AUTHORIZED DOCUMENTATION

Driver for JDBC' Implementation Guide

Novell
Identity Manager

3.6.1
February 18, 2010

www.novell.com

Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc. reserves the right to revise this publication and to make changes to its content, at any time,
without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims
any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to
notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the
trade laws of other countries. You agree to comply with all export control regulations and to obtain any required
licenses or classification to export, re-export or import deliverables. You agree not to export or re-export to entities on
the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export laws.
You agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses. For more
information on exporting Novell software, see the Novell International Trade Services Web page (http://
www.novell.com/info/exports/). Novell assumes no responsibility for your failure to obtain any necessary export
approvals.

Copyright © 2008-2010 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied,
stored on a retrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc.

404 Wyman Street, Suite 500
Waltham, MA 02451

US.A

www.novell.com

Online Documentation: To access the online documentation for this and other Novell products, and to get
updates, see Novell Documentation (http://www.novell.com/documentation/).

http://www.novell.com/info/exports/
http://www.novell.com/documentation/

Novell Trademarks

For a list of Novell trademarks, see Trademarks (http://www.novell.com/company/legal/trademarks/tmlist.html).

Third-Party Materials

All third-party trademarks are the property of their respective owners.

http://www.novell.com/company/legal/trademarks/tmlist.html

4 Identity Manager 3.6.1 Driver for JDBC Implementation Guide

Contents

About This Guide

1 Introducing the Identity Manager Driver for JDBC

1.1

1.2

1.3

2.1
22

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

3.10

Driver Concepts

1.1.1
1.1.2

[N L I QI QY
CoNOO AW

1110

1.2.1
1.2.2
1.23
1.24
1.25
1.2.6
127
1.2.8
1.2.9

1.31
1.3.2
1.3.3
134
1.3.5

Installing the Driver Files
Installing JDBC Driver Jar Files

SQL Script Conventions
Installing IBM DB2 Universal Database (UDB)
Installing Informix Dynamic Server (IDS)
Installing Microsoft SQL Server
Installing MySQL
Installing Oracle

Installing PostgreSQL 7
Installing PostgreSQL 8

Identity Manager JDBC driver
Third-Party JDBC Driver
Identity Vault
Directory Schema
Application Schema.
Database Schema........
Synchronization Schema. L
Logical Database Class.
XD S L
Database Concepts
Structured Query Language
Data Manipulation Language.
Data Definition Language

Identity Columns/Sequences.
Transaction
Stored Procedures or Functions
LI T 1=
Instead-Of-Triggero
Driver Features

Installing the Driver Files

Installing and Configuring Database Objects

Local and Remote Platforms
Entitlements.
Password Synchronization
Data SynchronizationModels
Triggerless vs. Triggered Publication

Installing Sybase Adaptive Server Enterprise (ASE) i

Testing the Database Object Installation

11

13

13
13
14
14
14
14
15
15
15
15
15
15
16
16
16
16
17
17
18
18
19
20
20
21
21
21
24

27

27
27

29

29
31
31
32
32
33
33
34
34
35

Contents 5

6

4 Upgrading an Existing Driver

4.1

4.2
43

Supported Upgrade Paths
What's New in Version 3.6.1
Upgrade Procedureo

5 Importing an Example JDBC Configuration File
5.1 Using Designerto Import
5.2 UsingiManager to Import.
5.3 JUDBC Driver Settingso
6 Configuring the JDBC Driver
6.1 Smart Configuration
6.1.1 Specifying Custom Descriptor Files.
6.1.2 Reserved Filenames for Descriptor Files.
6.1.3 Import Descriptor Files. e
6.1.4 Descriptor File Locations e
6.1.5 Precedence
6.1.6 Custom Descriptor Best Practices.
6.1.7 Descriptor File DTDSo oo e
6.2 Configuration Parameters
6.2.1 Viewing Driver Parameters
6.2.2 Deprecated Parameters.
6.2.3 Authentication Parameters
6.3 Driver Parameters
6.3.1 Uncategorized Parameters e
6.3.2 Database Scoping Parameters i
6.3.3 Connectivity Parameters
6.3.4 Compatibility Parameters.
6.4 Subscription Parameters e
6.4.1 Uncategorized Parameters e
6.4.2 Primary Key Parameters
6.5 Publication Parameters
6.5.1 Uncategorized Parameters e
6.5.2 Triggered Publication Parameters.
6.5.3 Triggerless Publication Parameters.
6.5.4 Polling Parameters
6.6 Trace Levels.
6.7 Configuring Third-Party JDBC Drivers e
6.8 Configuring jTDS Support forthe JDBC Driver
7 Managing the Driver
8 Schema Mapping
8.1 High-Level View
8.2 Logical Database Classest
8.3 Indirect Synchronization.
8.3.1 Mapping eDirectory Classes to Logical Database Classes
8.3.2 Parent Tables
8.3.3 ParentTable Columns.
8.3.4 ChildTables.
8.3.5 Referential Attributes

Identity Manager 3.6.1 Driver for JDBC Implementation Guide

37

37
37
37

39

39
39
40

43

43
43
44
44
44
45
45
45
45
45
46
46
47
49
52
57
59
68
69
71
77
77
80
82
83
86
86
87

89

8.4

8.5
8.6
8.7

8.3.6 Single-Value Referential Attributes
8.3.7 Multivalue Referential Attributes
Direct Synchronization
8.4.1 View Column Meta-Identifiers
84.2 Primary Key Columns
8.4.3 SchemaMapping.t
Synchronizing Primary Key Columns.
Synchronizing Multiple Classes
Mapping Multivalue Attributes to Single-Value Database Fields

9 Mapping XDS Events to SQL Statements

9.1
9.2

Mapping XDS Events for Indirect Synchronization
Mapping XDS Events for Direct Synchronization.

10 The Event Log Table

101

10.2

Event Log Columns
1011 record _id ...
10.1.2 table _Key
10.1.3 status. . ..o
10.1.4 event typeo
10.1.5 event time.
10.1.6 perpetrator.
10.1.7 table_name e
10.1.8 COlUMN_NAME e e e e
10.1.9 old_value
10.1.10 NeW_ValUEo
Event Types . . .o

11 Embedded SQL Statements in XDS Events

11.1
11.2

11.3
11.4
11.5
11.6
11.7
11.8
11.9
11.10
11.11
11.12
11.13
11.14

11.15

Common Uses of Embedded SQL. e
Embedded SQL BaSiCSo
11.21 Elements
11.2.2 NamMESPACES oottt e
11.2.3 Embedded SQL Example e
Token Substitution

Virtual Trggers. . . o o
Manual vs. Automatic Transactions
Transaction Isolation Level
Statement Typeo
SQL QUEIIES . .o o e
Data Definition Language (DDL) Statements. i
Logical Operations
Implementing Password Set with Embedded SQL
Implementing Modify Password with Embedded SQL
Implementing Check Object Password
Calling Stored Procedures and Functions i,

11.14.1 Using Embedded SQL to Call Stored Procedures or Functions
11.14.2 Using the jdbc:call-procedure Element
11.14.3 Using the jdbc:call-functionElement
Best Practices

105

105
106

107

107

107
107
108
108
109
109
109
109
109
110
110

119

120
120

120
120
120
121

124
125
126
126
128
129
129
130
131
131
132

132
133
136
141

Contents 7

8

12 Supported Databases 143

12.1 Database Interoperability 143
12.2 Supported Databases 143
12.3 Database CharacteristiCs. 144
12.3.1 Database Features 145
12.3.2 Current Time Stamp Statements 145

12.3.3 Syntaxes for Calling Stored Procedures and Functions 146
12.3.4 LeftOuterJoin Operators i e 146

12.3.5 Undelimited Identifier Case Sensitivity 147

12.3.6 Supported Transaction Isolation Levels. 147
12.3.7 Commit KeyWordso 148
12.3.8 IBM DB2 Universal Database (UDB). 148
12.3.9 Informix Dynamic Server (IDS) 149
12.3.10 Microsoft SQL Server 150
12.3.11 MySQL. . o 151
12,312 Oracle ... 152
12.3.13 PostgreSQLo 153
12.3.14 Sybase Adaptive Server Enterprise (ASE) 153

13 Third-Party JDBC Drivers 155
13.1 Third-Party JDBC Driver Interoperability 155
13.2 Third-Party JDBC Driver TYpesottt e 155
13.2.1 DIIVEr TYPES . oottt e e e 156
13.2.2 Which Type ToOUSe?o e e 156

13.3 Third-Party Jar File Placement. 156
13.4 Supported Third-Party JDBC Drivers (Recommended) 157
13.4.1 Third-Party JDBC Driver Features. 157
13.4.2 JUDBC URL SYNtaXes oottt ittt e ettt et e e 158
13.4.3 JUDBC Driver Class Namesttt 158
13.4.4 IBM DB2 Universal Database Type 4 JDBC Driver. 159
13.4.5 Informix JDBC DriVer.o 160
13.4.6 JTDS UDBC DFIVEN . . oottt e e e e e 161
13.4.7 MySQL Connector/J JDBC Driver. e 163
13.4.8 Oracle Thin Client JDBC Driver.ot 164
13.4.9 Oracle OCIJUDBC DIIVETottt e e e e e 166
13.4.10 PostgreSQL JDBC Drivert e e 167
13.4.11 Sybase Adaptive Server Enterprise JConnect JDBC Driver 168

