Novell
ldentity Manager Driver for
Scripting

3.5 @
‘ IMPLEMENTATION GUIDE

www.novell.com

March 19, 2007

Novell.

Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc. reserves the right to revise this publication and to make changes to its content, at any time,
without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims
any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to
notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the
trade laws of other countries. You agree to comply with all export control regulations and to obtain any required
licenses or classification to export, re-export or import deliverables. You agree not to export or re-export to entities on
the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export laws.
You agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses. See the
Novell International Trade Services Web page (http://www.novell.com/info/exports/) for more information on
exporting Novell software. Novell assumes no responsibility for your failure to obtain any necessary export
approvals.

Copyright © 2007 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied,
stored on a retrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S.
patents listed on the Novell Legal Patents Web page (http://www.novell.com/company/legal/patents/) and one or
more additional patents or pending patent applications in the U.S. and in other countries.

Novell, Inc.

404 Wyman Street, Suite 500
Waltham, MA 02451

US.A

www.novell.com

Online Documentation: To access the latest online documentation for this and other Novell products, see
the Novell Documentation Web page (http://www.novell.com/documentation).

http://www.novell.com/info/exports/
http://www.novell.com/company/legal/patents/
http://www.novell.com/documentation

Novell Trademarks

For Novell trademarks, see the Novell Trademark and Service Mark list (http://www.novell.com/company/legal/
trademarks/tmlist.html).

Third-Party Materials

All third-party trademarks are the property of their respective owners.

http://www.novell.com/company/legal/trademarks/tmlist.html

Contents

About This Guide

5.1

Scripting Driver Data Definition.
511 Defining Data Classes and Attributes
51.2 Associating Identity Vault and Application Classes and Attributes

1 Overview
1.1 Driver Architecture
1.1.1 Publisher Channel.
11.2 Subscriber Channel.
1.1.3 Scriptable Framework
114 Schema File
1.1.5 Include/Exclude File
1.1.6 Loopback State Files.
1.2 Configuration OVervIEW
1.2.1 Data Flow
1.2.2 PoOlICIES . . o
2 Planning for the Scripting Driver
2.1 Prerequisites for Linux and UNIX Scripting i
211 Identity Vault Server Requirements.
2.1.2 Operating System Requirements
213 OtherSoftware
2.2 Prerequisites for Windows Scripting
2.21 Identity Vault Server Requirements.
2.2.2 Operating System Requirements i,
223 Other Software
23 Establishing a Security-Equivalent User.
3 Installing the Scripting Driver
3.1 Installing the Linux and UNIX Scripting Driver e
3.11 Installing the Linux and UNIX Scripting Driver Shim.
3.1.2 Creating the Driver in Novell eDirectory using iManager.
3.1.3 Running the Driver e
3.2 Installing the Windows Scripting Driver. i
3.2.1 Installing the Driver Shim
3.2.2 Creating the Driverin Novell eDirectory
3.23 Running the Driver
4 Configuring the Scripting Driver
4.1 Driver Parameters and Global Configuration Values.
4.11 Properties That Can Be Set Only During Driver Import
4.1.2 Driver Configuration Page.
4.1.3 Global Configuration ValuesPage
4.2 The Driver Shim Configuration File
5 Customizing the Scripting Driver

11

11
12
12
12
13
13
13
13
13
14

15

15
15
15
16
16
16
16
16
16

19

19
19
20
20
20
20
21
21

23

23

23
24
27
29

31

31

31
32

Contents

5

6

5.2

5.3

5.4

5.5

5.6

5.7

6.1
6.2
6.3

51.3 Defining an AssociationRule

51.4 Defining Excluded Identities.
51.5 Defining Relevant Events.
The Connected System Schema File. i
5.21 Schema File Syntax
The Connected System Include/Exclude File.
5.3.1 Include/Exclude Processing.t
5.3.2 Include/Exclude File Syntax.
5.3.3 Example Include/Exclude Files
Managing Additional Attributes.
5.4.1 Modifying the Filter.
5.4.2 Modifying the Scripts for New Attributes
UNIX Shell Developer Guidet e e e e
5.5.1 Application Tools Evaluation e
55.2 Policy and Script Development e
553 Deployment
Perl Developer GuIide
5.6.1 Application Tools Evaluation i
5.6.2 Policy and Script Development
5.6.3 Deployment
Microsoft VBScript Developer Guide
5.71 Application Tools Evaluation
5.7.2 Policy and Script Development
5.7.3 Deployment
574 Using an Alternate ScriptingLanguage
6 Using the Scripting Driver
Starting and Stopping the Driver
Starting and Stopping the Driver Shim
Displaying Driver Shim Status e e
Monitoring Driver MeSSages. oottt i

6.4

7 Securing the Scripting Driver

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.1

USING SOo e
Physical Security e
Network SECUNtY
AUdItiNg. . . .
Driver Security Certificates.
Driver Shell Scripts
The Change Log.ot
Driver Passwords e
Driver Code e
Administrative USers.
Connected Systems

A Troubleshooting

A1

Driver Status and Diagnostic Files
A.1.1 The System Log (Linux/UNIXonly) i
A12 TheTrace File
A1.3 The Script Output File
A1.4 DSTRACE ...
A15 The Status Log.o

Identity Manager 3.5 Scripting Driver Implementation Guide

79

79
79
80
80

81

81
81
81
81
81
82
82
82
82
83
83

D

A.2 Troubleshooting Common Problems e 87
A.21 Driver Shim Installation Failure 87
A.2.2 Driver Rules Installation Failure 88
A.2.3 Driver Certificate Setup Failure 88
A2.4 DriverStartFailure 88
A.2.5 Driver Shim Startup or Communication Failure. 89
A.2.6 Users or Groups Are Not Provisioned to the Connected System 89
A.2.7 Users or Groups Are Not Provisioned to the Identity Vault. 89
A.2.8 Identity Vault User Passwords Are Not Provisioned to the Connected System 90
A.29 Connected System User Passwords Are Not Provisioned to the Identity Vault 90
A.2.10 Metadirectory Objects Are Not Modified, Deleted, Renamed, or Moved. 90
A.3 Shared Memory Errors (Linux/UNIXoonly) i 91
System and Error Messages 93
Bl CFG MESSAgES . . o ottt it it 93
B.2 CHGLOG MESSAQES . . . oottt i et i e et e e e e e e e e e 94
B.3 DOMMESSAQES . . - .t ittt e e 94
B4 DRVCOM MESSAgES . .« . v vttt e ettt e e e e e e e e e e 94
B.5 HES MESSAQES . . . oot i ittt e e 95
B.B LWS MESSAgES . . . o i ittt e e 95
B.7 NET MeESSaQgesSttt e e e e e e 96
B.8 NIX Messages (LInUX/UNIXonly) e 96
B.9 OAP MeESSaQesttt e 99
B.10 RDXML MESSAQES . . .« . ettt it ettt e e e e e e e e 100
IDMLib Reference 103
C.1 UNIX Shell (idmlib.sh) Reference i 103
C.1.1 General Functions e 103
C.1.2 Subscriber Functions. 104
C.1.3 Publisher Functions. e 105
C1.4 Query FUNCHIONSo 105
C.1.5 Heartbeat Functions 105
C.2 Perl (IDMLib.pm)Reference e 106
C.21 General FUNCLIONSo e e 106
C.2.2 Subscriber Functions. e 107
C.2.3 Publisher Functions. e e 108
C.24 Query FUNCiONS e 108
C.25 Heartbeat Functions 108
C.3 Microsoft VBScript (IDMLib.vbs) Reference 109
C.3.1 General FUNCHONS oo 109
C.3.2 Subscriber Functions. 110
C.3.3 Publisher Functions. 111
C.3.4 Query FUuNCtions 112
C.3.5 Heartbeat Functions e 114
Technical Details 115
D.1 Using the usdrv-config Command (Linux/UNIXonly) 115
D.1.1 Setting the Remote Loader and Driver Object Passwords. 115
D.1.2 Configuringthe Driver for SSL 116
D.2 Driver Shim Command Line Options i i 116
D.2.1 Options Used to Set Up Driver Shim SSL Certificates 116
D.2.2 Other Options oo e e 117
D.3 Publisher Channel Limitations 117

Contents

7

8

D.4

Files and Directories Modified by Installing the Driver Shim. 117
D.4.1 Driver Shim Directory e 118
D.4.2 Jusr/sbin Files (Linux/UNIXonly) e 118
D.4.3 init.d Files (Linux/UNIXoonly) e 118
D.4.4 Man Pages (Linux/UNIXonly) i 118
D.4.5 Driver Shim Configuration File. 119
D.4.6 Windows Support Files (Windows only). i 119

Identity Manager 3.5 Scripting Driver Implementation Guide

About This Guide

Novell® Identity Manager is a data sharing and synchronization service that enables applications,
directories, and databases to share information. It links scattered information and enables you to
establish policies that govern automatic updates to designated systems when identity changes occur.
Identity Manager provides the foundation for account provisioning, security, user self-service,
authentication, authorization, automated workflow, and Web services. It allows you to integrate,
manage, and control your distributed identity information so you can securely deliver the right
resources to the right people.

The Identity Manager Driver for Scripting 3.5 synchronizes data between the Identity Vault and a
connected system through a scriptable interface.

This guide is organized into the following sections:

¢ Chapter 1, “Overview,” on page 11

¢ Chapter 2, “Planning for the Scripting Driver,” on page 15
¢ Chapter 3, “Installing the Scripting Driver,” on page 19

¢ Chapter 4, “Configuring the Scripting Driver,” on page 23
¢ Chapter 5, “Customizing the Scripting Driver,” on page 31
¢ Chapter 6, “Using the Scripting Driver,” on page 79

¢ Chapter 7, “Securing the Scripting Driver,” on page 81

+ Appendix A, “Troubleshooting,” on page 85

+ Appendix B, “System and Error Messages,” on page 93

+ Appendix C, “IDMLib Reference,” on page 103

Audience

This guide is for system administrators and others who plan, install, configure, and use the Scripting
driver. It assumes that you are familiar with Identity Manager architecture, managing Identity
Manager drivers, setting up a connected system, and administering policies. For detailed
information about these topics, see the Novell Identity Manager 3.5 Administration Guide.

This guide also assumes that you are familiar with system administration of your connected system.
For detailed information, see the documentation for your system.

Feedback

We want to hear your comments and suggestions about this manual and the other documentation
included with this product. Please use the User Comments feature at the bottom of each page of the
online documentation, or go to the Documentation Feedback site (http://www.novell.com/
documentation/feedback.html) and enter your comments there.

Documentation Updates

For the most recent version of this guide, visit the Identity Manager 3.5 Drivers Documentation Web
site (http://www.novell.com/documentation/idm35drivers).

About This Guide

http://www.novell.com/documentation/feedback.html
http://www.novell.com/documentation/idm35drivers
http://www.novell.com/documentation/idm35drivers

10

Additional Documentation

For documentation about Identity Manager, see the Identity Manager 3.5 Documentation Web site
(http://www.novell.com/documentation/idm35).

For documentation about other Identity Manager drivers, see the Identity Manager 3.5 Drivers
Documentation Web site (http://www.novell.com/documentation/idm35drivers).

For details about using iManager, see the Novell iManager 2.6 Documentation Web site (http:/
www.novell.com/documentation/imanager26).

For details about using Designer, see the Novell Designer 2.0 Documentation Web site (http://
www.novell.com/documentation/designer20).

Documentation Conventions

In Novell documentation, a greater-than symbol (>) is used to separate actions within a step and
items in a cross-reference path.

A trademark symbol (®, ™_etc.) denotes a Novell trademark. An asterisk (*) denotes a third-party
trademark.

Identity Manager 3.5 Scripting Driver Implementation Guide

http://www.novell.com/documentation/idm35
http://www.novell.com/documentation/idm35drivers
http://www.novell.com/documentation/idm35drivers
http://www.novell.com/documentation/imanager26
http://www.novell.com/documentation/designer20

Overview

The Identity Manager Driver for Scripting 3.5 synchronizes data between the Identity Vault and a
connected system using a scripting environment suitable for the target application. Languages such
as Shell, Perl and Microsoft* VBScript* can be used to extend the base set of sample scripts to
update and retrieve information from the target application. Traditional driver development is
accomplished with Java* and the Policy Builder. With the Scripting environment, driver
development can be done in alternate languages, which provide a large set of packages and complex
language syntax. In addition, your target application might already provide management tools,
commands, or APIs written or easily accessible in Perl, Shell Script or VBScript.

The Scripting driver runs on a large number of Linux* and UNIX* platforms, including Linux,
Solaris*, AIX* and HP-UX*. In addition, a Microsoft Windows* service is available for
applications that run on the Windows platform. The driver also uses embedded Remote Loader
technology to communicate with the Identity Vault, bidirectionally synchronizing changes between
the Identity Vault and the connected system. The embedded Remote Loader component, also called
the driver shim, runs as a native process on the connected Linux or UNIX system or a Windows
service on a Windows system. There is no requirement to install Java on the connected system. The
simplicity of installation, configuration and security provides an excellent environment for the
development of new drivers.

¢ Section 1.1, “Driver Architecture,” on page 11

¢ Section 1.2, “Configuration Overview,” on page 13

1.1 Driver Architecture

¢ Section 1.1.1, “Publisher Channel,” on page 12

¢ Section 1.1.2, “Subscriber Channel,” on page 12

¢ Section 1.1.3, “Scriptable Framework,” on page 12
¢ Section 1.1.4, “Schema File,” on page 13

¢ Section 1.1.5, “Include/Exclude File,” on page 13
¢ Section 1.1.6, “Loopback State Files,” on page 13

The Scripting driver synchronizes information between the Identity Vault and an external account
management system (the connected system).

The Identity Manager detects relevant changes to identities in the Identity Vault and notifies the
Subscriber component of the driver. After customizable policy processing, events are sent to the
Subscriber shim of the embedded Remote Loader process on the connected system. The Subscriber
shim securely passes the information to customizable scripts that perform the required actions.

A process on the connected system polls the account management system for changes at a
configurable interval. If the poll returns identity changes, they are written to the change log.

The Publisher shim of the embedded Remote Loader process submits the changes from the change
log to the Metadirectory engine as events. The Metadirectory engine processes these events using
customizable policies and posts relevant changes to the Identity Vault.

Overview

1"

12

1.1.1 Publisher Channel

The Publisher shim provides identity change information to the Metadirectory engine as XDS event
documents. The Metadirectory engine applies policies, takes the appropriate actions, and posts the
events to the Identity Vault.

Change Log

The change log stores identity changes in encrypted form. The polling script uses the change log
update command to record identity changes it detects. Events are removed from the change log by
the Publisher shim at configurable intervals and submitted to the Metadirectory engine for
processing. If communication with the Metadirectory engine is temporarily lost, events remain in
the change log until communication becomes available again.

Change Log Update Command

The change log update command encrypts and writes events to the change log. Any process with
rights to update the change log can use the change log update command. The change log update
command takes command line arguments and standard input, and stores events in encrypted form in
the change log for subsequent publishing. The polling script calls the change log update command to
record identity changes. For information about using the change log update command, see the
developer guides in Chapter 5, “Customizing the Scripting Driver,” on page 31.

Polling Script

The polling script periodically scans the local account management system for modifications that
have occurred since the last polling interval. If necessary, the polling script updates the change log
by calling the change log update command. You can specify the polling interval during installation
and by subsequent configuration of the Driver object.

Publisher Shim

The Publisher shim periodically scans the change log for events. Before scanning the change log, the
driver calls the polling script to check the local system for changes that might have been made since
the previous poll.

When the Publisher shim finds events in the change log, it decrypts, processes, and sends them to
the Metadirectory engine in XDS format over a Secure Sockets Layer (SSL) network link.

1.1.2 Subscriber Channel

The Subscriber channel receives XDS command documents from the Metadirectory engine and calls
the appropriate script or scripts to handle the command.

The provided scripts must be customized to handle connected system events. For more information

see Chapter 5, “Customizing the Scripting Driver,” on page 31.

1.1.3 Scriptable Framework

The interface between the connected system and the driver shim uses customizable scripts. You
must extend the scripts that are provided with the driver to support your connected system. Several
utility scripts and helper commands are provided with the driver to facilitate communication with

Identity Manager 3.5 Scripting Driver Implementation Guide

the driver shim and the change log. An extensible connected system schema file allows you to add
your own objects and attributes to those already supported by the driver.

For more information about the scriptable framework, see Chapter 5, “Customizing the Scripting
Driver,” on page 31.

1.1.4 Schema File

The configuration of class and attribute definitions for the connected system is specified using the
schema file. You can modify and extend this file to include new objects and attributes. For details
about configuring the schema file, see Section 5.2, “The Connected System Schema File,” on
page 34.

1.1.5 Include/Exclude File

The include/exclude file allows local system policy to enforce which objects are included or
excluded from provisioning, on both the Publisher channel and the Subscriber channel,
independently. For details about using the include/exclude file, see Section 5.3, “The Connected
System Include/Exclude File,” on page 35.

1.1.6 Loopback State Files

The loopback state files are used to provide automatic loopback detection for external applications
that do not have mechanisms to perform loopback detection. This loopback detection prevents
subscribed events from being published back to the Identity Vault.

1.2 Configuration Overview

This section discusses driver configuration details specific to the Scripting driver. For basic
configuration information, see “Managing Identity Manager Drivers” in the Identity Manager 3.5
Administration Guide. For detailed information about configuring the Scripting driver, see
Chapter 4, “Configuring the Scripting Driver,” on page 23.

¢ Section 1.2.1, “Data Flow,” on page 13

¢ Section 1.2.2, “Policies,” on page 14

1.2.1 Data Flow

Filters and policies control the data flow of identities to and from the connected system and the
Identity Vault. The Data Flow option, specified during driver import, determines how these filters
and policies behave.

+ Bidirectional: Sets classes and attributes to be synchronized on both the Subscriber and
Publisher channels.

+ Application to Identity Vault: Sets classes and attributes to be synchronized on the Publisher
channel only.

+ Identity Vault to Application: Sets classes and attributes to be synchronized on the
Subscriber channel only.

Overview

13

1.2.2 Policies

The Metadirectory engine uses policies to control the flow of information into and out of the Identity
Vault. Policies can be customized to support desired operations. The following table describes the
policy functions for the Scripting driver in the default configuration:

Table 1-1 Default Linux and UNIX Driver Policy Functions

Policy Description

Mapping Maps the Identity Vault objects and selected
attributes to connected system objects and
attributes.

Publisher Event Processes Publisher-side operations.

Publisher Matching Restricts privileged accounts and defines matching
criteria for placement in the Identity Vault.

Publisher Create Defines creation rules for provisioning into the
Identity Vault.

Publisher Placement Defines where new objects are placed in the
Identity Vault.

Publisher Command Defines password publishing policies.

Subscriber Matching Defines rules for matching identities in the
connected system.

Subscriber Create Defines required creation criteria.

Subscriber Command Transforms attributes and defines password

subscribing policies.

Subscriber Output Sends e-mail notifications for password failures and
converts information formats from the Identity Vault
to the connected system.

Subscriber Event Restricts events to a specified container.

14 Identity Manager 3.5 Scripting Driver Implementation Guide

Planning for the Scripting Driver

The planning process for the Novell® Identity Manager Driver for Scripting begins by determining
whether you develop your own scripts and policies for use with your external account management
system or whether you obtain them from a third party.

If you are customizing the scripts, the process continues by installing the Scripting driver to a
development system. The first decision to make is whether you run the driver shim on Windows or a
Linux/UNIX system. (The driver engine component hosted by Novell Identity Manager can run on
any operating system that supports Identity Manager.) The driver shim should be installed on a
system that hosts, or is remotely connected to, the external account management system. The
operating system of this system is the operating system of the driver shim.

Your operating system choice determines what scripting language to use. On Linux and UNIX, pre-
written libraries are included for the Bourne shell and Perl. On Windows, a library is included for
Microsoft VBScript. Also, with additional development work, you can port these libraries to another
scripting language.

Continue the development process by reading Chapter 5, “Customizing the Scripting Driver,” on
page 31 and following its instructions.

If you have obtained custom scripts from a third party, you should follow their instructions for
installing the Scripting driver and their custom components.You should install and test the driver on
a test system first and then on production systems.

This section reviews some of the issues to consider before you install the Scripting driver.

¢ Section 2.1, “Prerequisites for Linux and UNIX Scripting,” on page 15
¢ Section 2.2, “Prerequisites for Windows Scripting,” on page 16

¢ Section 2.3, “Establishing a Security-Equivalent User,” on page 16

For general information about planning for identity management, see “Planning” in the Identity
Manager 3.5 Installation Guide.

2.1 Prerequisites for Linux and UNIX Scripting

¢ Section 2.1.1, “Identity Vault Server Requirements,” on page 15
¢ Section 2.1.2, “Operating System Requirements,” on page 15

¢ Section 2.1.3, “Other Software,” on page 16

2.1.1 Identity Vault Server Requirements

¢ Novell eDirectory™ 8.7.3.4 or later, or Novell eDirectory 8.8.1 or later.
¢ Novell Identity Manager 3.0.1 or later.

2.1.2 Operating System Requirements

* Red Hat* Linux

Planning for the Scripting Driver

15

16

SUSE® Linux
¢ Solaris SPARC*
¢ AIX

¢ HP-UX

*

For the most current list of supported versions, see “Identity Manager Components and System
Requirements” in the Identity Manager 3.5 Installation Guide.

2.1.3 Other Software

¢ Novell iManager 2.5 or later (2.6 recommended); can be installed on the Identity Vault Server
or a separate system.

+ Novell Designer 2 or later (optional; for development).

2.2 Prerequisites for Windows Scripting

¢ Section 2.2.1, “Identity Vault Server Requirements,” on page 16
¢ Section 2.2.2, “Operating System Requirements,” on page 16

¢ Section 2.2.3, “Other Software,” on page 16

2.2.1 ldentity Vault Server Requirements

¢ Novell eDirectory 8.7.3.4 or later, or Novell eDirectory 8.8.1 or later.
+ Novell Identity Manager 3.0.1 or later.

2.2.2 Operating System Requirements

The Microsoft Windows system running the driver shim should be running the following:

¢ Microsoft Windows Server 2003 (any type such as Standard, Advanced); recommended with
the latest Service Pack

* Microsoft Windows XP SP2 or later

2.2.3 Other Software

+ Novell iManager 2.5 or later (2.6 recommended); can be installed on the Identity Vault Server
or a separate system

¢ Novell Designer 2 or later (optional; for development).

2.3 Establishing a Security-Equivalent User

The driver must run with security equivalent to a user with sufficient rights. You can set the driver
equivalent to ADMIN or a similar user. For stronger security, you can define a user with only the
minimal rights necessary for the operations you want the driver to perform.

The driver user must be a trustee of the containers where synchronized identities reside, with the
rights shown in Table 2-1. Inheritance must be set for [Entry Rights] and [All Attribute Rights].

Identity Manager 3.5 Scripting Driver Implementation Guide

Table 2-1 Base Container Rights Required by the Driver Security-Equivalent User

Operation [Entry Rights]

[All Attribute Rights]

Subscriber notification of account Browse
changes (recommended
minimum)

Creating objects in the Identity Browse and Create
Vault without group
synchronization

Creating objects in the Identity Browse and Create
Vault with group synchronization

Modifying objects in the Identity = Browse
Vault

Renaming objects in the Identity Browse and Rename
Vault

Deleting objects from the Identity Browse and Erase
Vault

Retrieving passwords from the Browse and Supervisor
Identity Vault

Updating passwords in the Browse and Supervisor
Identity Vault

Compare and Read

Compare and Read

Compare, Read, and Write

Compare, Read, and Write

Compare and Read

Compare, Read, and Write

Compare and Read

Compare, Read, and Write

If you do not set Supervisor for [Entry Rights], the driver cannot set passwords. If you do not want
to set passwords, set the Subscribe setting for the User class nspmDistributionPassword attribute to
Ignore in the filter to avoid superfluous error messages. For details about accessing and editing the
filter, see the Policy Builder and Driver Customization Guide on the Identity Manager 3
Documentation Web site (http://www.novell.com/documentation/idm/index.html). For complete
information about rights, see the Novell® eDirectory 8.7.3 Administration Guide on the Novell
eDirectory 8.7.3 Documentation Web site ((http://www.novell.com/documentation/edir873).

Planning for the Scripting Driver

17

(http://www.novell.com/documentation/edir873
(http://www.novell.com/documentation/edir873

18 Identity Manager 3.5 Scripting Driver Implementation Guide

Installing the Scripting Driver

This section contains requirements and instructions for installing the Identity Manager Driver for
Scripting 3.5.

¢ Section 3.1, “Installing the Linux and UNIX Scripting Driver,” on page 19

¢ Section 3.2, “Installing the Windows Scripting Driver,” on page 20

3.1 Installing the Linux and UNIX Scripting
Driver

¢ Section 3.1.1, “Installing the Linux and UNIX Scripting Driver Shim,” on page 19
¢ Section 3.1.2, “Creating the Driver in Novell eDirectory using iManager,” on page 20

¢ Section 3.1.3, “Running the Driver,” on page 20

3.1.1 Installing the Linux and UNIX Scripting Driver Shim

1 Log in to the target application server as root.

2 Obtain the <os> scriptdriver install.bin file from your installation media and
execute this self-extracting file on your Linux or UNIX system.

