Novell
ldentity Manager Driver for

JDBC*

3.5 @
‘ IMPLEMENTATION GUIDE

May 11, 2007

Novell.

Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc. reserves the right to revise this publication and to make changes to its content, at any time,
without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims
any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to
notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the
trade laws of other countries. You agree to comply with all export control regulations and to obtain any required
licenses or classification to export, re-export or import deliverables. You agree not to export or re-export to entities on
the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export laws.
You agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses. For more
information on exporting Novell software, see the Novell International Trade Services Web page (http://
www.novell.com/info/exports/). Novell assumes no responsibility for your failure to obtain any necessary export
approvals.

Copyright © 2007 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied,
stored on a retrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S.
patents listed at Novell Legal Patents (http://www.novell.com/company/legal/patents/) and one or more additional
patents or pending patent applications in the U.S. and in other countries.

Novell, Inc.

404 Wyman Street, Suite 500
Waltham, MA 02451

US.A

www.novell.com

Online Documentation: To access the online documentation for this and other Novell products, and to get
updates, see Novell Documentation (http://www.novell.com/documentation/).

http://www.novell.com/info/exports/
http://www.novell.com/company/legal/patents/
http://www.novell.com/documentation/

Novell Trademarks

For a list of Novell trademarks, see Trademarks (http://www.novell.com/company/legal/trademarks/tmlist.html).

Third-Party Materials

All third-party trademarks are the property of their respective owners.

http://www.novell.com/company/legal/trademarks/tmlist.html

Contents

About This Guide

1 Introducing the Identity Manager Driver for JDBC

Identity Manager Driver for JDBC
Third-Party JDBC DriVer e

1.1 What's New in the Driver for JDBC
1.2 DriverConcepts.c i
1.2.1 JDBC. ..
1.2.2
1.2.3
124 Identity Vault L.
1.2.5 Directory Schema
1.2.6
1.2.7
1.2.8 Synchronization Schema.
1.29 Logical Database Class.
1210 XDS. . ..
1.3 DatabaseConcepts............... ...,
1.3.1 Structured Query Language
1.3.2 Data Manipulation Language
1.3.3 Data Definition Language
134 View.
135 Identity Columns/Sequences.
136 Transaction..........
1.3.7 Stored Procedures or Functions
1.3.8 Trigger............ ..
1.3.9 Instead-Of-Trigger......................
14 DriverFeatures
1.4.1 Local and Remote Platforms.
14.2 Role-Based Entitlements.
14.3 Password Synchronization
14.4 Data Synchronization Models
145 Triggerless vs. Triggered Publication
2 Installing the Driver for JDBC
21 Before Youlnstall
211 Driver Prerequisites.
21.2 Known Issues
21.3 Limitations
21.4 Placing Jar Files
2.2 InstalingonWindows
23 InstalingonNetWare
2.4 Installingon LinuxorSolaris
25 SettingUpaRemoteloader.....................
2.6 Installing and Configuring Database Objects.
2.6.1 SQL Script Conventions
26.2 Installing IBM DB2 Universal Database (UDB)
2.6.3 Installing Informix Dynamic Server (IDS).
2.6.4 Installing Microsoft SQL Server............
2.6.5 InstalingMySQL
26.6 InstalingOracle........................

Application Schema.
Database Schema.

13

15

15
15
15
16
16
17
17
17
17
17
17
17
17
18
18
18
19
19
19
20
20
21
22
22
22
23
23
25

27

27
27
28
28
29
29
32
34
37
37
37
39
39
40
40
41

Contents

5

2.6.7 Installing PostgreSQL 41
2.6.8 Installing Sybase Adaptive Server Enterprise (ASE) 42
2 A =1 o] o 42
2.8 Troubleshooting e 43
Uninstalling the IDM Driver for JDBC 45
3.1 Deleting Identity Manager Driver Objects.t 45
3.2 Running the Product Uninstaller. 45
3.3 Executing Database Uninstallation Scripts. 45
3.31 IBM DB2 Universal Database (UDB) Uninstallation. 46
3.3.2 Informix Dynamic Server (IDS) Uninstallation 46
3.3.3 Microsoft SQL Server Uninstallation 46
3.34 MySQL Uninstallation. 47
3.3.,5 Oracle Uninstallation e 47
3.3.6 PostgreSQL Uninstallation. e 47
3.3.7 Sybase Adaptive Server Enterprise (ASE) Uninstallation 48
Upgrading the JDBC Driver 49
4.1 Upgrading While Installing Identity Manager 3.5 49
4.1.1 Backward Incompatibilities. 50
4.2 Upgrading after Identity Manager Isinstalled. 50
4.21 Upgrading the Driver by Using Designer 50
4.2.2 Upgrading the Driver by UsingiManager. i, 53
Importing an Example JDBC Configuration File 55
5.1 Using Designerto Import 55
5.2 UsingiManagerto Import. 55
5.3 JDBC Driver Settings 56
Configuring the JDBC Driver 59
6.1 Smart Configuration e 59
6.2 Configuration Parameters. e 61
6.2.1 Viewing Driver Parameters 61
6.2.2 Deprecated Parameters. e 61
6.2.3 Authentication Parameters. 62
6.3 Driver Parameters 62
6.3.1 Uncategorized Parameters e 64
6.3.2 Database Scoping Parameters 68
6.3.3 Connectivity Parameters 72
6.3.4 Compatibility Parameters. 74
6.4 Subscription Parameters 84
6.4.1 Uncategorized Parameters e 85
6.4.2 Primary Key Parameters e 87
6.5 Publication Parameters 92
6.5.1 Uncategorized Parameters 93
6.5.2 Triggered Publication Parameters 96
6.5.3 Triggerless Publication Parameters. 98
6.5.4 Polling Parameters. 99
6.6 Trace Levels. 102
6.7 Configuring Third-Party JDBC Drivers e 102

Identity Manager 3.5 Driver for JDBC: Implementation Guide

7 Activating the JDBC Driver

8 Managing the JDBC Driver

8.1 Starting, Stopping, or Restarting the JDBC Driver.
8.2 Migrating and Resynchronizing Data. e
8.3 Using the DirXML Command Line Utility
8.4 Viewing Driver Versioning Information.
8.4.1 Viewing a Hierarchical Display of Versioning Information.
8.4.2 Viewing the Versioning Information Asa TextFile
8.4.3 Saving Versioning Information
8.5 Reassociating a Driver Set Object witha Server Object
8.6 Changing the Driver Configuration e
8.7 Storing Driver Passwords Securely with Named Passwords.
8.71 Using Designer to Configure Named Passwords
8.7.2 Using iManager to Configure Named Passwords
8.7.3 Using Named Passwords in Driver Policies
8.7.4 Configuring Named Passwords by Using the DirXML Command Line Utility
8.8 AddingaDriverHeartbeat.
9 Synchronizing Objects
9.1 Whatls Synchronization?
9.2 When Does Synchronization OCCur?. e
9.3 How Does the Metadirectory Engine Decide Which Object to Synchronize?
9.4 How Synchronization Works e
9.4.1 SCeNario ONe
9.4.2 SCENAMO TWO . ..ottt e
9.43 Scenario Three i
10 Schema Mapping
10.1 High-Level View.
10.2 Logical Database Classes
10.3 Indirect Synchronization
10.3.1 Mapping eDirectory Classes to Logical Database Classes.
10.3.2 ParentTables
10.3.3 ParentTable Columns.
10.3.4 Child Tables
10.3.5 Referential Attributes.
10.3.6 Single-Value Referential Attributes
10.3.7 Multivalue Referential Attributes
10.4 Direct Synchronization.
10.4.1 View Column Meta-Identifiers
10.4.2 Primary Key COlUMNSo
10.4.3 Schema Mappingo
10.5 Synchronizing Primary Key Columns. e
10.6 Synchronizing Multiple Classes. e
10.7 Mapping Multivalue Attributes to Single-Value Database Fields

11 Mapping XDS Events to SQL Statements

11.1

Mapping XDS Events for Indirect Synchronization

105

107

107
107
108
108

108
110
112
113

114
114

115
115
117
118
121

123

123
123
124
125

125
127
128

131

131
131
131
132
134
134
135
136
136
137
139
140
142
142
142
142
143

145
145

Contents

7

8

12 The Event Log Table

12.1
12.2

Event Log Columns o e
Event Types . ..o

13 Embedded SQL Statements in XDS Events

13.1
13.2

13.3
13.4
13.5
13.6
13.7
13.8
13.9
13.10
13.11
13.12
13.13
13.14

13.15

Common Uses of Embedded SQL e
Embedded SQL BaSiCS

13.2.1 Elements
13.2.2 NAMESPACES oottt et
13.2.3 Embedded SQL Example.
Token Substitution e

Virtual TrHgQers . . . o oo e
Manual vs. Automatic Transactions
Transaction Isolation Level. e
Statement Typeo
SQL QUEIIES. . . o ot
Data Definition Language (DDL) Statements. i
Logical Operations i e
Implementing Password Set with Embedded SQL.
Implementing Modify Password with Embedded SQL
Implementing Check Object Password. i
Stored ProCeduresot e
13.14.1 Using Embedded SQL to Call Stored Procedures or Functions
13.14.2 Using the jdbc:call-procedure Element

13.14.3 Using the jdbc:call-function Element
Best Practices.

14 Supported Databases

14.1
14.2
14.3

Database Interoperability
Supported Databases.
Database CharacteristiCs i
14.3.1 Database Features. i e
14.3.2 Current Time Stamp Statements
14.3.3 Stored Procedure and Function JDBC Call Syntaxes
14.3.4 Left Outer Join Operators. i e
14.3.5 Undelimited Identifier Case Sensitivity. o
14.3.6 Supported Transaction IsolationLevels.
14.3.7 Commit KEyWOrds i e
14.3.8 IBM DB2 Universal Database (UDB) i,
14.3.9 Informix Dynamic Server (IDS) e
14.3.10 Microsoft SQL Server.
T4.3.11 MySQL . ..o
T4.3.12 Oracle. . ..ot
14.3.13 PostgreSQL
14.3.14 Sybase Adaptive Server Enterprise (ASE).

15 Third-Party JDBC Drivers

15.1
15.2

15.3

Third-Party JDBC Driver Interoperability
JDBC DriVer Ty DS . . o ittt e e

15.2.1 Which Type ToUSE? o e e e e e e e
Third-Party Jar File Placement.

Identity Manager 3.5 Driver for JDBC: Implementation Guide

147

147
149

157

158
158
158
158
159
159
162
163
164
165
166
167
168
168
169
169
170
170
171
174
178

181

181
181
182
182
183
183
184
184
185
185
186
186
187
188
189
190
190

194
194

15.3.1 Identity Manager File Paths. 194

156.3.2 Remote Loader File Paths. 194

15.4 Supported Third-Party JDBC Drivers. e e e 195
15.4.1 Third-Party JDBC Driver Features. i 195

1542 JDBC URL Syntaxes.ttt e e e e e 196

15.4.3 JDBCDriverClass Names i iiiin 196

15.4.4 BEA Weblogic jDriver for Microsoft SQL Server 197

15.4.5 |IBM DB2 Universal Database JDBC Drivers. 198

15.4.6 Informix JDBC Driver. 200

15.4.7 Microsoft SQL Server 2000 DriverforJDBC. 202

15.4.8 MySQL Connector/J JDBC Driver.t e 204

15.4.9 Oracle Thin Client JDBC Driver. it e e e 204

15.4.10 Oracle OCIJDBC DIiVErottt et e e e e e e e e 206

15.4.11 PostgreSQL JDBC Driver e 208

15.4.12 Sybase Adaptive Server Enterprise JConnect JDBC Driver. 208

15.5 Unsupported Third-Party JDBC Drivers.ttt 209
15.5.1 IBM Toolbox for Java/ldJTOpeN.t e e 209

15.5.2 Minimum Third-Party JDBC Driver Requirements. 210

15.5.3 Considerations When Using Other Third-Party JDBC Drivers 210

15.6 SeCUrity ISSUES oot e 210

16 The Association Utility 211
16.1 Independent Operationst 211
16.2 Before You Begin. e e 212
16.3 Using the Association Utility 213
16.4 Editing ASSOCiations. e e 213

17 Troubleshooting the JDBC Driver 215
17.1 Recognizing Publication Events 215
17.2 Executing Test SCriptS.ot e 215
17.3 Troubleshooting Driver Processes. e 215
17.3.1 Viewing Driver ProCessesot e 215

18 Backing Up the JDBC Driver 223
18.1 Exporting the Driverin Designer e 223
18.2 Exporting the Driver in iManager. e 223

A Best Practices 225
B FAQ 227
B.1 Can'tSee Tables or VIeWS i e 227
B.2 Synchronizingwith Tables. 227
B.3 Processing Rowsinthe EventLog Table 228
B.4 Managing Database User ACCOUNtst 228
B.5 Synchronizing Large Data Types. i 228
B.6 Slow Publication 228
B.7 Synchronizing Multiple Classes e 229
B.8 Encrypted Transport 229
B.9 Mapping Multivalue Attributes 229
B.10 Synchronizing Garbage Strings. e 229

Contents

9

B.11 Running Multiple Driver for JDBC Instances 229

C Supported Data Types 231
D java.sql.DatabaseMetaData Methods 233
E JDBC Interface Methods 235
F Third-Party JDBC Driver Descriptor DTD 241
G Third-Party JDBC Driver Descriptor Import DTD 243
H Database Descriptor DTD 245
| Database Descriptor Import DTD 247
J Policy Example: Triggerless Future Event Processing 249
K Setting Up an OCI Client on Linux 251
K.1 Downloading the Instant Client. 251
K.2 SettingUpthe OCI Client. e e 251
K.3 Configuringthe OCIDriver. e e e e e 252

L Sybase Chain Modes and the Identity Manager Driver for JDBC 253
L1 Ermor Codes . ..o 253

L.2 Procedures and Modes 254
L.2.1 Using Stored Procedure sp_proxmodec.ooiiiiiiiinnnn.o.. 254

L.2.2 Chained and Unchained Modes. it 254

L.2.3 Managing Transactionsina Policy i, 255

L.24 Useful LiNKSo e 255

M The DirXML Command Line Utility 257
M.1 Interactive Mode. 257
M.2 CommandLine Mode e 266

N Properties of the JDBC Driver 271
N.1 Driver Configuration 271
N.1.1 Driver Module. e 272

N.1.2 Driver Object Password e 272

N.1.3 Authentication 273

N.1.4 Startup Option e 274

N.1.5 Driver Parameters 275

N.2 Global Configuration Values. e e 276
N.3 Named Passwords e 277
N.4 Engine Control Values e e e e 278
N.S Log Level .. e 280

10 Identity Manager 3.5 Driver for JDBC: Implementation Guide

N.6 DriverImage 281

N.7 Security EqQUals 281
N8 R er. ..o 282
N.9 Edit Filter XMLo 282
NIO MiSC . ottt e 282
N.11 Excluded Users 283
N.12 Driver Manifest. 283
N.13 INSPECIOr . . e 284
N.14 ServerVariables 284
Documentation Updates 287
0.1 APl 4, 2007 . . . ot e 287
0.2 May 11, 2007 . . .ottt 287

Contents 11

12 Identity Manager 3.5 Driver for JDBC: Implementation Guide

About This Guide

The Identity Manager Driver for Java* Database Connectivity (JDBC*) provides a generic solution
for synchronizing data between an Identity Vault and relational databases.

This guide provides an overview of the driver’s technology as well as configuration instructions.

This guide is version 3.5. The earlier version was 2.1. No versions were released between 2.1 and
3.5.

Audience

This guide is for Novell® eDirectory and Identity Manager administrators who are using the Identity
Manager Driver for JDBC.

Feedback

We want to hear your comments and suggestions about this manual and the other documentation
included with Novell Identity Manager. Please use the User Comment feature at the bottom of each
page of the online documentation, or go to www.novell.com/documentation/feedback.html and enter
your comments there.

Documentation Updates

For the most recent version of this document, see the Identity Manager Documentation Web site
(http://www.novell.com/documentation/lIg/dirkmldrivers/index.html).

Additional Documentation

For documentation on using Identity Manager and the other drivers, see the Identity Manager
Documentation Web site (http://www.novell.com/documentation/lg/dirkmldrivers).

Documentation Conventions

In this documentation, a greater-than symbol (>) is used to separate actions within a step and items
within a cross-reference path.

A trademark symbol (®, ™, etc.) denotes a Novell® trademark. An asterisk (*) denotes a third-party
trademark.

What’s New

New information for this release includes Section 13.14, “Stored Procedures,” on page 170.

About This Guide

13

http://www.novell.com/documentation/lg/dirxmldrivers/index.html
http://www.novell.com/documentation/lg/dirxmldrivers
http://www.novell.com/documentation/lg/dirxmldrivers

14 Identity Manager 3.5 Driver for JDBC: Implementation Guide

Introducing the Identity Manager
Driver for JDBC

The Identity Manager Driver for Java DataBase Connectivity (JDBC) provides a generic solution
for synchronizing data between Identity Manager and JDBC-accessible relational databases.

The principal value of this driver resides in its generic nature. Unlike most drivers that interface with
a single application, this driver can interface with most relational databases and database-hosted
applications.

¢ Section 1.1, “What’s New in the Driver for JDBC,” on page 15

¢ Section 1.2, “Driver Concepts,” on page 15

¢ Section 1.3, “Database Concepts,” on page 17

¢ Section 1.4, “Driver Features,” on page 22

1.1 What’s New in the Driver for JDBC

You can now call stored procedures and functions from a policy. See Section 13.14, “Stored
Procedures,” on page 170.

For information on what’s new in Identity Manager, see “What's New in Identity Manager 3.5?” in
theldentity Manager 3.5 Installation Guide.

1.2 Driver Concepts

¢ “JDBC” on page 15

¢ “Identity Manager Driver for JDBC” on page 16
¢ “Third-Party JDBC Driver” on page 16

¢ “Identity Vault” on page 17

¢ “Directory Schema” on page 17

+ “Application Schema” on page 17

¢ “Database Schema” on page 17

¢ “Synchronization Schema” on page 17

¢ “Logical Database Class” on page 17

¢ “XDS” on page 17

1.2.1 JDBC

Java DataBase Connectivity (JDBC) is a cross-platform database interface standard that Sun*
Microsystems* developed.

Introducing the Identity Manager Driver for JDBC

15

16

Most enterprise database vendors provide a unique implementation of the JDBC interface. Three
versions of the JDBC interface are available:

¢ JDBC 1 (Java 1.0)
+ JDBC 2 (Java 1.2 or 1.3)
¢+ JDBC 3 (Java 1.4 or 1.5)

The Identity Manager Driver for JDBC primarily uses the JDBC 1 interface. It uses a small subset of
JDBC 2 or JDBC 3 methods when supported by third-party JDBC drivers.

1.2.2 Identity Manager Driver for JDBC

The Identity Manager Driver for JDBC uses the JDBC interface to synchronize data and identities
between an Identity Vault and relational databases.

The driver consists of four jar files:

¢ JDBCShim.jar
e JDBCUtil.jar
¢ JDBCConfig.jar

¢ CommonDriverShim.jar

In addition to these files, you need a third-party JDBC driver to communicate with each individual
database.

1.2.3 Third-Party JDBC Driver

A third-party JDBC driver is one of the numerous JDBC interface implementations that the Identity
Manager Driver for JDBC uses to communicate with a particular database.

For example, classes12.zip is one of the Oracle* JDBC drivers. Different third-party JDBC drivers
implement different portions of the JDBC interface specification and implement the interface in a
relatively consistent manner.

The following illustration indicates the relationship between the Driver for JDBC and third-party
JDBC drivers.

Figure 1-1 IDM JDBC Driver vs. Third-Party JDBC Drivers

SELECT SIBASE

MSSQL

INSERT) ORACLE

IDM JDBC DRIVER 3 RN Third-Party MysaL

JDBC Driver
UPDATE DB2

POSTGRES

L

Database

DELETE

Identity Manager 3.5 Driver for JDBC: Implementation Guide

1.2.4 Identity Vault

An Identity Vault is the data store that Identity Manager uses.

1.2.5 Directory Schema

The directory schema is the set of object classes and attributes in the directory.

For example, the eDirectory™ User class and Given Name attribute are part of the eDirectory
schema.

1.2.6 Application Schema

The application schema is the set of classes and attributes in an application.

Because databases have no concept of classes or attributes, the Driver for JDBC maps eDirectory
classes to tables or views, and maps eDirectory attributes to columns.

1.2.7 Database Schema

Database schema is essentially synonymous with ownership. A database schema consists of
database objects (for example, tables, views, triggers, stored procedures, and functions) that a
database user owns.

With the Driver for JDBC, schema is useful to scope the database (reduce the number of database
objects visible to the driver at runtime).

Ownership is often expressed by using a qualified dot notation (for example, indirect.usr,
where indirect is the name of the database user that owns the table usr). All of the database
objects owned by indirect constitute the indirect database schema.

1.2.8 Synchronization Schema

The synchronization schema is the database schema visible to the driver at runtime.

1.2.9 Logical Database Class

The logical database class is the set of tables or view used to represent an eDirectory class in a
database.

1.2.10 XDS

XDS format is the defined Novell® subset of possible XML formats that Identity Manager can use.

XDS is the initial format for data coming from the Identity Vault. By modifying default rules and
changing the style sheets, you can configure the Driver for JDBC to work with any XML format.

1.3 Database Concepts

¢ “Structured Query Language” on page 18

Introducing the Identity Manager Driver for JDBC

17

¢ “Data Manipulation Language” on page 18

¢ “Data Definition Language” on page 18

+ “View” on page 19

¢ “Identity Columns/Sequences” on page 19

¢ “Transaction” on page 19

¢ “Stored Procedures or Functions” on page 20
+ “Trigger” on page 20

+ “Instead-Of-Trigger” on page 21

1.3.1 Structured Query Language

Structured Query Language (SQL) is the language used to query and manipulate data in relational
databases.

1.3.2 Data Manipulation Language

Data Manipulation Language (DML) statements are highly standardized SQL statements that
manipulate database data.

DML statements are essentially the same, regardless of the database that you use. The Driver for
JDBC is DML-based. It maps Identity Manager events expressed as XDS XML to standardized
DML statements.

The following example shows several DML statements:

SELECT * FROM usr;
INSERT INTO usr (lname) VALUES ('Doe');
UPDATE usr SET fname = 'John' WHERE idu = 1;

1.3.3 Data Definition Language

Data Definition Language (DDL) statements manipulate database objects such as tables, indexes,
and user accounts.

DDL statements are proprietary and differ substantially between databases. Even though the Driver
for JDBC is DML-based, you can embed DDL statements in XDS events. For additional
information, refer to Chapter 13, “Embedded SQL Statements in XDS Events,” on page 157,

The following examples show several DDL statements:
CREATE TABLE usr

(
idu INTEGER,
fname VARCHAR2 (64),
lname VARCHAR2 (64)

)7

CREATE USER idm IDENTIFIED BY novell;

NOTE: Examples used throughout this guide are for the Oracle database.

18 Identity Manager 3.5 Driver for JDBC: Implementation Guide

1.3.4 View

A view is a logical table.

When queried by using a SELECT statement, the view is constituted by executing the SQL query
supplied when the view was defined. Views are a useful abstraction mechanism for representing
multiple tables of arbitrary structure as a single table or logical database class.
CREATE VIEW view usr
(

pk _idu,

fname,

lname

)
AS
SELECT idu, fname, lname from usr;

1.3.5 Identity Columns/Sequences

Identity columns and sequences are used to generate unique primary key values. Identity Manager
can associate with these values, among other things.

An identity column is a self-incrementing column used to uniquely identify a row in a table. Identity
column values are automatically filled in when a row is inserted into a table.

A sequence object is a counter that can be used to uniquely identify a row in a table. Unlike an
identity column, a sequence object is not bound to a single table. However, if it is used by a single
table, a sequence object can be used to achieve an equivalent result.

The following is an example of a sequence object:
CREATE SEQUENCE Seq_idu

START WITH 1

INCREMENT BY 1

NOMINVALUE

NOMAXVALUE

ORDER;

1.3.6 Transaction

A transaction is an atomic database operation that consists of one or more statements.

When a transaction is complete, all statements in the transaction are committed. When a transaction
is interrupted or one of the statements in the transaction has an error, the transaction is said to roll
back. When a transaction is rolled back, the database is left in the same state it was before the
transaction began.

Transactions are either manual (user-defined) or automatic. Manual transactions can consist of one
or more statements and must be explicitly committed. Automatic transactions consist of a single
statement and are implicitly committed after each statement is executed.

Manual (User-Defined) Transactions

Manual transactions usually contain more than one statement. DDL statements typically cannot be
grouped with DML statements in a manual transaction.

Introducing the Identity Manager Driver for JDBC

19

20

The following example illustrates a manual transaction:

SET AUTOCOMMIT OFF

INSERT INTO usr (lname) VALUES ('Doe');

UPDATE usr SET fname = 'John' WHERE idu = 1;
COMMIT; -- explicit commit

Automatic Transactions

Automatic transactions consist of only one statement. They are often referred to as auto-committed
statements because changes are implicitly committed after each statement. An auto-committed
statements is autonomous of any other statement.

The following example illustrates an automatic transaction:
SET AUTOCOMMIT ON

INSERT INTO emp (lname) VALUES ('Doe');

-- implicit commit

1.3.7 Stored Procedures or Functions

A stored procedure or function is programmatic logic stored in a database. Stored procedures or
functions can be invoked from almost any context.

The Subscriber channel can use stored procedures or functions to retrieve primary key values from
rows inserted into tables, to create associations. Stored procedures or functions can also be invoked
from within embedded SQL statements or triggers.

The distinction between stored procedures and functions varies by database. Typically, both can
return output, but they differ in how they do it. Stored procedures usually return values through
parameters. Functions usually return values through a scalar return value or result set.

The following example illustrates a stored procedure definition that returns the next value of a
sequence object:

CREATE SEQUENCE seqg idu
START WITH 1
INCREMENT BY 1
NOMINVALUE
NOMAXVALUE
ORDER;

CREATE
PROCEDURE sp idu(io_idu IN OUT INTEGER)
IS
BEGIN

IF (io_idu IS NULL) THEN

SELECT seq idu.nextval INTO io idu FROM DUAL;

END IF;
END sp idu;

1.3.8 Trigger

A database trigger is programmatic logic associated with a table, which executes under certain
conditions. A trigger is said to fire when its execution criteria are met.

Identity Manager 3.5 Driver for JDBC: Implementation Guide

Triggers are often useful for creating side effects in a database. In the context of the Driver for
JDBC, triggers are useful to capture event publications. The following is an example of a database
trigger on the usr table.
CREATE TABLE usr
(
idu INTEGER,
fname VARCHARZ2 (64),
lname VARCHAR2 (64)
)
-- t = trigger; i = insert
CREATE TRIGGER t usr i
AFTER INSERT ON usr
FOR EACH ROW

BEGIN
UPDATE usr SET fname = 'John';
END;

When a statement is executed against a table with triggers, a trigger fires if the statement satisfies
the conditions specified in the trigger. For example, using the above table, suppose the following
insert statement is executed:

INSERT INTO usr (lname) VALUES ('Doe')

Trigger t emp i fires after the insert statement is executed, and the following update statement is
also executed:

UPDATE usr SET fname = 'John'

A trigger can typically be fired before or after the statement that triggered it. Statements that are
executed as part of a database trigger are typically included in the same transaction as the triggering
statement. In the above example, both the INSERT and UPDATE statements are committed or rolled
back together.

1.3.9 Instead-Of-Trigger

An instead-of-trigger is programmatic logic associated with a view, which executes under certain
conditions.

Instead-of-triggers are useful for making views writable or subscribeable. They are often used to
define what it means to INSERT, UPDATE, and DELETE from a view. The following is an example
of an instead-of-trigger on the usr table.
CREATE TABLE usr
(

idu INTEGER,

fname VARCHAR2 (64),

lname VARCHAR2 (64)
)7

CREATE VIEW view usr
(

pk _idu,

fname,

lname

Introducing the Identity Manager Driver for JDBC

21

AS
SELECT idu, fname, lname from usr;
-- t = trigger; i = insert
CREATE TRIGGER t view usr i

INSTEAD OF INSERT ON usr
BEGIN

INSERT INTO usr (idu, fname, lname)

VALUES (:NEW.pk idu, :NEW.fname, :NEW.lname);

END;

When a statement is executed against a view with instead-of-triggers, an instead-of-trigger executes
if the statement satisfies the conditions specified in the trigger. Unlike triggers, instead-of-triggers
always execute before the triggering statement. Also, unlike regular triggers, instead-of-triggers are
executed instead of, not in addition to, the triggering statement.

For example, using the above view, suppose the following insert statement is executed instead of the
original insert statement:

INSERT INTO view_usr (pk idu, fname, lname)
VALUES (1, ‘John', ‘Doe')

Rather than executing the original statement, instead-of-trigger t view usr i fires and executes
the following statement:

INSERT INTO usr(idu, fname, lname)
VALUES(:NEW.pk_idu, :NEW. fname, :NEW.lname) ;

In this example, the statements happen to be equivalent.

1.4 Driver Features

Section 1.4.1, “Local and Remote Platforms,” on page 22

*

*

Section 1.4.2, “Role-Based Entitlements,” on page 22

*

Section 1.4.3, “Password Synchronization,” on page 23

*

Section 1.4.4, “Data Synchronization Models,” on page 23

*

Section 1.4.5, “Triggerless vs. Triggered Publication,” on page 25

1.4.1 Local and Remote Platforms

The driver runs on all Identity Manager-enabled platforms, including Windows* NT*/2000,
NetWare®, Solaris*, Linux*, and AIX*. The JDBC driver runs in any Identity Manager 3.5
installation or Remote Loader installation. See “Prerequisites to Installation” in the /dentity
Manager 3.5 Installation Guide.

For information on supported databases, see “Database Interoperability” on page 181.

For information on supported third-party JDBC drivers, see “Third-Party JDBC Driver
Interoperability” on page 193.

1.4.2 Role-Based Entitlements

The JDBC driver does not support entitlements.

22 |dentity Manager 3.5 Driver for JDBC: Implementation Guide

1.4.3 Password Synchronization

The JDBC driver supports password set and check on the Subscriber channel. The driver does not
support bi-directional password synchronization.

1.4.4 Data Synchronization Models

The JDBC driver supports two data synchronization models: direct and indirect. Both terms are best
understood with respect to the final destination of the data being synchronized.

Model Association Description

Direct Usually associated with views Views provide the abstraction mechanism that best
facilitates integration with existing customer tables.

Indirect Usually associated with tables Customer tables probably don’t match the structure
required by the driver. Therefore, it's usually
necessary to create intermediate staging tables that
do match the structure that the driver requires.
Although the structures might match, it is highly
unlikely.

The following sections describe how direct and indirect synchronization work on both the
Subscriber and Publisher channels.

Indirect Synchronization

Indirect synchronization uses intermediate staging tables to synchronize data between the Identity
Vault and a database.

The following diagrams illustrate how indirect synchronization works on the Subscriber and
Publisher channels. In the following scenarios, you can have one or more customer tables and
intermediate staging tables.

Subscriber Channel

Figure 1-2 Indirect Synchronization on the Subscriber Channel

Database

Synchronization

Schema

Intermediate

Tables(s) Synchronization
Trigger(s)

Customer
Table(s)

The Subscriber channel updates the intermediate staging tables in the synchronization schema. The
synchronization triggers then update customer tables elsewhere in the database.

Introducing the Identity Manager Driver for JDBC 23

Publisher Channel
Figure 1-3 Indirect Synchronization on the Publisher Channe

Database

Synchronization |
Schema
L. Intermediate <=
Tables(s) Synchronization
Trigger(s) Customer
. Table(s)
Publisher) < > Publication
Trigger(s)
N~

When customer tables are updated, synchronization triggers update the intermediate staging tables.
Publication triggers then insert one or more rows into the event log table. The Publisher channel
then reads the inserted rows and updates the Identity Vault.

Depending on the contents of the rows read from the event log table, the Publisher channel might
need to retrieve additional information from the intermediate tables before updating the Identity
Vault. After updating the Identity Vault, the Publisher channel then deletes or marks the rows as
processed.

Direct Synchronization

Direct synchronization typically uses views to synchronize data between Identity Manager and a
database. You can use tables if they conform to the structure that the Driver for JDBC requires.

The following diagrams illustrate how direct synchronization works on the Subscriber and Publisher
channels. In the following scenarios, you can have one or more customer views or tables.

Subscriber Channel
Figure 1-4 Direct Synchronization on the Subscriber Channel

Database

Synchronization
Schema

i - K L e ——
el >

) .
e

Customer
Table(s)

24 |dentity Manager 3.5 Driver for JDBC: Implementation Guide

The Subscriber channel updates existing customer tables through a view in the synchronization
schema.

NOTE: Direct synchronization without a view is possible only if customer tables match the
structure that the Driver for JDBC requires. For additional information, see Section 10.3, “Indirect
Synchronization,” on page 131.

Publisher Channel

Figure 1-5 Direct Synchronization on the Publisher Channel

Database
Synchronization |
Schema
e-="1
T—— ! I == -
=== === View(s),,'
1 b 48 i Customer
v Table(s)
Publisher) ===\ ont
| Publication

When a customer table is updated, publication triggers insert rows into the event log table. The
Publisher channel then reads the inserted rows and updates the Identity Vault.

Depending on the contents of the rows read from the event log table, the Publisher channel might
need to retrieve additional information from the view before updating the Identity Vault. After
updating the Identity Vault, the Publisher channel then deletes or marks the rows as processed.

1.4.5 Triggerless vs. Triggered Publication

Triggers are no longer required to log publication events. In situations where triggers cannot be used
to capture granular events, the Publisher channel can derive database changes by inspecting database
data.

Triggerless publication is particularly useful when support contracts forbid the use of triggers on
database application tables or for rapid prototyping.

Triggerless publication is less efficient than triggered publication. With triggered publication, what
changed is already known. With triggerless publication, change calculation must occur before events
can be processed.

Triggerless publication, unlike triggered publication, does not preserve event order. It only
guarantees that by the end of a polling cycle, objects in the database and the Identity Vault are in
sync.

Triggerless publication, unlike triggered publication, does not provide historical data such as old
values. It provides information on the current state of an object, not the previous state.

Introducing the Identity Manager Driver for JDBC

25

26

Triggerless publication does have the advantage of being much simpler because it reduces database-
side dependencies. Writing database triggers can be complicated and requires extensive knowledge
of database-specific SQL syntaxes.

The following figure illustrates direct triggerless publication:

Figure 1-6 Direct Triggerless Synchronization

Database
Synchronization [
Schema
-7
Publisher)< = |= |= -‘n; View(s) ’: -
- L Pe Customer
Table(s)
-

The following figure illustrates indirect triggerless publication:

Figure 1-7 Indirect Triggerless Synchronization

Database

)
Synchronization

Schema

Publisher)€==== Intermediate <

Tables(s) Synchronization
Trigger(s) | Customer
Table(s)

~—

If you move the driver without moving the state files, the driver must build-up new state files by
resynchronizing. For information on this situation, see “State Directory” on page 66.

Identity Manager 3.5 Driver for JDBC: Implementation Guide

Installing the Driver for JDBC

This section assumes that you have already installed the Metadirectory engine (and, most likely,
other drivers) on the server and need to install only the JDBC driver. See “Installing Identity
Manager” in the Identity Manager 3.5 Installation Guide.

Typically, an Identity Manager installation installs all drivers, including the JDBC driver, at the
same time that the Metadirectory engine is installed. If the JDBC driver wasn’t installed at that time,
you can install the driver separately. The schema won’t be extend during this driver install because
the Identity Manager installation already extended it when the Metadirectory engine was installed.

IMPORTANT: Novell recommends installing or uninstalling driver configurations and database
scripts as a unit. To prevent unintentional mismatching, database scripts and driver configurations
contain headers with a version number, the target database name, and the database version.

¢ Section 2.1, “Before You Install,” on page 27

¢ Section 2.2, “Installing on Windows,” on page 29

¢ Section 2.3, “Installing on NetWare,” on page 32

¢ Section 2.4, “Installing on Linux or Solaris,” on page 34

¢ Section 2.5, “Setting Up a Remote Loader,” on page 37

¢ Section 2.6, “Installing and Configuring Database Objects,” on page 37
¢ Section 2.7, “Test Scripts,” on page 42

¢ Section 2.8, “Troubleshooting,” on page 43

For information on uninstalling the driver, see Chapter 3, “Uninstalling the IDM Driver for JDBC,”
on page 45

2.1 Before You Install

¢ Section 2.1.1, “Driver Prerequisites,” on page 27
¢ Section 2.1.2, “Known Issues,” on page 28
¢ Section 2.1.3, “Limitations,” on page 28

¢ Section 2.1.4, “Placing Jar Files,” on page 29

2.1.1 Driver Prerequisites

The Identity Manager Driver for JDBC 3.5 requires the following:

O Novell® Identity Manager 3.5 installed on the server or an Identity Manager 3.5 Remote
Loader
O Java Virtual Machine (JVM*) 1.4 or later

O A supported third-party JDBC driver

Installing the Driver for JDBC

27

2.1.2 Known Issues

¢ Identity Vault Time and Timestamp syntaxes are inadequate for expressing the range and
granularity of their database counterparts.

This is a publication problem because database time-related types typically have a wider range
and greater degree of granularity (typically nanoseconds). The converse is not true. For more
information, see “Time Syntax’ on page 65.

¢ The Driver for JDBC is unable to parse proprietary database time stamp formats.

Some databases, such as Sybase* and DB2*, have proprietary time stamp formats that the
java.sql. Timestamp (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Timestamp.html) class
can’t parse.

When synchronizing time stamp columns from these databases, the Driver for JDBC, by
default, assumes time stamp values placed in the event log table are in ODBC canonical format
(thatis, yyyy-mm-dd hh:mm:ss.fffffffff).

The recommended method for enabling the Driver for JDBC to handle proprietary database
time stamp formats is to implement a custom DBTimestampTranslator class. This
interface is documented in the Javadoc Tool that ships with the Driver for JDBC. Using this
approach avoids the problem of reformatting time stamps in the database before they are
inserted into the event log table or reformatted them in style sheets. The Driver for JDBC ships
with default implementations for the native DB2 time stamp format and the Sybase style 109
time stamp format.

+ Statements executed against the database server might block indefinitely.

Typically, blocking is caused by a database resource being exclusively locked. Because the
locking mechanisms and locking SQL vary by database, the general solution to this problem is
to implement a custom DBLockStatementGenerator class. For additional information,
see “Lock Statement Generator Class” on page 79. The driver for JDBC ships with a default
implementation for Oracle.

Many factors can cause blocking. To mitigate the likelihood of blocking, we recommend that
you do not set the Transaction Isolation Level parameter to a level greater than read
committed.

The JDBC interface defines a method java.sql.Statement.setQueryTimeout(int):void (http://
java.sun.com/j2se/1.5.0/docs/api/java/sql/Statement.html) that allows a statement to time out
after a specified number of seconds. Unfortunately, implementations of this method between
third-party JDBC drivers range from not being implemented to having bugs. For this reason,
this method was deemed unsuitable as a general-purpose solution.

2.1.3 Limitations

¢ The Driver for JDBC does not support the use of delimited (quoted) database identifiers (for
example, “names with spaces”).

+ JDBC 2 data types are not supported, with the exception of Large Object data types (LOBs)
such as CLOB and BLOB.

+ JDBC 3 data types are not supported.

28 Identity Manager 3.5 Driver for JDBC: Implementation Guide

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Timestamp.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Statement.html

¢ PostgreSQL does not support <check-object-password> events. Authentication is
controlled by manually inserting entries into the pg_hba.conf file.

2.1.4 Placing Jar Files

The following tables identify the paths to place JDBC driver jar files on an Identity Manager or
Remote Loader server assuming default installation paths.

Identity Manager File Paths

The following table identifies where to place JDBC driver jar files on an Identity Management
server, by platform.

Table 2-1 Locations for jar Files: Identity Manager Server

Platform Directory Path

NetWare® sys:\system\lib

Solaris, Linux, or AIX /usr/lib/dirxml/classes (pre-eDirectory 8.8)
/opt/novell/eDirectory/lib/dirxml/classes (eDirectory 8.8)

Windows NT/2000 novell\NDS\1lib

Remote Loader File Paths

The following table identifies where to place JDBC driver jar files on a Remote Loader server, by
platform.

Table 2-2 Locations for jar Files: Remote Loader

Platform Directory Path

Solaris, Linux, or AIX /usr/lib/dirxml/classes (pre-eDirectory 8.8)
/opt/novell/eDirectory/lib/dirxml/classes (eDirectory 8.8)

Windows NT/2000 novell\RemoteLoader\1lib

2.2 Installing on Windows

1 Run the installation program from the Identity Manager 3.5 CD or image file.

If the installation program doesn’t autolaunch, you can run \nt\install.exe.
2 On the Welcome page, review information, then click Next.

3 On the License Agreement page, select a language, review the license agreement, then click /
Accept.

4 On the first Identity Manager Overview page, review the information on the Identity Manager/
Metadirectory Server and a Connected System Server, then click Next.

5 In the second Identity Manager Overview page, review information on the Web-based
Adminstration Server and utilities, then click Next.

Installing the Driver for JDBC

29

30

mldentity Manager Install =100 =]

Novell. Identity Manager

6 On the Identity Manager Install page, select Novell Identity Manager Metadirectory Server,
then click Next.

Novell.

Fleaze zselect the components to install:

Haowell Identity Manager Metadirectony Senrer

O

I:l Identity ManagerWeb Components

[] utilities

Crescription
Select All

Clear All

Cancel || Help || < Back || Mext = |

The following options are available:

+ Metadirectory Server: Installs the Metadirectory engine and service drivers. These

include Identity Manager Drivers for Active Directory*, Avaya*, Delimited Text,
eDirectory, Exchange, GroupWise®, JDBC*, JMS, LDAP, Linux/UNIX Settings, Lotus
Notes*, PeopleSoft, RACF, Remedy, SOAP, SAP*, SIF*, Top Secret, and Work Order.
Selecting this option also extends the eDirectory schema.

IMPORTANT: Novell® eDirectory 8.7.3 and Security Services 2.0.4 (NMAS™ 3.1.3)
with current patches must be installed before you can install this option. Install the
Metadirectory Server component where you want to run the Metadirectory engine for
Identity Manager. If you do not have the correct version of NMAS, you receive a warning
message and you lose Identity Manager functionality.

Connected System: Installs the Remote Loader that allows you to establish a link
between the connected system and a server running the Metadirectory engine. For
Windows, this option installs the following drivers: Active Directory, Avaya, Delimited
Text, eDirectory, Exchange, GroupWise, JDBC, IMS, LDAP, Linux/UNIX Settings, Lotus
Notes, PeopleSoft, RACF, Remedy, SOAP, SAP, SIF, Top Secret, and Work Order.

Install the Connected System to allow application connection from an application server
to an eDirectory-based server running the Metadirectory engine.

Web Components: Installs driver configurations, iManager plug-ins, and application
scripts and utilities.

Novell iManager must be installed before you can install this option.

Identity Manager 3.5 Driver for JDBC: Implementation Guide

+ Ultilities: Installs additional scripts for the JDBC driver and utilities for other drivers.
Most drivers don’t have a utility connected to them. Driver utilities can include:

¢ SQL scripts for JDBC driver

¢ JMS components

*

PeopleSoft components

*

License Auditing tool

*

Active Directory Discovery tool

*

Lotus Notes Discovery tool
+ SAP utilities

Another utility allows you to register the Novell Audit System components for Identity
Manager. (A valid eDirectory version and a Novell Audit logging server must be installed
on the tree before this utility installs.)

If you are installing remotely (a Remote Loader), select Connected System and refer to “Setting
Up Remote Loaders”and “Setting Up a Connected System” in the Novell Identity Manager 3.5
Administration Guide.

If you install a Remote Loader, the policies (and binaries that the policies reference) run locally,
but the driver shim binaries run remotely. If you install the Metadirectory Server, all binaries
and policies run locally.

7 On the Select Drivers for Engine Install page, select JDBC, then click Next.

m5elect Drivers for Engine Install o] 4

Novell. Identity Manager Novell

Fleaze select the components to install (Unsupported for Selected Platform in grayi:

[] eDiractony
|:| Exchange
I:‘ Groupilfise
JOBC
[]Ins
[[]Lpar

[LinusUMIX Settings

D Lotus Motes

II 4 [] [»

Description
Enables you to connect to and synchronize data with 1B | & Select All
B2 Universal Database (UDB), Informix" Dynamic Sener |
105, Microsoft® SOL Senver, MySELE, Oracle™, '™ Clear All
FPaostgreS0QL, or Sybase ASE. - |

| Cancel || Help | | < Back || Meazxt = |

By default, all supported drivers are selected. You can install all selected drivers or you can
install just the JDBC driver. Additional drivers are not viable until they are configured. To

Installing the Driver for JDBC 31

32

configure the driver, see Chapter 5, “Importing an Example JDBC Configuration File,” on
page 55 and Chapter 6, “Configuring the JDBC Driver,” on page 59 .

8 Review the informational message reminding you about product activation, then click OK.
Activate the driver within 90 days of installation; otherwise, it will shut down.

9 On the Summary page, read and verify your selections, then click Finish.

_ ol x|
Novell. Identity Manager NOVEH.
Froducts to be installed
@ Mowell Identity hWanager Metadire ctony Servar
(i) eDirectony 05 MB
| Cancel || Help | | < Back || Finizh

10 On the Installation Complete dialog box, click Close.

11 Continue by importing an example configuration file.

2.3 Installing on NetWare

1 At the NetWare® server, insert the Identity Manager CD and mount the CD as a volume.

If you don’t have a CD, download Identity Manager 3 NW Win.iso and create one.
Downloads are available from Novell Downloads (http://download.novell.com/index.jsp).
To mount the CD, enterm cdrom.

2 (Conditional) If the graphical utility isn’t loaded, load it by entering startx.

3 In the graphical utility, click the Novell icon, then click Install.

4 In the Installed Products dialog box, click Add.

Identity Manager 3.5 Driver for JDBC: Implementation Guide

http://download.novell.com/index.jsp

5 In the Source Path dialog box, browse to and select the product .ni file.

5a Browse to and expand the CD volume (IDM_ 3 0 NW_ WIN) that you mounted earlier.
5b Expand the nw directory, select product .ni, then click OK twice.

6 In the Welcome to the Novell Identity Manager 3.0 Installation dialog box, click Next, then
accept the license agreement.

7 View the two Overview dialog boxes, then click Next.
8 In the Identity Manager Install dialog box, select only Metadirectory Server.

Installing the Driver for JDBC 33

34

Deselect the following:
¢ Identity Manager Web Components
* Utilities
9 Click Next.
10 In the Select Drivers for Engine Install dialog box, select only JDBC.

Deselect the following:

¢ Metadirectory engine
¢ All drivers except Delimited Text
11 Click Next.
12 In the Identity Manager Upgrade Warning dialog box, click OK.
The dialog box advises you to activate a license for the driver within 90 days.
13 In the Summary page, review the selected options, then click Finish.
14 Click Close.

After installation, do the following:

+ Import the sample configuration file. See “Importing an Example JDBC Configuration File”
on page 55.

+ Set up a Remote Loader (optional). See “Setting Up a Remote Loader” on page 37.

+ Configure database objects. See “Installing and Configuring Database Objects” on page 37.

2.4 Installing on Linux or Solaris

By default, the Identity Manager Driver for JDBC is installed when you install the Metadirectory
engine. If the driver wasn’t installed at that time, this section can help you install it.

As you move through the installation program, you can return to a previous section (screen) by
entering previous.

1 In a terminal session, log in as root.

2 Insert the Identity Manager CD and mount it.

Identity Manager 3.5 Driver for JDBC: Implementation Guide

If you don’t have a CD, download Identity Manager 3 Linux.iso and create one.
Downloads are available from Novell Downloads (http://download.novell.com/index.jsp).

Typically, the CD is automatically mounted. The following table lists examples for manually
mounting the CD:

Platform What to Type

AIX mount /mnt/cdrom, then press Enter
Red Hat* mount /mnt/cdrom, then press Enter
Solaris mount /cdrom, then press Enter
SUSE® mount /media/cdrom, then press Enter

3 Change to the setup directory.

Platform Path

AIX /mnt/cdrom/setup/
Red Hat /mnt/cdrom//setup/
Solaris /cdrom//idm 3/setup/
SUSE /media/cdrom//setup/

4 Run the installation program by entering . /dirxml linux.bin.

5 In the Introduction section, press Enter.

6 Accept the license agreement.

Press Enter until you reach DO YOU ACCEPT THE TERMS OF THIS LICENSE
AGREEMENT, type v, then press Enter.

7 In the Choose Install Set section, select the Customize option.

Installing the Driver for JDBC 35

http://download.novell.com/index.jsp

36

Type 4, then press Enter.

8 In the Choose Product Features section, deselect all features except JDBC, then press Enter.

To deselect a feature, type its number. Type a comma between additional features that you
deselect.

9 In the Pre-Installation Summary section, review options.

To return to a previous section, type previous, then press Enter.

To continue, press Enter.

10 After the installation is complete, exit the installation by pressing Enter.

After installation, configure the driver. See Chapter 6, “Configuring the JDBC Driver,” on page 59.

Identity Manager 3.5 Driver for JDBC: Implementation Guide

2.5 Setting Up a Remote Loader

Using a Remote Loader is optional. It isn’t required unless you want the JDBC driver to run in a
connected system.

1 Ifa Remote Loader isn’t already installed, install one.
See “Setting Up a Connected System” in the Novell Identity Manager 3.5 Administration
Guide.

2 Copy the appropriate third-party JDBC driver jar files onto the Remote Loader server.

2a For information on third-party JDBC driver filenames and where to get them, refer to
“Supported Third-Party JDBC Drivers” on page 195.

2b For information on file installation paths, refer to “Placing Jar Files” on page 29.
3 Configure the remote driver.

In the Remote Driver Configuration parameters, set the Driver parameter to
com.novell.nds.dirxml.driver.jdbc.JDBCDriverShim.

4 Configure other remote loader parameters. See “Setting Up a Connected System” in the Novell
Identity Manager 3.5 Administration Guide.

2.6 Installing and Configuring Database Objects

Install and configure database objects (for example, tables, triggers, and indexes) for
synchronization with the sample driver configuration. If you don’t configure database objects, the
sample configuration file won’t work.

2.6.1 SQL Script Conventions

The following table lists default locations for SQL scripts:

Table 2-3 Default Locations for SOL Scripts

Platform Default Location
Windows c:\novell\NDS\jdbc\sqgl\database-abbreviation
iUNIX or Linux /usr/lib/dirxml/rules/jdbc/database-abbreviation

For example, when installed on a SuSE Linux Enterprise Server with eDirectory, the DB2 scripts are
foundin /usr/lib/dirxml/rules/jdbc/db2/*.

All SQL scripts use the same conventions, regardless of the database.

The maximum size of a DB2 identifier is 18 characters. This least common denominator length
defines the upper bound of database identifier length across all SQL scripts. Because of this
restricted length, abbreviations are used. The following table summarizes identifier abbreviations
and their meaning:

Installing the Driver for JDBC

37

38

Table 2-4 Identifier Abbreviations and Meanings

Abbreviation Interpretation

proc_1 stored procedure/function
idx_ index

trg_ trigger

i on insert trigger

_u on update trigger

_d on delete trigger

chk check constraint

pk view primary key constraint
fk_ view foreign key constraint
mv_ view multi-valued column
SV_ view single-valued column (implicit default)

1 The more common abbreviation is sp_. This prefix is reserved for system-stored procedures on
Microsoft* SQL Server. Also, this prefix forces lookup of a procedure first in the master database
before evaluating any qualifiers (for example, database or owner). To maximize procedure lookup
efficiency, this prefix has been deliberately avoided.

The following table indicates identifier naming conventions for indexes, triggers, stored procedures,
functions, and constraints:

Table 2-5 Identifier Naming Conventions

Database Object Naming Convention Examples

stored procedure/ proc_procedure-or-function-name proc_idu

function

index idx_unqualified-table-name_sequence-number idx_indirectlog

1

trigger tgr_unqualified-table-name_triggering-statement- tgr_usr_i_1
type_sequence-number

primary key constraint pk_unqualified-table-name_column-name pk_usr_idu

foreign key constraint fk_unqualified-table-name_column-name fk_usr_idu

check constraint chk_unqualified-table-name_column-name chk_usr_idu

Other conventions:

+ All database identifiers are lowercase.

This is the most commonly used case convention between databases.

¢ String field lengths are 64 characters.

Identity Manager 3.5 Driver for JDBC: Implementation Guide

Fields of this length can hold most eDirectory™ attribute values. You might want to refine field
lengths to enhance storage efficiency.

¢ For performance reasons, primary key columns use native, scalar numeric types whenever
possible (such as BIGINT as opposed to NUMERIC).

¢ The record id column in event log tables has the maximum numeric precision permitted
by each database to avoid overflow.

¢ Identity columns and sequence objects do not cache values. Some databases throw away
cached values when a rollback occurs. This action can cause large gaps in identity column or
sequence values.

2.6.2 Installing IBM DB2 Universal Database (UDB)

IMPORTANT: For IBM* DB2, you must manually create operating system user accounts before
running the provided SQL scripts.

Because the process to create user accounts differs between operating systems, Step 1 below is OS-
specific. These instructions are for a Windows NT operating environment. If you rerun the SQL
scripts, repeat only Steps 2 through 5.

The directory context for DB2 is install-dir\jdbc\sgl\db2 udb\install
1 Create user accounts for users idm, indirect and direct.
Use novell as the password in User Manager for Domains.
Remember to deselect User Must Change Password at Next Login for this account.

You might want to also select Password Never Expires.

NOTE: The remaining instructions are OS-independent.

2 Adjust the file path to idm db2.jar inthe 1_install.sql installation script. The file path to
idm_db2.jar should reflect the location of this file on your client machine.

3 Executethe 1 install.sql script from the Command Line Processor (CLP.)

For example:
db2 -f 2 install 8.sql

IMPORTANT: The scripts won’t execute in the Command Center interface beyond version 7.
The scripts use the ‘\' line continuation character. Later versions of the Command Center don’t
recognize this character.