13.5 Supported Third-Party JDBC Drivers (Not Recommended). 169
13.5.1 Third-Party JDBC Driver Features. 169
13.5.2 JUDBC URL Syntaxesottt e 169
13.5.3 JDBC Driver Class Namesttt 170
13.5.4 IBM DB2 Universal Database JDBC Driver., 170
13.5.5 Microsoft SQL Server 2000 DriverforJDBC 172
13.5.6 Microsoft SQL Server 2005 JDBC Driver ot 174
13.5.7 Microsoft SQL Server 2008 Driverfor JDBCo 175
13.5.8 Microsoft SQL Server 2008 R2 DriverforJDBC 177

13.6 Deprecated Third-Party JDBC Drivers. e e 179
13.7 Other Third-Party JDBC Drivers. e 179
13.7.1 IBM Toolbox for JavaldJTOpen. e 180
13.7.2 Minimum Third-Party JDBC Driver Requirements. 180
13.7.3 Considerations When Using Other Third-Party JDBC Drivers. 180

13.8 SeCUNty ISSUES. e 181

Identity Manager 3.6.1 Driver for JDBC Implementation Guide

14 The Association Utility 183

14.1 Independent Operations 183
14.2 Before You Begin. 184
14.3 Using the Association Utility. 184
14.4 Parameters for Searchingand Replacing i 185

15 Troubleshooting the JDBC Driver 187
15.1 Recognizing Publication Events. 187
15.2 Executing Test SCHiptSot 187
15.3 Troubleshooting Driver ProCesses.ottt e e e e 187
15.4 Troubleshooting the PostgreSQL Installation. 187

A Uninstalling the Driver 189
A.1 Deleting Identity Manager Driver Objects 189
A.2 Running the Product Uninstaller i, 189
A.3 Executing Database Uninstallation Scripts 189
A.3.1 IBM DB2 Universal Database (UDB) Uninstallation. 190

A.3.2 Informix Dynamic Server (IDS) Uninstallation 190

A.3.3 Microsoft SQL Server Uninstallation 190

A3.4 MySQL Uninstallation 191

A.3.5 Oracle Uninstallation 191

A.3.6 PostgreSQL Uninstallation. 191

A.3.7 Sybase Adaptive Server Enterprise (ASE) Uninstallation 191

B Known Issues and Limitations 193
B.1 KNOWN ISSUES.o 193
B.2 Limitations 193

C Best Practices 195
D FAQ 197
D1 Can'tSee Tables Or VIEWS.ot e 197
D.2 Synchronizing with Tables 197
D.3 Processing Rows inthe EventLog Table 197
D.4 Managing Database User ACCOUNES. et 198
D.5 Synchronizing Large Data Types.o e 198
D.6 Slow Publication. 198
D.7 Synchronizing Multiple Classes i 198
D.8 Encrypted Transport. o 199
D.9 Mapping Multivalue Attributes 199
D.10 Synchronizing Garbage Strings 199
D.11 Running Multiple JDBC Driver Instances 199

Contents 9

10

E Supported Data Types

F java.sql.DatabaseMetaData Methods

G JDBC Interface Methods

H Third-Party JDBC Driver Descriptor DTD

I Third-Party JDBC Driver Descriptor Import DTD

J Database Descriptor DTD

K Database Descriptor Import DTD

L Policy Example: Triggerless Future Event Processing

M Setting Up an OCI Client on Linux

M.1 Downloading the InstantClient
M.2 SettingUpthe OCIClient.
M.3 Configuringthe OCIDriver. i

N Sybase Chain Modes and the Identity Manager JDBC driver

N1 Emor Codes . ..o oo
N.2 Proceduresand Modes i

N.2.1 Using Stored Procedure sp_proxmode
N.2.2 Chained and UnchainedModes
N.2.3 Managing TransactionsinaPolicy
N.2.4 Useful LinKSo e

Identity Manager 3.6.1 Driver for JDBC Implementation Guide

201

203

205

21

213

215

217

219

221

221

221
222

About This Guide

The Identity Manager Driver for Java Database Connectivity (JDBC) provides a generic solution for
synchronizing data between an Identity Vault and relational databases.

This guide provides an overview of the driver’s technology as well as configuration instructions.

¢ Chapter 1, “Introducing the Identity Manager Driver for JDBC,” on page 13

¢ Chapter 2, “Installing the Driver Files,” on page 27

¢ Chapter 3, “Installing and Configuring Database Objects,” on page 29

¢ Chapter 4, “Upgrading an Existing Driver,” on page 37

¢ Chapter 5, “Importing an Example JDBC Configuration File,” on page 39

¢ Chapter 6, “Configuring the JDBC Driver,” on page 43

¢ Chapter 7, “Managing the Driver,” on page 89

¢ Chapter 8, “Schema Mapping,” on page 91

¢ Chapter 9, “Mapping XDS Events to SQL Statements,” on page 105

¢ Chapter 10, “The Event Log Table,” on page 107

¢ Chapter 11, “Embedded SQL Statements in XDS Events,” on page 119

¢ Chapter 12, “Supported Databases,” on page 143

¢ Chapter 13, “Third-Party JDBC Drivers,” on page 155

¢ Chapter 14, “The Association Utility,” on page 183

¢ Chapter 15, “Troubleshooting the JDBC Driver,” on page 187

¢ Appendix A, “Uninstalling the Driver,” on page 189

¢ Appendix B, “Known Issues and Limitations,” on page 193

¢ Appendix C, “Best Practices,” on page 195

¢ Appendix D, “FAQ,” on page 197

¢ Appendix E, “Supported Data Types,” on page 201

+ Appendix F, “java.sql.DatabaseMetaData Methods,” on page 203

¢ Appendix G, “JDBC Interface Methods,” on page 205

¢ Appendix H, “Third-Party JDBC Driver Descriptor DTD,” on page 211

¢ Appendix I, “Third-Party JDBC Driver Descriptor Import DTD,” on page 213
+ Appendix J, “Database Descriptor DTD,” on page 215

¢ Appendix K, “Database Descriptor Import DTD,” on page 217

+ Appendix L, “Policy Example: Triggerless Future Event Processing,” on page 219
¢ Appendix M, “Setting Up an OCI Client on Linux,” on page 221

¢ Appendix N, “Sybase Chain Modes and the Identity Manager JDBC driver,” on page 223

About This Guide

1"

Audience

This guide is for Novell eDirectory and Identity Manager administrators who are using the Identity
Manager Driver for JDBC.

Feedback

We want to hear your comments and suggestions about this manual and the other documentation
included with Novell Identity Manager. Please use the User Comment feature at the bottom of each
page of the online documentation, or go to www.novell.com/documentation/feedback.html and enter
your comments there.

Documentation Updates

For the most recent version of this document, see the Identity Manager 3.6.1 Drivers Documentation
Web site (http://www.novell.com/documentation/idm36drivers/index.html).

Additional Documentation

For documentation on using Identity Manager and the other drivers, see the Identity Manager 3.6.1
Documentation Web site (http://www.novell.com/documentation/idm36drivers/index.html).

12 Identity Manager 3.6.1 Driver for JDBC Implementation Guide

http://www.novell.com/documentation/idm36drivers/index.html
http://www.novell.com/documentation/idm36drivers/index.html
http://www.novell.com/documentation/idm36drivers/index.html
http://www.novell.com/documentation/idm36drivers/index.html

Introducing the Identity Manager
Driver for JDBC

The Identity Manager Driver for Java DataBase Connectivity (JDBC) provides a generic solution
for synchronizing data between Identity Manager and JDBC-accessible relational databases.

The principal value of this driver resides in its generic nature. Unlike most drivers that interface with
a single application, this driver can interface with most relational databases and database-hosted
applications.

¢ Section 1.1, “Driver Concepts,” on page 13

¢ Section 1.2, “Database Concepts,” on page 15

¢ Section 1.3, “Driver Features,” on page 20

1.1 Driver Concepts

+ Section 1.1.1, “JDBC,” on page 13

¢ Section 1.1.2, “Identity Manager JDBC driver,” on page 14
¢ Section 1.1.3, “Third-Party JDBC Driver,” on page 14

¢ Section 1.1.4, “Identity Vault,” on page 14

¢ Section 1.1.5, “Directory Schema,” on page 14

¢ Section 1.1.6, “Application Schema,” on page 15

¢ Section 1.1.7, “Database Schema,” on page 15

¢ Section 1.1.8, “Synchronization Schema,” on page 15

¢ Section 1.1.9, “Logical Database Class,” on page 15

¢ Section 1.1.10, “XDS,” on page 15

1.1.1 JDBC

Java DataBase Connectivity (JDBC) is a cross-platform database interface standard that Sun*
Microsystems* developed.