3 Specify a language choice.
4 Read and accept the license agreement.

5 After the package is installed onto your system, you are prompted to enter Driver and Remote
Loader passwords. These passwords are used to verify that an authorized driver shim is
communicating with the Identity Manager engine. Follow the prompts:

5a Enter and confirm the Remote Loader password.
5b Enter and confirm the driver password.

6 Next, you are prompted to retrieve an SSL certificate. Novell® eDirectory™ must be running in
order to retrieve the certificate. The certificate allows SSL encryption between the Identity
Manager engine and the driver shim. Enabling SSL is optional but is recommended for better
security. To retrieve the certificate, follow the prompts:

6a Specify the DNS name or IP address of your eDirectory server.
6b Specify the LDAP secure port, default 636.
6¢c Enter Y to accept the certificate.

7 You are prompted for a Scripting language to be used on this system. Enter Per1 for the
sample Perl scripts to be installed or enter She11 for the sample Bourne Shell scripts to be
installed.

8 Ifyou select Perl, you are optionally asked to install the Perl IDMLib perl module into the Perl
system path to be accessible by the sample Perl scripts. Enter Yes or No to install this library.

9 The installation of the driver shim is finished, with the option of starting the Driver Shim
Service. Proceed to the next section to complete the installation of the driver.

Installing the Scripting Driver

19

20

3.1.2 Creating the Driver in Novell eDirectory using iManager

1 In iManager, click the Import Drivers Task under Identity Manager Utilities.

2 All drivers are contained in a Driver Set. You can create a new Driver Set or install the driver
into an existing one. See “Creating and Configuring a Driver ” in the Identity Manager 3.5
Administration Guide for more details. Click Next to proceed.

3 Select the Scripting driver from the list of drivers and click Next to proceed.
Enter information in the requested configuration fields, then click Next to continue.

When entering the Remote Loader and Driver object passwords, be sure to enter the same
values that you entered when installing the Drivershim. For more information on these fields,
see Section 4.1, “Driver Parameters and Global Configuration Values,” on page 23.

5 Click Define Security Equivalences, and select your administrative user to make the driver
security-equivalent to that user (see also Section 2.3, “Establishing a Security-Equivalent
User,” on page 16).

6 Click Exclude Administrative Roles, and select your administrative user and other high-
privilege users that should not be monitored for events.

7 Click Next to proceed, then click Finish to complete the installation.

3.1.3 Running the Driver

Start the driver engine component in Novell iManager.

The driver shim is a UNIX daemon process. Use the UNIX startup script usdrvd to start and stop
the Novell Identity Manager Linux and UNIX Script Driver (see Chapter 6, “Using the Scripting
Driver,” on page 79.)

3.2 Installing the Windows Scripting Driver

¢ Section 3.2.1, “Installing the Driver Shim,” on page 20
¢ Section 3.2.2, “Creating the Driver in Novell eDirectory,” on page 21

¢ Section 3.2.3, “Running the Driver,” on page 21

3.2.1 Installing the Driver Shim

1 Obtain the windows scriptdriver install.exe file from your installation media.
Run this file on your Windows system.

Click Next to continue the installation.
Accept the default installation folder or specify your own. Click Next to continue.

Review your settings and click Next to continue.

a A~ WODN

After the driver files are copied, you are prompted to retrieve an SSL certificate. Novell
eDirectory must be running in order to retrieve the certificate. The certificate allows SSL
encryption between the Identity Manager engine and the driver shim. Enabling SSL is optional
but is recommended for better security. To retrieve the certificate, click Yes and follow the
prompts in the console window:

5a Specify the DNS name or IP address of your eDirectory server.

Identity Manager 3.5 Scripting Driver Implementation Guide

5b Specify the LDAP secure port, default 636.
5¢c Enter Y to accept the certificate.

6 You are prompted to enter Driver and Remote Loader passwords. These passwords are used to
verify that an authorized driver shim is communicating with the Identity Manager engine.
Although you don’t need to enter the passwords immediately, they must be set at some point
before running the driver. Click Yes to the prompt and follow the prompts in the console
window:

6a Enter and confirm the Remote Loader password.
6b Enter and confirm the Driver password.

7 The installation of the driver shim is finished, with the option of starting the Driver Shim
Service. Proceed to the next section to complete the installation of the driver.

3.2.2 Creating the Driver in Novell eDirectory

1 In iManager, click the Import Drivers task under Identity Manager Utilities.

2 All drivers are contained in a driver set. You can create a new driver set or install the driver into
an existing one. See “Creating and Configuring a Driver ” in the Identity Manager 3.5
Administration Guide for more details. Click Next to proceed.

3 Select the Scripting driver from the list of drivers, then click Next to proceed.
4 Fill in the requested configuration fields, then click Next to continue.

When entering the Remote Loader and Driver Object passwords, be sure to enter the same
values that you entered when installing the driver shim. For more information on these fields,
see Section 4.1, “Driver Parameters and Global Configuration Values,” on page 23.

5 Click Define Security Equivalences, and select your administrative user to make the driver
security-equivalent to that user (see also Section 2.3, “Establishing a Security-Equivalent
User,” on page 16).

6 Click Exclude Administrative Roles, and select your administrative user and other high-
privilege users that should not be included monitored for events.

7 Click Next to proceed, then click Finish to complete the installation.

3.2.3 Running the Driver

Start the driver engine component in Novell iManager.

The driver shim is a Windows service. Use the Windows Services application to start and stop the
Novell Identity Manager Windows Script Driver service (see Chapter 6, “Using the Scripting
Driver,” on page 79).

Installing the Scripting Driver

21

22 |dentity Manager 3.5 Scripting Driver Implementation Guide

Configuring the Scripting Driver

¢ Section 4.1, “Driver Parameters and Global Configuration Values,” on page 23

¢ Section 4.2, “The Driver Shim Configuration File,” on page 29

4.1 Driver Parameters and Global Configuration
Values

You can control the operation of the Scripting driver by modifying the properties described in the
following sections.

¢ Section 4.1.1, “Properties That Can Be Set Only During Driver Import,” on page 23

¢ Section 4.1.2, “Driver Configuration Page,” on page 24

¢ Section 4.1.3, “Global Configuration Values Page,” on page 27

IMPORTANT: Changing these values requires a restart of the driver.

To edit the properties shown on the Driver Configuration page and the Global Configuration Values
page:

1 In iManager, select Identity Manager Overview from the Identity Manager task list on the left
side of the window.

2 Navigate to your driver set by searching the tree or by entering its name.
3 Click the driver to open its overview.

4 Click the driver icon.

5 Select Driver Configuration or Global Config Values as appropriate.

6 Edit the property values as desired, then click OK.

4.1.1 Properties That Can Be Set Only During Driver Import

Properties that you can set only during driver import are used to generate policies and other
configuration details.

To change import-only properties, you must re-import the Scripting.xml driver configuration
file over the existing driver.

Table 4-1 Driver Import-Only Parameters

Property Name Values or Format

Data Flow Bidirectional
Application to Identity Vault
Identity Vault to Application

Configuring the Scripting Driver

23

24

Property Name Values or Format

Enable Entitlements Yes

No
Use SSL No
Data Flow

+ Bidirectional: Identities are synchronized from both the Identity Vault and the connected
system (application). After all pending events are processed, the Identity Vault and connected
system mirror each other.

+ Application to Identity Vault: Identities are synchronized from the connected system
(application) to the Identity Vault, but not vice versa. For example, an identity created in the
Identity Vault is not created on the connected system unless explicitly migrated.

+ Identity Vault to Application: Identities are synchronized from the Identity Vault to the
connected system (application), but not vice versa. For example, changes made to a connected
system’s identity are not synchronized to the Identity Vault.

Enable Entitlements

Specifies whether the driver uses either Approval Flow or Role-Based Entitlements with the
Entitlements Service driver.

Enable entitlements for the driver only if you plan to use the User Application or Role-Based
Entitlements with the driver.

You can use Role-Based Entitlements to integrate the Scripting driver with the Identity Manager
User Application.

Use SSL

Specifies whether the driver uses Secure Sockets Layer (SSL) to encrypt the connection between the
Identity Vault and the application.

We strongly recommend that you use SSL. If you do not use SSL, identity data (including
passwords) is sent across the network in clear text.

4.1.2 Driver Configuration Page

Table 4-2 Driver Configuration Page

Property Name Values or Format

Driver Module Connect to Remote Loader must be selected.
Driver Object Password Text Value

Authentication ID Not used by the Scripting driver.
Authentication Context Not used by the Scripting driver.

Identity Manager 3.5 Scripting Driver Implementation Guide

Property Name Values or Format

Remote Loader Connection Parameters Host name or IP address and port
number of the driver shim on the connected
system, and the RDN of the object with server

certificate.
Driver Cache Limit The recommended value is 0 (zero).
Application Password Not used by the Scripting driver.
Remote Loader Password Text Value
Startup Option Auto start
Manual
Automatic Loopback Detection Yes
No
Script Command Text Value
Script Trace File Filename
Subscriber Script Filename
Polling Script Filename
Heartbeat Script Filename
Polling Interval Number of seconds
Heartbeat Interval Number of seconds

Driver Object Password

The Driver object password is used by the driver shim (embedded Remote Loader) to authenticate
itself to the Metadirectory engine. This must be the same password that is specified as the Driver
object password on the connected system driver shim.

Remote Loader Connection Parameters

Table 4-3 Remote Loader Connection Parameters

Parameter Description

host=hostName Connected system host name or IP address.

port=portNumber Connected system TCP port number. The default is
8090.

kmo=objectRDN The RDN of the object with the server certificate

signed by the tree’s certificate authority. Enclose
the RDN in double quotes (") if the name contains
spaces.

The following is an example Remote Loader connection parameter string:
hostname=192.168.17.41 port=8090 kmo="SSL CertificateIP"

Configuring the Scripting Driver

25

26

Remote Loader Password

The Remote Loader password is used to control access to the driver shim (embedded Remote
Loader). This must be the same password that is specified as the Remote Loader password on the
connected system driver shim.

Automatic Loopback Detection

Specifies whether the driver shim discards events that would cause loopback conditions. This
function supplements the loopback detection provided by the Metadirectory engine.

Script Command

Specifies the command line the driver uses when executing scripts. The driver provides default
values for Shell scripts, Perl and VBScript. Normally this value does not need to be changed.

Script Trace File

Specifies a file to which script trace output will be written. The path is relative to the Scripting
driver installation directory.

Subscriber Script

Specifies the script file that the driver runs for Subscriber events. The driver provides default values
for Shell scripts, Perl and VBScript, so this value does not normally need to be changed.

Polling Script

Specifies the script file that the Publisher shim runs to poll for external events. The driver provides
default values for Shell scripts, Perl and VBScript, so this value does not normally need to be
changed.

Heartbeat Script

Specifies the script file that the Publisher shim runs to check the external account management
system’s status. The driver provides default values for Shell scripts, Perl and VBScript, so this value
does not normally need to be changed.

Polling Interval

Specifies the number of seconds that the Publisher shim waits after running the polling script and
sending events from the change log to the Metadirectory engine. The default interval is 60 seconds,
and the minimum interval is 1 second.

Heartbeat Interval

Specifies how often, in seconds, the driver shim contacts the Metadirectory engine to verify
connectivity. Specify 0 to disable the heartbeat.

Identity Manager 3.5 Scripting Driver Implementation Guide

4.1.3 Global Configuration Values Page

Table 4-4 Global Configuration Values

Property Name

Values or Format

Connected System or Driver Name

The Scripting Connected System Accepts
Passwords from the Identity Vault

The Identity Vault Accepts Passwords from the
Scripting Connected System

The Identity Vault Accepts Administrative Password
Resets from the Scripting Connected System

Publish Passwords to NDS Password

Publish Passwords to Distribution Password

Require Password Policy Validation before
Publishing Passwords

Reset User’s External System Password to the
Identity Manager Password on Failure

Notify the User of Password Synchronization
Failure via E-Mail

User Base Container

Group Base Container

Text Value
Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No
Identity Vault Container object

Identity Vault Container object

To view and edit Password Management GCVs, select Show for Show Password Management

Policy.

To view and edit User and Group Placement GCVs, select Show for Show User and Group

Placements.

Connected System or Driver Name

Specifies the name of the driver. This value is used by the e-mail notification templates.

The Scripting Connected System Accepts Passwords from the Identity Vault

Specifies whether the driver allows passwords to flow from the Identity Vault to the connected

system.

Configuring the Scripting Driver

27

28

The Identity Vault Accepts Passwords from the Scripting Connected System

Specifies whether the driver allows passwords to flow from the connected system to the Identity
Vault.

The Identity Vault Accepts Administrative Password Resets from the Scripting
Connected System

Specifies whether the driver allows passwords to be reset from the connected system in the Identity
Vault.

Publish Passwords to NDS Password

Specifies whether the driver uses passwords from the connected system to set nonreversible NDS®
passwords in the Identity Vault.

Publish Passwords to Distribution Password

Specifies whether the driver uses passwords from the connected system to set NMAS™ Distribution
passwords, which are used for Identity Manager password synchronization.

Require Password Policy Validation before Publishing Passwords

Specifies whether the driver applies NMAS password policies to published passwords. If so, a
password is not written to the Identity Vault if it does not conform.

Reset User’s External System Password to the Identity Manager Password on
Failure

Specifies whether, on a publish Distribution Password failure, the driver attempts to reset the
password on the connected system using the Distribution Password from the Identity Vault.

Notify the User of Password Synchronization Failure via E-Mail

Specifies whether the driver sends an e-mail to a user if the password cannot be synchronized.

User Base Container

Specifies the base container object in the Identity Vault for user synchronization. This container is
used in the Subscriber channel Event Transformation policy to limit the Identity Vault objects being
synchronized. This container is used in the Publisher channel Placement policy as the destination for
adding objects to the Identity Vault. Use a value similar to the following:

users.myorg

Group Base Container

Specifies the base container object in the Identity Vault for group synchronization. This container is
used in the Subscriber channel Event Transformation policy to limit the Identity Vault objects being
synchronized. This container is used in the Publisher channel Placement policy as the destination
when adding objects to the Identity Vault. Use a value similar to the following:

groups.myorg

Identity Manager 3.5 Scripting Driver Implementation Guide

4.2 The Driver Shim Configuration File

The driver shim configuration file controls operation of the driver shim. The location and name of
the file is dependent on the operating system:

¢ Windows: wsdrv.conf inthe conf directory in your installation directory.

¢ Linux or UNIX: /etc/usdrv.conf
A default configuration file is created at installation time.

You can specify the configuration options listed in Table 4-5, one per line. You can also specify
these options on the driver shim command line. For details about driver shim command line options,
see Section D.2, “Driver Shim Command Line Options,” on page 116.

Table 4-5 Driver Shim Configuration File Statements

Option (Short and Long Forms) Description

-conn connString A string with connection options. Enclose the string
)] in double quotes ("). If you specify more than one

-connection connString option, separate the options with spaces.

port=driverShimPort
ca=Certificate Authority Key File

-hp httpPort Specifies the HTTP services port number. The

default HTTP services port number is 8091.
-httpport httpPort

You can connect to this port to view log files. For
details, see Section A.1, “Driver Status and
Diagnostic Files,” on page 85.

-path driverPath Specifies the HTTP services port number. The
default HTTP services port number is 8091.

You can connect to this port to view log files. For
details, see Section A.1, “Driver Status and
Diagnostic Files,” on page 85.

-t traceLevel Sets the level of debug tracing. 0 is no tracing, and
10 is all tracing. For details, see Section A.1,
-trace traceLevel “Driver Status and Diagnostic Files,” on page 85.

The output file location is specified by the tracefile
option.

-tf fleName Sets the trace file location.

-tracefile fileName Windows default file:
C:\Progra~1\Novell\WSDriver\logs\trac
e.log

Linux/UNIX default file: /opt/novell/usdrv/
logs/trace.log.

Configuring the Scripting Driver

29

Example Configuration File

-tracefile /opt/novell/usdrv/logs/trace.log

-trace 0

-connection "ca=/opt/novell/usdrv/keys/ca.pem port=8090"
-httpport 8091

-path /opt/novell/usdrv/

30 Identity Manager 3.5 Scripting Driver Implementation Guide

Customizing the Scripting Driver

This section describes how the scripts can be written to access and manage your target system. Both
the Linux and UNIX and the Windows scripting sets provide libraries, accessible by the scripts, to
retrieve event and driver data from the driver shim and to return information to the engine for
processing.

The Identity Manager engine has some simple requirements in order to successfully process events.
The provided library supplements your scripts to provide the tools necessary for this successful
interaction.

¢ Section 5.1, “Scripting Driver Data Definition,” on page 31

¢ Section 5.2, “The Connected System Schema File,” on page 34

¢ Section 5.3, “The Connected System Include/Exclude File,” on page 35

¢ Section 5.4, “Managing Additional Attributes,” on page 40

¢ Section 5.5, “UNIX Shell Developer Guide,” on page 41

¢ Section 5.6, “Perl Developer Guide,” on page 52

¢ Section 5.7, “Microsoft VBScript Developer Guide,” on page 64

5.1 Scripting Driver Data Definition

¢ Section 5.1.1, “Defining Data Classes and Attributes,” on page 31

*

Section 5.1.2, “Associating Identity Vault and Application Classes and Attributes,” on page 32

*

Section 5.1.3, “Defining an Association Rule,” on page 33

*

Section 5.1.4, “Defining Excluded Identities,” on page 33

*

Section 5.1.5, “Defining Relevant Events,” on page 33

5.1.1 Defining Data Classes and Attributes

The first task is to examine your external application’s identity data and to determine what data is
relevant and how it should be managed. Below is a series of questions to ask in this process. The list
is not all-inclusive; there might be other questions you need to consider.

+ Are identities stored in a hierarchical or flat format? In a hierarchical system, objects known as
containers can contain identities and perhaps other containers, resulting in a tree-like structure.
A flat system contains all identities at a single level.

+ What types of identities exist in the external application? For example, Novell® eDirectory™
contains Users, Groups and Dynamic Groups, to name a few. Identity types, like Groups, are
often aggregates of other identity types.

+ What uniquely distinguishes (or names) each type of identity? The name is usually an attribute,
known as the naming attribute. Systems often use a human-readable name and a unique serial
number. You should determine which is suitable for your needs.

+ What relationships exist among the identity types? Suppose Groups can contain Users. Can
Groups contain other Groups? Are these relationships one-to-one or one-to-many?

Customizing the Scripting Driver

31

32

¢ [s there a way for an identity to link to or represent another identity? For example, eDirectory
provides Alias objects, which link to other objects. Your driver might need to handle these
types of objects.

+ What attributes describe each relevant type of object? Which of these attributes is relevant?
What is the data type (string, number, etc.) for each attribute? Can the attribute contain multiple
values? Are there restrictions on the attribute’s values, such as being read-only, or are they
restricted to a certain range of values?

¢ How will this data be synchronized between the Identity Vault and the application? Some
attributes will be synchronized one-way (eDirectory-to-application or vice versa), and others
will be synchronized bi-directionally.

+ Does your application need password synchronization? Will password synchronization be one-
way or bi-directional? Restrictions might also apply to other sensitive data. You need to study
the APIs for your application to determine how this should be done.

¢ Are there identity types or specific identities that should be excluded from synchronization?
Administrative users are often excluded from synchronization to avoid security issues.

+ Does data need to be transformed when it is synchronized? For example, eDirectory stores a
person’s first name and last name as separate attribute, but an external application might store a
name as one attribute. Such transformations can be done in policies or in the scripts.

Through this process, you should make a list of the application’s identity types (also known as
classes), their attributes, and each attribute’s data type and special properties. This list can then be
specified in the driver’s schema . def file:
SCHEMA
CLASS User

ATTRIBUTE loginName NAMING REQUIRED

ATTRIBUTE firstName

ATTRIBUTE lastName

(etc.)

The format of this schema .def file is the same regardless of operating system and scripting
language. See Section 5.2, “The Connected System Schema File,” on page 34 for more information.

5.1.2 Associating Identity Vault and Application Classes and
Attributes

The next step is to examine the Identity Vault’s classes and attributes and determine which best
correspond to the external application’s identities. If the Identity Vault does not provide a suitable
class or attribute, you can define your own by modifying the Identity Vault’s schema. For more
information, see the Novell eDirectory 8.7.3 Documentation Web site (http://www.novell.com/
documentation/edir873).

The driver’s driver filter allows the Metadirectory engine to determine which attributes and classes
are relevant to the driver. For the Subscriber channel, the engine notifies the driver of changes for
only those classes and attributes that are set to Synchronize in the filter. When the driver receives
application identity changes on the Publisher channel, Synchronize must be set on classes and
attributes in order for those items to be changed in eDirectory. The easiest way to define a driver
filter is to create a new driver with the default XML configuration file provided with the Scripting
driver (Scripting.xml). In Novell iManager, edit the Driver Filter to include relevant classes

Identity Manager 3.5 Scripting Driver Implementation Guide

http://www.novell.com/documentation/edir873

and attributes. Then, export the driver’s configuration to an XML file for later use. See Section 5.4,
“Managing Additional Attributes,” on page 40 for more information.

5.1.3 Defining an Association Rule

Each identity needs an association that uniquely identifies that identity for both eDirectory and the
external application. The associaton must be based on information shared between both the Identity
Vault and the application. The association is usually based on one or more attribute values. Below
are some ideas for forming an association:

+ [fa naming attribute is unique across all classes, you could use that attribute value.

+ [fa naming attribute is unique for a specific class, concatenate the attribute and class name to
form the association. For example, an identity named “Bob” with the class “User” could have
association “BobUser”.

¢ In a hierarchical system (like eDirectory), you could use a name with its complete hierarchical
path, assuming that it is unique. For example, an identity with a hierarchical path
“Bob.Users. ACME” could use that path as its association.

+ A system can provide a serial number for each identity. This unique number can be used for an
association.

5.1.4 Defining Excluded Identities

You might have a list of identities that you want to exclude from synchronization. Also, if an identity
is synchronized with sensitive information, you might want to reject that identity. The include-
exclude.conf file allows such specifications:

EXCLUDE
adminUser

CLASS secureUser

The format of this file is the same regardless of operating system and scripting language. See
Section 5.3, “The Connected System Include/Exclude File,” on page 35 for more information.

5.1.5 Defining Relevant Events

When data changes in an identity management system, an event is said to have occurred. In
preparation for the next step, evaluate which event types are relevant for your application:

¢ Add: An identity is created. All required attributes must be created. Security parameters, such
as a password, should be defined for the identity to ensure that security isn’t compromised.

+ Modify: One or more attributes of an existing identity are changed. This might affect identities
that have a relationship to the changed identity.

+ Modify-password: An identity’s password has changed. This event type can be considered a
subtype of Modify, but because it often requires special handling, it is treated as a separate
event type.

¢ Delete: An identity is destroyed. This might mean permanent deletion, or a change of status of
the identity so that it can be undeleted if necessary. This might affect other identities. For
example, deleting a User that is a member of a Group might cause a Modify event for that
Group.

¢ Rename: An identity’s naming attribute has changed.

Customizing the Scripting Driver

33

34

+ Move: An identity’s logical location has changed. This usually applies to identities in a
hierarchical system.

An event of a certain type in one system can result in an event of a different type in the synchronized
system. For example, when a Modify event occurs for an identity that does not yet exist in the
external system, an Add event is submitted.

There is one more type of event that does not represent a change but is a request for information: the
Query event. Novell eDirectory issues queries to your application on the Subscriber channel. You
can also query eDirectory from scripts on either Subscriber or Publisher channels.

Novell eDirectory supports all of the events above. You should make a list of what the result of a
particular event in eDirectory will be in your external application. Conversely, you should list what
event types can occur in your external application, which event types are relevant and what the result
of relevant events should be in the Identity Vault.

5.2 The Connected System Schema File

The schema . def file on the connected system is stored in the schema directory under the driver
installation directory. It is used to specify the classes and attributes that are available on the system.

The schema file is read by the driver shim when the Metadirectory engine requests it. This typically
happens at driver startup. The schema file is also used by the Policy Editor to map the schema of the
Identity Vault to the schema of the external application.

If you change the schema file, you must restart the driver shim and the driver.
The scripts written for the driver depend on the classes and attributes in the schema file.

¢ Section 5.2.1, “Schema File Syntax,” on page 34

5.2.1 Schema File Syntax

Each line in the schema file represents an element and must begin with the element name:
SCHEMA, CLASS, or ATTRIBUTE.

The first element of the schema file is the schema definition. The schema definition is followed by
class definitions. Each class definition can contain attribute definitions.

Except for the values of class and attribute names, the contents of the schema file are case
insensitive.

Comments

Lines that begin with an octothorpe (#) are comments.
This is a comment.

Schema Definition

The first line in the schema file that is not a comment must be the schema definition.
SCHEMA [HIERARCHICAL]

HIERARCHICAL specifies that the target application is not a flat set of users and groups, but is
organized by hierarchical components, such as a directory-based container object.

Identity Manager 3.5 Scripting Driver Implementation Guide

Class Definition
CLASS className [CONTAINER]

You must specify a class name. Enclose the class name in double quotes ().
Add the CONTAINER keyword if objects of this class can contain other objects.

The class definition is ended by another class definition or by the end of the file.