4 For versions 8 or later, execute the 2 _install 8.sql script.

For example:
db2 -f 2 install 8.sqgl

2.6.3 Installing Informix Dynamic Server (IDS)

IMPORTANT: For Informix* Dynamic Server, you must manually create an operating system user
account before running the provided SQL scripts.

Installing the Driver for JDBC

39

Because the process of creating user accounts differs between operating systems, Step 1 below is
OS-specific. These instructions are for a Windows NT operating environment. If you rerun the SQL
scripts, you should repeat only Steps 2 through 4.

The directory context for Informix SQL scripts is install-
dir\jdbc\sgl\informix ids\install.

1 In Windows NT, create a user account for user idm.
Use novell as the password in User Manager for Domains.
Remember to deselect User Must Change Password at Next Login for this account.

You might want to also select Password Never Expires.

NOTE: The remaining instructions are OS-independent.

2 Start a client such as SQL Editor.

3 Log in to your server as the informix user or another user with DBA (database
administrator) privileges.

By default, the password for the informix useris informix.

NOTE: If you execute scripts as a user other than informix, change all references to
informix in the scripts prior to execution.

4 Open and execute 1 _install.sqgl from either the ansi (transactional, ANSI-compliant),
log (transactional, non-ANSI-compliant), or no log (non-transactional, non-ANSI-
compliant) subdirectory, depending upon which type of database you want to create.

2.6.4 Installing Microsoft SQL Server

The directory context for Microsoft SQL Server scripts is install—
dir\jdbc\sgl\mssqgl\install.
1 Start a client such as Query Analyzer.
2 Log in to your database server as the sa user.
By default, the sa user has no password.
3 Execute the installation script.
For version 7, execute 1 _install 7.sqgl.

For version 8 (2000), execute 1 _install 2k.sqgl.

NOTE: The execute hotkey in Query Analyzer is F5.

2.6.5 Installing MySQL

The directory context for MySQL* SQL scripts is install-
dir\jdbc\sgl\mysgl\install.

1 From a MySQL client, such as mysql, log in as root user or another user with administrative
privileges.

40 |dentity Manager 3.5 Driver for JDBC: Implementation Guide

For example, from the command line, execute
mysgl -u root -p

By default, the root user has no password.

2 Execute the installation script 1 _install innodb.sglorl install myisam.sql,
depending upon which table type you wish to use.

For example:
mysgl> \. c:\1 install innodb.sql

TIP: Don’t use a semicolon to terminate this statement.

2.6.6 Installing Oracle

The directory context for Oracle SQL scripts is install-
dir\jdbc\sgl\oracle\install.

1 From an Oracle client, such as SQL Plus, log in as the SYSTEM user.

By default, the password for SYSTEM is MANAGER.

NOTE: If you execute scripts as a user other than SYSTEM with password MANAGER, change
all references to SYSTEM in the scripts prior to execution.

2 Execute the installation script 1 _install.sql.

For example:
SQL> @c:\1 install.sqgl

2.6.7 Installing PostgreSQL

The directory context for PostgreSQL scripts is install-
dir\jdbc\sgl\postgres\install. The directory context for executing Postgres commands
is postgres-install-dir/pgsqgl/bin.

1 Create the database idm.
For example, from the UNIX* command line, execute the command createdb:
./createdb idm

2 Install the pl1pgsqgl procedural language to database idm.

For example, from the UNIX command line, execute the command createlang:
./createlang plpgsgl idm

3 From a Postgres client such as psql, log on as user postgres to the 1dm database.

For example, from the UNIX command line, execute the command psql:
./psgl -d idm postgres

By default, the Postgres user has no password.
4 From inside psql, execute the script 1 install.sql.

For example:
idm=# \i 1 install.sql

5 Update the pg_hba. conf file.

Installing the Driver for JDBC

4

42

For example, add entries for the idm database user. Adjust the IP-ADDRESS and IP-MASK as

necessary:

TYPE DATABASE USER IP-ADDRESS IP-MASK
METHOD# allow driver user idm to connect to database idm
host idm idm 255.255.255.255 255.255.255.0
password

6 Restart the Postgres server to effect changes made to the pg_hba . conf file.

2.6.8 Installing Sybase Adaptive Server Enterprise (ASE)

IMPORTANT: Ensure that you have JDBC metadata support installed on the database server. This
is usually an issue for versions earlier than 12.5 only.

The directory context for Sybase SQL scripts is install-
dir\jdbc\sgl\sybase ase\install.

1 From a Sybase client, such as isql, log in as the sa user and execute the 1 install.sqgl
installation script.

For example, from the command line, execute:
isql -U sa -P -i 1 install.sqgl

By default, the sa account has no password.

2.7 Test Scripts

Test scripts for each database are located in the following directories:

Table 2-6 Location of Database Scripts

Database Test SQL Scripts Location
IBM DB2 Universal Database install-dir\jdbc\sql\db2 udb\test
Informix Dynamic Server install-dir\jdbc\sqgl\informix ids\log\test

install-dir\jdbc\sgl\informix ids\no log\test

Informix ANSI test scripts are located in the 1og\test
subdirectory.

Microsoft SQL Server install-dir\jdbc\sgl\mssgl\test
MySQL install-dir\jdbc\sql\mysqgl\test
Oracle install-dir\jdbc\sgl\oracle\test
PostgreSQL install-dir\jdbc\sgl\postgres\test

Sybase Adaptive Server Enterprise install-dir\jdbc\sgl\sybase ase\test

We recommend that you try the test scripts before starting the sample driver.

Identity Manager 3.5 Driver for JDBC: Implementation Guide

2.8 Troubleshooting

+ See Section 17.1, “Recognizing Publication Events,” on page 215.

+ See Section 17.2, “Executing Test Scripts,” on page 215.

Installing the Driver for JDBC 43

44 |dentity Manager 3.5 Driver for JDBC: Implementation Guide

Uninstalling the IDM Driver for
JDBC

¢ Section 3.1, “Deleting Identity Manager Driver Objects,” on page 45
¢ Section 3.2, “Running the Product Uninstaller,” on page 45

¢ Section 3.3, “Executing Database Uninstallation Scripts,” on page 45

IMPORTANT: Novell® recommends that you install and uninstall preconfigured drivers and
database scripts as a unit. To prevent unintentional mismatching, database scripts and preconfigured
drivers contain headers with a version number, the target database name, and the database version.

3.1 Deleting Identity Manager Driver Objects

When deleting Novell Identity Vault objects, you must delete all child objects before you can delete
a parent object. For example, you must delete all rules and style sheets on the Publisher channel
before you can delete the Publisher object. Similarly, you must delete both the Publisher and
Subscriber objects before you can delete the Driver object.

To remove a driver object from an Identity Vault:

1 In Novell iManager, click Identity Manager > Identity Manager Overview.
2 Select a driver set.

3 From the Identity Manager Overview page, click Delete Driver.

4 Select the driver that you want to delete, then click OK.

3.2 Running the Product Uninstaller

Uninstallation procedures vary by platform.

To uninstall the Identity Manager Driver for JDBC on Windows, use Add or Remove Programs in
the Control Panel.

3.3 Executing Database Uninstallation Scripts

This section provides helps you execute database uninstallation SQL scripts.

¢ “Installing IBM DB2 Universal Database (UDB)” on page 39

¢ “Installing Informix Dynamic Server (IDS)” on page 39

+ “Installing Microsoft SQL Server” on page 40

+ “MySQL Uninstallation” on page 47

¢ “Installing Oracle” on page 41

¢ “Installing PostgreSQL” on page 41

+ “Installing Sybase Adaptive Server Enterprise (ASE)” on page 42

Uninstalling the IDM Driver for JDBC

45

46

3.3.1 IBM DB2 Universal Database (UDB) Uninstallation

The directory context for DB2 is install-dir\jdbc\sgl\db2 udbl\install.

1

Drop the idm, indirect and direct operating system user accounts.

2 If you haven’t already done so, change the name of the administrator account name and

password in the installation scripts.
Using the Command Line Processor (CLP), execute script uninstall.sqgl.

For example:
db2 -f uninstall.sqgl

IMPORTANT: This script won’t execute in the Command Center interface beyond version 7.
It uses the \' line continuation character. Later versions of the Command Center don’t
recognize this character.

4 Delete the idm db2.jar file.

3.3.2 Informix Dynamic Server (IDS) Uninstallation

The directory context for Informix SQL scripts is install-
dir\jdbc\sgl\informix ids\install.

1

Drop the idm operating system user account.

2 Start a client such as SQL Editor.

Log on to your server as user informix or another user with DBA (database administrator)
privileges.

By default, the password for informix is informix.

If you execute scripts as a user other than informix, change all references to informix in the
install scripts prior to execution.

If you aren’t using the informix account with the default password, change the name of the
DBA account name and password in the installation scripts if you haven’t already done so.

Open and execute uninstall.sqgl from the ansi (transactional, ANSI-compliant), 1og
(transactional, non-ANSI-compliant), or no_1og (non-transactional, non-ANSI-compliant)
subdirectory, depending upon which type of database you installed.

3.3.3 Microsoft SQL Server Uninstallation

The directory context for Microsoft SQL Server scripts is install—
dir\jdbc\sgl\mssqgl\install.

1

Start a client such as Query Analyzer.

2 Log on to your database server as user sa.

By default, the sa user has no password.

3 Open and execute the first installation script uninstall.sqgl.

The execute hotkey in Query Analyzer is F5.

Identity Manager 3.5 Driver for JDBC: Implementation Guide

3.3.4 MySQL Uninstallation

The directory context for MySQL SQL scripts is install-
dir\jdbc\sgl\mysgl\install.

1

From a MySQL client, such as mysql, log on as user root or another user with administrative
privileges.

For example, from the command line execute
mysgl -u root -p

By default, the root user has no password.
Execute the uninstallation script uninstall. sql.

For example:
mysgl> \. c:\uninstall.sql

Don’t use a semicolon to terminate this statement.

3.3.5 Oracle Uninstallation

The directory context for Oracle SQL scripts is install-dir\jdbc\sql\oracle\install.

1

From an Oracle client, such as SQL Plus, log on as user SYSTEM.
By default, the password for SYSTEM is MANAGER.

If you execute scripts as a user other than SYSTEM with password MANAGER, change all
references to SYSTEM in the scripts prior to execution.

2 Execute the uninstallation script uninstall.sql.

For example:
SQL> @c:\uninstall.sqgl

3.3.6 PostgreSQL Uninstallation

The directory context for PostgreSQL scripts is install-
dir\jdbc\sgl\postgres\install. The directory context for executing Postgres
commands is postgres-install-dir/pgsqgl/bin.

1

From a Postgres client such as psql, log on as user postgres to the 1 dm database.

For example, from the UNIXC command line, execute
./psgl -d idm postgres

By default, the Postgres user has no password.

From inside psql, execute the script uninstall.sqgl.

For example:
idm=# \i uninstall.sqgl

Drop the database i dm.

For example, from the UNIX command line, execute
./dropdb idm

Remove or comment out entries for the idm user from the pg hba. conf file.

Uninstalling the IDM Driver for JDBC

47

For example:
#host idm idm 255.255.255.255 255.255.255.0

5 Restart the Postgres server to effect changes made to the pg hba. conf file.

3.3.7 Sybase Adaptive Server Enterprise (ASE) Uninstallation

The directory context for Sybase SQL scripts is install-
dir\jdbc\sgl\sybase asel\install.

1 From a Sybase client, such as isql, log on as user sa.

2 Execute the installation script uninstall.sqgl.

For example, from the command line, execute
isgl -U sa -P -i uninstall.sql

By default, the sa account has no password.

48 |dentity Manager 3.5 Driver for JDBC: Implementation Guide

Upgrading the JDBC Driver

Identity Manager 3.5 contains a new architecture for how policies reference one another. To take
advantage of this new architecture, the driver configuration file provided for the JDBC driver must
be upgraded. For more information on the new architecture, see “Upgrading Identity Manager
Policies” in Understanding Policies for Identity Manager 3.5.

You can upgrade the Identity Manager Driver for JDBC at the same time that you install Identity
Manager, or you can upgrade after Identity Manager is installed.

¢ Section 4.1, “Upgrading While Installing Identity Manager 3.5,” on page 49
¢ Section 4.2, “Upgrading after Identity Manager Is Installed,” on page 50

4.1 Upgrading While Installing Identity Manager
3.5

During an Identity Manager 3.5 installation, you can install the Driver for JDBC (along with other
Identity Manager drivers) at the same time that Identity Manager 3.5 is installed. You can upgrade
from DirXML 1.1a, Identity Manager 2, or Identity Manager 3 to Identity Manager 3.5.

The Identity Manager Driver for JDBC 3.5 won’t run on Identity Manager earlier than Identity
Manager 3.0. The Identity Manager Driver for JDBC 2.0 runs on Identity Manager 2.0.

The Identity Manager Driver for JDBC 2.1 won’t run on Identity Manager earlier than Identity
Manager 3.0. To use the Driver for JDBC 2.1, you must upgrade to Identity Manager 3.x.

The Identity Manager Driver for JDBC 2.0 runs on Identity Manager 2.

To upgrade from the Identity Manager Driver for JDBC 1.5 or later to 3.5, install the Driver for
JDBC 3.5. This task replaces only binaries.

You can upgrade from DirXML 1.1a or Identity Manager 2 to Identity Manager 3.

The following tables summarize upgrade paths:

Table 4-1 Upgrading to the Identity Manager Driver for JDBC 2.0

If You Are Running This Version Upgrade to This Version Before Upgrading to This Version
Driver for JDBC earlier than 1.5 Driver for JDBC 1.51 Driver for JDBC 2.0
Driver for JDBC 1.5 or later None Driver for JDBC 2.0

Table 4-2 Upgrading to the Identity Manager Driver for JDBC 2.1 or later

If You Are Running This Version Upgrade to This Version Before Upgrading to This Version
Driver for JDBC earlier than 1.5 Driver for JDBC 1.51 Driver for JDBC 2.1
Driver for JDBC 1.5 or later None Driver for JDBC 3.5

Upgrading the JDBC Driver

49

50

1For Identity Manager Driver for JDBC versions earlier than 1.5, you must first upgrade to version
1.5. Refer to the DirXML Driver 1.5 for JDBC Implementation Guide (http://www.novell.com/
documentation/Ig/dirxmldrivers/index.html). Be sure to use the 2.1 Association Utility. It supersedes
all previous versions.

4.1.1 Backward Incompatibilities

¢ The driver now requires a minimum of two database connections for bidirectional
synchronization. For additional information, refer to “Use Minimal Number of Connections?”
on page 72.

¢ The driver now returns schema qualifiers (when available) for logical database class names
(parent table or view names). This change doesn’t affect existing configurations unless class
names are remapped in Schema Mapping policies. If class names are remapped, all references
to class names in existing policy need to be schema-qualified.

+ Slightly alter existing configurations that use views. Set the parameter Enable Meta-Identifier
Support to Boolean False. See “Enable Meta-Identifier Support?”” on page 80.

+ Slightly alter existing configurations that reference the
com.novell.nds.dirxml.driver.jdbc.util. MappingPolicy class. Methods in this class no longer
edit the source document. Instead, they return node sets that must be copied into the destination
document. The example .xm1 driver configuration file includes examples of how to do this.

¢ Slightly alter existing configurations deployed against DB2/AS400 or other legacy databases
that do not implement or support column position. Add and set the Sort Column Names By
parameter. To sort column names by string collation order, see “Sort Column Names By” on
page 83. The default behavior has been changed to sort column names by hexadecimal value.

4.2 Upgrading after Identity Manager Is Installed

If Identity Manager 3.5 is already installed, you can use either Designer for Identity Manager or
iManager to upgrade the Delimited Text driver.

4.2.1 Upgrading the Driver by Using Designer

1 Make sure that you have updated your driver with all the patches for the version you are
currently running.
We recommend this step for all drivers, to help minimize upgrade issues.
2 Back up the driver.
See Chapter 18, “Backing Up the JDBC Driver,” on page 223.
3 Install Designer version 2.0 or later, then launch Designer.

If you had a project open in Designer when you upgraded Designer, proceed to Step 4. If you
didn’t have a project open in Designer when you upgraded Designer, skip to Step 5.

Identity Manager 3.5 Driver for JDBC: Implementation Guide

http://www.novell.com/documentation/lg/dirxmldrivers/index.html
http://www.novell.com/documentation/lg/dirxmldrivers/index.html
http://www.novell.com/documentation/lg/dirxmldrivers/index.html

4 If you had a project open when upgrading Designer, read the warning message, then click OK.

Restaring project "project”, but it requires a conversion to the newer
Designer Farmat,
When Designer launches, the editors will automatically close.

‘ou will then need to open this project From the Project wiew so that it can be
propetly converted,

Designer closes the project to preform the upgrade.

5 To open and convert the project, double-click System Model in the Project view.

Cutline

= resources
1=F project 2

6 Read the tasks listed in the Project Converter message, then click Next.

@ Project Converter §|

Converting project "project 2"

This project needs to be converted ko this newer version of Designer,

If wou proceed, the wizard will do the Following:

8 Back up your project.

a8 Convert to the new format.

8 Log the changes to a file

2 Open your new projeck

Cancel

Upgrading the JDBC Driver 51

7 Specify the name of the backup project name, then click Next.

@ Project Converter E|

Back Up Project

Before wou convert the project, it will be backed up to the project name
wol specify below,

Backup Mame: | projectz,bakl | ’Eesetl

@ ‘You should hold on ko this backup For a while just be be safe, especially if
wau are using khis project with nightly builds or release candidates.

[< Back “ Mext = 4

8 Read the project conversion summary, then click Convert.

@ pro ject Converter b—q

Pre-Conversion Summary

Review the following before converting wour project:

Your project will be backed up to: project2.bak1

@ Designer now tracks the Identity Manager version of each server, Because this
project does not have wersions vet, they have been defaulted ko 3.5,

¥ou can access the Properties page of any server and change this version

number so that Designer can help make sure vour configuration warks in vour
target environments,

Click Corvvert to begin,

Convert H Cancel

52 Identity Manager 3.5 Driver for JDBC: Implementation Guide

9 Read the project conversion result summary, then click Open Project.

@ Project Converter §|

Results Summary

Conversion Success: 184 files changed.

+ Backed up to: project2 bakl
+ This backup can be opened with Designer 2.0 M4,
+ Clder versions of Designer are on the Download Site's Archive page.

v Conversion.log was created in the root of the backed-up project.

i Cpen Project | ’ Close]

To view the log file that is generated, click View Log.

4.2.2 Upgrading the Driver by Using iManager

1 Make sure that you have updated your driver with all the patches for the version you are
currently running.
To help minimize upgrade issues, we recommend that you complete this step on all drivers.
2 Back up the driver.
See Chapter 18, “Backing Up the JDBC Driver,” on page 223.

3 Verify that Identity Manager 3.5 has been installed and that you have the current plug-ins
installed.

Launch iManager.
Click Identity Manager > Identity Manager Overview.
Click Search to find the Driver Set object, then click the driver that you want to upgrade.

N o g b

Read the message that is displayed, then click OK.

3 ' The wersion of IDM you are running supports an enhanced architecture to define Policy Set
membership,

Do wau want bo conwvert the driver to use the new architecture?

| oK | [Cancel]

IMPORTANT: The example configuration file for the updated driver changed for the Identity
Manager 3.0 release. If your current configuration meets your requirements, you don’t need to

Upgrading the JDBC Driver 53

import this example configuration. If you do import the new sample configuration, you will see an
additional driver for Delimited Text with a new name, a new Identity Vault container specified in the
placement rule, and new rule names.

54 Identity Manager 3.5 Driver for JDBC: Implementation Guide

Importing an Example JDBC
Configuration File

The Identity Manager Driver for JDBC includes an example configuration file that you can use as a
starting point for creating the Driver object. When you import this file, Designer for Identity
Manager or iManager creates and configures the objects and policies needed to make the driver
work properly.

¢ Section 5.1, “Using Designer to Import,” on page 55

¢ Section 5.2, “Using iManager to Import,” on page 55

¢ Section 5.3, “JDBC Driver Settings,” on page 56

5.1 Using Designer to Import

The example . xm1 configuration file creates and configures the Identity Manager objects needed
for the sample driver to work properly. The configuration file also includes example policies that
you can customize.

The following procedure explains one of several ways to import the example configuration file:

Open a project in Designer.

In the Modeler, right-click the Driver Set object, then select New > Driver.
From the drop-down list, select IDM Driver for JDBC 3.5, then click Run.
Configure the driver by filling in the fields.

B WODN =

Specify information specific to your environment. See Table 5-1 on page 56.

a

After specifying parameters, click Finish to import the driver.
6 Test the driver.
7 Deploy the driver into the Identity Vault.

See “Deploying a Driver to an Identity Vault” in the Designer 2.0 for Identity Manager 3.5
guide.

5.2 Using iManager to Import

Identity Manager provides an example configuration file. You installed this file when you installed
the Identity Manager Web components on an iManager server. Think of the example configuration
file as a template that you import and customize or configure for your environment.

1 In iManager, select Identity Manager Utilities > New Driver.

Importing an Example JDBC Configuration File

55

56

2 Select a driver set, then click Next.

Where do vou want to place the new drivers!

* |r an existing driver set

[snati_drsetnovell "

' Ina new driver set

If you place this driver in a new driver set, you must specify a driver set name, context, and

associated server.

3 Select JDBC-IDM3_5-vi.xml, then click Next.

Configure the driver by filling in the configuration parameters.

For information on the settings, see Table 5-

1 on page 56.

5 Define security equivalences by using a User object that has the rights that the driver needs to

have on the server

The Admin user object is most often used for this task. However, you might want to create a

DriversUser (for example) and assign security equivalence to that user. Whatever rights that the
driver needs to have on the server, the DriversUser object must have the same security rights.

Identify all objects that represent administrative roles and exclude them from replication.

Exclude the security-equivalence object (for example, DriversUser) that you specified in Step
2. If you delete the security-equivalence object, you have removed the rights from the driver.

Therefore, the driver can’t make changes to Identity Manager.

7 Click Finish.

Configuration File Conventions

+ Database usernames are the surname of a user concatenated with the corresponding numeric

primary key value. For example, John Doe’s

username could be Doel.

+ Initial passwords are the surname of a user. For example, John Doe’s password would be Doe.

Sybase passwords must be at least 6 characters long. When shorter than 6 characters, last
names are padded with the character “p.” For example, John Doe’s password would be
Doeppp. The padding character can be adjusted in the Subscriber Command Transformation

policies.

5.3 JDBC Driver Settings

Table 5-1 JDBC Driver Settings

Setting

Description

Driver name
Target database

Driver is local/remote

The name that you want to display in the driver set.
That database that the driver writes to.

Specifies whether the driver runs locally or remotely
on a Remote Loader.

Identity Manager 3.5 Driver for JDBC: Implementation Guide

Setting

Description

Synchronization model

Third-party JDBC implementation

Data flow

Database host IP address

Database port

User container DN

Group container DN

Publication mode

Specifies whether the driver uses views to
synchronize directly to existing tables of arbitrary
structure or synchronize to intermediate staging
tables of a particular structure.

The third-party implementation that the driver uses.

Specifies whether the authoritative source of data is
the database, Identity Manager, or bi-directional
(both the database and Identity Manager).

The IP address of the database host.

Specifies the port that the driver uses to
communicate with the database. If you don’t
provide a port number, the Driver Configuration
Wizard provides a default port number for the
database that you selected at install time.

The Distinguished Name (complete context) of the
container where the database users are published.

The Distinguished Name (complete context) of the
container where the database groups are
published.

Specifies whether publication is triggered (default)
or triggerless

Importing an Example JDBC Configuration File

57

58 Identity Manager 3.5 Driver for JDBC: Implementation Guide

Configuring the JDBC Driver

¢ Section 6.1, “Smart Configuration,” on page 59

¢ Section 6.2, “Configuration Parameters,” on page 61
¢ Section 6.3, “Driver Parameters,” on page 62

¢ Section 6.4, “Subscription Parameters,” on page 84
¢ Section 6.5, “Publication Parameters,” on page 92

¢ Section 6.6, “Trace Levels,” on page 102

¢ Section 6.7, “Configuring Third-Party JDBC Drivers,” on page 102

6.1 Smart Configuration

The JDBC driver can recognize the supported set of third-party JDBC drivers and databases. Also,
the driver can dynamically and automatically configure the majority of driver compatibility
parameters. These features alleviate the need for the end user to understand and explicitly set such
parameters.

These features are implemented via the following four types of XML descriptor files, which
describe a third-party JDBC driver or database to the JDBC driver.

¢ Third-party JDBC driver

¢ Third-party JDBC driver import

¢ Database

¢ Database import

Reserved Filenames for Descriptor Files

Descriptor filenames that ship with the driver begin with the underscore character (). Such
filenames are reserved to ensure that descriptor files that ship with the driver do not conflict with
custom descriptor files. Obviously, custom descriptor filenames must not begin with the underscore
character.

Import Descriptor Files

Import descriptor files allow multiple, nonimport descriptor files to share content. This functionality
reduces the size of nonimport descriptor files, minimizes the need for repetition of content, and
increases maintainability. Import files cannot be imported across major types. That is, JDBC driver
descriptors cannot import database imports, and database descriptors cannot import JDBC driver
imports.

Furthermore, custom nonimport descriptors cannot import reserved descriptor imports. For example,
if a custom third-party JDBC driver descriptor file named custom. xml tries to import a reserved
third-party JDBC driver descriptor named reserved.xml, an error is issued. These limitations
accomplish the following:

+ Ensure that no dependencies exist between reserved and custom import files

Configuring the JDBC Driver 59

60

+ Allow extension of existing reserved descriptor files in later versions of the driver

Descriptor File Locations

Descriptor files must be located in a jar file whose name begins with the prefix “jdbc” (case-
insensitive) and resides in the runtime classpath.

The following table identifies where to place descriptors within a descriptor jar file:

Table 6-1 Where to Place Descriptors

Descriptor Type Directory Path

Third-party JDBC driver com/novell/nds/dirxml/driver/jdbc/db/
descriptor/driver

Third-party JDBC driver import com/novell/nds/dirxml/driver/jdbc/db/
descriptor/driver/import

Database com/novell/nds/dirxml/driver/jdbc/db/
descriptor/db

Database import com/novell/nds/dirxml/driver/jdbc/db/

descriptor/db/import

Reserved descriptor files are located in the JDBCConfig. jar file. To ensure that these reserved
files are not overwritten when the Driver for JDBC is updated, place custom descriptors in a
different jar file.

Precedence

Parameters explicitly specified through a management console, such as iManager, always have
precedence over parameters specified through descriptor files. Descriptor file parameters only take
effect when a parameter is not set through the management console.

Parameters and other information specified in a nonimportable descriptor file always have
precedence over that specified in descriptor import files. If a parameter or other information is
duplicated within a descriptor file, the first instance of the parameter or information takes
precedence over subsequent instances.

Between import files, precedence is determined by import order. Import files declared earlier in the
import list take precedence over those that follow.

Custom Descriptor Best Practices

O Do not begin custom descriptor files name with the underscore () character.

QO Place custom descriptor files in a jar file other than JDBCConfig. jar, and begin the
filename with the prefix “jdbc” (case-insensitive).

O Do not use custom descriptors to import reserved import files (filenames that begin with the
underscore character).

Identity Manager 3.5 Driver for JDBC: Implementation Guide

Descriptor File DTDs

The following appendixes contain DTDs for all descriptor file types. These DTDs can help you
construct custom descriptor files.

Table 6-2 Where to Find Descriptor DTDs

Descriptor Type Appendix

Third-party JDBC driver ~ Appendix F, “Third-Party JDBC Driver Descriptor DTD,” on page 241

Third-party JDBC driver ~ Appendix G, “Third-Party JDBC Driver Descriptor Import DTD,” on
import page 243

Database Appendix H, “Database Descriptor DTD,” on page 245

Database import Appendix |, “Database Descriptor Import DTD,” on page 247

6.2 Configuration Parameters

* “Viewing Driver Parameters” on page 61
¢ “Deprecated Parameters” on page 61
+ “Authentication Parameters” on page 62

6.2.1 Viewing Driver Parameters

1 In iManager, click Identity Manager > Identity Manager Overview.
2 Locate the driver set containing the driver, then click the driver’s icon.
3 From the Identity Manager Driver Overview, click the driver object.

iManager displays the driver’s configuration parameters.

6.2.2 Deprecated Parameters

The following parameters have been deprecated since version 1.6:

Table 6-3 Deprecated Parameters

Tag Name Justification

connection-tester-class The driver now dynamically creates a connection tester class at runtime,
based upon information in XML descriptor files. This parameter is still
operable, to ensure backwards compatibility. Its continued use, however, is
discouraged.

connection-test-stmt The driver now dynamically creates a connection tester class at runtime,
based upon information in XML descriptor files. This parameter is still
operable, to ensure backwards compatibility. Its continued use, however, is
discouraged.

reconnect-interval The reconnect interval is now fixed at 30 seconds on both channels.

Configuring the JDBC Driver

61

62

6.2.3 Authentication Parameters

After you import the driver, provide authentication information for the target database.

Authentication ID

An Authentication ID is the name of the driver’s database user/login account.The installation SQL
script for each database provides information on the database privileges required for this account to
authenticate to a supported database. The scripts are located in the install-dir\tools\sql\abbreviated-
database-name\install install-dir\tools\sql\abbreviated-database-name\install directory.

This value can be referenced in the Connection Properties parameter value via the token
{Susername}. See “Connection Properties” on page 74.

The default value for the sample configuration is idm.

Authentication Context
The authentication context is the JDBC URL of the target database.

URL format and content are proprietary. They differ between third-party JDBC drivers. However,
they have some similarities in content. Each URL, whatever the format, usually includes an IP
address or DNS name, port number, and a database identifier. For the exact syntax and the content
requirements of your driver, consult your third-party driver documentation.

For a list of JDBC URL syntaxes for supported third-party drivers, see “JDBC URL Syntaxes” on
page 196.

IMPORTANT: Changing anything in this value other than URL properties forces a
resynchronization of all objects when triggerless publication is used.

Application Password

An application password is the password for the driver’s database user/login account. The default
value for the sample driver configuration is novell.

This value can be referenced in the Connection Properties parameter value via the token
{$Spassword}. See “Connection Properties” on page 74.

6.3 Driver Parameters

The following table summarizes all driver-level parameters and their properties:

Table 6-4 Driver Parameters and Properties

Display Name Tag Name Sample Value Default Value Required
Third-Party JDBC jdbc-class oracle.jdbc.driver.OracleDri (none) yes
Driver Class Name ver

Time Syntax time-syntax 1 (integer) 1 (integer) no

Identity Manager 3.5 Driver for JDBC: Implementation Guide

Display Name Tag Name Sample Value Default Value Required
Synchronization Filter sync-filter schema (include by (none) no
schema membership)
Schema Name sync-schema indirect (none) yes1
Include Filter include-table-filter IDM_.* (none) no
Expression
Exclude Filter exclude-table-filter BIN\$.{22}==\$0 (none) no
Expression
Table/View Names sync-tables usr (none) yes'
Connection Initialization connection-init USE idm (none) no
Statements
Use Minimal Number of use-single-connection 0 (no) (dynamic3) no
Connections?
Connection Properties connection-properties ~ USER={$username}; (dynamic3) no
PASSWORD={$password}
State directory state-dir . (current directory) . (current no
directory)
JDBC Driver Descriptor jdbc-driver-descriptor ~ ora_client_thin.xml (none) no
Filename
Database Descriptor database-descriptor ora_10g.xml (none) no
Filename
Use Manual use-manual- 1 (yes) (dynamicz) no
Transactions? transactions
Transaction Isolation transaction-isolation- read committed (dynamic3) no
Level level
Reuse Statements? reuse-statements 1 (reuse) (dynamic3) no
Number of Returned handle-stmt-results one (dynamic3) no
Result Sets
Enable Statement- enable-locking 1 (yes) 0 (no) no
Level Locking?
Lock Statement lock-generator-class com.novell.nds.dirxml.drive (dynamic®) no
Generator Class r.jdbc.db.lock.OraLockGen
erator
Enable Referential enable-refs 1 (yes) 1 (yes) no
Attribute Support?
Enable Meta-ldentifier =~ enable-meta-identifiers 1 (yes) 1 (yes) no
Support?
Force Username Case force-username-case upper (to uppercase) (none) no
Left Outer Join left-outer-join-operator (+) (dynamic3) no
Operator

Configuring the JDBC Driver

63

Display Name Tag Name Sample Value Default Value Required
Retrieve Minimal minimal-metadata 0 (no) (dynamic3) no
Metadata

Function Return function-return-method result set (dynamic3) no
Method

Supports Schemas in supports-schemas-in- 1 (yes) (dynamic®) no
Metadata Retrieval? metadata-retrieval

Sort Column Names By column-position- com.novell.nds.dirxml.drive (dynamic®) no

comparator

r.jdbc.util.config.comp.Strin
gByteComparator
(hexadecimal value)

! One of these mutually-exclusive parameters must be present if the Synchronization Filter
parameter is not present. See “Synchronization Filter” on page 68.
2 This default is derived dynamically at runtime from descriptor files and database metadata.
3 This default is derived dynamically from descriptor files at runtime.

Driver parameters fall into the following subcategories:

¢ “Uncategorized Parameters” on page 85

¢ “Database Scoping Parameters” on page 68

¢ “Connectivity Parameters” on page 72

¢ “Compatibility Parameters” on page 74

6.3.1 Uncategorized Parameters

¢ “Third-Party JDBC Driver Class Name” on page 64

¢ “Time Syntax” on page 65

¢ “State Directory” on page 66

Third-Party JDBC Driver Class Name

This parameter is the fully-qualified Java class name of your third-party JDBC driver.

The following table lists the properties of this parameter:

Table 6-5 Third-Party JDBC Driver Class Name: Properties

Property Value

Tag Name jdbc-class

Required? yes

Case-Sensitive? yes

Sample Value oracle.jdbc.driver.OracleDriver
Default Value (none)

64 Identity Manager 3.5 Driver for JDBC: Implementation Guide

For a list of supported third-party JDBC driver classnames, see “JDBC Driver Class Names” on
page 196.

Time Syntax

The Time Syntax parameter specifies the format of time-related data types that the driver returns.
The format can be any of the following options:
¢ “Return Database Time, Date, and Timestamp Values as 32-Bit Integers” on page 65
¢ “Return Database Time, Date, and Timestamp Values as Canonical Strings” on page 65
¢ “Return database Time, Date, and Timestamp Values in their Java String Representation as
Returned by the Method toString():java.lang.String” on page 66
Return Database Time, Date, and Timestamp Values as 32-Bit Integers

This is the default.

eDirectory Time and Timestamp syntaxes are composed of unsigned, 32-bit integers that express the
number of whole seconds that have elapsed since 12:00 a.m., January 1st, 1970 UTC. The maximum
range of this data type is approximately 136 years. When interpreted as unsigned integers (as
originally intended), these syntaxes are capable of expressing dates and times to the second in the
range of 1970 to 2106. When interpreted as a signed integer, these syntaxes are capable of
expressing dates and times to the second in the range of 1901 to 2038.

This option has two problems:

¢ Identity Vault Time and Timestamp syntaxes cannot express as large a date range as database
Date or Timestamp syntaxes.

¢ Identity Vault Time and Timestamp syntaxes are granular to the second. Database Timestamp
syntaxes are often granular to the nanosecond.

The second and third options overcome these two limitations.

NOTE: Map the database Time, Date, and Timestamp values to eDirectory attributes of type Time
or Timestamp.

Return Database Time, Date, and Timestamp Values as Canonical Strings

The following table shows abstract database data types and their corresponding canonical string
representations:

Table 6-6 Database Types and Canonical String Representations

JDBC Data Type Canonical String Format1
java.sql.Time HHMMSS

java.sql.Date CCYYMMDD

ava.sql.Timestamp CCYYMMDDHHMMSSNNNNNNNNN

Ic= century, Y = year, M = month D = day, H = hour, M= minute, S = second, N = nano

Configuring the JDBC Driver 65

66

These fixed-length formats collate in chronological order on any platform in any locale. Even
though the precision of nanoseconds varies by database, the length of Timestamps does not.

NOTE: Map the database Time, Date, and Timestamp values to attributes of type Numeric String.

Return database Time, Date, and Timestamp Values in their Java String Representation as
Returned by the Method toString():java.lang.String

The following table shows abstract database data types and their corresponding Java String
representations:

Table 6-7 Database Types and Java String Formats

JDBC Data Type Java String Format1
java.sql.Time hh:mm:ss

java.sqgl.Date yyyy-mm-dd
java.sql.Timestamp yyyy-mm-dd hh:mm:ss.fffffffff

1 y= year, m= month, d= day, h= hour, m= minute, s= second, f= nano

These fixed-length formats collate in chronological order on any platform in any locale. The
precision of nanoseconds, and hence the length of Timestamps, varies by database.

NOTE: Map the database Time, Date, and Timestamp values to attributes of type Case Ignore/Case
Exact String.

The following table lists the properties of the Time Syntax parameter:

Table 6-8 Time Syntax: Properties

Property Value

Tag Name time-syntax
Required? no

Default Value 1 (integer)
Legal Values 1 (integer)

2 (canonical string)
3 (java string)

Schema-Dependent? True

State Directory

The State Directory parameter specifies where a driver instance should store state data. State data is
currently used for triggerless publication. See “Triggerless Publication Parameters” on page 98.
State data might be used to store additional state information in the future.

Identity Manager 3.5 Driver for JDBC: Implementation Guide

Each driver instance has two state files. State filenames follow the formats jdbc_driver-instance-
guid.db and jdbc_driver-instance-guid.lg. For example, jdbc_bd2a3dd5-d571-4171-a195-
28869577b87e.db and jdbc _bd2a3dd5-d571-4171-a195-28869577b87e.lg are state filenames.

State files are named to be unique. These names are not intuitive. The names begin with jdbc and
end in .1g or .db. The rest of the filename is a GUID value that must be looked up by using a
directory browser that can display it.

Defunct state files (those belonging to deleted drivers) in the state directory are deleted each time a
driver instance with the same state directory is started.

Changes That Can Force Triggerless Publisher Resynchronization

If you delete state files, the triggerless publisher will build new state files by resynchronizing. If you
move the JDBC driver without moving the state files, the triggerless publisher builds new state files
by resynchronizing. Changing to and from the Remote Loader is a move. Therefore, if you move the
JDBC driver using triggerless publication and want to avoid a full resync, also move all jdbc_*.1g
and jdbc_*.db files in the state directory.

If more than two files exist in the specified state directory, you must look up the GUID to know
which files belong to the driver instance being moved. To identify a driver instance’s state files, you
can use DSTrace or DSBrowse. For convenience, the IDM engine traces each driver's GUID in
DSTrace on startup.You can use Dsbrowse to find the GUID.

If no value is provided for the state directory parameter, or the value is ', the state directory is the
current directory. The current directory depends upon the following:

¢ The platform that the driver is running on

¢ Whether the driver is running locally or remotely

When a process is started, a default directory in the file system is assigned to it. The default
directory is the current directory "." If you don't supply a value, the default State Directory is the
current directory (the one that the process is running in).

Table 6-9 Default Directories

Platform or Environment Default Directory

Windows, for the Remote Loader novell\remoteloader

Windows, for Identity Manager (local; not on the c:\novell\nds\dibfiles
Remote Loader)

NetWare (local) _netware

The current directory might be different for a custom installation.

No data is lost when resynchronization occurs, although additional data might remain. For example,
because deletes are not captured, users that were deleted in the database during the move will not be
disabled/deleted (depending upon policy).

Moving the driver is not to be undertaken whimsically. As a rule of thumb, don't move the driver
unless you must do so.

Configuring the JDBC Driver

67

68

Properties

The following table lists the properties of the State Directory parameter:

Table 6-10 State Directory: Properties

Property Value

Tag Name state-dir

Required? no

Case-Sensitive? platform-dependent
Sample Value c:\novell\nds\DIBFiles
Default Value . (current directory)

6.3.2 Database Scoping Parameters

¢ “Synchronization Filter” on page 68

¢ “Schema Name” on page 70

¢ “Include Filter Expression” on page 71
¢ “Exclude Filter Expression” on page 71

¢ “Table/View Names” on page 71

Synchronization Filter

The Synchronization Filter parameter determines which database objects, such as tables and views,

are members of the synchronization schema (the set of tables/views visible to the driver at runtime).

With the addition of this parameter, the driver can now run in two modes: schema-aware or schema-
unaware.

Schema-Unaware Mode. When the Synchronization Filter parameter is present and set to empty
(exclude all tables/views), the driver is schema-unaware. It does not retrieve table/view metadata on
startup. Therefore, no metadata methods are required. See Appendix D, “java.sql.DatabaseMetaData
Methods,” on page 233.

When schema-unaware, the synchronization schema can be empty. Both the Schema Name and
Sync Tables/Views parameters are completely ignored. Neither is required. Both can be absent,
present, valued or valueless. See “Schema Name” on page 70 and “Table/View Names” on page 71.

In schema-unaware mode, the driver acts as a pass-through agent for embedded SQL. In this state,
standard XDS events (for example, Add, Modify, and Delete) are ignored. See Chapter 13,
“Embedded SQL Statements in XDS Events,” on page 157. Also, triggered or triggerless
publication no longer work.

Schema-Aware Mode. When the Synchronization Filter parameter is not present or set to a value
other than empty (exclude all tables/views), the driver is schema-aware. It retrieves table/view
metadata on a limited number of tables/view to facilitate data synchronization. You can cache
metadata on all tables/views owned by a single database user (include by schema membership), or
cache metadata on an explicit list of table/view names (include by table/view name). When schema-

Identity Manager 3.5 Driver for JDBC: Implementation Guide

aware, the driver retrieves database table/view metadata on startup. For a list of required metadata

methods, see Appendix D, “java.sql.DatabaseMetaData Methods,” on page 233.

When schema-aware, parameter Schema Name or Table/View Names must be present and have a
value. Because these two parameters are mutually exclusive, only one parameter can have a value.

See “Schema Name” on page 70 and “Table/View Names” on page 71.

The following table lists parameters that require the driver to be schema-aware. When the driver is

schema-unaware, these parameters do not have any effect on driver behavior.

Table 6-11 Schema-Dependent Parameters

Parameter

Lock Statement Generator Class

Enable Referential Attribute Support?

Enable Meta-Identifier Support?
Left Outer Join Operator

Retrieve Minimal Metadata

Supports Schemas in Metadata Retrieval?

Sort Column Names By
Disable Statement-Level Locking
Check Update Counts?

Add Default Values on Insert?

Generation/Retrieval Method (Table-Global)

Retrieval Timing (Table-Global)
Retrieval Timing

Disable Publisher?

Disable Statement-Level Locking?
Publication Mode

Enable Future Event Processing?
Event Log Table Name

Delete Processed Rows?

Allow Loopback?

Startup Option

Polling Interval (In Seconds)
Publication Time of Day

Post Polling Statements

Batch Size

Configuring the JDBC Driver

69

70

The following table lists the properties of this parameter:

Table 6-12 Synchronization Filter: Properties

Property Value
Tag Name sync-filter
Required? no

Case-Sensitive? no
Sample Value indirect

Legal Values empty (exclude all tables/views)
schema (include by schema membership)
list (include by table/view name)

Default Value: (none)

Schema Name

The Schema Name parameter identifies the database schema being synchronized. A database
schema is analogous to the name of the owner of the tables or views being synchronized. For
example, to synchronize two tables, usr and grp, each belonging to database user idm, you enter
idm as this parameter’s value.

When using this parameter instead of Table/View Names, names of database objects are implicitly
schema-qualified by the driver. As such, parameters referencing stored procedure, function, or table
names do not need to be schema-qualified unless they reside in a schema other than the one
specified here. In particular, Method and Timing (Table-Local) and Event Log Table Name are
affected. See “Table/View Names” on page 71, “Method and Timing (Table-Local)” on page 89, and
“Event Log Table Name” on page 96.

The following table lists the properties of this parameter:

Table 6-13 Schema Name: Properties

Property Value

Tag Name sync-schema

Required? yes'

Case-Sensitive? See “Undelimited Identifier Case Sensitivity” on page 184.
Sample Value indirect

Default Value: (none)

! When the Schema Name parameter is used without the Synchronization Filter parameter, the
Table/View Names parameter must be left empty or omitted from a configuration. See
“Synchronization Filter” on page 68 and “Table/View Names” on page 71.

Identity Manager 3.5 Driver for JDBC: Implementation Guide

IMPORTANT: Changing the value of the Schema Name parameter forces a resync of all objects
when triggerless publication is used.

Include Filter Expression

The Include Filter Expression parameter is only operative when the Schema Name parameter is
used. See “Schema Name” on page 70.

The following table lists the properties of this parameter:

Table 6-14 Include Filter Expression: Properties

Property Value

Tag Name include-table-filter

Required? no

Case-Sensitive? yes

Sample Value idm_*. (all table/view names starting with “idm_")
Default Value (none)

Legal Values (any legal Java regular expression)

Exclude Filter Expression

This parameter is only operative when the Schema Name parameter is used. See “Schema Name™ on
page 70.

The following table lists the properties of this parameter:

Table 6-15 Exclude Filter Expression: Properties

Property Value

Tag Name exclude-table-filter

Required? no

Case-Sensitive? yes

Sample Value bin*. (all table/view names starting with “bin”)
Default Value (none)

Legal Values (any legal Java regular expression)

Table/View Names

The Table/View Names parameter allows you to create a logical database schema by listing the
names of the logical database classes to synchronize. Logical database class names are the names of
parent tables and views. It is an error to list child table names.

Configuring the JDBC Driver

7

72

This parameter is particularly useful for synchronizing with databases that do not support the
concept of schema, such as MySQL, or when a database schema contains a large number of tables or
views of which only a few are of interest. Reducing the number of table/view definitions cached by
the driver can shorten startup time as well as reduce runtime memory utilization.

When using this parameter instead of Schema Name, you likely need to schema-qualify other
parameters that reference stored procedure, function, or table names. In particular, the Method and
Timing (Table-Local) and Event Log Table Name parameters are affected. See “Schema Name” on
page 70, “Method and Timing (Table-Local)” on page 89 and “Event Log Table Name” on page 96.

The following table lists the properties of this parameter:

Table 6-16 Table/View Names: Properties

Property Value

Tag Name sync-tables

Required? yes'

Case-Sensitive? See “Undelimited Identifier Case Sensitivity” on page 184.
Delimiters semicolon, white space, comma

Sample Value indirect.usr; indirect.grp

Default Value (none)

"'When this parameter is used without the Synchronization Filter parameter, the Schema Name
parameter must be left empty or omitted from a configuration. See “Synchronization Filter” on
page 68 and “Schema Name” on page 70.

IMPORTANT: Changing anything in the Table/View Name parameter other than URL properties
forces a resynchronization of all objects when triggerless publication is used.

6.3.3 Connectivity Parameters

¢ “Use Minimal Number of Connections?” on page 72
¢ “Connection Initialization Statements” on page 73

¢ “Connection Properties” on page 74

Use Minimal Number of Connections?

The Use Minimal Number of Connections? parameter specifies whether the driver should use two
instead of three database connections.

By default, the driver uses three connections: one for subscription, and two for publication. The
Publisher channel uses one of its two connections to query for events and the other to facilitate
query-back operations.

When this parameter is set to Boolean True, the number of required database connections is reduced
to two. One connection is shared between the Subscriber and Publisher channels. It is used to

Identity Manager 3.5 Driver for JDBC: Implementation Guide

process subscription and publication query-back events. The other is used to query for publication

events.

In previous versions, the driver was able to support bidirectional synchronization by using a single
connection. The publication algorithm was redesigned to increase performance, enable support for
future event processing, and to overcome limitations of the previous algorithm at the expense of
requiring an additional connection.

Table 6-17 Use Minimal Number of Connections?: Properties

Property Value

Tag Name use-single-connection
Required? no

Default Value (dynamic')

Legal Values

Schema-Dependent

1, yes, true (yes)
0, no, false (no)

False

IThis default is derived dynamically from descriptor files at runtime. Otherwise, the default value is

Boolean False.

NOTE: Setting this parameter to Boolean True reduces performance.

Connection Initialization Statements

The Connection Initialization Statements parameter specifies what SQL statements, if any, should be
executed immediately after connecting to the target database. Connection initialization statements
are useful for changing database contexts and setting session properties. These statements are
executed each time the driver, irrespective of channel, connects or reconnects to the target database.

The following table lists the properties of this parameter:

Table 6-18 Connection Initialization Statements: Properties

Property Value
Tag Name connection-init
Required? no

Case-Sensitive?
Delimiters
Sample Value
Default Value

Schema-Dependent

See “Undelimited Identifier Case Sensitivity” on page 184.
semicolon

USE idm; SET CHAINED OFF

(none)

False

Configuring the JDBC Driver

73

74

Connection Properties

The Connection Properties parameter specifies authentication properties. This parameter is useful
for specifying properties that cannot be set via the JDBC URL specified in the Authentication
Context parameter. See “Authentication Context” on page 62.

The primary purpose of this parameter is to enable encrypted transport for third-party JDBC drivers.
For a list of relevant connection properties, see “Sybase Adaptive Server Enterprise JConnect JDBC
Driver” on page 208 and “Oracle Thin Client JDBC Driver” on page 204.

Connection properties are specified as key-value pairs. The key is specified as the value to the left of
the “=" character. The value is the value to the right of the “=" character. You can specify multiple
key-value pairs, but each pair must be delimited by the *;” character.

When you use the Connection Properties parameter, authentication information can be passed via
the JDBC URL specified in the Authentication Context parameter or here. See “Authentication
Context” on page 62.

If specified as connection properties, value tokens can be used as placeholders for the database
username specified in the Authentication ID parameter and the password specified in the
Application Password parameter. See “Authentication ID”” on page 62 and “Application Password”
on page 62. For username, the token is { Susername }. For password, the token is
{Spassword}.

The following table lists the properties of this parameter:

Table 6-19 Connection Properties: Properties

Property Value

Tag Name connection-properties

Required? no

Case-Sensitive? third-party JDBC driver-dependent

Delimiters semicolon

Sample Value USER={$username}; PASSWORD={$password};
SYBSOCKET_FACTORY=DEFAULT

Default Value (none)

Schema-Dependent False

6.3.4 Compatibility Parameters

¢ “JDBC Driver Descriptor Filename” on page 75
¢ “Database Descriptor Filename™ on page 75

¢ “Use Manual Transactions?” on page 76

+ “Transaction Isolation Level” on page 76

+ “Reuse Statements?”” on page 77

¢ “Number of Returned Result Sets” on page 78

Identity Manager 3.5 Driver for JDBC: Implementation Guide

¢ “Enable Statement-Level Locking?” on page 79

+ “Lock Statement Generator Class” on page 79

+ “Enable Referential Attribute Support?” on page 80

¢ “Enable Meta-Identifier Support?” on page 80

¢ “Force Username Case” on page 81

¢ “Left Outer Join Operator” on page 81

¢ “Retrieve Minimal Metadata” on page 82

¢ “Function Return Method” on page 82

¢ “Supports Schemas in Metadata Retrieval?”” on page 83
¢ “Sort Column Names By” on page 83

JDBC Driver Descriptor Filename

The JDBCDriver Descriptor Filename parameter specifies the third-party JDBC descriptor file to
use. Descriptor file names must not be prefixed with the underscore character (for example,
_mysql_jdriver.xml) because such filenames are reserved. Place descriptor files in a jar file
beginning with the case-insensitive prefix “jdbc” (for example, IDBCCustomConfig. jar) and
in the jar file’s com/novell/nds/dirxml/driver/jdbc/db/descriptor/driver
directory.

The following table lists the properties of this parameter:

Table 6-20 JDBC Driver Descriptor Filename: Properties

Property Value

Tag Name jdbc-driver-descriptor

Required? no

Case-Sensitive? platform-dependent

Sample Value my_custom_jdbc_driver_descriptor.xml
Default Value (none)

Schema-Dependent False

Database Descriptor Filename

The Database Descriptor Filename parameter specifies the database descriptor file to use. Do not use
the underscore character in prefixes to Descriptor filenames (for example, mysqgl.xml). Such
names are reserved. Place Descriptor files in a jar file beginning with the case-insensitive prefix
“jdbc” (for example, JDBCCustomConfig. jar). Also, place Descriptor files in the jar file’s
com/novell/nds/dirxml/driver/jdbc/db/descriptor/db directory.

The following table lists the properties of this parameter:

Configuring the JDBC Driver

75

Table 6-21 Database Descriptor Filename: Properties

Property Value

Tag Name jdbc-driver-descriptor

Required? no

Case-Sensitive? platform-dependent

Sample Value my_custom_database_descriptor.xml
Default Value (none)

Schema-Dependent False

Use Manual Transactions?

The Use Manual Transactions? parameter specifies whether to use manual or user-defined
transactions.

This parameter is primarily used to enable interoperability with MySQL MyISAM table types,
which do not support transactions.

When set to Boolean True, the driver uses manual transactions. When set to Boolean False, each
statement executed by the driver is executed autonomously (automatically).

The following table lists the properties of this parameter:

Table 6-22 Use Manual Transactions?: Properties

Property Value

Tag Name use-manual-transactions
Required? no

Case-Sensitive? no

Default Value (dynamic1)

Legal Values 1, yes, true (yes)

0, no, false (no)

Schema-Dependent False

IThis default is derived dynamically from descriptor files and database metadata at runtime.

NOTE: To ensure data integrity, set this parameter to Boolean True whenever possible.

Transaction Isolation Level

The Transaction Isolation Level parameter sets the transaction isolation level for connections that
the driver uses. Six values exist:

¢ unsupported

76 Identity Manager 3.5 Driver for JDBC: Implementation Guide

¢ none

¢ read uncommitted
¢ read committed

¢ repeatable read
¢ serializable

Five of the values correspond to the public constants defined in the java.sql Interface Connection
(http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Connection.html).

Because some third-party drivers do not support setting a connection’s transaction isolation level to
none, the driver also supports the additional non-standardized value of unsupported.
PostgreSQL online documentation (http://www.postgresql.org/docs/current/static/transaction-
iso.html) has one of the better, concise primers on what each isolation level actually means.

IMPORTANT: The list of supported isolation levels varies by database. For a list of supported
transaction isolation levels for supported databases, see “Supported Transaction Isolation Levels” on
page 185.