Most enterprise database vendors provide a unique implementation of the JDBC interface. Three
versions of the JDBC interface are available:

+ JDBC 1 (Java 1.0)
¢+ JDBC 2 (Java 1.2 or 1.3)
¢ JDBC 3 (Java 1.4 or 1.5)

The JDBC driver primarily uses the JDBC 1 interface. It uses a small subset of JDBC 2 or JDBC 3
methods when supported by third-party JDBC drivers.

Introducing the Identity Manager Driver for JDBC

13

14

1.1.2 Identity Manager JDBC driver

The Identity Manager JDBC driver uses the JDBC interface to synchronize data and identities
between an Identity Vault and relational databases.

The driver consists of four jar files:

¢ JDBCShim.jar
¢ JDBCUtil.jar
¢ JDBCConfig.jar

¢ CommonDriverShim.jar

In addition to these files, you need a third-party JDBC driver to communicate with each individual
database.

1.1.3 Third-Party JDBC Driver

A third-party JDBC driver is one of the numerous JDBC interface implementations that the Identity
Manager JDBC driver uses to communicate with a particular database.

For example, classesl12.zip is one of the Oracle* JDBC drivers. Different third-party JDBC
drivers implement different portions of the JDBC interface specification and implement the
interface in a relatively consistent manner.

The following illustration indicates the relationship between the Identity Manager JDBC driver and
third-party JDBC drivers.

Figure 1-1 Identity Manager JDBC Driver vs. Third-Party JDBC Drivers

SYBASE

SELECT
MSSQL
INSERT) ORACLE
IDM JDBC DRIVER I lol: o LTS/ 1 ird-Party MysaL
JDBC Driver
UPDATE DB2
POSTGRES
DELETE -

|

»

Database

1.1.4 Identity Vault

An Identity Vault is the data store that Identity Manager uses.

1.1.5 Directory Schema

The directory schema is the set of object classes and attributes in the directory.

For example, the eDirectory User class and Given Name attribute are part of the eDirectory schema.

Identity Manager 3.6.1 Driver for JDBC Implementation Guide

1.1.6 Application Schema

The application schema is the set of classes and attributes in an application.

Because databases have no concept of classes or attributes, the JDBC driver maps eDirectory classes
to tables or views, and maps eDirectory attributes to columns.

1.1.7 Database Schema

Database schema is essentially synonymous with ownership. A database schema consists of
database objects (for example, tables, views, triggers, stored procedures, and functions) that a
database user owns.

With the JDBC driver, schema is useful to scope the database (reduce the number of database
objects visible to the driver at runtime).

Ownership is often expressed by using a qualified dot notation (for example, indirect.usr, where
indirect is the name of the database user that owns the table usr). All of the database objects
owned by indirect constitute the indirect database schema.

1.1.8 Synchronization Schema

The synchronization schema is the database schema visible to the driver at runtime.

1.1.9 Logical Database Class

The logical database class is the set of tables or view used to represent an eDirectory class in a
database.

1.1.10 XDS

XDS format is the defined Novell subset of possible XML formats that Identity Manager can use.

XDS is the initial format for data coming from the Identity Vault. By modifying default rules and
changing the style sheets, you can configure the JDBC driver to work with any XML format.

1.2 Database Concepts

¢ Section 1.2.1, “Structured Query Language,” on page 16

¢ Section 1.2.2, “Data Manipulation Language,” on page 16

¢ Section 1.2.3, “Data Definition Language,” on page 16

¢ Section 1.2.4, “View,” on page 16

¢ Section 1.2.5, “Identity Columns/Sequences,” on page 17

¢ Section 1.2.6, “Transaction,” on page 17

¢ Section 1.2.7, “Stored Procedures or Functions,” on page 18
¢ Section 1.2.8, “Trigger,” on page 18

¢ Section 1.2.9, “Instead-Of-Trigger,” on page 19

Introducing the Identity Manager Driver for JDBC

15

16

1.2.1 Structured Query Language

Structured Query Language (SQL) is the language used to query and manipulate data in relational
databases.

1.2.2 Data Manipulation Language

Data Manipulation Language (DML) statements are highly standardized SQL statements that
manipulate database data.

DML statements are essentially the same, regardless of the database that you use. The JDBC driver
is DML-based. It maps Identity Manager events expressed as XDS XML to standardized DML
statements.

The following example shows several DML statements:

SELECT * FROM usr;
INSERT INTO usr (lname) VALUES ('Doe');
UPDATE usr SET fname = 'John' WHERE idu = 1;

1.2.3 Data Definition Language

Data Definition Language (DDL) statements manipulate database objects such as tables, indexes,
and user accounts.

DDL statements are proprietary and differ substantially between databases. Even though the JDBC
driver is DML-based, you can embed DDL statements in XDS events. For additional information,
refer to Chapter 11, “Embedded SQL Statements in XDS Events,” on page 119,

The following examples show several DDL statements:

CREATE TABLE usr

(
idu INTEGER,
fname VARCHAR2 (64),
lname VARCHAR2 (64)

)}

CREATE USER idm IDENTIFIED BY novell;

NOTE: Examples used throughout this guide are for the Oracle database.

1.2.4 View

A view is a logical table.

When queried by using a SELECT statement, the view is created by executing the SQL query
supplied when the view was defined. Views are a useful abstraction mechanism for representing
multiple tables of arbitrary structure as a single table or logical database class.

Identity Manager 3.6.1 Driver for JDBC Implementation Guide

CREATE VIEW view usr

(
pk_idu,
fname,
lname

)
AS
SELECT idu, fname, lname from usr;

1.2.5 Identity Columns/Sequences

Identity columns and sequences are used to generate unique primary key values. Identity Manager
can associate with these values, among other things.

An identity column is a self-incrementing column used to uniquely identify a row in a table. Identity
column values are automatically filled in when a row is inserted into a table.

A sequence object is a counter that can be used to uniquely identify a row in a table. Unlike an
identity column, a sequence object is not bound to a single table. However, if it is used by a single
table, a sequence object can be used to achieve an equivalent result.

The following is an example of a sequence object:

CREATE SEQUENCE seq_idu
START WITH 1
INCREMENT BY 1
NOMINVALUE
NOMAXVALUE
ORDER;

1.2.6 Transaction

A transaction is an atomic database operation that consists of one or more statements.

When a transaction is complete, all statements in the transaction are committed. When a transaction
is interrupted or one of the statements in the transaction has an error, the transaction is said to roll
back. When a transaction is rolled back, the database is left in the same state it was before the
transaction began.

Transactions are either manual (user-defined) or automatic. Manual transactions can consist of one
or more statements and must be explicitly committed. Automatic transactions consist of a single
statement and are implicitly committed after each statement is executed.

¢ “Manual (User-Defined) Transactions” on page 17
+ “Automatic Transactions” on page 18
Manual (User-Defined) Transactions

Manual transactions usually contain more than one statement. DDL statements typically cannot be
grouped with DML statements in a manual transaction.

The following example illustrates a manual transaction:

Introducing the Identity Manager Driver for JDBC

17

18

SET AUTOCOMMIT OFF

INSERT INTO usr (lname) VALUES ('Doe');

UPDATE usr SET fname = 'John' WHERE idu = 1;
COMMIT; -- explicit commit

Automatic Transactions

Automatic transactions consist of only one statement. They are often referred to as auto-committed
statements because changes are implicitly committed after each statement. An auto-committed
statements is autonomous of any other statement.

The following example illustrates an automatic transaction:

SET AUTOCOMMIT ON
INSERT INTO emp (lname) VALUES('Doe');
-- implicit commit

1.2.7 Stored Procedures or Functions

A stored procedure or function is programmatic logic stored in a database. Stored procedures or
functions can be invoked from almost any context.

The Subscriber channel can use stored procedures or functions to retrieve primary key values from
rows inserted into tables, to create associations. Stored procedures or functions can also be invoked
from within embedded SQL statements or triggers.

The distinction between stored procedures and functions varies by database. Typically, both can
return output, but they differ in how they do it. Stored procedures usually return values through
parameters. Functions usually return values through a scalar return value or result set.

The following example illustrates a stored procedure definition that returns the next value of a
sequence object:

CREATE SEQUENCE seq_idu
START WITH 1
INCREMENT BY 1
NOMINVALUE
NOMAXVALUE
ORDER;

CREATE
PROCEDURE sp_idu(io_idu IN OUT INTEGER)
IS
BEGIN

IF (ioiidu IS NULL) THEN

SELECT seq_idu.nextval INTO io idu FROM DUAL;

END IF;
END sp_idu;

1.2.8 Trigger

A database trigger is programmatic logic associated with a table, which executes under certain
conditions. A trigger is said to fire when its execution criteria are met.

Identity Manager 3.6.1 Driver for JDBC Implementation Guide

Triggers are often useful for creating side effects in a database. In the context of the JDBC driver,
triggers are useful to capture event publications. The following is an example of a database trigger
on the usr table.

