guide.

For an administrative password reset, this can indicate that
the administrator user ID/password is not valid or that the
administrator does not have rights to change the password.

5 AS_REVOKED The specified Enterprise User ID corresponds to a User object
that has been disabled.

User is disabled/revoked

6 AS_INTRUDER The specified Enterprise User ID corresponds to a User object
that has been locked because of intruder detection.

Intruder detection is active

7 AS_INVALIDARGS The arguments specified on the call are not valid.

Invalid arguments Action: Make certain that the arguments passed to the call
are of the correct type and value. For example, an argument
that specifies the name of an object cannot be blank or null,
and an argument that specifies a buffer size to hold a result
cannot be zero.

8 AS_INVALIDOBJ An object specified as an argument was not of the correct type
)) or was not found.

Invalid object
Action: Verify that the objects specified on arguments to the
call are of the proper type. Handle the not-found condition as
appropriate for your application.

9 AS_INVALIDOBJLEN An object name specified as an argument was longer than the
maximum allowable eDirectory™ object name.

Invalid object length
Action: Check object names that are specified as arguments
to be sure that they do not exceed the maximum length for an
eDirectory object name.

10 AS_PASSDUPLICATE The new password that was specified to the change password
) API function has been previously used for this User object and

Pas;word has been previously the User object is required to specify unique passwords.

use
Action: Specify a password that has not been previously
used.

11 AS_PASSTOOSHORT The new password that was specified to the change password
API function is shorter than the minimum password length set

Password does not meet for the User object.

password rules
Action: Specify a password that meets the password rules
for the User object.

12 AS_TOOSMALL The size specified for a buffer argument is too small to hold

Buffer is too small

the result. The result is truncated.

Action: Allocate a larger buffer, and issue the request again.

Identity Manager Fan-Out Driver 3.5 API Developer Guide

Return

Symbol Text String

Explanation and Suggested Action

Code
13 AS_ATTRNOTFOUND The attribute specified was not found for the specified object.
Attribute not found Action: Process this response accordingly, or specify the
name of an attribute that exists for the specified object.
14 AS_WSOCKUP Not used in the Identity Manager Fan-Out driver.
WINSOCK not initialized
15 AS_WSOCKDOWN Not used in the Identity Manager Fan-Out driver.
WINSOCK not terminated
16 AS_NOAUTHENV The asce argument did not specify a valid environment item.
No authentication environment C Action: Verify that a successful call to ASC_INIT() or
established ASC_INIT_EXT() has been made. Successful calls return a
pointer to a valid environment item. Unsuccessful calls return
NULL. Verify that the pointer to the environment item is
correctly specified as an argument to this call.
Java Action: Verify that a successful call to init() has been
made.
17 AS_PRODUCTEXPIRED The expiration date for the platform has passed.
Ascauth client has expired Action: Install a current version of Platform Services.
18 AS_INCLUDED The Enterprise User ID specified on a call to
ASC_USER_INCLUDE_EXCLUDE() matched an
User matched an INCLUDE As USER.INCLUDE statement in the platform configuration
statement file.
19 AS_EXCLUDED The Enterprise User ID specified on a call to
ASC_USER_INCLUDE_EXCLUDE() matched an
User matched an EXCLUDE As USER.EXCLUDE statement in the platform configuration
statement file.
20 AS_NOMATCH The Enterprise User ID specified on a call to
) ASC_USER_INCLUDE_EXCLUDE() did not match any
User did not match any AS.USER.INCLUDE or AS.USER.EXCLUDE statement in the
INCLUDE/EXCLUDE platform configuration file. The user is included because
statement AS.USER.INCLUDE * is implicit if AS.USER.EXCLUDE * is
not specified.
21 AS_NOLICENSE Not used in the Identity Manager Fan-Out driver.
Client is not licensed to use the
driver
22 AS_INVALIDREQ The AS Client API call was not recognized by the core driver.

API request is not valid or
unsupported

Action: Ensure that the version of Platform Services and the
version of the core driver are compatible.

Troubleshooting the API

67

68

Return
Code

Symbol Text String

Explanation and Suggested Action

23

24

AS_KEYEXPIRED

Client is using an expired DES
key

AS_INSUFFICIENTRIGHTS

Client is using an expired DES
key

The DES encryption key used by a non-SSL version of
Platform Services has expired.

Action: Update the KEY statement in the platform
configuration file with the same encryption key that is
specified for the Platform in the Platform object in the ASAM
System container. For information about managing Platform
objects with the Web interface, see the Core Driver
Administration Guide.

An administrative password reset was rejected. The
administrative user does not exist, the password given for the
administrative user is not valid, or the administrative user does
not have rights to change the target user's password.

Identity Manager Fan-Out Driver 3.5 API Developer Guide

	Identity Manager Fan-Out Driver 3.5 API Developer Guide
	About This Guide
	1 About the API
	1.1 Using the API in the MVS Environment
	1.2 Using the API on a NetWare Server
	1.3 Using the API in the OS/400 Environment
	1.4 Using the API in the UNIX Environment
	1.5 API Function List

	2 C Language API Reference
	ASC_ADMINRSTPASSWDPerforms an administrative reset of a user's password. The new password is marked as being expired unless it is non-expiring.
	ASC_CHGPASSWDChanges the password of a user.
	ASC_CHKPASSWDVerifies the password of a user.
	ASC_DAYSConverts an integer number of seconds into an integer number of days.
	ASC_GETCONTEXTObtains a user's fully distinguished object name from the Census and copies it into the buffer supplied by the caller.
	ASC_GRPMEMObtains a list of all members of the given group and places it in the buffer supplied by the caller.
	ASC_INITReads the platform configuration file and initializes the environment so that calls can be made to a core driver. This function or ASC_INIT_EXT() must be called before any other API function.
	ASC_INIT_EXTReads the platform configuration file and initializes the environment so that calls can be made to a core driver. This function ...
	ASC_LISTSEQVObtains a user's Security Equals attribute list and places it in the buffer supplied by the caller.
	ASC_READATTRReturns the value of the specified single-valued attribute for the specified object.
	ASC_RIGHTSChecks the specified effective rights of one object over another for a specific attribute.
	ASC_SECEQUALChecks to see if a user has security equivalence to the specified object.
	ASC_STRERRORReturns the error string for the specified ASC function error code.
	ASC_TERMTerminates and frees the environment that was created by a call to ASC_INIT() or ASC_INIT_EXT(). After the environment is terminated, no more calls to the core driver can be made without first issuing another ASC_INIT() or ASC_INIT_EXT() call.
	ASC_USER_INCLUDE_EXCLUDEDetermines if a given user matches an AS.USER.INCLUDE or AS.USER.EXCLUDE statement in the platform configuration file.

	3 Java Language API Reference
	Class com.novell.asam.JAscAuth.JAscAuthProvides the methods you use to access the AS Client API.
	Classes Used by checkPasswordThe following topics describe classes used by the checkPassword method of JAscAuth to return information.
	Exception Classes in com.novell.asam.JAscAuthThe following exceptions, along with java/lang/NullPointerException, are the exceptions that are thrown by the methods of JAscAuth.

	4 API Examples
	4.1 Adding API Support to the Apache Web Server
	4.2 Adding API Support to the QUALCOMM POP Server
	4.3 Adding API Support to SASL
	4.4 Adding API Support to SSH Secure Shell
	4.5 Adding API Support to TACACS+

	A Troubleshooting the API