We recommend using a transaction isolation level of read committed because it is the
minimum isolation level that prevents the driver from seeing uncommitted changes (dirty reads).

The following table lists the properties of this parameter:

Table 6-23 Transaction Isolation Level: Properties

Property Value
Tag Name transaction-isolation-level
Required? no
Case-Sensitive? no
Default Value (dynamic')
Legal Values unsupported
none

read uncommitted
read committed
repeatable read
serializable

Schema-Dependent False

! This default is derived dynamically from descriptor files at runtime. Otherwise, the default value is
read committed.

Reuse Statements?

The Reuse Statements? parameter specifies whether one or more java.sql.Statement items are active
at a time on a given connection. See java.sql.Statement (http://java.sun.com/j2se/1.5.0/docs/api/
java/sql/Statement.html).

Configuring the JDBC Driver

77

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Connection.html
http://www.postgresql.org/docs/current/static/transaction-iso.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Statement.html

This parameter is primarily used to enable interoperability with Microsoft SQL Server 2000 Driver
for JDBC.

When set to Boolean True, the driver allocates a Java SQL Statement once and then reuses it. When
set to Boolean False, the driver allocates/deallocates statement objects each time they are used,
ensuring that no more than one statement is active at a time on a given connection.

The following table lists the properties of this parameter:

Table 6-24 Reuse Statements?: Properties

Property Value

Tag Name reuse-statements
Required? no
Case-Sensitive? no

Default Value (dynamic’)

Legal Values 1, yes, true (yes)

0, no, false (no)

Schema-Dependent False

! This default is derived dynamically from descriptor files at runtime. Otherwise, the default value is
Boolean True.

NOTE: Setting this parameter to Boolean False degrades performance.

Number of Returned Result Sets

The Number of Returned Result Sets parameter specifies how many java.sql.Result objects can be
returned from an arbitrary SQL statement. See java.sql.ResultSet (http://java.sun.com/j2se/1.5.0/
docs/api/java/sql/ResultSet.html).

This parameter is primarily used to avoid infinite loop conditions in “Oracle Thin Client JDBC
Driver” on page 204 when evaluating the results of arbitrary SQL statements.

The following table lists the properties of this parameter:

Table 6-25 Number of Returned Result Sets: Properties

Property Value

Tag Name handle-stmt-results
Required? no

Sample Value one

Default Value (dynamic')

78 Identity Manager 3.5 Driver for JDBC: Implementation Guide

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/ResultSet.html

Property

Value

Legal Values

Schema-Dependent

none, no (none)
single, one (one)
multiple, many, yes (multiple)

False

! This default is derived dynamically from descriptor files at runtime. Otherwise, the default value is

multiple, many, or yes.

Enable Statement-Level Locking?

The Enable Statement-Level Locking? parameter specifies whether the driver explicitly locks
database resources before executing SQL statements.

The following table lists the properties of this parameter:

Table 6-26 Enable Statement-Level Locking?: Properties

Property Value

Tag Name enable-locking
Required? no

Default Value 0 (no)

Legal Values

Schema-Dependent

1, yes, true (yes)
0, no, false (no)

True

Lock Statement Generator Class

The Lock Statement Generator Class parameter specifies which DBLockStatementGenerator
implementation to use to generate the SQL statements necessary to explicitly lock database
resources for a pending SQL statement. Information on the DBLockStatementGenerator interface is
in the Java documents that ship with the driver.

The following table lists the properties of this parameter:

Table 6-27 Lock Statement Generator Class: Properties

Property Value
Tag Name lock-generator-class
Required? no

Sample Value
Default Value

Legal Values

com.novell.nds.dirxml.driver.jdbc.db.lock.OralLockGenerator
(dynamic1)

1, yes, true (yes)
0, no, false (no)

Configuring the JDBC Driver

79

80

Property Value

Schema-Dependent True

! This default is derived dynamically from descriptor files at runtime. Otherwise, the default value is
com.novell.nds.dirxml.driver.jdbc.db.lock. DBLockGenerator.

Enable Referential Attribute Support?

The Enable Referential Attribute Support? parameter toggles whether the driver recognizes foreign
key constraints between logical database classes. These are used to denote containment. Foreign key
constraints between parent and child tables within a logical database class are unaffected.

When set to Boolean True, foreign key columns are interpreted as referential. When set to Boolean
False, foreign key columns are interpreted as non-referential.

The primary purpose of this parameter is to ensure backward compatibility with the 1.0 version of
the driver. For 1.0 compatibility, set this parameter to Boolean False.

The following table lists the properties of this parameter:

Table 6-28 Enable Referential Attribute Support?: Properties

Property Value

Tag Name enable-refs
Required? no

Default Value 1 (yes)

Legal Values 1, yes, true (yes)

0, no, false (no)

Schema-Dependent True

Enable Meta-ldentifier Support?

The Enable Meta-Identifier Support? parameter toggles whether the driver interprets view column
name prefixes such as “pk * and “fk_” strictly as metadata. When interpreted as metadata, such
prefixes are not considered part of the view column name.

For example, when meta-identifier support is enabled, column “pk_idu” has an effective column
name of “idu,” prohibiting the existence of another column with the same effective name in the same
view. When meta-identifier support is disabled, column “pk_idu” has the effective column name of
“pk_idu,” allowing the existence of another column named “idu.” Furthermore, when meta-
identifier support is enable, a view with a primary key named “pk_idu” would conflict with a table
having a primary key column named “idu.” When meta-identifier support is disabled, they would
not conflict.

When set to Boolean True, view column prefixes are interpreted as metadata. When set to Boolean
False, view column name prefixes are interpreted as part of the column name proper.

The primary purpose of this parameter is to ensure backward compatibility with the 1.5 version of
the driver. For 1.5 compatibility, set this parameter to Boolean False.

Identity Manager 3.5 Driver for JDBC: Implementation Guide

The following table lists the properties of this parameter:

Table 6-29 FEnable Meta-Identifier Support?: Properties

Property Value

Tag Name enable-meta-identifiers
Required? no

Default Value 1 (yes)

Legal Values 1, yes, true (yes)

0, no, false (no)

Schema-Dependent True

Force Username Case

The Force Username Case parameter changes the case of the driver’s username used to authenticate
to the target database.

The primary purpose of this parameter is to enable interoperability with the Informix JDBC Driver
when used against ANSI-compliant databases. See “Informix JDBC Driver” on page 200.

The following table lists the properties of this parameter:

Table 6-30 Force Username Case: Properties

Property Value

Tag Name force-username-case
Required? no

Default Value (don’t force)

Legal Values lower (to lowercase)

mixed (to mixed case)
upper (to uppercase)

Schema-Dependent False

Left Outer Join Operator

The Left Outer Join Operator parameter specifies the left outer join operator used in the triggerless
publication query. It might be used for other purposes in the future.

The following table lists the properties of this parameter:

Table 6-31 Left Outer Join Operator: Properties

Property Value

Tag Name left-outer-join-operator

Configuring the JDBC Driver 81

Property Value

Required? no
Default Value (dynamic')
Legal Values *=

(+)
LEFT OUTER JOIN

Schema-Dependent True

IThis default is derived dynamically from descriptor files at runtime. Otherwise, the default value is
LEFT OUTER JOIN.

Retrieve Minimal Metadata

When set to Boolean True, the driver calls only required metadata methods. When set to Boolean
False, the driver calls required and optional metadata methods. For a list of required and optional
metadata methods, refer to Appendix D, “java.sql.DatabaseMetaData Methods,” on page 233.
Optional metadata methods are required for multivalue and referential attribute synchronization.

Table 6-32 Retrieve Minimal Metadata: Properties

Property Value

Tag Name minimal-metadata
Required? no

Default Value (dynamic')

Legal Values 1, yes, true (yes)

0, no, false (no)

Schema-Dependent True

! This default is derived dynamically from descriptor files at runtime. Otherwise, the default value is
Boolean False.

NOTE: Setting this value to Boolean True improves startup time and third-party JDBC driver
compatibility at the expense of functionality.

Function Return Method
The Function Return Method parameter specifies how data is retrieved from database functions.

The primary purpose of this parameter is to enable interoperability with the Informix JDBC driver.
See “Informix JDBC Driver” on page 200.

When setto result set, function results are retrieved through a result set. When set to return
value, the function result is retrieved as a single, scalar return value.

82 Identity Manager 3.5 Driver for JDBC: Implementation Guide

Table 6-33 Function Return Method: Properties

Property Value

Tag Name function-return-method
Required? no

Default Value (dynamic')

Legal Values result set

return value (scalar return value)

Schema-Dependent False

! This default is derived dynamically from descriptor files at runtime.

Supports Schemas in Metadata Retrieval?

The Supports Schemas in Metadata Retrieval? parameter specifies whether schema names should be
used when retrieving database metadata.

The primary purpose of this parameter is to enable interoperability with the Informix JDBC Driver
when used against ANSI-compliant databases. See “Informix JDBC Driver” on page 200.

When set to Boolean True, schema names are used. When set to Boolean False, they are not.

Table 6-34 Supports Schemas in Metadata Retrieval?: Properties

Property Value

Tag Name supports-schemas-in-metadata-retrieval
Required? no

Default Value (dynamic')

Legal Values 1, yes, true (yes)

0, no, false (no)

Schema-Dependent False

! This default is derived dynamically from descriptor files at runtime. Otherwise, the default value is
Boolean True.

Sort Column Names By

The Sort Column Names By parameter specifies how column position is to be determined for legacy
databases that do not support sorting by column names.

The primary purpose of this parameter is to enable interoperability with legacy databases, such as
DB2/AS400.

Sorting columns names by hexadecimal value ensures that if a driver instance is relocated to a
different server, it continues to function without modification. Sorting column names by platform or
locale string collation order is more intuitive, but might require configuration changes if a driver

Configuring the JDBC Driver 83

instance is relocated to a different server. In particular, log table column order and compound
column name order might change. In the case of the latter, Schema-Mapping policies and object
association values might need to be updated. In the case of the former, log table columns might have

to be renamed.

It is also possible to specify any fully-qualified Java class name as long as the following occur:

¢ The Java class name implements the java.util. Comparator (http://java.sun.com/j2se/1.5.0/docs/
api/java/util/Comparator.html) interface.

¢ The Java class name accepts java.lang.String (http://java.sun.com/j2se/1.5.0/docs/api/java/
lang/String.html) arguments.

¢ The class is in the runtime classpath.

Table 6-35 Sort Column Names By: Properties

Property Value

Tag Name column-position-comparator
Required? no

Default Value (dynamic1)

Legal Values

Schema-
Dependent

com.novell.nds.dirxml.driver.jdbc.util.config.comp.StringByteComparator (hexadecimal
value)

com.novell.nds.dirxml.driver.jdbc.util.config.comp.StringComparator (string collation
order)

(any java.util. Comparator that accepts java.lang.String arguments)

True

! This default is derived dynamically from descriptor files at runtime. Otherwise, the default value is
com.novell.nds.dirxml.driver.jdbc.util.config.comp.StringByteComparator.

IMPORTANT: After you set this parameter for a given configuration, don’t change the parameter.

6.4 Subscription Parameters

The following table summarizes Subscriber-level parameters and their properties:

Table 6-36 Subscriber-Level Parameters and Properties

Display Name Tag Name Sample Value Default Value Required
Disable Subscriber? disable 1 (yes) 0 (no) no
Generation/Retrieval key-gen-method auto none
Method (Table-Global) (subscription

event)

Retrieval Timing (Table-

Global)

key-gen-timing after (after row insertion) before (before no

row insertion)

Identity Manager 3.5 Driver for JDBC: Implementation Guide

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Comparator.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html

Display Name Tag Name Sample Value Default Value Required
Method and Timing key-gen usr("?=indirect.proc_idu()", (none) no
(Table-Local) before)
Disable Statement-Level disable-locking 1 (yes) 0 (no) no
Locking?
Check Update Counts? check-update- 0 (no) 1 (yes) no
count
Add Default Values on add-default- 0 (no) (dynamic') no
Insert? values-on-view-
insert

! This default is derived dynamically from descriptor files at runtime.
Subscription parameters are in two subcategories:

¢ “Uncategorized Parameters” on page 85

¢ “Primary Key Parameters” on page 87

6.4.1 Uncategorized Parameters

+ “Disable Subscriber?” on page 85

+ “Disable Statement-Level Locking?” on page 86
¢ “Check Update Counts?” on page 86

¢ “Add Default Values on Insert?”” on page 87

Disable Subscriber?
The Disable Subscriber? parameter specifies whether the Subscriber channel is disabled.

When this parameter is set to Boolean True, the Subscriber channel is disabled. When the parameter
is set to Boolean False, the Subscriber channel is active.

Table 6-37 Disable Subscriber?: Properties

Property Value
Tag Name disable
Required? no
Default Value 0 (no)

Legal Values 1, yes, true (yes)

0, no, false (no)

Schema-Dependent False

Configuring the JDBC Driver

85

Disable Statement-Level Locking?

The Disable Statement-Level Locking? parameter specifies whether database resources are
explicitly locked on this channel before each SQL statement is executed. This parameter is active
only if Enable Statement-Level Locking? is set to Boolean True.

When this parameter is set to Boolean True, database resources are explicitly locked. When this
parameter is set to Boolean False, database resources are not explicitly locked.

Table 6-38 Disable Statement-Level Locking?: Properties

Property Value

Tag Name disable-locking
Required? no

Default Value 0 (no)

Legal Values 1, yes, true (yes)

0, no, false (no)

Schema-Dependent True

Check Update Counts?

The Check Update Counts? parameter specifies whether the Subscriber channel checks to see if a
table was actually updated when INSERT, UPDATE, and DELETE statements executed against a
table.

When set to Boolean True, update counts are checked. If nothing is updated, an exception is thrown.
When set to Boolean False, update counts are ignored.

When statements are redefined in before-trigger logic, set his parameter to Boolean False
When using Microsoft SQL Server, use the default value, because errors in trigger logic (that might

roll back a transaction) are not propagated back to the Subscriber channel.

Table 6-39 Check Update Counts?: Properties

Property Value

Tag Name check-update-count
Required? no

Default Value 1 (yes)

Legal Values 1, yes, true (yes)

0, no, false (no)

Schema-Dependent True

86 Identity Manager 3.5 Driver for JDBC: Implementation Guide

Add Default Values on Insert?

The Add Default Values on Insert? parameter specifies whether the Subscriber channel provides
default values when executing an INSERT statement against a view.

The primary purpose of this parameter is to enable interoperability with Microsoft SQL Server 2000.
This database requires that view columns constrained NOT NULL have a non-NULL value in an
INSERT statement.

When this parameter is set to Boolean True, default values are provided for INSERT statements
executed against views, and explicit values are not already available. When this parameter is set to
Boolean False, default values are not provided.

Table 6-40 Add Default Values on Insert?: Properties

Property Value

Tag Name add-default-values-on-view-insert
Required? no

Default Value (dynamic')

Legal Values 1, yes, true (yes)

0, no, false (no)

Schema-Dependent True

! This default is derived dynamically from descriptor files at runtime.

6.4.2 Primary Key Parameters

¢ “Generation/Retrieval Method (Table-Global)” on page 88

¢ “Retrieval Timing (Table-Global)” on page 88

+ “Method and Timing (Table-Local)” on page 89
When processing <add> events, which map to INSERT statements, the Subscriber channel uses
primary key values to create Identity Manager associations. These parameters specify how and when
the Subscriber channel obtains the primary key values necessary to construct association values.

How primary key values are obtained is the primary key generation/retrieval method. The retrieval
timing indicates when primary key values are retrieved.

The following table identifies the supported methods and timings:

Table 6-41 Supported Methods and Timings

Method Timing: before (row insertion) Timing: after (row insertion)
None (subscription event) X 0!
Driver (Subscriber-generated) X X
Auto (auto-generated/identity column) 02 X

Configuring the JDBC Driver

87

88

Method Timing: before (row insertion) Timing: after (row insertion)

(stored procedure/function) X X

! The Subscriber channel automatically overrides this timing to before.
2 The Subscriber channel automatically overrides this timing to after.

Generation/Retrieval Method (Table-Global)

The Generation/Retrieval Method (Table-Global) parameter specifies how primary key values are
generated or retrieved for all parent tables and views. The Method and Timing parameter overrides
this parameter on a per-table/view basis. See “Method and Timing (Table-Local)” on page 89.

When this parameter is set to none, primary key values are assumed to already exist in the
subscription event. When this parameter is set to driver, primary key values are generated by one
of the following:

¢ Usinga SELECT (MAX ()+1) statement if retrieval timing is set to before
¢ Using a SELECT MAX () statement if retrieval timing is set to after

For string column types, the Subscriber channel generates a value by using the return value of
System.CurrentTimeMillis(). Other data types are not supported.

When this parameter is set to auto, primary key values are retrieved via the
java.sgl.Statement.getGeneratedKeys () : java.sqgl.ResultSet method. The
MySQL Connector/J JDBC driver is the only supported third-party JDBC driver that currently
implements this method. See “MySQL Connector/J JDBC Driver” on page 204.

Table 6-42 Generation/Retrieval Method (Table-Global): Properties

Property Value

Tag Name key-gen-method
Required? no

Default Value none (subscription event)
Legal Values none (subscription event)

driver (Subscriber-generated)
auto (auto-generated/identity column)

Schema-Dependent True

Retrieval Timing (Table-Global)

The Retrieval Timing (Table-Global) parameter specifies when the Subscriber channel retrieves
primary key values for all parent tables and views. The parameter Method and Timing (Table-Local)
overrides this parameter. See “Method and Timing (Table-Local)” on page 89.

When this parameter is set to be fore, primary key values are retrieved before insertion. When this
parameter is set to af ter, primary key values are retrieved after insertion.

Identity Manager 3.5 Driver for JDBC: Implementation Guide

Table 6-43 Retrieval Timing (Table-Global): Properties

Property Value

Tag Name key-gen-timing

Required? no

Default Value before (before row insertion)
Legal Values before (before row insertion)

after (after row insertion)

Schema-Dependent True

Method and Timing (Table-Local)

The Method and Timing (Table-Local) parameter specifies the primary key generation/retrieval
method and retrieval timing on a per parent table/view basis. It essentially maps a generation/
retrieval method and retrieval timing to a table or view name. The syntax for this parameter mirrors
a procedural programming language method call with multiple arguments (such as, method-
name(argumentl, argument?)).

When using the Table/View Names parameter, you probably need to explicitly schema-qualify any
tables, views, stored procedures or functions referenced in this parameter’s value. When you use the
Schema Name parameter, tables, views, stored procedures, or functions referenced in this
parameter’s value are implicitly schema-qualified with that schema name. If tables, views, stored
procedures, or functions referenced in this parameter’s value are located in a different schema other
than the implicit schema, they must be schema-qualified.

BNF

The BNF (Backus Naur Form (http://cui.unige.ch/db-research/Enseignement/analyseinfo/
AboutBNF.html)) notation for this parameter’s value is the following:

<key-gen> ::=<table-or-view-name> " (" <generation-retrieval-method>,

<retrieval-timing> ")"
{[<delimiter>] <key-gen>}

<generation-retrieval-method> ::= none | driver | auto |
""" <procedure-signature> """
"mwo <function-signature> """

<table-or-view-name> ::= <legal-undelimited-database-table-or-view-
identifier>

<delimiter> ::= ";" | "," | <white-space>

<procedure-signature> ::= <schema-qualifier> "." <stored-routine-

name>" ("<argument-list>")"

<function-signature> ::= "?=" <procedure-signature>
<schema-qualifier> ::= <legal-undelimited-database-username-
identifier>

Configuring the JDBC Driver 89

http://cui.unige.ch/db-research/Enseignement/analyseinfo/AboutBNF.html

90

<stored-routine-name> ::= <legal-undelimited-database-stored-routine

-identifier>
<argument-list> ::= <column-name>{"," <column-name>}
<column-name> ::= <column-from-table-or-view-name-previously-

specified>
Generation or Retrieval Method

The generation or retrieval method specifies how primary key values are to be generated, if
necessary, and retrieved. The possible methods are None, Driver, Auto, and Stored Procedure/
Function:

None

By default, the Subscriber channel assumes that the Identity Vault is the authoritative source of
primary key values and that the requisite values are already present in a given <add> event. If this
is the case, no primary values need to be generated because they already exist. They only need to be
retrieved from the current <add> event. This method is desirable when an eDirectory attribute, such
as GUID, is explicitly schema-mapped to a parent table or view’s primary key column.

Assuming the existence of a table named usr and a view named view usr where the Identity
Vault is the authoritative source of primary key values, this parameter’s value would look something
like the following:

usr (none); view_usr (none)

When you use this method, we recommend mapping GUID rather than CN to a parent table or
view’s primary key column.

Driver
This method assumes that the database is the authoritative source of primary key values for the
specified parent table or view.

When prototyping or in the initial stages of deployment, it is often desirable to have the Subscriber
channel generate primary key values before a stored procedure or function is written. You can also
use this method against databases that do not support stored procedures or functions. When you use
this method in a production environment, however, all SQL statements generated by an <add>
event should be contained in a serializable transaction. For additional information, refer to
“Transaction Isolation Level” on page 76.

Instead of making all transactions serializable, you can also set individual transaction isolation
levels by using embedded SQL attributes. For additional information, refer to Section 13.6,
“Transaction Isolation Level,” on page 164.

For any numeric column types, the Subscriber channel uses the following to generate primary key
values:

¢ A simple SELECT (MAX+1) statement for before timing
¢ A SELECT MAX () statement for after timing

For string column types, the Subscriber channel generates a value by using the return value of
System.CurrentTimeMillis(). Other data types are not supported.

Identity Manager 3.5 Driver for JDBC: Implementation Guide

Assuming the existence of a table named usr and a view named view usr, where the database is
the authoritative source of primary key values, this parameter’s value would look something like the
following:

usr (driver); view usr (driver)

When you use this method, we recommend that you omit primary key columns from Schema
Mapping policies and channel filters.

Auto
This method assumes that the database is the authoritative source of primary key values for the
specified parent table or view.

Some databases support identity columns that automatically generate primary key values for
inserted rows. This method retrieves auto-generated primary key values through the JDBC 3
interface method

java.sgl.Statement.getGeneratedKeys () : Java.sgl.ResultSet. The MySQL
Connector/J JDBC driver is the only supported third-party JDBC driver that currently implements
this method. See “MySQL Connector/J JDBC Driver” on page 204.

Assuming the existence of a table named usr and a view named view usr, where the database is
the authoritative source of primary key values, this parameter’s value would look something like the
following:

usr (auto); view usr(auto)

When you use this method, we recommend that you omit primary key columns from Schema
Mapping policies and channel filters.

Stored-Procedure/Function:
This method assumes that the database is the authoritative source of primary key values for the
specified parent table or view.

Assuming

¢ The existence of a table named usr with a primary key column named idu
¢ Aview named view usr with a primary key values named pk idu

+ The existence of a database function func last usr idu and stored procedure
sp last view usr pk idu that both return the last generated primary key value for
their respective table/view

this parameter’s value would look something like the following:

usr ("?=func last usr idu()");
view usr("sp last view usr pk idu(pk idu)")

In the previous examples, a parameter is passed to the stored procedure. Parameters can also be
passed to functions, but this is not usually necessary. Unlike functions, stored procedures usually
return values through parameters. For stored procedures, primary key columns must be passed as TN
OUT parameters. Non-key columns must be passed as IN parameters.

For both stored procedures and functions, parameter order, number and data type must correspond to
the order, number and data type of the parameters expected by the procedure or function.

When you use this method, we recommend that you omit primary key columns from Schema
Mapping policies and channel filters.

Configuring the JDBC Driver

91

92

Retrieval Timing
The Retrieval Timing parameter specifies when primary key values are retrieved.

An <add> event always results in at least one INSERT statement against a parent table or view.
This portion of this parameter specifies when primary key values are to be retrieved relative to the
initial INSERT statement.

Before
This is the default setting. When this setting is specified, primary key values are retrieved before the
initial INSERT statement.

IMPORTANT: This retrieval timing is supported for all generation/retrieval methods except auto.
Retrieval timing is required for the none method.

After
When this setting is specified, primary key values are retrieved after the initial INSERT statement.

IMPORTANT: This retrieval timing is supported for all generation/retrieval methods except none.
Retrieval timing is required for the auto method.

The following examples augment the previous ones by adding retrieval timing information:
usr (none, before); view usr(none, before)

usr (driver, before); view usr(driver, after)

usr (auto, after); view usr(auto, after)

usr ("?=func_last usr idu()", before);
view usr("sp last view usr pk idu(pk idu)", after)

The following table lists the properties of this parameter:

Table 6-44 Retrieval Timing: Properties

Property Value

Tag Name key-gen

Required? no

Case-Sensitive? See “Undelimited Identifier Case Sensitivity” on page 184.
Sample Value usr("?=proc_idu()", before)

Default Value (none)

Legal Values (any string adhering to the BNF)

Schema-Dependent True

6.5 Publication Parameters

The following table summarizes publisher-level parameters and their properties:

Identity Manager 3.5 Driver for JDBC: Implementation Guide

Table 6-45 Publisher-Level Parameters and Properties

Display Name Tag Name Sample Value Default Value Required

Disable Publisher? disable 1 (yes) 0 (no) no

Disable Statement-Level disable-locking 1 (yes) 0 (no) no

Locking?

Publication Mode publication-mode 2 (triggerless) 1 (triggered) no

Event Log Table Name log-table indirect_process (none) yes1

Delete Processed delete-from-log 0 (no) 1 (yes) no

Rows?

Allow Loopback? allow-loopback 1 (yes) 0 (no) no

Enable Future Event handle-future-events 1 (yes) 0 (no) no

Processing?

Startup Option startup-option no

Polling Interval (In polling-interval 60 10 no?

Seconds)

Publication Time of Day time-of-day 15:30:00 (none) no?

Post Polling Statements post-poll-stmt DELETE FROM (none) no
direct.direct_process

Batch Size batch-size 16 1 no

Heartbeat Interval (In pub-heartbeat-interval 10 0 no

Minutes)

! Required for triggered publication mode.
% These parameters are mutually exclusive.

Publication parameters fall into four major subcategories:

+ “Uncategorized Parameters” on page 85

¢ “Triggered Publication Parameters” on page 96

+ “Triggerless Publication Parameters” on page 98

¢ “Polling Parameters” on page 99

6.5.1 Uncategorized Parameters

¢ “Disable Publisher?” on page 93

¢ “Publication Mode” on page 94

Disable Publisher?

The Disable Publisher? parameter specifies whether the Publisher channel is disabled. When
disabled, the Publisher channel does not query for database events. Unlike with the Disable
Subscriber? parameter, you can still issue database queries on the Publisher channel to facilitate
alternative publication algorithms.

Configuring the JDBC Driver

When this parameter is set to Boolean True, the Publisher channel is disabled. When this parameter
is set to Boolean False, the Publisher channel is active.

Table 6-46 Disable Publisher?: Properties

Property Value

Tag Name disable
Required? no

Default Value 0 (no)

Legal Values 1, yes, true (yes)

0, no, false (no)

Schema-Dependent True

Disable Statement-Level Locking?

The Disable Statement-Level Locking? parameter specifies whether database resources should be
explicitly locked on this channel before each SQL statement is executed. This parameter is only
active if the Enable Statement-Level Locking? parameter is set to Boolean True.

When this parameter is set to Boolean True, database resources are explicitly locked. When this
parameter is set to Boolean False, database resources are not explicitly locked.

Table 6-47 Disable Statement-Level Locking?: Properties

Property Value

Tag Name disable-locking
Required? no

Default Value 0 (no)

Legal Values 1, yes, true (yes)

0, no, false (no)

Schema-Dependent True

Publication Mode
The Publication Mode parameter specifies which publication algorithm is used.

When set to 1 (triggered), the Publisher channel polls the event log table for events. When set to 2
(triggerless), the Publisher channel dredges all tables/views in the synchronization schema for
changes, and synthesizes events.

The following table lists the properties of this parameter:

94 |dentity Manager 3.5 Driver for JDBC: Implementation Guide

Table 6-48 Publication Mode: Properties

Property Value

Tag Name publication-mode
Required? no

Default Value 1 (triggered)
Legal Values 1 (triggered)

2 (triggerless)

Schema-Dependent True

Enable Future Event Processing?

For triggered publication, Enable Future Event Processing? specifies whether rows in the event log
table are ordered and processed by insertion order (the record id column) or chronologically
(the event time column).

When this parameter is set to Boolean False, rows in the event log table are published by order of
insertion. When this parameter is set to Boolean True, rows in the event log table are published
chronologically.

For triggerless publication, Enable Future Event Processing specifies whether database local time is
published with each event. This additional information can be used to force a retry of future-dated
events. In order for this to work, a column specifying when an event should be processed must be
part of each logical database class utilizing this feature and placed in the Publisher filter as a
notification-only attribute.

Database local time is published as an attribute on each XDS event (for example, add, modify,
delete). The attribute name is jdbc:database-local-time, where the jdbc namespace
prefix is bound to urn:dirxml : jdbc. The format is the Java string representation of a
java.sql.Timestamp: yyyy-mm—-dd hh:mm:ss.fffffffff. Depending upon the value of the
Time Syntax parameter, the value indicating when an event should be processed can be published as
an integer, as a canonical string, or as a Java string. See “Time Syntax’ on page 65.

Regardless of the publication syntax, this value can be parsed and compared to the database local
time value. The following table maps the time syntax to the appropriate parse method.

Table 6-49 Mapping Time Syntax to Parse Methods

Time Syntax Parse Method

integer java.sqgl.Timestamp(long) (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/
Timestamp.html)

canonical string com.novell.nds.dirxml.driver.jdbc.db.DSTime(java.lang.String, java.lang.String,
java.lang.String, java.lang.String)

java string java.sqgl.Timestamp.valueOf(java.lang.String):java.sqgl. Timestamp (http://
java.sun.com/j2se/1.5.0/docs/api/java/sql/Timestamp.html)

Configuring the JDBC Driver 95

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Timestamp.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Timestamp.html

96

After both time values are in a common Timstamp object representation, they can be compared by
using the following methods:

¢ com.novell.nds.dirxml.driver.jdbc.db. TimestampUtil.before(java.sql. Timestamp,
java.sql. Timestamp):boolean

¢ com.novell.nds.dirxml.driver.jdbc.db. TimestampUltil.after(java.sql. Timestamp,
java.sql. Timestamp):boolean

An example policy is provided in Appendix J, “Policy Example: Triggerless Future Event
Processing,” on page 249.

When this parameter is set to Boolean True, local database time is published with each event. When
this parameter is set to Boolean False, this information is omitted.

The following table lists the properties of this parameter:

Table 6-50 Enable Future Event Processing?: Properties

Property Value

Tag Name handle-future-events
Required? no

Default Value 0 (no)

Legal Values 1, yes, true (yes)

0, no, false (no)

Schema-Dependent True

6.5.2 Triggered Publication Parameters

The Driver for JDBC can use any of four triggered publication parameters.

+ “Event Log Table Name” on page 96
¢ “Delete Processed Rows?” on page 97

+ “Allow Loopback?” on page 98

Event Log Table Name

The Event Log Table Name parameter specifies the name of the event log table where publication
events are stored.

The table specified here must conform to the definition of Chapter 12, “The Event Log Table,” on
page 147.

When using “Table/View Names™ on page 71, you’ll probably need to explicitly schema-qualify this
table name. When you use “Schema Name” on page 70, this table name is implicitly schema-
qualified with that schema name. If this table is located in a schema other than the implicit schema,
it must be schema-qualified.

The following table lists the properties of this parameter:

Identity Manager 3.5 Driver for JDBC: Implementation Guide

Table 6-51 Event Log Table Name: Properties

Property Value

Tag Name log-table

Required? no’

Case-Sensitive? See “Undelimited Identifier Case Sensitivity” on page 184.
Sample Value eventlog

Default Value (none)

Schema-Dependent True

! This parameter is required if “Publication Mode™ on page 94 is set to 1 (triggered publication).

Delete Processed Rows?

The Delete Processed Rows? parameter specifies whether processed rows are deleted from the event
log table.

When this parameter is set to a Boolean True, processed rows are deleted. When this parameter is set
to Boolean False, processed row’s status field values are updated.

To mitigate the performance hit caused when processed rows remain in the event log table, we
recommend periodically moving the rows into a history table. Do one of the following:

¢ Call a clean-up stored procedure via the parameter “Post Polling Statements™ on page 100.

+ Place a before-delete trigger on the event log table to intercept delete events executed against
the event log table and to move deleted rows to a history table before they are deleted from the
event log table.

The following table lists the properties of this parameter:

Table 6-52 Delete Processed Rows?: Properties

Property Value

Tag Name delete-from-log
Required? no

Default Value 0 (no)

Legal Values 1, yes, true (yes)

0, no, false (no)

Schema-Dependent True

NOTE: Setting this parameter to Boolean False degrades publication performance unless processed
rows are periodically removed from the event log table.

Configuring the JDBC Driver

97

98

Allow Loopback?

The Allow Loopback? parameter specifies whether events caused by the driver’s database user
account should be published.

When this parameter is set to Boolean True, loopback events are published. When this parameter is
set to Boolean False, loopback events are ignored.

The following table lists the properties of this parameter:

Table 6-53 Allow Loopback?: Properties

Property Value

Tag Name allow-loopback
Required? no

Default Value 0 (no)

Legal Values 1, yes, true (yes)

0, no, false (no)

Schema-Dependent True

NOTE: Setting this parameter to Boolean True might degrade performance because extraneous
events might be published.

6.5.3 Triggerless Publication Parameters

The Startup Option parameter specifies what happens when a triggerless publisher starts.

Startup Option

Table 6-54 Startup Option: Settings and Results

Setting Result

1 All objects are assumed to have changed and are republished.
2 Past and present changes are ignored.

3 All past and present changes are published.

The following table lists the properties of this parameter:

Table 6-55 Startup Option: Properties

Property Value

Tag Name startup-option

Identity Manager 3.5 Driver for JDBC: Implementation Guide

Property Value

Required? no
Default Value 1 (process all changes)
Legal Values 1 (resync all objects)

2 (process future changes only)
3 (process all changes)

Schema-Dependent True

IMPORTANT: The following configuration changes can force a full resynchronization:

*

Changing anything in the Authentication Context parameter other than URL properties forces a
resynchronization of all objects when triggerless publication is used.

Changing the value of the Schema Name parameter or the Table/View Names parameter forces
a resynchronization of all objects when triggerless publication is used.

Changing the State Directory parameter value.

Moving or deleting state files. See “Changes That Can Force Triggerless Publisher
Resynchronization” on page 67.

Changing table/view structure in the database (in particular, changing the position or type of
key columns).

6.5.4 Polling Parameters

*

*

*

*

*

“Polling Interval (In Seconds)” on page 99
“Publication Time of Day” on page 100
“Post Polling Statements” on page 100
“Batch Size” on page 101

“Heartbeat Interval (In Minutes)” on page 101

Polling Interval (In Seconds)

The Polling Interval (In Seconds) parameter specifies how many seconds of inactivity elapse
between polling cycles.

The following table lists the properties of this parameter:

Table 6-56 Polling Interval (In Seconds): Properties

Property Value

Tag Name polling-interval
Required? no

Default Value 10 (seconds)
Legal Values 1-604800 (1 week)

Configuring the JDBC Driver

99

Property Value

Schema-Dependent True

NOTE: We recommend that you set this value to no less than 10 seconds.

Publication Time of Day

The Publication Time of Day parameter specifies at what time, each day, publication begins. Time is
understood to mean server local time (the time on the server where the driver is running).

The following table lists the properties of this parameter:

Table 6-57 Publication Time of Day: Properties

Property Value

Tag Name time-of-day

Required? no

Sample Value 13:00:00 (1PM)

Default Value (none)

Legal Values hh:mm:ss (h = hour, m = minute, s = second)
Schema-Dependent True

NOTE: This parameter overrides the parameter Polling Interval (In Seconds). See “Polling Interval
(In Seconds)” on page 99.

Post Polling Statements

The Post Polling Statements parameter specifies the SQL statements that are executed at the end of
each active polling cycle. An active polling cycle is one where some publication activity has
occurred.

The primary purpose of this parameter is to allow cleanup of the event log table following
publication activity.

You probably need to explicitly schema-qualify any database objects (for example, tables, stored
procedures, and functions) referenced in these statements.

The following table lists the properties of this parameter:

Table 6-58 Post Polling Statements: Properties

Property Value
Tag Name post-poll-stmt
Required? no

100 Identity Manager 3.5 Driver for JDBC: Implementation Guide

Property Value

Case-Sensitive? See “Undelimited Identifier Case Sensitivity” on
page 184.

Delimiters semicolon

Sample Value DELETE FROM direct.direct_process

Default Value (none)

Legal Values (any set of legal SQL statements)

Schema-Dependent True

Batch Size

The Batch Size parameter specifies how many events are sent in a single publication document.
Basically, the larger the batch, the better the performance.

¢ Larger batches necessitate fewer trips across the network in both directions.

+ More events in a single document require fewer trips from the Publisher channel to the Identity
Manager engine (assuming that query-back events are not being used).

¢ Larger batches minimize the number of trips from the Publisher channel to the database
(assuming that the third-party JDBC driver and database support batch processing).

¢ Larger batches require fewer commits to state files in the local file system.
Commits can also be costly.
This parameter defines an upper bound. The Publisher channel might override the specified value
under certain conditions. The upper bound of 128 was chosen to minimize the likelihood of

overflowing the Java heap and to mitigate delaying termination of the Publisher thread on driver
shutdown.

The following table lists the properties of this parameter:

Table 6-59 Batch Size: Properties

Property Value

Tag Name batch-size
Required? no
Default Value 1

Legal Values 110128
Schema-Dependent True

Heartbeat Interval (In Minutes)

The Heartbeat Interval (In Minutes) parameter specifies how many minutes the Publisher channel
can be inactive before it sends a heartbeat document. In practice, more than the number of minutes
specified can elapse. That is, this parameter defines a lower bound. The Publisher channel sends a

Configuring the JDBC Driver 101

heartbeat document only if the Publisher channel has been inactive for the specified number of
minutes. Any publication document sent is, in effect, a heartbeat document.

The following table lists the properties of this parameter:

Table 6-60 Heartbeat Interval (In Minutes): Properties

Property Value

Tag Name pub-heartbeat-interval

Required? no

Default Value 0

Legal Values 0to 2,147,483,647 (java.lang.Integer.MAX_VALUE)
Schema-Dependent False

6.6 Trace Levels

To see debugging output from the driver, add a DirXML-DriverTraceLevel attribute value from 1 to
7 on the driver set containing the driver instance. This attribute is commonly confused with the
DirXML-XSL TraceLevel attribute. For more information on driver set trace levels, refer to the
Novell Identity Manager 3.5 Administration Guide.

The driver supports the following seven trace levels:

Table 6-61 Supported Trace Levels

Level Description

1 Minimal tracing
Database properties

Connection status, SQL statements, event log records

Database resource allocation/deallocation; state file contents

2
3
4 Verbose output
5
6 JDBC API (invoked methods, passed arguments, returned values, etc.)
7

Third-party driver

Levels 6 and 7 are particularly useful for debugging third-party drivers.

6.7 Configuring Third-Party JDBC Drivers

The following guidelines help you configure third-party drivers. For specific configuration
instructions, refer to your third-party driver’s documentation.

+ Use the latest version of the driver.

¢ Third-party driver behavior might be configurable.

102 Identity Manager 3.5 Driver for JDBC: Implementation Guide

In many cases, incompatibility issues can be resolved by adjusting the driver’s JDBC URL

properties.

+ When you work with international characters, you often must explicitly specify to third-party
drivers the character encoding that the database uses.

Do this by appending a property string to the end of the driver’s JDBC URL.

Properties usually consist of a property keyword and character encoding value (for example,
jdbc:odbc:mssqgl; charSet=Big5). The property keyword might vary among third-

party drivers.

The possible character encoding values are defined by Sun. For more information, refer to
Sun’s Supported Encoding Web site (http://java.sun.com/j2se/1.5.0/docs/guide/intl/

encoding.doc.html).

The following table lists the recommended settings for maximum driver compatibility. These
settings are useful when you use an unsupported third-party driver during initial configuration.

Table 6-62 Recommended Settings for Third-Party JDBC Drivers

Parameter Name

Compatibility Value

Synchronization filter

Reuse statements?

Use manual transactions?

Use minimal number of connections?
Retrieve minimal metadata?

Number of returned result sets

empty
0 (no)
0 (no)
yes

1 (yes)

one

Configuring the JDBC Driver

103

http://java.sun.com/j2se/1.5.0/docs/guide/intl/encoding.doc.html

104 Identity Manager 3.5 Driver for JDBC: Implementation Guide

Activating the JDBC Driver

Activate the driver within 90 days of installation. Otherwise, the driver won’t work.

For information on activation, see “Activating Novell Identity Manager Products” in the Identity
Manager 3.5 Installation Guide.

Activating the JDBC Driver 105

106 Identity Manager 3.5 Driver for JDBC: Implementation Guide

Managing the JDBC Driver

¢ Section 8.1, “Starting, Stopping, or Restarting the JDBC Driver,” on page 107

¢ Section 8.2, “Migrating and Resynchronizing Data,” on page 107

¢ Section 8.3, “Using the DirXML Command Line Utility,” on page 108

¢ Section 8.4, “Viewing Driver Versioning Information,” on page 108

+ Section 8.5, “Reassociating a Driver Set Object with a Server Object,” on page 113

¢ Section 8.6, “Changing the Driver Configuration,” on page 114

+ Section 8.7, “Storing Driver Passwords Securely with Named Passwords,” on page 114

¢ Section 8.8, “Adding a Driver Heartbeat,” on page 121

8.1 Starting, Stopping, or Restarting the JDBC
Driver

To start the JDBC driver in Designer for Identity Manager:

1 Open a project in the Modeler, then right-click the driver line.
2 Select Live > Start Driver, Stop Driver, or Restart Driver.
To start the JDBC driver in iManager:
1 If you changed default data locations during configuration, ensure that the new locations exist
before you start the driver.
2 Click Identity Manager > Identity Manager Overview.
3 Browse to the driver set where the driver exists, then click Search.

4 Click the driver status indicator in the upper right corner of the driver icon, then click Start
driver, Stop driver, or Restart driver.

If a change log is available, the driver processes all the changes in the change log. To force an
initial synchronization, see “Migrating and Resynchronizing Data” on page 107.

8.2 Migrating and Resynchronizing Data

Identity Manager synchronizes data as it changes. If you want to synchronize all data immediately,
you can choose from the following options:

+ Migrate Data from the Identity Vault: Allows you to select containers or objects you want
to migrate from an Identity Vault to an JDBC server. When you migrate an object, the
Metadirectory engine applies all of the Matching, Placement, and Create policies, as well as the
Subscriber filter, to the object.

+ Migrate Data into the Identity Vault: Allows you to define the criteria that Identity Manager
uses to migrate objects from an JDBC server into an Identity Vault. When you migrate an
object, the Metadirectory engine applies all of the Matching, Placement, and Create policies, as
well as the Publisher filter, to the object. Objects are migrated into the Identity Vault by using
the order you specify in the Class list.

Managing the JDBC Driver 107

+ Synchronize: Identity Manager looks in the Subscriber class filter and processes all objects
for those classes. Associated objects are merged. Unassociated objects are processed as Add
events.

To use one of the options:

1 In iManager, click Identity Manager > Identity Manager Overview.

2 Browse to and select the driver set where the driver exists, then click Search.
3 Click the driver icon.

4 Click the appropriate migration button.

For more information, see Chapter 9, “Synchronizing Objects,” on page 123.

8.3 Using the DirXML Command Line Utility

The DirXML Command Line utility provides command line access to manage the driver. This utility
is not a replacement for iManager or Designer. The primary use of this utility is to allow you to
create platform-specific scripts to manage the driver.

For example, you could create a shell script on Linux to check the status of the driver. See
Appendix M, “The DirXML Command Line Utility,” on page 257 for information about the
DirXML Command Line utility. For daily tasks, use iManager or Designer.

8.4 Viewing Driver Versioning Information

The Versioning Discovery tool only exists in iManager.

¢ Section 8.4.1, “Viewing a Hierarchical Display of Versioning Information,” on page 108
+ Section 8.4.2, “Viewing the Versioning Information As a Text File,” on page 110

¢ Section 8.4.3, “Saving Versioning Information,” on page 112

8.4.1 Viewing a Hierarchical Display of Versioning Information

1 To find your Driver Set object in iManager, click Identity Manager > Identity Manager
Overview, then click Search.

108 Identity Manager 3.5 Driver for JDBC: Implementation Guide

2 1In the Identity Manager Overview, click Information.

Driver Set: Drver Set.Movell Activation required by Movember 1, 2006 [

GroupWiise

User Mgt. Running on server(s):

SiP-LISER. b [DMTEST.Movell

You can also select Identity Manager Utilities > Versions Discovery, browse to and select the
Driver Set object, then click OK.

3 View a top-level or unexpanded display of versioning information.

Versioning Discovery Tool

The Identity Manager Versioning Discovery Tool dizplays information obtained by scanning vour tree for details
concerning your ldentity Manager configuration.

View Save As...

Browse Driver Set and Drivers

B 9 IDESIGHTREE
B &k Driver Set.Movell

E DA TE ST, Mawell
& Active Directory
& Criver

@ Driver 2

@ elirectory Driver
ﬁ) GroupWize

ﬁ) S&P-LISER

c) Userdpplication

HEHBEBEEBE

The unexpanded hierarchical view displays the following:

*

*

*

The eDirectory™ tree that you are authenticated to
The Driver Set object that you selected
Servers that are associated with the Driver Set object

If the Driver Set object is associated with two or more servers, you can view Identity
Manager information on each server.

Drivers

Managing the JDBC Driver

109

4 View versioning information related to servers by expanding the server icon.

Browse Driver Set and Drivers

= ? 1CWihDE SIGRTREE
E & Driver Set.Movell
= [IDMTEST. Navell
Lazt log time: Frd Sep 08 13:31:55 MDT 2008
Found elirectory attHbutes associated with |dentity Manager 3.5.0,16100

The expanded view of a top-level server icon displays the following:
¢ Last log time
+ Version of Identity Manager that is running on the server

5 View versioning information related to drivers by expanding the driver icon.

Browse Driver Set and Drivers

= ? |DwACESIGMTREE
B & Driver Set.Movell
= [IMTEST. Novell
Last log time: Fri Sep 08 13:31:55 MOT 2006
Found elirectory attrbutes aszociated with Identity Managzer 3.5.0.16100
& Active Directary
G} Driver
G} Driver 2
‘;) elirectory Driver
Driver name: |dentity Manager Driver for elirectory
Driver module: com.novell, nds, dirsml, driver, nds, DrverShimlmpl
= El IMTEST. Movell
Drver |D: EDIR,
Drver version: 2.1,100,20061003

0OHHME

The expanded view of a top-level driver icon displays the following:
¢ The driver name

¢ The driver module (for example,
com.novell.nds.dirxml.driver.delimitedtext.Delimited TextDriver)

The expanded view of a server under a driver icon displays the following:
¢ The driver ID

¢ The version of the instance of the driver running on that server

8.4.2 Viewing the Versioning Information As a Text File

Identity Manager publishes versioning information to a file. You can view this information in text
format. The textual representation is the same information contained in the hierarchical view.

1 To find your Driver Set object in iManager, click Identity Manager > Identity Manager
Overview, then click Search.

110 Identity Manager 3.5 Driver for JDBC: Implementation Guide

2 TIn the Identity Manager Overview, click Information.

Driver Set: Driver Set.Movell Activation required by: Nowvember 1, 2006 [5)

Running on server(s):

p IDWATEST . Mowel

Grouplifize

You can also select Identity Manager Utilities > Versioning Discovery, browse to and select the
Driver Set object, then click Information.

Versioning Discovery Tool

The Identity tanager Wersioning Dizcovery Tool dizplays information obtained by scanning vour tree for details
concerning your |dentity Manager configuration.

Wiew Save As...

Browse Driver Set and Drivers

=] ? |DvnDESIGMTREE

B &4 Driver Set.Movell
[1DWTEST. Novell
@ Active Directory
& Driver
G:I Driver 2
& =Directary Driver
CI Groupifize
&) S4P-USER
& Userfpplication

HEHEEHHBNBE

3 In the Versioning Discovery Tool dialog box, click View.

The information is displayed as a text file in the Report Viewer window.

Managing the JDBC Driver 111

Versioning Discovery Tool - Report Viewer

Identity Manager Version Discowvery Tool 2.0 el
Nowvell, Inc. Copyright 2003, 2004

Wersion Query started Saturday, January 20, 2007 11:02:52 4AM MST

Parameter Surmmary:

Default serwver's DN: IDMTEST.MNowell

Default serwver's IP address: 137.65.151.208
Logoged in as admin, context Nowell

Tree name: IDMDESIGHNTREE

Found 7 Identity Manager Drivers =

Driwver 3et: Driver Set.Nowvell
Lriver S3et running on Identity Vault: IDMTEST.MNowell
Last log time: Fri Sep 05 13:31:55 MDT 2006
Found elirectory attributes associated with Identity Manager 3.5.0.1
Driwver: Actiwve Directory.Driver Set.MNowell
Lriver name: Identity Manager Driwver for Actiwve Directory and Excha
Driver module: addeiver.dll
Lriwver S3et running on Identity Wault: IDMTEST.WNowell
Didn't find any DirdML-DriverVersion attributes associated w
This may mean the Metadirectory engine is older than
It doezs not indicate anything sbout the wversion of tl
Driwver: DIriver.Driver Zet.Nowvell
Driver name: Identity Manager Driwver for Peoplesoft
Driver module: HNPFS3him.dll

Driver Zet running on Identity Wault: IDMTEST.Nowvell hatl
i | |

oK

8.4.3 Saving Versioning Information

You can save versioning information to a text file on your local or network drive.

1 To find the Driver Set object in iManager, click Identity Manager > Identity Manager
Overview, then click Search.

112 Identity Manager 3.5 Driver for JDBC: Implementation Guide

2 1In the Identity Manager Overview, click Information.

Driver Set: Driver Set.Movell Activation required by: Nowvember 1, 2006 [5)

Running on server(s):

p IDWATEST . Mowel

Grouplifize

You can also select Identity Manager Utilities > Versions Discovery, browse to and select the
Driver Set object, then click Information.

3 In the Versioning Discovery Tool dialog box, click Save As.
Versioning Discovery Tool

The Identity tanager Wersioning Discovery Tool displays information obtained by scanning vour tree for details
concerning vour |dentity Manager configuration.

View Save As...
Browse Driver Set and Drivers

= ? | D DESIGMTREE

B & Driver Set.Movell
E |DeATE ST, Mowell
& fotive Directary
G:l Driver
c) Dirwer 2
& =Directary Driver
G:l GroupWise
& GAP-USER
G) Userdpplication

HEEHEHEBHBBE

4 In the File Download dialog box, click Save.
5 Navigate to the desired directory, type a filename, then click Save.

Identity Manager saves the data to a text file.

8.5 Reassociating a Driver Set Object with a
Server Object

The driver set object should always be associated with a server object. If the driver set is not
associated with a server object, none of the drivers in the driver set can start.

Managing the JDBC Driver 113

If the link between the driver set object and the server object becomes invalid, you see one of the
following conditions:

¢ When upgrading eDirectory your Identity Manager server, you get the error
UniqueSPIException error -783.
+ No server is listed next to the driver set in the Identity Manager Overview window.

+ A server is listed next to the driver set in the Identity Manager Overview window, but the name
is garbled text.

To resolve this issue, disassociate the driver set object and the server object, then reassociate them.

1 IniManager click Identity Manager > Identity Manager Overview, then click Search to find the
Driver Set object that the driver should be associated with.

2 Click the Remove server icon, then click OK.
3 Click the Add server icon, then browse to and select the Server object.
4 Click OK.

8.6 Changing the Driver Configuration

If you need to change the driver configuration, Identity Manager allows you to make the change
through Designer or iManager.

To change the driver configuration in Designer:

1 Open a project in the Modeler.
2 Right-click the driver line, then select Properties.

To change the driver configuration in iManager:

1 Click Identity Manager > Identity Manager Overview, then click Search to search for the
driver set that is associated with the driver.

2 Browse to the driver, then click the upper right corner of the driver icon.
3 Click Edit Properties.

For a listing of all of the configuration fields, see Appendix N, “Properties of the JDBC Driver,” on
page 271.

8.7 Storing Driver Passwords Securely with
Named Passwords

Identity Manager allows you to store multiple passwords securely for a particular driver. This
functionality is referred to as Named Passwords. Each different password is accessed by a key, or
name.

You can also use the Named Passwords feature to store other pieces of information securely, such as
a user name.

To use a named password in a driver policy, you refer to it by the name of the password, instead of
using the actual password, and the Metadirectory engine sends the password to the driver. The

114 Identity Manager 3.5 Driver for JDBC: Implementation Guide

method described in this section for storing and retrieving named passwords can be used with any
driver without making changes to the driver shim.

¢ Section 8.7.1, “Using Designer to Configure Named Passwords,” on page 115
¢ Section 8.7.2, “Using iManager to Configure Named Passwords,” on page 115
¢ Section 8.7.3, “Using Named Passwords in Driver Policies,” on page 117

+ Section 8.7.4, “Configuring Named Passwords by Using the DirXML Command Line Utility,”
on page 118

8.7.1 Using Designer to Configure Named Passwords

1 Right-click the Driver object, then select Properties.
2 Select Named Password, then click New.

Marne:

Display Mame:
Enker passward:

Re-enter password:

Specify the Name of the named password.

Specify the Display name of the named password.
Specify the named password, then re-enter the password.
Click OK twice.

o O A~ W

8.7.2 Using iManager to Configure Named Passwords

1 Click Identity Manager > Identity Manager Overview.
2 Click Search to search for the driver set that is associated with the driver.

3 In the Identity Manager Overview, click the upper right corner of the driver icon, then click
Edit properties.

4 On the Identity Manager tab, click Named Passwords.

Managing the JDBC Driver 115

The Named Passwords page appears, listing the current named passwords for this driver. If you
have not set up any named passwords, the list is empty.

Lo EUEE R Server Variables | General |

Driver Configuration | Global Config Values | Mamed Passwords | Engine Control Values |
Log Level | Driver Image | Security Equals | Filter | Edit Filter XML | Misc | Excluded Users |

|
MWamed Passwords lets you securely store multiple passwords for a driver. Instead —
of including a password in clear text in a driver policy, you can configure the
policy to request a Named Password.