CREATE TABLE usr

(
idu INTEGER,
fname VARCHAR2 (64),
lname VARCHAR2 (64)

)

-- t = trigger; i = insert

CREATE TRIGGER t usr i
AFTER INSERT ON usr
FOR EACH ROW

BEGIN
UPDATE usr SET fname = 'John';
END;

When a statement is executed against a table with triggers, a trigger fires if the statement satisfies
the conditions specified in the trigger. For example, using the above table, suppose the following
insert statement is executed:

INSERT INTO usr (lname) VALUES ('Doe')

Trigger t emp i fires after the insert statement is executed, and the following update statement is
also executed:

UPDATE usr SET fname = 'John'

A trigger can typically be fired before or after the statement that triggered it. Statements that are
executed as part of a database trigger are typically included in the same transaction as the triggering
statement. In the above example, both the INSERT and UPDATE statements are committed or rolled
back together.

1.2.9 Instead-Of-Trigger

An instead-of-trigger is programmatic logic associated with a view, which executes under certain
conditions.

Instead-of-triggers are useful for making views writable or subscribeable. They are often used to
define what it means to INSERT, UPDATE, and DELETE from a view. The following is an example of
an instead-of-trigger on the usr table.

CREATE TABLE usr

(
idu INTEGER,
fname VARCHAR2 (64),
lname VARCHAR2 (64)

) i

Introducing the Identity Manager Driver for JDBC

19

20

CREATE VIEW view usr
(
pk_idu,
fname,
lname
)
AS
SELECT idu, fname, lname from usr;
-— t = trigger; i = insert
CREATE TRIGGER t view usr i
INSTEAD OF INSERT ON usr
BEGIN
INSERT INTO usr (idu, fname, lname)
VALUES (:NEW.pk idu, :NEW.fname, :NEW.lname);
END;

When a statement is executed against a view with instead-of-triggers, an instead-of-trigger executes
if the statement satisfies the conditions specified in the trigger. Unlike triggers, instead-of-triggers
always execute before the triggering statement. Also, unlike regular triggers, instead-of-triggers are
executed instead of, not in addition to, the triggering statement.

For example, using the above view, suppose the following insert statement is executed instead of the
original insert statement:

INSERT INTO view usr(pk idu, fname, lname)
VALUES (1, ‘John', ‘Doe')

Rather than executing the original statement, instead-of-trigger t view usr i fires and executes
the following statement:

INSERT INTO usr (idu, fname, lname)
VALUES (:NEW.pk idu, :NEW.fname, :NEW.lname);

In this example, the statements happen to be equivalent.

1.3 Driver Features

¢ Section 1.3.1, “Local and Remote Platforms,” on page 20

*

Section 1.3.2, “Entitlements,” on page 21

*

Section 1.3.3, “Password Synchronization,” on page 21

*

Section 1.3.4, “Data Synchronization Models,” on page 21

*

Section 1.3.5, “Triggerless vs. Triggered Publication,” on page 24

1.3.1 Local and Remote Platforms

The driver runs on all platforms supported for Identity Manager 3.6.1, including any local
installation (Metadirectory server) or remote installation (Remote Loader). For information about
supported platforms for Identity Manager 3.6.1, see “System Requirements” in the /dentity Manager
3.6.1 Installation Guide.

For information on supported databases, see “Database Interoperability”” on page 143.

For information on supported third-party JDBC drivers, see “Third-Party JDBC Driver
Interoperability” on page 155.

Identity Manager 3.6.1 Driver for JDBC Implementation Guide

1.3.2 Entitlements

The JDBC driver does not support entitlements.

1.3.3 Password Synchronization

The JDBC driver supports password set and check on the Subscriber channel. The driver does not
support bidirectional password synchronization.

1.3.4 Data Synchronization Models

The JDBC driver supports two data synchronization models: direct and indirect. Both terms are best
understood with respect to the final destination of the data being synchronized.

Model Association Description

Direct Usually associated with views Views provide the abstraction mechanism that best
facilitates integration with existing customer tables.

Indirect Usually associated with tables Customer tables probably don’t match the structure
required by the driver. Therefore, it's usually
necessary to create intermediate staging tables that
do match the structure that the driver requires.
Although the structures might match, it is highly
unlikely.

The following sections describe how direct and indirect synchronization work on both the
Subscriber and Publisher channels.

¢ “Indirect Synchronization” on page 21

¢ “Direct Synchronization” on page 22

Indirect Synchronization

Indirect synchronization uses intermediate staging tables to synchronize data between the Identity
Vault and a database.

The following diagrams illustrate how indirect synchronization works on the Subscriber and
Publisher channels. In the following scenarios, you can have one or more customer tables and
intermediate staging tables.

Introducing the Identity Manager Driver for JDBC 21

Subscriber Channel
Figure 1-2 Indirect Synchronization on the Subscriber Channel

Database

Synchronization

Schema

Intermediate

Tables(s) Synchronization
Trigger(s)

Customer
Table(s)

The Subscriber channel updates the intermediate staging tables in the synchronization schema. The
synchronization triggers then update customer tables elsewhere in the database.

Publisher Channel
Figure 1-3 Indirect Synchronization on the Publisher Channel

Database

Synchronization Ll
Schema
L. Intermediate <=
Tables(s) Synchronization
Trigger(s) Customer
Table(s)
—]
Publisher) 4=r=% Publication
Trigger(s)
~——

When customer tables are updated, synchronization triggers update the intermediate staging tables.
Publication triggers then insert one or more rows into the event log table. The Publisher channel
then reads the inserted rows and updates the Identity Vault.

Depending on the contents of the rows read from the event log table, the Publisher channel might
need to retrieve additional information from the intermediate tables before updating the Identity
Vault. After updating the Identity Vault, the Publisher channel then deletes or marks the rows as
processed.

Direct Synchronization

Direct synchronization typically uses views to synchronize data between Identity Manager and a
database. You can use tables if they conform to the structure that the JDBC driver requires.

The following diagrams illustrate how direct synchronization works on the Subscriber and Publisher
channels. In the following scenarios, you can have one or more customer views or tables.

22 |dentity Manager 3.6.1 Driver for JDBC Implementation Guide

Subscriber Channel
Figure 1-4 Direct Synchronization on the Subscriber Channel

Database

Synchronization

|

i § I---------
el >

] ’

Customer
Table(s)

The Subscriber channel updates existing customer tables through a view in the synchronization
schema.

Direct synchronization without a view is possible only if customer tables match the structure that the
JDBC driver requires. For additional information, see Section 8.3, “Indirect Synchronization,” on
page 91.

Publisher Channel
Figure 1-5 Direct Synchronization on the Publisher Channel

Database

Synchronization |
Schema
e--Ch
- ! I = == .-
= === = N View(s)/'
1 e P Customer
v Table(s)
CPmimner) 4> vt)+
Publication
Trigger(s)
)

When a customer table is updated, publication triggers insert rows into the event log table. The
Publisher channel then reads the inserted rows and updates the Identity Vault.

Depending on the contents of the rows read from the event log table, the Publisher channel might
need to retrieve additional information from the view before updating the Identity Vault. After
updating the Identity Vault, the Publisher channel then deletes or marks the rows as processed.

Introducing the Identity Manager Driver for JDBC

23

1.3.5 Triggerless vs. Triggered Publication

Triggers are not required to log events for the Publisher channel. In situations where triggers cannot
be used to capture granular events, the Publisher channel can derive database changes by inspecting
database data.

Triggerless publication is particularly useful when support contracts forbid the use of triggers on
database application tables or for rapid prototyping.

However, triggerless publication is less efficient than triggered publication. With triggered
publication, what changed is already known. With triggerless publication, change calculation must
occur before events can be processed.

Triggerless publication, unlike triggered publication, does not preserve event order. It only
guarantees that by the end of a polling cycle, objects in the database and the Identity Vault are in
sync.

Triggerless publication, unlike triggered publication, does not provide historical data such as old
values. It provides information on the current state of an object, not the previous state.

Triggerless publication does have the advantage of being much simpler because it reduces database-
side dependencies. Writing database triggers can be complicated and requires extensive knowledge
of database-specific SQL syntaxes.

The following figure illustrates direct triggerless publication:
Figure 1-6 Direct Triggerless Publication

Database

Synchronization

Schema

-
|
1

Publisher) = = == = L
1

.

Customer

Table(s)

The following figure illustrates indirect triggerless publication:

24 |dentity Manager 3.6.1 Driver for JDBC Implementation Guide

Figure 1-7 Indirect Triggerless Publication

Database

Synchronization
Schema

Publisher)=

ermediate <
Tables(s

Synchronization
Trigger(s)

Customer
Table(s)

4

If you move the driver without moving the state files, the driver must build up new state files by
resynchronizing. For information on this situation, see “State Directory” on page 51.