Attribute Definition

Any number of attribute definitions can follow a class definition. Attribute definitions define
attributes for the class whose definition they follow.

ATTRIBUTE attributeName [TypeAndProperties]
An attribute name is required. Enclose the attribute name in double quotes (").
If no attribute type is specified, the attribute has the string type. The allowable types are:

¢+ STRING
¢ INTEGER
¢ STATE

+ DN

The allowable attribute properties are:

*

REQUIRED
NAMING
MULTIVALUED
CASESENSITIVE
READONLY

*

*

*

*

Example Schema File

SCHEMA HIERARCHICAL
CLASS "User"
ATTRIBUTE "cn" NAMING REQUIRED
ATTRIBUTE "Group Membership" MULTIVALUED DN
CLASS "Group"
ATTRIBUTE "cn" NAMING REQUIRED
ATTRIBUTE "Group Members" MULTIVALUED DN

5.3 The Connected System Include/Exclude File

You can use an optional include/exclude file on the connected system to control which identities are
or are not synchronized between the Identity Vault and the connected system. Create a text file
named include-exclude.conf and save it in the conf directory under your driver
installation directory.

The file is read when the driver shim starts. If you make changes to it, you must restart the driver
shim.

Customizing the Scripting Driver 35

36

The include/exclude file can contain include rules and exclude rules.

You can use the include/exclude file to phase in your deployment of the Scripting driver, excluding
most users and groups at first, and then adding more as you gain confidence and experience.

¢ Section 5.3.1, “Include/Exclude Processing,” on page 36
¢ Section 5.3.2, “Include/Exclude File Syntax,” on page 36
¢ Section 5.3.3, “Example Include/Exclude Files,” on page 39

5.3.1 Include/Exclude Processing

Identity Vault events for identities that match an exclude rule are discarded by the Subscriber shim.
Connected system events for identities that match an exclude rule are not sent to the Metadirectory
engine by the Publisher shim.

Included identities are treated normally by the Subscriber and Publisher shims.
Identities that do not match an include rule or an exclude rule in the file are included.
Identities are matched in the following priority:

Channel-specific (Publisher or Subscriber) exclude rules
Channel-specific include rules

General exclude rules

Eal o .

General include rules

Within each level of this matching priority, identities are matched against rules in the order that the
rules appear in the file. The first rule that matches determines whether the identity is included or
excluded.

5.3.2 Include/Exclude File Syntax

Except for class names, attribute names, and the values to match, the contents of the include/exclude
file are case insensitive.

The include/exclude file can contain any number of include sections, exclude sections, and single-
line rules.

Include sections and exclude sections can contain class matching rules, and class matching rules can
contain attribute matching rules. Include sections and exclude sections can also contain association
matching rules.

Include and exclude sections can be contained in subscriber and publisher sections to limit their
scope to the specified channel.

Class and attribute names used in the include/exclude file must correspond to the names specified in
the schema file. For details about the schema file, see Section 5.2, “The Connected System Schema
File,” on page 34.

Comments

Lines that begin with an octothorpe (#) are comments.
This is a comment.

Identity Manager 3.5 Scripting Driver Implementation Guide

Subscriber and Publisher Sections

Subscriber and publisher sections limit the include and exclude sections they contain to the specified
channel.

A subscriber section begins with a subscriber line and ends with an endsubscriber line.
SUBSCRIBER

ENDSUBSCRIBER

A publisher section begins with a publisher line and ends with an endpublisher line.
PUBLISHER

ENDPUBLISHER

Each subscriber and publisher section can contain include and exclude sections.

Include and Exclude Sections

Include and exclude sections provide rules to specify which objects are to be included or excluded
from synchronization.

An include section begins with an include line and ends with an endinclude line.
INCLUDE

ENDINCLUDE

An exclude section begins with an exclude line and ends with an endexclude line.
EXCLUDE

ENDEXCLUDE

You can use class matching rules and association matching rules within an include section and an
exclude section.

Class Matching Rules

Use a class matching rule within an include section or an exclude section to specify the name of a
class of objects to include or exclude.

A class matching rule is defined by a class line that specifies the name of the class and ends with an
endclass line.

CLASS className

ENDCLASS

Customizing the Scripting Driver

37

38

You can use attribute matching rules within a class matching rule.

Attribute Matching Rules

You can use attribute matching rules within a class matching rule to limit the objects that are
included or excluded. If no attribute matching rules are specified for a class, all objects of the
specified class are included or excluded.

An attribute matching rule comprises an attribute name, an equals sign (=), and an expression. The
expression can be an exact value, or it can use limited regular expressions. For details about limited
regular expressions, see “Limited Regular Expressions” on page 39.

attributeName=expression
Multiple attribute matching rules can be specified for a given class.

Attribute matching rules within a class matching rule are logically ANDed together. To logically OR
attribute matching rules for a class, specify multiple class matching rules. For example, the
following include/exclude file excludes both user01 and user02:
Exclude the User object if its loginName is user0l or user02.
EXCLUDE
CLASS User
loginName=user01l
ENDCLASS
CLASS User
loginName=user02
ENDCLASS
ENDEXCLUDE

Association Matching Rules

You can specify association matching rules in an include or exclude section. Association matching
rule expressions can specify an exact association or a limited regular expression. For details about
limited regular expressions, see “Limited Regular Expressions” on page 39.

The way associations are formed can be customized for an implementation. (See Section 5.1,
“Scripting Driver Data Definition,” on page 31 for more information.)

This example works for associations that are a concatenation of the object name and class name. To
exclude the root user, specify the following:

EXCLUDE
rootUser
ENDEXCLUDE

Single-Line Rules

[SUBSCRIBER|PUBLISHER] INCLUDE|EXCLUDE [className] objectSelection
Where objectSelection can be

{associationMatch | attributeName=expression}

Single-line rules can specify the Subscriber or Publisher channel at the start of the rule. If a channel
is specified, the rule applies only to that channel. Otherwise it applies to both channels.

Identity Manager 3.5 Scripting Driver Implementation Guide

You must specify whether the rule is to include or exclude the objects it matches.
You can specify a class name to limit matches to only objects of that class.

You must specify either an association or an attribute matching expression. The syntax of the
association and attribute matching expression is the same as that of association matching rules and
attribute matching rules previously described. For details, see “Association Matching Rules” on
page 38 and “Attribute Matching Rules” on page 38.

For example, to ignore events from the ADMIN user in the Identity Vault, code:

Do not subscribe to events for the ADMIN user.
SUBSCRIBER EXCLUDE adminUser

Limited Regular Expressions

A limited regular expression is a pattern used to match a string of characters.
Character matching is case sensitive.

Any literal character matches that character.

A period (.) matches any single character.

A bracket expression is a set of characters enclosed by left ([) and right (]) brackets that matches any
listed character. Within a bracket expression, a range expression is a pair of characters separated by
a hyphen, and is equivalent to listing all of the characters that sort between the given characters,
inclusive. For example, [0-9] matches any single digit.

An asterisk (*) indicates that the preceding item is matched zero or more times.
A plus sign (+) indicates that the preceding item is matched one or more times.
A question mark (?) indicates that the preceding item is matched zero or one times.

You can use parentheses to group multiple expressions into a single item. For example, (abc)+
matches abc, abcabc, abcabcabc, etc. Nesting of parentheses is not supported.

5.3.3 Example Include/Exclude Files

+ “Example 1” on page 39
+ “Example 2” on page 40
+ “Example 3” on page 40

Example 1

Exclude users whose names start with temp
EXCLUDE
CLASS User
loginName=temp. *
ENDCLASS
ENDEXCLUDE

Customizing the Scripting Driver

39

Example 2

Exclude usera and userb
Because attribute rules are ANDed, these must be in separate
CLASS sections.
EXCLUDE
CLASS User
loginName=usera
ENDCLASS
CLASS User
loginName=userb
ENDCLASS
ENDEXCLUDE

Example 3

Exclude all users except those whose names start with idm
This works because channel-specific matching takes precedence
over general matching.
EXCLUDE
CLASS User
ENDCLASS
ENDEXCLUDE

SUBSCRIBER INCLUDE User loginName=idm.*
PUBLISHER INCLUDE User loginName=idm.*

5.4 Managing Additional Attributes

You can add additional attributes to the driver for both the Publisher and Subscriber channels. These
attributes can be accessed by the scripts for all event types.

To publish or subscribe to additional attributes, you must add them to the filter and add support for
them into the scripts.

¢ Section 5.4.1, “Modifying the Filter,” on page 40

¢ Section 5.4.2, “Modifying the Scripts for New Attributes,” on page 41

5.4.1 Modifying the Filter

1 On the iManager Driver Overview page for the driver, click the Filter icon on either the
Publisher or Subscriber channel. It is the same object.

2 In the Filter Edit dialog box, click the class containing the attribute to be added.

3 Click Add Attribute, then select the attribute from the list.

4 Select the flow of this attribute for the Publisher and Subscriber channels.
+ Synchronize: Changes to this object are reported and automatically synchronized.
+ Ignore: Changes to this object are not reported and not automatically synchronized.

+ Notify: Changes to this object are reported, but not automatically synchronized.

40 |dentity Manager 3.5 Scripting Driver Implementation Guide

+ Reset: Resets the object value to the value specified by the opposite channel. (You can set
this value on either the Publisher or Subscriber channel, but not both.)

5 Click Apply.
6 If you want to map this attribute to an existing attribute in the connected system’s schema,

modify the Schema Mapping policy for the driver.

For complete details about managing filters and Schema Mapping policies, see the Policies in
iManager for Identity Manager 3.5 guide.

5.4.2 Modifying the Scripts for New Attributes

In the Subscriber channel, scripts are called to take the appropriate action for each type of event. You
will need to modify the appropriate scripts to read the values from the new attributes.

Publishing additional attributes requires that you act on changes made in the connected system
application. In addition, the schema.def file should be updated with the additional attributes (see
Section 5.2, “The Connected System Schema File,” on page 34).

5.5 UNIX Shell Developer Guide

The Scripting driver provides a complete Shell script API for interacting with identity management
systems whose tools (including APIs) are available on Linux and UNIX.The Identity Vault and
Identity Manager can run on any supported operating system. Identity Manager communicates with
the driver on a different system over an encrypted network connection.

Before beginning script development, review the preceding topics in this section for information on
defining what data will be synchronized between identity management systems.

With additional development work, the driver can also be customized to support any scripting
language that supports command-line operation.

Developing a custom driver with Shell scripts is discussed in the following sections:

¢ Section 5.5.1, “Application Tools Evaluation,” on page 41
¢ Section 5.5.2, “Policy and Script Development,” on page 42
¢ Section 5.5.3, “Deployment,” on page 51

5.5.1 Application Tools Evaluation

In order to change the data in your external application, you need to know how to use the
application’s tools or API (Application Programming Interface). These tools must provide
automated operation and not require user input.

Application Command Line Tools

An application often provides command line tools. These tools are manually executed from a shell,
and they can be executed from scripts. Suppose the application provides a tool to add identities with
a program called appadd.

appadd -n "Bob Smith" -t "818-555-2100"

Customizing the Scripting Driver

4

42

This command adds an identity named “Bob Smith” with the specified phone number. The strings
following the program name are called parameters or arguments. The Linux and UNIX Scripting
driver provides a function called EXEC to execute external programs, log the command to the
system log and produce a status document indicating the level of success.
CommandLine="appadd -n $UserName -t S$PhoneNumber"
EXEC $CommandLine

For command line tools, you can construct the command line’s parameters using the values passed
to the script, then execute the program.

Application Event Monitoring

You also need to determine what tools are available for monitoring event changes in the application.
The Scripting driver works on a polling system. It periodically calls a polling script to determine
what has changed in the external application. You can use the following ideas for monitoring
changes:

¢ The first time the polling script is run, a list of identities and relevant attributes is read from the
application using an application-provided tool. This list is stored as a file. On subsequent polls,
anew list is generated and compared to the old list. Any differences are submitted as events to
the driver.

¢ The application provides a tool that allows you to request all identities that have changed after
a certain point in time. The polling script requests events that have occurred since the previous
poll.

¢ The application allows a script to be run when an event occurs. You can write a script that
stores the event data into a file. When the Script driver polling script runs, it consumes this file
and submits the data as an event to the driver using the change log tool, usclh.

Monitoring the application’s changes might be the most difficult aspect of developing your driver.
You must study your application’s tools to determine the best way to achieve synchronization.

5.5.2 Policy and Script Development

At this point you should have a list of what data will be synchronized, how events will be handled
and what application tools are available. It is time to develop the heart of your driver in policies and
scripts.

Many types of tasks can be handled in driver policies. You can import the driver configuration
provided with the Scripting driver, and then edit policies in Novell iManager. You can also edit
policies and simulate their operation in Novell Designer. The extensive functionality of policies is
outside the scope of this document, so you should refer to the Identity Manager 3.5 Policy guides
(http://www.novell.com/documentation/idm35) for help.

It’s often difficult to write complex tasks inside policies, such as executing external commands,
processing input and output, and file I/O. Tasks requiring such operations are better suited in scripts,
where an entire language environment and tools are available. You can also accomplish many of the
operations performed in policies, so if you are more familiar with your scripting language than
policies, you can develop your driver more quickly by using scripts. Scripting languages such as
Perl and Shell scripts offer an environment that is often well suited for your target application’s APIs
or developer kits. For example, your target application might already contain Perl library routines
for manipulating the application’s identities.

Identity Manager 3.5 Scripting Driver Implementation Guide

http://www.novell.com/documentation/idm35

Event Data Format

Event data is submitted to the scripts in name/value pair format. This format consists of lines
containing a name, an equal sign (=) and a value. Therefore each line is a name/value pair. Each
name/value pair is unique, but there can be multiple name/value pairs with identical names but
different values.

ASSOCIATION=BobUser

ADD TELEPHONE=818-555-2100

ADD TELEPHONE=818-555-9842

You typically don’t need to worry about the format. The script library provides functions for
retrieving event data.

Subscriber Script Development

After all Policy processing is complete, Identity Manager submits the event in XML format to the
driver shim. The driver shim submits the event data to the scripts.

In the default Scripting driver, the subscriber. sh script in the scripts folder is called. This
script does some preliminary processing, and then calls a routine from an included script. The
included scripts correspond to the Subscriber event types: add. sh, modify.sh, modify-
password.sh, delete.sh, rename.sh, move.sh, and query. sh.

For each event type, you should retrieve the information you need from the event data, submit
changes to the external application using application-provided tools, and return a status (such as
success or failure) to Identity Manager.

Event data is retrieved primarily using the IDMGETVAR function. This function returns an array of
values corresponding to the name specified as the function’s parameter. The following table shows
many item names.

Table 5-1 [tems

Name Description

COMMAND The command for the event, usually indicating the event type.

ASSOCIATION The identifier that distinguishes an identity on both identity
management systems.

CLASS_NAME An identity’s class, such as User or Group.

SRC_DN An identity’s distinguished name (DN) in the namespace of the
source (sender), in slash format.

EVENT_ID An identifier for the event, for internal use.

SRC_ENTRY_ID

DEST_DN

DEST_ENTRY_ID

ADD_{attr_name}

An identifier for the identity that generated the event, in the
namespace of the source (sender).

An identity’s distinguished name (DN) in the namespace of the
destination (receiver), in slash format.

An identifier for an entry in the namespace of the destination
(receiver).

A value to be added to an identity, for attribute {attr_name}.

Customizing the Scripting Driver

43

44

Name

Description

REMOVE_{attr_name}
ADD_REF_{attr name}

REMOVE_REF_{attr_name}

OLD_PASSWORD

PASSWORD

OLD_SRC_DN

REMOVE_OLD_NAME

STATUS_LEVEL
STATUS_MESSAGE
STATUS_TYPE

A value to be removed from an identity, for attribute {attr_name}.

A value to be added to attribute {attr_name}, where the value is an
associaton referring to another identity.

A value to be removed from attribute {attr_name}, where the value is
an associaton referring to another identity.

The previous password for an identity that has changed its
password. Used in Modify Password events.

The new password for an identity. Used in Add and Modify
Password events.

The distinguished name of an identity before a Move or Rename
event.

Specifies whether an old relative distinguished name should be
deleted or retained. Used in Rename events.

The status of an event: success, warning, retry, error or fatal.
A message to report with a status.

A type of status, such as heartbeat.

Handling Associations

The association value indicates which identity has been changed. If the identity has no association,
an association must be generated for it using an implementation-specific rule that you have adopted.
When Identity Manager processes an event for an identity with no association, it executes the
driver’s Matching policy. This policy attempts to match the event’s identity to an identity on the
external application’s system. Usually doing this involves executing a query. The default Matching
policy included with the Scripting driver queries for matching Users and Groups based on the CN
attribute. If the event’s identity matches an identity on the external application, both identities must
be assigned the new association. Assigning this association can be done as part of the query-
handling script. (Handling queries is discussed in more detail in “Handling Query Events” on
page 45.) If no identity matches, an Add event is issued, and the new association can be assigned as
part of the Add event-handling script:

IDMSETVAR "COMMAND" "ADD ASSOCIATION"

IDMSETVAR "ASSOCIATION", S$SMyAssociation

(etc.)

The example above also illustrates the IDMSETVAR function. This function sets a name and value
which indicates what action Identity Manager should perform. For example, the pair "COMMAND"
and "ADD_ASSOCIATION" instructs the shim to create an add-association document to assign an
association to an identity, as discussed above. The Subscriber can also issue
MODIFY_ASSOCIATION and REMOVE_ASSOCIATION commands.

Returning an Event Status

On the Subscriber channel, you often do not need Identity Manager to perform an action, but simply
need to report a status. The STATUS _ subroutines noted below can be used to indicate a status to
Identity Manager. They take a message to be logged as their parameter.

Identity Manager 3.5 Scripting Driver Implementation Guide

Table 5-2 Status Subroutines

Subroutine

Identity Manager Action

STATUS_SUCCESS

STATUS_WARNING

STATUS_RETRY

STATUS_ERROR

STATUS_FATAL

Identity Manager marks the event as a success and submits the next
event in the event queue, if any. You should issue this status even if
your script does nothing.

The event can be processed, but it might require attention. Identity
Manager issues your warning message in its log, and then submits the
next event.

The event cannot be processed, but Identity Manager should resubmit
the event because it should be able to be processed soon. This status
can be issued if your external application appears to be temporarily
unavailable. However, this status should be used cautiously because a
backlog results if Identity Manager continually retries one event.

The event cannot be processed and it should not be resubmitted.
Identity Manager issues the error message and submits the next event.
You should make a detailed error message so the problem can be
corrected.

For some reason, the driver must be stopped. Identity Manager issues
your message and stops the driver. This could be used if the external
application appears to be permanently offline. The event remains in the
queue and is resubmitted when the driver is restarted.

Writing Values

IDMSETVAR is used to set values to return to Identity Manager. It is passed a name and value. In
the "ADD_ASSOCIATION" example above, IDMSETVAR is used to set the ASSOCIATION
value. You can specify values for items listed in the table above.

Handling Query Events

For Query events, Identity Manager submits values that define the parameters of a search of the
external application’s identity management system. Queries are usually issued from the Policies you
have defined for your system. The table below specifies values that can be specified in queries. Not
all values are relevant to your external application.

Table 5-3 Values for Queries

Value Name

Description

SCOPE

Specifies what identities will be searched. A base object is specified
with the ASSOCIATION or DEST_DN values (see below). The
value “entry” means that only the base object is searched. The
value “subordinates” means that the immediate subordinates of the
base object are searched. The value “subtree” (the default)
indicates that the base object and all subordinates are searched.
The last two values are only relevant in a hierarchical system.

Customizing the Scripting Driver

45

Value Name

Description

ASSOCIATION

DEST_DN
CLASS_NAME
EVENT_ID
SEARCH_CLASSES

SEARCH_ATTRS

SEARCH_ATTR_{attr name}

READ_ATTRS

ALL_READ_ATTRS

NO_READ_ATTRS

READ_PARENT

The base object for the search. If both ASSOCIATION and
DEST_DN have values, ASSOCIATION is used. If neither is
specified, the base object is the root of the identity management
system.

The base object for the search (see also ASSOCIATION above).
The base class of the base object.
An identifier for the event.

A list of classes for which to search. Only identities of these classes
are returned. If not specified, all identities in the scope matching
SEARCH_ATTR _ values are returned (see below).

A list of the attribute names specified in SEARCH_ATTR _ values
(see below).

A value that the specified attribute must match. Replace
{attr_name} with the desired attribute name. Only identities
matching all SEARCH_ATTR_filters are returned.

A list of the attribute names whose values are returned for each
matching identity.

The presence of this value indicates that all attribute values should
be returned for matching identities.

The presence of this value indicates that no attribute values should
be returned for matching identities.

The presence of this value indicates that the parent object of each
matching identity should be returned. Only relevant in hierarchical
systems.

Execute the query against the external application using application-provided tools. Then return
each identity by setting an “INSTANCE” command, followed by relevant values from the list below.

Table 5-4 Query Instance Values

Value Name Description

CLASS_NAME The class of the identity. Required.

SRC_DN A distinguished name representing the logical location of the
identity in the system (optional).

ASSOCIATION The association of the identity, if available (optional).

PARENT The association of the parent object of the identity (optional). Only

ATTR_{attr_name}

relevant in hierarchical systems.

A list of values for the attribute specified by {attr_name}. Return
attribute values specified by the READ_ATTRS value.

After returning all identities, call STATUS SUCCESS to indicate a successful query.

Identity Manager 3.5 Scripting Driver Implementation Guide

Subscriber Summary and Examples

Below is a more detailed summary of the actions to take for a non-Query event

1 Gather information about the event using IDMGETVAR. Return a warning or error if there is a

problem.

2 Submit the event data to the external application using application-provided tools.

3 Set event values with IDMSETVAR.

4 1If you have not already done so, set a status with an STATUS _ subroutine.

Below is an example add.sh, which forms an association from a identity’s CN and class name, and

uses a hypothetical tool called appadd.
ClassName="IDMGETVAR "CLASS NAME""
CN="IDMGETVAR "CN""
PhoneNumber="IDMGETVAR "Telephone""
if [-z "$ClassName" -o -z "SCN"]; then

STATUS ERROR "Add event: missing CLASS NAME and/or CN"

else

Command="appadd -n $CN -t $PhoneNumber"

EXEC $Command

RC=8§?

if [SRC -eq 0]; then
IDMSETVAR "COMMAND" "ADD ASSOCIATION"
IDMSETVAR "ASSOCIATION" ${CN}${ClassName}
IDMSETVAR "DEST DN" $SRC_DN
STATUS SUCCESS "Add event succeeded"

else

STATUS ERROR "Add event failed with error code SRC"

fi
fi

Handling a query is a similar process, except that you return INSTANCE items

rather than using

other commands. Below is an example query . sh that searches an external application for a

telephone number. It uses a hypothetical tool called appsearch.
SearchName="IDMGETVAR "SEARCH ATTR CN""
if [-z "S$SearchName"]; then
STATUS ERROR "Query: no search value"
else
Command="appsearch -n S$SearchName"
Results="$Command"
if [! -z "SResults"™]; then
Phone="echo S$Results | awk ’{print $1}'"
IDMSETVAR "COMMAND" "INSTANCE"
IDMSETVAR "CLASS NAME" $CLASSiNAME
IDMSETVAR "ASSOCIATION" S$SASSOCIATION
IDMSETVAR "ATTR Telephone" $Phone
STATUS SUCCESS "Query succeeded"
else

Customizing the Scripting Driver

47

48

Return success with no results
STATUS SUCCESS "Query succeeded (no matches)"
fi
fi

Publisher Script Development

Events that occur on the external application are submitted to Identity Manager on the Publisher
channel. The Scripting driver periodically polls the external application for events. How this poll
detects events is implementation-specific and must be defined by you.

Polling for Application Events

The Driver calls pol1. sh in order to detect application events. poll . sh should be implemented
as follows:

1 Use application-provided tools to detect events in your application, as discussed in Step 2.

2 For each event, call the changelog tool usclh to submit the event to be published. The
changelog tool allows for additional information to be supplied through standard input. This is
an appropriate mechanism for passing data that might be too large for command line or too
sensitive to appear in a shell’s history or environment.

The following is an example of a pol1 . sh that checks for a password change. It uses a
hypothetical application tool called apppwd.

Results="apppwd --changes"
for Result in $Results; do
Entries are in the format "association=password"
Association="echo $Result | awk -F= '{print $1}'"
Password="echo $Result | awk -F= '{print $2}'"
usclh -t modify-password -a $Association <<EOF
$Password
EOF

done

Events submitted using usclh are processed through your driver’s Publisher channel policies. See
your Identity Manager 3.5 Policy guides (http://www.novell.com/documentation/idm35) for more
information.

Using the Heartbeat Script

Another script executed in the Publisher Channel is heartbeat . sh. This script is executed when
the Publisher Channel is idle for the interval specified in the Driver parameters. (You can set the
interval to 0 so no heartbeat is issued.) You can use the heartbeat to check the availability of the
external system or do “idle state” tasks. The HEARTBEAT SUCCESS, HEARTBEAT WARNING,
and HEARTBEAT ERROR subroutines can be used to indicate the result of the heartbeat. Below is
an example based on a hypothetical tool called apphealth.

apphealth

RC=§?

if [SRC -egq 0]; then

HEARTBEAT SUCCESS "Heartbeat succeeded"

Identity Manager 3.5 Scripting Driver Implementation Guide

http://www.novell.com/documentation/idm35

else
HEARTBEAT ERROR "Heartbeat failed with error code S$RC"
fi

The response to the heartbeat is implementation-dependent, and can be defined in Policies or in the
script itself. You could send a message to auditing using Novell Audit. You could store a value in a
file, and have Subscriber scripts read the file and call STATUS RETRY if they find that value in the
file.