Add | Remove |

Mamed Passwords

For server: IDMTEST.Novell
] smtp admin
[workflow admin

oK | Cancel | Apply |

5 To add a named password, click Add, complete the fields, then click OK.

NMamed Password

Mamed Passwords lets you securely store multiple passwords for a driver. Instead of including a

password in clear text in a driver policy, you can configure the policy to request a Mamed
Password.

Name:

| |
Display name:

| |
Enter password:

| |

Reenter password:

oK | cancel |

6 Specify a name, display name, and a password, then click OK twice.

You can use this feature to store other kinds of information securely, such as a username.

116 Identity Manager 3.5 Driver for JDBC: Implementation Guide

7 Click OK to restart the driver and have the changes take effect.

To remove a Named Password, select the password name, then click Remove. The password is
removed without prompting you to confirm the action.

8.7.3 Using Named Passwords in Driver Policies

+ “Making a Call to a Named Password” on page 117

+ “Referencing a Named Password” on page 117

Making a Call to a Named Password

Policy Builder allows you to make a call to a named password. Create a new rule and select Named
Password as the condition, then set an action, depending upon if the Named Password is available or
not available.

In Designer, launch Policy Builder, right-click, then click New > Rule.

Specify the name of the rule, then click Next.

Select the condition structure, then click Next.

Select named password for the Condition.

A Hh ON =

Browse to and select the named password that is stored on the driver.
In this example, the named password is userinfo.

6 Select whether the Operator is available or not available.

7 Select an action for the Do field.

In this example, the action is veto.

The example indicates that if the userinfo named password is not available, then the event is vetoed.

Figure 8-1 A Policy Using Named Passwords

Conditions

. & Condition Group 1

v 5 if named password 'userinfo’ not available

Referencing a Named Password

The following example shows how a named password can be referenced in a driver policy on the
Subscriber channel in XSLT:

<xsl:value-of

select="query:getNamedPassword ($srcQueryProcessor, 'mynamedpassword')”
xmlns:query="http://www.novell.com/java/
com.novell.nds.dirxml.driver.XdsQueryProcessor/>

Managing the JDBC Driver 117

8.7.4 Configuring Named Passwords by Using the DirXML
Command Line Utility

¢ “Creating a Named Password in the DirXML Command Line Utility” on page 118
¢ “Removing a Named Password by Using the DirXML Command Line Utility” on page 119

Creating a Named Password in the DirXML Command Line Utility
1 Run the DirXML Command Line utility.

For information, see Appendix M, “The Dir XML Command Line Utility,” on page 257.
2 Enter your username and password.

The following list of options appears.
DirXML commands

1: Start driver

Stop driver

Driver operations...
Driver set operations...
Log events operations...
Get DirXML version

o U b W N

7: Job operations...
99: Quit
Enter choice:

3 Enter 3 for driver operations.
A numbered list of drivers appears.
4 Enter the number for the driver you want to add a named password to.

The following list of options appears.

Select a driver operation for:
driver name
1: Start driver
Stop driver
Get driver state
Get driver start option
Set driver start option
Resync driver
Migrate from application into DirXML
Submit XDS command document to driver

O J oy U wN

9: Submit XDS event document to driver

10: Queue event for driver

11: Check object password

12: Initialize new driver object
13: Passwords operations

14: Cache operations

99: Exit

Enter choice:

5 Enter 13 for password operations.

The following list of options appears.
Select a password operation

118 Identity Manager 3.5 Driver for JDBC: Implementation Guide

~N o 0w N

8:
99:

Set shim password

Reset shim password

Set Remote Loader password
Clear Remote Loader password
Set named password

Clear named password(s)

List named passwords

Get passwords state

Exit

Enter choice:

6 Enter 5 to set a new named password.

The following prompt appears:

Enter password name:

7 Enter the name by which you want to refer to the named password.

8 Enter the actual password that you want to secure at the following prompt:

Enter password:

The characters you type for the password are not displayed.

9 Confirm the password by entering it again at the following prompt:

Confirm password:

10 After you enter and confirm the password, you are returned to the password operations menu.

11 After completing this procedure, you can use the 99 option twice to exit the menu and quit the
DirXML Command Line Utility.

Removing a Named Password by Using the DirXML Command Line Utility

This option is useful if you no longer need named passwords that you previously created.

1 Run the DirXML Command Line utility.

For information, see Appendix M, “The Dir XML Command Line Utility,” on page 257.

2 Enter your username and password.

The following list of options appears.

DirXML commands

1:

o U W N

7:
99:

Start driver

Stop driver

Driver operations...
Driver set operations...
Log events operations...
Get DirXML version

Job operations
Quit

Enter choice:

3 Enter 3 for driver operations.

A numbered list of drivers appears.

4 Enter the number for the driver you want to remove named passwords from.

The following list of options appears.

Managing the JDBC Driver

119

Select a driver operation for:
driver name

1:

O J oy U b wdN

9:
10:
11:
12:
13:
14:
99:

Start driver

Stop driver

Get driver state

Get driver start option

Set driver start option

Resync driver

Migrate from application into DirXML
Submit XDS command document to driver
Submit XDS event document to driver

Queue event for driver

Check object password
Initialize new driver object
Passwords operations

Cache operations

Exit

Enter choice:

5 Enter 13 for password operations.

The following list of options appears.

Select a password operation

1:

~N o O w N

8:
99:

Set shim password

Reset shim password

Set Remote Loader password
Clear Remote Loader password
Set named password

Clear named password(s)

List named passwords

Get passwords state

Exit

Enter choice:

6 (Optional) Enter 7 to see the list of existing named passwords.

The list of existing named passwords is displayed.

This step can help you make sure you are removing the correct password.

7 Enter 6 to remove one or more named passwords.

8 Enter No to remove a single named password at the following prompt:

Do you want to clear all named passwords?

9 Enter the name of the named password you want to remove at the following prompt:

Enter password name:

After you enter the name of the named password you want to remove, you are returned to the

password operations menu:

Select a password operation

1:

2:
3:
4
5

Set shim password
Reset shim password

Set Remote Loader password

Clear Remote Loader password
Set named password

120 Identity Manager 3.5 Driver for JDBC: Implementation Guide

6: Clear named password(s)
7: List named passwords

8: Get passwords state
99: Exit
Enter choice:

10 (Optional) Enter 7 to see the list of existing named passwords.
This step lets you verify that you have removed the correct password.

11 After completing this procedure, you can use the 99 option twice to exit the menu and quit the
DirXML Command Line utility.

8.8 Adding a Driver Heartbeat

The driver heartbeat is a feature of the Identity Manager drivers that ship with Identity Manager 2
and later. Its use is optional. The driver heartbeat is configured by using a driver parameter with a
time interval specified. If a heartbeat parameter exists and has an interval value other than 0, the
driver sends a heartbeat document to the Metadirectory engine if no communication occurs on the
Publisher channel for the specified interval of time.

The intent of the driver heartbeat is to give you a trigger to allow you to initiate an action at regular
intervals, if the driver does not communicate on the Publisher channel as often as you want the
action to occur. To take advantage of the heartbeat, you must customize your driver configuration or
other tools. The Metadirectory engine accepts the heartbeat document but does not take any action
because of it.

For most drivers, a driver parameter for heartbeat is not used in the sample configurations, but you
can add it.

A custom driver that is not provided with Identity Manager can also provide a heartbeat document,
if the driver developer has written the driver to support it.

To configure the heartbeat:

1 In iManager, click Identity Manager > Identity Manager Overview.
2 Browse to and select your driver set object, then click Search.

3 In the Identity Manager Overview, click the upper right corner of the driver icon, then click
Edit properties.

4 On the Identity Manager tab, click Driver Configuration, scroll to Publisher Settings, then
locate Heartbeat interval (in minutes).

If a driver parameter already exists for heartbeat, you can change the interval and save the
changes. Configuration is then complete.

The value of the interval cannot be less than 1. A value of 0 means that the feature is turned off.
5 (Conditional) If a driver parameter does not exist for heartbeat, click Edit XML.

6 (Condtional) Add a driver parameter entry similar to the following example, as a child of
<publisher-options>.
<pub-heartbeat-interval display-name="Heart Beat">10</pub-
heartbeat-interval>

TIP: If the driver does not produce a heartbeat document after being restarted, check the
placement of the driver parameter in the XML.

Managing the JDBC Driver

121

7 Save the changes, then make sure the driver is stopped and restarted.

After you add the driver parameter, you can edit the time interval by using the graphical view.
Another option is to create a reference to a global configuration value (GCV) for the time interval.
Like other global configuration values, the driver heartbeat can be set at the driver set level instead
of on each individual Driver object. If a driver does not have a particular GCV, and the Driver Set
object does have it, the driver inherits the value from the Driver Set object.

122 Identity Manager 3.5 Driver for JDBC: Implementation Guide

Synchronizing Objects

This section explains driver and object synchronization in DirXML® 1.1a, Identity Manager 2.0,
and Identity Manager 3.x. Driver synchronization was not available for DirXML 1.0 and DirXML
1.1.

After the driver is created, instead of waiting for objects to be modified or created, the data between
the two connected systems can be sent through the synchronization process.
¢ Section 9.1, “What Is Synchronization?,” on page 123
¢ Section 9.2, “When Does Synchronization Occur?,” on page 123
¢ Section 9.3, “How Does the Metadirectory Engine Decide Which Object to Synchronize?,” on
page 124

¢ Section 9.4, “How Synchronization Works,” on page 125

9.1 What Is Synchronization?

The actions commonly referred to as “synchronization” in Identity Manager refer to several different
but related actions:

¢ Synchronization (or merging) of attribute values of an object in the Identity Vault with the
corresponding attribute values of an associated object in a connected system.

¢ Migration of all Identity Vault objects and classes that are included in the filter on the
Subscriber channel.

¢ Generation of the list of objects to submit to the driver’s Subscriber channel for
synchronization or migration in response to a user request (a manual synchronization).

¢ Generation of the list of objects to submit to the driver’s Subscriber channel for
synchronization or migration in response to enabling a formerly disabled driver, or in response
to a cache error.

9.2 When Does Synchronization Occur?

The Metadirectory engine synchronizes objects or merges them in the following circumstances:

¢ A <sync> event element is submitted on the Subscriber or Publisher channel.

¢ A <sync> event element is submitted on the Subscriber channel in the following
circumstances:

+ The state of the object’s association value is set to “manual” or “migrate.” (This causes an
eDirectory™ event, which in turn causes the Identity Manager caching system to queue an
object synchronization command in the affected driver’s cache.)

+ An object synchronization command is read from the driver’s cache.

¢ A <sync> event element is submitted on the Publisher channel in the following
circumstances:

¢ A driver submits a <sync> event element. No known driver currently does this.

Synchronizing Objects

123

¢ The Metadirectory engine submits a <sync> event element for each object found as the
result of a migrate-into-NDS query. The engine submits these <sync> events by using
the Subscriber thread, but processes them by using the Publisher channel filter and
policies.

+ An <add> event (real or synthetic) is submitted on a channel, and the channel Matching policy
finds a matching object in the target system.

¢ An <add> event with an association is submitted on the Subscriber channel. This normally
occurs only in exceptional cases, such as the bulk load of objects into eDirectory with
DirXML-Associations attribute values.

¢ An <add> event is submitted on the Publisher channel, and an object is found in eDirectory
that already has the association value reported with the <add> event.

The Metadirectory engine generates synchronization requests for zero or more objects in the
following cases:

¢ The user issues a manual driver synchronization request. This corresponds to the Resync button
in the Driver Set property page in ConsoleOne®, or to the Synchronize button on the iManager
Identity Manager Driver Overview page.

¢ The Metadirectory engine encounters an error with the driver’s cache and cannot recover from
the cache error. The driver’s cache is deleted, and the engine generates object synchronization
commands as detailed in Section 9.3, “How Does the Metadirectory Engine Decide Which
Object to Synchronize?,” on page 124.

9.3 How Does the Metadirectory Engine Decide
Which Object to Synchronize?

The Metadirectory engine processes both manually initiated and automatically initiated
synchronization requests in the same manner. The only difference in the processing of manually
initiated versus automatically initiated driver synchronization requests is the starting filter time used
to filter objects being considered for synchronization.

The starting filter time is used to filter objects that have modification or creation times that are older
than the starting time specified in the synchronization request.

For automatically initiated driver synchronization, the starting filter time is obtained from the time
stamps of cached eDirectory events. In particular, the starting filter time is the earliest time for the
cached events that haven’t yet been successfully processed by the driver’s Subscriber channel.

For manually initiated driver synchronization, the default starting filter time is the earliest time in
the eDirectory database. In Identity Manager 2 and Identity Manager 3, an explicit starting filter
time can also be set. DirXML 1.1a has no facility to set the starting filter time value for
synchronization when manually initiating driver synchronization.

The Metadirectory engine creates a list of objects to be synchronized on the Subscriber channel in
the following manner:

1. It finds all objects that:
+ Have an entry modification time stamp greater than or equal to the starting filter time
and

+ Exist in the filter on the Subscriber channel.

124 Identity Manager 3.5 Driver for JDBC: Implementation Guide

2. It finds all objects that have an entry creation time stamp greater than or equal to the starting
filter time.

3. Itaddsa synchronize object command to the following:

¢ The driver cache for each unique object found that has an entry modification time stamp
greater than or equal to the starting filter time

+ All objects and classes that are in the Subscriber filter channel in the driver being
synchronized

9.4 How Synchronization Works

After the Metadirectory engine determines that an object is to be synchronized, the following
processes occur:

1. Each system (the Identity Vault and the connected system) is queried for all attribute values in
the appropriate filters.

¢ cDirectory is queried for all values in the Subscriber filter, and for values that are marked
for synchronization in Identity Manager 2.x and Identity Manager 3.x.

¢ The connected system is queried for all values in the Publisher filter, and for values that
are marked for synchronization in Identity Manager 2.x and Identity Manager 3.x.

2. The returned attribute values are compared, and modification lists are prepared for the Identity
Vault and the connected system according to Table 9-1 on page 126, Table 9-2 on page 128, and
Table 9-3 on page 129.

In the tables the following pseudo-equations are used:
+ “Left = Right” indicates that the left side receives all values from the right side.

+ “Left = Right[1]” indicates that the left side receives one value from the right side. If there
is more than one value, it is indeterminate.

+ “Left += Right” indicates that the left side adds the right side values to the left side’s
existing values.

+ “Left=Left + Right” indicates that the left sides receives the union of the values of the left
and right sides.

Identity Manager has three different combinations of selected items in the filter, and each one
creates a different output.

¢ Section 9.4.1, “Scenario One,” on page 125
¢ Section 9.4.2, “Scenario Two,” on page 127

¢ Section 9.4.3, “Scenario Three,” on page 128

9.4.1 Scenario One

The attribute is set to Synchronize on the Publisher and Subscriber channels, and the merge authority
is set to Default.

Synchronizing Objects 125

Figure 9-1 Scenario One

Class Name: User
Attribute Mame: Facsimile Telephone M
Publish
EF (% synchranize
) () Ignore
% O Motify
F‘.’ () Reset

Subscribe

£y (& Synchronize
(™ O Ignare

b (O hotify

F‘.’ (I Reset

Merge Authority

(*) Default

() Identity vault

() Application

O Maone

Optimize rmodifications ko Identity Yaulk
(%1 ves

(CIMo

The following table contains the values that the Metadirectory engine synchronizes when the
attribute is sent through a filter that is set to the configuration for Scenario One. The table shows
different outputs depending upon the following:

¢ Whether the attribute comes from the Identity Vault or the Application

¢ I[f the attribute is single-valued or multi-valued, and if the attribute is empty or non-empty.

¢ [f the attribute is empty or non-empty

Table 9-1 Output of Scenario One

Identity Vault
single-valued

Identity Vault
single-valued

Identity Vault
multi-valued

Identity Vault
multi-valued

empty non-empty empty non-empty
Application No change App = Identity Vault No change App = Identity
single-valued Vault[1]

empty

Application
single-valued
non-empty

Application
multi-valued
empty

Identity Vault = App

No change

App = Identity Vault Identity Vault = App

App = Identity Vault No change

Identity Vault + =
App

App = Identity Vault

126 Identity Manager 3.5 Driver for JDBC: Implementation Guide

Identity Vault
single-valued
empty

Identity Vault
single-valued
non-empty

Identity Vault
multi-valued
empty

Identity Vault
multi-valued
non-empty

Application
multi-valued
non-empty

Identity Vault =
App[1]

App + = Identity
Vault

Identity Vault = App App = App +
Identity Vault

Identity Vault = App
+ ldentity Vault

9.4.2 Scenario Two

The attribute is set to Synchronize only on the Subscriber channel, or it is set to Synchronize on both
the Subscriber and Publisher channels. The merge authority is set to Identity Vault.

Figure 9-2 Scenario Two

Class Name: User

Attribute Name: Description

Publish

& (3 Synchronize
[J) & lgnore

% O natify

F!’ (IReset

Subscribe

£ (%) Synchronize
(™ (O Ignore

% O mokify

F!’) Reset

Merge Authority:
() Defaulk

() Application

) Mone

Ciptimize modifications ko Identity Yault

G} Yes
O Mo

The following table contains the values that the Metadirectory engine synchronizes when the
attribute is sent through a filter that is set to the configuration for Scenario Two. The table shows
different outputs depending upon the following:

¢ Whether the attribute comes from the Identity Vault or the Application

¢ [fthe attribute is single-valued or multi-valued

¢ [f the attribute is empty or non-empty

Synchronizing Objects 127

Table 9-2 Output of Scenario Two

Identity Vault
single-valued

Identity Vault
single-valued

Identity Vault
multi-valued

Identity Vault
multi-valued

empty non-empty empty non-empty
Application No change App = Identity Vault No change App = Identity
single-valued Vault[1]
empty
Application App = empty App = Identity Vault Identity Vault = App App = Identity
single-valued Vault[1]
empty
Application No change App = Identity Vault No change App = Identity Vault
multi-valued
empty
Application App = empty App = Identity Vault App = empty App = Identity Vault
multi-valued
non-empty

9.4.3 Scenario Three

The attribute is set to Synchronize on the Publisher channel, or the merge authority is set to

Application.

Figure 9-3 Scenario Three

Class Name: User
Attribute Name: DirXML-ADAliasMame

Publish

§F (& synchronize
) Olanare

%2 O Motify

} () Reset

Subscribe

R) Synchronize
(™ &) Ignare

% O hotify

F‘.’ I Reset
Merge Sutharity

() Default

() Identity Wault

C' Mone

Cptimize modifications ko Identity Yault
{?} Yes

(IMo

128 Identity Manager 3.5 Driver for JDBC: Implementation Guide

The following table contains the values that the Metadirectory engine synchronizes when the
attribute is sent through a filter that is set to the configuration for Scenario Three. The table shows
different outputs depending upon the following:

¢ Whether the attribute comes from the Identity Vault or the Application

+ [f the attribute is single-valued or multi-valued

¢ [f the attribute is empty or non-empty

Table 9-3 Output of Scenario Three

Identity Vault Identity Vault Identity Vault Identity Vault
single-valued single-valued multi-valued multi-valued
empty non-empty empty non-empty
Application No change Identity Vault = No change Identity Vault =
single-valued empty empty
empty
Application Identity Vault = App Identity Vault = App Identity Vault = App Identity Vault =
single-valued App
non-empty
Application No change Identity Vault = No change Identity Vault =
multi-valued empty empty
empty
Application Identity Vault = Identity Vault = Identity Vault = App Identity Vault = App
multi-valued non- App[1] App[1]
empty

Synchronizing Objects 129

130 Identity Manager 3.5 Driver for JDBC: Implementation Guide

Schema Mapping

¢ Section 10.1, “High-Level View,” on page 131

¢ Section 10.2, “Logical Database Classes,” on page 131

¢ Section 10.3, “Indirect Synchronization,” on page 131

¢ Section 10.4, “Direct Synchronization,” on page 139

¢ Section 10.5, “Synchronizing Primary Key Columns,” on page 142

¢ Section 10.6, “Synchronizing Multiple Classes,” on page 142

¢ Section 10.7, “Mapping Multivalue Attributes to Single-Value Database Fields,” on page 143

10.1 High-Level View

The following table shows a high-level view of how the driver maps Novell® Identity Vault objects
to database objects.

Table 10-1 Mapping Identity Vault Objects to Database Objects

Identity Vault Object Database Object
Tree Schema

Class Table/View
Attribute Column
Association Primary Key

10.2 Logical Database Classes

A logical database class is the set of tables or the view used to represent an eDirectory™ class in a
database. A logical database class can consist of a single view or one parent table and zero or more
child tables.

The name of a logical database class is the name of the parent table or view.

10.3 Indirect Synchronization

In an indirect synchronization model, the driver maps the following:

Schema Mapping 131

Table 10-2 Mappings in Indirect Synchronization

Identity Vault Object Database Object

Classes Tables
Attributes Columns
1 Class 1 parent table

and

0 or more child tables
Single-value attribute Parent table column
Multivalue attribute Parent table column (holding delimited values)
or

Child table column (preferred)

¢ Section 10.3.1, “Mapping eDirectory Classes to Logical Database Classes,” on page 132
¢ Section 10.3.2, “Parent Tables,” on page 134

¢ Section 10.3.3, “Parent Table Columns,” on page 134

¢ Section 10.3.4, “Child Tables,” on page 135

¢ Section 10.3.5, “Referential Attributes,” on page 136

¢ Section 10.3.6, “Single-Value Referential Attributes,” on page 136

¢ Section 10.3.7, “Multivalue Referential Attributes,” on page 137

10.3.1 Mapping eDirectory Classes to Logical Database
Classes

In the following example, the logical database class usr consists of the following:

¢ One parent table usr
¢ Two child tables: usr phone and usr faxno.
Logical class usr is mapped to the eDirectory class User.

CREATE TABLE indirect.usr
(

idu INTEGER NOT NULL,

fname VARCHAR?2 (64),

lname CHAR (64),

pwdminlen NUMBER (4) ,

pwdexptime DATE,

disabled NUMBER (1),

username VARCHAR?2 (64),

loginame VARCHAR?2 (64),

photo LONG RAW,

manager INTEGER,

CONSTRAINT pk_usr_idu PRIMARY KEY (idu),
CONSTRAINT fk usr manager FOREIGN KEY (manager)

132 Identity Manager 3.5 Driver for JDBC: Implementation Guide

REFERENCES indirect.usr (idu)
)
CREATE TABLE indirect.usr phone
(
idu INTEGER NOT NULL,
phoneno VARCHAR2 (64) NOT NULL,
CONSTRAINT fk phone idu FOREIGN KEY (idu)
REFERENCES indirect.usr (idu)
)
CREATE TABLE indirect.usr fax
(
idu INTEGER NOT NULL,
faxno VARCHAR2 (64) NOT NULL,
CONSTRAINT fk_fax_idu FOREIGN KEY (idu)
REFERENCES indirect.usr (idu)
)

<rule name="Schema Mapping Rule">
<attr-name-map>

<class-name>
<nds-name>User</nds-name>
<app-name>indirect.usr</app-name>

</class-name>

<attr-name class-name="User">
<nds-name>Given Name</nds-name>
<app-name>fname</app-name>

</attr-name>

<attr-name class-name="User">
<nds-name>Surname</nds-name>
<app-name>lname</app-name>

</attr-name>

<attr-name class-name="User">
<nds-name>Password Expiration Time</nds-name>
<app-name>pwdexptime</app-name>

</attr-name>

<attr-name class-name="User">
<nds-name>jpegPhoto</nds-name>
<app-name>photo</app-name>

</attr-name>

<attr-name class-name="User">
<nds-name>manager</nds-name>
<app-name>manager</app-name>

</attr-name>

<attr-name class-name="User">
<nds-name>Password Minimum Length</nds-name>
<app-name>pwdminlen</app-name>

</attr-name>

<attr-name class-name="User">
<nds-name>Facsimile Telephone Number</nds-name>
<app-name>usr fax.faxno</app-name>

</attr-name>

<attr-name class-name="User">
<nds-name>Telephone Number</nds-name>
<app-name>usr_ phone.phoneno</app-name>

Schema Mapping 133

</attr-name>
<attr-name class-name="User">
<nds-name>Login Disabled</nds-name>
<app-name>disabled</app-name>
</attr-name>
</attr-name-map>
</rule>

10.3.2 Parent Tables

Parent tables are tables with an explicit primary key constraint that contains one or more columns. In
a parent table, an explicit primary key constraint is required so that the driver knows which fields to
include in an association value.

CREATE TABLE indirect.usr

(
idu INTEGER NOT NULL,

CONSTRAINT pk usr idu PRIMARY KEY (idu)
)

The following table contains sample data for table indirect.usr.

idu fname Iname

1 John Doe

The resulting association for this row is

idu=1, table=usr, schema=indirect

NOTE: The case of database identifiers in association values is determined dynamically from
database metadata at runtime.

10.3.3 Parent Table Columns

Parent table columns can contain only one value. As such, they are ideal for mapping single-value
eDirectory attributes, such as mapping the single-value eDirectory attribute Password Minimum
Length to the single-value parent table column pwdminlen.

Parent table columns are implicitly prefixed with the schema name and name of the parent table. It is
not necessary to explicitly table-prefix parent table columns. For example,
indirect.usr.fname is equivalent to fname for schema mapping purposes.

<rule name="Schema Mapping Rule">
<attr-name-map>

<class-name>
<nds-name>User</nds-name>
<app-name>indirect.usr</app-name>

</class—-name>

<attr-name class-name="User">
<nds-name>Given Name</nds-name>
<app-name>fname</app-name>

</attr-name>

134 Identity Manager 3.5 Driver for JDBC: Implementation Guide

</attr-name-map>
</rule>

Large binary and string data types should usually be mapped to parent table columns. To map to a

child table column, data types must be comparable in SQL statements. Large data types usually

cannot be compared in SQL statements.

Large binary and string data types can be mapped to child table columns if the following occur:

¢ Each <remove-value> event on these types is transformed in a policy into a <remove-

all-values> element

* An <add-value> element follows each <remove-value> event

10.3.4 Child Tables

A child table is a table that has a foreign key constraint on its parent table’s primary key, linking the

two tables together. The columns that comprise the child table’s foreign key can have different

names than the columns in the parent table’s primary key.

The following example shows the relationship between parent table usr and child tables

usr_phone and usr faxno:
CREATE TABLE indirect.usr

(
idu INTEGER NOT NULL,

CONSTRAINT pk_usr_idu PRIMARY KEY (idu)
)
CREATE TABLE indirect.usr phone
(
idu INTEGER NOT NULL,
phoneno VARCHAR2 (64) NOT NULL,
CONSTRAINT fk phone idu FOREIGN KEY (idu)
REFERENCES indirect.usr (idu)
)
CREATE TABLE indirect.usr fax
(
idu INTEGER NOT NULL,
faxno VARCHARZ2 (64) NOT NULL,
CONSTRAINT fk fax idu FOREIGN KEY (idu)
REFERENCES indirect.usr (idu)

NOTE: In a child table, constrain all columns NOT NULL.

The first constrained column in a child table identifies the parent table. In the above example, the
constrained column in child table usr phone is idu. The only purpose of this column is to relate
tables usr phone and usr. Because constrained columns do not contain any useful information,

omit them from publication triggers and Schema Mapping policies.

The unconstrained column is the column of interest. It represents a single, multivalue attribute. In
the above example, the unconstrained columns are phoneno and faxno. Because unconstrained
columns can hold multiple values, they are ideal for mapping multivalue eDirectory attributes (for

Schema Mapping

135

example, mapping the multivalue eDirectory attribute Telephone Number to
usrphone.phoneno).

The following table contains sample data for indirect.usr phone.

Table 10-3 Sample Data

idu phoneno

1 111-1111
1 222-2222

Like parent table columns, child table columns are implicitly schema-prefixed. Unlike parent table
columns, however, a child table column name must be explicitly prefixed with the child table name
(for example, usr phone.phoneno). Otherwise, the driver implicitly interprets column
phoneno (the parent table column) as usr . phoneno, not the child table column

usr phone.phoneno.

<rule name="Schema Mapping Rule">
<attr-name-map>
<class—-name>
<nds-name>User</nds-name>
<app-name>indirect.usr</app-name>
</class-name>
<attr—-name class-name="User">
<nds-name>Facsimile Telephone Number</nds-name>
<app-name>usr fax.faxno</app-name>
</attr-name>
<attr—-name class-name="User">
<nds-name>Telephone Number</nds—-name>
<app-name>usr phone.phoneno</app-name>
</attr-name>
</attr-name-map>
</rule>

NOTE: Map each multivalue eDirectory attribute to a different child table.

10.3.5 Referential Attributes

You can represent referential containment in the database by using foreign key constraints.
Referential attributes are columns within a logical database class that refer to the primary key
columns of parent tables in the same logical database class or those of other logical database classes.

10.3.6 Single-Value Referential Attributes

You can relate two parent tables through a single-value parent table column. This column must have
a foreign key constraint pointing to the other parent table’s primary key. The following example
relates a single parent table usr to itself:

CREATE TABLE indirect.usr

(
idu INTEGER NOT NULL,

136 Identity Manager 3.5 Driver for JDBC: Implementation Guide

manager INTEGER,

CONSTRAINT pk_usr_idu PRIMARY KEY (idu),

CONSTRAINT fk usr manager FOREIGN KEY (manager)
REFERENCES indirect.usr (idu)

NOTE: Single-valued referential columns should be nullable.

<rule name="Schema Mapping Rule">
<attr-name-map>
<class—-name>
<nds-name>User</nds-name>
<app-name>indirect.usr</app-name>
</class-name>
<attr-name class-name="User">
<nds-name>manager</nds-name>
<app-name>manager</app-name>
</attr-name>
</attr-name-map>
</rule>

The interpretation of the above example is that each user can have only one manager who himself is
a user.

10.3.7 Multivalue Referential Attributes

You can relate two parent tables through a common child table. This child table must have a column
constrained by a foreign key pointing to the other parent table’s primary key. The following example
relates two parent tables usr and grp through a common child table member.

CREATE TABLE indirect.usr

(
idu INTEGER NOT NULL,

CONSTRAINT pk usr idu PRIMARY KEY (idu)
)
CREATE TABLE indirect.grp

(

idg INTEGER NOT NULL,

CONSTRAINT pk grp idg PRIMARY KEY (idg)
)

CREATE TABLE indirect.grp member
(

idg INTEGER NOT NULL,

idu INTEGER NOT NULL,

CONSTRAINT fk member idg FOREIGN KEY (idg) REFERENCES
indirect.grp(idg), CONSTRAINT fk member idu FOREIGN KEY (idu)
REFERENCES indirect.usr (idu)

)

NOTE: Constrain all columns in a child table NOT NULL.

Schema Mapping 137

<rule name="Schema Mapping Rule">
<attr-name-map>
<class-name>
<nds-name>Group</nds-name>
<app-name>indirect.grp</app-name>
</class-name>
<class-name>
<nds-name>User</nds-name>
<app-name>indirect.usr</app-name>
</class-name>
<attr-name class-name="Group">
<nds-name>Member</nds-name>
<app-name>grp member.idu</app-name>
</attr-name>
</attr-name-map>
</rule>

The first constrained column in a child table determines which logical database class the child table
grp_member belongs to. In the above example, grp member is considered to be part of logical
database class grp. grp member is said to be a proper child of grp. The second constrained
column in a child table is the multivalue referential attribute.

In the following example, the order of the constrained columns has been reversed so that
grp_member is part of class us r. To more accurately reflect the relationship, table grp member
has been renamed to usr _mbr of.

CREATE TABLE indirect.usr

(
idu INTEGER NOT NULL,
CONSTRAINT pk usr idu PRIMARY KEY (idu)
)
CREATE TABLE indirect.grp
(
idg INTEGER NOT NULL,
CONSTRAINT pk grp idg PRIMARY KEY (idg)
)
CREATE TABLE indirect.usr mbr of
(
idu INTEGER NOT NULL,
idg INTEGER NOT NULL,
CONSTRAINT fk mbr of idu FOREIGN KEY (idu)
REFERENCES indirect.usr (idu) ON DELETE CASCADE,
CONSTRAINT fk mbr of idg FOREIGN KEY (idg)
REFERENCES indirect.grp(idg) ON DELETE CASCADE
)

<rule name="Schema Mapping Rule">
<attr-name-map>
<class—-name>
<nds—-name>Group</nds—name>
<app-name>indirect.grp</app-name>
</class-name>
<class-name>

138 Identity Manager 3.5 Driver for JDBC: Implementation Guide

<nds-name>User</nds-name>
<app-name>indirect.usr</app-name>

</class-name>

<attr-name class-name="User">
<nds-name>Group Membership</nds-name>
<app-name>usr mbr of.idg</app-name>

</attr-name>

</attr-name-map>
</rule>

In databases that have no awareness of column position (such as DB2/AS400), order is determined
by sorting column names by string or hexadecimal value. For additional information, see “Sort
Column Names By” on page 8§3.

In general, it is necessary to synchronize only bidirectional, multivalue, referential attributes as part
of one class or the other, not both. If you want to synchronize referential attributes for both classes,
construct two child tables, one for each class. For example, if you want to synchronize eDirectory
attributes Group Membership and Member, you need two child tables.

In practice, when you synchronize User and Group classes, we recommend that you synchronize the
Group Membership attribute of class User instead of the Member attribute of class Group.
Synchronizing the group memberships of a user is usually more efficient than synchronizing all
members of a group.

10.4 Direct Synchronization

In a direct synchronization model, the driver maps the following:

Table 10-4 Mappings in Direct Synchronization

Identity Vault Object Database Object
Classes Views
Attributes View Columns
Class View
Single-value attribute View Column
Multivalue attribute View Column

The update capabilities of views vary between databases. Most databases allow views to be updated
when they are comprised of a single base table. (That is, they do not join multiple tables.) If views
are strictly read-only, they cannot be used for subscription. Some databases allow update logic to be
defined on views in instead-of-triggers, which allow a view to join multiple base tables and still be
updateable.

For a list of databases that support instead-of-triggers, see “Database Features” on page 182.
Instead-of-trigger logic can be simulated, regardless of database capability using embedded SQL.
See Section 13.4, “Virtual Triggers,” on page 162.

¢ Section 10.4.1, “View Column Meta-Identifiers,” on page 140
¢ Section 10.4.2, “Primary Key Columns,” on page 142

Schema Mapping 139

¢ Section 10.4.3, “Schema Mapping,” on page 142

10.4.1 View Column Meta-ldentifiers

A view is a logical table. Unlike tables, views do not physically exist in the database. As such, views
usually cannot have traditional primary key/foreign key constraints. To simulate these constructs,
the driver for JDBC embeds constraints and other metadata in view column names. The difference
between these constraints and traditional ones is that the former are not enforced at the database
level. They are an application-level construct.

For example, to identify to the driver which fields to use when constructing association values, place
a primary key constraint on a parent table. The corollary to this for a view is to prefix one or more
column names with pk_ (case-insensitive).

The following table lists the constraint prefixes that can be embedded in view column names.

Table 10-5 Constraint Prefixes

Constraint Prefixes (case-insensitive) Interpretation

pk_ primary key
fk_ foreign key
SV_ single-value
mv_ multivalue

The following example views contain all of these constraint prefixes:
CREATE VIEW direct.view usr
(

pk_idu, -— primary key column; implicitly single-valued
sv_fname, -- single-valued column

mv_phoneno, -— multi-valued column

fk idu manager, -- self-referential foreign key column; refers

-— to primary key column idu in view usr;
-— implicitly single-valued
fk mv__idg mbr of -- extra-referential foreign key column; refers
-— to primary key column idg in view grp;
-- multi-valued

)
AS

CREATE VIEW direct.view grp

(
pk _idg, -- primary key column; implicitly single-valued
fk mv__idu mbr -- extra-referential foreign key column; refers

-- to primary key column idu in view usr;
-= multi-valued

AS

140 Identity Manager 3.5 Driver for JDBC: Implementation Guide

BNF

The BNF (Backus Naur Form (http://cui.unige.ch/db-research/Enseignement/analyseinfo/
AboutBNF.html)) notation for view column meta-identifiers:

<view-column-name> ::= [<meta-1info>] <column-name>
<column-name> ::= <legal-unquoted-database-identifier>
<meta-info> ::= <referential> | <non-referential>
<non-referential> ::= [<single-value> | <multiple-value>]
<single-value> ::= "sv_"
<multiple-value> ::= "mv_"
<referential> ::= <primary-key> | <foreign-key>
<primary-key> ::= "pk " [<single-value>] [<column-group-id>]
[<referenced-column-name>]
<column-group-id> ::= <non-negative-integer> " "
<referenced-column-name> ::= " " <column-name> " "
<foreign-key> ::= "fk " [<non-referential>] [<column-group-id>]

<referenced-column-name>

Normalized Forms

By default, all view column names are single-valued. Therefore, explicitly specifying the sv
prefix in a view column name is redundant. For example, sv_fname and fname are equivalent
forms of the same column name.

Also, primary key column names implicitly refer to themselves. Therefore, it is redundant to specify
the referenced column name. For example, pk idu is equivalentto pk idu idu.

The Driver for JDBC uses two normalized forms of view meta-identifiers:
+ Database native form
Database native form is the column name as declared in the database. This form is usually
much more verbose than schema mapping form, and contains all necessary meta information.

¢ Schema mapping form

Schema mapping form is returned when the driver returns the application schema. This form is
much more concise than database native form because much of the meta information included
in database native form is represented in XDS XML and not in the identifier.

The referential prefixes pk_and £k _ are the only meta information preserved in schema
mapping form. This limitation ensures backward compatibility.

The following table provides examples of each form:

Schema Mapping

141

http://cui.unige.ch/db-research/Enseignement/analyseinfo/AboutBNF.html

Table 10-6 Example Normalized Forms of View Meta-Identifiers

Database Native Form Schema Mapping Form
pk_idu pk_idu

sv_fname fname

mv_phoneno phoneno
fk_mv__idg__mbr_of fk_mbr_of

Equivalent Forms

A view column name without meta information is called its “effective” name, which is similar to a
directory objects’ “effective” rights. ‘For the driver, view column name equivalency is determined
without respect to meta information by default. For example, pk idu is equivalent to 1du, and

fk mv__idg mbr of isequivalentto mbr of. Any variant form of a view meta column
identifier can be passed to the driver at runtime. For backward compatibility reasons, meta
information can be treated as part of the effective view column name. See “Enable Meta-Identifier
Support?” on page 80.

10.4.2 Primary Key Columns

Primary key column names must be unique among all views in the synchronization schema.

10.4.3 Schema Mapping

Schema mapping conventions for views and view columns are equivalent to that used for parent
tables and parent table columns.

10.5 Synchronizing Primary Key Columns

When the database is the authoritative source of primary key columns, generally omit the columns
from the Publisher and Subscriber filters, Schema Mapping policies, and publication triggers.

When the Identity Vault is the authoritative source of primary key columns, include the columns in
the Subscriber filter and Schema Mapping policies, but omit the columns from the Publisher filter
and publication triggers. Also, GUID rather than CN is recommended for use as a primary key. CN
is a multivalue attribute and can change. GUID has a single value and is static.

10.6 Synchronizing Multiple Classes

When synchronizing multiple eDirectory classes, synchronize each class to a different parent table
or view. Each logical database class must have a unique primary key column name. The Publisher
channel uses this common column name to identify all rows in the event log table pertaining to a
single logical database class. For example, both the logical database classes usr and grp have a
unique primary key column name.

CREATE TABLE usr

(
idu INTEGER NOT NULL,
lname VARCHARZ2 (64) NOT NULL,

142 Identity Manager 3.5 Driver for JDBC: Implementation Guide

CONSTRAINT pk usr idu PRIMARY KEY (idu)
)7
CREATE TABLE grp

(

idg INTEGER NOT NULL,

CONSTRAINT pk grp idg PRIMARY KEY (idg)
)7

10.7 Mapping Multivalue Attributes to Single-
Value Database Fields

By default, the driver assumes that all eDirectory attributes mapped to parent table columns or view
columns have a single value. Because the driver is unaware of the eDirectory schema, it has no way
of knowing whether an eDirectory attribute has a single value or has multiple values. Accordingly,
multivalue and single-value attribute mappings are handled identically.

The driver implements the Most Recently Touched (MRT) algorithm with regard to single-value
parent table or view columns. An MRT algorithm ensures that the most recently added attribute
value or most recently deleted attribute value is stored in the database. The algorithm is adequate if
the attribute in question has a single value.

If the attribute has multiple values, the algorithm has some undesirable consequences. When a value
is deleted from a multivalue attribute, the database field it is mapped to is set to NULL and remains
NULL until another value is added. The preferred solution to this undesirable behavior is to extend
the eDirectory schema so that only single-value attributes are mapping to parent table or view
columns.

Other solutions include the following:

¢ For indirect synchronization, map each multivalue attribute to its own child table.

¢ For both direct or indirect synchronization, use a policy to delimit multiple values before
inserting them into a table or view column.

+ Implement a first or last value per replica policy in style sheets by using methods provided in
the com.novell.nds.indirect.driver.jdbc.util.MappingPolicy class.
Under a first-value-per-replica (FPR) policy, the first attribute value on the eDirectory replica is
always synchronized. Under a last-value-per-replica (LPR) policy, the last attribute value on a
replica is always synchronized.

By using global configuration values, you can configure the sample driver configuration to use
either FPR or LPR mapping policies. Multivalue to single-value attribute mapping policies are
contained in the Subscriber Command Transformation policy container. The sample driver
configuration maps the multivalue eDirectory attributes Given Name and Surname to the
single-value columns fname and 1name respectively.

Schema Mapping

143

144 Identity Manager 3.5 Driver for JDBC: Implementation Guide

Mapping XDS Events to SQL
Statements

¢ Section 11.1, “Mapping XDS Events for Indirect Synchronization,” on page 145

11.1 Mapping XDS Events for Indirect
Synchronization

The following table summarizes how the Subscriber channel maps XDS events to DML SQL
statements for indirect synchronization:

Table 11-1 Mapping XDS Events for Indirect Synchronization

XML Event SQL Equivalent

<add> 0 or more select statements, depending upon the matching policy
1 parent table insert statement for all single value <add-attr> elements

0 or 1 stored procedure/function calls to retrieve primary key values
before or after the parent table insert statement

1 child table insert statement for each multivalue <add-attr> element

<modify> 1 parent table update statement for each single value <add-value> or
<remove-value> element

1 child table insert statement for each multivalue <add-value> element

1 child table delete statement for each <remove-value> element

<delete> 1 parent table delete statement

1 delete statement for each child table

<query> 1 parent table select statement

1 select statement for each child table

<move> 0 statements unless bound to embedded SQL statements
<rename>

<modify-password>

<check-object-password>

The following table summarizes how the Subscriber channel maps XDS events to DML SQL
statements for direct synchronization:

Mapping XDS Events to SQL Statements 145

Table 11-2 Mapping XDS Events for Direct Synchronization

XML Event SQL Equivalent

<add> 0 or more select statements, depending upon the matching policy
1 view insert statement for all single value <add-attr> element

0 or 1 stored procedure/function call to retrieve primary key values before
or after the view insert statement

1 view insert statement for each multivalue <add-attr> element

<modify> 1 view update statement for each single value <add-value> or <remove-
value> element

1 view insert statement for each multivalue <add-value> element

1 view delete statement for each <remove-value> element

<delete> 1 view delete statement

<query> 1 view select statement

<move> 0 statements unless bound to embedded SQL statements
<rename>

<modify-password>
<check-object-password>

146 Identity Manager 3.5 Driver for JDBC: Implementation Guide

The Event Log Table

The event log table stores publication events. This section discusses the structure and capabilities of
the event log table.

You can customize the name of the event log table and its columns to avoid conflicts with reserved
database keywords. The order, number, and data types of its columns, however, are fixed. In
databases that are unaware of column position, order is determined by the Sort Column Names By
parameter. See “Sort Column Names By” on page 83.

Events in this table can be ordered either by order of insertion (the record id column) or
chronologically (the event time column). Ordering events chronologically allows event
processing to be delayed. To order publication events chronologically, set the Enable Future Event
Processing parameter to Boolean True. See “Enable Future Event Processing?” on page 95.

¢ Section 12.1, “Event Log Columns,” on page 147

+ Section 12.2, “Event Types,” on page 149

12.1 Event Log Columns

This section describes columns in the event log table. Columns are ordered by position.
1. record id

The record id column is used to uniquely identify rows in the event log table and order
publication events. This column must contain sequential, ascending, positive, unique integer
values. Gaps between record id values no longer prematurely end a polling cycle.

2. table key

Format values for this column exactly the same in all triggers for a logical database class. The

BNF or Backus Naur Form (http://cui.unige.ch/db-research/Enseignement/analyseinfo/

AboutBNF.html) of this parameter is defined below:

<table-key> ::= <unique-row-identifier> {"+"
<unique-row-identifier>}

<unique-row-identifier> ::= <primary-key-column-name> "=" <value>

For example, for the usr table referenced throughout this chapter, this column’s value might
be idu=1.

For the view usr view referenced throughout this chapter, this column’s value might be

pk _empno=1.

For a hypothetical compound primary key (one containing multiple columns), this column’s
value might be pkeyI=valuel+pkey2=value?.

NOTE: If primary key values placed in the table key field contains any of the special
characters {,;'+" =\<>}, where ’{’ and ’}’ contain the set of special characters, delimit the
value with double quotes. You’ll also need to escape the double quote character " as \" and the
literal escape character \ character as \\ when contained inside a pair of double quotes.

The Event Log Table

147

http://cui.unige.ch/db-research/Enseignement/analyseinfo/AboutBNF.html

For a hypothetical primary key containing special characters, this column’s value might be
pkey=", ; ' + \" = \\ < >".(Note the double quotes and escaped characters.)

NOTE: Differences in padding or formatting might result in out-of-order event processing. For
performance reasons, remove any unnecessary white space from numeric values. For example,
"idu=1" is preferred over "idu= 1". (Note the space in “idu=1".)

3. status

The status column indicates the state of a given row. The following table lists permitted
values:

Table 12-1 Permitted Values for Status Columns

Character Value Interpretation

N new

S success
W warning
E error

F fatal

To be processed, all rows inserted into the event log table must have a status value of N. The
remainder of the status characters are used solely by the Publisher channel to designate
processed rows. All other characters are reserved for future use.

NOTE: Status values are case sensitive.

4. event type
Values in this column must be between 1 and 8. All other numbers are reserved for future use.

The following table describes each event type:

Table 12-2 Event Types

Event Type Interpretation

1 insert field

2 update field

3 update field (remove all values)
4 delete row

5 insert row (query-back)

6 update row (query-back)

7 insert field (query-back)

8 update field (query-back)

148 Identity Manager 3.5 Driver for JDBC: Implementation Guide

For additional information on this field, see Section 12.2, “Event Types,” on page 149.
5. event time

This column serves as an alternative ordering column to record id. It contains the effective
date of the event. It must not be NULL. For this column to become the ordering column, set the
Enable Future Event Processing parameter to Boolean True. See “Enable Future Event
Processing?”” on page 95.

6. perpetrator

This column identifies the database user who instigated the event. A NULL value is interpreted
as a user other than the driver user. As such, rows with a NULL value or value not equal to the
driver’s database username are published. Rows with a value equal to the driver’s database
username are not published unless the Allow Loopback Publisher parameter is set to Boolean
True. See “Allow Loopback?”” on page 98.

7. table name
The name of the table or view where the event occurred.
8. column name

The name of the column that was changed. This column is used only for per-field (1-3, 7-8)
event types. Nevertheless, it must always be present in the event log table. If it is missing, the
Publisher channel cannot start.

9. old value

The field’s old value. This column is used only for per-field, non-query-back event types (1-3).
Nevertheless, it must always be present in the event log table. If it is missing, the Publisher
channel cannot start.

10. new value

The field’s new value. This column is used only by per-field, non-query-back event types (1-3).
Nevertheless, it must always be present in the event log table. If it is missing, the Publisher
channel cannot start.

12.2 Event Types

The following table describes each event type:

Table 12-3 Event Types

Event Type Interpretation

1 insert field

2 update field

3 update field (remove all values)
4 delete row

5 insert row (query-back)

6 update row (query-back)

7 insert field (query-back)

8 update field (query-back)

The Event Log Table 149

Event types are in four major categories. Some categories overlap. The following table describes
each category and indicates which event types are members:

Table 12-4 Event Categories and Types

Event Category Event Types
Per-field (attribute) 1,2,3,7,8
Per-row (object) 4,5,6
Non-query-back 1,2,3,4
Query-back 5,6,7,8

Per-field, non-query-back 1,2, 3
Per-field, query-back 7,8
Per-row, non-query-back 4

Per-row, query-back 5,6

In general, a combination of event types from each category yields the best trade-off in terms of
space, time, implementation complexity, and peformance.

Per-field event types are more granular, require more space, and are more complex to implement
than per-row event types. Per-row events are less granular, require less space, and are easier to
implement than per-field event types.

Query-back event types use less space but require more time to process than non-query-back event
types. Non-query-back event types use more space but require less time to process than query-back
event types.

Query-back event types trump their non-query-back conterparts. Non-query-back events are
ignored if a query-back event is logged for the same field or object. For example, if an event of type
2 (update-field, non-query-back) and 8 (update-field, query-back) are logged on the same field, the
type 2 event is ignored in favor of the type 8 event.

Furthermore, query-back row event types trump query-back field event types. For example, if an
event type 8 (update field, query-back) and a event type 6 (update row query-back) are logged on the
same object, the type 8 event is ignored in favor of the type 6 event.

Query-back events are ignored by the Publisher if the database object no longer exists. They are
dependent upon the database object still being around at processing time. Therefore, logged query-
back adds and modifies (event types 5, 6, 7, 8) have no effect once the database object they refer to
is deleted.

The following table shows the basic correlation between publication event types and the XDS XML
generated by the Publisher channel.

150 Identity Manager 3.5 Driver for JDBC: Implementation Guide

Table 12-5 Basic Correlation of Publication Event Types

Event Type Resulting XDS
insert <add>

update <modify>
delete <delete>

The following example illustrates XML that the Publisher channel generates for events logged on
the usr table for each possible event type.
CREATE TABLE indirect.usr

(
idu INTEGER NOT NULL,
fname VARCHARZ2 (64),
photo LONGRAW,

CONSTRAINT pk usr idu PRIMARY KEY (idu)
)7

The following table shows the initial contents of usr after a new row has been inserted:

Table 12-6 An Inserted Row in the usr Table

idu fname Iname photo

1 Jack Frost OxAAAA

The following table shows the current contents of usr after the row has been updated:

Table 12-7 An Updated Row in the usr Table

idu fname Iname photo

1 John Doe 0xBBBB

Insert Field

The table below shows the contents of the event log table after a new row is inserted into table usr.
The value for column photo has been Base64-encoded. The Base64-encoded equivalent of
0xAAAA is qqo=.

Table 12-8 Event Log Table: Type 1

event_type table table_key column_name old_value new_value
1 usr idu=1 fname NULL Jack
1 usr idu=1 Iname NULL Frost
1 usr idu=1 photo NULL qgo=

The Event Log Table

151

The Publisher channel generates the following XML:

<add class-name="usr">
<association>idu=1, table=usr, schema=indirect
</association>
<add-attr attr-name="fname">
<value type="string">Jack</value>
</add-attr>
<add-attr attr-name="lname'">
<value type="string">Frost</value>
</add-attr>
<add-attr attr-name="photo">
<value type="octet">ggo=</value>
</add-attr>
</add>

Update Field

The following table shows the contents of the event log table after the row in table usr has been
updated. The values for column photo has been Base64-encoded. The Base64-encoded equivalent

of 0xBBBB is u7s=.

Table 12-9 Event Log Table: Type 2

event_type table table_key column_name old_value new_value
2 usr idu=1 fname Jack John
2 usr idu=1 Iname Frost Doe
2 usr idu=1 photo qqo= u7s=

The Publisher channel generates the following XML:

<modify class-name="usr">
<association>idu=1, table=usr, schema=indirect
</association>
<modify-attr attr-name="fname">
<remove-value>
<value type="string">Jack</value>
</remove-value>
<add-value>
<value type="string">John</value>
</add-value>
</modify-attr>
<modify-attr attr-name="lname">
<remove-value>
<value type="string">Frost</value>
</remove-value>
<add-value>
<value type="string">Doe</value>
</add-value>
</modify-attr>
<modify-attr attr-name="photo">
<remove-value>

152 Identity Manager 3.5 Driver for JDBC: Implementation Guide

<value type="octet">ggo=</value>
</remove-value>
<add-value>
<value type="octet">u7s=</value>
</add-value>
</modify-attr>

</modify>

Update Field (Remove-All-Values)

The following table shows the contents of the event log table after the row in table usr has been
updated. The value for column photo has been Base64-encoded.

Table 12-10 Event Log Table: Type 3

event_type table table_key column_name old_value new_value
3 usr idu=1 fname Jack John

3 usr idu=1 Iname Frost Doe

3 usr idu=1 photo qqo= u7s=

The Publisher channel generates the following XML:

<modify class-name="usr">

<association>idu=1, table=usr, schema=indirect
</association>
<modify-attr attr-name="fname">
<remove-all-values/>
<add-value>
<value type="string">John</value>
</add-value>
</modify-attr>
<modify-attr attr-name="lname">
<remove-all-values/>
<add-value>
<value type="string">Doe</value>
</add-value>
</modify-attr>
<modify-attr attr-name="photo">
<remove-all-values/>
<add-value>
<value type="octet">u7s=</value>
</add-value>
</modify-attr>

</modify>

Delete Row

The table below shows the contents of the event log table after the row in table usr has been
deleted.

The Event Log Table 153

Table 12-11 Event Log Table: Type 4

event_type table table_key column_name old_value new_value

4 usr idu=1 NULL NULL NULL

The Publisher channel generates the following XML:

<delete class-name="usr'">
<association>idu=1, table=usr, schema=indirect
</association>

</delete>

Insert Row (Query-Back)

The following table shows the contents of the event log table after a new row is inserted into table
usr.

Table 12-12 Event Log Table: Type 5

event_type table table_key column_name old_value new_value

5 usr idu=1 NULL NULL NULL

The Publisher channel generates the following XML. The values reflect the current contents of table
usr, not the initial contents.