Introducing the Identity Manager Driver for JDBC

25

26 Identity Manager 3.6.1 Driver for JDBC Implementation Guide

Installing the Driver Files

By default, the JDBC driver files are installed on the Metadirectory server at the same time as the
Metadirectory engine. The installation program extends the Identity Vault’s schema and installs the
driver shim and a driver configuration file. It does not create the driver in the Identity Vault (see
Chapter 5, “Importing an Example JDBC Configuration File,” on page 39) or upgrade an existing
driver’s configuration (see Chapter 4, “Upgrading an Existing Driver,” on page 37).

The JDBC driver must be located on the same server as the JDBC database. The following sections
explain what to do if the JDBC driver files are not on the JDBC database server and how to install
the third-party JDBC jar files that the driver uses to communicate with the database:

+ Section 2.1, “Installing the Driver Files,” on page 27

¢ Section 2.2, “Installing JDBC Driver Jar Files,” on page 27

For information about uninstalling the driver, see Chapter A, “Uninstalling the Driver,” on page 189.

2.1 Installing the Driver Files

You can install the JDBC driver files in the following ways:

¢ On a local machine: Install the JDBC driver files on the Metadirectory server and connect to
the database by using the Provider URL (Connection Properties). For information on installing
the Metadirectory server, see “Installing the Metadirectory Server” in the Identity Manager
3.6.1 Installation Guide.

+ On a remote machine: Install the JDBC driver files on the Remote Loader. For information on
installing the Remote Loader, see “Installing the Remote Loader” in the Identity Manager 3.6.1
Installation Guide.

2.2 Installing JDBC Driver Jar Files

To communicate with the JDBC database, the JDBC driver requires that you copy the appropriate
JDBC driver jar files to the driver location.
1 Locate the appropriate JDBC driver jar files.

Information about the jar files you need and where to download them from is found in
Section 13.4, “Supported Third-Party JDBC Drivers (Recommended),” on page 157.

2 Place the files in the appropriate location.

The following tables identify the paths where you need to place JDBC driver jar files on a
Metadirectory server or on a Remote Loader server that is running the JDBC driver.

Table 2-1 Locations for JAR Files: Metadirectory Server

Platform Directory Path

Solaris, Linux, or AIX /opt/novell/eDirectory/lib/dirxml/classes

Windows novell\NDS\1lib

Installing the Driver Files

27

Table 2-2 Locations for JAR Files: Remote Loader

Platform Directory Path

Solaris, Linux, or AIX /opt/novell/eDirectory/lib/dirxml/classes

Windows novell\RemoteLoader\1lib

28 Identity Manager 3.6.1 Driver for JDBC Implementation Guide

Installing and Configuring
Database Objects

You need to install and configure database objects (for example, tables, triggers, and indexes) for
synchronization with the sample driver configuration. If you don’t configure database objects, the
sample configuration file won’t work.

¢ Section 3.1, “SQL Script Conventions,” on page 29

¢ Section 3.2, “Installing IBM DB2 Universal Database (UDB),” on page 31

¢ Section 3.3, “Installing Informix Dynamic Server (IDS),” on page 31

¢ Section 3.4, “Installing Microsoft SQL Server,” on page 32

¢ Section 3.5, “Installing MySQL,” on page 32

¢ Section 3.6, “Installing Oracle,” on page 33

¢ Section 3.7, “Installing PostgreSQL 7,” on page 33

¢ Section 3.8, “Installing PostgreSQL 8,” on page 34

¢ Section 3.9, “Installing Sybase Adaptive Server Enterprise (ASE),” on page 34

¢ Section 3.10, “Testing the Database Object Installation,” on page 35

3.1 SQL Script Conventions

The following table lists default locations for SQL scripts:

Table 3-1 Default Locations for SOL Scripts

Platform Default Location

Windows™ c:\novell\NDS\DirXMLUtilities\jdbc\sqgl\database-
abbreviation

UNIX* or Linux* /opt/novell/eDirectory/lib/dirxml/rules/jdbc/sql/database-
abbreviation

For example, when the scripts are installed on a SUSE Linux Enterprise Server with eDirectory, the
DB2 scripts are found in opt/novell/eDirectory/lib/dirxml/rules/jdbc/db2/*.

All SQL scripts use the same conventions, regardless of the database.

The maximum size of a DB2 identifier is 18 characters. This least common denominator length
defines the upper bound of database identifier length across all SQL scripts. Because of this
restricted length, abbreviations are used. The following table summarizes identifier abbreviations
and their meanings:

Installing and Configuring Database Objects

29

Table 3-2 Identifier Abbreviations and Meanings

Abbreviation Interpretation

proc_ stored procedure/function
idx_ index

trg_ trigger

i on insert trigger

—u on update trigger

_d on delete trigger

chk_ check constraint

pk_ view primary key constraint

fk_ view foreign key constraint

mv_ view multi-valued column

SV_ view single-valued column (implicit default)

Instead of proc_, the more common abbreviation is sp . This prefix is reserved for system-stored
procedures on Microsoft* SQL Server. Also, this prefix forces lookup of a procedure first in the
master database before evaluating any qualifiers (for example, database or owner). To maximize
procedure lookup efficiency, this prefix has been deliberately avoided.

The following table indicates identifier naming conventions for indexes, triggers, stored procedures,
functions, and constraints:

Table 3-3 Identifier Naming Conventions

Database Object Naming Convention Examples

stored procedure/ proc_procedure-or-function-name proc_idu

function

index idx_unqualified-table-name_sequence-number idx_indirectlog_
1

trigger tgr_unqualified-table-name_triggering-statement- tgr_usr_i_1

type_sequence-number

primary key constraint pk_unqualified-table-name_column-name pk_usr_idu
foreign key constraint fk_unqualified-table-name_column-name fk_usr_idu
check constraint chk_unqualified-table-name_column-name chk_usr_idu

Other conventions:
+ All database identifiers are lowercase.

This is the most commonly used case convention between databases.

¢ String field lengths are 64 characters.

30 Identity Manager 3.6.1 Driver for JDBC Implementation Guide

Fields of this length can hold most eDirectory attribute values. You might want to refine field
lengths to enhance storage efficiency.

¢ For performance reasons, primary key columns use native, scalar numeric types whenever
possible (such as BIGINT as opposed to NUMERIC).

¢ The record id column in event log tables has the maximum numeric precision permitted by
each database to avoid overflow.

¢ Identity columns and sequence objects do not cache values. Some databases throw away
cached values when a rollback occurs. This action can cause large gaps in identity column or
sequence values.

3.2 Installing IBM DB2 Universal Database (UDB)

IMPORTANT: For IBM* DB2, you must manually create operating system user accounts before
running the provided SQL scripts.

Because the process to create user accounts differs between operating systems, Step 1 below is OS-
specific. These instructions are for a Windows NT operating environment. If you rerun the SQL
scripts, repeat only Steps 2 through 4.

The directory context for DB2 is install-dir\DirXMLUtilities\jdbc\sql\db2 udb\install

1 Create user accounts for users idm, indirect and direct.
Use novell as the password in User Manager for Domains.
Remember to deselect User Must Change Password at Next Login for this account.

You might want to also select Password Never Expires.

NOTE: The remaining instructions are OS-independent.

2 Adjust the file path to idm db2.jarinthe 1 install.sql installation script. The file path to
idm db2.jar should reflect the location of this file on your client machine.

3 Executethe 1 install.sql script from the Command Line Processor (CLP.)

For example: db2 -f 1 install.sql

IMPORTANT: The scripts won’t execute in the Command Center interface beyond version 7.
The scripts use \ as the line continuation character. Later versions of the Command Center
don’t recognize this character.

4 For versions 8 or later, execute the 2_install 8.sql script.

For example: db2 -f 2 install 8.sql

3.3 Installing Informix Dynamic Server (IDS)

For Informix* Dynamic Server, you must manually create an operating system user account before
running the provided SQL scripts.

Because the process of creating user accounts differs between operating systems, Step 1 below is
OS-specific. These instructions are for a Windows operating environment. If you rerun the SQL
scripts, you should repeat only Step 2 through Step 4.

Installing and Configuring Database Objects

31

The directory context for Informix SQL scripts is install-
dir\DirXMLUtilities\jdbc\sgl\informix ids\install.
1 In Windows, create a user account for user idm.
Use novell as the password in User Manager for Domains.
Remember to deselect User Must Change Password at Next Login for this account.

You might want to also select Password Never Expires.

NOTE: The remaining instructions are OS-independent.

2 Start a client such as SQL Editor or DBAccess.

3 Log in to your server as the informix user or another user with DBA (database administrator)
privileges.

By default, the password for the informix user is informix. If you execute scripts as a user
other than informix, change all references to informix in the scripts prior to execution.

4 Open and execute 1_install 9.sql from either the ansi (transactional, ANSI-compliant),
log (transactional, non-ANSI-compliant), or no log (non-transactional, non-ANSI-
compliant) subdirectory, depending upon which type of database you want to create.

5 For version 10 or later, open and execute 2_install 10.sql from either the ansi
(transactional, ANSI-compliant), 1og (transactional, non-ANSI-compliant), or no_log (non-
transactional, non-ANSI-compliant) subdirectory, depending upon which type of database you
want to create.