Other Scripting Topics

¢ “Driver Parameters” on page 49
¢ “Querying the Identity Vault” on page 50
¢ “Tracing and Debugging” on page 50

Driver Parameters

A driver has values known as driver parameters. The driver parameters are divided into driver
settings applicable to the whole driver, and Subscriber and Publisher settings for their respective
channels. The IDMGETDRV VAR, IDMGETSUBVAR, and IDMGETPUBVAR functions can be
used to retrieve these values. The table below shows parameters in the default Scripting driver.
Other parameters can be added to the driver’s XML configuration file (see “Managing Identity
Manager Drivers” in the Novell Identity Manager 3.5 Administration Guide).

Table 5-5 Scripting Driver Parameters

Parameter Name Driver/Channel Description Values

INSTALL_PATH Driver The installation path of string value
the Driver

auto-loopback-detection Driver Whether to enable true/false
automatic loopback
detection

subscriber-script Subscriber The root script file for string value

Subscriber events,
relative to the Driver
installation path

pub-polling-interval Publisher The interval in seconds number
between Publisher polls
for application events

pub-heartbeat-interval Publisher The amount of idle time number
in seconds before a
heartbeat event is
issued

pub-disabled Publisher Whether the Publisher true/false
Channel (i.e., polling) is
disabled

In the following example, a script retrieves the Publisher polling interval.
PollingInterval="IDMGETPUBVAR "pub-polling-interval""’

Customizing the Scripting Driver

49

50

Querying the Identity Vault
Scripts might need to retrieve information from the Identity Vault. They can do this by issuing a
query.
1 Execute the query by calling IDMQUERY with the appropriate parameters:
¢ The first parameter is the class-name
+ The second parameter is the association of the object to query
¢ The third parameter are the attributes to read, comma-separated
2 Read the result (instance) using IDMGETQVAR.
Query support is currently limited. It only returns one instance based on the specified association or

DN. (If both association and DN are specified, association is used.) The functions below allow you
to retrieve information from the instance.

The following is an example of a query of the Identity Vault that retrieves the address and ZIP code
for user Bob.

IDMQUERY "User" "Bob" "SA,Postal Code"

Address=" IDMGETQVAR "SA""
ZIPCode="IDMGETQVAR "Postal Code""
... etc.

Tracing and Debugging

The IDMTRACE function allows you to write a message to the Trace Log. Tracing is useful for
script debugging and auditing.
IDMTRACE "Trace message"

When developing scripts, you might need to do some debugging to track down problems. The
following list indicates some facilities for debugging.

¢ The Driver traces activity to its Trace file (Logs/trace. log by default). The trace level
setting in conf /usdrv.conf controls how much debugging is written to the log.

Trace Level Description

0 No debugging.

1-3 Identity Manager messages. Higher trace levels provide more detail.

4 Previous level plus Remote Loader, driver, driver shim, and Driver connection
messages.

5-7 Previous level plus Change Log and loopback messages. Higher trace levels provide
more detail.

8 Previous level plus Driver status log, Driver parameters, Driver command line, Driver

security, Driver Web server, Driver schema, Driver encryption, Driver SOAP API, and
Driver include/exclude file messages.

9 Previous level plus low-level networking and operating system messages.

10 Previous level plus maximum low-level program details.

Identity Manager 3.5 Scripting Driver Implementation Guide

The trace level is set using the -trace option in wsdrv . conf, for example -trace 9.

You can view the trace file through a Web browser:

a. Use a Web browser to access the driver shim at https://driver-address:8091. Substitute the
DNS name or IP address of your driver for driver-address.

b. Authenticate by using any username and the password that you specified as the Remote
Loader password.

c. Click Trace.

¢ The IDMTrace function described above writes output to the trace file specified in the Driver
Parameters (Logs/script-trace. log by default).

¢ The eDirectory tool DSTrace can be used to monitor Identity Manager activity. Set the tracing
level for the driver in iManager. DSTrace shows the XML documents being submitted to the
driver for events, and how Policies are evaluated. It also shows the status and message for each
event.

¢ The Status Log is written to 1ogs/dirxml . log. It shows a summary of the events that have
been recorded on the Subscriber and Publisher channels.

You can view the Status Log through a Web browser:

a. Use a Web browser to access the driver shim at https://driver-address:8091. Substitute the
DNS name or IP address of your driver for driver-address.

b. Authenticate by using any username and the password that you specified as the Remote
Loader password.

c. Click Status.

Although it is best to start the driver in production environments from the startup script, you can run
usdrv manually. When you do so, any text written to standard output from scripts is displayed in the
interactive shell.

5.5.3 Deployment

The Scripting driver is installed by using a setup program. See Section 3.1, “Installing the Linux and
UNIX Scripting Driver,” on page 19 for more information on installing the default driver.

Deploying a Custom Driver

To deploy your custom driver, the end user should first run the Scripting driver installation program
provided by the installation media (Section 3.1, “Installing the Linux and UNIX Scripting Driver,”
on page 19). This program installs core files needed by the driver. Then, your custom driver files can
be deployed in any convenient way, whether through an installation program or even simply an
archive file. The table below shows the directory structure below the installation directory and what
files are installed.

Customizing the Scripting Driver

51

52

Table 5-6 Installation Directories and Files

Directory Description Required Files
bin/ Location of executable programs usdrv
ussmh
usclh
changelog/ Used for Publisher event None
processing
conf/ Location of the driver shim usdrv.conf (customized)
configuration file
keys/ Location of security key files None
logs/ Location of log files None
loopback/ Used for automatic loopback None
detection
rules/ Location of Driver configuration Scripting.xml (customized)
file
schema/ Location of schema files schema.def (customized)
scripts/ Location of script files

On Linux and UNIX, the Scripting driver is installed to /opt/novell/usdzrv.

The formats of usdrv.conf and schema.def can be viewed in Section 4.2, “The Driver Shim
Configuration File,” on page 29 and Section 5.2, “The Connected System Schema File,” on page 34.

If SSL encryption is desired for communication between the driver shim and Identity Manager
engine, a certificate must be retrieved from the Identity Vault. Run usdrv -s and follow the

prompts to retrieve the certificate, which will be stored in the keys/ directory. You must have LDAP

with SSL available for the Metadirectory. When making an installation program for deployment,
you might want to run usdrv -s as part of the installation.

To ensure that only authorized systems access the Metadirectory, a Driver Object Password and

Remote Loader Password are used. Run usdrv -sp and enter the passwords at the prompts. This

action can be incorporated into an installation program.

You should distribute the XML configuration file that contains parameters and policies your Driver

needs. The user can then select it when installing your Driver.

5.6 Perl Developer Guide

The Scripting driver provides a complete Perl API for interacting with identity management systems

whose tools (including APIs) are available on Linux and UNIX. The Identity Vault and Identity
Manager can run on any supported operating system. Identity Manager communicates with the
driver on a different system over an encrypted network connection.

Before beginning script development, review the preceding topics in this section for information on

defining what data is synchronized between identity management systems.

Identity Manager 3.5 Scripting Driver Implementation Guide

With additional development work, the driver can also be customized to support any scripting
language that supports command-line operation.

Developing a custom driver with Perl scripts is discussed in this section.

¢ Section 5.6.1, “Application Tools Evaluation,” on page 53
¢ Section 5.6.2, “Policy and Script Development,” on page 54
¢ Section 5.6.3, “Deployment,” on page 63

5.6.1 Application Tools Evaluation

In order to change the data in your external application, you need to know how to use the
application’s tools or API (Application Programming Interface). These tools must provide
automated operation and not require user input.

Application Command Line Tools

An application often provides command line tools. These tools are manually executed from the
Windows command prompt, and they can be executed from scripts. For example, suppose the
application provides a tool to add identities with a program called appadd.

appadd -n "Bob Smith" -t "818-555-2100"

This command adds an identity named “Bob Smith” with the specified phone number. The strings
following the program name are called parameters or arguments. The Linux and UNIX Scripting
driver provides a function called exec to execute external programs, log the command to the system
log, and produce a status document indicating the level of success.

SCommandLine="appadd -n $; UserName -t S$PhoneNumber";

$i = new IDMLib () ;

$i->exec ($CommandLine) ;

For command line tools, you can construct the command line’s parameters using the values passed
to the script, then execute the program.

Application Event Monitoring

You also need to determine what tools are available for monitoring event changes in the application.
The Scripting driver works on a polling system. It periodically calls a polling script to determine
what has changed in the external application. You can use the following ideas for monitoring
changes:

¢ The first time the polling script is run, a list of identities and relevant attributes is read from the
application using an application-provided tool. This list is stored as a file. On subsequent polls,
a new list is generated and compared to the old list. Any differences are submitted as events to
the driver.

+ The application provides a tool that allows you to request all identities that have changed after
a certain point in time. The polling script requests events that have occurred since the previous
poll.

¢ The application allows a script to be run when an event occurs. You can write a script that
stores the event data into a file. When the Script driver polling script runs, it consumes this file
and submits the data as an event to the driver using the usclh change log tool.

Customizing the Scripting Driver

53

54

Monitoring the application’s changes might be the most difficult aspect of developing your driver.
You must study your application’s tools to determine the best way to achieve synchronization.

5.6.2 Policy and Script Development

At this point you should have a list of what data will be synchronized, how events will be handled,
and what application tools are available. It is time to develop the heart of your driver in policies and
scripts.

Many types of tasks can be handled in driver policies. You can import the driver configuration
provided with the Scripting driver, and then edit policies in Novell iManager. You can also edit
policies and simulate their operation in Novell Designer. The extensive functionality of policies is
outside the scope of this document, and so you should refer to your Identity Manager 3.5 Policy
guides (http://www.novell.com/documentation/idm35) for help.

It’s often difficult to write complex tasks inside policies, such as executing external commands,
processing input and output, and file I/O. Tasks requiring such operations are better suited in scripts,
where an entire language environment and tools are available. You can also accomplish many of the
operations performed in policies, so if you are more familiar with your scripting language than
policies, you can develop your driver more quickly by using scripts. Scripting languages such as
Perl and Shell scripts offer an environment that is often well suited for your target application’s APIs
or developer kits. For example, your target application might already contain Perl library routines
for manipulating the application’s identities.

Event Data Format

Event data is submitted to the scripts in name/value pair format. This format consists of lines
containing a name, an equal sign (=) and a value. Therefore, each line is a name/value pair. Each
name/value pair is unique, but there can be multiple name/value pairs with identical names but
different values.

ASSOCIATION=BobUser

ADD TELEPHONE=818-555-2100

ADD TELEPHONE=818-555-9842

You typically don’t need to worry about the format. The script library provides functions for
retrieving event data.

Subscriber Script Development

After all Policy processing is complete, Identity Manager submits the event in XML format to the
driver shim. The driver shim submits the event data to the scripts.

In the default Scripting driver, the subscriber. sh script in the scripts folder is called. This
script does some preliminary processing, and then calls a routine from an included script. The
included scripts correspond to the Subscriber event types: add. sh, modify.sh, modify-
password.sh,delete. sh, rename.sh, move.sh, and query. sh.

For each event type, you should retrieve the information you need from the event data, submit
changes to the external application using application-provided tools and return a status (such as
success or failure) to Identity Manager.

Identity Manager 3.5 Scripting Driver Implementation Guide

http://www.novell.com/documentation/idm35
http://www.novell.com/documentation/idm35

Event data is retrieved primarily by using the IDMGETVAR function. This function returns an array
of values corresponding to the name specified as the function’s parameter. The following table

shows many item names.

Table 5-7 Item Names

Name Description

COMMAND The command for the event, usually indicating the event type.

ASSOCIATION The identifier that distinguishes an identity on both identity
management systems.

CLASS NAME An identity’s class, such as User or Group.

SRC_DN An identity’s distinguished name (DN) in the namespace of the
source (sender), in slash format.

EVENT_ID An identifier for the event, for internal use.

SRC_ENTRY_ID

DEST_DN

DEST_ENTRY_ID

ADD_{attr_name}
REMOVE_{attr_name}
ADD_REF_{attr_name}

REMOVE_REF_{attr_name}

OLD_PASSWORD

PASSWORD

OLD_SRC_DN

REMOVE_OLD_NAME

STATUS_LEVEL
STATUS_MESSAGE
STATUS_TYPE

An identifier for the identity that generated the event, in the
namespace of the source (sender).

An identity’s distinguished name (DN) in the namespace of the
destination (receiver), in slash format.

An identifier for an entry in the namespace of the destination
(receiver).

A value to be added to an identity, for attribute {attr_name}.
A value to be removed from an identity, for attribute {attr_name}.

A value to be added to attribute {attr_name}, where the value is
an associaton referring to another identity.

A value to be removed from attribute {attr_name}, where the
value is an associaton referring to another identity.

The previous password for an identity that has changed its
password. Used in Modify Password events.

The new password for an identity. Used in Add and Modify
Password events.

The distinguished name of an identity before a Move or Rename
event.

Specifies whether an old relative distinguished name should be
deleted or retained. Used in Rename events.

The status of an event: success, warning, retry, error or fatal.
A message to report with a status.

A type of status, such as heartbeat.

Handling Associations

The association value indicates which identity has been changed. If the identity has no association,
an association must be generated for it using an implementation-specific rule that you have adopted.

Customizing the Scripting Driver

55

56

When Identity Manager processes an event for an identity with no association, it executes the
driver’s Matching policy. This policy attempts to match the event’s identity to an identity on the
external application’s system. Doing this usually involves executing a query. The default Matching
policy included with the Scripting driver queries for matching Users and Groups based on the CN
attribute. If the event’s identity matches an identity on the external application, both identities must
be assigned the new association. Assigning this association can be done as part of the query-
handling script. (Handling queries is discussed in “Handling Query Events” on page 57.) If no
identity matches, an Add event is issued, and the new association can be assigned as part of the Add
event-handling script:

S1i = new IDMLib () ;

$i->idmsetvar ("COMMAND", "ADD ASSOCIATION");

$i->idmsetvar ("ASSOCIATION", S$MyAssociation);

(etc.)

The example above also illustrates the idmsetvar function. This function sets a name and value that
indicate what action Identity Manager should perform. For example, the pair "COMMAND" and
"ADD_ ASSOCIATION" instruct the shim to create an add-association document to assign an
association to an identity, as discussed above. The Subscriber can also issue
MODIFY_ASSOCIATION and REMOVE_ASSOCIATION commands.

Returning an Event Status

On the Subscriber channel, you often do not need Identity Manager to perform an action, but simply
need to report a status. The STATUS _ subroutines noted below can be used to indicate a status to
Identity Manager. They take a message to be logged as the parameter.

Table 5-8 STATUS Subroutines

Subroutine Identity Manager Action

STATUS_SUCCESS Identity Manager marks the event as a success and submits the next
event in the event queue, if any. You should issue this status even if
your script does nothing.

STATUS_WARNING The event can be processed, but it might require attention. Identity
Manager issues your warning message in its log, and then submits the
next event.

STATUS_RETRY The event cannot be processed, but Identity Manager should resubmit

the event because it should be able to be processed soon. This status
can be issued if your external application appears to be temporarily
unavailable. However, this status should be used cautiously because a
backlog results if Identity Manager continually retries one event.

STATUS_ERROR The event cannot be processed and it should not be resubmitted.
Identity Manager issues the error message and submits the next event.
You should make a detailed error message so the problem can be
corrected.

STATUS_FATAL For some reason, the driver must be stopped. Identity Manager issues
your message and stops the driver. This could be used if the external
application appears to be permanently offline. The event remains in the
queue and is resubmitted when the driver is restarted.

Identity Manager 3.5 Scripting Driver Implementation Guide

Writing Values

IDMSETVAR is used to set values to return to Identity Manager. It is passed a name and value. In
the "ADD_ASSOCIATION" example above, IDMSETVAR is used to set the ASSOCIATION
value. You can specify values for items listed in the table above.

Handling Query Events

For Query events, Identity Manager submits values that define the parameters of a search of the
external application’s identity management system. Queries are usually issued from the Policies you
have defined for your system. The table below specifies values that can be specified in queries. Not
all values are relevant to your external application.

Table 5-9 Query Values

Value Name

Description

SCOPE

ASSOCIATION

DEST_DN
CLASS_NAME
EVENT_ID
SEARCH_CLASSES

SEARCH_ATTRS

SEARCH_ATTR _f{attr_name}

READ_ATTRS

ALL_READ_ATTRS

NO_READ_ATTRS

READ_PARENT

Specifies what identities are searched. A base object is specified with the
ASSOCIATION or DEST_DN values (see below). The value “entry”
means that only the base object is searched. The value “subordinates”
means that the immediate subordinates of the base object are searched.
The value “subtree” (the default) indicates that the base object and all
subordinates are searched. The last two values are only relevant in a
hierarchical system.

The base object for the search. If both ASSOCIATION and DEST_DN
have values, ASSOCIATION is used. If neither is specified, the base
object is the root of the identity management system.

The base object for the search (see also ASSOCIATION above).
The base class of the base object.
An identifier for the event.

A list of classes for which to search. Only identities of these classes are
returned. If not specified, all identities in the scope matching
SEARCH_ATTR _ values are returned (see below)

A list of the attribute names specified in SEARCH_ATTR _ values (see
below).

A value that the specified attribute must match. Replace {attr_name} with
the desired attribute name. Only identities matching all SEARCH_ATTR_
filters are returned.

A list of the attribute names whose values are returned for each matching
identity.

The presence of this value indicates that all attribute values should be
returned for matching identities.

The presence of this value indicates that no attribute values should be
returned for matching identities.

The presence of this value indicates that the parent object of each
matching identity should be returned. Only relevant in hierarchical
systems.

Customizing the Scripting Driver

57

Execute the query against the external application using application-provided tools. Then return
each identity by setting an “INSTANCE” command, followed by relevant values from the list below.

Table 5-10 Query Values

Value Name Description

CLASS_NAME The class of the identity. Required.

SRC_DN A distinguished name representing the logical location of the identity in
the system (optional).

ASSOCIATION The association of the identity, if available (optional).

PARENT The association of the parent object of the identity (optional). Only

relevant in hierarchical systems.

ATTR_{attr_name} A list of values for the attribute specified by {attr_name}. Return
attribute values specified by the READ_ATTRS value.

After returning all identities, call STATUS SUCCESS to indicate a successful query.

Subscriber Summary and Examples
Below is a more detailed summary of the actions to take for a non-Query event.

1 Gather information about the event using IDMGETVAR. Return a warning or error if there is a
problem.

2 Submit the event data to the external application using application-provided tools.
3 Set event values with IDMSETVAR.

4 If you have not already done so, set a status with an STATUS _ subroutine.

Below is an example add . sh, which forms an association from an identity’s CN and class name,
and uses a hypothetical tool called appadd.

$i = new IDMLib () :;

$ClassName= Si->idmgetvar ("CLASS NAME");
$SCN= $i->idmgetvar ("CN") ;

$PhoneNumber= $i->idmgetvar ("Telephone");

if (($ClassName eqg '') || (SCN egq ''")) {
$i->status_error("Add event: missing CLASS NAME and/or CN");
} else {
$Command="appadd -n SCN -t S$PhoneNumber";
Src = $i->exec($Command);
if (S$rc ==) A
$i->idmsetvar ("COMMAND", "ADD ASSOCIATION") ;
Si->idmsetvar ("ASSOCIATION", SCN . S$ClassName) ;
$i->idmsetvar ("DEST DN", $SRC_DN) ;

$i—>status_success("Add event succeeded");
} else {
$i->status_error("Add event failed with error code Src");

58 Identity Manager 3.5 Scripting Driver Implementation Guide

}

Handling a query is a similar process, except that you return INSTANCE items rather than using
other commands. Below is an example query . sh that searches an external application for a
telephone number. It uses a hypothetical tool called appsearch.

$i = new IDMLib () ;

$SearchName=$i->idmgetvar ("SEARCH ATTR CN");

if ($SearchName eg "") {
$i->status _error("Query: no search value");
} else {

$Command="appsearch -n $SearchName";

$SResults = ~$Command’;

if ($Results ne "") {
@phoneinfo = split("™ ", $Results);
SPhone = $phoneinfo[0];
$i->idmsetvar ("COMMAND", "INSTANCE");
$i->idmsetvar("CLASS NAME", $SCLASS NAME);
$i->idmsetvar ("ASSOCIATION", S$SASSOCIATION) ;
$i->idmsetvar ("ATTR Telephone", S$Phone);
$i—>status_success("Query succeeded");

} else {
Return success with no results

$i—>status_success("Query succeeded (no matches)");

Publisher Script Development

Events that occur on the external application are submitted to Identity Manager on the Publisher
channel. The Scripting driver polls the external application for events periodically. How this poll
detects events is implementation-specific and must be defined the user.

Polling for Application Events

The Driver calls pol1. sh in order to detect application events. po11 . sh should be implemented
as follows:

1 Use application-provided tools to detect events in your application. (See the discussion in Step
Two.)

2 For each event, call the usclh changelog tool to submit the event to be published. The
changelog tool allows for additional information to be supplied through standard input. This is
an appropriate mechanism for passing data that might be too large for command line or too
sensitive to appear in a shell’s history or environment.

Below is an example of a pol1. sh that checks for a password change. It uses a hypothetical
application tool called apppwd.

$1i = new IDMLib () :;
SResults="apppwd --changes ;
foreach S$Result (split("\n", SResults)) {

Customizing the Scripting Driver

59

Entries are in the format "association=password"
($SAssociation, $Password) = split("=", $Result);
‘usclh -t modify-password -a S$Association <<EOF
$Password
EOF " ;
}

Events submitted using usclh are processed through your driver’s Publisher Channel’s policies. See
the Novell Identity Manager 3.5 Policy guides (http://www.novell.com/documentation/idm35) for
more information.

Using the Heartbeat Script

Another script executed in the Publisher Channel is heartbeat . sh. This script is executed when
the Publisher Channel is idle for the interval specified in the Driver parameters. (You can set the
interval to 0 so no heartbeat is issued.) You can use the heartbeat to check the availability of the
external system or do “idle state” tasks. The HEARTBEAT SUCCESS, HEARTBEAT WARNING,
and HEARTBEAT ERROR subroutines can be used to indicate the result of the heartbeat. Below is
an example based on a hypothetical tool called apphealth.

$1i = new IDMLib () :;

Src = “apphealth’;
if (Src == 0) |
$i->heartbeat success("Heartbeat succeeded");
} else {
$i->heartbeat error("Heartbeat failed with error code Src");

}

The response to the heartbeat is implementation-dependent, and can be defined in policies or in the
script itself. You could send a message to auditing using Novell Audit. You could store a value in a
file, and have Subscriber scripts read the file and call STATUS RETRY if they find that value in the
file.

Other Scripting Topics

¢ “Driver Parameters” on page 60
¢ “Querying the Identity Vault” on page 61
+ “Tracing and Debugging” on page 62

Driver Parameters

A driver has values known as driver parameters. The driver parameters are divided into driver
settings applicable to the whole driver, and Subscriber and Publisher Settings for their respective
channels. The IDMGETDRV VAR, IDMGETSUBVAR and IDMGETPUBVAR functions can be
used to retrieve these values. The table below shows parameters in the default Scripting driver.
Other parameters can be added to the driver’s XML Configuration file (see “Managing Identity
Manager Drivers” in the Novell Identity Manager 3.5 Administration Guide).

60 Identity Manager 3.5 Scripting Driver Implementation Guide

http://www.novell.com/documentation/idm35

Table 5-11 Scripting Driver Parameters

Parameter Name Driver/Channel Description Values

INSTALL_PATH Driver The installation path of string value
the Driver

auto-loopback-detection Driver Whether to enable true/false
automatic loopback
detection

subscriber-script Subscriber The root script file for string value

Subscriber events,
relative to the driver
installation path

pub-polling-interval Publisher The intervalin seconds number
between Publisher polls
for application events

pub-heartbeat-interval Publisher The amount of idle time number
in seconds before a
heartbeat event is
issued

pub-disabled Publisher Whether the Publisher true/false
Channel (such as for
polling) is disabled

In the following example, a script retrieves the Publisher polling interval.
$PollingInterval="IDMGETPUBVAR "pub-polling-interval"’

Querying the Identity Vault
Scripts might need to retrieve information from the Identity Vault. They can do this by issuing a
query.
1 Execute the query by calling IDMQUERY with the appropriate parameters:
¢ The first parameter is the class-name
+ The second parameter is the association of hte object to query
¢ The third parameter are the attributes to read, comma-separated
2 Read the result (instance) using IDMGETQVAR
Query support is currently limited. It returns only one instance based on the specified association or

DN. If both association and DN are specified, association is used. The functions below allow you to
retrieve information from the instance.

The following is an example of a query of the Identity Vault that retrieves the address and ZIP code
for user Bob.