<add class—-name="usr">
<association>idu=1, table=usr, schema=indirect
</association>
<add-attr attr-name="fname">
<value type="string">John</value>
</add-attr>
<add-attr attr-name="lname">
<value type="string">Doe</value>
</add-attr>
<add-attr attr-name="photo">
<value type="octet">u7s=</value>
</add-attr>
</add>

Update Row (Query-Back)

The table below shows the contents of the event log table after the row in table usr has been
updated.

Table 12-13 Event Log Table: Type 6

event_type table table_key column_name old_value new_value

6 usr idu=1 NULL NULL NULL

154 Identity Manager 3.5 Driver for JDBC: Implementation Guide

The Publisher channel generates the following XML. The values reflect the current contents of table
usr, not the initial contents.

<modify class-name="usr">
<association>idu=1, table=usr, schema=indirect
</association>
<modify-attr attr-name="fname">
<remove-all-values/>
<add-value>
<value type="string">John</value>
</add-value>
</modify-attr>
<modify-attr attr-name="lname">
<remove-all-values/>
<add-value>
<value type="string">Doe</value>
</add-value>
</modify-attr>
<modify-attr attr-name="photo">
<remove-all-values/>
<add-value>
<value type="octet">u7s=</value>
</add-value>
</modify-attr>
</modify>

Insert Field (Query-Back)

The following table shows the contents of the event log table after a new row is inserted into table
usr. Old and new values are omitted because they are not used.

Table 12-14 Event Log Table: Type 7

gvent_typ table table_key column_name old_value new_value
7 usr idu=1 fname NULL NULL
7 usr idu=1 Iname NULL NULL
7 usr idu=1 photo NULL NULL

The Publisher channel generates the following XML. The values reflect the current contents of table
usr, not the initial contents.

<add class-name="usr">

<association>idu=1, table=usr, schema=indirect
</association>
<add-attr attr-name="fname'">

<value type="string">John</value>
</add-attr>
<add-attr attr-name="lname'">

<value type="string">Doe</value>
</add-attr>
<add-attr attr-name="photo">

The Event Log Table 155

<value type="octet">u7s=</value>
</add-attr>
</add>

Update Field (Query-Back)

The following table shows the contents of the event log table after the row in table usr has been

updated. Old and new values are omitted because they are not used.

Table 12-15 Event Log Table: Type 8

event_type table table_key column_name old_value new_value
8 usr idu=1 fname NULL NULL
8 usr idu=1 Iname NULL NULL
8 usr idu=1 photo NULL NULL

The Publisher channel generates the following XML. The values reflect the current contents of table

usr, not the initial contents.

<modify class-name="usr">
<association>idu=1, table=usr, schema=indirect
</association>
<modify-attr attr-name="fname">
<remove-all-values/>
<add-value>
<value type="string">John</value>
</add-value>
</modify-attr>
<modify-attr attr-name="lname">
<remove-all-values/>
<add-value>
<value type="string">Doe</value>
</add-value>
</modify-attr>
<modify-attr attr-name="photo">
<remove-all-values/>
<add-value>
<value type="octet">u7s=</value>
</add-value>
</modify-attr>
</modify>

156 Identity Manager 3.5 Driver for JDBC: Implementation Guide

Embedded SQL Statements in XDS
Events

Embedded SQL allows you to embed SQL statements in XDS-formatted XML documents. You can
use embedded SQL statements along with XDS events or use them standalone. When embedded
SQL statements are used standalone, embedded SQL processing does not require that the driver
know anything about tables/view in the target database. As such, the driver can run in schema-
unaware mode. See “Synchronization Filter” on page 68. When using embedded SQL standalone,
you must establish associations manually. The driver won’t establish them for you.

When used in conjunction with XDS events, embedded SQL can act as a virtual database trigger. In
the same way that you can install database triggers on a table and cause side effects in a database
when certain SQL statements are executed, embedded SQL can cause side effects in a database in
response to certain XDS events.

All examples in this section reference the following indirect.usr table.
CREATE TABLE indirect.usr

(
idu INTEGER NOT NULL,
fname VARCHARZ2 (64),
lname VARCHARZ2 (64),

CONSTRAINT pk usr idu PRIMARY KEY (idu)

¢ Section 13.1, “Common Uses of Embedded SQL,” on page 158

¢ Section 13.2, “Embedded SQL Basics,” on page 158

¢ Section 13.3, “Token Substitution,” on page 159

+ Section 13.4, “Virtual Triggers,” on page 162

¢ Section 13.5, “Manual vs. Automatic Transactions,” on page 163

¢ Section 13.6, “Transaction Isolation Level,” on page 164

¢ Section 13.7, “Statement Type,” on page 165

¢ Section 13.8, “SQL Queries,” on page 166

¢ Section 13.9, “Data Definition Language (DDL) Statements,” on page 167

¢ Section 13.10, “Logical Operations,” on page 168

¢ Section 13.11, “Implementing Password Set with Embedded SQL,” on page 168
¢ Section 13.12, “Implementing Modify Password with Embedded SQL,” on page 169
¢ Section 13.13, “Implementing Check Object Password,” on page 169

¢ Section 13.14, “Stored Procedures,” on page 170

¢ Section 13.15, “Best Practices,” on page 178

Embedded SQL Statements in XDS Events 157

13.1 Common Uses of Embedded SQL

You can accomplish the following by embedding SQL in XDS events:

¢ Create database users or roles.
¢ Manage user passwords
You can set, check or modify user passwords.

+ Manage database user or role privileges.

For examples of each, consult the User DDL Command Transformation style sheet on the
Subscriber channel in the example driver configuration.

13.2 Embedded SQL Basics

¢ Section 13.2.1, “Elements,” on page 158
¢ Section 13.2.2, “Namespaces,” on page 158

¢ Section 13.2.3, “Embedded SQL Example,” on page 159

13.2.1 Elements

SQL is embedded in XDS events through the <jdbc:statement> and <jdbc:sgl> elements.
The <jdbc:statement> element can contain one or more <jdbc: sqgl> elements.

13.2.2 Namespaces

The namespace prefix Jdbc used throughout this section is implicitly bound to the namespace
urn:dirxml : jdbc when referenced outside of an XML document.

You must use namespace-prefixed embedded SQL elements and attributes. Otherwise, the driver
will not recognize them. In all examples in this section, the prefix used is jdbc. In practice, the
prefix can be whatever you want it to be, as long as it is bound to the namespace value
urn:dirxml:jdbc.

The following XML example illustrates how to use and properly namespace-prefix embedded SQL
elements. In the following example, the namespace declaration and namespace prefixes are bolded:
<input xmlns:jdbc="urn:dirxml:jdbc">
<add class-name="usr">
<add-attr name="lname">
<value>Doe</value>
</add-attr>
</add>
<jdbc:statement>
<jdbc:sqgl>UPDATE indirect.usr SET fname = 'John'
</jdbc:sgl>
</jdbc:statement>
</input>

158 Identity Manager 3.5 Driver for JDBC: Implementation Guide

13.2.3 Embedded SQL Example

The following XML example illustrates how to use the <jdbc:statement> and <jdbc:sqgl>
elements and their interpretation. In the following example, embedded SQL elements are bolded:
<input xmlns:jdbc="urn:dirxml:jdbc">
<add class-name="usr">
<add-attr name="lname">
<value>Doe</value>
</add-attr>
</add>
<jdbc:statement>
<jdbc:sql>UPDATE indirect.usr SET fname = 'John'
</jdbc:sql>
</jdbc:statement>
</input>

Because the Subscriber channel resolves <add> events to one or more INSERT statements, the
XML shown above resolves to:

SET AUTOCOMMIT OFF

INSERT INTO indirect.usr (lname)VALUES ('Doe') ;

COMMIT; --explicit commit

UPDATE indirect.usr SET fname = 'John';

COMMIT; --explicit commit

13.3 Token Substitution

Rather than require you to parse field values from an association, the Subscriber channel supports
token substitution in embedded SQL statements. In the following examples, tokens and the values
they reference are bolded:
<input xmlns:jdbc="urn:dirxml:jdbc">
<modify class-name="usr">
<association>idu=1l, table=usr, schema=indirect</association>
<modify-attr name="lname">
<add-value>
<value>DoeRaeMe</value>
</add-value>
</modify-attr>
</modify>
<jdbc:statement>
<jdbc:sgl>UPDATE indirect.usr SET fname = ’'John’ WHERE
idu = {$idu}</jdbc:sql>
</jdbc:statement>
</input>

Token placeholders must adhere to the XSLT attribute value template syntax {$field-name}. Also,
the referenced association element must precede the <jdbc: statement> element in the XDS
document, or must be present as a child of the <jdbc: statement> element. Alternatively,
instead of copying the association element as child of the <jdbc: statement> element, you
could copy the src—entry-id of the element containing the association element onto the
<jdbc:statement> element. Both approaches are bolded in the following examples:
<input xmlns:jdbc="urn:dirxml:jdbc">

<modify class-name="usr">

Embedded SQL Statements in XDS Events

159

<association>idu=1, table=usr, schema=indirect</association>
<modify-attr name="lname">
<add-value>
<value>DoeRaeMe</value>
</add-value>
</modify-attr>
</modify>
<jdbc:statement>

<association>idu=1, table=usr,schema=indirect</association>

<jdbc:sgl>UPDATE indirect.usr SET fname = ’John’ WHERE
idu = {$idu}</jdbc:sgl>
</jdbc:statement>

</input>
<input xmlns:jdbc="urn:dirxml:jdbc">
<modify class-name="usr" src-entry-id="0">
<association>idu=1, table=usr, schema=indirect</association>
<modify-attr name="lname">
<add-value>
<value>DoeRaeMe</value>
</add-value>
</modify-attr>
</modify>
<jdbc:statement src-entry-id="0">
<jdbc:sqgl>UPDATE indirect.usr SET fname = ’John’ WHERE
idu = {$idu}</jdbc:sqgl>
</jdbc:statement>
</input>

The { $field-name} token must refer to one of the naming RDN attribute names in the association
value. The above examples have only one naming attribute: idu.

An <add> event is the only event where an association element is not required to precede
embedded SQL statements with tokens because the association has not been created yet.
Additionally, any embedded SQL statements using tokens must follow, not precede, the <add>
event. For example:

<input xmlns:jdbc="urn:dirxml:jdbc">
<add class-name="usr">
<add-attr name="lname">
<value>Doe</value>
</add-attr>
</add>
<jdbc:statement>
<jdbc:sgl>UPDATE indirect.usr SET fname = ’'John’ WHERE
idu = {$idu}</jdbc:sqgl>
</jdbc:statement>
</input>

To prevent tracing of sensitive information, you can use the { $$password} token to refer to the

contents of the immediately preceding <password> element within the same document. In the
following example, the password token and the value it refers to are bolded:
<input xmlns:jdbc="urn:dirxml:jdbc">
<add class-name="usr">
<password>some password</password>

160 Identity Manager 3.5 Driver for JDBC: Implementation Guide

<add-attr name="fname">
<value>John</value>
</add-attr>
<add-attr name="lname">
<value>Doe</value>
</add-attr>
</add>
<jdbc:statement>

<jdbc:sgl>CREATE USER jdoe IDENTIFIED BY
{$$password}</jdbc:sgl>

</jdbc:statement>
</input>

Furthermore, you can also refer to the driver’s database authentication password specified by the
Application Password parameter as {$$Sdriver-password} . See “Application Password” on
page 62. Named password substitution is not yet supported.

Just as with association elements, the referenced password element must precede the
<jdbc:statement> element in the XDS document or must be present as a child of the
<jdbc:statement> element. Alternatively, instead of copying the password element as child of
the <jdbc: statement> element, you could copy the src-—entry-id of the element
containing the password element onto the <jdbc:statement> element. Both approaches are bolded in
the following examples:
<input xmlns:jdbc="urn:dirxml:jdbc">
<add class-name="usr">
<password>some password</password>
<add-attr name="fname">
<value>John</value>
</add-attr>
<add-attr name="lname">
<value>Doe</value>
</add-attr>
</add>
<jdbc:statement>
<password>some password</password>
<jdbc:sql>CREATE USER jdoe IDENTIFIED BY
{$Spassword}</jdbc:sqgl>
</jdbc:statement>
</input>

<input xmlns:jdbc="urn:dirxml:jdbc">
<add class-name="usr" src-entry-id="0">
<password>some password</password>
<add-attr name="fname">
<value>John</value>
</add-attr>
<add-attr name="lname">
<value>Doe</value>
</add-attr>
</add>
<jdbc:statement src-entry-id="0">
<jdbc:sgl>CREATE USER jdoe IDENTIFIED BY
{$Spassword}</jdbc:sgl>

Embedded SQL Statements in XDS Events 161

</jdbc:statement>
</input>

13.4 Virtual Triggers

In the same way that database triggers can fire before or after a triggering statement, embedded SQL
can be positioned before or after the triggering XDS event. The following examples show how you
can embed SQL before or after an XDS event.

Virtual Before Trigger

<input xmlns:jdbc"urn:dirxml:jdbc">
<jdbc:statement>
<association>idu=1, table=usr,schema=indirect</association>
<jdbc:sql>UPDATE indirect.usr SET fname = 'John' WHERE
idu = {$idu}</jdbc:SQL>
</jdbc:statement>
<modify class-name="usr">
<associlation>idu=1l, table=usr, schema=indirect</association>
<modify-attr name="lname">
<remove-all-values/>
<add-value>
<value>Doe</value>
</add-value>
</modify-attr>

</modify>
</input>
This XML resolves to:
SET AUTOCOMMIT OFF
UPDATE indirect.usr SET fname = 'John' WHERE idu = 1;
COMMIT; --explicit commit
UPDATE indirect.usr SET lname = 'Doe' WHERE idu = 1;
COMMIT; --explicit commit

Virtual After Trigger

<input xmlns:jdbc"urn:dirxml:jdbc">
<modify class-name="usr">
<association>idu=1, table=usr, schema=indirect</association>
<modify-attr name="lname">
<remove-all-values/>
<add-value>
<value>Doe</value>
</add-value>
</modify-attr>
</modify>
<jdbc:statement>
<jdbc:sql>UPDATE indirect.usr SET fname = 'John' WHERE
idu = {$idu}</jdbc:sql>
</jdbc:statement>
</input>

162 Identity Manager 3.5 Driver for JDBC: Implementation Guide

This XML resolves to:
SET AUTOCOMMIT OFF

UPDATE indirect.usr SET lname = 'Doe' WHERE idu = 1;
COMMIT; --explicit commit
UPDATE indirect.usr SET fname = 'John' WHERE idu = 1;

COMMIT; --explicit commit

13.5 Manual vs. Automatic Transactions

You can manually group embedded SQL and XDS events by using two custom attributes:

¢ jdbc:transaction-type

¢ jdbc:transaction-id

jdbc:transaction-type

This attribute has two values: manual and auto. By default, most XDS events of interest (<add>,
<modify>, and <delete>) are implicitly set to the manual transaction type. The manual setting
enables XDS events to resolve to a transaction consisting of one or more SQL statement.

By default, embedded SQL events are set to auto transaction type because some SQL statements,
such as DDL statements, cannot usually be included in a manual transaction. In the following
example, the attribute is in bold text.

<input xmlns:jdbc="urn:dirxml:jdbc">
<add class-name="usr" jdbc:transaction-type="auto">
<add-attr name="lname">
<value>Doe</value>
</add-attr>
</add>
<jdbc:statement>
<jdbc:sgl>UPDATE indirect.usr SET fname = ’'John’ WHERE
idu = {$idu}</jdbc:sgl>
</jdbc:statement>
</input>

This XML resolves to:

SET AUTOCOMMIT ON

INSERT INTO indirect.usr (lname) VALUES (’/Doe’);

-— implicit commit

UPDATE indirect.usr SET fname = ’'John’ WHERE idu = 1;
-— implicit commit

jdbc:transaction-id

The Subscriber channel ignores this attribute unless the element’s jdbc:transaction-type
attribute value defaults to or is explicitly set to manual. The following XML shows an example of
a manual transaction. The attribute is in bold text.
<input xmlns:jdbc="urn:dirxml:jdbc">
<add class-name="usr" Jjdbc:transaction-id="0">
<add-attr name="lname">
<value>Doe</value>
</add-attr>

Embedded SQL Statements in XDS Events

163

</add>
<jdbc:statement jdbc:transaction-type="manual"
jdbc: transaction-id="0">
<jdbc:sgl>UPDATE indirect.usr SET fname = ’'John’ WHERE
idu = {$idu}</jdbc:sgl>
</jdbc:statement>
</input>

This XML resolves to:

SET AUTOCOMMIT OFF

INSERT INTO indirect.usr (lname) VALUES ('Doe’);

UPDATE indirect.usr SET fname = ’John’ WHERE idu = 1;
COMMIT; -- explicit commit

13.6 Transaction Isolation Level

In addition to grouping statements, you can use transactions to preserve the integrity of data in a
database. Transactions can lock data to prevent concurrent access or modification. The isolation
level of a transaction determines how locks are set. Usually, the default isolation level that the driver
uses is sufficient and should not be altered.

The custom attribute jdbc:isolation-level allows you to adjust the isolation transaction
level if necessary. The java.sql.Connection parameter defines five possible values in the interface.
See java.sql.Connection (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Connection.html).

¢ none

¢ read uncommitted
¢ read committed

¢ repeatable read

¢ serializable

The driver’s default transaction isolation level is read committed unless overridden by a
descriptor file. In manual transactions, place the jdbc:isolation-1level attribute on the first
element in the transaction. This attribute is ignored on subsequent elements. In the following
example. the attribute is in bold text.

<input xmlns:jdbc="urn:dirxml:jdbc">
<add class-name="usr" jdbc:transaction-id="0"
jdbc:isolation-level="serializable">
<add-attr name="lname">
<value>Doe</value>
</add-attr>
</add>
<jdbc:statement jdbc:transaction-type="manual"
jdbc:transaction-id="0">
<jdbc:sql>UPDATE indirect.usr SET fname = ’John’
WHERE idu = {$idu}</jdbc:sgl>
</jdbc:statement>
</input>

This XML resolves to:

SET AUTOCOMMIT OFF
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

164 Identity Manager 3.5 Driver for JDBC: Implementation Guide

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Connection.html

INSERT INTO indirect.usr (lname) VALUES (’Doe’);
UPDATE indirect.usr SET fname = ’John’ WHERE idu = 1;
COMMIT; -- explicit commit

13.7 Statement Type

The Subscriber channel executes embedded SQL statements, but it doesn’t understand them. The
JDBC 1 interface defines several methods for executing different types of SQL statements. The
following table contains these methods:

Table 13-1 Methods for Executing SOL Statements

Statement Type Method Executed

SELECT java.sql.Statement.executeQuery(String query):java.sql.ResultSet
INSERT java.sql.Statement.executeUpdate(String update):int

UPDATE java.sql.Statement.executeUpdate(String update):int

DELETE java.sql.Statement.executeUpdate(String update):int

CALL or EXECUTE java.sql.Statement.execute(String sql):boolean

SELECT

INSERT

UPDATE

DELETE

The simplest solution is to map all SQL statements to the
java.sgl.Statement.execute (String sqgl) :boolean method. By default, the
Subscriber channel uses this method.

Some third-party drivers, particularly Oracle’s JDBC drivers, incorrectly implement the methods
used to determine the number of result sets that this method generates. Consequently, the driver can
get caught in an infinite loop leading to high CPU utilization. To circumvent this problem, you can
use the Jdbc : type attribute on any <jdbc: statement> element to map the SQL statements
contained in it to the following methods instead of the default method:

¢ java.sgl.Statement.executeQuery (String
query) :java.sgl.ResultSet
¢ java.sgl.Statement.executeUpdate (String update) :int
The jdbc: type attribute has two values: update and query. For INSERT, UPDATE, or
DELETE statements, set the value to update. For SELECT statements, set the value to query. In

the absence of this attribute, the driver maps all SQL statements to the default method. If placed on
any element other than <jdbc: statement>, this attribute is ignored.

Recommendations:

¢ Place the jdbc: type="query” attribute value on all SELECT statements.

¢ Place the jdbc: type="update” attribute value on all INSERT, UPDATE, and DELETE
statements.

¢ Place no attribute value on stored procedure/function calls.

Embedded SQL Statements in XDS Events

165

The following XML shows an example of the jdbc: type attribute. The attribute is in bold text.
<input xmlns:jdbc="urn:dirxml:jdbc">
<add class-name="usr">
<add-attr name="lname">
<value>Doe</value>
</add-attr>
</add>
<jdbc:statement jdbc:type="update">
<jdbc:sgl>UPDATE indirect.usr SET fname = ’'John’
WHERE idu = {$idu}</jdbc:sgl>
</jdbc:statement>
</input>

13.8 SQL Queries

To fully support the query capabilities of a database and avoid the difficulty of translating native
SQL queries into an XDS format, the driver supports native SQL query processing. You can embed
select statements in XDS documents in exactly the same way as any other SQL statement.

For example, assume that the table usr has the following contents:

Table 13-2 Example Contents

idu fname Iname

1 John Doe

The XML document below results in an output document containing a single result set.

<input xmlns:jdbc="urn:dirxml:jdbc">
<jdbc:statement jdbc:type="query">
<jdbec:sql>SELECT * FROM indirect.usr</jdbc:sql>
</jdbc:statement>
</input>
<output xmlns:jdbc="urn:dirxml:jdbc">
<jdbc:result-set jdbc:number-of-rows="1">
<jdbc:row jdbc:number="1">
<jdbc:column jdbc:name="idu"
jdbc:position="1"
jdbc: type="java.sql.Types.BIGINT
<jdbc:value>1</jdbc:value>
</jdbc:column>
<jdbc:column jdbc:name="fname"
jdbc:position="2"
jdbc: type="java.sql.Types.VARCHAR>
<jdbc:value>John</jdbc:value>
</jdbc:column>
<jdbc:column jdbc:name="lname"
jdbc:position="3"
jdbc: type="java.sql.Types.VARCHAR>
<jdbec:value>Doe</jdbc:value>
</jdbc:column>
</jdbc: row>

166 Identity Manager 3.5 Driver for JDBC: Implementation Guide

</jdbc:result-set>
<status level="success"/>
</output>

SQL queries always produce a single <jdbc : resul t-set> element whether or not the result set
contains any rows. If the result set is empty, the jdbc : number-of-rows attribute is set to zero.

You can embed more than one query in a document. SQL queries don’t require that the referenced
tables/views in the synchronization schema be visible to the driver. However, XDS queries do.

13.9 Data Definition Language (DDL) Statements

Generally, it is not possible to run a Data Definition Language (DDL) statement in a database trigger
because most databases do not allow mixed DML and DDL transactions. Although virtual triggers
do not overcome this transactional limitation, they do allow DDL statements to be executed as a side
effect of an XDS event.

For example:
<input xmlns:jdbc="urn:dirxml:jdbc">
<add class-name="usr">
<add-attr name="fname">
<value>John</value>
</add-attr>
<add-attr name="lname">
<value>Doe</value>
</add-attr>
</add>
<jdbc:statement>
<jdbc:sql>CREATE USER jdoe IDENTIFIED BY novell</jdbc:sql>
</jdbc:statement>
</input>

This XML resolves to:

SET AUTOCOMMIT OFF

INSERT INTO indirect.usr (fname, lname) VALUES(’John’, ’Doe’);
COMMIT; -- explicit commit

SET AUTOCOMMIT ON

CREATE USER jdoe IDENTIFIED BY novell;

-—- implicit commit

Using the jdbc:transaction-idand jdbc:transaction-type attributes to group DML
and DDL statements into a single transaction causes the transaction to be rolled back on most
databases. Because DDL statements are generally executed as separate transactions, it is possible
that the insert statement in the above example might succeed and the create user statement might
roll back.

It is not possible, however, that the insert statement fail and the create user statement
succeed. The driver stops executing chained transactions at the point where the first transaction is
rolled back.

Embedded SQL Statements in XDS Events 167

13.10 Logical Operations

Because it is not generally possible to mix DML and DDL statements in a single transaction, a
single event can consist of one or more transactions. You can use the jdbc: op—1id and
jdbc: op-type to group multiple transactions together into a single logical operation. When so
grouped, all members of the operation are handled as a single unit with regard to status. If one
member has an error, all members return the same status level. Similarly, all members share the
same status type.
<input xmlns:jdbc="urn:dirxml:jdbc">
<add class-name="usr" Jjdbc:op-id="0"
jdbc:op-type="password-set-operation">
<add-attr name="fname">
<value>John</value>
</add-attr>
<add-attr name="lname">
<value>Doe</value>
</add-attr>
<password>Doe{$idu}</password>
</add>
<jdbc:statement jdbc:op-id="0">
<jdbc:sql>CREATE USER jdoe IDENTIFIED BY {Spassword}
</jdbc:sgl>
</jdbc:statement>
</input>

The jdbc: op-type attribute is ignored on all elements except the first element in a logical
operation.

13.11 Implementing Password Set with
Embedded SQL

Initially setting a password is usually accomplished by creating a database user account. Assuming
that an <add> event is generated on the Subscriber channel, the following is an example of the
output generated by XSLT style sheets that implement password set as a side effect of an XDS
<add> event:
<input xmlns:jdbc="urn:dirxml:jdbc">
<add class-name="usr" jdbc:op-id="0"
jdbc:op-type="password-set-operation">
<add-attr name="fname">
<value>John</value>
</add-attr>
<add-attr name="lname">
<value>Doe</value>
</add-attr>
<password>Doe{$idu}</password>
</add>
<jdbc:statement jdbc:op-id="0">
<jdbc:sql>CREATE USER jdoe IDENTIFIED BY {$$password}
</jdbc:sqgl>
</jdbc:statement>
</input>

168 Identity Manager 3.5 Driver for JDBC: Implementation Guide

The <add> event is logically bound to the CREATE USER DDL statement by the jdbc:op-id
and jdbc:op-type attributes.

The User DDIL Command Transformation style sheet in the example . xm1 configuration file
contains sample XSLT templates that bind user account creation DDL statements to <add> events
for all databases that support them.

13.12 Implementing Modify Password with
Embedded SQL

Modifying a password is usually accomplished by altering an existing database user account.
Assuming that a <modify-password> event is generated on the Subscriber channel, the
following is an example of the output generated by XSLT style sheets that implement modify-
password:

NOTE: Some databases, such as Sybase Adaptive Server Enterprise and Microsoft SQL Server,
differentiate between user account names and login account names. Therefore, you might need to
supply the login name instead of hte user name.

<input xmlns:jdbc="urn:dirxml:jdbc">
<modify-password jdbc:op-id="0"
jdbc:op-type="password-set-operation">
<password>new password</password>
</modify-password>
<jdbc:statement jdbc:op-id="0">
<jdbc:sgl>ALTER USER jdoe IDENTIFIED BY {S$Spassword}
</jdbc:sgl>
</jdbc:statement>
</input>

The <modify-password> event is logically bound to the ALTER USER DDL statement by the
jdbc:op-id and jdbc: op-type attributes.

The User DDL Command Transformation style sheet in the example . xm1 configuration contains
sample XSLT templates that bind password maintenance DDL statements to <modi fy-
password> events for all databases that support them.

13.13 Implementing Check Object Password

Unlike password set, check object password does not require embedded SQL statements or
attributes. Only a user account name is required. This could be obtained from an association value
(assuming that associations are being maintained manually), a directory attribute, or a database field.
If stored in the directory or database, a query must be issued to retrieve the value.

The example . xm1 configuration file stores database user account names in database fields.

NOTE: Some databases, such as Sybase Adpative Server Enterprise and Microsoft SQL Server,
differentiate between user account names and login account names. Therefore, you might need to
store two names, not just one.

To implement check object password, append a de st -dn attribute value to the <check-
object-password> event. In the following example, the dest—dn attribute is bolded:

Embedded SQL Statements in XDS Events

169

<input xmlns:jdbc="urn:dirxml:jdbc">
<check-object-password dest-dn="jdoe">
<password>whatever</password>
</check-object-password>
</input>

13.14 Stored Procedures

The Identity Manager Driver for JDBC 3.5 enables you to use stored procedures. The ability to use
the <jdbc:call-procedure>and <jdbc:call-function> elements to call stored
procedures from a policy has been tested against only Oracle and is supported only on that platform.

¢ Section 13.14.1, “Using Embedded SQL to Call Stored Procedures or Functions,” on page 170
¢ Section 13.14.2, “Using the jdbc:call-procedure Element,” on page 171
+ Section 13.14.3, “Using the jdbc:call-function Element,” on page 174

13.14.1 Using Embedded SQL to Call Stored Procedures or
Functions

You can call stored procedures or functions in one of two ways:

¢ (Call the procedure or function by using a Statement object.

¢ (Call the procedure by using a Callable Statement object.

Example 1: Calling a Stored Procedure by Using a Statement

<!-- call syntax is Oracle -->
<jdbc:statement>

<jdbc:sgl>CALL schema.procedure-name</jdbc:sql/>
</jdbc:statement>

Example 2: Calling a Stored Procedure as a CallableStatement
<!-- call syntax is vendor agnostic -->
<jdbc:statement>
<jdbc:call-procedure jdbc:name="schema.procedure-name"/>
</jdbc:statement>

Example 3: Calling a Function by Using a Statement
<!-- call syntax is Informix -->
<jdbc:statement>
<jdbc:sgl>EXECUTE FUNCTION schema.function-name</jdbc:sqgl/>
</jdbc:statement>

Example 4: Calling a Function as a CallableStatement
<!-- call syntax is vendor agnostic -->
<jdbc:statement>
<jdbc:call-function jdbc:name="schema.function-name"/>
</jdbc:statement>

170 Identity Manager 3.5 Driver for JDBC: Implementation Guide

The principle advantage of using the CallableStatement interface is that you do not need to know the
proprietary call syntaxes of each database vendor or JDBC implementation. Other advantages
include the following:

¢ [t's much easier to build procedure or function calls in the Policy Builder.

*

You can differentiate between Null and empty string parameter values.

*

You can call functions on all database platforms.
Oracle, for instance, doesn't support calling functions by using a statement.

+ You can retrieve Out parameter values from stored procedure calls.

13.14.2 Using the jdbc:call-procedure Element

Stored procedures do not necessarily require parameters. Only a name is required. If a database
supports schemas, we recommend that you schema-qualify the name. If a schema qualifier isn't
provided, how names are resolved depends upon your third-party JDBC implementation and might
change, depending upon driver configuration settings.

NOTE: The jdbc:call-procedure element must be wrapped in a jdbc:statement element.

*

“Specifying a Procedure Name” on page 171

*

“Passing In or In Out Parameter Values” on page 171

*

“Handling Out or In Out Parameters” on page 172

*

“Example Complex Stored Procedure Calls” on page 173

Specifying a Procedure Name

<jdbc:call-procedure jdbc:name="schema.procedure-name" />

Passing In or In Out Parameter Values

The number of jdbc:param elements specified must match the number of param elements declared in
the procedure. Only jdbc:param elements corresponding to In or In Out procedure parameters can
have values. Out parameters (those that can't be passed values) must be represented by an empty
jdbc:param element.

Calling a Procedure with No Parameters

<jdbc:statement>
<jdbc:call-procedure jdbc:name="schema.procedure-name"/>
</jdbc:statement>

Calling a Procedure with a Null Parameter

<jdbc:call-procedure jdbc:name="schema.procedure-name">
<!-- no value element = pass null -->
<jdbc:param/>

</jdbc:call-procedure>

Calling a Procedure with an Empty String Parameter

<jdbc:call-procedure jdbc:name="schema.procedure-name">
<!-- empty value element = pass empty string -->

Embedded SQL Statements in XDS Events

171

<jdbc:param>
<jdbc:value/>
</jdbc:param>
<jdbc:param>

NOTE: Literals can be passed only to procedure parameters declared as In or In Out. Passed literals
must be type-compatible with declared procedure parameters.

Calling a Procedure with a Literal Value
<jdbc:call-procedure jdbc:name="schema.procedure-name">
<!-- non-empty value element = pass literal -->
<jdbc:param>
<jdbc:value>literal</jdbc:value>
</jdbc:param>
<jdbc:param>

Calling a Procedure with an Out Parameter

Assuming that a procedure has two parameters, the first Out and the second In, you invoke the
procedure as follows:
<jdbc:call-procedure jdbc:name="schema.procedure-name">

<!-- the OUT param place -->
<jdbc:param/>
<!-- the IN param -->

<jdbc:param>
<jdbc:value>literal</jdbc:value>
</jdbc:param>
<jdbc:param>

Handling Out or In Out Parameters

Stored procedures with Out or In Out parameters can return values. These values are returned by the
driver and are accessible to policies. Out or In Out parameters values are returned at the same
position as their corresponding declared parameter.

Also, to facilitate correlation of procedure calls and output parameter values, Out parameters contain
the same event-ID value as the procedure call that generated them. This is particularly useful when
multiple calls are made in the same document.

Null or No Return Value

Assuming that a procedure has a single Out or In parameter, the following output is generated:
<output>
<!-- no value element = OUT param returned null or IN param -->
<jdbc:out-parameters event-id="0" jdbc:number-of-params="1">
<jdbc:param/>
</jdbc:out-parameters>
<status event-id="0" level="success"/>
</output>

Empty String Return Value

Assuming that a procedure has a single Out or In Out parameter, the following output is generated:

172 Identity Manager 3.5 Driver for JDBC: Implementation Guide

<output>
<!-- empty value element = returned empty string -->
<jdbc:out-parameters event-id="0" jdbc:number-of-params="1">
<jdbc:param>
<jdbc:value/>
</jdbc:param>
</jdbc:out-parameters>
<status event-id="0" level="success"/>
</output>

Literal Return Value

Assuming that a procedure has a single Out or In Out parameter, the following output is generated:
<output>

<!-- no-empty value element = returned literal value -->
<jdbc:out-parameters event-id="0" jdbc:number-of-params="2">
<jdbc:param>
<jdbc:value>literal<jdbc:value>
</jdbc:param>
</jdbc:out-parameters>
<status event-id="0" level="success"/>
</output>

Example Complex Stored Procedure Calls

¢ “Procedure Declaration” on page 173
¢ “Procedure Call from Policy” on page 173
¢ “Procedure Output to Policy” on page 174

Procedure Declaration

NOTE: This procedure uses Oracle PSQL syntax.

CREATE PROCEDURE indirect.pl (il IN VARCHAR2, io2 IN OUT VARCHAR2, o3
OUT INTEGER, 14 IN VARCHARZ2)

AS

BEGIN
SELECT 'literal' INTO io2 FROM DUAL;
SELECT 1 INTO o3 FROM DUAL;

END pl;

Procedure Call from Policy
<input>
<jdbc:statement event-id="0">
<jdbc:call-procedure jdbc:name="indirect.pl">

<!-- 11 IN VARCHAR2 -->
<jdbc:param>
<!-- pass empty string -->

<jdbc:value/>
</jdbc:param>
!-— 102 IN OUT VARCHAR2 -->
<jdbc:param>

<!-- pass literal -->

Embedded SQL Statements in XDS Events 173

<jdbc:value>literal</jdbc:value>
</jdbc:param>

<!-- 03 OUT INTEGER -->
<!-- param placeholder -->
<jdbc:param/>

<!-- 04 IN VARCHAR2 -->
<!-- pass null -->

<jdbc:param/>
</jdbc:call-procedure>
</jdbc:statement>
</input>

Procedure Output to Policy

<output>
<jdbc:out-parameters event-id="0" jdbc:number-of-params="2">
<jdbc:param/>
<jdbc:param jdbc:name="I02"
jdbc:param-type="INOUT"
jdbc:position="2"
jdbc:sgl-type="java.sql.Types.VARCHAR" >
<jdbc:value>literal</jdbc:value>
</jdbc:param>
<jdbc:param jdbc:name="03"
jdbc:param-type="0UT"
jdbc:position="3"
jdbc:sgl-type="java.sql.Types.DECIMAL">
<jdbc:value>1</jdbc:value>
</jdbc:param>
<jdbc:param/>
</jdbc:out-parameters>
<status event-id="0" level="success"/>
</output>

13.14.3 Using the jdbc:call-function Element

Functions do not necessarily require parameters. Only a name is required. If a database supports
schemas, we recommend that you schema-qualify the name. If a schema qualifier isn't provided,
how names are resolved depends upon your third-party JDBC implementation and might change
depending upon driver configuration settings.

NOTE: The jdbc:call-function element must be wrapped in a jdbc:statement element.

+ “Specifying a Function Name” on page 175

¢ “Passing In Parameter Values” on page 175

¢ “Calling a Function with No Parameter” on page 175

¢ “Calling a Function with a Null Parameter” on page 175

¢ “Calling a Function with an Empty String Parameter” on page 175
¢ “Calling a Function with a Literal Value” on page 175

¢ “Handling Function Results” on page 175

+ “Example Complex Function Calls” on page 177

174 Identity Manager 3.5 Driver for JDBC: Implementation Guide

Specifying a Function Name

<jdbc:call-function jdbc:name="schema.function-name"/>

Passing In Parameter Values

The number of jdbc:param elements specified must match the number of params declared in the
function.

Calling a Function with No Parameter

<jdbc:call-function jdbc:name="schema.function-name"/>

Calling a Function with a Null Parameter

<jdbc:call-function jdbc:name="schema.function-name">
<!-- no value element = null -->
<jdbc:param/>

</jdbc:call-procedure>

Calling a Function with an Empty String Parameter

<jdbc:call-function jdbc:name="schema.function-name">
<!-- empty value element = pass empty string -->
<jdbc:param>
<jdbc:value/>
</jdbc:param>
<jdbc:param>

NOTE: Literals can be passed to function parameters declared as In. Passed literals must be type-
compatible with declared function parameters.

Calling a Function with a Literal Value

<jdbc:call-function jdbc:name="schema.function-name">
<!-- non-empty value element = pass literal -->
<jdbc:param>
<jdbc:value>literal</jdbc:value>
</jdbc:param>
<jdbc:param>

Handling Function Results

Unlike stored procedures, functions do not support Out or In Out parameters. They can, however,
return a single, scalar value (such as an integer or string) or return a result set. Also, to facilitate
correlation of function calls and results, results contain the same event-id value as the function call
that generated them. This is particularly useful when multiple calls are made in the same document.

Scalar Return Value

Scalar return values are returned using the same syntax as stored procedure Out parameters. The
scalar return value is always returned in the first parameter position.
<output>
<jdbc:out-parameters event-id="0" jdbc:number-of-params="1">
<jdbc:param jdbc:name="return value"

Embedded SQL Statements in XDS Events

175

jdbc:param-type="0UT"
jdbc:position="1"
jdbc:sgl-type="java.sqgl.Types.VARCHAR" >
<jdbc:value>1</jdbc:value>
</jdbc:param>
</jdbc:out-parameters>
<status event-id="0" level="success"/>
</output

Empty Set

Assuming that a function returns no results set or an empty result set, the following output is
generated:
<output>
<jdbc:result-set event-id="0" jdbc:number-of-rows="0"/>
<status event-id="0" level="success"/>
</output>

Non-Empty Results Set

Assuming a function returns a non-empty result set, output similar to the following is generated:
<output>
<jdbc:result-set event-id="0" jdbc:number-of-rows="1">
<jdbc:row jdbc:number="1">
<jdbc:column jdbc:name="SYSDATE"
jdbc:position="1
jdbc:type="java.sqgl.Types.TIMESTAMP" >
<jdbc:value>2007-01-03 14:52:20.0</jdbc:value>
</jdbc:column>
</jdbc:row>
</jdbc:result-set>
<status event-id="0" level="success"/>
</output>

Multiple Result Sets

Multiple result sets are returned in the order returned by the function. They all share a common

event-id value.

<output>
<jdbc:result-set event-id="0" jdbc:number-of-rows="0"/>
<jdbc:result-set event-id="0" jdbc:number-of-rows="0"/>
<status event-id="0" level="success"/>

</output>

Oracle Results Set

Oracle's JDBC implementation uses a proprietary mechanism to return a single result set from a
function. To return a result set from an Oracle function, you need to explicitly set the jdbc:return-
type value to OracleTypes.CURSOR on the jdbc:call-function element.

Returning Result Sets as Out Parameters

See the special attribute “jdbc:return-format” on page 177.

176 Identity Manager 3.5 Driver for JDBC: Implementation Guide

Special Attributes

jdbc:return-format

This attribute can be placed on the jdbc:call-function element to format the first row of a returned
results set as stored procedure Out parameters of the result.

NOTE: This works only when the jdbc:return-type attribute isn't used.

<input>
<jdbc:statement>
<jdbc:call-function jdbc:name="schema.function-name"
jdbc:return-format="return value">
</jdbc:call-function>
</jdbc:statement>
</input>

jdbc:return-type

This attribute can be placed on the jdbc:call-function element to allow Oracle functions to return a
result set.
<input>
<jdbc:statement>
<jdbc:call-function jdbc:name="schema.function"
jdbc:return-type="0OracleTypes.CURSOR">
</jdbc:call-function>
</jdbc:statement>
</input>

Example Complex Function Calls

¢ “Function Declaration” on page 177
¢ “Function Call from a Policy” on page 177

¢ “Function Results to a Policy” on page 178

Function Declaration

NOTE: This declaration is for Oracle PSQL syntax.

CREATE OR REPLACE FUNCTION indirect.fl (il IN VARCHAR2, i2 IN INTEGER)
RETURN VARCHAR?2
AS
o_idu VARCHAR2 (32);
BEGIN
SELECT 'literal' INTO o _idu FROM DUAL;
RETURN o idu;
END f1;

Function Call from a Policy
<input>
<jdbc:statement>

<jdbc:call-function jdbc:name="indirect.f1l">
<jdbc:param>

Embedded SQL Statements in XDS Events

177

<jdbc:value>literal</jdbc:value>

</jdbc:param>

<jdbc:param>
<jdbc:value>1</jdbc:value>

</jdbc:param>

</jdbc:call-function>
</jdbc:statement>
</input>

Function Results to a Policy

<output>
<jdbc:out-parameters event-id="0" jdbc:number-of-params="1">
<jdbc:param jdbc:name="return value"
jdbc:param-type="0UT"
jdbc:position="1"
jdbc:sgl-type="java.sql.Types.VARCHAR" >
<jdbc:value>literal</jdbc:value>
</jdbc:param>
</jdbc:out-parameters>
<status event-id="0" level="success"/>
</output>

13.15 Best Practices

For performance reasons, it is better to call a single stored procedure/function that contains multiple
SQL statements than to embed multiple statements in an XDS document.

In the following examples, the single stored procedure or function is preferred.

Single Stored Procedure
<input xmlns:jdbc="urn:dirxml:jdbc">
<add class-name="usr">
<add-attr name="fname">
<value>John</value>
</add-attr>
<add-attr name="lname">
<value>Doe</value>
</add-attr>
</add>
<jdbc:statement>
<jdbc:sql>CALL PROCEDURE set name('John', 'Doe')</jdbc:sql>
</jdbc:statement>
</input>

Multiple Embedded Statements

<input xmlns:jdbc="urn:dirxml:jdbc">
<add class-name="usr">
<add-attr name="lname">
<value>Doe</value>
</add-attr>
</add>
<jdbc:statement>

<jdbc:sql>UPDATE indirect.usr SET fname = 'John'

178 Identity Manager 3.5 Driver for JDBC: Implementation Guide

WHERE idu = {$idu}</jdbc:sql>
</jdbc:statement>
<jdbc:statement>
<jdbc:sql>UPDATE indirect.usr SET lname = 'Doe'
WHERE idu = {$idu}</jdbc:sql>
</jdbc:statement>
</input>

The syntax used to call stored procedures or functions varies by database. For additional
information, see “Stored Procedure and Function JDBC Call Syntaxes™ on page 183.

Embedded SQL Statements in XDS Events 179

180 Identity Manager 3.5 Driver for JDBC: Implementation Guide

Supported Databases

¢ Section 14.1, “Database Interoperability,” on page 181
¢ Section 14.2, “Supported Databases,” on page 181

¢ Section 14.3, “Database Characteristics,” on page 182

14.1 Database Interoperability

The Identity Manager Driver for JDBC is designed to interoperate with a specific set of JDBC driver
implementations, instead of a specific set of databases. Consequently, the list of supported databases
is primarily driven by the capabilities of supported third-party JDBC drivers. A secondary factor is

testing resources.

14.2 Supported Databases

The following databases or database versions have been tested and are recommended for use with

this product:

Table 14-1 Supported Databases

Database

Minor Version

IBM DB2 Universal Database (UDB) 7
IBM DB2 Universal Database (UDB) 8
Informix Dynamic Server (IDS)
Microsoft SQL Server 7

Microsoft SQL Server 8 (2000)
MySQL 3

MySQL 4

Oracle 8i

Oracle 9i

Oracle 10g

PostgreSQL 7

Sybase Adaptive Server Enterprise (ASE) 12

7.2 or later

8.1 or later

9.40 or later

7.5, Service Pack 4 or later
Service Pack 3a or later
3.23.58 or later

4.1 or later

Release 3 (8.1.7) or later
Release 2 (9.2.0.1) or later
Release 1 (10.0.2.1) or later
7.4.6 or later

12.5 or later

You can use the Driver for JDBC with other databases or database versions. However, Novell® does
not support them. To interoperate with the Driver for JDBC, a database must meet the following

requirements:

¢ Support the SQL-92 entry level grammar.

+ Be JDBC-accessible.

Supported Databases

181

14.3 Database Characteristics

+ “Database Features” on page 182

+ “IBM DB2 Universal Database (UDB)” on page 186

¢ “Informix Dynamic Server (IDS)” on page 186

¢ “Microsoft SQL Server” on page 187

* “MySQL” on page 188

¢ “Oracle” on page 189

¢ “PostgreSQL” on page 190

+ “Sybase Adaptive Server Enterprise (ASE)” on page 190

14.3.1 Database Features

Table 14-2 Database Features

Identit Stored Instead-
Database Schemas Views y Sequences Functions Triggers Of-
Columns Procedures Triggers
IBM DB2 X X X 0 x! X! X 0
UDB 7
IBM DB2 X X X 0 x! X! X X
uUDB 8
Informix IDS X X X2 0 X3 X X 0
9
MSSQL7 X X 0 X 0 X 0
MSSQL8 X X 0 X X X X
MySQL4 0 0 x4 0 0 0 0 0
Oracle 8i, 9i, X X 0 X X X X X
109
Postgres 7 X X x5 X X X X8 X8
Sybase ASE X X X 0 X 0 X 0

12

'DB2 natively supports stored procedures or functions written in Java. To write procedures by using
the native SQL procedural language, install a C compiler on the database server.

2 The Informix identity column keyword is SERTIALS.
3 Informix stored procedures cannot return values.
4 The MySQL identity column keyword is AUTO INCREMENT.

> You can use a Postgres sequence object to provide default values for primary key columns,
effectively simulating an identity column.

182 Identity Manager 3.5 Driver for JDBC: Implementation Guide

Postgres has a native construct called rules. This construct can be used to effectively simulate
triggers and instead-of-triggers. It also supports the use of triggers or instead-of-triggers written in a
variety of procedural programming languages.

14.3.2 Current Time Stamp Statements

The following table lists SQL statements used to retrieve the current date and time by database:

Table 14-3 Time Stamp Statements

ANSI-

Database Current Time Stamp Statement .
Compliant

IBM DB2 SELECT (CURRENT TIMESTAMP) FROM SYSIBM.SYSDUMMY1 FETCH No
ubDB FIRST 1 ROW ONLY

Informix IDS SELECT FIRST 1 (CURRENT YEAR TO FRACTION(5)) FROM No
INFORMIX.SYSTABLES

MSSQL SELECT (CURRENT_TIMESTAMP) Yes

MySQL SELECT (CURRENT_TIMESTAMP) Yes

Oracle SELECT (SYSDATE) FROM SYS.DUAL No

PostgreSQL SELECT (CURRENT_TIMESTAMP) Yes

Sybase ASE SELECT GETDATE() No

14.3.3 Stored Procedure and Function JDBC Call Syntaxes

The following table lists the SQL syntax for calling a stored procedure or function. This is useful for
formatting procedure and function calls in embedded SQL statements.

Table 14-4 Calling a Stored Procedure or Function

Database Stored Procedure/Function JDBC Call Syntax

IBM DB2 UDB {call schema-name.procedure-name(parameter-list)}

Informix IDS ~ EXECUTE [PROCEDURE | FUNCTION] schema-name.routine-name(parameter-list)

MSSQL EXECUTE schema-name.procedure-name(parameter-list)
MySQL (NA)
Oracle’ CALL schema-name.procedure-name(parameter-list)

PostgreSQL ~ SELECT schema-name.procedure-name(parameter-list)

Sybase ASE EXECUTE schema-name.procedure-name(parameter-list)

! Oracle’s JDBC implementation does not support calling functions as a string.

Supported Databases

183

14.3.4 Left Outer Join Operators

The following table lists outer join operators by database.

Table 14-5 Outer Join Operators

Database Left Outer Join Operator ANSI-Compliant
IBM DB2 UDB LEFT OUTER JOIN Yes

Informix IDS LEFT OUTER JOIN Yes

MSSQL = No

MySQL LEFT OUTER JOIN Yes

Oracle (+) No
PostgreSQL LEFT OUTER JOIN Yes

Sybase ASE *= No

NOTE: Oracle supports the ANSI-compliant left outer join operator LEFT OUTER JOIN as of
version 10g.

14.3.5 Undelimited Identifier Case Sensitivity

Table 14-6 Case Sensitivity for Undelimited Identifiers

Database Case-Sensitive?

IBM DB2 UDB No

Informix IDS No
MSSQL No
MySQL Yes
Oracle No

PostgreSQL No
Sybase ASE Yes

184 Identity Manager 3.5 Driver for JDBC: Implementation Guide

14.3.6 Supported Transaction Isolation Levels

Table 14-7 Supported Transaction Isolation Levels

No
ne

Database

Read
Uncommit
ted

Read
Commit
ted

Repeata
ble
Read

Serializa
ble

URL

IBM DB2 UDB 0

MySQL (InnoDB Table 0
Type)

Oracle 0

PostgreSQL 0

X

X1

X1

X

X

Setting JDBC Transaction
Isolation Levels (http://
publib.boulder.ibm.com/
infocenter/db2help/
index.jsp?topic=/
com.ibm.db2.udb.doc/ad/
tjvjdiso.htm)

InnoDB Transaction Isolation
Levels (http://dev.mysql.com/
doc/mysql/en/innodb-
transaction-isolation.html)

JDBC Transaction Optimization
(http://www.oracle.com/
technology/oramag/oracle/02-
jul/o42special_jdbc.html)

Transaction Isolation (http://
www.postgresql.org/docs/
current/static/transaction-
iso.html)

! This is the default isolation level for this database.

2 Can be set, but it is aliased to a supported isolation level.

14.3.7 Commit Keywords

The following table identifies the commit keywords for supported databases:

Table 14-8 Commit Keywords

Database Commit Keyword

IBM DB2 UDB COMMIT

Informix IDS COMMIT WORK!'

MSSQL GO
MySQL COMMIT
Oracle COMMIT

PostgreSQL COMMIT
Sybase ASE GO

Supported Databases 185

http://publib.boulder.ibm.com/infocenter/db2help/index.jsp?topic=/com.ibm.db2.udb.doc/ad/tjvjdiso.htm
http://publib.boulder.ibm.com/infocenter/db2help/index.jsp?topic=/com.ibm.db2.udb.doc/ad/tjvjdiso.htm
http://dev.mysql.com/doc/mysql/en/innodb-transaction-isolation.html
http://dev.mysql.com/doc/mysql/en/innodb-transaction-isolation.html
http://www.oracle.com/technology/oramag/oracle/02-jul/o42special_jdbc.html
http://www.postgresql.org/docs/current/static/transaction-iso.html

! For logging and ANSI-compliant databases. Non-logging databases do not support transactions.

14.3.8 IBM DB2 Universal Database (UDB)

The following table lists properties for this database.

Table 14-9 Properties for IBM DB2 UDB

Property Value

Current Timestamp SELECT (CURRENT TIMESTAMP) FROM SYSIBM.SYSDUMMY1 FETCH
Statement FIRST 1 ROW ONLY

Stored Procedure/ {call schema-name.procedure-name(parameter-list)}
Function Call Syntax

Case-Sensitive? No
Commit Keyword COMMIT

Left Outer Join LEFT OUTER JOIN
Operator

Dynamic Defaults

The following table lists database compatibility parameters that the Driver for JDBC implicitly sets
at runtime. Do not explicitly override these settings.

Table 14-10 Dynamically Configured IBM DB2 Universal Database Settings

Display Name Tag Name Value

Current Timestamp current-timestamp- SELECT (CURRENT TIMESTAMP) FROM
Statement: stmt SYSIBM.SYSDUMMY1 FETCH FIRST 1 ROW ONLY

Timestamp Translator time-translator-class com.novell.nds.dirxml.driver.jdbc.db.DB2Timestamp
class:

Known Issues

¢ The timestamp format is proprietary.

See “Known Issues” on page 191.

14.3.9 Informix Dynamic Server (IDS)

The following table lists properties for this database.

186 Identity Manager 3.5 Driver for JDBC: Implementation Guide

Table 14-11 Settings for Informix Dynamic Server

Property Value

Current Timestamp ~ SELECT FIRST 1 (CURRENT YEAR TO FRACTION(5)) FROM
Statement INFORMIX.SYSTABLES

Stored Procedure/ EXECUTE [PROCEDURE | FUNCTION] schema-name.procedure-
Function Call Syntax name(parameter-list)

Case-Sensitive? No
Commit Keyword COMMIT WORK!

Left Outer Join LEFT OUTER JOIN
Operator

! For logging and ANSI-compliant databases. Nonlogging databases do not support transactions.

Dynamic Defaults

The following table lists database compatibility parameters that the Driver for JDBC implicitly sets
at runtime. Do not explicitly overwrite these settings.

Table 14-12 Dynamically Configured Informix Dynamic Server Settings

Display Name Tag Name Value

Current Timestamp current-timestamp- SELECT FIRST 1 (CURRENT YEAR TO
Statement: stmt FRACTION(5)) FROM INFORMIX.SYSTABLES

Known Issues

¢ NUMERIC or DECIMAL columns cannot be used as primary keys unless the scale (the number
of digits to the right of the decimal point) is explicitly set to 0 when the table is created. By
default, the scale is set to 255.