3.4 Installing Microsoft SQL Server

The directory context for Microsoft SQL Server scripts is install-
dir\DirXMLUtilities\jdbc\sgl\mssgl\install.

1 Start a client such as Query Analyzer (7, 2000) or Microsoft SQL Server Management Studio
(2005).
2 Log in to your database server as the sa user.
By default, the sa user has no password.
3 Execute the installation script.
For version 7, execute 1 _install 7.sqgl.
For version 2000 (8), execute 1 install 2k.sqgl.
For version 2005 (9), execute 1 _install 2005.sqgl.

NOTE: The execute hotkey in Query Analyzer is F5.

3.5 Installing MySQL

The directory context for MySQL* SQL scripts is install-
dir\DirXMLUtilities\jdbc\sqgl\mysgl\install.

1 From a MySQL client, such as mysql, log in as root user or another user with administrative
privileges.

For example, from the command line, execute

32 Identity Manager 3.6.1 Driver for JDBC Implementation Guide

mysgl -u root -p
By default, the root user has no password.

2 Execute the installation script 1_install innodb.sglorl install myisam.sql,
depending upon which table type you wish to use. For MySQL 3 or 4, use the scripts in
subdirectory 3or4. For version 5.0.27 use the scripts in subdirectory 5.

For example: mysgql> \. c:\1 install innodb.sql

Don’t use a semicolon to terminate this statement.

3.6 Installing Oracle

The directory context for Oracle SQL scripts is install-
dir\DirXMLUtilities\jdbc\sgl\oracle\install.
1 From an Oracle client, such as SQL Plus, log in as the SYSTEM user.

By default, the password for SYSTEM is MANAGER. If you execute scripts as a user other than
SYSTEM with password MANAGER, change all references to SYSTEM in the scripts prior to
execution.

2 Execute the installation script 1_install.sqgl.

For example: SQL> @c:\1 install.sql

3.7 Installing PostgreSQL 7

The directory context for PostgreSQL scripts is install-
dir\DirXMLUtilities\jdbc\sqgl\postgres\install. The directory context for executing
Postgres commands is postgres-install-dir/pgsqgl/bin.
1 Create the database idm.
For example, from the UNIX command line, execute the following command:
./createdb idm
2 Install the plpgsqgl procedural language to database idm.
For example, from the UNIX command line, execute the following command:
./createlang plpgsgl idm
3 From a Postgres client such as psql, log on as user postgres to the idm database.
For example, from the UNIX command line, execute the following command:
./psql -d idm postgres
By default, the Postgres user has no password.
4 From inside psql, execute the script 1 _install 7.sql. For example:
idm=# \i 1 install 7.sql
5 Update the pg hba.conf file.

For example, add entries for the idm database user. Adjust the IP-ADDRESS and IP-MASK as
necessary:

Installing and Configuring Database Objects

33

34

TYPE DATABASE USER IP-ADDRESS IP-MASK METHOD# allow
driver user idm to connect to database idm
host idm idm 255.255.255.255 255.255.255.0 password

6 Restart the Postgres server to effect changes made to the pg hba. conf file.

3.8 Installing PostgreSQL 8

The directory context for PostgreSQL scripts is install-
dir\DirxMLUtilities\jdbc\sql\postgres\install. The directory context for executing
Postgres commands is postgres-install-dir/pgsql/bin.
1 Create the idm database.
For example, from the UNIX command line, execute the following command:
./createdb idm
2 From a Postgres client such as psql, log in as user postgres to the idm database.
For example, from the UNIX command line, execute the following command:
./psql -d idm postgres
By default, the Postgres user has no password.
3 From inside psql, execute the script 1_install 8.sqgl. For example:
idm=# \i 1 install 8.sql
4 Update the pg_hba.conf file.

As of version 8, this can be done through pgAdminlII. After you start, go to Tools > Connect to
connect to the server, select the IDM database, then go to Tools > Server Configuration >
pg_hba.conf. In the pgAdminlll pg_hba.conf editor, the IP-ADDRESS and IP-MASK
columns in the file are combined into a single field: IP-Address. Place both the IP-ADDRESS
and IP-MASK values in that field, separated by a single whitespace character.

For example, add entries for the idm database user. Adjust the IP-ADDRESS and IP-MASK as

necessary:

TYPE DATABASE USER IP-ADDRESS IP-MASK METHOD# allow
driver user idm to connect to database idm

host idm idm 255.255.255.255 255.255.255.0 password

5 Restart the Postgres server to effect changes made to the pg hba. conf file.

6 (Conditional) If you are using pgAdminlIl, in the pg_hba.conf editor select the disk icon (save
file) in the toolbar. When prompted, press Yes.

3.9 Installing Sybase Adaptive Server Enterprise
(ASE)

Ensure that you have JDBC metadata support installed on the database server. This is usually an
issue only for versions earlier than 12.5.

The directory context for Sybase* SQL scripts is install-
dir\DirXMLUtilities\jdbc\sqgl\sybase ase\install.

1 From a Sybase client, such as isql, log in as the sa user and execute the 1 _install.sql
installation script.

Identity Manager 3.6.1 Driver for JDBC Implementation Guide

For example, from the command line, execute:
isql -U sa -P -1 1 install.sql

By default, the sa account has no password.

3.10 Testing the Database Object Installation

Test scripts for each database are located in the following directories:

Table 3-4 Location of Database Scripts

Database Test SQL Scripts Location

IBM DB2 Universal Database install-
dir\DirXMLUtilities\jdbc\sql\db2 udb\test

Informix Dynamic Server install-
dir\DirXMLUtilities\jdbc\sgl\informix ids\log\te
st install-
dir\DirXMLUtilities\jdbc\sgl\informix ids\no log
\test Informix ANSI test scripts are located in the 1og\test

subdirectory.
Microsoft SQL Server install-dir\DirXMLUtilities\jdbc\sgl\mssqgl\test
MySQL install-dir\DirXMLUtilities\jdbc\sgl\mysgl\test
Oracle install-dir\DirxXMLUtilities\jdbc\sgl\oracle\test
PostgreSQL install-

dir\DirXMLUtilities\jdbc\sqgl\postgres\test

Sybase Adaptive Server Enterprise install-
dir\DirXMLUtilities\jdbc\sgl\sybase ase\test

We recommend that you try the test scripts before starting the sample driver.
If you encounter issues while testing, see the following sections:

¢ Section 15.1, “Recognizing Publication Events,” on page 187.

¢ Section 15.2, “Executing Test Scripts,” on page 187.

Installing and Configuring Database Objects

35

36 Identity Manager 3.6.1 Driver for JDBC Implementation Guide

Upgrading an Existing Driver

The following sections provide information to help you upgrade an existing driver to version 3.6.1:

¢ Section 4.1, “Supported Upgrade Paths,” on page 37
¢ Section 4.2, “What’s New in Version 3.6.1,” on page 37
¢ Section 4.3, “Upgrade Procedure,” on page 37

4.1 Supported Upgrade Paths

You can upgrade from any Identity Manager 3.5,x version of the JDBC driver. Upgrading a pre-3.5.x
version of the driver directly to version 3.6.1 is not supported.

4.2 What’s New in Version 3.6.1

Support for DB2 version 9.0 has been added.

*

*

Support for Oracle 10g and 11g has been added.
Support for Sybase 15 has been added.
Support for MS-SQL2005 and MS-SQL2008 has been added.

*

*

4.3 Upgrade Procedure

The process for upgrading the JDBC driver is the same as for other Identity Manager drivers. For
detailed instructions, see “Upgrading” in the Identity Manager 3.6.1 Installation Guide.

Upgrading an Existing Driver

37

38 Identity Manager 3.6.1 Driver for JDBC Implementation Guide

Importing an Example JDBC
Configuration File

The JDBC driver includes an example configuration file that you can use as a starting point for
creating the Driver object. When you import this file, Designer for Identity Manager or iManager
creates and configures the objects and policies needed to make the driver work properly.

¢ Section 5.1, “Using Designer to Import,” on page 39

¢ Section 5.2, “Using iManager to Import,” on page 39

¢ Section 5.3, “JDBC Driver Settings,” on page 40

5.1 Using Designer to Import

The example . xm1 configuration file creates and configures the Identity Manager objects needed for
the sample driver to work properly. The configuration file also includes example policies that you
can customize.

The following procedure explains one of several ways to import the example configuration file:
Open a project in Designer.
In the Modeler, right-click the Driver Set object, then select New > Driver.

From the list, select IDM Driver for JDBC 3.6.1, then click Run.
Configure the driver by filling in the fields.

B ODN =

Provide information specific to your environment. See Table 5-1 on page 40.

a

After specifying parameters, click Finish to import the driver.
6 Test the driver.
7 Deploy the driver into the Identity Vault.

See “Deploying a Driver to an Identity Vault” in the Designer 3.5 for Identity Manager 3.6
Administration Guide.

5.2 Using iManager to Import

Identity Manager provides an example configuration file. You installed this file when you installed
the Identity Manager Web components on an iManager server. Think of the example configuration
file as a template that you import and customize or configure for your environment.