$i = new IDMLib () :;
$i->idmquery ("User", "Bob", "SA,Postal Code");

$Address=$i->idmgetgvar ("SA"™);
$ZIPCode=$i->idmgetqgvar ("Postal Code");

Customizing the Scripting Driver

61

... etc.

Tracing and Debugging

The function IDMTRACE allows you to write a message to the Trace Log. Tracing is useful for
script debugging and auditing.
IDMTRACE "Trace message"

When you develop scripts, you might need to do some debugging to track down problems. The
following list indicates some facilities for debugging.

+ The Driver traces activity to its Trace file (Logs/trace. log by default). The trace level
setting in conf/usdrv.conf controls how much debugging is written to the log.

Trace Level Description

0 No debugging.

1-3 Identity Manager messages. Higher trace levels provide more detail.

4 Previous level plus Remote Loader, driver, driver shim, and Driver connection
messages.

5-7 Previous level plus Change Log and loopback messages. Higher trace levels

provide more detail.

8 Previous level plus Driver status log, Driver parameters, Driver command line,
Driver security, Driver Web server, Driver schema, Driver encryption, Driver
SOAP API, and Driver include/exclude file messages.

9 Previous level plus low-level networking and operating system messages.

10 Previous level plus maximum low-level program details.

The trace level is set using the -trace option in usdrv. conf, for example -trace 9.

You can view the trace file through a Web browser:

a. Use a Web browser to access the driver shim at https://driver-address:8091. Substitute the
DNS name or IP address of your driver for driver-address.

b. Authenticate by using any username and the password that you specified as the Remote
Loader password.

c. Click Trace.

¢ The IDMTrace function described above writes output to the trace file specified in the driver
parameters (logs/script—-trace. log by default).

¢ The eDirectory tool DSTrace can be used to monitor Identity Manager activity. Set the tracing
level for the Driver in iManager. DSTrace shows the XML documents being submitted to the
driver for events, and how policies are evaluated. It also shows the status and message for each
event.

¢ The Status Log is written to 1ogs/dirxml . log. It shows a summary of the events that have
been recorded on the Subscriber and Publisher channels.

You can view the Status Log through a Web browser:

a. Use a Web browser to access the driver shim at https://driver-address:8091. Substitute the
DNS name or IP address of your driver for driver-address.

62 Identity Manager 3.5 Scripting Driver Implementation Guide

b. Authenticate by using any username and the password that you specified as the Remote
Loader password.

c. Click Status.

Although it is best to start the driver in production environments from the startup script, you can run
usdrv manually. When you do so, any text written to standard output from scripts is displayed in the
interactive shell.

5.6.3 Deployment

The Scripting driver is installed by using a setup program. See Section 3.1, “Installing the Linux and
UNIX Scripting Driver,” on page 19, for more information on installing the default driver.

Deploying a Custom Driver

To deploy your custom driver, the end user should first run the Scripting driver installation program
provided by the installation media (seeSection 3.1, “Installing the Linux and UNIX Scripting
Driver,” on page 19). This program installs core files needed by the driver. Then, your custom driver
files can be deployed in any convenient way, whether through an installation program or even
simply an archive file. The table below shows the directory structure below the installation directory
and what files are installed.

Table 5-12 Directory Structure and Files

Directory Description Required Files
bin/ Location of executable programs usdrv
ussmh
usclh
changelog/ Used for Publisher event None
processing
conf/ Location of the driver shim usdrv.conf (customized)

configuration file

keys/ Location of security key files None

logs/ Location of log files None

loopback/ Used for automatic loopback None
detection

rules/ Location of Driver configuration Scripting.xml (customized)
file

schema/ Location of schema files schema.def (customized)

scripts/ Location of script files Those required by your Driver

(customized)

On Linux and UNIX, the Scripting driver is installed to /opt/novell/usdrv.

Customizing the Scripting Driver

63

64

The formats of usdrv.conf and schema.def canbe viewed in Section 4.2, “The Driver Shim
Configuration File,” on page 29 and Section 5.2, “The Connected System Schema File,” on page 34.

If SSL encryption is desired for communication between the driver shim and Identity Manager
engine, a certificate must be retrieved from the Identity Vault. Run usdrv -s and follow the
prompts to retrieve the certificate, which will be stored in the keys/ directory. You must have
LDAP with SSL available for the Metadirectory. When making an installation program for
deployment, you might want to run usdrv -s as part of the installation.

To ensure that only authorized systems access the Metadirectory, a Driver object password and
Remote Loader password are used. Run usdrv -sp and enter the passwords at the prompts. This
action can be incorporated into an installation program.

You should distribute the XML configuration file that contains parameters and policies your Driver
needs. The user can then select it when installing your Driver.

5.7 Microsoft VBScript Developer Guide

The Scripting driver provides a complete Microsoft VBScript API for interacting with identity
management systems whose tools (including APIs) are available on Windows. The Identity Vault
and Identity Manager can run on any supported operating system. Identity Manager communicates
with the driver on a different system over an encrypted network connection.

Before beginning script development, review the preceding topics in this section for information on
defining what data is synchronized between identity management systems.

With additional development work, the driver can also be adapted to support any scripting language
that supports command line operation.

Developing a custom driver with VBScript is discussed in this section.

¢ Section 5.7.1, “Application Tools Evaluation,” on page 64

¢ Section 5.7.2, “Policy and Script Development,” on page 66

¢ Section 5.7.3, “Deployment,” on page 77

¢ Section 5.7.4, “Using an Alternate Scripting Language,” on page 78

5.7.1 Application Tools Evaluation

In order to change the data in your external application, you need to know how to use the
application’s tools or API (Application Programming Interface). These tools must provide
automated operation and not require user input.

Application Command Line Tools

An application often provides command line tools. These tools are manually executed from the
Windows command prompt, and they can be executed from scripts. For example, suppose the
application provides a tool to add identities with a program called appadd.exe.

appadd -n "Bob Smith" -t "818-555-2100"

This command adds an identity named “Bob Smith” with the specified phone number. The strings
following the program name are called parameters or arguments. The Scripting driver provides a
function called IDMExecute to execute external programs.

Identity Manager 3.5 Scripting Driver Implementation Guide

CommandLine = "appadd -n " & UserName & " -t " & PhoneNumber
ExitCode = IDMExecute (CommandLine)

There is also a function called IDMExecutelO that allows you to pass information on the program’s
standard input, and receive output from the program’s standard output and standard error.
Dim Input(l)

Input (0)
Input (1)

"USERNAME=bobsmith"
"TELEPHONE=818-555-2100"

Output = IDMExecutelIO ("appadd", Input)

ExitCode = Output (0)

IDMExecutelO’s first parameter is the command line, and its second parameter is an array of strings
(or Empty) that is submitted as lines to the command program. It returns an array, the first element
of which is the program’s exit code, and then strings that represent lines returned on the program’s
standard output and standard error.

For command line tools, you can construct the command line’s parameters using the values passed
to the script, then execute the program.

Application Objects

Another way to modify application data is through Windows COM (Common Object Model)
objects. Consult your application’s documentation to see whether it exposes any COM objects.
These COM objects can be loaded directly in VBScript:
Set AppObject = WScript.CreateObject ("MyApplication.MyObject")
AppObject.AddIdentity ("Bob Smith", "818-555-2100")

There are no guarantees regarding what types of tools are available, or even whether any tools are
available. You must determine if sufficient tools are provided by the application. If they are not, you
can contact the application’s developers and request that such tools be made available.

You should make a list of what tools can be used for each event type. The application might provide
one program that can be used for any event type, or it might provide multiple tools.

Application Event Monitoring

You also need to determine what tools are available for monitoring event changes in the application.
The Scripting driver works on a polling system. It periodically calls a polling script to determine
what has changed in the external application. You can use the following ideas for monitoring
changes:

¢ The first time the polling script is run, a list of identities and relevant attributes is read from the
application using an application-provided tool. This list is stored as a file. On subsequent polls,
anew list is generated and compared to the old list. Any differences are submitted as events to
the driver.

¢ The application provides a tool that allows you to request all identities that have changed after
a certain point in time. The polling script requests events that have occurred since the previous
poll.

Customizing the Scripting Driver

65

66

¢ The application allows a script to be run when an event occurs. You write a script that stores the
event data into a file. When the Scripting driver polling script runs, it consumes this file and
submits the data as an event to the driver.

Monitoring the application’s changes might be the most difficult aspect of developing your driver.
You must study your application’s tools to determine the best way to achieve synchronization.

5.7.2 Policy and Script Development

At this point you should have a list of what data will be synchronized, how events will be handled,
and what application tools are available. It is time to develop the heart of your driver in policies and
scripts.

Many types of tasks can be handled in driver policies. You can import the driver configuration
provided with the Scripting driver, and then edit policies in Novell iManager. You can also edit
policies and simulate their operation in Novell Designer. The extensive functionality of policies is
outside the scope of this document, so you should refer to your Novell Identity Manager 3.5 Policy
guides (http://www.novell.com/documentation/idm35) for help.

Tasks that don’t interact with the external application might be more suited to policies. On the other
hand, if you are more familiar with your scripting language than policies, you can develop your
driver more quickly by using scripts.

Event Data Format

Event data is submitted to the scripts in name/value pair format. This format consists of lines
containing a name, an equal sign (=) and a value. Therefore, each line is a name/value pair. Each
name/value pair is unique, but there can be multiple name/value pairs with identical names but
different values.

ASSOCIATION=BobUser

ADD TELEPHONE=818-555-2100

ADD TELEPHONE=818-555-9842

You typically don’t have to worry about the format. The script library provides functions for
retrieving event data.

Subscriber Script Development

After all policy processing is complete, Identity Manager submits the event in XML format to the
driver shim. The driver shim submits the event data to the scripts.

In the default Scripting driver, the Subscriber.wsf scriptinthe scripts folder is called.
This script does some preliminary processing, and then calls a routine from an included script. The
included scripts correspond to the Subscriber event types: Add . vbs, Modify.vbs,
ModifyPassword.vbs, Delete.vbs, Rename.vbs, Move.vbs, and Query.vbs.

For each event type, you should retrieve the information you need from the event data, submit
changes to the external application using application-provided tools and return a status (such as
success or failure) to Identity Manager.

Event data is retrieved primarily using the IDMGetEventValues function. This function returns an
array of values corresponding to the name specified as the function’s parameter.

Identity Manager 3.5 Scripting Driver Implementation Guide

http://www.novell.com/documentation/idm35
http://www.novell.com/documentation/idm35

(IDMGetEventValue is available for single-valued items.) The following table shows many item

names.

Table 5-13 Item Names

Name Description

COMMAND The command for the event, usually indicating the event type.

ASSOCIATION The identifier that distinguishes an identity on both identity
management systems.

CLASS NAME An identity’s class, such as User or Group.

SRC_DN An identity’s distinguished name (DN) in the namespace of the
source (sender), in slash format.

EVENT_ID An identifier for the event, for internal use.

SRC_ENTRY_ID

DEST_DN

DEST_ENTRY_ID

ADD_{attr_name}
REMOVE_{attr_name}
ADD_REF_{attr_name}

REMOVE_REF_{attr_name}

OLD_PASSWORD

PASSWORD

OLD_SRC_DN

REMOVE_OLD_NAME

STATUS_LEVEL
STATUS_MESSAGE
STATUS_TYPE

An identifier for the identity that generated the event, in the
namespace of the source (sender).

An identity’s distinguished name (DN) in the namespace of the
destination (receiver), in slash format.

An identifier for an entry in the namespace of the destination
(receiver).

A value to be added to an identity, for attribute {attr_name}.
A value to be removed from an identity, for attribute {attr_name}.

A value to be added to attribute {attr_name}, where the value is
an associaton referring to another identity.

A value to be removed from attribute {attr_name}, where the
value is an associaton referring to another identity.

The previous password for an identity that has changed its
password. Used in Modify Password events.

The new password for an identity. Used in Add and Modify
Password events.

The distinguished name of an identity before a Move or Rename
event.

Specifies whether an old relative distinguished name should be
deleted or retained. Used in Rename events.

The status of an event: success, warning, retry, error or fatal.
A message to report with a status.

A type of status, such as heartbeat.

Handling Associations

The association value indicates which identity has been changed. If the identity has no association,
an association must be generated for it using an implementation-specific rule that you have adopted.
When Identity Manager processes an event for an identity with no association, it executes the

Customizing the Scripting Driver

67

68

driver’s Matching policy. This policy attempts to match the event’s identity to an identity on the
external application’s system. Doing this usually involves executing a query. The default Matching
policy included with the Scripting driver queries for matching Users and Groups based on the CN
attribute. If the event’s identity matches an identity on the external application, both identities must
be assigned the new association. Assigning this association can be done as part of the query-
handling script. (Handling queries is discussed in“Handling Query Events” on page 69.) If no
identity matches, an Add event is issued, and the new association can be assigned as part of the Add
event-handling script:

IDMSetCommand "ADD ASSOCIATION"

IDMWriteValue "ASSOCIATION", MyAssociation

(etc.)

The example above also illustrates the IDMSetCommand function. This function sets a command
value which indicates what action Identity Manager should perform. The "ADD_ASSOCIATION"
command assigns an association to an identity, as discussed above. The Subscriber can also issue
MODIFY_ASSOCIATION and REMOVE_ASSOCIATION commands.

Returning an Event Status

On the Subscriber channel, you often do not need Identity Manager to perform an action, but simply
need to report a status. The IDMStatus subroutines noted below can be used to indicate a status to
Identity Manager. They take a message to be logged as the parameter.

Table 5-14 Subroutines

Subroutine Identity Manager Action

IDMStatusSuccess Identity Manager marks the event as a success and submits the next
event in the event queue, if any. You should issue this status even if
your script does nothing.

IDMStatusWarning The event can be processed, but it might require attention. Identity
Manager issues your warning message in its log, and then submits the
next event.

IDMStatusRetry The event cannot be processed, but Identity Manager should resubmit

the event because it should be able to be processed soon. This status
can be issued if your external application appears to be temporarily
unavailable. However, this status should be used cautiously because a
backlog results if Identity Manager continually retries one event.

IDMStatusError The event cannot be processed and it should not be resubmitted.
Identity Manager issues the error message and submits the next event.
You should make a detailed error message so the problem can be
corrected.

IDMStatusFatal For some reason, the driver must be stopped. Identity Manager issues
your message and stops the driver. This could be used if the external
application appears to be permanently offline. The event remains in the
queue and is resubmitted when the driver is restarted.

Writing Values

IDMSetCommand and/or a status subroutine must be called before specifying values with
IDMWriteValues. IDMWriteValues (or its single-valued version IDMWriteValue) is used to set

Identity Manager 3.5 Scripting Driver Implementation Guide

values to return to Identity Manager. It is passed a value name and an array of values. In the
"ADD_ ASSOCIATION" example above, IDMWriteValue is used to set the ASSOCIATION value.
You can specify values for items listed in the table above.

Handling Query Events

For Query events, Identity Manager submits values that define the parameters of a search of the
external application’s identity management system. Queries are usually issued from the policies you
have defined for your system. The table below specifies values that can be specified in queries. Not
all values are relevant to your external application.

Table 5-15 Query Values

Value Name

Description

SCOPE

ASSOCIATION

DEST_DN
CLASS_NAME
EVENT_ID
SEARCH_CLASSES

SEARCH_ATTRS

SEARCH_ATTR_{attr name}

READ_ATTRS

ALL_READ_ATTRS

NO_READ_ATTRS

READ_PARENT

Specifies what identities will be searched. A base object is specified
with the ASSOCIATION or DEST_DN values (see below). The value
“entry” means that only the base object is searched. The value
“subordinates” means that the immediate subordinates of the base
object are searched. The value “subtree” (the default) indicates that the
base object and all subordinates are searched. The last two values are
only relevant in a hierarchical system.

The base object for the search. If both ASSOCIATION and DEST_DN
have values, ASSOCIATION is used. If neither is specified, the base
object is the root of the identity management system.

The base object for the search (see also ASSOCIATION above).
The base class of the base object.
An identifier for the event.

A list of classes for which to search. Only identities of these classes are
returned. If not specified, all identities in the scope matching
SEARCH_ATTR _ values are returned (see below).

A list of the attribute names specified in SEARCH_ATTR _ values (see
below).

A value that the specified attribute must match. Replace {attr_name}
with the desired attribute name. Only identities matching all
SEARCH_ATTR _filters are returned.

A list of the attribute names whose values Re returned for each
matching identity.

The presence of this value indicates that all attribute values should be
returned for matching identities.

The presence of this value indicates that no attribute values should be
returned for matching identities.

The presence of this value indicates that the parent object of each
matching identity should be returned. Only relevant in hierarchical
systems.

Execute the query against the external application using application-provided tools. Then return
each identity by setting an "INSTANCE" command, followed by relevant values from the list below.

Customizing the Scripting Driver

69

70

Table 5-16 Query Values

Value Name Description

CLASS_NAME The class of the identity. Required.

SRC_DN A distinguished name representing the logical location of the identity in
the system (optional).

ASSOCIATION The association of the identity, if available (optional).

PARENT The association of the parent object of the identity (optional). Only

relevant in hierarchical systems.

ATTR_{attr_name} A list of values for the attribute specified by {attr_name}. Return
attribute values specified by the READ_ATTRS value.

After returning all identities, call IDMStatusSuccess to indicate a successful query.

Subscriber Summary and Examples
Below is a more detailed summary of the actions to take for a non-Query event.

1 Gather information about the event using IDMGetEventValues. Return a warning or error if
there is a problem.

2 Submit the event data to the external application using application-provided tools.

3 Set a command using IDMSetCommand and/or a status with the IDMStatus subroutines, based
on the result of the event.

4 Set event values with IDMWriteValues.

5 If you have not already done so, set a status with an IDMStatus subroutine.

Below is an example of the Add . vbs script, which forms an association from a identity’s CN and
class name, and uses a hypothetical tool called appadd.
Sub ADD
ClassName = IDMGetEventValue ("CLASS NAME")
CN = IDMGetEventValue ("CN")
PhoneNumber = IDMGetEventValue ("Telephone")
If IsEmpty(ClassName) Or IsEmpty (CN) Then
IDMStatusError "Add event: missing CLASS NAME and/or CN"
Else
Command = "appadd -n """ & CN & """ -t """ & PhoneNumber & """"
ExitCode = IDMExecute (Command)
If ExitCode = 0 Then
IDMSetCommand "ADD ASSOCIATION"
IDMWriteValue "ASSOCIATION", CN & ClassName
IDMWriteValue "DEST DN", IDMGetEventValue ("SRC _DN")
IDMStatusSuccess "Add event succeeded"
Else
IDMStatusError "Add event failed with error code " & ExitCode
End If
End If

Identity Manager 3.5 Scripting Driver Implementation Guide

End Sub

Handling a query is a similar process, except that you return INSTANCE items rather than using
other commands. Below is an example Query.vbs that searches an external application for a
telephone number. It uses a hypothetical tool called appsearch.

Sub QUERY
SearchName = IDMGetEventValue ("SEARCH ATTR CN")
If IsEmpty(SearchName) Then

IDMStatusError "Query: no search value"

Else
Command = "appsearch -n " & SearchName
Results = IDMExecuteIO (Command, Empty)
If Results(0) = 0 Then

Phone = Results (1)
IDMSetCommand "INSTANCE"
IDMWriteValue "CLASS NAME", IDMGetEventValue ("CLASS NAME")
IDMWriteValue "ASSOCIATION", IDMGetEventValue ("ASSOCIATION")
IDMWriteValue "ATTR Telephone", Phone
IDMStatusSuccess "Query succeeded"
Else
' Return success with no results
IDMStatusSuccess "Query succeeded (no matches)"
End If
End If
End Sub

Publisher Script Development

Events that occur on the external application are submitted to Identity Manager on the Publisher
channel. The Scripting driver periodically polls the external application for events. How this poll
detects events is implementation-specific and must be defined by you.

Polling for Application Events

The Driver calls Pol1l.wsf in order to detect application events. Pol1.wsf should be
implemented as follows:
1 Use application-provided tools to detect events in your application. (See Step 2.)
2 For each event:
2a Call the IDMPublishlnit function to set the appropriate command.
2b Call IDMPublishValues to set event values.
2c Call IDMPublish to submit the event to Identity Manager.

3 If there were events, call an IDMStatus function to report the status.

IDMPublishInit takes a command name as its single parameter. Below is a list of valid command
names for IDMPublish.

Customizing the Scripting Driver

7

72

Table 5-17 Command Names

Command Name

Description

ADD
ADD_ASSOCIATION
DELETE

MODIFY
MODIFY_ASSOCIATION
MODIFY_PASSWORD
REMOVE_ASSOCIATION
RENAME

Create an identity.

Create an association for an identity.
Remove an identity permanently.
Change an identity’s attributes.
Change an identity’s association.
Change an identity’s password.
Delete an identity’s association.

Change an identity’s naming attribute.

Below is an example of a Po11.wsf that checks for a password change. It uses a hypothetical

application tool called apppwd.
Results =
For I =

1 To UBound (Results)
Association = Left (Results(I),

Password = Mid(Results(I),

IDMExecutelIO ("apppwd --changes",

InStr (Results(I),

Empty)

Entries are in the format "association=password"

InStr (Results(I), "=")-1)
w=m) +l)

IDMPublishInit "MODIFY PASSWORD"

IDMPublishValue "ASSOCIATION", Association
IDMPublishValue "PASSWORD", Password
IDMPublish

Next

IDMStatusSuccess "Poll succeeded"

Events submitted using IDMPublish are processed through your driver’s Publisher channel policies.

See the Novell Identity Manager 3.5 Policy guides (http://www.novell.com/documentation/idm35)

for more information.

Using the Heartbeat Script

Another script executed in the Publisher Channel is Heartbeat .wsf . This script is executed
when the Publisher channel is idle for the interval specified in the driver parameters. (You can set
the interval to 0 so no heartbeat is issued.) You can use the heartbeat to check the availability of the
external system or do “idle state” tasks. The IDMHeartbeatSuccess, IDMHeartbeatWarning, and
IDMHeartbeatError subroutines can be used to indicate the result of the heartbeat. Below is an
example based on a hypothetical tool called apphealth.

ExitCode =

If ExitCode = 0 Then
IDMHeartbeatSuccess

Else
IDMHeartbeatError

Identity Manager 3.5 Scripting Driver Implementation Guide

"Heartbeat failed with error code "

IDMExecute ("apphealth")

"Heartbeat succeeded"

& ExitCode

http://www.novell.com/documentation/idm35

End If

The response to the heartbeat is implementation-dependent, and can be defined in policies or in the
script itself. You could send a message to auditing using Novell Audit. You could store a value in a
file, and have Subscriber scripts read the file and call IDMStatusRetry if they find that value in the
file.

Other Scripting Topics

¢ “Driver Parameters” on page 73
¢ “Querying the Identity Vault” on page 74
¢ “Tracing and Debugging” on page 75

Driver Parameters

A driver has values known as driver parameters. The driver parameters are divided into driver
settings applicable to the whole driver, and Subscriber and Publisher Settings for their respective
channels. The IDMGetDriverParam, IDMGetSubscriberParam, and IDMGetPublisherParam
functions can be used to retrieve these values. The table below shows parameters in the default
Scripting driver. Other parameters can be added to the driver’s XML Configuration file (see
“Managing Identity Manager Drivers” in the Novell Identity Manager 3.5 Administration Guide).

Table 5-18 Driver Parameters

Parameter Name Driver/Channel Description Values

INSTALL_PATH Driver The installation path of string value
the driver

auto-loopback-detection Driver Whether to enable true/false
automatic loopback
detection

script-command Driver The commandtouseto string value

execute scripts

script-trace-file Driver The file, relative to the string value
driver installation path,
to which to write trace
messages

subscriber-script Subscriber The script file for string value
Subscriber events,
relative to the driver
installation path

polling-script Publisher The script file that runs string value
when the Publisher polls
for application events

heartbeat-script Publisher The script file that runs string value
when the Publisher
checks application
status

Customizing the Scripting Driver

73

Parameter Name Driver/Channel Description Values

pub-polling-interval Publisher The interval in seconds number
between Publisher polls
for application events

pub-heartbeat-interval Publisher The amount of idle time number
in seconds before a
heartbeat event is
issued

In the following example, a script retrieves the Publisher polling interval.
PollingInterval = IDMGetPublisherParam("pub-polling-interval")

Querying the Identity Vault

Scripts might need to retrieve information from the Identity Vault. They can do this by issuing a
query.
1 Initialize the query with IDMQueryInit.

2 Set query search parameters using functions listed below.

Function Description

IDMQuerySetAssociation(Association) Sets the association of the object to query.

IDMQuerySetSearchRoot(SearchRoot) Sets the DN (in slash format) of the object to
query.

IDMQueryAddSearchAttr(Name, Value) Specifies a search condition of the form

Name=Value. The query will only return an
instance if the named attribute has a value
matching Value.

IDMQueryAddReadAttr(Name) Specifies an attribute whose values will be
returned with the instance.

IDMQuerySetReadParent(ReadParent) Specifies whether the association and DN of the
parent of the queried object should be returned
(False by default).

3 Execute the query with IDMQuery.
4 Read the result (instance) using functions listed below.

Currently query support is limited. It will only return one instance based on the specified
association or DN. (If both association and DN are specified, association isused.) The functions
below allow you to retrieve information from the instance.