14.3.10 Microsoft SQL Server

The following table lists properties for this database:

Table 14-13 Settings for Microsoft SQL Server

Property Value

Current Timestamp Statement =~ SELECT (CURRENT_TIMESTAMP)

Stored Procedure/Function Call EXECUTE schema-name.procedure-name(parameter-list)
Syntax

Case-Sensitive? No

Commit Keyword GO

Supported Databases

187

Property Value

Left Outer Join Operator *=

Dynamic Defaults

The following table lists database compatibility parameters that the Driver for JDBC implicitly sets
at runtime. Do not explicitly overwrite these settings.

Table 14-14 Dynamically Configured Microsoft SQL Server Settings

Display Name Tag Name Value

Add default values on insert? add-default-values-on-view-insert true

Left outer-join operator: left-outer-join-operator *=

14.3.11 MySQL

The following table lists properties for this database.

Table 14-15 Settings for MySQL

Property Value

Current Timestamp Statement ~ SELECT (CURRENT_TIMESTAMP)
Stored Procedure/Function Call (NA)

Syntax

Case-Sensitive? Yes

Commit Keyword COMMIT

Left Outer Join Operator LEFT OUTER JOIN

Dynamic Defaults

The following table lists database compatibility parameters that are dynamically configured at
runtime for this database.

Table 14-16 Dynamically Configured MySQL Settings

Display Name Tag Name Value
Supports schemas in metadata supports-schemas-in-metadata-retrieval false
retrieval?

188 Identity Manager 3.5 Driver for JDBC: Implementation Guide

Known Issues

¢ TIMESTAMP columns, when updated after being initially set to 0 or NULL, are always set to
the current date and time. To compensate for this behavior, we recommend that you map
Identity Vault Time and Timestamp syntaxes to DATETIME columns.

14.3.12 Oracle

The following table lists properties for this database:

Table 14-17 Settings for Oracle

Property Value

Current Timestamp Statement ~ SELECT (SYSDATE) FROM SYS.DUAL

Stored Procedure/Function Call CALL schema-name.procedure-name(parameter-list)

Syntax

Case-Sensitive? No
Commit Keyword COMMIT
Left Outer Join Operator (+)

Dynamic Defaults

The following table lists database compatibility parameters that the Driver for JDBC implicitly sets
at runtime. Do not explicitly overwrite these settings.

Table 14-18 Dynamically Configured Oracle Settings

Display Name Tag Name Value

Left outer-join operator left-outer-join-operator (+)

Exclude filter expression exclude-table-filter BIN\$.{22}==\$0

Lock statement generator lock-generator-class com.novell.nds.dirxml.driver.jdbc.db.lock.
class OralLockGenerator

NOTE: The default exclusion filter is intended to omit from the synchronization schema dropped
tables that are visible in Oracle 10g.

Limitations

¢ LONG, LONG RAW and BLOB columns cannot be referenced in a trigger.

You can’t reference columns of these types by using the : NEW qualifier in a trigger, including
instead-of-triggers.

Supported Databases 189

14.3.13 PostgreSQL

The following table lists properties for this database:

Table 14-19 Settings for PostgreSQL

Property Value

Current Timestamp Statement =~ SELECT (CURRENT_TIMESTAMP)

Stored Procedure/Function Call SELECT schema-name.procedure-name(parameter-list)

Syntax

Case-Sensitive? No

Commit Keyword COMMIT

Left Outer Join Operator LEFT OUTER JOIN

Known Issues

+ PostgreSQL does not support <check-object-password> events. You control
authentication by manually inserting entries into the pg_hba.conf file.

14.3.14 Sybase Adaptive Server Enterprise (ASE)

The following table lists properties for this database:

Table 14-20 Settings for Sybase ASE

Property Value

Current Timestamp Statement =~ SELECT GETDATE()

Stored Procedure/Function Call EXECUTE schema-name.procedure-name(parameter-list)

Syntax

Case-Sensitive? Yes
Commit Keyword GO
Left Outer Join Operator *=

Dynamic Defaults

The following table lists database compatibility parameters that the Driver for JDBC implicitly sets
at runtime. Do not explicitly overwrite these settings.

Table 14-21 Dynamically Configured Sybase ASE Settings

Display Name Tag Name Value
Current timestamp current-timestamp-stmt SELECT GETDATE()
statement

190 Identity Manager 3.5 Driver for JDBC: Implementation Guide

Display Name Tag Name Value

Left outer-join operator left-outer-join-operator *=
Timestamp Translator time-translator-class com.novell.nds.dirxml.driver.jdbc.db.SybaseTi
class mestamp

Known Issues
¢ Padding and truncation of binary values.

To ensure ANSI-compliant padding and truncation behavior for binary values, make sure that

binary column types (other than TMAGE) meet the following criteria:
¢ They are exactly the size of the eDirectory™ attribute that maps to them.
¢ They are constrained NOT NULL.
¢ They are added to the Publisher and Subscriber Creation policies.

If they are constrained NULL, trailing zeros, which are significant to eDirectory, are truncated.

If binary columns exceed the size of their respective eDirectory attributes, extra Os are
appended to the value.

The recommended solution is to use only the IMAGE data type when synchronizing binary
values.

¢ DATETIME fractions of a second are rounded.

Sybase Timestamps are at best accurate to 1/300th of a second (approximately.003 seconds).
The database server rounds to the nearest 1/300™ of a second as opposed to the nearest 1/ 1000
of'a second (.001 seconds or 1 millisecond).

¢ Timestamp formats are proprietary.

Supported Databases 191

192 Identity Manager 3.5 Driver for JDBC: Implementation Guide

Third-Party JDBC Drivers

¢ Section 15.1, “Third-Party JDBC Driver Interoperability,” on page 193
¢ Section 15.2, “JDBC Driver Types,” on page 193

¢ Section 15.3, “Third-Party Jar File Placement,” on page 194

¢ Section 15.4, “Supported Third-Party JDBC Drivers,” on page 195

¢ Section 15.5, “Unsupported Third-Party JDBC Drivers,” on page 209

¢ Section 15.6, “Security Issues,” on page 210

15.1 Third-Party JDBC Driver Interoperability

The Identity Manager Driver for JDBC is designed to interoperate with a specific set of third-party
JDBC drivers, instead of a specific set of databases. In fact, the third-party JDBC driver, not the
database, is the primary determinant of whether the Driver for JDBC works against any given
database. As a general rule, if the Driver for JDBC interoperates well with a given third-party JDBC
driver, it interoperates well with databases and database versions that the third-party driver supports.

We strongly recommend that you use the third-party JDBC drivers supplied by major enterprise
database vendors whenever possible, such as those listed in this section. They are usually free,
mature, and known to interoperate well with the Driver for JDBC and the databases they target. You
can use other third-party drivers, but Novell® does not support them.

In general, most third-party drivers are backward compatible. However, even if they are generally
backward compatible, they are generally not forward compatible. Anytime a database server is
upgraded, the third-party driver used with this product should probably be updated as well.

Also, as a general rule, we recommend that you use the latest version of a third-party driver, unless
otherwise noted.

15.2 JDBC Driver Types

Type 1

A third-party JDBC driver that is partially Java and communicates indirectly with a database server
through a native ODBC driver.

Type 1 drivers serve as a JDBC-ODBC bridge. Sun provides a JDBC-ODBC bridge driver for
experimental use and for situations when no other type of third-party JDBC driver is available.

Type 2

A third-party JDBC driver that is part Java and communicates indirectly with a database server
through its native client APIs.

Type 3

A third-party JDBC driver that is pure Java and communicates indirectly with a database server
through a middleware server.

Third-Party JDBC Drivers

193

Type 4

A third-party JDBC driver that is pure Java and communicates directly with a database server.

15.2.1 Which Type To Use?

Type 3 and 4 drivers are generally more stable than type 1 and 2 drivers. Type 1 and 2 drivers are
generally faster than type 3 and 4 drivers. Type 2 and 3 drivers are generally more secure than type 1
and 4 drivers.

Because Identity Manager uses a directory as its datastore, and because databases are usually
significantly faster than directories, performance isn’t a primary concern. Stability, however, is an
issue. For this reason, we recommend that you use a type 3 or 4 third-party JDBC driver whenever
possible.

IMPORTANT: If you choose to use a type 1 or type 2 driver (one containing native code) with the
Driver for JDBC, use the Remote Loader to ensure the integrity of the directory process.

15.3 Third-Party Jar File Placement

The following tables identify the paths where third-party JDBC driver jar files should be placed on
an Identity Manager or Remote Loader server assuming default installation paths.

15.3.1 Identity Manager File Paths

The following table identifies where to place third-party JDBC driver jar files on an Identity
Management server, by platform.

Table 15-1 Locations for jar Files: Identity Manager Server

Platform Directory Path

NetWare® sys:\system\lib

Solaris, Linux, or AIX /usr/lib/dirxml/classes (pre-eDirectory 8.8)
/opt/novell/eDirectory/lib/dirxml/classes (eDirectory 8.8)

Windows NT/2000 novell\NDS\1lib

15.3.2 Remote Loader File Paths

The following table identifies where to place third-party JDBC driver jar files on a Remote Loader
server, by platform.

Table 15-2 Locations for jar Files: Remote Loader

Platform Directory Path

Solaris, Linux, or AIX /usr/lib/dirxml/classes (pre-eDirectory 8.8)
/opt/novell/eDirectory/lib/dirxml/classes (eDirectory 8.8)

194 Identity Manager 3.5 Driver for JDBC: Implementation Guide

Platform Directory Path

Windows NT/2000 novell\RemoteLoader\lib

15.4 Supported Third-Party JDBC Drivers

*

*

*

Section 15.4.1, “Third-Party JDBC Driver Features,” on page 195

Section 15.4.2, “JDBC URL Syntaxes,” on page 196

Section 15.4.3, “JDBC Driver Class Names,” on page 196

Section 15.4.4, “BEA Weblogic jDriver for Microsoft SQL Server,” on page 197
Section 15.4.5, “IBM DB2 Universal Database JDBC Drivers,” on page 198
Section 15.4.6, “Informix JDBC Driver,” on page 200

Section 15.4.7, “Microsoft SQL Server 2000 Driver for JDBC,” on page 202
Section 15.4.8, “MySQL Connector/J JDBC Driver,” on page 204

Section 15.4.9, “Oracle Thin Client JDBC Driver,” on page 204

Section 15.4.10, “Oracle OCI JDBC Driver,” on page 206

Section 15.4.11, “PostgreSQL JDBC Driver,” on page 208

Section 15.4.12, “Sybase Adaptive Server Enterprise JConnect JDBC Driver,” on page 208

15.4.1 Third-Party JDBC Driver Features

The following table summarizes third-party JDBC driver features:

Table 15-3 Third-Party JDBC Driver Features

Supports Retrieval of Auto-Generated

Driver Supports Encrypted Transport? Keys?
BEA* Weblogic* jDriver No No
IBM DB2 UDB Type 3 No No
IBM DB2 UDB Type 4 No No
Informix No No
Microsoft 2000 No No
MySQL Connector/J Yes Yes
Oracle Thin Client Yes No
Oracle OCI Yes No
PostgreSQL Yes* No
Sybase jConnect Yes No

* For JDBC 3 (Java 1.4) versions and later.

Third-Party JDBC Drivers 195

15.4.2 JDBC URL Syntaxes

The following table lists URL syntaxes for supported third-party JDBC drivers:

Table 15-4 URL Syntaxes

Third-Party JDBC Driver

JDBC URL Syntax

Oracle Thin Client

Oracle OCI

IBM DB2 UDB Type 3

IBM DB2 UDB Type 4, Universal
BEA Weblogic jDriver

Microsoft SQL Server

Sybase jConnect
MySQL Connector/J

Informix

PostgreSQL

jdbc:oracle:thin:@ip-address:1521:sid
jdbc:oracle:oci8:@tns-name
jdbc:db2://ip-address:6789/database-name
jdbc:db2://ip-address:50000/database-name
jdbc:weblogic:mssqlserver4d:database-name@ip-address: 1433

jdbc:microsoft:sqlserver://ip-address-or-dns-
name:1433;DatabaseName=database-name

jdbc:sybase:Tds:ip-address:2048/database-name
jdbc:mysql://ip-address:3306/database-name

jdbc:informix-sqli://ip-address:1526/database-
name:informixserver=server-id

jdbc:postgresql://ip-address:5432/database-name

This information is used in conjunction with the Authentication Context parameter. For information
on this parameter, see “Authentication Context” on page 62.

15.4.3 JDBC Driver Class Names

The following table lists the fully-qualified Java class names of supported third-party JDBC drivers:

Table 15-5 Class Names of Third-Party JDBC Drivers

Third-party JDBC Driver

Class Name

BEA Weblogic jDriver

IBM DB2 UDB Type 3

IBM DB2 UDB Type 4, Universal
Informix

Microsoft 2000

MySQL Connector/J

Oracle Thin Client

Oracle OCI

PostgreSQL

weblogic.jdbc.mssqlserver4.Driver
COM.ibm.db2.jdbc.net.DB2Driver
com.ibm.db2.jcc.DB2Driver
com.informix.jdbc.IfxDriver
com.microsoft.jdbc.sqlserver.SQLServerDriver
org.gjt.mm.mysql.Driver
oracle.jdbc.driver.OracleDriver
oracle.jdbc.driver.OracleDriver

org.postgresql.Driver

196 Identity Manager 3.5 Driver for JDBC: Implementation Guide

Third-party JDBC Driver Class Name

Sybase jConnect 5.5 com.sybase.jdbc2.jdbc.SybDriver

This information is used in conjunction with the JDBC Driver Class Name parameter. For
information on this parameter, see “Third-Party JDBC Driver Class Name” on page 64.

15.4.4 BEA Weblogic jDriver for Microsoft SQL Server

Table 15-6 BEA Weblogic jDriver

Supported Database Version: Microsoft SQL Server 6.5, 7.x, 8.x (2000)

Class Name weblogic.jdbc.mssqlserver4.Driver

Type 4

URL Syntax jdbc:weblogic:mssqlserver4:database-name@ip-address: 1433
Download Instructions Register for free and download the latest version of Weblogic server.

Run the installer. The weblogic. jar file is installed in the
install-dir/server/1lib directory.

BEA Download Center (http://commerce.bea.com/
showallversions.jsp?family=WLS)

Filename weblogic.jar

Documentation URLs jDriver Documentation (http://e-docs.bea.com/wls/docs81/
mssqlserver4/)

NOTE: The BEA Weblogic driver is included in the supported third-party driver listing to provide
JDBC access to Microsoft SQL server 7. Microsoft’s driver supports only version 8 (2000).

Compatibility

The BEA Weblogic driver is backward compatible. Database server and driver updates are
infrequent.

Security

The BEA Weblogic driver does not support encrypted transport.

Known Issues

+ The BEA Weblogic driver is not free. It must be purchased and properly licensed.

+ Association values that contain UNIQUEIDENTIFIER columns are inconsistent between
driver versions.

Earlier versions of the BEA Weblogic driver returned a non-standard java.sql.Types (http://
java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html) value for native UNIQUEIDENTIFIER
columns. To compensate, the Driver for JDBC mapped that non-standard type to the standard
type java.sql.Types.BINARY (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html)

Third-Party JDBC Drivers

197

http://commerce.bea.com/showallversions.jsp?family=WLS
http://e-docs.bea.com/wls/docs81/mssqlserver4/
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html

because it best mirrored the native database type, which is a 16-byte value. This mapping
results in a Base64-encoded association value.

Later versions of the BEA Weblogic driver return a standard type java.sql. CHAR (http://

java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html). This mapping results in a non-Base64-
encoded association value, effectively invalidating all associations generated by using earlier
versions of the BEA Weblogic driver. This change effectively breaks backward compatibility.

The best solution to this problem is to continue using the earlier version of the BEA Weblogic
driver. If you must upgrade, you must remove all invalidated associations and reassociate all
previously-associated objects.

+ The BEA Weblogic driver throws a java.lang.IllegalMonitorStateException (http://
java.sun.com/j2se/1.5.0/docs/api/java/lang/IllegalMonitorStateException.html) when method
java.sqgl.Connection.getConnection (String url, String username,
String password) is called on AIX.

15.4.5 IBM DB2 Universal Database JDBC Drivers

The IBM DB2 driver can be either type 3 or type 4.

Type 3

Table 15-7 IBM DB?2 Driver: Type 3

Supported Database Versions: 7.x

Class Name: COM.ibm.db2.jdbc.net.DB2Driver

Type 3

URL Syntax: jdbc:db2://ip-address:6789/database-name
Download Instructions: Copy the file from the database server.

file:///database-installation-directoryljava

Filename: db2java.zip
Documentation URLs: DB2 Information Center (http://publib.boulder.ibm.com/infocenter/
db2v7luw)

JDBC Programming (http://publib.boulder.ibm.com/infocenter/
db2v7luw/index.jsp?topic=/com.ibm.db2v7.doc/db2a0/
db2a0159.htm)

IMPORTANT: The type 3 driver is deprecated for version 8.

Compatibility

The IBM DB2 driver can best be characterized as version-hypersensitive. It is not compatible across
major or minor versions of DB2, including FixPacks. For this reason, we recommend that you use
the file installed on the database server.

198 Identity Manager 3.5 Driver for JDBC: Implementation Guide

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/IllegalMonitorStateException.html
http://publib.boulder.ibm.com/infocenter/db2v7luw
http://publib.boulder.ibm.com/infocenter/db2v7luw/index.jsp?topic=/com.ibm.db2v7.doc/db2a0/db2a0159.htm

IMPORTANT: The IBM DB2 driver must be updated on the Identity Manager or Remote Loader
server every time the target database is updated, even if only at the FixPack level.

Security

The IBM DB2 driver does not support encrypted transport.

Known Issues

*

A version mismatch usually results in connectivity-related failures.

The most common problem experienced with the IBM DB2 driver is because of a driver/
database version mismatch. The symptom of a version mismatch is connectivity-related
failures such as "CLIO601E Invalid statement handle or statement is closed." To remedy the
problem, overwrite the db2java. zip file on the Identity Manager or Remote Loader server
with the version installed on the database server.

It’s very difficult to diagnose and remedy Java-related errors on the database server.

Numerous error conditions and error-codes can arise when you attempt to install and execute
user-defined stored procedures and functions written in Java. Diagnosing them can prove time
intensive and frustrating. A log file (db2diag. 1og on the database server) can often provide
additional debugging information. In addition, all error codes are documented and available
online.

Type 4: Universal Driver

Table 15-8 IBM DB?2 Driver: Type 4

Supported Database Versions 8.x

Class Name com.ibm.db2.jcc.DB2Driver

Type 4

URL Syntax jdbc:db2://ip-address:50000/database-name

Download Instructions Download as part of the latest FixPack (recommended).

IBM Support & Downloads (http://www.ibm.com/support/us/)
or
Copy the file from the database server.

file:///database-installation-directoryljava

Filename db2jcc.jar,db2jcc_license cu.jar,db2jcc javax.jar

(optional)

Third-Party JDBC Drivers

199

http://www.ibm.com/support/us/

Documentation URLs DB2 Information Center (http://publib.boulder.ibm.com/infocenter/
db2help)

DB2 Universal JDBC Driver (http://publib.boulder.ibm.com/infocenter/
db2help/index.jsp?topic=/com.ibm.db2.udb.doc/ad/t0010264.htm)

Security under the DB2 Universal JDBC Driver (http://
publib.boulder.ibm.com/infocenter/db2help/index.jsp?topic=/
com.ibm.db2.udb.doc/ad/cjvjcsec.htm)

NOTE: Unlike the type 3 driver, the type 4 driver has only a minimal set of defined error codes.
This absence inhibits the Driver for JDBC’s ability to distinguish between connectivity, retry,
authentication, and fatal error conditions.

Compatibility

The IBM DB2 driver is backward compatible. However, it doesn’t work with database version 7.
Database server updates are frequent. Driver updates are infrequent.

Security

The IBM DB2 driver supports a variety of authentication security mechanisms but does not support
encrypted transport.

Known Issues
¢ It’s very difficult to diagnose and remedy Java-related errors on the database server.

Numerous error conditions and error codes can arise when you attempt to install and execute
user-defined stored procedures and functions written in Java. Diagnosing these can prove time
intensive and frustrating. A log file (db2diag. log on the database server) can often provide
additional debugging information. In addition, all error codes are documented and available
online.

15.4.6 Informix JDBC Driver

Table 15-9 Informix JDBC Driver

Supported Database Versions Dynamic Server 7.x, 9.x

Class Name com.informix.jdbc.IfxDriver

Type 4

URL Syntax jdbc:informix-sqli://ip-address:1526/database-
name:informixserver=server-id

Download Instructions Download URL (http://www-306.ibm.com/software/data/informix/
tools/jdbc)

Filenames ifxjdbc.jar, ifxjdbcx.jar (optional)

200 Identity Manager 3.5 Driver for JDBC: Implementation Guide

http://publib.boulder.ibm.com/infocenter/db2help
http://publib.boulder.ibm.com/infocenter/db2help/index.jsp?topic=/com.ibm.db2.udb.doc/ad/t0010264.htm
http://publib.boulder.ibm.com/infocenter/db2help/index.jsp?topic=/com.ibm.db2.udb.doc/ad/cjvjcsec.htm
http://www-306.ibm.com/software/data/informix/tools/jdbc

Documentation URLs Informix Information Center (http://publib.boulder.ibm.com/infocenter/
ids9help/index.jsp)

Informix JDBC Driver (http://www-306.ibm.com/software/data/
informix/pubs/library/jdbc_2.html)

Compatibility

The Informix driver is backward compatible. Database server updates and driver updates are
infrequent.

Security

The Informix driver does not support encrypted transport.

Required Parameter Settings for ANSI-Compliant Databases

The following table lists driver parameters that must be explicitly set for the Driver for JDBC to
interoperate with the Informix driver against ANSI-compliant databases.

Table 15-10 Driver Settings for ANSI-Compliant Databases

Display Name Tag Name Value

Supports schemas in metadata retrieval? supports-schemas-in-metadata-retrieval false

See “Supports Schemas in Metadata
Retrieval?” on page 83.

Force username case: force-username-case upper

See “Force Username Case” on page 81.

Dynamic Parameter Defaults

The following table lists driver compatibility parameters that the Driver for JDBC implicitly sets at
runtime. Do not override these settings.

Table 15-11 Informix JDBC Settings Not to Override

Display Name Tag Name Value

Function return method: function-return-method result set

See “Function Return Method”
on page 82.

Known Issues

¢ Schema names cannot be used to retrieve metadata against an ANSI-compliant database. Set
the driver compatibility parameter “Supports Schemas in Metadata Retrieval?”” on page 83 to
Boolean False.

Third-Party JDBC Drivers

201

http://publib.boulder.ibm.com/infocenter/ids9help/index.jsp
http://www-306.ibm.com/software/data/informix/pubs/library/jdbc_2.html

The database objects available for metadata retrieval are those visible to the database user who
authenticated to the database. Schema qualifiers cannot be used to identify database objects.
Therefore, to avoid naming collisions (such as, ownerl.tablel, owner2.tablel), give the
database authentication user only SELECT privileges on objects being synchronized.

¢ When used against ANSI-compliant databases, usernames must be in uppercase. Set the driver
compatibility parameter “Force Username Case” on page 81 to upper.

15.4.7 Microsoft SQL Server 2000 Driver for JDBC

Table 15-12 Microsoft SOL Server 2000 Driver Settings

Supported Database Versions: 8 (2000)

Class Name com.microsoft.jdbc.sqlserver.SQLServerDriver
Type 4
URL Syntax jdbc:microsoft:sqlserver://ip-address-or-dns-

name:1433;DatabaseName=database-name

Download Instructions Microsoft JDBC Downloads (http://www.microsoft.com/downloads/
results.aspx?sortCriteria=date&OSID=&productID=&Category|D=&fr
eetext=jdbc&DisplayLang=en&DisplayEnglishAlso=)

Filenames msbase.jar, mssglserver.jar,msutil.jar

Microsoft has released a 2005 version of this driver. However, the filename, URL syntax, and
classname differ.

Compatibility

The SQL Server 2000 driver is backward compatible. However, it doesn’t work with database
version 7. Database server and driver updates are infrequent.

Security

The SQL Server 2000 driver does not support encrypted transport.

URL Properties
Delimit URL properties by using a semicolon (;).

The following table lists values for the SelectMethod URL property for the SQL Server 2000 driver.

Table 15-13 Values for the SelectMethod URL Property

Legal Value Description

direct The default value. Doesn’t allow for multiple active statements on a single
connection

cursor Allows for multiple active statements on a single connection

202 |dentity Manager 3.5 Driver for JDBC: Implementation Guide

http://www.microsoft.com/downloads/results.aspx?sortCriteria=date&OSID=&productID=&CategoryID=&freetext=jdbc&DisplayLang=en&DisplayEnglishAlso=

Dynamic Parameter Defaults

The following table lists driver compatibility parameters that the Driver for JDBC implicitly sets at
runtime. Do not explicitly override these settings.

Table 15-14 SQL Server 2000 Settings Not to Override

Display Name Tag Name Value

Reuse Statements? reuse-statements false

Known Issues
+ Can’t start manual transaction because of cloned connections.

An implementation anomaly that doesn’t allow concurrent statements to be active on the same
connection causes the most common problem experienced with the SQL Server 2000 driver.
Unlike other third-party implementations, the SQL Server 2000 driver can have only one
java.sql.Statement (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Statement.html) object
active at a time on a given connection.

If you attempt to use more than one statement object, the following error is issued: “Can’t start
manual transaction mode because there are cloned connections.” This error can occur only if
the driver compatibility parameter “Reuse Statements?”” on page 77 is set to Boolean True. As a
best practice, never explicitly set this parameter. Instead, defer to the dynamic default value.

An alternative is to place the delimited property ; SelectMethod=cursor at the end of the
URL string. For additional information on this issue, consult the following support articles:

+ Document 30096 (http://knowledgebase.datadirect.com/kbase.nsf/SupportLink+Online/
30096?0OpenDocument) by DataDirect Technologies*

¢ Article 313181 (http://support.microsoft.com/default.aspx?scid=kb%3Ben-
us%3B313181) by Microsoft

+ Association values that contain UNIQUEIDENTIFIER columns are inconsistent between
driver versions.

Earlier versions of the SQL Server 2000 driver returned a non-standard java.sql. Types (http://
java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html) value for native UNIQUEIDENTIFIER
columns. To compensate, the Driver for JDBC mapped that non-standard type to the standard
type java.sql.Types.BINARY (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html)
because it best mirrored the native database type, which is a 16-byte value. This mapping
results in a Base64-encoded association value.

Later versions of the SQL Server 2000 driver return a standard type java.sql. CHAR (http://
java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html). This mapping results in a non-Base64-
encoded association value, effectively invalidating all associations generated by using earlier
versions of the SQL Server 2000 driver. This change effectively breaks backward
compatibility.

The best solution to this problem is to continue using the earlier version of the SQL Server
2000 driver. If you must upgrade, remove all invalidated associations and reassociate all
previously-associated objects.

Third-Party JDBC Drivers

203

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Statement.html
http://knowledgebase.datadirect.com/kbase.nsf/SupportLink+Online/30096?OpenDocument
http://support.microsoft.com/default.aspx?scid=kb%3Ben-us%3B313181
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html

15.4.8 MySQL Connector/J JDBC Driver

Table 15-15 Settings for the MySQL Connector/J JDBC Driver

Supported Database Versions 3.x, 4.x

Class Name org.gjt. mm.mysql.Driver

Type 4

URL Syntax jdbc:mysaql://ip-address:3306/database-name

Download Instructions Download and extract. The jar file is located in the extract-dirlmysql-

connector-java-version directory.
MySQL Connector/J (http://www.mysql.com/products/connector/j/)
Filename mysgl-connector-java-version-bin.jar

Documentation URLs MySQL Connector/J Documentation (http://dev.mysqgl.com/doc/
refman/5.0/en/java-connector.html)

Connecting Over SSL (http:/dev.mysql.com/doc/refman/5.0/en/cj-
using-ssl.html)

Also see “Generation/Retrieval Method (Table-Global)” on page 88.

Compatibility

The Connector/J driver is backward compatible. Database server updates are frequent. Driver
updates are infrequent.

Security

The Connector/J driver supports JSSE (Java Secure Sockets Extension) SSL-encrypted transport.

Required Parameter Settings for MylISAM Tables

The following table lists driver parameters that you must set so that the Driver for JDBC can
interoperate with the Connector/J driver against MyISAM tables.

Table 15-16 Settings for MyISAM Tables

Display Name Tag Name Value

Use manual transactions? use-manual-transactions false

15.4.9 Oracle Thin Client JDBC Driver

Table 15-17 Oracle Thin Client Settings

Supported Database Versions 8i, 9i, 10g

204 |dentity Manager 3.5 Driver for JDBC: Implementation Guide

http://www.mysql.com/products/connector/j/
http://dev.mysql.com/doc/refman/5.0/en/java-connector.html
http://dev.mysql.com/doc/refman/5.0/en/cj-using-ssl.html

Class Name oracle.jdbc.driver.OracleDriver

Type 4
URL Syntax jdbc:oracle:thin:@ip-address:1521:sid
Download Instructions Register for free and download.

Oracle Technology Network (http://otn.oracle.com/software/tech/java/
sqlj_jdbc/content.html)

Filenames ojdbcl4.jar, orail8n.jar (optional)

Filenames for different JVM versions (http://www.oracle.com/
technology/tech/java/sqlj_jdbc/htdocs/jdbc_fag.htm#02_07)

Documentation URLs Oracle Advanced Security (http://www.stanford.edu/dept/itss/docs/
oracle/10g/java.101/b10979/clientsec.htm)

JDBC FAQ (http://www.oracle.com/technology/tech/java/sqlj_jdbc/
htdocs/jdbc_faqg.htm)

Compatibility

The Thin Client driver is backward compatible. Database server updates and driver updates are
infrequent.

Oracle releases thin client drivers for various JVMs. Even though all of them work with this product,
we recommend that you use the 1.4 version.

Security

The Thin Client driver supports Oracle Advanced Security encrypted transport.

Dynamic Parameter Defaults

The following table lists driver compatibility parameters that the Driver for JDBC implicitly sets at
runtime. Do not explicitly override these settings.

Table 15-18 Oracle Thin Client Settings Not to Override

Display Name Tag Name Value

Number of returned result sets: handle-stmt-results single

Connection Properties

The following table lists important connection properties for this driver.

Table 15-19 Oracle Thin Client: Connection Properties

Property Significance

includeSynonyms If the value of this property is true, synonym
column metadata is available.

Third-Party JDBC Drivers 205

http://otn.oracle.com/software/tech/java/sqlj_jdbc/content.html
http://www.oracle.com/technology/tech/java/sqlj_jdbc/htdocs/jdbc_faq.htm#02_07
http://www.stanford.edu/dept/itss/docs/oracle/10g/java.101/b10979/clientsec.htm
http://www.oracle.com/technology/tech/java/sqlj_jdbc/htdocs/jdbc_faq.htm

Property Significance

ORACLE.NET.ENCRYPTION_CLIENT Defines the level of security that the client
wants to negotiate with the server.

ORACLE.NET.ENCRYPTION_TYPES_CLIENT Defines the encryption algorithm to be used.

ORACLE.NET.CRYPTO_CHECKSUM_CLIENT Defines the level of security that it wants to

negotiate with the server for data integrity.

ORACLE.NET.CRYPTO_CHEKSUM_TYPES_CLIENT Defines the data integrity algorithm to be used.

Known Issues
¢ High CPU utilization triggered by execution of embedded SQL statements:

The most common problem experienced with this driver is high CPU utilitization. As a result,
this driver always indicates that more results are available from calls to method
java.sqgl.Statement.execute (String stmt), which can lead to an infinite loop
condition. This condition occurs only if all the following happen:

¢ A value other than single, no or one in the driver compatibility parameter “Number of
Returned Result Sets” on page 78 is being executed.

+ An embedded SQL statement is being executed.
+ The type of statement is not explicitly specified.

To avoid the conditions that produce high CPU utilization:
+ Do not explicitly set this parameter. Defer to the dynamic default value.

+ Always place a jdbc: type attribute on embedded <jdbc: statement> elements.

NOTE: The jdbc namespace prefix must map to urn:dirxml: jdbc.

¢ Can’t retrieve synonym column metadata:
The connection property includeSynonyms must be set to true.
¢ Can’t see synonym table primary key constraint:

The only known solution to this problem is to use a view.
15.4.10 Oracle OCI JDBC Driver

Table 15-20 Oracle OCI JDBC Driver Settings

Supported Database Versions 8i, 9i, 10g

Class Name oracle.jdbc.driver.OracleDriver
Type 2
URL Syntax jdbc:oracle:oci8:@tns-name

206 Identity Manager 3.5 Driver for JDBC: Implementation Guide

Download Instructions The SQLNet infrastructure is the main requirement for OCIl. SQLNet
can run on any platform that Oracle supports, not just Linux.

For Linux, register for free and download the following:

+ The Oracle Instant Client (instantclient-basic-
1inux32-10.2.0.1-20050713. zip) from Instant Client
Downloads (http://www.oracle.com/technology/software/tech/
oci/instantclient/htdocs/linuxsoft.html).

+ The Oracle SQL*Plus binary (instantclient-sgqlplus-
1inux32-10.2.0.1-20050713. zip) from Instant Client
Downloads (http://www.oracle.com/technology/software/tech/
oci/instantclient/htdocs/linuxsoft.html).

Filenames ojdbcld.jar, orail8n.jar (optional)

Filenames for different JVM versions (http://www.oracle.com/
technology/tech/java/sqlj_jdbc/htdocs/jdbc_faq.htm#02_07)

Documentation URLs Oracle Call Interface (http://www.oracle.com/technology/tech/oci/
index.html)

OCI FAQ (http://www.oracle.com/technology/tech/oci/htdocs/
oci_faqg.html)

Oracle Advanced Security (http://www.stanford.edu/dept/itss/docs/
oracle/10g/java.101/b10979/clientsec.htm)

Instant Client (http://www.oracle.com/technology/tech/oci/
instantclient/index.html)

Instant Client (http://download-west.oracle.com/docs/cd/B12037_01/
java.101/b10979/instclient.htm#CHDGDIGG)

You can install SQLNet by doing either of the following:

¢ Use the Instant Client (which bypasses unneeded components of the full version).

+ Download the full package from Oracle.

If the database is running on the same server as Identity Manager, you don’t need to install SQLNet
because SQLNet comes as standard on the database server.

The Oracle OCI driver is essentially the same as the Thin Client driver. See Section 15.4.9, “Oracle
Thin Client JDBC Driver,” on page 204. The OCI client differs in the following ways:

¢ The OCI Client supports clustering, failover, and high availability.
¢ The OCI Client has additional security options.

For information on setting up the Oracle OCI Client, see Appendix K, “Setting Up an OCI Client on
Linux,” on page 251.

Third-Party JDBC Drivers

207

http://www.oracle.com/technology/software/tech/oci/instantclient/htdocs/linuxsoft.html
http://www.oracle.com/technology/software/tech/oci/instantclient/htdocs/linuxsoft.html
http://www.oracle.com/technology/software/tech/oci/instantclient/htdocs/linuxsoft.html
http://www.oracle.com/technology/software/tech/oci/instantclient/htdocs/linuxsoft.html
http://www.oracle.com/technology/tech/java/sqlj_jdbc/htdocs/jdbc_faq.htm#02_07
http://www.oracle.com/technology/tech/oci/index.html
http://www.oracle.com/technology/tech/oci/htdocs/oci_faq.html
http://www.stanford.edu/dept/itss/docs/oracle/10g/java.101/b10979/clientsec.htm
http://www.oracle.com/technology/tech/oci/instantclient/index.html
http://download-west.oracle.com/docs/cd/B12037_01/java.101/b10979/instclient.htm#CHDGDIGG

15.4.11 PostgreSQL JDBC Driver

Table 15-21 PostgreSQL JDBC Driver Settings

Supported Database Versions 6.x, 7.x, 8.x

Class Name org.postgresql.Driver

Type 4

URL Syntax jdbc:postgresql://ip-address:5432/database-name

Download Instructions JDBC Driver Download (http://jdbc.postgresql.org/download.html)
Documentation URLs JDBC Driver Documentation (http://jdbc.postgresql.org/

documentation/docs.html)

Using SSL (http://jdbc.postgresql.org/documentation/80/ssl.html)

NOTE: The filename of the PostgreSQL varies by database version.

Compatibility

The latest builds of the PostgreSQL driver are backward compatible through server version 7.2.
Database server updates and driver updates are frequent.

Security

The PostgreSQL driver supports SSL-encrypted transport for JDBC 3 driver versions.

15.4.12 Sybase Adaptive Server Enterprise JConnect JDBC
Driver

Table 15-22 Settings for the Sybase Adaptive Server Enterprise Driver

Supported Database Versions Adaptive Server* Enterprise 11.x, 12.x

Class Name com.sybase.jdbc2.jdbc.SybDriver (for jconn2.jar)
com.sybase.jdbc3.jdbc.SybDriver (for jconn3.jar)

Type 4

URL Syntax jdbc:sybase:Tds:ip-address:2048/database-name

Download Instructions Sybase Downloads (http://www.sybase.com/downloads)
Filenames jconn2.jar or jconn3.jar

Documentation URLs jConnect Documentation (http://sybooks.sybase.com/onlinebooks/

group-jc/jcg0600e/prjdbc)

208 Identity Manager 3.5 Driver for JDBC: Implementation Guide

http://jdbc.postgresql.org/download.html
http://jdbc.postgresql.org/documentation/docs.html
http://jdbc.postgresql.org/documentation/80/ssl.html
http://www.sybase.com/downloads
http://sybooks.sybase.com/onlinebooks/group-jc/jcg0600e/prjdbc

Compatibility

The Adaptive Server driver is backward compatible. Database server updates and driver updates are
infrequent.

Security

The Adaptive Server driver supports SSL-encrypted transport. To enable SSL encryption, you must
specify a custom socket implementation via the SYBSOCKET FACTORY connection property. For
additional information on how to set connection properties, see “Connection Properties” on page 74.

Connection Properties

The SYBSOCKET FACTORY property can be used to specify the class name of a custom socket
implementation that supports encrypted transport.

15.5 Unsupported Third-Party JDBC Drivers

¢ Section 15.5.1, “IBM Toolbox for Java/JTOpen,” on page 209
¢ Section 15.5.2, “Minimum Third-Party JDBC Driver Requirements,” on page 210
¢ Section 15.5.3, “Considerations When Using Other Third-Party JDBC Drivers,” on page 210

15.5.1 IBM Toolbox for Java/JTOpen

Table 15-23 Settings for IBM Toolbox for Java/JTOpen

Database IBM Toolbox for Java/JTOpen

+ iSeries Toolbox for Java (alias)
+ AS/400 Toolbox for Java (alias)

Class Name com.ibm.as400.access.AS400JDBCDriver
Type 4

URL Syntax jdbc:as400://ip-address/database-name
Download Instructions Download URLs for JTOpen

+ JTOpen (http://jt400.sourceforge.net)

+ Toolbox for Java/JTOpen (http://www-03.ibm.com/servers/
eserver/iseries/toolbox/downloads.html)

Filenames jt400.jar

Documentation URLs Toolbox for Java/dJTOpen (http://www-03.ibm.com/servers/eserver/
iseries/toolbox/)

If you use the IBM Toolbox for Java/JTOpen driver, you must manually enter values for the JDBC
Driver Class Name and Authentication Context parameters. The settings are not automatically
populated. See “Third-Party JDBC Driver Class Name™ on page 64 and “Authentication Context”
on page 62.

Third-Party JDBC Drivers 209

http://jt400.sourceforge.net
http://www-03.ibm.com/servers/eserver/iseries/toolbox/downloads.html
http://www-03.ibm.com/servers/eserver/iseries/toolbox/

15.5.2 Minimum Third-Party JDBC Driver Requirements

The Driver for JDBC might not interoperate with all third-party JDBC drivers. If you use an
unsupported third-party JDBC driver, it must meet the following requirements:

¢ Support required metadata methods
For a current list of the required and optional java.sql.DatabaseMetaData method calls that the
Driver for JDBC makes, see Appendix D, “java.sql.DatabaseMetaData Methods,” on page 233.
¢ Support other required JDBC methods

For a list of required JDBC methods that the Driver for JDBC uses, refer to Appendix E,
“JDBC Interface Methods,” on page 235. You can use this list in collaboration with third-party
driver documentation to identify potential incompatibilities.

15.5.3 Considerations When Using Other Third-Party JDBC
Drivers

¢ Because the Driver for JDBC is directly dependent upon third-party JDBC driver
implementations, bugs in those implementations might cause this product to malfunction.

To assist you in debugging third-party JDBC drivers, the Driver for JDBC supports the
following:
¢ Tracing at the JDBC API level (level 6)
¢ Third-party JDBC driver (level 7) tracing
¢ Stored procedure or function support is a likely point of failure.
+ You’ll probably need to write a custom driver descriptor file.

Specifically, you’ll need to categorize error codes and SQL states for the third-party driver that
you are using.

15.6 Security Issues

To ensure that a secure connection exists between the Identity Manager Driver for JDBC and a third-
party driver, we recommend the following:

¢ Run the Driver for JDBC remotely on the database server.
¢ Use SSL to encrypt communications between the Identity Manager server and the database

SCrver.

If you cannot run the Driver for JDBC remotely, you might want to use a type 2 or type 3 JDBC
driver. These driver types often facilitate a greater degree of security through middleware servers or
client APIs unavailable to other JDBC driver types. Some type 4 drivers support encrypted
transport, but encryption is the exception rather than the rule.

210 Identity Manager 3.5 Driver for JDBC: Implementation Guide

The Association Utility

The Association Utility normalizes associations of objects associated under the 1.0 or later versions
of the Driver for JDBC. It also provides several other features that simplify driver administration.

This version of the utility is compatible with the 1.0 and later versions of the Driver for JDBC, and
supersedes all previous versions.

¢ Section 16.1, “Independent Operations,” on page 211

¢ Section 16.2, “Before You Begin,” on page 212

¢ Section 16.3, “Using the Association Utility,” on page 213
¢ Section 16.4, “Editing Associations,” on page 213

16.1 Independent Operations

The Association Utility supports seven independent operations:

Table 16-1 Independent Operations

Read-Write

Operation Description Functionality

1 List objects associated with a driver (default). Read-only
2 List objects that have multiple associations to a driver. Read-only
3 List objects that have invalid associations to a driver. Read-only

An association is invalid if:
+ |t is malformed.
For example, the association is missing the schema RDN,

missing the table RDN, or the schema keyword is misspelled.

+ |t contains database identifiers that do not map to identifiers in
the target database.

For example, an association includes a mapping to a table that
does not exist.

+ |t maps to no row or multiple rows.

An association is broken if it doesn’t map to a row. Also,
associations aren’t unique if they map to more than one row.

4 List objects that need to be normalized. Read-only

A normalized association is valid, correctly ordered, and uses the
correct case. Normal case is uppercase for case-insensitive
databases and mixed case for case-sensitive databases.

5 Normalize object associations listed during operation 4. Write

The Association Utility 211

Read-Write

Operation Description Functionality

6 List object associations to be modified. Read-only

Allows for global replacement of schema, table, and column names
based on search criteria.

This operation requires two parameters (0ldRDN and newRDN). See
“Editing Associations” on page 213.

7 Modify object associations listed during operation 6. Write

This operation requires two parameters (oldRDN and newRDN). See
“Editing Associations” on page 213.

16.2 Before You Begin

Modifying associations can potentially cause problems. If associations are corrupted, Identity
Manager ceases to function. Therefore, use write operations only when necessary. To avoid
unintentionally corrupting an association, the Association Utility creates an undo 1diff file for all
write operations.

Review the following cautions before using the utility:

+ The Association Ultility, like the driver, assumes database identifiers are undelimited (unquoted
and contain no special characters).

+ Update all object associations related to a driver together.

IMPORTANT: It is extremely important that you update, at the same time, all object
associations related to a driver.

To see all of the objects associated with a particular driver, run the Association Utility on the
Identity Manager server associated with a particular driver instance.

The LDAP search base must contain all of the objects associated with a particular driver.

NOTE: To ensure complete containment, we recommend that you use your tree’s root
container as the search base.

¢ Make sure that the JDBC URL of the target database supplied to this utility is the same as the
URL that the driver uses. Pointing this utility at a case-insensitive database when the database
is actually case-sensitive might result in associations being normalized to the wrong case.

+ Because the Association Utility runs locally, it uses an unsecured connection. Therefore, the
Identity Vault LDAP server must be temporarily configured to accept clear text passwords.
Depending upon the third-party JDBC driver you are using, the database connection
established by this utility might be insecure.

NOTE: We recommend changing the driver’s authentication password on the database after
you run this utility.

212 |dentity Manager 3.5 Driver for JDBC: Implementation Guide

16.3 Using the Association Utility

Run the Association Utility once for each instance of the driver installed on an Identity Manager
server. Inthe install-dir\jdbc\util directory, a batch file association.bat or shell
script association. sh (depending upon your platform) starts the utility.

A properties file containing association utility parameters is provided for each supported database.
These files are in the install-dir\jdbc\util directory.

Database Properties Filename
IBM DB2 Universal Database properties db2.txt
Informix Dynamic Server properties ifx ansi.txtl

properties ifx log.txt
properties ifx no log.txt

Microsoft SQL Server properties ms.txt
MySQL properties my.txt
Oracle properties ora.txt
PostgreSQL properties pg.txt
Sybase Adaptive Server Enterprise properties syb.txt

IThis utility does not work with Informix ANSI-compliant databases.

NOTE: For more information on how to run the utility from the command line, refer to run.bat in
the install-dir\tools\util directory.

1 Stop the driver.
2 Run the Association Utility to identify and remove extraneous associations (operations 2 and
3).

No object associated by this product should have multiple associations. Manually remove
extraneous associations on a per object basis. Operation 3 might help you identify which of the
multiple associations is actually valid. After you know this, you can probably discard the
extraneous associations.

3 Run the Association Utility to identify and fix invalid associations (operation 3 and possibly
operations 6 and 7).

As a general rule, if the problem is isolated, manually edit each invalid association. If the
problem is repetitive and affects a large number of associations, consider using operations 6
and 7. This utility can replace bad identifiers on a global basis, but cannot insert or remove
them where they do not already exist.

4 Run the Association Utility to normalize associations (operations 4 and 5).

16.4 Editing Associations

The Association Utility requires two parameters (0ldRDN and newRDN) for operations 6 and 7,
which search and replace.

The Association Utility 213

The first value (for example, schema) in the parameter is the search criterion. The second value (for
example, old) is the replacement value. Under certain scenarios, you can use the wildcard character
* to generalize the search criterion or replacement value.

Three types of search and replace operations are possible:

Option Description Example

Replace the schema name Replace schema o1d with schema new. 0ldRDN: schema=01d
Wildcards are supported on the right side newRDN: schema=new
only.

Replace the table name Replace table o01d with table new. oldRDN: table=01d
Wildcards are not supported. newRDN: table=new

Replace the column name Replace column o1d with column new. oldRDN: o1d=*

Wildcards are required on the right side, newRDN: new=*
but they aren’t supported on the left side.

214 |dentity Manager 3.5 Driver for JDBC: Implementation Guide

Troubleshooting the JDBC Driver

¢ Section 17.1, “Recognizing Publication Events,” on page 215
¢ Section 17.2, “Executing Test Scripts,” on page 215

¢ Section 17.3, “Troubleshooting Driver Processes,” on page 215

17.1 Recognizing Publication Events

Publication events might not be recognized by the Publisher channel unless you explicitly commit
changes. For the commit keywords of supported databases, see Section 14.3.7, “Commit
Keywords,” on page 185.

17.2 Executing Test Scripts

The test scripts should be executed by a user other than the driver’s idm database user account. If
you execute them as the i dm user, events are ignored by the driver’s Publisher channel, unless
publication loopback is allowed. For additional information on allowing or disallowing publication
loopback, refer to “Allow Loopback?”” on page 98.

17.3 Troubleshooting Driver Processes

Viewing driver processes is necessary to analyze unexpected behavior. To view the driver
processing events, use DSTrace. You should only use it during testing and troubleshooting the
driver. Running DSTrace while the drivers are in production increases the utilization on the Identity
Manager server and can cause events to process very slowly.

17.3.1 Viewing Driver Processes

To see the driver processes in DSTrace, values are added to the Driver Set object and the Driver
object. You can do this in Designer or iManager.

+ “Adding Trace Levels in Designer” on page 215
¢ “Adding Trace Levels in iManager” on page 217
¢ “Capturing Driver Processes to a File” on page 218
Adding Trace Levels in Designer
You can add trace levels to the Driver Set object or to each Driver object.

¢ “Driver Set” on page 216
¢ “Driver” on page 216

Troubleshooting the JDBC Driver 215

Driver Set

1 In an open project in Designer, select the Driver Set object in the Outline view.

= \?E project 1

(@] 1dentity vault
=|8] IDMDESIGHTREE

2 Right-click, select Properties, then click 5. Trace.

3 Set the parameters for tracing, then click OK.

Parameter

Description

Driver trace level

XSL trace level

Java debug port

Java trace file

Trace file size limit

As the Driver object trace level increases, the amount of information
displayed in DSTrace increases.

Trace level 1 shows errors, but not the cause of the errors. To see
password synchronization information, set the trace level to 5.

DSTrace displays XSL events. Set this trace level only when
troubleshooting XSL style sheets. If you do not want to see XSL
information, set the level to zero.

Allows developers to attach a Java* debugger.

When a value is set in this field, all Java information for the Driver Set
object is written to a file. The value for this field is the path for that file.

As long as the file is specified, Java information is written to this file. If
you do not need to debug Java, leave this field blank.

Allows you to set a limit for the Java trace file. If you set the file size to
Unlimited, the file grows in size until no disk space remains.

If you set the trace level on the Driver Set object, all drivers appear in the DSTrace logs.

Driver

1 In an open project in Designer, select the Driver object in the Qutline view.

2 Right-click, select Properties, then click 8. Trace.

3 Set the parameters for tracing, then click OK.

216 |dentity Manager 3.5 Driver for JDBC: Implementation Guide

Parameter

Description

Trace level

Trace file

Trace file size limit

Trace name

As the Driver object trace level increases, the amount of information
displayed in DSTrace increases.

Trace level 1 shows errors, but not the cause of the errors. To see
password synchronization information, set the trace level to 5.

if you select Use setting from Driver Set, the value is taken from the Driver
Set object.

Specify a filename and location for where the Identity Manager information
is written for the selected driver.

if you select Use setting from Driver Set, the value is taken from the Driver
Set object.

Allows you to set a limit for the Java trace file. If you set the file size to
Unlimited, the file grows in size until no disk space remains.

If you select Use setting from Driver Set, the value is taken from the Driver
Set object.

The driver trace messages are prepended with the value entered instead
of the driver name. Use this option if the driver name is very long.

If you set the parameters only on the Driver object, only information for that driver appears in

the DSTrace log.

Adding Trace Levels in iManager

You can add trace levels to the Driver Set object or to each Driver object.

+ “Driver Set” on page 217

¢ “Driver” on page 218

Driver Set

1 In iManager, select Identity Manager > Identity Manager Overview.

2 Browse to the Driver Set object, then click Search.

Troubleshooting the JDBC Driver

217

3 Click the driver set name.

Driver Set(Dr'iuer Set.Movell) Activation required by Movember 1, 2006 [5)

Running on server(s):

b IDMTEST. Movell

Add Driver
Delete Driver

Information

Groupiise elirectory Driver

4 Select the Misc tab for the Driver Set object.
5 Set the parameters for tracing, then click OK.

Driver

1 In iManager, select Identity Manager > Identity Manager Overview.

2 Browse to the Driver Set object where the Driver object resides, then click Search.
3 Click the upper right corner of the Driver object, then click Edit properties.

4 Select the Misc tab for the Driver object.

5 Set the parameters for tracing, then click OK.

NOTE: The option Use setting from Driver Set does not exist in iManager.

Capturing Driver Processes to a File

You can save driver processes to a file by using the parameter on the Driver object or by using
DSTrace. The parameter on the Driver object is the Trace file parameter, under the MISC tab.

The driver processes that are captured through DSTrace are the processes that occur on the Identity
Manager engine. If you use the Remote Loader, you need to capture a trace on the Remote Loader at
the same time as you are capturing the trace on the Identity Manager engine.

The following methods help you capture and save Identity Manager processes through DSTrace on
different platforms.

+ “NetWare” on page 219

* “Windows” on page 219

¢ “UNIX” on page 219

+ “iMonitor” on page 220

+ “Remote Loader” on page 220

218 lIdentity Manager 3.5 Driver for JDBC: Implementation Guide

NetWare

Use dstrace.nlm to display trace messages on the system console or trace messages to a file
(sys:\system\dstrace.loq). Use dstrace.nlm to display the trace messages to a screen
labeled DSTrace Console.

1 Enter dstrace.nlm at the server console to load dstrace.nlm into memory.

2 Enter dstrace screen on atthe server console to allow trace messages to appear on the
DSTrace Console screen.

3 Enter dstrace file on atthe server console to capture trace messages sent to the
DSTrace Console to the dstrace. log file.

4 (Optional) Enter dstrace -all atthe server console to make it easier to read the trace log.

5 Enterdstrace +dxml dstrace +dvrs atthe server console to display Identity Manager
events.

6 Enterdstrace +tags dstrace +time atthe server console to display message tags and
time stamps.

7 Toggle to the DSTrace Console screen and watch for the event to pass.
8 Toggle back to the server console.
9 Enter dstrace file off atthe server console.

This stops capturing trace messages to the log file. It also stops logging information into the
file.

10 Open the dstrace. log in a text editor and search for the event or the object you modified.

Windows
1 Open the Control Panel, select NDS Services > dstrace.dlm, then click Start to display the
NDS Server Trace utility window.
Click Edit > Options, then click Clear All to clear all of the default flags.
Select DirXML and DirXML Drivers.
Click OK.
Click File > New.

O A~ WD

Specify the filename and location where you want the DSTrace information saved, then click
Open.