1 In iManager, select Identity Manager > Identity Manager Overview.
2 Select Driver Set > Drivers > Add Drivers.

Importing an Example JDBC Configuration File

39

40

YWhere do you want to place the new drivers?

& |n an existing driver set
|snati_drset.nwe|l =

" In a new driver set

If you place this driver in a new driver set, you must specify a driver set name, context, and
associated server.

3 Select JDBC-IDM3 6 0-v4.xml, then click Next.
Configure the driver by filling in the configuration parameters.
For information on the settings, see Table 5-1 on page 40.

5 Define security equivalences by using a User object that has the rights that the driver needs to
have on the server

The Admin user object is most often used for this task. However, you might want to create a
DriversUser (for example) and assign security equivalence to that user. Whatever rights that the
driver needs to have on the server, the DriversUser object must have the same security rights.

6 Identify all objects that represent administrative roles and exclude them from replication.

Exclude the security-equivalence object (for example, DriversUser) that you specified in Step
2. If you delete the security-equivalence object, you have removed the rights from the driver.
Therefore, the driver can’t make changes to Identity Manager.

7 Click Finish.

Configuration File Conventions

¢ Database usernames are the surname of a user concatenated with the corresponding numeric
primary key value. For example, John Doe’s username could be Doel.

¢ Initial passwords are the surname of a user. For example, John Doe’s password would be Doe.
Because Sybase passwords must be at least 6 characters long, any Sybase passwords that are
shorter than 6 characters are padded with the character “p.” For example, John Doe’s password
would be Doeppp. The padding character can be adjusted in the Subscriber Command
Transformation policies.

5.3 JDBC Driver Settings

Table 5-1 JDBC Driver Settings

Setting Description

Driver name The name that you want to display in the driver set.
Target database That database that the driver writes to.

Driver is local/remote Specifies whether the driver runs locally or remotely

on a Remote Loader.

Identity Manager 3.6.1 Driver for JDBC Implementation Guide

Setting

Description

Synchronization model

Third-party JDBC implementation

Data flow

Database host IP address

Database port

User container DN

Group container DN

Publication mode

Specifies whether the driver uses views to
synchronize directly to existing tables of arbitrary
structure or synchronize to intermediate staging
tables of a particular structure.

The third-party implementation that the driver uses.

Specifies whether the authoritative source of data is
the database, Identity Manager, or bidirectional
(both the database and Identity Manager).

The IP address of the database host.

Specifies the port that the driver uses to
communicate with the database. If you don’t
provide a port number, the Driver Configuration
Wizard provides a default port number for the
database that you selected at install time.

The Distinguished Name (complete context) of the
container where the database users are published.

The Distinguished Name (complete context) of the
container where the database groups are
published.

Specifies whether publication is triggered (default)
or triggerless

Importing an Example JDBC Configuration File

4

42 |dentity Manager 3.6.1 Driver for JDBC Implementation Guide

Configuring the JDBC Driver

¢ Section 6.1, “Smart Configuration,” on page 43

¢ Section 6.2, “Configuration Parameters,” on page 45

¢ Section 6.3, “Driver Parameters,” on page 47

¢ Section 6.4, “Subscription Parameters,” on page 68

¢ Section 6.5, “Publication Parameters,” on page 77

¢ Section 6.6, “Trace Levels,” on page 86

¢ Section 6.7, “Configuring Third-Party JDBC Drivers,” on page 86

¢ Section 6.8, “Configuring jTDS Support for the JDBC Driver,” on page 87

6.1 Smart Configuration

The JDBC driver can recognize the supported set of third-party JDBC drivers and databases. Also,
the driver can dynamically and automatically configure the majority of driver compatibility
parameters so you don’t need to understand and explicitly set such parameters.

These features are implemented via the following four types of XML descriptor files, which
describe a third-party JDBC driver or database to the JDBC driver.

*

Third-party JDBC driver
Third-party JDBC driver import
Database

*

*

*

Database import

In addition to predefined descriptor files, you can create custom descriptor files for a database or
third-party JDBC driver.

¢ Section 6.1.1, “Specifying Custom Descriptor Files,” on page 43

¢ Section 6.1.2, “Reserved Filenames for Descriptor Files,” on page 44

¢ Section 6.1.3, “Import Descriptor Files,” on page 44

¢ Section 6.1.4, “Descriptor File Locations,” on page 44

+ Section 6.1.5, “Precedence,” on page 45

¢ Section 6.1.6, “Custom Descriptor Best Practices,” on page 45

¢ Section 6.1.7, “Descriptor File DTDs,” on page 45

6.1.1 Specifying Custom Descriptor Files

You can force the driver to use a custom descriptor file for a database or third-party JDBC driver. To
specify a custom database descriptor file, see “Database Descriptor Filename” on page 60. To
specify a custom third-party driver descriptor file, see “JDBC Driver Descriptor Filename” on

page 60. This is useful when multiple descriptor files exist for the same database or third-party
JDBC driver. For the custom descriptor file to take effect, set the driver parameter as the jdbc-driver-
descriptor.

Configuring the JDBC Driver

43

6.1.2 Reserved Filenames for Descriptor Files

Descriptor filenames that ship with the driver begin with the underscore character (). Such
filenames are reserved to ensure that descriptor files that ship with the driver do not conflict with
custom descriptor files. Obviously, custom descriptor filenames must not begin with the underscore
character.

6.1.3 Import Descriptor Files

Import descriptor files allow multiple, nonimport descriptor files to share content. This functionality
reduces the size of nonimport descriptor files, minimizes the need for repetition of content, and
increases maintainability. Import files cannot be imported across major types. That is, JDBC driver
descriptors cannot import database imports, and database descriptors cannot import JDBC driver
imports.

Furthermore, custom nonimport descriptors cannot import reserved descriptor imports. For example,
if a custom third-party JDBC driver descriptor file named custom. xm1 tries to import a reserved
third-party JDBC driver descriptor named reserved.xml, an error is issued. These limitations
accomplish the following:

+ Ensure that no dependencies exist between reserved and custom import files

+ Allow extension of existing reserved descriptor files in later versions of the driver

6.1.4 Descriptor File Locations

Descriptor files must be located in a . jar file whose name begins with the prefix “jdbc” (case-
insensitive) and resides in the runtime classpath.

The following table identifies where to place descriptors within a descriptor . jar file:

Table 6-1 Where to Place Descriptors

Descriptor Type Directory Path

Third-party JDBC driver com/novell/nds/dirxml/driver/jdbc/db/
descriptor/driver

Third-party JDBC driver import com/novell/nds/dirxml/driver/jdbc/db/
descriptor/driver/import

Database com/novell/nds/dirxml/driver/jdbc/db/
descriptor/db

Database import com/novell/nds/dirxml/driver/jdbc/db/
descriptor/db/import

Reserved descriptor files are located in the JDBCConfig. jar file. To ensure that these reserved files
are not overwritten when the JDBC driver is updated, place custom descriptors in a different . jar
file.

44 |dentity Manager 3.6.1 Driver for JDBC Implementation Guide

6.1.5 Precedence

Parameters explicitly specified through a management console, such as iManager, always have
precedence over parameters specified through descriptor files. Descriptor file parameters only take
effect when a parameter is not set through the management console.

Parameters and other information specified in a nonimportable descriptor file always have
precedence over information specified in descriptor import files. If a parameter or other information
is duplicated within a descriptor file, the first instance of the parameter or information takes
precedence over subsequent instances.

Among import files, precedence is determined by import order. Import files declared earlier in the

import list take precedence over those that follow.

6.1.6 Custom Descriptor Best Practices

¢ Do not begin custom descriptor files name with the underscore (_) character.

+ Place custom descriptor files in a jar file other than JDBCConfig.jar, and begin the filename
with the prefix “jdbc” (case-insensitive).

+ Do not use custom descriptors to import reserved import files (filenames that begin with the
underscore character).

6.1.7 Descriptor File DTDs

The following sections contain DTDs for all descriptor file types. These DTDs can help you
construct custom descriptor files.

Table 6-2 Where to Find Descriptor DTDs

Descriptor Type Appendix

Third-party JDBC driver Appendix H, “Third-Party JDBC Driver Descriptor DTD,” on page 211

Third-party JDBC driver Appendix |, “Third-Party JDBC Driver Descriptor Import DTD,” on page 213
import

Database Appendix J, “Database Descriptor DTD,” on page 215

Database import Appendix K, “Database Descriptor Import DTD,” on page 217

6.2 Configuration Parameters

¢ Section 6.2.1, “Viewing Driver Parameters,” on page 45
¢ Section 6.2.2, “Deprecated Parameters,” on page 46

¢ Section 6.2.3, “Authentication Parameters,” on page 46

6.2.1 Viewing Driver Parameters

1 In iManager, click Identity Manager > Identity Manager Overview.

Configuring the JDBC Driver

45

46

2 Locate the driver set containing the driver, then click the driver’s icon and select Edit
Properties.

iManager displays the driver’s configuration parameters.