Function Description

IDMGetQuerylnstanceAssociation Returns the association of the instance.
IDMGetQuerylnstanceDN Returns the DN of the instance (in slash format)
IDMGetQuerylnstanceClass Returns the class name of the instance.

74 Identity Manager 3.5 Scripting Driver Implementation Guide

Function Description

IDMGetQuerylnstanceParentAssociation Returns the association of the parent of the
instance (if requested).

IDMGetQuerylnstanceParentDN Returns the DN of the parent of the instance (if
requested).
IDMGetQuerylnstanceAttrNames Returns an array containing the names of the

attributes retrieved for the instance. Returns
Empty if no attributes were retrieved.

IDMGetQuerylnstanceAttrCount Returns the number of attributes retrieved for the
instance.

IDMGetQuerylnstanceAttrValues(AttrName) Returns an array of values for the attribute
AttrName. Returns Empty if no values are
available.

IDMGetQuerylnstanceAttrValue(AttrName) Returns a string value for the attribute AttrName.

If multiple values are available, the first one is
returned. Returns Empty if no values are
available.

The following is an example of a query of the Identity Vault that retrieves the address and ZIP code
for users living in Provo, Utah.

IDMQueryInit

IDMSetQueryAssociation IDMGetEventValue ("ASSOCIATION")

IDMAddSearchAttr "City", "Provo"

IDMAddSearchAttr "3S", "UT" ' State

IDMAddReadAttr "SA" ' Street Address

IDMAddReadAttr "Postal Code"

If IDMQuery Then
Address = IDMQueryGetInstanceAttrValue ("SA")
ZIPCode = IDMQueryGetInstanceAttrValue ("Postal Code")
]

... etc.
End If

Tracing and Debugging

The IDMTrace function allows you to write a message to the Script Trace File specified in the
Driver Parameters. Tracing is useful for script debugging and auditing.

IDMTrace "Trace message"

When developing scripts, you might need to do some debugging to track down problems. The
following list indicates some facilities for debugging.

¢ The Driver traces activity to its Trace file (Logs\trace.log by default). The trace level
setting in conf\wsdrv.conf controls how much debugging is written to the log.

Trace Level Description

0 No debugging.

Customizing the Scripting Driver

76

Trace Level

Description

1-3
4

5-7

9
10

Identity Manager messages. Higher trace levels provide more detail.

Previous level plus Remote Loader, driver, driver shim, and Driver
connection messages.

Previous level plus Change Log and loopback messages. Higher trace
levels provide more detail.

Previous level plus Driver status log, Driver parameters, Driver command
line, Driver security, Driver Web server, Driver schema, Driver encryption,
Driver SOAP API, and Driver include/exclude file messages.

Previous level plus low-level networking and operating system messages.

Previous level plus maximum low-level program details.

The trace level is set using the -trace option in wsdrv.conf, for example. -trace 9.

You can view the trace file through a Web browser:

a. Use a Web browser to access the driver shim at https://driver-address:8091. Substitute the
DNS name or IP address of your driver for driver-address.

b. Authenticate by using any username and the password that you specified as the Remote
Loader password.

c. Click Trace.

¢ The IDMTrace function described above writes output to the trace file specified in the Driver
Parameters (Logs\script-trace.log by default).

¢ The eDirectory tool DSTrace can be used to monitor Identity Manager activity. Set the tracing
level for the Driver in iManager. DSTrace shows the XML documents being submitted to the
Driver for events, and how Policies are evaluated. It also shows the status and message for each

event.

¢ The Status Log is written to 1ogs\dirxml.log. It shows a summary of the events that
have been recorded on the Subscriber and Publisher channels.

You can view the Status Log through a Web browser:

a. Use a Web browser to access the driver shim at https://driver-address:8091. Substitute the
DNS name or IP address of your driver for driver-address.

b. Authenticate by using any username and the password that you specified as the Remote
Loader password.

c. Click Trace.

Although it is best to run the driver as a service in production environments, you can run
wsdriver.exe as a standard program. When you do so, a console window displays trace
messages (see above) for the driver. Also, text written to standard output from scripts (such as using
WScript.Echo in VBScript) is displayed in this window.

VBScript programs can be debugged using programs such as Microsoft Visual Studio and Microsoft
Script Debugger. Change the Script Command driver parameter to use the //x option: cscript //
nologo //x. When the driver shim executes a script, you are prompted to debug the script execution.

Identity Manager 3.5 Scripting Driver Implementation Guide

5.7.3 Deployment

The Scripting driver is installed by using a setup program. See Section 3.2, “Installing the Windows
Scripting Driver,” on page 20 for information on installing the default driver.

Deploying a Custom Driver

To deploy your custom driver, the end user should first run the Windows Scripting driver installation
program provided by the installation media (see Section 3.2, “Installing the Windows Scripting
Driver,” on page 20 for more information.) This program installs core files needed by the driver.
Then, your custom driver files can be deployed in any convenient way, whether through an
installation program or even simply an archive file. The table below shows the directory structure
below the installation directory and what files are installed.

Table 5-19 Directory Structure and Files

Directory Description Required Files

bin\ Location of executable programs EventReader.exe
idmevent.exe

wsdriver.exe

changelog\ Used for Publisher event None
processing
conf\ Location of the driver shim wsdrv.conf (customized)

configuration file

keys\ Location of security key files None

logs\ Location of log files None

loopback\ Used for automatic loopback None
detection

rules\ Location of Driver configuration Scripting.xml (customized)
file

schema\ Location of schema files schema.def (customized)

scripts)\ Location of script files Those required by your Driver

(customized)

If you are using an installation program, you can obtain the driver’s installation path from the
following registry value:

HKEY LOCAL MACHINE\SOFTWARE\Novell\Windows Script Driver\Path

The formats of wsdrv.conf and schema.def canbe viewed in Section 4.2, “The Driver Shim
Configuration File,” on page 29 and Section 5.2, “The Connected System Schema File,” on page 34.

If SSL encryption is desired for communication between the driver shim and Identity Manager
engine, a certificate must be retrieved from the Identity Vault. Run wsdriver.exe -s and
follow the prompts to retrieve the certificate, which will be stored in the keys\ directory. You must
have LDAP with SSL available for the Metadirectory. When making an installation program for
deployment, you might want to run wsdriver.exe -s as part of the installation.

Customizing the Scripting Driver

77

78

To ensure that only authorized systems access the Metadirectory, a Driver Object password and
Remote Loader password are used. Run wsdriver.exe -sp and enter the passwords at the
prompts. This action can be incorporated into an installation program.

You should run a Scripting driver as a service. To the install the service, run wsdriver.exe -
installService, or install it as part of an installation program. The service can then be run
from the Services applet. The service can be removed with wsdriver.exe -
removeService.

You should distribute the XML configuration file that contains parameters and policies your driver
needs. The user can then select it when installing your driver.

5.7.4 Using an Alternate Scripting Language

An alternative scripting language can be used by porting the globals, IDMLib, and other scripts to
the alternative language. Porting requires a solid understanding of one of the provided languages
(Bourne Shell, Perl and Microsoft VBScript) and the target language. The language should have
facilities for executing programs and reading/writing to their standard input and output. The script
language program must be able to be run from the command prompt.

To change the program the driver executes when running a script, modify the Script Command
driver parameter. After the name of the program, you can include any needed command line
parameters. To this string, the driver appends a space and the name of the Subscriber, Polling or
Heartbeat script. For the Subscriber script, the full path to the event file and the full path to the
Driver Parameter file are the next two parameters. For the Polling and Heartbeat scripts, the Driver
Parameter file is the next parameter.

The event file contains the event document in XML format. On Windows, you must use the
EventReader .exe program included with the Scripting driver to process this file. Running
EventReader with the nvpairs option retrieves the event document as name/value pairs (the default).
Using the xds option retrieves the event in its original XDS/XML format. On Linux and UNIX,
events are submitted to scripts using shared memory. You must use the Shared Memory Helper,
ussmh, to process these events. Running ussmh with the -xml option retrieves the XML document in
its original XDS/XML format.

The Driver Parameter file contains name/value pairs for the driver parameters. See Section 5.5,
“UNIX Shell Developer Guide,” on page 41, Section 5.6, “Perl Developer Guide,” on page 52, and
Section 5.7, “Microsoft VBScript Developer Guide,” on page 64 for more information.

On the Publisher channel, you must use the Change Log tool (1idmevent . exe on Windows and
usclh on Linux/UNIX), to submit events to the driver.

The names of the Subscriber, Polling and Heartbeat scripts can be altered in the driver parameters.

Identity Manager 3.5 Scripting Driver Implementation Guide

Using the Scripting Driver

*

Section 6.1, “Starting and Stopping the Driver,” on page 79

*

Section 6.2, “Starting and Stopping the Driver Shim,” on page 79

*

Section 6.3, “Displaying Driver Shim Status,” on page 80

*

Section 6.4, “Monitoring Driver Messages,” on page 80

6.1 Starting and Stopping the Driver
To start the driver:

1 In Novell® iManager, navigate to the Driver Overview for the driver.
2 Click the upper right corner of the driver icon.
3 Click Start driver.

To stop the driver:

1 In iManager, navigate to the Driver Overview for the driver.
2 Click the upper right corner of the driver icon.
3 Click Stop driver.

6.2 Starting and Stopping the Driver Shim

To start the driver shim, perform the task appropriate for your operating system as shown in the
following table:

Table 6-1 Starting the Driver Shim

Operating System Command/Task

AlX /etc/rc.d/init.d/usdrvd start

HP-UX /sbin/init.d/usdrvd start

Linux /etc/init.d/usdrvd start

Solaris /etc/init.d/usdrvd start

Windows Use the Windows Services application to start the
Novell Identity Manager Windows Script Driver
service.

To stop the driver shim, perform the task appropriate for your operating system as shown in the
following table:

Using the Scripting Driver

79

Table 6-2 Stopping the Driver Shim

Operating System Command/Task

AIX /etc/rc.d/init.d/usdrvd stop

HP-UX /sbin/init.d/usdrvd stop

Linux /etc/init.d/usdrvd stop

Solaris /etc/init.d/usdrvd stop

Windows Use the Windows Services application to stop the
Novell Identity Manager Windows Script Driver
service.

You can also run the driver shim on Windows from the command line by executing
wsdriver.exe in the bin directory under the driver installation directory. Output is written to
the console. Stop the driver shim by pressing Ctrl+Break. Running the driver shim this way is
recommended only for development and testing.

6.3 Displaying Driver Shim Status

To see status and version information for the driver shim, use the appropriate command for your
operating system as shown in the following table:

Table 6-3 Displaying the Status of the Driver Shim

Operating System Command

AIX /etc/rc.d/init.d/usdrvd status
HP-UX /sbin/init.d/usdrvd status
Linux /etc/init.d/usdrvd status
Solaris /etc/init.d/usdrvd status
Windows Use the Windows Services application.

6.4 Monitoring Driver Messages

The Scripting driver writes messages to the system log on Linux and UNIX, and the trace file on
Windows (trace. log in the logs directory by default). For details about the messages written by
the driver, see Appendix B, “System and Error Messages,” on page 93.

80 Identity Manager 3.5 Scripting Driver Implementation Guide

Securing the Scripting Driver

The section describes best practices for securing the Identity Manager Driver for Scripting 3.5.

¢ Section 7.1, “Using SSL,” on page 81
¢ Section 7.2, “Physical Security,” on page 81
¢ Section 7.3, “Network Security,” on page 81
¢ Section 7.4, “Auditing,” on page 81
¢ Section 7.5, “Driver Security Certificates,” on page 81
¢ Section 7.6, “Driver Shell Scripts,” on page 82
¢ Section 7.7, “The Change Log,” on page 82
¢ Section 7.8, “Driver Passwords,” on page 82
¢ Section 7.9, “Driver Code,” on page 82
¢ Section 7.10, “Administrative Users,” on page 83
¢ Section 7.11, “Connected Systems,” on page 83
For additional information about Identity Manager security, see the Novell® Identity Manager 3.0

Administration Guide on the Identity Manager 3 Documentation Web site (http://www.novell.com/
documentation/idm/index.html).

7.1 Using SSL

Enable SSL for communication between the Metadirectory engine and the driver shim on the
connected system. For more information, see “Use SSL” on page 24. If you don’t enable SSL, you
are sending information, including passwords, in the clear.

7.2 Physical Security

Keep your servers in a physically secure location with access by authorized personnel only.

7.3 Network Security

Require users outside of the corporate firewall to use a VPN to access corporate data.

7.4 Auditing

Track changes to sensitive information. Examine audit logs periodically. For details about using
Novell Audit to monitor driver operation, see the Novell Audit Documentation Web site (http://
www.novell.com/documentation/novellaudit20/index.html).

7.5 Driver Security Certificates

SSL uses security certificates to control, encrypt, and authenticate communications.

Securing the Scripting Driver

81

82

Ensure that the security certificate directory /opt/novell/usdrv/keys is appropriately
protected on Linux or UNIX platforms and C: \Novell\wsdrv\keys is protected on Windows
platforms. The installation program sets secure file permissions for these directories.

The Driver Shim and the Identity Manager engine communicate through SSL using a certificate
created in the Identity Vault and retrieved by the Driver Shim during the installation process. For
more information on this certificate and how to renew or install third-party certificates, refer to the
Identity Manager Administration Guide.

The Embedded Remote Loader web interface uses a dynamically generated, self-signed certificate
for SSL communication. The details of this certificate are as follows:

Subject: SSL Server
Issuer: SSL Server
Validity: 1 year
Serial Number: 0
Key: 1024-bit RSA

Renewal of this certificate automatically occurs when the Driver Shim is restarted on the connected
platform.

7.6 Driver Shell Scripts

The driver uses scripts to perform updates on the connected system, and to collect changes made
there. Ensure that the script directory is appropriately protected. The installation program sets secure
file permissions for this directory where applicable.

7.7 The Change Log

The change log file contains information about events on the connected system, including
passwords. It is encrypted, but it should be protected against access by unauthorized users. Ensure
that the change log directory is appropriately protected. The installation program sets secure file
permissions for this directory where applicable.

7.8 Driver Passwords

Use strong passwords for the Driver object and Remote Loader passwords, and restrict knowledge
of them to authorized personnel. These passwords are stored in encrypted form in the security
certificate directory keys. The installation program sets secure file permissions for this directory.

7.9 Driver Code

Ensure that the driver executable directory bin and the driver files in /usr/sbin (Linux/UNIX
only) are appropriately protected. The installation program sets secure file permissions for these
items where applicable.

Identity Manager 3.5 Scripting Driver Implementation Guide

7.10 Administrative Users

Ensure that accounts with elevated rights on the Metadirectory system, Identity Vault systems, and
the connected systems are appropriately secure. Protect administrative user IDs with strong
passwords.

7.11 Connected Systems

Ensure that connected systems can be trusted with account information, including passwords, for the
portions of the tree that are configured as their base containers.

Securing the Scripting Driver 83

84 Identity Manager 3.5 Scripting Driver Implementation Guide

Troubleshooting

This section discusses topics for troubleshooting the Identity Manager Driver for Scripting 3.5.

A.1 Driver Status and Diagnostic Files

¢ Section A.1.1, “The System Log (Linux/UNIX only),” on page 85
Section A.1.2, “The Trace File,” on page 86

Section A.1.3, “The Script Output File,” on page 86

Section A.1.4, “DSTRACE,” on page 87

Section A.1.5, “The Status Log,” on page 87

*

*

*

*

A.1.1 The System Log (Linux/UNIX only)

The system log is used by the Scripting driver shim to record urgent, informational, and debug
messages. Examining these should be foremost in your troubleshooting efforts. For detailed
message documentation, see Appendix B, “System and Error Messages,” on page 93.

The location for the system log varies from system to system and is generally configured through /
etc/syslog.conf. The amount of information that is logged by the driver can also be
configured through this system log configuration file. The following is a sample fragment from /
etc/syslog.conf:

sample /etc/syslog.conf

#

*.err;kern.notice;auth.notice /dev/sysmsg
*.err;kern.debug;daemon.notice;mail.crit /var/adm/messages
*.alert;kern.err;daemon.err operator

*.alert root

The options in the first column determine which messages are logged. The options in the second
column specify the destination file or user to send the log output to. For example, specifying *.err
logs all messages with a priority of err or above. For more information about syslog priorities, view
your system documentation using the man syslog command. Messages from the driver shim and
messages from the scripts are logged with various priorities as shown in Table A-1. The information
that is recorded depends on your syslog configuration.

Table A-1 Message Priorities

Message Topic Priority
Script being called DEBUG
Successful Linux or UNIX command execution INFO
Publication events INFO

Troubleshooting

85

86

Message Topic Priority

Failures ERR

A.1.2 The Trace File

The default trace file exists on the connected system as t race. 1og in the 1ogs directory under
the installation folder. A large amount of debug information can be written to this file. Use the trace
level setting in your driver shim configuration file to control what is written to the file. For details
about the driver shim configuration file, see Section 4.2, “The Driver Shim Configuration File,” on
page 29.

Table A-2 Driver Shim Trace Levels

Trace Level Description

0 No debugging

1-3 Identity Manager messages. Higher trace levels provide more detail.

4 Previous level plus Remote Loader, driver, driver shim, and driver connection
messages.

5-7 Previous level plus change log and loopback messages. Higher trace levels

provide more detail.

8 Previous level plus driver status log, driver parameters, driver command line,
driver security, driver Web server, driver schema, driver encryption, driver PAM,
driver SOAP API, and driver include/exclude file messages.

9 Previous level plus low-level networking and operating system messages.

10 Previous level plus maximum low-level program details (all options).

The following is an example configuration line to set the trace level:

-trace 9
To view the trace file:
1 Use a Web browser to access the driver shim at https://driver-address:8091. Substitute the DNS
name or [P address of your driver for driver-address.

2 Authenticate by using any username and the password that you specified as the Remote Loader
password.

3 Click Trace.

A.1.3 The Script Output File

By default, script output is written to script-trace.log inthe logs directory under the
driver installation directory on the connected system. This file captures the output from all scripts
executed by the driver shim. The location of the script output file is set in the driver parameters.

Identity Manager 3.5 Scripting Driver Implementation Guide

A.1.4 DSTRACE

You can view Identity Manager information using the DSTRACE facility on the Metadirectory
server. Use iManager to set the tracing level. For example, trace level 2 shows Identity Vault events
in XML documents, and trace level 5 shows the results of policy execution. Because a high volume
of trace output is produced, we recommend that you capture the trace output to a file. For details
about using DSTRACE, see the Novell Identity Manager 3.0 Administration Guide on the Identity
Manager 3 Documentation Web site (http://www.novell.com/documentation/idm/index.html).

A.1.5 The Status Log

The status log is a condensed summary of the events that have been recorded on the Subscriber and
Publisher channels. This file exists on the connected system as dirxml . log in the logs directory
under the driver installation directory. You can also view the status log in iManager on the Driver
Overview page. You can change the log level to specify what types of events to log. For details
about using the status log, see the Novell Identity Manager 3.0 Administration Guide on the Identity
Manager 3 Documentation Web site (http://www.novell.com/documentation/idm/index.html)

To view the status log:

1

2

Use a Web browser to access the driver shim at https://driver-address:8091. Substitute the DNS
name or [P address of your driver for driver-address.

Authenticate by using any username and the password that you specified as the Remote Loader
password.

3 Click Status.

A.2 Troubleshooting Common Problems

*

*

*

Section A.2.1, “Driver Shim Installation Failure,” on page 87

Section A.2.2, “Driver Rules Installation Failure,” on page 88

Section A.2.3, “Driver Certificate Setup Failure,” on page 88

Section A.2.4, “Driver Start Failure,” on page 88

Section A.2.5, “Driver Shim Startup or Communication Failure,” on page 89

Section A.2.6, “Users or Groups Are Not Provisioned to the Connected System,” on page 89
Section A.2.7, “Users or Groups Are Not Provisioned to the Identity Vault,” on page 89

Section A.2.8, “Identity Vault User Passwords Are Not Provisioned to the Connected System,”
on page 90
Section A.2.9, “Connected System User Passwords Are Not Provisioned to the Identity Vault,”
on page 90

Section A.2.10, “Metadirectory Objects Are Not Modified, Deleted, Renamed, or Moved,” on
page 90

A.2.1 Driver Shim Installation Failure

*

Ensure that you use the correct installation program for your operating system and that you are
running on a supported operating system. For details, see Chapter 2, “Planning for the Scripting
Driver,” on page 15.

Troubleshooting

87

¢ Ensure that you run the installation as root (Linux/UNIX) or Administrator (Windows) or
equivalent.

¢ (Linux/UNIX only) Ensure that your package management software, such as RPM, is installed
and up-to-date.

A.2.2 Driver Rules Installation Failure

Ensure that you use iManager 2.5 or higher, with the Identity Manager plug-ins installed.

A.2.3 Driver Certificate Setup Failure

To set up certificates, the driver shim communicates with the Metadirectory server using the LDAP
secure port (636).

+ Ensure that eDirectory™ is running LDAP with SSL enabled. For details about configuring
eDirectory, see the Novell eDirectory 8.7.3 Administration Guide on the Novell eDirectory
8.7.3 Documentation Web site (http://www.novell.com/documentation/edir873/index.html).

+ Ensure that the connected system has network connectivity to the Metadirectory server.

You can use the command /opt/novell/usdrv/bin/usdrv -s (Linux/UNIX) or
wsdriver -s (Windows) to configure the certificate at any time.

If you cannot configure SSL using LDAP, you can install the certificate manually:
1 IniManager, browse the Security container to locate your tree’s Certificate Authority (typically
named treeName CA).
Click the Certificate Authority object.
Click Modify Object.
Select the Certificates tab.
Click Public Key Certificate.
Click Export.
Select No to export the certificate without the private key, then click Nexz.
Select Base64 format, then click Next.

Click Save to save the exported certificate to a file, then specify a location to save the file.

o ©W 0N OO g M WODN

-—

Use FTP or another method to store the file on the connected system as ca .pem in the keys
directory under the driver installation directory.

A.2.4 Driver Start Failure

¢ Examine the status log and DSTRACE output.

¢ The driver must be specified as a Remote Loader driver, even if the Identity Vault and
connected system are the same computer. You can set this option in the iManager Driver Edit
Properties window.

* You must activate both Identity Manager and the driver within 90 days. The Driver Set
Overview page in iManager shows when Identity Manager requires activation. The Driver
Overview page shows when the driver requires activation.

88 Identity Manager 3.5 Scripting Driver Implementation Guide

For details about activating Novell Identity Manager Products, see the Identity Manager 3
Installation Guide on the Identity Manager 3 Documentation Web site (http://www.novell.com/
documentation/idm/index.html).

For more information about troubleshooting Identity Manager engine errors, see the Identity
Manager 3 Documentation Web site (http://www.novell.com/documentation/idm/index.html).

A.2.5 Driver Shim Startup or Communication Failure

+ Examine the trace file.

+ Ensure that the connected system’s operating system version is supported. For a list of
supported operating systems, see Chapter 2, “Planning for the Scripting Driver,” on page 15.

* Apply all patches for your operating system.

+ Ensure that the Remote Loader and Driver object passwords that you specified while setting up
the driver on the Metadirectory server match the passwords stored with the driver shim.

To update these passwords on the connected system, use the /opt/novell/usdrv/bin/
usdrv -sp (Linux/UNIX) or use the wsdriver -sp (Windows) command. The
passwords are stored under keys in the driver installation directory in encrypted files
dpwd1£40 (Driver object password) and 1pwd1£40 (Remote Loader password).

To update these passwords on the Metadirectory server, use iManager to update the driver
configuration. For details, see Section 4.1.2, “Driver Configuration Page,” on page 24.

+ Ensure that the correct host name and port number of the connected system are specified in the
Driver Configuration Remote Loader connection parameters. You can change the port number
(default 8090) in usdrv.conf (Linux/UNIX) or wsdrv.conf (Windows).

A.2.6 Users or Groups Are Not Provisioned to the Connected
System

+ Examine the status log, DSTRACE output, trace file, and script output file.

+ To be provisioned, users and groups must be in the appropriate base container. You can view
and change the base containers in iManager on the Global Configuration Values page of the
Driver Edit Properties window. For more details, see Section 4.1.3, "Global Configuration
Values Page."

+ To provision identities from the Identity Vault to the connected system, the driver Data Flow
property must be set to Bidirectional or Identity Vault to Application. To change this value,
reimport the driver rules file over your existing driver.

¢ The user that the driver is security equivalent to must have rights to read information from the
base container. For details about the rights required, see Table 2-1 on page 17.

A.2.7 Users or Groups Are Not Provisioned to the Identity Vault

+ Examine the status log, DSTRACE output, and trace file.

+ Examine the User Base Container and Group Base Container GCV values. For more details,
Section 4.1.3, “Global Configuration Values Page,” on page 27.

+ To provision identities from the connected system to the Identity Vault, the driver Data Flow
property must be set to Bidirectional or Application to Identity Vault. To change this value,
reimport the driver rules file over your existing driver.

Troubleshooting

89

90

¢ The user that the driver is security equivalent to must have rights to update the base container.
For details about the rights required, see Table 2-1 on page 17.

A.2.8 Identity Vault User Passwords Are Not Provisioned to the
Connected System

+ Examine the status log, DSTRACE output, and script output file.