7 Wait for the event to occur.
8 Click File > Close.
This stops the information from being written to the log file.

9 Open the file in a text editor and search for the event or the object you modified.

UNIX

1 Enter ndstrace to start the ndstrace utility.
2 Enter set ndstrace=nodebug to turn off all trace flags currently set.
3 Enter set ndstrace on to display trace messages to the console.

4 Enter set ndstrace file on to capture trace messages to the ndstrace. log file in
the directory where eDirectory is installed. By default it is /var/nds.

Troubleshooting the JDBC Driver 219

Enter set ndstrace=+dxml to display the Identity Manager events.

Enter set ndstrace=+dvrs to display the Identity Manager driver events.
Wait for the event to occur.

Enter set ndstrace file off to stop logging information to the file.

Enter exit to quite the ndstrace utility.

o ©W 0 N OO O»,

10 Open the file in a text editor. Search for the event or the object that was modified.

iMonitor

iMonitor allows you to get DSTrace information from a Web browser. It does not matter where
Identity Manager is running. The following files run iMonitor:

+ ndsimon.nlm runs on NetWare®.

¢ ndsimon.dlm runs on Windows.

¢ ndsimonitor runs on UNIX*.
1 Access iMonitor from http://server _ip:8008/nds.
Port 8008 is the default.

Specify a username and password with administrative rights, then click Login.
Select Trace Configuration on the left side.

Click Clear All.

Select DirXML and DirXML Drivers.

Click Trace On.

Select Trace History on the left side.

Click the document with the Modification Time of Current to see a live trace.

Change the Refresh Interval if you want to see information more often.

O ©W 0O N O g b~ WD

-

Select Trace Configuration on the left side, then click Trace Off to turn the tracing off.

N
-

Select Trace History to view the trace history.

The files are distinguished by their time stamp.
If you need a copy of the HTML file, the default location is:

+ NetWare: sys: \system\ndsimon\dstrace*.htm
¢ Windows: Drive letter:\novell\nds\ndsimon\dstrace*.htm

¢ UNIX: /var/nds/dstrace/*.htm
Remote Loader

You can capture the events that occur on the machine running the Remote Loader service.

1 Launch the Remote Loader Console by clicking the icon.
2 Select the driver instance, then click Edit.

3 Set the Trace Level to 3 or above.

4 Specify a location and file for the trace file.

5 Specify the amount of disk space that the file is allowed.

220 |dentity Manager 3.5 Driver for JDBC: Implementation Guide

6 Click OK twice to save the changes.

You can also enable tracing from the command line by using the following switches. For more
information, see “Configuring the Remote Loader in the Novell Identity Manager 3.5

Administration Guide.

Table 17-1 Command Line Tracing Switches

Option Short Name Parameter Description

-trace -t integer Specifies the trace level. This is used only when hosting
an application shim. Trace levels correspond to those
used on the Identity Manager server.
Example: -trace 3 or-t3

-tracefile -tf filename Specify a file to write trace messages to. Trace messages
are written to the file if the trace level is greater than zero.
Trace messages are written to the file even if the trace
window is not open.
Example: -tracefile c:\temp\trace.txt or-tf
c:\temp\trace.txt

-tracefilemax -tfm size Specifies the approximate maximum size that trace file

data can occupy on disk. If you specify this option, Identity
Manager creates a trace file with the name specified by
using the tracefile option and up to 9 additional “roll-over”
files. The roll-over files are named by using the base of
the main trace filename plus “_n”, where n is 1 through 9.

The size parameter is the number of bytes. Specify the
size by using the suffixes K, M, or G for kilobytes,
megabytes, or gigabytes.

If the trace file data is larger than the specified maximum
when the Remote Loader is started, the trace file data
remains larger than the specified maximum until roll-over
is completed through all 10 files.

Example: -tracefilemax 1000Mor -tfm 1000M

Troubleshooting the JDBC Driver

221

222 |dentity Manager 3.5 Driver for JDBC: Implementation Guide

Backing Up the JDBC Driver

You can use Designer for Identity Manager or iManager to create an XML file of the driver. The file
contains all of the information that you entered into the driver during configuration. If the driver
becomes corrupted, you can restore the configuration information by importing the exported file.

IMPORTANT: If the driver has been deleted, all of the associations on the objects are purged.
When you import the XML file, the migration process creates new associations.

Not all server-specific information stored on the driver is contained in the XML file. Make sure that
this information is documented through the Document Generation process in Designer. See
“Documenting Projects” in Designer 2.0 for Identity Manager 3.5.

¢ Section 18.1, “Exporting the Driver in Designer,” on page 223

¢ Section 18.2, “Exporting the Driver in iManager,” on page 223

18.1 Exporting the Driver in Designer

1 Open a project in Designer, then right-click the Driver object.
2 Select Export to Configuration File.

3 Specify a unique name for the configuration file, browse to location where it should be saved,
then click Save.

4 Click OK in the Export Configuration Results window.

18.2 Exporting the Driver in iManager

In iManager, select Identity Manager > Identity Manager Overview.
Browse to and select the Driver Set object, then click Search.

Click the driver icon.

Select Export in the Identity Manager Driver Overview window.

Browse to and select the Driver object that you want to export, then click Next.

O O A ODN -~

Select Export all policies, linked to the configuration or not or select Only export policies that
are linked to the configuration, depending upon the information you want to have stored in the
XML file.

Click Next.

8 Click Save A4s, then click Save.

9 Browse and select a location to save the XML file, then click Save.
10 Click Finish.

~

Backing Up the JDBC Driver 223

224 |dentity Manager 3.5 Driver for JDBC: Implementation Guide

Best Practices

The following section lists important best practices for using the Driver for JDBC. You can find
additional information in Chapter 6, “Configuring the JDBC Driver,” on page 59.

Security/Performance:

+ For performance and security reasons, run the driver remotely on the database server whenever
possible. Be sure to enable SSL encryption between the Identity Vault and the Remote Loader
service.

¢ You should enable SSL encryption for third-party drivers whenever the Driver for JDBC is not
running remotely on the database server. For information on the security capabilities of
supported third-party drivers, see “Third-Party JDBC Drivers” on page 193.

¢ In a production environment, turn off tracing.
Other:
¢ For direct synchronization, prefix one or more view column names with “pk_” (case-
insensitive).

¢ For both direct and indirect synchronization, use different primary key column names between
logical database classes.

¢ Delimit (double-quote) primary key values placed in the event log table key field if they
contain the following characters:

TE=A"<>

>

This caution is usually an issue only if the primary key column is a binary type.

¢ When an Identity Vault is the authoritative source of primary key values, GUID rather than CN
is recommended for use as a primary key. Unlike CN, GUID is single-valued and does not
change.

+ Omit from publication triggers foreign key columns that link child and parent tables.

¢ If primary key columns are static (they do not change), do not include them in publication
triggers.

¢ Place the jdbc: type="query" attribute value on all embedded SELECT statements. Place
the jdbc: type="update" attribute value on all embedded INSERT, UPDATE and
DELETE statements.

Best Practices

225

226 |dentity Manager 3.5 Driver for JDBC: Implementation Guide

FAQ

¢ Section B.1, “Can’t See Tables or Views,” on page 227

¢ Section B.2, “Synchronizing with Tables,” on page 227

¢ Section B.3, “Processing Rows in the Event Log Table,” on page 228
¢ Section B.4, “Managing Database User Accounts,” on page 228

¢ Section B.5, “Synchronizing Large Data Types,” on page 228

¢ Section B.6, “Slow Publication,” on page 228

¢ Section B.7, “Synchronizing Multiple Classes,” on page 229

¢ Section B.8, “Encrypted Transport,” on page 229

¢ Section B.9, “Mapping Multivalue Attributes,” on page 229

¢ Section B.10, “Synchronizing Garbage Strings,” on page 229

¢ Section B.11, “Running Multiple Driver for JDBC Instances,” on page 229

B.1 Can’t See Tables or Views

Question: Why can’t the driver see my tables or views?

Answer: The driver is capable of synchronizing only tables that have explicit primary key
constraints and views that contain one or more columns prefixed with “pk_ (case-insensitive). The
driver uses these constraints to determine which fields to use when constructing associations. As
such, the driver ignores any unconstrained tables.

If you are trying to synchronize with tables or views that lack the necessary constraints, either add
them or synchronize to intermediate tables with the required constraints.

Another possibility is that the driver lacks the necessary database privileges to see the tables.
Usually, visibility is determined by the presence or absence of the SELECT privilege.

B.2 Synchronizing with Tables

Question: How do I synchronize with tables located in multiple schemas?
Answer: Do one of the following:

¢ Alias the tables into the synchronization schema.

¢ Synchronize to intermediate tables in the synchronization schema and move the data across
schema boundaries.

¢ Use a view.
¢ Create a virtual schema by using the Table/View Names parameter.

See “Table/View Names” on page 71.

FAQ

227

B.3 Processing Rows in the Event Log Table

Question: Why isn’t the driver processing rows in the Event Log Table?
Answer: Do the following:

1 Check the perpetrator field of the rows in question and make sure that the value is set to
something other than the driver’s database username.

The Publisher channel checks the perpetrator field to detect loopback events if the
Publisher channel Allow Loopback parameter is set to Boolean False (the default). See “Allow
Loopback?” on page 98.

When the Allow Loopback parameter is set to Boolean False, the Publisher channel ignores all
records where the perpetrator field value is equal to the driver’s database username. The
driver’s database username is specified by using the Authentication ID parameter. See
“Authentication ID” on page 62.

2 Ensure that the record’s status field is set to N (new).
Records with status fields set to something other than N will not be processed.
3 Make sure to explicitly commit changes.

Changes are often tentative until explicitly committed.

B.4 Managing Database User Accounts

Question: Can the driver manage database user accounts?

Answer: Yes. You can manage database accounts by using embedded SQL. For more information,
see Chapter 13, “Embedded SQL Statements in XDS Events,” on page 157.

B.5 Synchronizing Large Data Types

Question: Can the driver synchronize large binary and string data types?

Answer: Yes. Large binary and string data types can be subscribed and published. Publish large
binary and string data types by using query-back event types. For additional information, see
Section 12.2, “Event Types,” on page 149.

B.6 Slow Publication

Question: Why is publication slow?

Answer: If the event log table contains a large number of rows, index the table. Example indexes
are provided in all database installation scripts. By using trace level 3, you can view the statements
that the driver uses to maintain the event log.

You can further refine indexes in the installation scripts to enhance publication performance. Placing
indexes in a different tablespace or physical disk than the event log table also enhances publication
performance.

Furthermore, in a production environment, set the Delete Processed Rows parameter to Boolean
False, unless processed rows are being periodically moved to another table. See “Delete Processed
Rows?” on page 97.

228 |dentity Manager 3.5 Driver for JDBC: Implementation Guide

B.7 Synchronizing Multiple Classes

Question: Can the driver synchronize multiple classes?

Answer: Yes. However, primary key column names must be unique between logical database
classes. For example, if class/ is mapped to tablel with primary key column name key!, and class?2
is mapped to table2 with primary key column name key2, then the name of key! cannot equal key?.

This requirement can always be satisfied, no matter which synchronization model is employed.

B.8 Encrypted Transport

Question: Does the driver support encrypted transport?

Answer: No. How the driver communicates with a given database depends upon the third-party
driver being used. Some third-party drivers support encrypted transport, while others do not. Even if
encrypted transport is supported, no standardized way exists to enable encryption between third-
party JDBC drivers.

The general solution for this problem is to remotely run the Driver for JDBC and your third-party
driver. This method allows both the Driver for JDBC and the third-party driver to run locally on the
database server. Then all data traveling across the network between the Metadirectory engine and
the Driver for JDBC are SSL encrypted.

Another possibility is to use a type 3 or type 2 third-party JDBC driver. Database middleware and
client APIs usually provide encrypted transport mechanisms.

B.9 Mapping Multivalue Attributes

Question: How do [map multivalue attributes to single-value database fields?

Answer: See Section 10.7, “Mapping Multivalue Attributes to Single-Value Database Fields,” on
page 143.

B.10 Synchronizing Garbage Strings

Question: Why is the driver synchronizing garbage strings?

Answer: The database and the third-party driver are probably using incompatible character
encoding. Adjust the character encoding that your third-party driver uses.

For more information, refer to Character Encoding Values (http://java.sun.com/j2se/1.5.0/docs/
guide/intl/encoding.doc.html), defined by Sun.

B.11 Running Multiple Driver for JDBC Instances

Question: How do I run multiple Driver for JDBC instances in the same driver set? The instances
require different versions of the same third-party JBDC driver (for example, the Oracle JDBC driver
or the IBM DB2 Type 3 JDBC driver).

Answer: Use the Remote Loader to load each Driver for JDBC instance in a separate Java Virtual
Machine (JVM). When run locally in the same JVM, different versions of the same third-party
classes collide.

FAQ 229

http://java.sun.com/j2se/1.5.0/docs/guide/intl/encoding.doc.html

230 Identity Manager 3.5 Driver for JDBC: Implementation Guide

Supported Data Types

The driver for JDBC can synchronize all JIDBC 1 data types and a small subset of JDBC 2 data
types. How JDBC data types map to a database’s native data types depends on the third-party driver.

The following list includes the supported JDBC 1 java.sql.Types (http://java.sun.com/j2se/1.5.0/
docs/api/java/sql/Types.html).

¢ Numeric Types:
¢ java.sql.
¢ java.sgl
¢ java.sgl
¢ java.sqgl
¢ java.sgl
¢ java.sgl
¢ java.sql
¢ java.sgl
¢ java.sgl
¢ java.sqgl
¢ String Types:
¢ java.sgl
¢ java.sql
¢ java.sgl
+ Time Types:
¢ java.sqgl
¢ java.sgl
¢ java.sgl
¢ Binary Types:
¢ java.sqgl
¢ java.sqgl

¢ java.sqgl

Types

.Types.
.Types.
.Types.
.NUMERIC
.REAL

.Types
.Types
.Types.
.Types.
.Types.
.Types.

.Types
. Types
.Types

.Types.
.Types.
.Types.

.Types.
.Types
.Types

.BIGINT

BIT
DECIMAL
DOUBLE

FLOAT
INTEGER
SMALLINT
TINYINT

.CHAR
.LONGCHAR
.VARCHAR

DATE
TIME
TIMESTAMP

BINARY

. VARBINARY
. LONGVARBINARY

The following list includes the supported JDBC 2 java.sql. Types (http://java.sun.com/j2se/1.5.0/
docs/api/java/sql/Types.html).

¢ Large Object (LOB) Types:

¢ java.sgl.Types.CLOB

¢ java.sgl.Types.BLOB

Supported Data Types 231

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Types.html

232 |dentity Manager 3.5 Driver for JDBC: Implementation Guide

java.sql.DatabaseMetaData
Methods

This section lists the required and optional java.sql.DatabaseMetaData (http://java.sun.com/j2se/
1.5.0/docs/api/java/sql/DatabaseMetaData.html) methods.

The following JDBC 1 methods are required only if the Synchronization Filter parameter is set to
something other than Exclude all tables/views:

+ getColumns(java.lang.String catalog, java.lang.String schemaPattern, java.lang.String
tableNamePattern, java.lang.String columnNamePattern):java.sql.ResultSet

¢ getPrimaryKeys(java.lang.String catalog, java.lang.String schema, java.lang.String
table):java.sql.ResultSet

¢ getTables(java.lang.String catalog, java.lang.String schemaPattern, java.lang.String
tableNamePattern, java.lang.String[] types):java.sql.ResultSet

+ storesLowerCaseldentifiers():boolean
+ storesMixedCaseldentifiers():boolean

+ storesUpperCaseldentifiers():boolean
Optional JDBC 1 methods:

¢ dataDefinitionCausesTransactionCommit():boolean
¢ dataDefinitionlgnoredInTransactions():boolean

¢ getColumnPrivileges(String catalog, String schema, String table, String
columnNamePattern):java.sql.ResultSet

+ getDatabaseProductName():java.lang.String

¢ getDatabaseProductVersion():java.lang.String
¢ getDriverMajorVersion():int

¢ getDriverMinorVersion():int

¢ getDriverName():java.lang.String

¢ getDriverVersion():java.lang.String

+ getExportedKeys(java.lang.String catalog, java.lang.String schema, java.lang.String
table):java.sql.ResultSet

+ getMaxStatements():int
¢ getMaxConnections():int
¢ getMaxColumnsInSelect():int

¢ getProcedureColumns(String catalog, String schemaPattern, String procedureNamePattern,
String columnNamePattern):java.sql.ResultSet

¢ getSchemas():java.sql.ResultSet
+ getTableTypes():java.sql.ResultSet
¢ getUserName():java.lang.String

java.sql.DatabaseMetaData Methods 233

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/DatabaseMetaData.html

*

*

supportsColumnAliasing():bolean
supportsDataDefinitionAndDataManiuplationTransactions():boolean
supportsDataManipulationTransactionsOnly():boolean
supportsLimitedOuterJoins():boolean
supportsMultipleTransactions():boolean
supportsSchemasInDataManipulation():boolean
supportsSchemasInProcedureCalls():boolean
supportsTransactionlsolationLevel(int level):boolean

supportsTransactions():boolean

Optional JDBC 2 methods:

*

supportsBatchUpdates():boolean

Optional JDBC 3 methods:

*

supportsGetGeneratedKeys():boolean

234 |dentity Manager 3.5 Driver for JDBC: Implementation Guide

JDBC Interface Methods

This section lists the JDBC interface methods (other than java.sql.DatabaseMetaData (http://
java.sun.com/j2se/1.5.0/docs/api/java/sql/DatabaseMetaData.html) methods) that the driver for
JDBC uses. Methods are organized by class.

Often, third-party JDBC driver vendors list defects or known issues by method. You can use the
following methods in collaboration with third-party JDBC driver documentation to troubleshoot or
anticipate potential interoperability problems.

¢ java.sql.DriverManager (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/DriverManager.html)

¢ java.sql.CallableStatement (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/
CallableStatement.html)

¢ java.sql.Connection (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Connection.html)

¢ java.sql.PreparedStatement (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/
PreparedStatement.html)

+ java.sql.ResultSet (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/ResultSet.html)

¢ java.sql.ResultSetMetaData (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/
ResultSetMetaData.html)

+ java.sql.Statement (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Statement.html)
¢ java.sql.Timestamp (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Timestamp.html)

The following table lists java.sql.DriverManager (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/
DriverManager.html) methods that the Driver for JDBC uses:

Table E-1 java.sql.DriverManager Methods

Method Signature JDBC Version Required?
getConnection(String url, java.util.Properties info):java.sqgl.Connection 1 yes'
getConnection(String url, java.util.Properties info):java.sql.Connection 1 yes1
setLogStream(java.io.PrintStream out):void 1 no

10ne method or the other.

The following table lists java.sql.CallableStatement (http://java.sun.com/j2se/1.5.0/docs/api/java/
sql/CallableStatement.html) methods that the Driver for JDBC uses:

Table E-2 java.sql.CallableStatement Methods

Method Signature JDBC Version Required?

getBigDecimal(int parameterindex, int scale):java.math.BigDecimal 1 yes

JDBC Interface Methods 235

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/DatabaseMetaData.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/DriverManager.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/CallableStatement.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Connection.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/PreparedStatement.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/ResultSet.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/ResultSetMetaData.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Statement.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Timestamp.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/DriverManager.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/CallableStatement.html

Method Signature JDBC Version Required?

getBoolean(int parameterindex):boolean 1 yes
getBoolean(String parameterName):boolean 3 no
getByte(int parameterindex):byte 1 yes
getByte(String parameterName):byte 3 no
getBytes(int parameterindex):byte[] 1 yes
getBytes(String parameterName):byte[] 3 no
getDate(int parameterindex):java.sql.Date 1 yes
getDate(String parameterName):java.sql.Date 3 no
getDouble(int parameterindex):double 1 yes
getDouble(String parameterName):double 3 no
getFloat(int parameterindex):float 1 yes
getFloat(String parameterName):float 3 no
getint(int parameterindex):int 1 yes
int getlnt(String parameterName) 3 no
getLong(int parameterindex):long 1 yes
getLong(String parameterName):long 3 no
getShort(int parameterindex):short 1 yes
getShort(String parameterName):short 3 no
getString(int parameterindex):String 1 yes
getString(String parameterName):String 3 no
getTime(int parameterindex):java.sql.Time 1 yes
getTime(String parameterName):java.sql.Time 3 no
getTimestamp(int parameterindex):java.sql. Timestamp 1 yes
getTimestamp(String parameterName):java.sql. Timestamp 3 no
registerOutParameter(int parameterindex, int sqlType):void 1 yes
wasNull():boolean 1 yes

The following table lists java.sql.Connection (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/
Connection.html) methods that the driver for JDBC uses:

236 |dentity Manager 3.5 Driver for JDBC: Implementation Guide

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Connection.html

Table E-3 java.sql.Connection Methods

Method Signature

JDBC Version Required?

close():void

commit():void
createStatement():java.sql.Statement
getAutoCommit():boolean
getMetaData():java.sql.DatabaseMetaData
getTransactionlsolation():int
getWarnings():java.sql.SQLWarning
isClosed():boolean

prepareCall(String sql):java.sql.CallableStatement
prepareStatement(String sql):java.sqgl.PreparedStatement
rollback():void

setAutoCommit(boolean autoCommit):void

setTransactionlsolation(int level):void

yes
no
yes
no
yes
no
no
no
no
yes
no
no

no

The following table lists java.sql.PreparedStatement (http://java.sun.com/j2se/1.5.0/docs/api/java/

sql/PreparedStatement.html) methods that the Driver for JDBC uses:

Table E-4 java.sql.PreparedStatement Methods

Method Signature

JDBC Version Required?

clearParameters() :void

execute():boolean
executeQuery():java.sql.ResultSet
executeUpdate():int

setBigDecimal(int parameterindex, java.math.BigDecimal x):void
setBoolean(int parameterindex, boolean x):void
setByte(int parameterindex, byte x):void
setBytes(int parameterindex, byte x[]):void
setDate(int parameterindex, java.sql.Date x):void
setDouble(int parameterindex, double x):void
setFloat(int parameterindex, float x):void
setInt(int parameterindex, int x):void

setLong(int parameterindex, long x):void

no
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes

yes

JDBC Interface Methods

237

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/PreparedStatement.html

Method Signature JDBC Version Required?

setNull(int parameterindex, int sqlType):void 1 yes
setShort(int parameterindex, short x):void 1 yes
setString(int parameterindex, String x):void 1 yes
setTime(int parameterindex, java.sql.Time x):void 1 yes
setTimestamp(int parameterindex, java.sql.Timestamp x):void 1 yes

The following table lists java.sql.ResultSet (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/
ResultSet.html) methods that the Driver for JDBC uses:

Table E-5 java.sql.ResultSet Methods

Method Signature JDBC Version Required?
close():void 1 yes
getBigDecimal(int columnindex, int scale):java.math.BigDecimal 1 yes
getBigDecimal(String columnName, int scale):java.math.BigDecimal 1 yes
getBinaryStream(int columnindex):java.io.InputStream 1 yes
getBinaryStream(String columnName)java.io.InputStream 1 yes
getBoolean(int columnindex):boolean 1 yes
getBoolean(String columnName):boolean 1 yes
getByte(int columnindex):byte 1 yes
getByte(String columnName):byte 1 yes
getBytes(int columnindex):byte[] 1 yes
getBytes(String columnName):byte[] 1 yes
getDate(int columnindex):java.sqgl.Date 1 yes
getDate(String columnName)java.sql.Date 1 yes
getFloat(int columnindex):float 1 yes
getFloat(String columnName):float 1 yes
getint(int columnindex):int 1 yes
getInt(String columnName):int 1 yes
getLong(int columnindex):long 1 yes
getLong(String columnName):long 1 yes
getMetaData():java.sql.ResultSetMetaData 1 no
getShort(int columnindex):short 1 yes
getShort(String columnName):short 1 yes

238 |dentity Manager 3.5 Driver for JDBC: Implementation Guide

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/ResultSet.html

Method Signature JDBC Version Required?

getString(int columnindex):String 1 yes
getString(String columnName):String 1 yes
getTime(int columnindex):java.sql.Time 1 yes
getTime(String columnName):java.sqgl.Time 1 yes
getTimestamp(int columnindex):java.sqgl.Timestamp 1 yes
getTimestamp(String columnName):java.sql.Timestamp 1 yes
getWarnings():java.sql.SQLWarning 1 no

The following table lists java.sql.ResultSetMetaData (http://java.sun.com/j2se/1.5.0/docs/api/java/
sql/ResultSetMetaData.html) methods that the Driver for JDBC uses:

Table E-6 java.sql.ResultSetMetaData Methods

Method Signature JDBC Version Required?
getColumnCount():int 1 yes
getColumnName(int column):String 1 no
getColumnType(int column):int 1 no

The following table lists java.sql.Statement (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/
Statement.html) methods that the Driver for JDBC uses:

Table E-7 java.sql.Statement Methods

Method Signature JDBC Version Required?
addBatch(java.lang.String sql):void 2 no
clearBatch():void 2 no
clearWarnings():void 1 no
close():void 1 yes
execute(java.lang.String sql):boolean 1 yes
executeBatch():int[] 2 no
executeUpdate(String sql):int 1 yes
executeQuery(String sql):java.sql.ResultSet 1 yes
getGeneratedKeys():java.sql.ResultSet 3 no
getMoreResults():boolean 1 no
getResultSet():;java.sql.ResultSet 1 yes
getUpdateCount():int 1 no

JDBC Interface Methods

239

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/ResultSetMetaData.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Statement.html

Method Signature

JDBC Version Required?

getWarnings():java.sql.SQLWarning

1 no

The following table lists java.sql. Timestamp (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/

Timestamp.html) methods that the Driver for JDBC uses:

Table E-8 java.sql.Timestamp Methods

Method Signature

JDBC Version Required?

getNanos():int
getTime():long
setNanos(int n):void
setTime(long time):void

toString ():String

1 yes
1 yes
1 yes
1 yes
1 yes

240 |dentity Manager 3.5 Driver for JDBC: Implementation Guide

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Timestamp.html

Third-Party JDBC Driver
Descriptor DTD

This section contains the DTD for third-party JDBC descriptor files.

<?xml version="1.0" encoding="UTF-8"?2>
<!ELEMENT actions (exec-sql | check-for-closed-connection | fetch-
metadata | rollback) *>
<!ELEMENT add-default-values-on-view—-insert (#PCDATA)>
<!ELEMENT authentication (sgl-state | error-code | sgl-state-class |
error-code-range | actions) *>
<!ELEMENT check-for-closed-connection EMPTY>
<!ELEMENT column-position-comparator (#PCDATA)>
<!ELEMENT connection-properties (property*)>
<!ELEMENT connectivity (sgl-state | error-code | sgl-state-class |
error-code-range | actions) *>
<!ELEMENT current-timestamp-stmt (#PCDATA)>
<!ELEMENT error-code (value)>
<!ATTLIST error-code
description CDATA #IMPLIED
>
<!ELEMENT error-code-range (from, to)>
<!ATTLIST error-code-range
description CDATA #IMPLIED
>
<!ELEMENT errors (connectivity | authentication | retry | fatal)*>
<!ELEMENT exclude-table-filter (#PCDATA)>
<!ELEMENT exec-sql (#PCDATA)>
<!ELEMENT fatal (sgl-state | error-code | sgl-state-class | error-
code-range | actions) *>
<!ELEMENT fetch-metadata EMPTY>
<!ELEMENT from (#PCDATA)>
<!ELEMENT function-return-method (#PCDATA)>
<!ELEMENT handle-stmt-results (#PCDATA)>
<!ELEMENT identity (name?, target-database?, jdbc-type?, jdbc-class?)>
<!ELEMENT import (#PCDATA)>
<!ELEMENT imports (import*)>
<!ELEMENT include-table-filter (#PCDATA)>
<!ELEMENT jdbc-class (#PCDATA)>
<!ELEMENT jdbc-driver (imports?, identity, (metadata-override |
connection-properties | sgl-type-map | options | errors)*)>
<!ELEMENT jdbc-type (#PCDATA)>
<!ELEMENT key (#PCDATA)>
<!ELEMENT left-outer-join-operator (#PCDATA)>
<!ELEMENT lock-generator-class (#PCDATA)>
<!ELEMENT metadata-override (supports-schemas-in-procedure-calls?)>
<!ELEMENT minimal-metadata (#PCDATA)>
<!ELEMENT name (#PCDATA) >
<!ELEMENT options (lock-generator-class | supports-schemas-in-

Third-Party JDBC Driver Descriptor DTD

241

metadata-retrieval |
comparator
isolation-
include-table-filter |
add-default-values-on-view-insert |

stmt |

function-return-method |

<!ELEMENT
<!ELEMENT

code-range

<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ATTLIST

time-translator-class | column-position-

| use-manual-transactions | minimal-metadata | transaction-
level | use-single-connection | exclude-table-filter |
left-outer-join-operator | current-timestamp-
reuse-statements |
handle-stmt-results) *>
value) >

error-code |

property (key,
retry (sgl-state |
| actions) *>
reuse-statements
rollback EMPTY>
sgl-state (value)>
sgl-state

sgl-state-class | error-

(#PCDATA) >

description CDATA #IMPLIED

>
<!ELEMENT
<!ATTLIST

sgl-state-class (value)>

sgl-state-class

description CDATA #IMPLIED

>

<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT

sgl-type-map (type*)>
supports—-schemas-in-metadata-retrieval (#PCDATA)>
supports—-schemas-in-procedure-calls (#PCDATA)>
target-database (#PCDATA)>

time-translator-class (#PCDATA) >

to (#PCDATA)>
transaction-isolation-level (#PCDATA)>
type (from, to)>
use-manual-transactions (#PCDATA)>
use-single-connection (#PCDATA)>

value (#PCDATA)>

242 |dentity Manager 3.5 Driver for JDBC: Implementation Guide

Third-Party JDBC Driver
Descriptor Import DTD

This section contains the DTD for third-party JDBC descriptor import files.

<?xml version="1.0" encoding="UTF-8"?2>
<!ELEMENT actions (exec-sql | check-for-closed-connection | fetch-
metadata | rollback) *>
<!ELEMENT add-default-values-on-view—-insert (#PCDATA)>
<!ELEMENT authentication (sgl-state | error-code | sgl-state-class |
error-code-range | actions) *>
<!ELEMENT check-for-closed-connection EMPTY>
<!ELEMENT column-position-comparator (#PCDATA)>
<!ELEMENT connection-properties (property*)>
<!ELEMENT connectivity (sgl-state | error-code | sgl-state-class |
error-code-range | actions) *>
<!ELEMENT current-timestamp-stmt (#PCDATA)>
<!ELEMENT error-code (value)>
<!ATTLIST error-code

description CDATA #IMPLIED
>
<!ELEMENT error-code-range (from, to)>
<!ATTLIST error-code-range

description CDATA #IMPLIED
>
<!ELEMENT errors (connectivity | authentication | retry | fatal)*>
<!ELEMENT exclude-table-filter (#PCDATA)>
<!ELEMENT exec-sql (#PCDATA)>
<!ELEMENT fatal (sgl-state | error-code | sgl-state-class | error-
code-range | actions) *>
<!ELEMENT fetch-metadata EMPTY>
<!ELEMENT from (#PCDATA)>
<!ELEMENT function-return-method (#PCDATA)>
<!ELEMENT handle-stmt-results (#PCDATA)>
<!ELEMENT include-table-filter (#PCDATA)>
<!ELEMENT jdbc-driver (metadata-override | connection-properties |
sgl-type-map | options | errors) *>
<!ELEMENT key (#PCDATA)>
<!ELEMENT left-outer-join-operator (#PCDATA)>
<!ELEMENT lock-generator-class (#PCDATA)>
<!ELEMENT metadata-override (supports-schemas-in-procedure-calls?)>
<!ELEMENT minimal-metadata (#PCDATA)>
<!ELEMENT options (lock-generator-class | supports-schemas-in-
metadata-retrieval | time-translator-class | column-position-
comparator | use-manual-transactions | minimal-metadata | transaction-
isolation-level | use-single-connection | exclude-table-filter |
include-table-filter | left-outer-join-operator | current-timestamp-
stmt | add-default-values-on-view-insert | reuse-statements |
function-return-method | handle-stmt-results) *>
<!ELEMENT property (key, value)>

Third-Party JDBC Driver Descriptor Import DTD

243

<!ELEMENT

code-range

<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ATTLIST

retry (sgl-state | error-code |

| actions) *>

sgl-state-class |
reuse-statements (#PCDATA)>
rollback EMPTY>

sgl-state (value)>
sgl-state

description CDATA #IMPLIED

>
<!ELEMENT
<!ATTLIST

sgl-state-class (value)>

sgl-state-class

description CDATA #IMPLIED

>

<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT

sgl-type-map (type*)>
supports—-schemas-in-metadata-retrieval (#PCDATA)>
supports—-schemas-in-procedure-calls (#PCDATA)>

time-translator-class (#PCDATA) >

to (#PCDATA)>
transaction-isolation-level (#PCDATA)>
type (from, to)>
use-manual-transactions (#PCDATA)>
use-single-connection (#PCDATA)>

value (#PCDATA)>

244 |dentity Manager 3.5 Driver for JDBC: Implementation Guide

error-

Database Descriptor DTD

This section contains the DTD for database descriptor files.

<?xml version="1.0" encoding="UTF-8"7?>

<!ELEMENT add-default-values-on-view-insert (#PCDATA) >
<!ELEMENT column-position-comparator (#PCDATA)>

<!ELEMENT current-timestamp-stmt (#PCDATA)>

<!ELEMENT database (imports?, identity, options?)>

<!ELEMENT exclude-table-filter (#PCDATA) >

<!ELEMENT function-return-method (#PCDATA)>

<!ELEMENT handle-stmt-results (#PCDATA)>

<!ELEMENT include-table-filter (#PCDATA)>

<!ELEMENT identity (name?, regex-name?, regex-version?)>
<!ELEMENT import (#PCDATA)>

<!ELEMENT imports (import*)>

<!ELEMENT left-outer-join-operator (#PCDATA)>

<!ELEMENT lock-generator-class (#PCDATA)>

<!ELEMENT minimal-metadata (#PCDATA)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT options (lock-generator-class | supports-schemas-in-
metadata-retrieval | time-translator-class | column-position-
comparator | use-manual-transactions | minimal-metadata | transaction-
isolation-level | use-single-connection | exclude-table-filter |
include-table-filter | left-outer-join-operator | current-timestamp-
stmt | add-default-values-on-view-insert | reuse-statements |
function-return-method | handle-stmt-results) *>

<!ELEMENT regex-name (#PCDATA)>

<!ELEMENT regex-version (#PCDATA)>

<!ELEMENT reuse-statements (#PCDATA)>

<!ELEMENT supports-schemas-in-metadata-retrieval (#PCDATA)>
<!ELEMENT time-translator-class (#PCDATA) >

<!ELEMENT transaction-isolation-level (#PCDATA)>

<!ELEMENT use-manual-transactions (#PCDATA)>

<!ELEMENT use-single-connection (#PCDATA) >

Database Descriptor DTD 245

246 |dentity Manager 3.5 Driver for JDBC: Implementation Guide

Database Descriptor Import DTD

This section contains the DTD for database descriptor import files.

<?xml version="1.0" encoding="UTF-8"7?>

<!ELEMENT add-default-values-on-view-insert (#PCDATA) >
<!ELEMENT column-position-comparator (#PCDATA)>

<!ELEMENT current-timestamp-stmt (#PCDATA)>

<!ELEMENT exclude-table-filter (#PCDATA) >

<!ELEMENT function-return-method (#PCDATA)>

<!ELEMENT handle-stmt-results (#PCDATA)>

<!ELEMENT include-table-filter (#PCDATA)>

<!ELEMENT database (options?)>

<!ELEMENT left-outer-join-operator (#PCDATA)>

<!ELEMENT lock-generator-class (#PCDATA)>

<!ELEMENT minimal-metadata (#PCDATA)>

<!ELEMENT options (lock-generator-class | supports-schemas-in-
metadata-retrieval | time-translator-class | column-position-
comparator | use-manual-transactions | minimal-metadata | transaction-
isolation-level | use-single-connection | exclude-table-filter |
include-table-filter | left-outer-join-operator | current-timestamp-
stmt | add-default-values-on-view-insert | reuse-statements |
function-return-method | handle-stmt-results) *>

<!ELEMENT reuse-statements (#PCDATA)>

<!ELEMENT supports-schemas-in-metadata-retrieval (#PCDATA)>
<!ELEMENT time-translator-class (#PCDATA) >

<!ELEMENT transaction-isolation-level (#PCDATA)>

<!ELEMENT use-manual-transactions (#PCDATA)>

<!ELEMENT use-single-connection (#PCDATA) >

Database Descriptor Import DTD 247

248 |dentity Manager 3.5 Driver for JDBC: Implementation Guide

Policy Example: Triggerless
Future Event Processing

The following example assumes that a “commence” attribute exists and does the following:

+ Holds the timestamp value of when an event should be processed

+ Contains an integer or java string timestamp value. See “Time Syntax” on page 65.

<policy xmlns:Timestamp="http://www.novell.com/nxsl/java/
java.sqgl.Timestamp"
xmlns:TimestampUtil="http://www.novell.com/nxsl/Jjava/
com.novell.nds.dirxml.driver.jdbc.db.TimestampUtil"
xmlns:jdbc="urn:dirxml:jdbc">
<rule>
<description>Get commencement date from datasource.</description>
<conditions>
<and>
<if-xpath op="true">.</if-xpath>
</and>
</conditions>
<actions>
<do-set-local-variable name="commence">
<arg-string>
<token-src-attr class-name="User"
name="commence" />
</arg-string>
</do-set-local-variable>
</actions>
</rule>
<rule>
<description>Break if commencement date unavailable.</
description>
<conditions>
<and>
<if-local-variable name="commence" op="equal"/>
</and>
</conditions>
<actions>
<do-break/>
</actions>
</rule>
<rule>
<description>Parse times.</description>
<conditions>
<and>
<if-xpath op="true">.</if-xpath>
</and>
</conditions>
<actions>
<do-set-local-variable name="dbTime">

Policy Example: Triggerless Future Event Processing 249

<arg-object>
<token-xpath
expression="Timestamp:valueOf (@jdbc:database-local-time)"/>
</arg-object>
</do-set-local-variable>
<do-set-local-variable name="eventTime">
<arg-object>
<token-xpath
expression="Timestamp:valueOf ($commence) " />
</arg-object>
</do-set-local-variable>
</actions>
</rule>
<rule>
<description>Is commencement date after database time?</
description>
<conditions>
<and>
<if-xpath op="true">.</if-xpath>
</and>
</conditions>
<actions>
<do-set-local-variable name="after">
<arg-string>
<token-xpath
expression="TimestampUtil:after ($SeventTime, S$dbTime)"/>
</arg-string>
</do-set-local-variable>
</actions>
</rule>
<rule>
<description>Retry if future event.</description>
<conditions>
<and>
<if-local-variable name="after" op="equal">true</if-
local-variable>
</and>
</conditions>
<actions>
<do-status level="retry">
<arg-string>
<token-text xml:space="preserve">Future event
detected.</token-text>
</arg-string>
</do-status>
</actions>
</rule>

</policy>

250 |dentity Manager 3.5 Driver for JDBC: Implementation Guide

Setting Up an OCI Client on Linux

¢ Section K.1, “Downloading the Instant Client,” on page 251
¢ Section K.2, “Setting Up the OCI Client,” on page 251
¢ Section K.3, “Configuring the OCI Driver,” on page 252

K.1 Downloading the Instant Client

1 Download the Oracle Instant Client (instantclient-basic-1inux32-10.2.0.1-
20050713.zip).

The file is available from Instant Client Downloads (http://www.oracle.com/technology/
software/tech/oci/instantclient/htdocs/linuxsoft.html).

2 Download the Oracle SQL*Plus binary (instantclient-sglplus-1linux32-
10.2.0.1-20050713.z1ip).

The file is available from Instant Client Downloads (http://www.oracle.com/technology/
software/tech/oci/instantclient/htdocs/linuxsoft.html).

K.2 Setting Up the OCI Client

Set up the Oracle Instant Client on the machine where the JDBC driver is running (not on the
machine where Oracle is running).

1 Log into Linux as root, and create the following structure:

/oracle

/oracle/client
/oracle/client/bin
/oracle/client/1ib
/oracle/client/network/admin

2 Unzip all files from instantclient-basic-1inux32-10.2.0.1-20050713.zip
to /oracle/client/1lib.

3 Unzip all files from instantclient-sglplus-1inux32-10.2.0.1-
20050713.zipto /oracle/client/bin.

Copy libsglplus.so from /oracle/client/bin to /oracle/client/lib.
Copy libsqglplusic.so from /oracle/client/binto /oracle/client/1lib.

Using chmod, ensure that the file sglplus in/oracle/client/bin is executable.

N o g b

Copy a valid tnsnames.ora into /oracle/client/network/admin.

If you don’t have a tnsnames . ora file, use the Oracle configuration tool to create one.
Make sure that the tnsnames.ora filename is in lowercase.

8 Modify the profile.local file by adding the following lines:

export LD LIBRARY PATH=3LD LIBRARY PATH:/oracle/client/lib
export TNS ADMIN=/oracle/client/network/admin
export PATH=$PATH:/oracle/client/lib

Setting Up an OCI Client on Linux

251

http://www.oracle.com/technology/software/tech/oci/instantclient/htdocs/linuxsoft.html
http://www.oracle.com/technology/software/tech/oci/instantclient/htdocs/linuxsoft.html

The profile.local fileis in the /etc folder. If the file doesn’t exist, create one. The file
can consist of only the three export lines.

The profile.local file extends the LD LIBRARY PATH, sets TNS_ADMIN, and
extends the PATH. This file is read when the server boots.

9 Ensure that the exports in the profile.local file are always valid.
10 Copy the classesl2.jar and ojdbcl4.jar to the IDM classes directory.
These .jar files are supplied with the Instant Client.
The IDM classes directory is the directory where your driver is located.

11 Start SQL*Plus with the following example command (assuming that the directory is /
oracle/client/bin):

./sqglplus username/password@sid

K.3 Configuring the OCI Driver

To configure the driver, customize the driver’s URL syntax. See Table 15-20 on page 206.

An example URL syntax is jdbc:oracle:oci8:@ORACLE10. In this example, ORACLEI0 is the
connection string in the tnsnames. ora file.

Figure K-1 Example tnsnames.ora File

ﬂ tnsnames.ora.txk - Notepad -| Ellﬂ
File Edit Format Help

tnsnames.ora Metwork Configuration File: b:voracleiproduct’1o.1.onDh_1inetwarkhadmimtnsnames. ora «|
Generated by oracle configuration tools.

DRACLELQ] =
DESEHTIPTION =

ADDRESS = (PROTOCOL = TCPJICHOST = 151.155.161.68)(PORT = 152100
(CONMNECT_DATA =

(SERVER = DEDICATED)

(SERVICE_MAME = Oraclel()

)

]

EXTPROC_COMNECTION_DATA =

(DESCRIPTION =

(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = IPCJI(KEY = EXTPROC))

b
(COMMECT_DATA =

(5ID = PLSExXtProc)
[(PRESENTATION = RO)

252 |dentity Manager 3.5 Driver for JDBC: Implementation Guide

Sybase Chain Modes and the
Identity Manager Driver for JDBC

Sybase can execute stored procedures in two distinct modes: chained and unchained. Depending
upon the configuration of the Identity Manager Driver for JDBC and stored procedures in a
database, various problems can arise. This section can help you understand and resolve those
problems.

¢ Section L.1, “Error Codes,” on page 253

¢ Section L.2, “Procedures and Modes,” on page 254

L.1 Error Codes

* “Error 226: SET CHAINED command not allowed within multi-statement transaction” on
page 253

¢ “Error 7112: Stored procedure 'x' may be run only in chained transaction mode” on page 253

¢ “Error 7113: Stored procedure 'x' may be run only in unchained transaction mode” on page 254

Error 226: SET CHAINED command not allowed within multi-statement transaction

Effect: Throws the exception of com.sybase.jdbc2.jdbc.SybSQLException with error
code 226 and an SQL state of ZZZ7Z7.

Cause: This exception is usually caused by a defect in older versions of jConnect*.

Solution: Download and upgrade to the latest version. Downloads are available at the
jConnect for JDBC Web page (http://www.sybase.com/products/
informationmanagement/softwaredeveloperkit/jconnect).

Error 7112: Stored procedure 'x' may be run only in chained transaction mode

Effect: Throws the exception of com.sybase.jdbc2.jdbc.SybSQLException with error
code 7712 and an SQL state of ZZZZ77.

Cause: The stored procedure was created in chained mode, or later altered to run in
chained mode, but the driver is currently running in unchained mode. The
probable cause is that the Use Manual Transactions? parameter is set to False.
Another possibility is that the transaction type has been overridden to auto in a
policy.

Solution: Do one of the following:

¢ Use stored procedure sp_procxmode to change the stored procedure's
mode to unchained or anymode (preferred).

¢ Change the driver's Use Manual Transactions? parameter to True, or
change the policy transaction type to manual.

Sybase Chain Modes and the Identity Manager Driver for JDBC

253

http://www.sybase.com/products/informationmanagement/softwaredeveloperkit/jconnect

Error 7113: Stored procedure 'x' may be run only in unchained transaction mode

Effect: Throws the exception com.sybase.jdbc2.jdbe.SybSQLException with error
code 7713 and an SQL state of ZZZZ77.

Cause: The stored procedure was created in unchained mode, or later altered to run in
unchained mode, but the driver is currently running in chained mode. The
probable cause is that the Use Manual Transactions? parameter is set to True.
Another possibility is that the transaction type has been overridden to manual
in policy.

Solution: Do one of the following:

¢ Use stored procedure sp_procxmode to change the stored procedure's
mode to chained or anymode (preferred).

¢ Change the driver's “Use Manual Transactions?” on page 76 parameter to
False, or change the policy transaction type to auto.

NOTE: If you set use-manual-transactions to False, all transactions will
consist of a maximum of one statement.

L.2 Procedures and Modes

Section L.2.1, “Using Stored Procedure sp_proxmode,” on page 254
Section L.2.2, “Chained and Unchained Modes,” on page 254
Section L.2.3, “Managing Transactions in a Policy,” on page 255
Section L.2.4, “Useful Links,” on page 255

*

*

*

*

L.2.1 Using Stored Procedure sp_proxmode

The preferred way to avoid errors 7112 and 7113 is to alter all stored procedures invoked directly or
indirectly by the driver (via triggers, for example) to run in both chained and unchained mode. To
alter a procedure, invoke the sp_procxmode procedure with two arguments:.

¢ The procedure name

+ The mode

The following example illustrates how to invoke the sp_procxmode procedure from the isql
command line:

client:sp procxmode my procedure, anymode
go

Of course, not all customers are willing to alter stored procedure modes. Altering a procedure's
mode might alter its runtime behavior, which could alter the behavior of other applications that
invoke the procedure.

L.2.2 Chained and Unchained Modes

Unchained mode is Sybase's native way of executing SQL. A second mode, chained mode, was later
added to make the database compatible with SQL standards.

254 |dentity Manager 3.5 Driver for JDBC: Implementation Guide

Table L-1 Modes and Compatibility

Mode Compatibility
Chained SQL-compatible mode
Unchained Sybase native mode

Sybase provides a third-party JDBC driver called jConnect. The default mode of jConnect is
unchained. Whenever the method Connection.setAutoCommit(boolean autoCommit):void is
invoked, jConnect switches modes. See java.sql Interface Connection (http://java.sun.com/j2se/
1.4.2/docs/api/java/sql/Connection.html).

Table L-2 Methods and Switches

Method Effect
Connection.setAutoCommit (true) Switches to unchained mode
Connection.setAutoCommit(false) Switches to chained mode

If the Use Manual Transactions? parameter is set to False, the driver invokes
Connection.setAutoCommit(true). That is, the driver enters unchained mode. This is the normal
processing mode for SELECT statements and SQL embedded in a policy where the transaction type
is set to auto. See Section 13.5, “Manual vs. Automatic Transactions,” on page 163. When the
driver is in this state, any chained stored procedures invoked directly or indirectly by the driver yield
the 7112 error.

If the Use Manual Transactions? parameter is set to True, the driver invokes
Connection.setAutoCommit(false). That is, the driver enters chained mode. This is the normal
processing mode for all statements except SELECT statements and SQL embedded in a policy
where the transaction type is set to manual. See Manual vs. Automatic Transactions (http://
www.novell.com/documentation/idmdrivers/index.html?page=/documentation/idmdrivers/jdbc/
data/af899ky.html#af8bdjt). When the driver is in this state, any unchained stored procedures
invoked directly or indirectly by the driver yield the 7113 error.

L.2.3 Managing Transactions in a Policy

For information on managing transactions in a policy, see Manual vs.Automatic Transactions (http:/
/www.novell.com/documentation/idmdrivers/index.html?page=/documentation/idmdrivers/jdbc/
data/af899ky.html#af8bdjt).

L.2.4 Useful Links

¢ Transaction modes and stored procedures (http://manuals.sybase.com/onlinebooks/group-as/
asg1250e/sqlug/@Generic_ BookTextView/55096;hf=0;pt=55096#X) in the Transact-SQOL
User's Guide

¢ Selecting the transaction mode and isolation level (http://manuals.sybase.com/onlinebooks/
group-as/asg1250e/sqlug/@Generic_ BookTextView/53713;pt=53001) in the Transact-SQOL
User's Guide

Sybase Chain Modes and the Identity Manager Driver for JDBC

255

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Connection.html
http://www.novell.com/documentation/idmdrivers/index.html?page=/documentation/idmdrivers/jdbc/data/af899ky.html#af8bdjt
http://www.novell.com/documentation/idmdrivers/index.html?page=/documentation/idmdrivers/jdbc/data/af899ky.html#af8bdjt
http://manuals.sybase.com/onlinebooks/group-as/asg1250e/sqlug/@Generic__BookTextView/55096;hf=0;pt=55096#X
http://manuals.sybase.com/onlinebooks/group-as/asg1250e/sqlug/@Generic__BookTextView/53713;pt=53001

256 |dentity Manager 3.5 Driver for JDBC: Implementation Guide

The DirXML Command Line Utility

The DirXML® Command Line utility allows you to use a command line interface to manage the
driver. You can create scripts that have the commands to manage the driver.

The utility and scripts are installed on all platforms during the Identity Manager installation. The
utility is installed to the following locations:

¢ Windows: \Novell\Nds\dxcmd.bat
+ NetWare®: sys:\system\dxcmd.ncf
¢ UNIX: /usr/bin/dxcmd
Either of the following methods enable you to use the DirXML Command Line utility:

¢ Section M.1, “Interactive Mode,” on page 257
¢ Section M.2, “Command Line Mode,” on page 266

M.1 Interactive Mode

The interactive mode provides a text interface to control and use the DirXML Command Line utility.

1 At the console, enter dxcmd.

2 Enter the name of a user with sufficient rights to the Identity Manager objects, such as
admin.novell.

3 Enter the user’s password.

[0irxML commards

4 Enter the number of the command that you want to perform.
Table M-1 on page 258 contains the list of options and what functionality is available.

5 To quit the utility, enter 99.

NOTE: If you are running eDirectory™ 8.8 on UNIX or Linux*, you must specify the -host and -
port parameters. For example, dxcmd -host 10.0.0.1 -port 524. If the parameters are
not specified, a jclient error occurs.

novell.jclient.JCException: connect (to address) 111 UNKNOWN ERROR

The DirXML Command Line Utility 257

By default, eDirectory 8.8 is not listening to localhost. The DirXML Command Line utility needs to
resolve the server IP address or hostname and the port to be able to authenticate.

Table M-1 Interactive Mode Options

Option

Description

1: Start Driver

2: Stop Driver

3: Driver operations

4: Driver set operations

5: Log events operations

6: Get DirXML version
7: Job operations

99: Quit

Starts the driver. If more than one driver exists, each driver is listed with
a number. Enter the number of the driver to start the driver.

Stops the driver. If more than one driver exists, each driver is listed with

a number. Enter the number of the driver to stop the driver.

Lists the operations available for the driver. If more than one driver
exists, each driver is listed with a number. Enter the number of the driver
to see the operations available. See Table M-2 on page 259 for a list of
operations.

Lists the operations available for the driver set.

* 1: Associate driver set with server
+ 2: Disassociate driver set from server
* 99: Exit

Lists the operations available for logging events through Novell® Audit.
See Table M-5 on page 263 for a description of these options.

Lists the installed version of Identity Manager.
Manages jobs created for Identity Manager.

Exits the DirXML Command Line utility

Figure M-1 Driver Options

driwver ocperati

‘irectory.Driver &

iy

(53]

(=4}

-1

1: Cache operatlions
9: Exic

Enter choice:

.Nowell. IDMDESIGNTEEE.

258 |dentity Manager 3.5 Driver for JDBC: Implementation Guide

Table M-2 Driver Options

Options

Description

1: Start driver
2: Stop driver

3: Get driver state

4: Get driver start option

5: Set driver start option

(o]

: Resync driver

7: Migrate from application into DirXML

Starts the driver.
Stops the driver.
Lists the state of the driver.
* 0 - Driver is stopped
+ 1 - Driver is starting
+ 2 - Driver is running
* 3 - Driver is stopping
Lists the current driver start option.
+ 1 - Disabled

¢ 2-Manual
+ 3-Auto
Changes the start option of the driver.
+ 1 - Disabled
¢ 2-Manual

¢ 3-Auto
* 99 - Exit

Forces a resynchronization of the driver. It prompts
for a time delay: Do you want to specify a minimum
time for resync? (yes/no).

If you enter Yes, specify the date and time you want
the resynchronization to occur: Enter a date/time
(format 9/27/05 3:27 PM).

If you enter No, the resynchronization occurs
immediately.

Processes an XML document that contains a query
command: Enter filename of XDS query document:

Create the XML document that contains a query
command by using the Novell nds . dtd (http://
developer.novell.com/ndk/doc/dirxml/dirxmlbk/ref/
ndsdtd/query.html).

Examples:
NetWare: sys:\files\query.xml
Windows: c:\files\query.xml

Linux: /files/query.xml

The DirXML Command Line Utility

259

http://developer.novell.com/ndk/doc/dirxml/dirxmlbk/ref/ndsdtd/query.html
http://developer.novell.com/ndk/doc/dirxml/dirxmlbk/ref/ndsdtd/query.html
http://developer.novell.com/ndk/doc/dirxml/dirxmlbk/ref/ndsdtd/query.html

Options

Description

8: Submit XDS command document to driver

9: Submit XDS event document to driver

10: Queue event for driver

11: Check object password

12: Initialize new driver object

13: Password operations

14: Cache operations

Processes an XDS command document:
Enter filename of XDS command document:
Examples:

NetWare: sys:\files\user.xml
Windows: c:\files\user.xml

Linux: /files/user.xml

Enter name of file for response:
Examples:

NetWare: sys:\files\user.log
Windows: c:\files\user.log
Linux: /files/user.log

Processes an XDS event document:
Enter filename of XDS event document:
Examples:

NetWare: sys:\files\add.xml
Windows: c:\files\add.xml

Linux: /files/add.xml

Adds an event to the driver queue
Enter filename of XDS event document:
Examples:

NetWare: sys:\files\add.xml
Windows: c:\files\add.xml

Linux: /files/add.xml

Validates that an object’s password in the
connected system is associated with a driver. It
matches the object’s eDirectory password
(Distribution Password, used with Universal
Password).

Enter user name:

Performs an internal initialization of data on a new
Driver object. This is only for testing purposes.

Nine Password options are available. See Table M-
3 on page 261 for a description of these options.

Five Cache operations exist. See Table M-4 on
page 262 for a descriptions of these options.

260 Identity Manager 3.5 Driver for JDBC: Implementation Guide

Options

Description

99: Exit

Exits the driver options.

Figure M-2 Password Operations

Enter choice:

Table M-3 Password Operations

Operation

Description

1: Set shim password

2: Clear shim password

3: Set Remote Loader password

4: Clear Remote Loader password

5: Set named password

Sets the application password. This is the
password of the user account you are using to
authenticate into the connected system with.

Clears the application password.

The Remote Loader password is used to control
access to the Remote Loader instance.

Enter the Remote Loader password, then confirm
the password by typing it again.

Clears the Remote Loader password so no Remote
Loader password is set on the Driver object.

Allows you to store a password or other pieces of
security information on the driver. See Section 8.7,
“Storing Driver Passwords Securely with Named
Passwords,” on page 114 for more information.

Lists four prompts:

* Enter password name:

* Enter password description:

* Enter password:

* Confirm password:

The DirXML Command Line Utility

261

Operation

Description

6: Clear named passwords

7: List named passwords

8: Get password state

99: Exit

Clears a specified named password or all named
passwords that are stored on the Driver object: Do
you want to clear all named passwords? (yes/no).

If you enter Yes, all Named Passwords are cleared.
If you enter No, you are prompted to specify the
password name that you want to clear.

Lists all named passwords that are stored on the
Driver object. It lists the password name and the
password description.

Lists if a password is set for:

+ Driver Object password
+ Application password

* Remote loader password

The dxcmd utility enables you to set the Application
password and the Remote Loader password. You
cannot set the Driver Object password with this
utility. It displays whether the password has been
set.

Exits the current menu and takes you back to the
Driver options.

Figure M-3 Cache Operations

Enter choice: 14

Select a cache operation

Enter choice:

Table M-4 Cache Operations

Operation

Description

1: Get driver cache limit

2: Set driver cache limit

Displays the current cache limit that is set for the
driver.

Sets the driver cache limit in kilobytes. A value of 0
is unlimited.

262 |dentity Manager 3.5 Driver for JDBC: Implementation Guide

Operation

Description

3: View cached transactions

4: Delete cached transactions

99: Exit

A text file is created with the events that are stored
in cache. You can select the number of transactions
to view.

+ Enter option token (default=0):

* Enter maximum transactions records to return
(default=1):

* Enter name of file for response:
Deletes the transactions stored in cache.

* Enter position token (default=0):

* Enter event-id value of first transaction record
to delete (optional):

* Enter number of transaction records to delete
(default=1):

Exits the current menu and takes you back to the
Driver options.

Figure M-4 Log Event Operations

Felect a log ewvents operation

Enter choice:

Table M-5 Log Events Operations

Operation

Description

1: Set driver set log events

2: Reset driver set log events

3: Set driver log events

Allows you to log driver set events through Novell
Audit. You can select 49 items to log. See Table M-
6 on page 264 for a list of these options.

Type the number of the item you want to log. After
the items are selected, enter 99 to accept the
selections.

Resets all log event options.

Allows you to log driver events through Novell
Audit. You can select 49 items to log. See Table M-
6 on page 264 for a list of these options.

Type the number of the item you want to log. After
the items are selected, enter 99 to accept the
selections.

The DirXML Command Line Utility

263

Operation

Description

4:
99

Reset driver log events

: Exit

Resets all of the log event options.

Exits the log events operations menu.

Table M-6 Driver Set and Driver Log Events

Options

1:

0 N OO o A~ W N

Status success

: Status retry

: Status warning

: Status error

: Status fatal

: Status other

: Query elements

: Add elements

9: Remove elements

10:
11:
12:
13:
14:
15:
16:

17

18:

19

20:
21:
22:
23:
24:
25:
26:
27:

Modify elements

Rename elements

Move elements

Add-association elements
Remove-association elements
Query-schema elements
Check-password elements

: Check-object-password elements
Modify-password elements

: Sync elements

Pre-transformed XDS document from shim
Post input transformation XDS document

Post output transformation XDS document
Post event transformation XDS document
Post placement transformation XDS document

Post create transformation XDS document

Post mapping transformation <inbound> XDS document

Post mapping transformation <outbound> XDS document

264 |dentity Manager 3.5 Driver for JDBC: Implementation Guide

Options

28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44
45:
46:
47:
48:
49:
50:
51:
99:

Post matching transformation XDS document
Post command transformation XDS document
Post-filtered XDS document <Publisher>

User agent XDS command document

Driver resync request

Driver migrate from application

Driver start

Driver stop

Password sync
Password request
Engine error

Engine warning

Add attribute

Clear attribute

Add value

Remove value

Merge entire

Get named password
Reset Attributes

Add Value - Add Entry
Set SSO Credential
Clear SSO Credential
Set SSO Passphrase
User defined IDs

Accept checked items

The DirXML Command Line Utility 265

Table M-7 Job Scheduler Operations

Options Description

1: Get available job definitions Allows you to select an existing job.
Enter the job number:

Do you want to filter the job definitions by
containment? Enter Yes or No

Enter name of the file for response:
Examples:

NetWare: sys:\files\user.log
Windows: c:\files\user.log
Linux: /files/user.log

2: Operations on specific job object Allows you to perform operations for a specific job.

M.2 Command Line Mode

The command line mode allows you to use script or batch files. Table M-8 on page 266 lists the
different options that are available.

To use the command line options, decide which items you want to use and string them together.

Example: dxcmd -user admin.headquarters -host 10.0.0.1 -password
nOvell -start test.driverset.headquarters

This example command starts the driver.

Table M-8 Command Line Options

Option Description

Configuration

-user <user name> Specify the name of a user with administrative
rights to the drivers you want to test.

-host <name or IP address> Specify the IP address of the server where the
driver is installed.

-password <user password> Specify the password of the user specified above.

-port <port number> Specify a port number, if the default port is not
used.

-q <quiet mode> Displays very little information when a command is
executed.

-v <verbose mode> Displays detailed information when a command is
executed.

266 |dentity Manager 3.5 Driver for JDBC: Implementation Guide

Option Description

-s <stdout> Writes the results of the dxcmd command to
stdout.

-? <show this message> Displays the help menu.

-help <show this message> Displays the help menu.

Actions

-start <driver dn> Starts the driver.

-stop <driver dn> Stops the driver.

-getstate <driver dn> Shows the state of the driver as running or stopped.

-getstartoption <driver dn> Shows the startup option of the driver.

-setstartoption <driver dn> <disabled|manuallauto> Sets how the driver starts if the server is rebooted.
<resync|noresync> Sets whether the objects are to be resynchronized
when the driver restarts.

-getcachelimit <driver dn> Lists the cache limit set for the driver.
-setcachelimit <driver dn> <0 or positive integer> Sets the cache limit for the driver.

-migrateapp <driver dn> <filename> Processes an XML document that contains a query
command.

Create the XML document that contains a query
command by using the Novell nds.dtd (http://
www.novell.com/documentation/idm35/
index.html?page=/documentation/idm35/
policy_dtd/data/
dtdndsoverview.html#dtdndsoverview).

-setshimpassword <driver dn> <password> Sets the application password. This is the
password of the user account you are using to
authenticate into the connected system with.

-clearshimpassword <driver dn> <password> Clears the application password.
-setremoteloaderpassword <driver dn> Sets the Remote Loader password.
<password>

The Remote Loader password is used to control
access to the Remote Loader instance.

<clearremoteloaderpassword <driver dn> Clears the Remote Loader password.

The DirXML Command Line Utility 267

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_dtd/data/dtdndsoverview.html#dtdndsoverview
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_dtd/data/dtdndsoverview.html#dtdndsoverview
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_dtd/data/dtdndsoverview.html#dtdndsoverview

Option

Description

-sendcommand <driver dn> <input filename>
<output filename>

-sendevent <driver dn> <input filename>

-queueevent <driver dn> <input filename>

-setlogevents <dn> <integer ...>

-clearlogevents <dn>

-setdriverset <driver set dn>
-cleardriverset

-getversion

-initdriver object <dn>

-setnamedpassword <driver dn> <name>
<password> [description]

-clearnamedpassword <driver dn> <name>

-startjob <job dn>

Processes an XDS command document.

Specify the XDS command document as the input
file.

Examples:

NetWare: sys:\files\user.xml
Windows: c:\files\user.xml

Linux: /files/user.log

Specify the output filename to see the results.
Examples:

NetWare: sys:\files\user.log
Windows: c:\files\user.log

Linux: /files/user.log

Submits a document to the driver’s Subscriber
channel, bypassing the driver cache. The
document is processed ahead of anything that
might be in the cache at the time of the submission.
It also means that the submission fails if the driver
is not running.

Submits a document to the driver’s Subscriber
channel by queuing the document in the driver
cache. The document is processed after anything
that might be in the cache at the time of the
submission. The submission won't fail if the driver
isn’t running.

Sets Novell Audit log events on the driver. The
integer is the option of the item to log. See Table M-
6 on page 264 for the list of the integers to enter.

Clears all Novell Audit log events that are set on the
driver.

Associates a driver set with the server.
Clears the driver set association from the server.

Shows the version of Identity Manager that is
installed.

Performs an internal initialization of data on a new
Driver object. This is only for testing purposes.

Sets named passwords on the driver object. You
specify the name, the password, and the
description of the named password.

Clears a specified named password.

Starts the specified job.

268 |dentity Manager 3.5 Driver for JDBC: Implementation Guide

Option

Description

-abortjob <job dn>
-getjobrunningstate <job dn>
-getjobenabledstate <job dn>
-getjobnextruntime <job dn>
-updatejob <job dn>

-clearallnamedpaswords <driver dn>

Aborts the specified job.

Returns the specified job’s running state.
Returns the specified job’s enabled state.
Returns the specified job’s next run time.
Updates the specified job.

Clears all named passwords set on a specific
driver.

If a command is executed successfully, it returns a zero. If the command returns anything other than
zero, it is an error. For example, 0 means success, and -641 means invalid operation. -641 is an
eDirectory error code. Table M-9 on page 269 contains other values for specific command line

options.

Table M-9 Command Line Option Values

Command Line Option

Values

-getstate

-getstartoption

-getcachelimit

-getjobrunningstate

-getjobenabledstate

0- stopped

1- starting

2- running

3- shutting down

11- get schema

Anything else that is returned is an error.
0- disabled

1- manual

2- auto

Anything else that is returned is an error.
0- unlimited

Anything else that is returned is an error.
0- stopped

1- running

Anything else that is returned is an error.
0- disabled

1- enabled

2- configuration error

Anything else that is returned is an error.

The DirXML Command Line Utility

269

Command Line Option Values

-getjobnextruntime Returns the next scheduled time for the job in

eDirectory time format (number of seconds since
00:00:00 Jan 1, 1970 UTC).

270 Identity Manager 3.5 Driver for JDBC: Implementation Guide

Properties of the JDBC Driver

This section is a reference for all fields on the driver’s property pages as displayed in iManager and
Designer. Sometimes fields display differently in iManager than in Designer.

The information is presented from the viewpoint of iManager. If a field is different in Designer for
Identity Manager, it is marked with a Designer ©<! icon.

¢ Section N.1, “Driver Configuration,” on page 271

¢ Section N.2, “Global Configuration Values,” on page 276

¢ Section N.3, “Named Passwords,” on page 277

¢ Section N.4, “Engine Control Values,” on page 278

¢ Section N.5, “Log Level,” on page 280

¢ Section N.6, “Driver Image,” on page 281

¢ Section N.7, “Security Equals,” on page 281

¢ Section N.8§, “Filter,” on page 282

¢ Section N.9, “Edit Filter XML,” on page 282

¢ Section N.10, “Misc,” on page 282

¢ Section N.11, “Excluded Users,” on page 283

¢ Section N.12, “Driver Manifest,” on page 283

¢ Section N.13, “Inspector,” on page 284

¢ Section N.14, “Server Variables,” on page 284

N.1 Driver Configuration

In iManager:

1 Click Identity Manager > Identity Manager Overview, then click Search to search for the
driver set that is associated with the driver.
2 Browse to the driver, then click the upper right corner of the driver icon.

3 Click Edit Properties > Driver Configuration.

In Designer:

N

Open a project in the Modeler, then right-click the driver line.

N

Click Properties > Driver Configuration.

*

Section N.1.1, “Driver Module,” on page 272

*

Section N.1.2, “Driver Object Password,” on page 272

*

Section N.1.3, “Authentication,” on page 273

*

Section N.1.4, “Startup Option,” on page 274

*

Section N.1.5, “Driver Parameters,” on page 275

Properties of the JDBC Driver

271

N.1.1 Driver Module

The driver module changes the driver from running locally to running remotely or the reverse.
In iManager:

1 Click Identity Manager > Identity Manager Overview, then click Search to search for the
driver set that is associated with the driver.
2 Browse to the driver, then click the upper right corner of the driver icon.

3 Click Edit Properties > Driver Configuration > Driver Module.
In Designer:

1 Open a project in the Modeler.
2 Right-click the driver line, then select Properties > Driver Configuration.
3 Select the Driver Module tab.

Option Description

Java Used to specify the name of the Java class that
is instantiated for the shim component of the
driver. This class can be located in the classes
directory as a class file, or in the 1ib directory as
a .jar file. If this option is selected, the driver is
running locally.

Native Used to specify the name of the .d11 file that is
instantiated for the application shim component
of the driver. If this option is selected, the driver
is running locally.

Connect to Remote Loader Used when the driver is connecting remotely to
the connected system.

Remote Loader Client Configuration for Includes information on the Remote Loader
Documentation client configuration when Designer generates
documentation on the driver.

N.1.2 Driver Object Password

In iManager:

1 Click Identity Manager > Identity Manager Overview, then click Search to search for the
driver set that is associated with the driver.
2 Browse to the driver, then click the upper right corner of the driver icon.

3 Click Edit Properties > Driver Configuration > Driver Object Password > Set Password.
In Designer:

1 Open a project in the Modeler.
2 Right-click the driver line, then click Properties > Driver Configuration.

3 Click Driver Module > Connect to Remote Loader > Set Password.

272 |dentity Manager 3.5 Driver for JDBC: Implementation Guide

Option Description

Driver Object Password Use this option to set a password for the driver
object. If you are using the Remote Loader, you
must enter a password on this page. Otherwise,
the remote driver does not run. The Remote
Loader uses this password to authenticate itself
to the remote driver shim.

N.1.3 Authentication

The authentication section stores the information required to authenticate to the connected system.
In iManager:

1 Click Identity Manager > Identity Manager Overview, then click Search to search for the
driver set that is associated with the driver.

2 Browse to the driver, then click the upper right corner of the driver icon.

3 Click Edit Properties > Driver Configuration > Authentication.
In Designer:

1 Open a project in the Modeler.
2 Right-click the driver line, then select Properties > Driver Configuration.

3 Click Authentication.

Option Description

Authentication information for Displays or specifies the IP address or server name that the driver is
server associated with

Authentication DN Specifies the DN of the account that the driver will use for

authentication.
or

Example: Administrator
Authentication ID

Authentication Context Specify the IP address or name of the server the application shim
should communicate with.
or

Connection Information

Properties of the JDBC Driver 273

Option Description

Remote Loader Connection Used only if the driver is connecting to the application through the

Parameters Remote Loader. The parameter to enter is
hostname=xxx.xXxXx.XXX.XXX POrt=xxXXX
or kmo=certificatename, when the host name is the IP address of
Host name the application server running the Remote Loader server and the
port is the port the Remote Loader is listening on. The default port
Port for the Remote Loader is 8090.
KMO The kmo entry is optional. It is used only when an SSL connection
exists between the Remote Loader and the Metadirectory engine.
Other parameters
Example: hostname=10.0.0.1 port=8090
kmo=IDMCertificate
Driver Cache Limit Specify the maximum event cache file size (in KB). If it is set to zero,
(kilobytes) the file size is unlimited.
or Click Unlimited to set the file size to unlimited in Designer.
Cache limit (KB)
Application Password Specify the password for the user object listed in the Authentication
ID field.
or

Set Password

Remote Loader Password Used only if the driver is connecting to the application through the
Remote Loader. The password is used to control access to the

or Remote Loader instance. It must be the same password specified

during the configuration of the Remote Loader on the connected

Set Password
system.

N.1.4 Startup Option

The Startup Option allows you to set the driver state when the Identity Manager server is started.
In iManager:

1 Click Identity Manager > Identity Manager Overview, then click Search to search for the
driver set that is associated with the driver.
2 Browse to the driver, then click the upper right corner of the driver icon.

3 Click Edit Properties > Driver Configuration > Startup Option.
In Designer:

1 Open a project in the Modeler.
2 Right-click the driver line, then select Properties > Driver Configuration.
3 Click Startup Option.

Option Description

Auto start The driver starts every time the Identity Manager server is started.

274 |dentity Manager 3.5 Driver for JDBC: Implementation Guide

Option Description

Manual The driver does not start when the Identity Manager server is started. The
driver must be started through Designer or iManager.

Disabled The driver has a cache file that stores all of the events. When the driver is
set to Disabled, this file is deleted and no new events are stored in the file
until the driver state is changed to Manual or Auto Start.

Do not automatically This option applies only if the driver is deployed and was previously
synchronize the driver disabled. If this is not selected, the driver re-synchronizes the next time it is
started.

N.1.5 Driver Parameters

In iManager:
1 Click Identity Manager > Identity Manager Overview, then click Search to search for the
driver set that is associated with the driver.
2 Browse to the driver, then click the upper right corner of the driver icon.

3 Click Edit Properties > Driver Configuration > Driver Parameters.
In Designer:

1 Open a project in the Modeler.
2 Right-click the driver line, then select Properties > Driver Configuration.

3 Click Driver Parameters.

Parameter Description

Driver parameters for server Species of displays the name or IP address of the server that the
driver is associated with.

Edit XML Opens an editor so that you can edit the configuration file.
Driver Options

Third-party JDBC driver class Verify that the version of the jar or zip file that contains this

name class is compatible with the target database.

Show database scoping Controls how much of the database is visible to the JDBC driver.
parameters

Table/view names The names of the tables or views to synchronize. For details,

click the information icon.

Time syntax Returns time-related data types as integers, canonical strings, or
Java strings. For details, click the information icon.

State directory The path of the folder where you want the JDBC driver to store
state information. Changing the value while using triggerless
publication can force all objects to be resynchronized.

Show connectivity parameters? Hides or displays connectivity-related parameters.

Show compatibility parameters? Hides or displays parameters that can enhance compatibility with
third-party JDBC databases.

Properties of the JDBC Driver 275

Parameter

Description

Subscriber Options

Disable subscriber?

Show primary key parameters?

Disable statement-level locking?

Check update counts?

Publisher Options

Disable publisher?

Publication mode

Event log table name

Delete processed rows?

Optimize updates?

Allow loopback?

Disable statement-level locking?

Enable future event processing?

Show polling-related
parameters?

Heartbeat interval (in minutes)

Specifies whether the driver ignores events that flow from Identity
Manager to the database.

Hides or displays parameters that control how and when primary
key values are generated.

Specifies whether database resources are locked on a channel.

Specifies whether the Subscriber channel checks to see if rows
were updated after insert, update, or delete statements were
executed against a table.

Specifies whether the Publisher channel ignores events that flow
from the database to the Identity Vault.

Specifies whether the driver uses triggered or triggerless
publication.

Names the table where publication events are stored.

Specifies whether processed rows are deleted from the event log
table. Performance decreases when processed rows remain in
the table.

Specifies whether the Publisher channel optimizes update events
before sending them to the engine. To optimize all update events,
select Yes.

Specifies whether events that the Subscriber channel initiates
loopback on the Publisher channel.

Specifies whether database resources are locked on this
channel.

Specifies whether events in the event log table are processed
according to their effective date or order of insertion, or whether
the database local time is published with each event.

Specifies whether to show parameters that control polling
behavior.

Specifies the number of minutes that the Publisher channel waits
between events before sending a heartbeat document.

N.2 Global Configuration Values

Global configuration values (GCVs) enable you to specify settings for the Identity Manager features
such as password synchronization and driver heartbeat, as well as settings that are specific to the
function of an individual driver configuration. Some GCVs are provided with the drivers, but you

can also add your own.

IMPORTANT: Password synchronization settings are GCVs, but it’s best to edit them in the
graphical interface provided on the Server Variables page for the driver, instead of the GCV page.
The Server Variables page that shows Password Synchronization settings is accessible as a tab as

276 |dentity Manager 3.5 Driver for JDBC: Implementation Guide

with other driver parameters, or by clicking Password Management > Password Synchronization,
searching for the driver, and clicking the driver name. The page contains online help for each
Password Synchronization setting.

In iManager:

1 Click Identity Manager > Identity Manager Overview, then click Search to search for the
driver set that is associated with the driver.

2 Browse to the driver, then click the upper right corner of the driver icon.
3 Click Edit Properties > Global Config Values.

In Designer:

1 Open a project in the Modeler.
2 Right-click the driver line, then select Properties > Global Configuration Values.

Table N-1 Global Configuration Values > Password Configuration

Option Description

Application accepts If True, allows passwords to flow from the Identity Manager data store to the
passwords from Identity connected system.

Manager

Identity Manager accepts If True, allows passwords to flow from the connected system to Identity

passwords from Manager.

application

Publish passwords to NDS Use the password from the connected system to set the non-reversible
password NDS® password in eDirectory.

Publish passwords to Use the password from the connected system to set the NMAS™
Distribution Password Distribution Password used for Identity Manager password synchronization.

Require password policy If True, applies NMAS password policies during publish password

validation before operations. The password is not written to the data store if it does not
publishing passwords comply.

Reset user’s external If True, on a publish Distribution Password failure, attempt to reset the
system password to the password in the connected system by using the Distribution Password from
Identity Manager the Identity Manager data store.

password on failure

Notify the user of If True, notify the user by e-mail of any password synchronization failures.
password synchronization
failure via e-mail

Connected System or The name of the connected system, application, or Identity Manager driver.
Driver Name The e-mail notification templates use this value.

N.3 Named Passwords

Identity Manager enables you to store multiple passwords securely for a particular driver. This
functionality is referred to as Named Passwords. Each different password is accessed by a key, or
name.

Properties of the JDBC Driver

277

You can also use the Named Passwords feature to store other pieces of information securely, such as
a user name. To configured Named Passwords, see Section 8.7, “Storing Driver Passwords Securely
with Named Passwords,” on page 114.

In iManager:

1 Click Identity Manager > Identity Manager Overview, then click Search to search for the
driver set that is associated with the driver.
2 Browse to the driver, then click the upper right corner of the driver icon.

3 Click Edit Properties > Named Passwords.
In Designer:

1 Open a project in the Modeler.

2 Right-click the driver line, then select Properties > Named Passwords.

N.4 Engine Control Values

The engine control values are a means through which certain default behaviors of the Metadirectory
engine can be changed. The values can only be accessed if a server is associated with the Driver Set
object.

In iManager:

1 Click Identity Manager > Identity Manager Overview, then click Search to search for the
driver set that is associated with the driver.
2 Browse to the driver, then click the upper right corner of the driver icon.

3 Click Edit Properties > Engine Control Values.
In Designer:

1 In the Modeler, right-click a driver line.
2 Select Properties > Engine Control Values.

3 Click the tooltip icon to the right of the Engine Controls for Server field. If a server is
associated with the Identity Vault, the Engine Control Values display in the large pane.

Table N-2 Engine Control Values

Option Description
Subscriber channel retry The Subscriber channel retry interval controls how frequently the
interval in seconds Metadirectory engine retries the processing of a cached transaction after

the application shim's Subscriber object returns a retry status.

Qualified form for DN-syntax The qualified specification for DN-syntax attribute values controls whether

attribute values values for DN-syntax attribute values are presented in unqualified slash
form or qualified slash form. A True setting means the values are
presented in qualified form.

278 |dentity Manager 3.5 Driver for JDBC: Implementation Guide

Option

Description

Qualified form from rename
events

Maximum eDirectory
replication wait time in
seconds

Use non-compliant
backwards-compatible mode
for XSLT

Maximum application
objects to migrate at once

Set creatorsName on
objects created in Identity
Vault

Write pending associations

The qualified form for rename events controls whether the new-name
portion of rename events coming from the Identity Vault are presented to
the Subscriber channel with type qualifiers. For example, CN=. A True
setting means the names are presented in qualified form.

This setting controls the maximum time that the Metadirectory engine
waits for a particular change to replicate between the local replica and a
remote replica. This only affects operations where the Metadirectory
engine is required to contact a remote eDirectory server in the same tree
to perform an operation and might need to wait until some change has
replicated to or from the remote server before the operation can be
completed (for example, object moves when the Identity Manager server
does not hold the master replica of the moved object; file system rights
operations for Users created from a template.)

This control sets the XSLT processor used by the Metadirectory engine to
a backwards-compatible mode. The backward-compatible mode causes
the XSLT processor to use one or more behaviors that are not XPath 1.0
and XSLT 1.0 standards-compliant. This is done in the interest of
backward compatibility with existing DirXmML® style sheets that depend on
the non-standard behaviors.

For example, the behavior of the XPath “I=" operator when one operand is
a node-set and the other operand is other than a node-set is incorrect in
DirXML releases up to and including Identity Manager 2.0. This behavior
has been corrected; however, the corrected behavior is disabled by default
through this control in favor of backward compatibility with existing DirXML
style sheets.

This control is used to limit the number of application objects that the
Metadirectory engine requests from an application during a single query
that is performed as part of a Migrate Objects from Application operation.

If java.lang.OutOfMemoryError errors are encountered during a Migrate
from Application operation, this number should be set lower than the
default. The default is 50.

NOTE: This control does not limit the number of application objects that
can be migrated; it merely limits the batch size.

This control is used by the Identity Manager engine to determine if the
creatorsName attribute should be set to the DN of this driver on all objects
created in the Identity Vault by this driver.

Setting the creatorsName attribute allows for easily identifying objects
created by this driver, but also carries a performance penalty. If not set, the
creatorsName attribute defaults to the DN of the NCP™ Server object that
is hosting the driver.

This control determines whether the Identity Manager engine writes a
pending association on an object during Subscriber channel processing.

Writing a pending association confers little or no benefit but does incur a
performance penalty. Nevertheless, the option exists to turn it on for
backward compatibility.

Properties of the JDBC Driver

279

Option Description

Use password event values This control determines the source of the value reported for the
nspmDistributionPassword attribute for Subscriber channel Add and
Modify events.

Setting the control to False means that the current value of the
nspmDistributionPassword is obtained and reported as the value of the
attribute event. This means that only the current password value is
available. This is the default behavior.

Setting the control to True means that the value recorded with the
eDirectory event is decrypted and is reported as the value of the attribute
event. This means that both the old password value (if it exists) and the
replacement password value at the time of the event are available. This is
useful for synchronizing passwords to certain applications that require the
old password to enable setting a new password.

Enable password This control determines whether the Identity Manager engine reports the
synchronization status status of Subscriber channel password change events.
reporting

Reporting the status of Subscriber channel password change events
allows applications such as the Identity Manager User Application to
monitor the synchronization progress of a password change that should
be synchronized to the connected application.

N.5 Log Level

Each driver set and each driver has a log level field where you can define the level of errors that
should be tracked. The level you indicate here determines which messages are available to the logs.
By default, the log level is set to track error messages. (This also includes fatal messages.) To track
additional message types, change the log level.

Novell® recommends that you use Novell Audit instead of setting the log levels. See Identity
Manager 3.5 Logging and ReportingNovell Identity Manager 3.5 Administration Guide.

In iManager:

1 Click Identity Manager > Identity Manager Overview, then click Search to search for the
driver set that is associated with the driver.

2 Browse to the driver, then click the upper right corner of the driver icon.

3 Click Edit Properties > Log Level.
In Designer:

1 Open a project in the Modeler.
2 Right-click the driver line, then select Properties > Driver Log Level.

Option Description

Use log settings from the DriverSet If this is selected, the driver logs events as the options
are set on the Driver Set object.

Log errors Logs just errors

Log errors and warnings Logs errors and warnings

280 Identity Manager 3.5 Driver for JDBC: Implementation Guide

Option Description

Log specific events Logs the events that are selected. Click the & icon to
see a list of the events.

Only update the last log time Updates the last log time.

Logging off Turns logging off for the driver.

Turn off logging to DriverSet, Subscriber If selected, turns all logging off for this driver on the

and Publisher logs Driver Set object, Subscriber channel, and the Publisher
channel.

Maximum number of entries in the log Number of entries in the log. The default value is 50.
(50-500)

N.6 Driver Image

Allows you to change the image associated with the driver. You can browse and select a different
image from the default image.

The image associated with a driver is used by the Identity Manager Overview plug-in when showing
the graphical representation of your Identity Manager configuration. Although storing an image is
optional, it makes the overview display more intuitive.

NOTE: The driver image is maintained when a driver configuration is exported.

In iManager:

1 Click Identity Manager > Identity Manager Overview, then click Search to search for the
driver set that is associated with the driver.
2 Browse to the driver, then click the upper right corner of the driver icon.

3 Click Edit Properties > Driver Image.
In Designer:

1 Open a project in the Modeler.

2 Right-click the driver line, then select Properties > iManager Icon.

N.7 Security Equals

Use the Security page to view or change the list of objects that the driver is explicitly security
equivalent to. This object effectively has all rights of the listed objects.

If you add or delete an object in the list, the system automatically adds or deletes this object in that
object's “Security Equal to Me” property. You don't need to add the [Public] trustee or the parent
containers of this object to the list, because this object is already implicitly security equivalent to
them.

In iManager:

1 Click Identity Manager > Identity Manager Overview, then click Search to search for the
driver set that is associated with the driver.

2 Browse to the driver, then click the upper right corner of the driver icon.

Properties of the JDBC Driver

281

3 Click Edit Properties > Security Equals.

Designer does not list the users the driver is security equals to.

N.8 Filter

Launches the Filter editor. You can edit the Filter from this tab.
In iManager:

1 Click Identity Manager > Identity Manager Overview, then click Search to search for the
driver set that is associated with the driver.
2 Browse to the driver, then click the upper right corner of the driver icon.

3 Click Edit Properties > Filter.
In Designer:

1 In an open project, click the Outline tab (Outline view).
2 Select the driver you want to manage the filter for, then click the plus sign to the left.

3 Double-click the Filter icon to launch the Filter Editor.

N.9 Edit Filter XML

Allows you to edit the filter directly in XML instead of using the Filter Editor.
In iManager:
1 Click Identity Manager > Identity Manager Overview, then click Search to search for the
driver set that is associated with the driver.

2 Browse to the driver, then click the upper right corner of the driver icon.
3 Click Edit Properties > Filter.

In Designer:

1 In an open project, click the Outline tab (Outline view).
2 Select the driver you want to manage the filter for, then click the plus sign to the left.

3 Double-click the Filter icon to launch the Filter Editor, then click XML Source at the bottom of
the Filter Editor.

N.10 Misc

Allows you to add a trace level to your driver. With the trace level set, DSTrace displays the Identity
Manager events as the Metadirectory engine processes the events. The trace level affects only the
driver it is set for. Use the trace level for troubleshooting issues with the driver when the driver is
deployed. DSTrace displays the output of the specified trace level.

In iManager:

1 Click Identity Manager > Identity Manager Overview, then click Search to search for the
driver set that is associated with the driver.

2 Browse to the driver, then click the upper right corner of the driver icon.

282 |dentity Manager 3.5 Driver for JDBC: Implementation Guide

3 Click Edit Properties > Misc.
In Designer:

1 Open a project in the Modeler.

2 Right-click the driver line, then select Properties > Trace.

Option Description

Trace level Increases the amount of information displayed in DSTrace. Trace
level 1 shows errors, but not the cause of the errors. If you want to
see password synchronization information, set the trace level to 5.

Trace file When a value is set in this field, all Java information for the driver is
written to the file. The value for this field is the path for that file.

As long as the file is specified, Java information is written to this file. If
you do not need to debug Java, leave this field blank.

Trace file size limit Allows you to set a limit for the Java trace file. If you set the file size
to Unlimited, the file grows in size until there is no disk space left.

Trace name Driver trace messages are prepended with the value entered in this
field.

Use setting from Driver ~ This option is only available in Designer. It allows the driver to use the
Set same setting that is set on the Driver Set object.

N.11 Excluded Users

Use this page to create a list of users or resources that are not replicated to the application. Novell
recommends that you add all objects that represent an administrative role to this list (for example,
the Admin object).

In iManager:

1 Click Identity Manager > Identity Manager Overview, then click Search to search for the
driver set that is associated with the driver.

2 Browse to the driver, then click the upper right corner of the driver icon.
3 Click Edit Properties > Excluded Users.

Designer does not list the excluded users.

N.12 Driver Manifest

The driver manifest is like a resumé for the driver. It states what the driver supports, and includes a
few configuration settings. The driver manifest is created by default when the Driver object is
imported. A network administrator usually does not need to edit the driver manifest.

In iManager:

1 Click Identity Manager > Identity Manager Overview, then click Search to search for the
driver set that is associated with the driver.

2 Browse to the driver, then click the upper right corner of the driver icon.

Properties of the JDBC Driver

283

3 Click Edit Properties > Driver Manifest.
In Designer:

1 Open a project in the Modeler.
2 Right-click the driver line, then select Properties > Driver Manifest.

N.13 Inspector

The Inspector displays information about the connected system without directly accessing the
system. Designer does not have this option.

N.14 Server Variables

This page lets you enable and disable Password Synchronization and the associated options for the
selected driver.

When setting up Password Synchronization, consider both the settings on this page for an individual
driver and the Universal Password Configuration options in your password policies.

This page lets you control which password Identity Manager updates directly, either the Universal
Password for an Identity Vault, or the Distribution Password used for password synchronization by
Identity Manager.

However, Novell Modular Authentication Service (NMAS) controls whether the various passwords
inside the Identity Vault are synchronized with each other. Password Policies are enforced by
NMAS, and they include settings for synchronizing Universal Password, NDS Password,
Distribution Password, and Simple Password.

To change these settings in iManager:

1 In iManager, select Passwords > Password Policies.
2 Select a password policy, then click Edit.
3 Select Universal Password.

This option is available from a drop-down list or a tab, depending on your version of iManager
and your browser.

4 Select Configuration Options, make changes, then click OK.

NOTE: Enabling or disabling options on this page corresponds to values of True or False for
certain global configuration values (GCVs) used for password synchronization in the driver
parameters. Novell recommends that you edit them here in the graphical interface, instead of on
the GCVs page. This interface helps ensure that you don't set conflicting values for the
password synchronization GCVs.

284 |dentity Manager 3.5 Driver for JDBC: Implementation Guide

Option

Description

Identity Manager accepts
password (Publisher
Channel)

Use Distribution Password
for password
synchronization

Accept password only if it
complies with user’s
Password Policy

If this option is enabled, Identity Manager allows passwords to flow
from the connected system driver into the Identity Vault data store.

Disabling this option means that no <password> elements are
allowed to flow to Identity Manager. They are stripped out of the XML
by a password synchronization policy on the Publisher channel.

If this option is enabled, and the option below it for Distribution
Password is disabled, a <password> value coming from the
connected system is written directly to the Universal Password in the
Identity Vault if it is enabled for the user. If the user's password policy
does not enable Universal Password, the password is written to the
NDS Password.

To use this setting, you must have a version of eDirectory that
supports Universal Password, regardless of whether you have
enabled Universal Password in your password policies.

If this option is enabled, a password value coming from the
connected system is written to the Distribution Password. The
Distribution Password is reversible, which means that it can be
retrieved from the Identity Vault data store for password
synchronization. It is used by Identity Manager for bidirectional
password synchronization with connected systems. For Identity
Manager to distribute passwords to connected systems, this option
must be enabled.

NMAS and Password policies control whether the Distribution
Password is synchronized with other passwords in the Identity Vault.
By default, the Distribution Password is the same as the Universal
Password in the Identity Vault.

If the password in the Identity Vault is to be independent of Password
Synchronization, so that Identity Manager is a conduit only for
synchronizing passwords among connected systems, change this
default setting. In the Universal Password Configuration Options in a
Password policy, disable Synchronize Universal Password with
Distribution Password. This use of ldentity Manager Password
Synchronization is also referred to as “tunneling.”

To use this setting, users must have a Password policy assigned that
has Universal Password enabled, and Advanced Password Rules
enabled and configured.

If this option is chosen, Identity Manager does not write a password
from this connected system to the Distribution Password in the
Identity Manager data store or publish it to connected systems unless
the password complies with the user's Password policy.

By using the notification option that is also on this page, you can
inform users when a password is not set because it is not compliant.

Properties of the JDBC Driver

285

Option Description

If password does not This option lets you enforce Password policies on the connected
comply, ignore Password system by replacing a password that does not comply. If you select
Policy on the connected this option, and a user's password on the connected system does not

system by resetting user’s comply with the user's Password policy, Identity Manager resets the
password to the Distribution password on the connected system by using the Distribution
Password Password from the Identity Vault data store.

Keep in mind that if you do not select this option, user passwords can
become out-of-sync on connected systems.

By using the notification option that is also on this page, you can
inform users when a password is not set or reset. Notification is
especially helpful for this option. If the user changes to a password
that is allowed by the connected system but rejected by Identity
Manager because of the Password policy, the user won't know that
the password has been reset until the user receives a notification or
tries to log in to the connected system with the old password.

NOTE: Consider the connected system's password policies when
deciding whether to use this option. Some connected systems might
not allow the reset because they don't allow you to repeat passwords.

Always accept password; If you select this option, Identity Manager does not enforce the user's

ignore Password Policies Password policy for this connected system. Identity Manager writes
the password from this connected system to the Distribution
Password in the Identity Vault data store, and distributes it to other
connected systems, even if the password does not comply with the
user's Password policy.

Application accepts If you select this option, the driver sends passwords from the Identity
passwords (Subscriber Vault data store to this connected system. This also means that if a
Channel) user changes the password on a different connected system that is

publishing passwords to the Distribution Password in the Identity
Vault data store, the password is changed on this connected system.

By default, the Distribution Password is the same as the Universal
Password in the Identity Vault, so changes to the Universal Password
made in the Identity Vault are also sent to the connected system.

If you want the password in the Identity Vault to be independent of
Password Synchronization, so that Identity Manager is a conduit only
for synchronizing passwords among connected systems, you can
change this default setting. In the Universal Password Configuration
Options in a password policy, disable Synchronize Universal
Password with Distribution Password. This use of Password
Synchronization is also referred to as “tunneling.”

Notify the user of password If you select this option, e-mail is sent to the user if a password is not

synchronization failure via- synchronized, set, or reset. The e-mail that is sent to the user is

email based on an e-mail template. This template is provided by the
Password Synchronization application. However, for the template to
work, you must customize it and specify an e-mail server to send the
notification messages.

NOTE: To set up e-mail notification, select Passwords > Edit EMail
Templates.

286 Identity Manager 3.5 Driver for JDBC: Implementation Guide

Documentation Updates

This section contains new or updated information on the Identity Manager Driver for JDBC.

The documentation is provided on the Web in two formats: HTML and PDF. The HTML and PDF
documentation are both kept up-to-date with the documentation changes listed in this section.

If you need to know whether a copy of the PDF documentation you are using is the most recent,
check the date that the PDF file was published. The date is on the title page.

New or updated documentation was published on the following dates:

¢ Section O.1, “April 4, 2007,” on page 287
¢ Section 0.2, “May 11, 2007,” on page 287

0.1 April 4, 2007

Table O-1 Updates as of April 4, 2007

Location Change

Chapter 13, “Embedded Added bolding in example code to illustrate principles. (The production
SQL Statements in XDS process had stripped bolding in the earlier release.)
Events,” on page 157

0.2 May 11, 2007

Table 0-2 Updates as of May 11, 2007

Location Change

Section 15.4.12, “Sybase Updated the link to Sybase Downloads.

Adaptive Server Enterprise])
JConnect JDBC Driver,” on Refreshed figures throughout the guide.

page 208

Documentation Updates 287

	Identity Manager 3.5 Driver for JDBC: Implementation Guide
	1 Introducing the Identity Manager Driver for JDBC 15
	2 Installing the Driver for JDBC 27
	3 Uninstalling the IDM Driver for JDBC 45
	4 Upgrading the JDBC Driver 49
	5 Importing an Example JDBC Configuration File 55
	6 Configuring the JDBC Driver 59
	7 Activating the JDBC Driver 105
	8 Managing the JDBC Driver 107
	9 Synchronizing Objects 123
	10 Schema Mapping 131
	11 Mapping XDS Events to SQL Statements 145
	12 The Event Log Table 147
	13 Embedded SQL Statements in XDS Events 157
	14 Supported Databases 181
	15 Third-Party JDBC Drivers 193
	16 The Association Utility 211
	17 Troubleshooting the JDBC Driver 215
	18 Backing Up the JDBC Driver 223
	A Best Practices 225
	B FAQ 227
	C Supported Data Types 231
	D java.sql.DatabaseMetaData Methods 233
	E JDBC Interface Methods 235
	F Third-Party JDBC Driver Descriptor DTD 241
	G Third-Party JDBC Driver Descriptor Import DTD 243
	H Database Descriptor DTD 245
	I Database Descriptor Import DTD 247
	J Policy Example: Triggerless Future Event Processing 249
	K Setting Up an OCI Client on Linux 251
	L Sybase Chain Modes and the Identity Manager Driver for JDBC 253
	M The DirXML Command Line Utility 257
	N Properties of the JDBC Driver 271
	O Documentation Updates 287

	About This Guide
	1 Introducing the Identity Manager Driver for JDBC
	1.1 What’s New in the Driver for JDBC
	1.2 Driver Concepts
	1.2.1 JDBC
	1.2.2 Identity Manager Driver for JDBC
	1.2.3 Third-Party JDBC Driver
	1.2.4 Identity Vault
	1.2.5 Directory Schema
	1.2.6 Application Schema
	1.2.7 Database Schema
	1.2.8 Synchronization Schema
	1.2.9 Logical Database Class
	1.2.10 XDS

	1.3 Database Concepts
	1.3.1 Structured Query Language
	1.3.2 Data Manipulation Language
	1.3.3 Data Definition Language
	1.3.4 View
	1.3.5 Identity Columns/Sequences
	1.3.6 Transaction
	1.3.7 Stored Procedures or Functions
	1.3.8 Trigger
	1.3.9 Instead-Of-Trigger

	1.4 Driver Features
	1.4.1 Local and Remote Platforms
	1.4.2 Role-Based Entitlements
	1.4.3 Password Synchronization
	1.4.4 Data Synchronization Models
	1.4.5 Triggerless vs. Triggered Publication

	2 Installing the Driver for JDBC
	2.1 Before You Install
	2.1.1 Driver Prerequisites
	2.1.2 Known Issues
	2.1.3 Limitations
	2.1.4 Placing Jar Files

	2.2 Installing on Windows
	2.3 Installing on NetWare
	2.4 Installing on Linux or Solaris
	2.5 Setting Up a Remote Loader
	2.6 Installing and Configuring Database Objects
	2.6.1 SQL Script Conventions
	2.6.2 Installing IBM DB2 Universal Database (UDB)
	2.6.3 Installing Informix Dynamic Server (IDS)
	2.6.4 Installing Microsoft SQL Server
	2.6.5 Installing MySQL
	2.6.6 Installing Oracle
	2.6.7 Installing PostgreSQL
	2.6.8 Installing Sybase Adaptive Server Enterprise (ASE)

	2.7 Test Scripts
	2.8 Troubleshooting

	3 Uninstalling the IDM Driver for JDBC
	3.1 Deleting Identity Manager Driver Objects
	3.2 Running the Product Uninstaller
	3.3 Executing Database Uninstallation Scripts
	3.3.1 IBM DB2 Universal Database (UDB) Uninstallation
	3.3.2 Informix Dynamic Server (IDS) Uninstallation
	3.3.3 Microsoft SQL Server Uninstallation
	3.3.4 MySQL Uninstallation
	3.3.5 Oracle Uninstallation
	3.3.6 PostgreSQL Uninstallation
	3.3.7 Sybase Adaptive Server Enterprise (ASE) Uninstallation

	4 Upgrading the JDBC Driver
	4.1 Upgrading While Installing Identity Manager 3.5
	4.1.1 Backward Incompatibilities

	4.2 Upgrading after Identity Manager Is Installed
	4.2.1 Upgrading the Driver by Using Designer
	4.2.2 Upgrading the Driver by Using iManager

	5 Importing an Example JDBC Configuration File
	5.1 Using Designer to Import
	5.2 Using iManager to Import
	5.3 JDBC Driver Settings

	6 Configuring the JDBC Driver
	6.1 Smart Configuration
	6.2 Configuration Parameters
	6.2.1 Viewing Driver Parameters
	6.2.2 Deprecated Parameters
	6.2.3 Authentication Parameters

	6.3 Driver Parameters
	6.3.1 Uncategorized Parameters
	6.3.2 Database Scoping Parameters
	6.3.3 Connectivity Parameters
	6.3.4 Compatibility Parameters

	6.4 Subscription Parameters
	6.4.1 Uncategorized Parameters
	6.4.2 Primary Key Parameters

	6.5 Publication Parameters
	6.5.1 Uncategorized Parameters
	6.5.2 Triggered Publication Parameters
	6.5.3 Triggerless Publication Parameters
	6.5.4 Polling Parameters

	6.6 Trace Levels
	6.7 Configuring Third-Party JDBC Drivers

	7 Activating the JDBC Driver
	8 Managing the JDBC Driver
	8.1 Starting, Stopping, or Restarting the JDBC Driver
	8.2 Migrating and Resynchronizing Data
	8.3 Using the DirXML Command Line Utility
	8.4 Viewing Driver Versioning Information
	8.4.1 Viewing a Hierarchical Display of Versioning Information
	8.4.2 Viewing the Versioning Information As a Text File
	8.4.3 Saving Versioning Information

	8.5 Reassociating a Driver Set Object with a Server Object
	8.6 Changing the Driver Configuration
	8.7 Storing Driver Passwords Securely with Named Passwords
	8.7.1 Using Designer to Configure Named Passwords
	8.7.2 Using iManager to Configure Named Passwords
	8.7.3 Using Named Passwords in Driver Policies
	8.7.4 Configuring Named Passwords by Using the DirXML Command Line Utility

	8.8 Adding a Driver Heartbeat

	9 Synchronizing Objects
	9.1 What Is Synchronization?
	9.2 When Does Synchronization Occur?
	9.3 How Does the Metadirectory Engine Decide Which Object to Synchronize?
	9.4 How Synchronization Works
	9.4.1 Scenario One
	9.4.2 Scenario Two
	9.4.3 Scenario Three

	10 Schema Mapping
	10.1 High-Level View
	10.2 Logical Database Classes
	10.3 Indirect Synchronization
	10.3.1 Mapping eDirectory Classes to Logical Database Classes
	10.3.2 Parent Tables
	10.3.3 Parent Table Columns
	10.3.4 Child Tables
	10.3.5 Referential Attributes
	10.3.6 Single-Value Referential Attributes
	10.3.7 Multivalue Referential Attributes

	10.4 Direct Synchronization
	10.4.1 View Column Meta-Identifiers
	10.4.2 Primary Key Columns
	10.4.3 Schema Mapping

	10.5 Synchronizing Primary Key Columns
	10.6 Synchronizing Multiple Classes
	10.7 Mapping Multivalue Attributes to Single- Value Database Fields

	11 Mapping XDS Events to SQL Statements
	11.1 Mapping XDS Events for Indirect Synchronization

	12 The Event Log Table
	12.1 Event Log Columns
	12.2 Event Types

	13 Embedded SQL Statements in XDS Events
	13.1 Common Uses of Embedded SQL
	13.2 Embedded SQL Basics
	13.2.1 Elements
	13.2.2 Namespaces
	13.2.3 Embedded SQL Example

	13.3 Token Substitution
	13.4 Virtual Triggers
	13.5 Manual vs. Automatic Transactions
	13.6 Transaction Isolation Level
	13.7 Statement Type
	13.8 SQL Queries
	13.9 Data Definition Language (DDL) Statements
	13.10 Logical Operations
	13.11 Implementing Password Set with Embedded SQL
	13.12 Implementing Modify Password with Embedded SQL
	13.13 Implementing Check Object Password
	13.14 Stored Procedures
	13.14.1 Using Embedded SQL to Call Stored Procedures or Functions
	13.14.2 Using the jdbc:call-procedure Element
	13.14.3 Using the jdbc:call-function Element

	13.15 Best Practices

	14 Supported Databases
	14.1 Database Interoperability
	14.2 Supported Databases
	14.3 Database Characteristics
	14.3.1 Database Features
	14.3.2 Current Time Stamp Statements
	14.3.3 Stored Procedure and Function JDBC Call Syntaxes
	14.3.4 Left Outer Join Operators
	14.3.5 Undelimited Identifier Case Sensitivity
	14.3.6 Supported Transaction Isolation Levels
	14.3.7 Commit Keywords
	14.3.8 IBM DB2 Universal Database (UDB)
	14.3.9 Informix Dynamic Server (IDS)
	14.3.10 Microsoft SQL Server
	14.3.11 MySQL
	14.3.12 Oracle
	14.3.13 PostgreSQL
	14.3.14 Sybase Adaptive Server Enterprise (ASE)

	15 Third-Party JDBC Drivers
	15.1 Third-Party JDBC Driver Interoperability
	15.2 JDBC Driver Types
	15.2.1 Which Type To Use?

	15.3 Third-Party Jar File Placement
	15.3.1 Identity Manager File Paths
	15.3.2 Remote Loader File Paths

	15.4 Supported Third-Party JDBC Drivers
	15.4.1 Third-Party JDBC Driver Features
	15.4.2 JDBC URL Syntaxes
	15.4.3 JDBC Driver Class Names
	15.4.4 BEA Weblogic jDriver for Microsoft SQL Server
	15.4.5 IBM DB2 Universal Database JDBC Drivers
	15.4.6 Informix JDBC Driver
	15.4.7 Microsoft SQL Server 2000 Driver for JDBC
	15.4.8 MySQL Connector/J JDBC Driver
	15.4.9 Oracle Thin Client JDBC Driver
	15.4.10 Oracle OCI JDBC Driver
	15.4.11 PostgreSQL JDBC Driver
	15.4.12 Sybase Adaptive Server Enterprise JConnect JDBC Driver

	15.5 Unsupported Third-Party JDBC Drivers
	15.5.1 IBM Toolbox for Java/JTOpen
	15.5.2 Minimum Third-Party JDBC Driver Requirements
	15.5.3 Considerations When Using Other Third-Party JDBC Drivers

	15.6 Security Issues

	16 The Association Utility
	16.1 Independent Operations
	16.2 Before You Begin
	16.3 Using the Association Utility
	16.4 Editing Associations

	17 Troubleshooting the JDBC Driver
	17.1 Recognizing Publication Events
	17.2 Executing Test Scripts
	17.3 Troubleshooting Driver Processes
	17.3.1 Viewing Driver Processes

	18 Backing Up the JDBC Driver
	18.1 Exporting the Driver in Designer
	18.2 Exporting the Driver in iManager

	A Best Practices
	B FAQ
	B.1 Can’t See Tables or Views
	B.2 Synchronizing with Tables
	B.3 Processing Rows in the Event Log Table
	B.4 Managing Database User Accounts
	B.5 Synchronizing Large Data Types
	B.6 Slow Publication
	B.7 Synchronizing Multiple Classes
	B.8 Encrypted Transport
	B.9 Mapping Multivalue Attributes
	B.10 Synchronizing Garbage Strings
	B.11 Running Multiple Driver for JDBC Instances

	C Supported Data Types
	D java.sql.DatabaseMetaData Methods
	E JDBC Interface Methods
	F Third-Party JDBC Driver Descriptor DTD
	G Third-Party JDBC Driver Descriptor Import DTD
	H Database Descriptor DTD
	I Database Descriptor Import DTD
	J Policy Example: Triggerless Future Event Processing
	K Setting Up an OCI Client on Linux
	K.1 Downloading the Instant Client
	K.2 Setting Up the OCI Client
	K.3 Configuring the OCI Driver

	L Sybase Chain Modes and the Identity Manager Driver for JDBC
	L.1 Error Codes
	L.2 Procedures and Modes
	L.2.1 Using Stored Procedure sp_proxmode
	L.2.2 Chained and Unchained Modes
	L.2.3 Managing Transactions in a Policy
	L.2.4 Useful Links

	M The DirXML Command Line Utility
	M.1 Interactive Mode
	M.2 Command Line Mode

	N Properties of the JDBC Driver
	N.1 Driver Configuration
	N.1.1 Driver Module
	N.1.2 Driver Object Password
	N.1.3 Authentication
	N.1.4 Startup Option
	N.1.5 Driver Parameters

	N.2 Global Configuration Values
	N.3 Named Passwords
	N.4 Engine Control Values
	N.5 Log Level
	N.6 Driver Image
	N.7 Security Equals
	N.8 Filter
	N.9 Edit Filter XML
	N.10 Misc
	N.11 Excluded Users
	N.12 Driver Manifest
	N.13 Inspector
	N.14 Server Variables

	O Documentation Updates
	O.1 April 4, 2007
	O.2 May 11, 2007