¢ There are several password management properties available in iManager on the Global
Configuration Values page of the Driver Edit Properties window. Ensure that the connected
system accepts passwords from the Identity Vault. To determine the right settings for your
environment, view the help for the options, or see the Novell Identity Manager 3
Administration Guide on the Identity Manager 3 Documentation Web site (http://
www.novell.com/documentation/idm/index.html).

+ Ensure that the user’s container has an assigned Universal Password policy and that the
Synchronize Distribution Password When Setting Universal Password GCV is set for this
policy.

A.2.9 Connected System User Passwords Are Not Provisioned
to the Identity Vault

+ Examine the status log, DSTRACE output, and the trace file.

¢ There are several password management properties available in iManager on the Global
Configuration Values page of the Driver Edit Properties window. Ensure that at least one of the
following options is set:

¢ The Identity Vault Accepts Passwords from the Connected System
¢ The Identity Vault Accepts Administrative Password Resets from the Connected System

¢ To determine the right settings for your environment, view the help for the options, or see
the Novell Identity Manager 3 Administration Guide on the Identity Manager 3
Documentation Web site (http://www.novell.com/documentation/idm/index.html).

¢ [fthe Require Password Policy Validation before Publishing Passwords GCV is set, the
user’s password must satisfy the password rules in the password policy assigned to the
user container.

A.2.10 Metadirectory Objects Are Not Modified, Deleted,
Renamed, or Moved

+ Examine the status log, DSTRACE output, trace file, and script output file.
+ Examine the driver Data Flow setting to verify the authoritative source for identities.

¢ Identity Vault and connected system identities must be associated before events are
synchronized. To view an identity’s associations, use Modify User/Group in iManager and
click the Identity Manager tab.

¢ Identity Vault move events can remove the identity from the base container monitored by the
driver to a container that is not monitored by the driver. This makes the move appear to be a
delete.

Identity Manager 3.5 Scripting Driver Implementation Guide

A.3 Shared Memory Errors (Linux/UNIX only)

Shared memory is used by the driver shim to safely and securely communicate with the scripts on
Linux and UNIX. If the system shared memory segments become unusable, you must shut down the
process and fix the shared memory segments.

Shared memory segments can become unusable on some UNIX systems if the driver shim is
improperly terminated without detaching from the segments. For information about how to properly
stop the driver shim, see Section 6.2, “Starting and Stopping the Driver Shim,” on page 79. You can
use the ipcs system tool to locate these segments and the ipcrm tool to manually clear them as shown
in the following example:

> ipcs -m

—————— Shared Memory Segments —--------

key shmid owner perms bytes nattch status
0x2a065bbd 1802241 root 600 16384 1

> ipcrm -m 1802241

The driver shim generates default segments of 16384 bytes with permissions at 600.

Troubleshooting 91

92 |dentity Manager 3.5 Scripting Driver Implementation Guide

System and Error Messages

The Identity Manager Driver for Scripting 3.5 writes messages to the system log to report
operational status and problems. For more information about the system log, see Section A.1.1,
“The System Log (Linux/UNIX only),” on page 85 For detailed troubleshooting information, see
Appendix A, “Troubleshooting,” on page 85.

B.1 CFG Messages

Messages beginning with CFG are issued by configuration file processing.

CFGO001E Could not open configuration file filename.
Explanation: Could not open the configuration file.
Possible Cause: The file does not exist.
Possible Cause: You don’t have permission to read the file.

Action: Ensure that the configuration file exists at the correct location and that you
have file system rights to read it.

CFGOO02E Error parsing configuration file line:

Explanation: The line is not formatted as a valid configuration statement and cannot be
parsed.

Possible Cause: A possible cause of the problem.

Action: Correct the line in the configuration file.

CFGO003W Configuration file line was ignored. No matching statement name found:
<configline>.

Explanation: This line is formatted as a valid configuration file statement, but the statement
is not recognized. The line is ignored.

Possible Cause: The statement is incorrectly typed or the statement name is used only in a
newer version of the software.

Action: Correct the statement.

CFGOO04E Error parsing configuration file line. No statement name was found:
<configLine>.

Explanation: Could not find a statement name on the configuration line.

Action: Correct the line in the configuration file to supply the required statement.

CFGOO0S5E A required statement statement_id is missing from the configuration file.

Explanation: The statement_id statement was not specified in the configuration file, but is
required for the application to start.

Possible Cause: A possible cause of the problem.

System and Error Messages

93

Action: Add the required statement to the configuration file.

B.2 CHGLOG Messages

Messages beginning with CHGLOG are issued by change log processing.

CHGLOGO000I nameversion Copyright 2005 Omnibond Systems, LLC.
ID=code_id_string.

Explanation: This message identifies the system component version.
Possible Cause: A possible cause of the problem.

Action: No action is required.

B.3 DOM Messages

Messages beginning with DOM are issued by driver components as they communicate among
themselves.

DOMO0001W XML parser error encountered: errorString.

Explanation: An error was detected while parsing an XML document.

Possible Cause: The XML document was incomplete, or it was not a properly constructed
XML document.

Action: See the error string for additional details about the error. Some errors, such as
no element found, can occur during normal operation and indicate that an
empty XML document was received.

B.4 DRVCOM Messages

Messages beginning with DRVCOM are issued by the include/exclude system.
DRVCOMO000I nameversion Copyright 2005 Omnibond Systems, LLC.
ID=code_id_string.

Explanation: This message identifies the system component version.

Action: No action is required.

DRVCOMO001W Invalid include/exclude CLASS statement.
Explanation: The include/exclude configuration file contains an invalid CLASS statement.

Action: Correct the include/exclude configuration file with proper syntax.

DRVCOMO002D An include/exclude Rule was added for class: class.
Explanation: The include/exclude configuration supplied a rule for the specified class.

Action: None.

94 |dentity Manager 3.5 Scripting Driver Implementation Guide

DRVCOMO003D An include/exclude Association Rule was added for association
association.

Explanation: The include/exclude configuration supplied an association rule for the
specified association.

Action: None.

B.5 HES Messages

Messages beginning with HES are issued by driver components as they use HTTP to communicate.

HESO001E Unable to initialize the HTTP client.
Explanation: Communications in the client could not be initialized.
Possible Cause: Memory is exhausted.

Action: Increase the amount of memory available to the process.

HES002I Connecting to host host_name on port port_number.
Explanation: The client is connecting to the specified server.

Action: None.

HES003W SSL communications have an incorrect certificate. rc = rc.
Explanation: The security certificate for SSL services could not be verified.
Possible Cause: The certificate files might be missing or invalid.

Action: Obtain a new certificate.

B.6 LWS Messages

Messages beginning with LWS are issued by the integrated HTTP server.

LWSO00011 Server has been initialized.
Explanation: The server has successfully completed its initialization phase.

Action: None. Informational only.

LWS0002I All services are now active.
Explanation: All of the services offered by the server are now active and ready for work.

Action: None. Informational only.

LWSO0003I Server shut down successfully.

Explanation: The server processing completed normally. The server ends with a return code
of 0.

Action: No action is required.

System and Error Messages

95

96

LWS0004W Server shut down with warnings.

Explanation: The server processing completed normally with at least one warning. The
server ends with a return code of 4.

Action: See the log for additional messages that describe the warning conditions.

LWSO0005E Server shut down with errors.

Explanation: The server processing ended with one or more errors. The server ends with a
return code of 8.

Action: See the log for additional messages that describe the error conditions.

LWS0006I Starting service.
Explanation: The server is starting the specified service.

Action: None. Informational only.

LWSO0007E Failed to start service.

Explanation: The server attempted to start the specified service, but the service could not
start. The server terminates processing.

Action: See the log for additional messages that describe the error condition.

LWS0008I Stopping all services.

Explanation: The server was requested to stop. All services are notified and will
subsequently end processing.

Action: None. Informational only.

B.7 NET Messages

Messages beginning with NET are issued by driver components during verification of SSL
certificates.

NETO001W Certificate verification failed. Result is resulit.

Explanation: A valid security certificate could not be obtained from the connection client.
Diagnostic information is given by result.

Possible Cause: A security certificate has not been obtained for the component.
Possible Cause: The security certificate has expired.
Possible Cause: The component certificate directory has been corrupted.

Action: Respond as indicated by result. Obtain a new certificate if appropriate.

B.8 NIX Messages (Linux/UNIX only)

Messages beginning with NIX are issued by the driver shim.

Identity Manager 3.5 Scripting Driver Implementation Guide

Explanation:

Action:

Explanation:

Possible Cause:
Possible Cause:
Possible Cause:

Action:

Explanation:

Possible Cause:
Possible Cause:

Possible Cause:

Possible Cause:

Possible Cause:

Possible Cause:

Possible Cause:

Possible Cause:
Action:

Action:

Action:

Action:

Action:

NIX000l nameversion Copyright 2005 Omnibond Systems, LLC. ID=code_id_string.

This message identifies the system component version.

No action is required.

NIX001S An error occurred attempting to attach the shared memory segment to an
address space (errno=errno).

The driver uses shared memory as the mechanism for providing information to
the scripts. An error occurred attempting to attach the shared memory to a
physical address for access.

The calling process has no access permissions for the requested attach type.
An invalid or non-page-aligned address was provided to the system routine.
Memory could not be allocated for the descriptor or for the page tables.

Restart the driver process and ensure that there are adequate memory
resources. Verify that the driver process is run as root and has permissions to
read its configuration files. Contact Novell® Support for additional
instructions if necessary.

NIX002S An error occurred while attempting to allocate a shared memory segment
(errno = errno).

The driver uses shared memory as the mechanism for providing information to
the scripts. An error occurred attempting to allocate a shared memory segment.

The memory size was too small or too large.
The system shared memory settings might not have adequate values

The memory segment could not be created because it already exists. This
could be caused by an abnormal termination of a previous driver process.

All possible shared memory IDs have been taken.

Allocating a segment of the requested size would cause the system to exceed
the system-wide limit on shared memory.

No shared memory segment exists for the given key.

The user or process does not have permission to access the shared memory
segment.

No memory could be allocated for segment overhead..
Restart the driver process and ensure that there is sufficient memory.

Verify that the driver process is run as root and has permissions to read its
configuration files.

Verify that the driver process is run as root and has permissions to read its
configuration files

If there are other applications on the server that use shared memory, ensure
that they are running, healthy, and do not conflict with the requirements for the
driver.

Contact Novell Support for additional instructions if necessary.

System and Error Messages

97

NIX003S An error occurred attempting to create a System V IPC key. The project
identifier pathname = pathname.

Explanation:

Possible Cause:
Action:

Action:

The driver uses shared memory as the mechanism for providing information to
the scripts. An error occurred attempting to create the key used to specify the

shared memory segment.

The project pathname is invalid or does not exist.

Restart the driver process.

Ensure that the file pathname is correct and that the process has adequate

permissions to read the path.

NIX004S An error occurred while writing data to shared memory (bytes = bytes,
allocationSize = allocationSize).

Explanation:

Possible Cause:

Action:

The driver uses shared memory as the mechanism for providing information to
the shell scripts. An error occurred while writing data from the driver process
into the shared memory segment.

Invalid memory resources or internal error.

Contact Novell Support.

NIX005S An error occurred attempting to set an environment variable.

Explanation:

Possible Cause:

Action:

The driver uses environment variables for some of the communication
between the driver and other processes called from the scripts. An error
occurred setting an environment variable.

There was not enough space to allocate the new environment.

Restart the driver and ensure that there are adequate memory resources for the
driver process.

NIX006S An error occurred attempting to execute the script [script].

Explanation:

Possible Cause:
Possible Cause:

Action:

The driver uses scripts to update the system for events from the Identity Vault.
An error occurred while attempting to execute one of these scripts.

The script does not exist on the local system.
A memory or environment allocation failure occurred.

Restart the driver and ensure that the script exists on the local system.

NIX007S An error occurred attempting to terminate the script [script].

Explanation:

Possible Cause:
Possible Cause:

Action:

The driver uses scripts to update the system for events from the Identity Vault.
An error occurred while attempting to terminate the script.

The script does not exist on the local system.
A memory or environment allocation failure occurred.

Restart the driver and ensure that the script exists on the local system.

98 Identity Manager 3.5 Scripting Driver Implementation Guide

NIX008S The shared memory tool was unable to retrieve a key from the environment.

Explanation: The shared memory tool uses an environment variable to retrieve the key used
to unlock the shared memory region and access driver shim data. The tool
could not obtain the key from the environment.

Possible Cause: The driver shim cannot set environment variables, or the environment has
become corrupt during event processing.

Action: Restart the driver shim process and clear any residual shared memory
segments.Action:

B.9 OAP Messages

Messages beginning with OAP are issued by driver components while communicating among
themselves.

OAPOO01E Error in SSL configuration. Verify system entropy.
Explanation: Entropy could not be obtained for SSL.
Possible Cause: A source of entropy is not configured for the system.

Action: Obtain and configure a source of entropy for the system.

OAPOO2E Error in SSL connect. Network address does not match certificate.

Explanation: The SSL client could not trust the SSL server it connected to, because the
address of the server did not match the DNS name or IP address that was found
in the certificate for the server

Possible Cause: The appropriate credentials are missing from the configuration.

Action: Ifyou cannot resolve the error, collect diagnostic information and call Novell
Support.

OAPOO3E Error in SSL connect. Verify address and port.
Explanation: A TCP/IP connection could not be made.
Possible Cause: The server is not running.

Possible Cause: The configuration information does not specify the correct network address or
port number.

Action: Verify that the server is running properly.

OAPOO4E HTTP Error: cause.
Explanation: The username or password provided failed basic authentication.
Possible Cause: The username or password is incorrect.

Action: Verify that username is in full context (cn=user,ou=ctx,0=0rg or user.ctx.org)
and that the password was correctly typed.

System and Error Messages

99

OAPOO5E HTTP Error: Internal Server Error.

Explanation: The server experienced an internal error that prevents the request from being
processed.

Possible Cause: A secure LDAP server is not available.
Action: Ensure that the LDAP server is available.

Action: Ensure that the LDAP host and port are configured correctly.

B.10 RDXML Messages

Messages beginning with RDXML are issued by the embedded Remote Loader.

RDXMLO000I nameversion Copyright 2005 Omnibond Systems, LLC.
ID=code_id_string.

Explanation: This message identifies the system component version.

Action: No action is required.

RDXMLO001I Client connection established.

Explanation: A client has connected to the driver. This can be the Metadirectory engine
connecting to process events to and from the driver, or a Web-based request to
view information or publish changes through the SOAP mechanism.

Action: No action required.

RDXML002I Request issued to start Driver Shim.

Explanation: The driver received a command to start the driver shim and begin processing
events.

Action: No action required.

RDXMLOO3E An unrecognized command was issued. The driver shim is shutting
down.

Explanation: The driver received an unrecognized command from the Metadirectory engine.
The driver shim is shutting down to avoid further errors.

Possible Cause: Network error.
Possible Cause: Invalid data sent to the driver.

Possible Cause: The Metadirectory engine version might have been updated with new
commands that are unrecognized by this version of the driver.

Possible Cause: This message is logged when the driver shim process is shut down from the
connected system rather than from a Driver object request. The local system
can queue an invalid command to the driver shim to simulate a shutdown
request and terminate the running process.

Action: Ensure that the network connection is secured and working properly.

Action: Apply updates for the engine or driver if necessary.

100 Identity Manager 3.5 Scripting Driver Implementation Guide

Action: If the driver shim process was shut down from the local system, no action is
required.

RDXMLO004I Client Disconnected.

Explanation: A client has disconnected from the driver. This might be the Metadirectory
engine disconnecting after a driver shutdown request or a Web-based request
that has ended.

Action: No action required.

RDXMLO05W Unable to establish client connection.
Explanation: A client attempted to connect to the driver, but was disconnected prematurely.
Possible Cause: The client is not running in SSL mode.
Possible Cause: Mismatched SSL versions or mismatched certificate authorities.

Possible Cause: Problems initializing SSL libraries because of improperly configured system
entropy settings.

Action: Ensure that both the Metadirectory engine and the driver are running in the
same mode: either clear text mode or SSL mode.

Action: Ifyou are using SSL, ensure that the driver and Metadirectory engine have
properly configured certificates, and that the driver system is configured
properly for entropy.

RDXMLOOGE Error in Remote Loader Handshake.

Explanation: The Metadirectory engine attempted to connect to the driver, but the
authorization process failed. Authorization requires that both supply mutually
acceptable passwords. Passwords are configured at installation.

Possible Cause: The Remote Loader or Driver object passwords do not match.

Action: Set the Remote Loader and Driver object passwords to the same value for both
the driver and the driver shim. Use iManager to modify the driver properties.
Re-configure the driver shim on the connected system.

RDXMLO007I1 Driver Shim has successfully started and is ready to process events.

Explanation: The Metadirectory engine has requested the driver to start the shim for event
processing, and the driver shim has successfully started.

Action: No action required.

RDXMLO08W Unable to establish client connection from remoteName.
Explanation: A client attempted to connect to the driver, but was disconnected prematurely.
Possible Cause: The client is not running in SSL mode.
Possible Cause: Mismatched SSL versions or mismatched certificate authorities.

Possible Cause: Problems initializing SSL libraries because of improperly configured system
entropy settings.

System and Error Messages

101

Action: Ensure that both the Metadirectory engine and the driver are running in the
same mode: either clear text mode or SSL mode.

Action: If you are using SSL, ensure that the driver and Metadirectory engine have
properly configured certificates, and that the driver system is configured
properly for entropy.

RDXMLO009I Client connection established from remoteName.

Explanation: A client has connected to the driver. This can be the Metadirectory engine
connecting to process events to and from the driver, or a Web-based request to
view information or publish changes through the SOAP mechanism.

Action: No action required.

102 Identity Manager 3.5 Scripting Driver Implementation Guide

IDMLib Reference

The Identity Manager Driver for Scripting 3.5 provides an API library for accessing and updating
data to and from the driver shim during event subscription and publication.

C.1 UNIX Shell (idmlib.sh) Reference

The scripts are written for the Linux and UNIX Bourne Shell. They are located in the scripts folder
below the folder where the driver was installed (/opt/novell/usdrv/ by default).

Subscriber events are submitted to subscriber.sh, which then calls the script for the event. Modify
the shell script file corresponding to the event type: add. sh, modify.sh, modify-
password.sh,delete.sh,move.sh, rename.sh. Queries of the external system should be
handled in query.sh.

The Publisher calls po11. sh periodically. The frequency of the poll is determined by the Polling
Interval driver parameter (60 seconds by default). Edit po11 . sh to allow the driver to respond to
events in the external account management system.

The Publisher calls heartbeat . sh periodically to determine whether the external account
management system is responding correctly.

The built-in functions below are defined in idmlib. sh.

C.1.1 General Functions

¢+ “IDMGETDRVVAR ParamName” on page 103
+ “IDMTRACE Message” on page 103

¢+ “EXEC Command” on page 104

¢ “STATUS Level Message” on page 104

* “STATUS SUCCESS Message” on page 104

+ “STATUS WARNING Message” on page 104
¢ “STATUS RETRY Message” on page 104

¢+ “STATUS ERROR Message” on page 104

+ “STATUS FATAL Message” on page 104

IDMGETDRVVAR ParamName

Returns the string value for the Driver parameter specified by the string ParamName.

IDMTRACE Message

Appends the specified message to the user-defined trace file.

IDMLib Reference 103

EXEC Command

Executes an external program using the specified command line, and returns its numerical exit code
on completion.

STATUS Level Message

Sends a status document with given level and message to return to the Identity Manager engine
when the script completes.

The status document as seen by the engine looks like the following:
<status level="success">This is a message</status>

STATUS_SUCCESS Message

Sends a status document with a success level and message to return to the Identity Manager engine
when the script completes.

STATUS_WARNING Message

Sends a status document with a warning level and message to return to the Identity Manager engine
when the script completes.

STATUS_RETRY Message

Sends a status document with a retry level and message to return to the Identity Manager engine
when the script completes.

STATUS_ERROR Message

Sends a status document with a error level and message to return to the Identity Manager engine
when the script completes.

STATUS_FATAL Message

Sends a status document with a fatal level and message to return to the Identity Manager engine
when the script completes.

C.1.2 Subscriber Functions

+ “IDMGETSUBVAR ParamName” on page 104
+ “IDMGETVAR Name” on page 104
+ “IDMSETVAR Name Value” on page 105

IDMGETSUBVAR ParamName

Returns the string value for the Subscriber parameter specified by the string ParamName.

IDMGETVAR Name

Returns a string value for the item specified by Name through standard output. If no values exist,
Empty is returned. If the value is multi-valued, each value will be separated by a newline character.

104 Identity Manager 3.5 Scripting Driver Implementation Guide

IDMSETVAR Name Value

Sets a single string value for the item specified by Name to be returned to the driver engine.

C.1.3 Publisher Functions

+ “IDMGETPUBVAR ParamName” on page 105

IDMGETPUBVAR ParamName

Returns the string value for the Publisher parameter specified by the string ParamName.

C.1.4 Query Functions

+ “IDMQUERY ClassName Association ReadAttrs” on page 105
+ “IDMGETQVAR ParamName” on page 105

IDMQUERY ClassName Association ReadAttrs

Performs a query to the engine with the given ClassName, Association and ReadAttrs

IDMGETQVAR ParamName

Retrieves a string value for the query result item, specified by Name, through standard output. If no
values exist, Empty is returned. If the value is multi-valued, each value is separated by a newline
character.

C.1.5 Heartbeat Functions

¢ “HEARTBEAT SUCCESS Message” on page 105
¢+ “HEARTBEAT ERROR Message” on page 105
¢+ “HEARTBEAT WARNING Message” on page 105

HEARTBEAT_SUCCESS Message

Use these functions in the heartbeat . sh script to indicate the status of the external application.
Heartbeat documents are sent to the engine in following format:

<status level="success" type="heartbeat">This is a heartbeat
message</status>

HEARTBEAT_ERROR Message

Use these functions in the heartbeat .sh script to indicate the status of the external application.
Heartbeat documents are sent to the engine in following format:

<status level="success" type="heartbeat">This is a heartbeat
message</status>

HEARTBEAT_WARNING Message

Use these functions in the heartbeat . sh script to indicate the status of the external application.
Heartbeat documents are sent to the engine in following format:

IDMLib Reference

105

<status level="success" type="heartbeat">This is a heartbeat
message</status>

C.2 Perl (IDMLib.pm) Reference

These scripts are written for the Linux and UNIX Perl interpreter. They are located in the scripts
folder below the folder where the driver was installed (/opt/novell/usdrv/ by default).

Subscriber events are submitted to subscriber.pl, which then calls the script for the event.
Modify the Perl script file corresponding to the event type: add.pl, modify.pl, modify-
password.pl, delete.pl, move.pl, rename.pl. Queries of the external system
should be handled in query.pl.

The Publisher calls pol1.pl periodically. The frequency of the poll is determined by the Polling
Interval driver parameter (60 seconds by default). Edit pol11.p1 to allow the driver to respond to
events in the external account management system.

The Publisher calls heartbeat .pl periodically to determine whether the external account
management system is responding correctly.

The built-in functions below are defined in IDMLib . pm.

C.2.1 General Functions

* “idmgetvar($ParamName)” on page 106

+ “idmtrace($Message)” on page 106

+ “exec($Command)” on page 106

+ “status($Level, $Message)” on page 107

* “status_success($Message)” on page 107
+ “status_warning($Message)” on page 107
+ “status_retry($Message)” on page 107

+ “status_error($Message)” on page 107

* “status_fatal($Message)” on page 107

idmgetvar($ParamName)

Returns the string value for the Driver parameter specified by the string ParamName.

idmtrace($Message)

Appends the specified message to the user-defined trace file.

exec($Command)

Executes an external program using the specified command line, and returns its numerical exit code
on completion.

106 Identity Manager 3.5 Scripting Driver Implementation Guide

status($Level, $Message)

Sends a status document with given level and message to return to the Identity Manager engine
when the script completes.

The status document as seen by the engine looks like the following:
<status level="success">This is a message</status>

status_success($Message)

Sends a status document with a success level and message to return to the Identity Manager engine
when the script completes.

status_warning($Message)

Sends a status document with a warning level and message to return to the Identity Manager engine
when the script completes.

status_retry($Message)

Sends a status document with a retry level and message to return to the Identity Manager engine
when the script completes.

status_error($Message)

Sends a status document with a error level and message to return to the Identity Manager engine
when the script completes.

status_fatal($Message)

Sends a status document with a fatal level and message to return to the Identity Manager engine
when the script completes.

C.2.2 Subscriber Functions

+ “idmgetsubvar($ParamName)” on page 107

+ “idmgetvar($Name)” on page 107

+ “idmsetvar($Name, $Value)” on page 107
idmgetsubvar($ParamName)

Returns the string value for the Subscriber parameter specified by the string ParamName.

idmgetvar($Name)

Returns a string value for the item specified by Name through standard output. If no values exist,
Empty is returned. If the value is multi-valued, each value is separated by a newline character.

idmsetvar($Name, $Value)

Sets a single string value for the item specified by Name to be returned to the driver engine.

IDMLib Reference

107

C.2.3 Publisher Functions

+ “idmgetpubvar($ParamName)” on page 108

idmgetpubvar($ParamName)

Returns the string value for the Publisher parameter specified by the string ParamName.

C.2.4 Query Functions

+ “idmquery($ClassName, $Association, $ReadAttrs)” on page 108
+ “idmgetqva($ParamName)” on page 108

idmquery($ClassName, $Association, $ReadAttrs)

Performs a query to the engine with the given ClassName, Association and ReadAttrs

idmgetqva($ParamName)

Retrieves a string value for the query result item, specified by Name, through standard output. If no
values exist, Empty is returned. If the value is multi-valued, each value is separated by a newline
character.

C.2.5 Heartbeat Functions

* “heartbeat_success($Message)” on page 108
* “heartbeat_error($Message)” on page 108
¢ “heartbeat warning($Message)” on page 108

heartbeat_success($Message)

Use these functions in the heartbeat . sh script to indicate the status of the external application.
Heartbeat documents are sent to the engine in following format:

<status level="success" type="heartbeat">This is a heartbeat
message</status>

heartbeat_error($Message)

Use these functions in the heartbeat.sh script to indicate the status of the external application.
Heartbeat documents are sent to the engine in following format:

<status level="success" type="heartbeat">This is a heartbeat
message</status>

heartbeat_warning($Message)

Use these functions in the heartbeat . sh script to indicate the status of the external application.
Heartbeat documents are sent to the engine in following format:

<status level="success" type="heartbeat">This is a heartbeat
message</status>

108 Identity Manager 3.5 Scripting Driver Implementation Guide

C.3 Microsoft VBScript (IDMLib.vbs) Reference

The scripts are written using Microsoft VBScript. They are located in the scripts folder below the
folder where the driver was installed (C: \Program Files\Novell\WSDriver by default).

Subscriber events are submitted to Subscriber.wsf, which then calls the script for the event.
Modify the VBS file corresponding to the event type: Add.vbs, Modify.vbs,
ModifyPassword.vbs, Delete.vbs, Move.vbs, Rename . vbs. Queries of the external
system should be handled in Query.vbs.

The Publisher calls Po11.wsf periodically. The frequency of the poll is determined by the Polling
Interval driver parameter (60 seconds by default). Edit Po11 .wsf to allow the driver to respond to
events in the external account management system.

The Publisher calls Heartbeat .wsf periodically to determine whether the external account
management system is responding correctly.

The built-in functions below are defined in IDMLib.vbs.

*

*

*

*

*

Section C.3.1, “General Functions,” on page 109
Section C.3.2, “Subscriber Functions,” on page 110
Section C.3.3, “Publisher Functions,” on page 111
Section C.3.4, “Query Functions,” on page 112

Section C.3.5, “Heartbeat Functions,” on page 114

C.3.1 General Functions

*

*

*

*

“Function IDMGetDriverParam(ParamName)” on page 109
“Sub IDMTrace Message” on page 109

“Function IDMExecute(Command)” on page 110
“Function IDMExecutelO(Command, Input)” on page 110
“Sub IDMStatus(Level, Message)” on page 110

“Sub IDMStatusSuccess(Message)” on page 110

“Sub IDMStatusWarning(Message)” on page 110

“Sub IDMStatusRetry(Message)” on page 110

“Sub IDMStatusError(Message)” on page 110

“Sub IDMStatusFatal(Message)” on page 110

Function IDMGetDriverParam(ParamName)

Returns the string value for the Driver parameter specified by the string ParamName.

Sub IDMTrace Message

Appends the specified message to the user-defined trace file.

IDMLib Reference 109

Function IDMExecute(Command)

Executes an external program using the specified command line, and returns its numerical exit code
on completion.

Function IDMExecutelO(Command, Input)

Executes an external program using the specified command line, submits the strings from array
Input on standard input, and returns output from standard output and standard error as an array. You
may specify Empty for the Input parameter. The function returns when the program completes. The
first element of the returned array is the program exit code. Subsequent elements (if any) are strings,
one for each line that was output to standard output and standard error.

Sub IDMStatus(Level, Message)

Set the status level and message to return to the Identity Manager engine when the script completes.

Sub IDMStatusSuccess(Message)

Set the status level and message to return to the Identity Manager engine when the script completes.

Sub IDMStatusWarning(Message)

Set the status level and message to return to the Identity Manager engine when the script completes.

Sub IDMStatusRetry(Message)

Set the status level and message to return to the Identity Manager engine when the script completes.

Sub IDMStatusError(Message)

Set the status level and message to return to the Identity Manager engine when the script completes.

Sub IDMStatusFatal(Message)

Set the status level and message to return to the Identity Manager engine when the script completes.

C.3.2 Subscriber Functions

¢ “Function IDMGetSubscriberParam(ParamName)” on page 111
¢ “Sub IDMSetCommand(Command)” on page 111

¢ “Function IDMGetEventValueCount(Name)” on page 111

¢ “Function IDMGetEventValues(Name)” on page 111

¢ “Function IDMGetEventValue(Name)” on page 111

¢ “Sub IDMWriteValue(Name, Value)” on page 111

¢ “Sub IDMWriteValues(Name, Values)” on page 111

¢ “Function IDMSubGetNamedPassword(Name)” on page 111

110 Identity Manager 3.5 Scripting Driver Implementation Guide

Function IDMGetSubscriberParam(ParamName)

Returns the string value for the Subscriber parameter specified by the string ParamName.

Sub IDMSetCommand(Command)

Sets the command that the Subscriber return to the Identity Manager engine. This function must be
called before using IDMWriteValue functions. If only a status needs to be returned, use one of the
IDMStatus functions (see above).

Function IDMGetEventValueCount(Name)

Returns the number of values for the item specified by Name. (Items include event information and
attribute changes.)

Function IDMGetEventValues(Name)

Returns an array of string values for the item specified by Name. If no values exist, Empty is
returned.

Function IDMGetEventValue(Name)

Returns the string value for the item specified by Name. If multiple values exist for the item, it
returns the first value. If no values exist, Empty is returned.

Sub IDMWriteValue(Name, Value)

Sets a single string value for the item specified by Name to be returned to the driver engine when the
script completes. You must call IDMSetCommand or one of the IDMStatus functions before calling
this function.

Sub IDMWriteValues(Name, Values)

Sets an array of string values for the item specified by Name to be returned to the driver engine
when the script completes. You must call IDMSetCommand or one of the IDMStatus functions
before calling this function.

Function IDMSubGetNamedPassword(Name)

Returns a named password specifed by Name from the Identity Manager engine. The value Empty is
returned if no such password exists.

C.3.3 Publisher Functions

+ “Function IDMGetPublisherParam(ParamName)” on page 112
¢ “Sub IDMPublishInit(Command)” on page 112

¢ “Sub IDMPublishValue(Name, Value)” on page 112

¢ “Sub IDMPublishValues(Name, Values)” on page 112

¢ “Function IDMPublish” on page 112

¢ “Function IDMPubGetNamedPassword(Name)” on page 112

IDMLib Reference

111

Function IDMGetPublisherParam(ParamName)

Returns the string value for the Publisher parameter specified by the string ParamName.

Sub IDMPublishlnit(Command)

Sets the Publisher command specified by Command to return to the driver engine when IDMPublish
is called.

Sub IDMPublishValue(Name, Value)

Sets a single string value for the item specified by Name to be returned to the driver engine when
IDMPublish is called.

Sub IDMPublishValues(Name, Values)

Sets an array of string values for the item specified by Name to be returned to the driver engine
when IDMPublish is called.

Function IDMPublish

Submit the command and item values specified above to the driver engine for Publication to the
identity vault.

Function IDMPubGetNamedPassword(Name)

Returns a named password specified by Name from the Identity Manager engine. The value Empty
is returned if no such password exists.

C.3.4 Query Functions

¢ “Sub IDMQuerylnit” on page 113

+ “Sub IDMQuerySetAssociation(Association)” on page 113

+ “Sub IDMQuerySetSearchRoot(SearchRoot)” on page 113

¢ “Sub IDMQueryAddSearchAttr(Name, Value)” on page 113

¢ “Sub IDMQueryAddReadAttr(Name)” on page 113

¢ “Sub IDMQuerySetReadParent(ReadParent)” on page 113

¢ “Function IDMQuery” on page 113

¢ “Function IDMGetQuerylnstanceAssociation” on page 113

¢ “Function IDMGetQueryInstanceDN” on page 113

+ “Function IDMGetQueryInstanceClass” on page 113

+ “Function IDMGetQueryInstanceParentAssociation” on page 113

¢ “Function IDMGetQueryInstanceParentDN” on page 113

¢ “Function IDMGetQueryInstanceAttrNames” on page 114

¢ “Function IDMGetQueryInstanceAttrCount” on page 114

+ “Function IDMGetQueryInstanceAttrValues(AttrName)” on page 114
+ “Function IDMGetQueryInstanceAttrValue(AttrName)” on page 114

112 Identity Manager 3.5 Scripting Driver Implementation Guide

Sub IDMQuerylnit

Initializes a query to be submitted to the identity vault with the IDMQuery call. NOTE: Currently
only queries that query a single object are supported.

Sub IDMQuerySetAssociation(Association)

Specifies the association of the identity vault object to query.

Sub IDMQuerySetSearchRoot(SearchRoot)

Specifies the DN of the identity vault object to query. Either the object’s association or DN must be
specified. If both are specified, the association value is used by the Identity Manager engine.

Sub IDMQueryAddSearchAttr(Name, Value)

Specifies a search condition to be used for the query, of the form Name=Value. Name specifies an
attribute, and Value specifies a value it must match. The query will return only objects matching all
specified conditions.

Sub IDMQueryAddReadAttr(Name)

Specifies an attribute name whose values should be returned by the query. By default, all attributes
are returned.

Sub IDMQuerySetReadParent(ReadParent)

Specifies whether the association and DN of the parent of the queried object should be returned
(ReadParent is boolean). The default is False.

Function IDMQuery

Executes the query with the parameters specified by IDMQuerySetXXX calls. The function returns
True if an object (called an instance) is returned.

Function IDMGetQuerylnstanceAssociation

Returns the association for the returned instance.

Function IDMGetQuerylnstanceDN

Returns the DN for the returned instance. The DN is in slash format, such as \ACME\Users\Bob.

Function IDMGetQuerylnstanceClass

Returns the class name for the returned instance.

Function IDMGetQuerylnstanceParentAssociation

Returns the association for instance’s parent object, if the ReadParent flag was specified.

Function IDMGetQuerylnstanceParentDN

Returns the DN for instance’s parent object, if the ReadParent flag was specified.

IDMLib Reference 113

Function IDMGetQuerylnstanceAttrNames

Returns an array containing the names of the attributes retrieved for the instance. Returns Empty if
no attributes were retrieved.

Function IDMGetQuerylnstanceAttrCount

Returns the number of attributes retrieved for the instance.

Function IDMGetQuerylnstanceAttrValues(AttrName)

Returns an array of values for the attribute with the specified AttrName. Returns Empty if no values
are available.

Function IDMGetQuerylnstanceAttrValue(AttrName)

Returns a string value for the attribute with the specified AttrName. If multiple values are available
for the attribute, the first one is returned. If no values are available, Empty is returned.

C.3.5 Heartbeat Functions

¢ “Sub IDMHeartbeatSuccess(Message)” on page 114
¢ “Sub IDMHeartbeatError(Message)” on page 114
¢ “Sub IDMHeartbeatWarning(Message)” on page 114

Sub IDMHeartbeatSuccess(Message)

Use these functions in the heartbeat.wsf script to indicate the status of the external application.

Sub IDMHeartbeatError(Message)

Use these functions in the heartbeat .wsf script to indicate the status of the external application.

Sub IDMHeartbeatWarning(Message)

Use these functions in the heartbeat . wsf script to indicate the status of the external application.

114 Identity Manager 3.5 Scripting Driver Implementation Guide

Technical Details

*

Section D.1, “Using the usdrv-config Command (Linux/UNIX only),” on page 115

*

Section D.2, “Driver Shim Command Line Options,” on page 116

*

Section D.3, “Publisher Channel Limitations,” on page 117

*

Section D.4, “Files and Directories Modified by Installing the Driver Shim,” on page 117

D.1 Using the usdrv-config Command (Linux/
UNIX only)

You canuse /usr/sbin/usdrv-config to change the driver shim configuration. When you run
this command, you are prompted for the function to perform.

> usdrv-config

Which configuration do you want to perform?

1) Set the Remote Loader and Driver object passwords
2) Configure the driver for Secure Sockets Layer (SSL)
Select one configuration option [g/?]:

Enter the number of the function you want to configure, then respond to the prompts.

D.1.1 Setting the Remote Loader and Driver Object Passwords

The usdrv-config command prompts you to enter and confirm the Remote Loader password
and the Driver object password.

Enter Remote Loader password:
Confirm Remote Loader password:
Enter Driver object password:
Confirm Driver object password:

The Remote Loader password is used by the Metadirectory engine to authenticate itself to the driver
shim (embedded Remote Loader). The Driver object password is used by the driver shim to
authenticate itself to the Metadirectory engine.

The Remote Loader and Driver object passwords set by usdrv-config are stored on the connected
system. The Remote Loader and Driver object passwords set for the driver using iManager are
stored in the Identity Vault. Each password on the connected system must exactly match its
counterpart in the Identity vault.

To change the passwords after driver installation:

In iManager, navigate to the Driver Overview for the driver.
Click the driver icon.

Specify the Driver object password.

A WODN =

Specify the Remote Loader password.

The Remote Loader password is below the Authentication heading.

Technical Details 115

5 Click Apply.
6 Restart the driver.

D.1.2 Configuring the Driver for SSL

The usdrv-config command prompts you to enter the LDAP server host address and port, then
displays the Certificate Authority for that server and asks you if you accept it.

You are about to connect to the eDirectory LDAP server to retrieve
the eDirectory Tree Trusted Root public certificate.

Enter the LDAP Server Host Address [localhost]: sr.digitalairlines.com
Enter the LDAP Server Port [636]:

Certificate Authority:

Subject: ou=0Organizational CA, o=TREENAME
Not Before: 200703211448457%7
Not After: 201703211448457%7

Do you accept the Certificate Authority? (Y/N) y

Enter the host name or IP address and TCP port number of an LDAP server for your Identity Vault.
The LDAP server must be configured for SSL, and it must be listening on the SSL port. The default
SSL port is 636.

The driver shim connects to the specified server and displays information about the Certificate
Authority. If you accept the Certificate Authority, the driver shim saves it to the local file system.

If you do not have LDAP configured for SSL, you can use a manual process to configure the driver
for SSL. For details, see Section A.2.3, "Driver Certificate Setup Failure."

D.2 Driver Shim Command Line Options

The following options can be specified on the driver shim (usdrv on Linux and UNIX, wsdriver on
Windows) command line. You can also specify driver shim command line options as driver shim
configuration file statements. For details about the driver shim configuration file, see Section 4.2,
“The Driver Shim Configuration File,” on page 29.

D.2.1 Options Used to Set Up Driver Shim SSL Certificates

The following command line options are used to set up the driver shim SSL certificates:

Table D-1 Driver Shim Command Line Options for Setting Up SSL Certificates

Option (Short and Long Forms) Description

-s Secures the driver by creating SSL certificates,
then exits.

-secure

-p Specifies the Remote Loader password

-password

116 Identity Manager 3.5 Scripting Driver Implementation Guide

D.2.2 Other Options

Table D-2 Other Driver Shim Command Line Options

Option (Short and Long Forms)

Description

-c <congFile>

-config <configFile>

-sp [remoteLoaderPassword
driverObjectPassword]

-setpassword [remoteLoaderPassword
driverObjectPassword]

-installService

-removeService

-?
-help
-v

-version

Instructs the driver shim to read options from the
specified configuration file. Options are read from
conf/usdrv.conf (Linux/UNIX) or
conf\wsdrv.conf (Windows) by default.

Sets the Remote Loader and driver object
passwords to the passwords specified on the
command line, then stops the driver shim. If the
passwords are omitted, the driver shim prompts for
the passwords.

Creates a Windows service for the driver shim
called Novell IDM Windows Script Driver (Windows
only).

Removes the Windows service Novell IDM
Windows Script Driver (Windows only).

Displays the command line options, then exits.

Displays the driver shim version and build date,
then exits.

D.3 Publisher Channel Limitations

The Publisher channel generates events based on modifications that are discovered by polling.

Because events are interpreted after they have occurred, some assumptions must be made. This can
lead to unexpected results under certain circumstances.

For example, a user might be renamed on the connected system. If the user’s UID is not changed, the
polling script can determine that the event is a rename, not a delete followed by an add. However, if
a user is renamed and its UID is changed, the polling script must assume that this is a delete
followed by an add.

You can modify the polling script to provide a more accurate approach using additional contextual
clues that are specific to your particular environment. For example, you might modify the polling
script behavior to additionally look at other fields to decide whether a user has been deleted or
simply renamed. Preserving the user’s identity might be essential to preserving the appropriate
rights and resources to another connected system. For detailed information about customizing
scripts, see Chapter 5, “Customizing the Scripting Driver,” on page 31.

D.4 Files and Directories Modified by Installing
the Driver Shim

¢ Section D.4.1, “Driver Shim Directory,” on page 118

Technical Details

117

*

Section D.4.2, “/usr/sbin Files (Linux/UNIX only),” on page 118
Section D.4.3, “init.d Files (Linux/UNIX only),” on page 118
Section D.4.4, “Man Pages (Linux/UNIX only),” on page 118

*

*

*

Section D.4.5, “Driver Shim Configuration File,” on page 119

*

Section D.4.6, “Windows Support Files (Windows only),” on page 119

D.4.1 Driver Shim Directory

When you install the driver, the /opt/novell/usdrv or C:\Program
Files\Novell\WSDriver directory is created and populated with driver-related files and
subdirectories.

D.4.2 /usr/sbin Files (Linux/UNIX only)

The following commands are added to /usr/sbin:

Table D-3 Driver Commands Placed in /usr/sbin

Command Function
usdrv-uninstall Uninstalls the Scripting driver
usdrv-config Updates the configuration

D.4.3 init.d Files (Linux/UNIX only)

Commands to start, stop, and display the status of the driver are added to the appropriate file for the
connected system operating system.

Table D-4 Commands for Starting, Stopping, and Displaying the Status of the Driver Shim

Operating System Command

AIX letc/rc.d/init.d/usdrvd
HP-UX /sbin/init.d/usdrvd
Linux /etc/init.d/usdrvd
Solaris /etc/init.d/usdrvd

D.4.4 Man Pages (Linux/UNIX only)

The installation process adds man pages for the driver shim, change log update command, and
shared memory tool to /usr/man.

118 Identity Manager 3.5 Scripting Driver Implementation Guide

D.4.5 Driver Shim Configuration File

The installation program places a default driver shim configuration file at /etc/usdrv.conf on
Linux and UNIX. On Windows, this file is wsdrv. conf in the conf directory in the installation
directory.

D.4.6 Windows Support Files (Windows only)

Support files such as DLLs for the Visual C++ runtime are installed on Windows systems in the
WinSxS directory (usually C: \Windows\WinSxS). If the driver shim is uninstalled, these files
are removed.

Technical Details 119

	Identity Manager 3.5 Scripting Driver Implementation Guide
	About This Guide
	1 Overview
	1.1 Driver Architecture
	1.1.1 Publisher Channel
	1.1.2 Subscriber Channel
	1.1.3 Scriptable Framework
	1.1.4 Schema File
	1.1.5 Include/Exclude File
	1.1.6 Loopback State Files

	1.2 Configuration Overview
	1.2.1 Data Flow
	1.2.2 Policies

	2 Planning for the Scripting Driver
	2.1 Prerequisites for Linux and UNIX Scripting
	2.1.1 Identity Vault Server Requirements
	2.1.2 Operating System Requirements
	2.1.3 Other Software

	2.2 Prerequisites for Windows Scripting
	2.2.1 Identity Vault Server Requirements
	2.2.2 Operating System Requirements
	2.2.3 Other Software

	2.3 Establishing a Security-Equivalent User

	3 Installing the Scripting Driver
	3.1 Installing the Linux and UNIX Scripting Driver
	3.1.1 Installing the Linux and UNIX Scripting Driver Shim
	3.1.2 Creating the Driver in Novell eDirectory using iManager
	3.1.3 Running the Driver

	3.2 Installing the Windows Scripting Driver
	3.2.1 Installing the Driver Shim
	3.2.2 Creating the Driver in Novell eDirectory
	3.2.3 Running the Driver

	4 Configuring the Scripting Driver
	4.1 Driver Parameters and Global Configuration Values
	4.1.1 Properties That Can Be Set Only During Driver Import
	4.1.2 Driver Configuration Page
	4.1.3 Global Configuration Values Page

	4.2 The Driver Shim Configuration File

	5 Customizing the Scripting Driver
	5.1 Scripting Driver Data Definition
	5.1.1 Defining Data Classes and Attributes
	5.1.2 Associating Identity Vault and Application Classes and Attributes
	5.1.3 Defining an Association Rule
	5.1.4 Defining Excluded Identities
	5.1.5 Defining Relevant Events

	5.2 The Connected System Schema File
	5.2.1 Schema File Syntax

	5.3 The Connected System Include/Exclude File
	5.3.1 Include/Exclude Processing
	5.3.2 Include/Exclude File Syntax
	5.3.3 Example Include/Exclude Files

	5.4 Managing Additional Attributes
	5.4.1 Modifying the Filter
	5.4.2 Modifying the Scripts for New Attributes

	5.5 UNIX Shell Developer Guide
	5.5.1 Application Tools Evaluation
	5.5.2 Policy and Script Development
	5.5.3 Deployment

	5.6 Perl Developer Guide
	5.6.1 Application Tools Evaluation
	5.6.2 Policy and Script Development
	5.6.3 Deployment

	5.7 Microsoft VBScript Developer Guide
	5.7.1 Application Tools Evaluation
	5.7.2 Policy and Script Development
	5.7.3 Deployment
	5.7.4 Using an Alternate Scripting Language

	6 Using the Scripting Driver
	6.1 Starting and Stopping the Driver
	6.2 Starting and Stopping the Driver Shim
	6.3 Displaying Driver Shim Status
	6.4 Monitoring Driver Messages

	7 Securing the Scripting Driver
	7.1 Using SSL
	7.2 Physical Security
	7.3 Network Security
	7.4 Auditing
	7.5 Driver Security Certificates
	7.6 Driver Shell Scripts
	7.7 The Change Log
	7.8 Driver Passwords
	7.9 Driver Code
	7.10 Administrative Users
	7.11 Connected Systems

	A Troubleshooting
	A.1 Driver Status and Diagnostic Files
	A.1.1 The System Log (Linux/UNIX only)
	A.1.2 The Trace File
	A.1.3 The Script Output File
	A.1.4 DSTRACE
	A.1.5 The Status Log

	A.2 Troubleshooting Common Problems
	A.2.1 Driver Shim Installation Failure
	A.2.2 Driver Rules Installation Failure
	A.2.3 Driver Certificate Setup Failure
	A.2.4 Driver Start Failure
	A.2.5 Driver Shim Startup or Communication Failure
	A.2.6 Users or Groups Are Not Provisioned to the Connected System
	A.2.7 Users or Groups Are Not Provisioned to the Identity Vault
	A.2.8 Identity Vault User Passwords Are Not Provisioned to the Connected System
	A.2.9 Connected System User Passwords Are Not Provisioned to the Identity Vault
	A.2.10 Metadirectory Objects Are Not Modified, Deleted, Renamed, or Moved

	A.3 Shared Memory Errors (Linux/UNIX only)

	B System and Error Messages
	B.1 CFG Messages
	B.2 CHGLOG Messages
	B.3 DOM Messages
	B.4 DRVCOM Messages
	B.5 HES Messages
	B.6 LWS Messages
	B.7 NET Messages
	B.8 NIX Messages (Linux/UNIX only)
	B.9 OAP Messages
	B.10 RDXML Messages

	C IDMLib Reference
	C.1 UNIX Shell (idmlib.sh) Reference
	C.1.1 General Functions
	C.1.2 Subscriber Functions
	C.1.3 Publisher Functions
	C.1.4 Query Functions
	C.1.5 Heartbeat Functions

	C.2 Perl (IDMLib.pm) Reference
	C.2.1 General Functions
	C.2.2 Subscriber Functions
	C.2.3 Publisher Functions
	C.2.4 Query Functions
	C.2.5 Heartbeat Functions

	C.3 Microsoft VBScript (IDMLib.vbs) Reference
	C.3.1 General Functions
	C.3.2 Subscriber Functions
	C.3.3 Publisher Functions
	C.3.4 Query Functions
	C.3.5 Heartbeat Functions

	D Technical Details
	D.1 Using the usdrv-config Command (Linux/ UNIX only)
	D.1.1 Setting the Remote Loader and Driver Object Passwords
	D.1.2 Configuring the Driver for SSL

	D.2 Driver Shim Command Line Options
	D.2.1 Options Used to Set Up Driver Shim SSL Certificates
	D.2.2 Other Options

	D.3 Publisher Channel Limitations
	D.4 Files and Directories Modified by Installing the Driver Shim
	D.4.1 Driver Shim Directory
	D.4.2 /usr/sbin Files (Linux/UNIX only)
	D.4.3 init.d Files (Linux/UNIX only)
	D.4.4 Man Pages (Linux/UNIX only)
	D.4.5 Driver Shim Configuration File
	D.4.6 Windows Support Files (Windows only)