6.2.2 Deprecated Parameters

The following parameters have been deprecated since version 1.6:

Table 6-3 Deprecated Parameters

Tag Name Justification

connection-tester-class The driver now dynamically creates a connection tester class at runtime,
based upon information in XML descriptor files. This parameter is still
operable, to ensure backwards compatibility. Its continued use, however, is
discouraged.

connection-test-stmt The driver now dynamically creates a connection tester class at runtime,
based upon information in XML descriptor files. This parameter is still
operable, to ensure backwards compatibility. Its continued use, however, is
discouraged.

reconnect-interval The reconnect interval is now fixed at 30 seconds on both channels.

6.2.3 Authentication Parameters

After you import the driver, provide authentication information for the target database.

+ “Authentication ID” on page 46
¢ “Authentication Context” on page 46

+ “Application Password” on page 47

Authentication ID

An Authentication ID is the name of the driver’s database user/login account.The installation SQL
script for each database provides information on the database privileges required for this account to
authenticate to a supported database. The scripts are located in the install-
dir\DirxXMLUtilities\jdbc\sgl\abbreviated-database-name\install directory.

This value can be referenced in the Connection Properties parameter value via the token
{susername}. See “Connection Properties” on page 58.

The default value for the sample configuration is idm.

Authentication Context
The authentication context is the JDBC URL of the target database.

URL format and content are proprietary. They differ among third-party JDBC drivers. However,
they have some similarities in content. Each URL, whatever the format, usually includes an IP
address or DNS name, port number, and a database identifier. For the exact syntax and the content
requirements of your driver, consult your third-party driver documentation.

Identity Manager 3.6.1 Driver for JDBC Implementation Guide

For a list of JDBC URL syntaxes for supported third-party drivers, see “JDBC URL Syntaxes” on

page 158.

IMPORTANT: Changing anything in this value other than URL properties forces a

resynchronization of all objects when triggerless publication is used.

Application Password

An application password is the password for the driver’s database user/login account. The default
value for the sample driver configuration is novell.

This value can be referenced in the Connection Properties parameter value via the token

{spassword}. See “Connection Properties” on page 58.

6.3 Driver Parameters

The following table summarizes all driver-level parameters and their properties:

Table 6-4 Driver Parameters and Properties

Display Name Tag Name Sample Value Default Value Required

Third-Party JDBC jdbc-class oracle.jdbc.driver.OracleDri (none) yes

Driver Class Name ver

Time Syntax time-syntax 1 (integer) 1 (integer) no

Synchronization Filter sync-filter schema (include by (none) no
schema membership)

Schema Name sync-schema indirect (none) yes'

Include Filter include-table-filter IDM_.* (none) no

Expression

Exclude Filter exclude-table-filter BIN\$.{22}==\$0 (none) no

Expression

Table/View Names sync-tables usr (none) yes1

Connection connection-init USE idm (none) no

Initialization

Statements

Use Minimal Number of use-single-connection 0 (no) (dynamic3) no

Connections?

Connection Properties connection-properties ~USER={$username}; (dynamic3) no
PASSWORD={$password}

State directory state-dir . (current directory) . (current no

directory)

JDBC Driver Descriptor jdbc-driver-descriptor ora_client_thin.xml (none) no

Filename

Database Descriptor database-descriptor ora_10g.xml (none) no

Filename

Configuring the JDBC Driver

47

48

Display Name Tag Name Sample Value Default Value Required
Use Manual use-manual- 1 (yes) (dynamicz) no
Transactions? transactions
Transaction Isolation transaction-isolation- read committed (dynamic3) no
Level level
Reuse Statements? reuse-statements 1 (reuse) (dynamic®) no
Number of Returned handle-stmt-results one (dynamic®) no
Result Sets
Enable Statement- enable-locking 1 (yes) 0 (no) no
Level Locking?
Lock Statement lock-generator-class com.novell.nds.dirxml.drive (dynamics) no
Generator Class r.jdbc.db.lock.OraLockGen

erator
Enable Referential enable-refs 1 (yes) 1 (yes) no
Attribute Support?
Enable Meta-ldentifier ~enable-meta-identifiers 1 (yes) 1 (yes) no
Support?
Force Username Case force-username-case upper (to uppercase) (none) no
Left Outer Join left-outer-join-operator (+) (dynamic®) no
Operator
Retrieve Minimal minimal-metadata 0 (no) (dynamic®) no
Metadata
Function Return function-return-method result set (dynamic®) no
Method
Supports Schemas in supports-schemas-in- 1 (yes) (dynamic®) no
Metadata Retrieval? metadata-retrieval
Sort Column Names By column-position- com.novell.nds.dirxml.drive (dynamic®) no

comparator

r.jdbc.util.config.comp.Strin

gByteComparator
(hexadecimal value)

! One of these mutually exclusive parameters must be present if the Synchronization Filter
parameter is not present. See “Synchronization Filter” on page 53. > This default is derived
dynamically at runtime from descriptor files and database metadata. > This default is derived
dynamically from descriptor files at runtime.

Driver parameters fall into the following subcategories:

¢ Section 6.3.1, “Uncategorized Parameters,” on page 49

¢ Section 6.3.2, “Database Scoping Parameters,” on page 52

¢ Section 6.3.3, “Connectivity Parameters,” on page 57

¢ Section 6.3.4, “Compatibility Parameters,” on page 59

Identity Manager 3.6.1 Driver for JDBC Implementation Guide

6.3.1 Uncategorized Parameters

¢ “Third-Party JDBC Driver Class Name” on page 49
¢ “Time Syntax” on page 49
+ “State Directory” on page 51
Third-Party JDBC Driver Class Name
This parameter is the fully-qualified Java class name of your third-party JDBC driver.

The following table lists the properties of this parameter:

Table 6-5 Third-Party JDBC Driver Class Name: Properties

Property Value

Tag Name jdbc-class

Required? yes

Case-Sensitive? yes

Sample Value oracle.jdbc.driver.OracleDriver
Default Value (none)

For a list of supported third-party JDBC driver classnames, see “JDBC Driver Class Names” on
page 158.

Time Syntax

The Time Syntax parameter specifies the format of time-related data types that the driver returns.
The format can be any of the following options:

¢ “Return Database Time, Date, and Timestamp Values as 32-Bit Integers” on page 49

¢ “Return Database Time, Date, and Timestamp Values as Canonical Strings” on page 50

¢ “Return database Time, Date, and Timestamp Values in their Java String Representation as
Returned by the Method toString():java.lang.String” on page 50

Return Database Time, Date, and Timestamp Values as 32-Bit Integers

This is the default.

eDirectory Time and Timestamp syntaxes are composed of unsigned, 32-bit integers that express the
number of whole seconds that have elapsed since 12:00 a.m., January 1st, 1970 UTC. The maximum
range of this data type is approximately 136 years. When interpreted as unsigned integers (as
originally intended), these syntaxes are capable of expressing dates and times to the second in the
range of 1970 to 2106. When interpreted as a signed integer, these syntaxes are capable of
expressing dates and times to the second in the range of 1901 to 2038.

Configuring the JDBC Driver

49

50

This option has two problems:

¢ Identity Vault Time and Timestamp syntaxes cannot express as large a date range as database
Date or Timestamp syntaxes.

¢ Identity Vault Time and Timestamp syntaxes are granular to the second. Database Timestamp
syntaxes are often granular to the nanosecond.

The second and third options overcome these two limitations.

Map the database Time, Date, and Timestamp values to eDirectory attributes of type Time or
Timestamp.

Return Database Time, Date, and Timestamp Values as Canonical Strings

The following table shows abstract database data types and their corresponding canonical string
representations:

Table 6-6 Database Types and Canonical String Representations

JDBC Data Type Canonical String Format1
java.sql.Time HHMMSS

java.sql.Date CCYYMMDD

ava.sql.Timestamp CCYYMMDDHHMMSSNNNNNNNNN

C = century, Y = year, M = month D = day, H = hour, M= minute, S = second, N = nano

These fixed-length formats collate in chronological order on any platform in any locale. Even
though the precision of nanoseconds varies by database, the length of Timestamps does not.

Map the database Time, Date, and Timestamp values to attributes of type Numeric String.

Return database Time, Date, and Timestamp Values in their Java String Representation as
Returned by the Method toString():java.lang.String

The following table shows abstract database data types and their corresponding Java String
representations:

Table 6-7 Database Types and Java String Formats

JDBC Data Type Java String Format1
java.sql.Time hh:mm:ss

java.sqgl.Date yyyy-mm-dd
java.sql.Timestamp yyyy-mm-dd hh:mm:ss.fffffffff

y= year, m= month, d= day, h= hour, m= minute, s= second, f= nano

These fixed-length formats collate in chronological order on any platform in any locale. The
precision of nanoseconds, and therefore the length of Timestamps, varies by database.

Identity Manager 3.6.1 Driver for JDBC Implementation Guide

Map the database Time, Date, and Timestamp values to attributes of type Case Ignore/Case Exact
String.

The following table lists the properties of the Time Syntax parameter:

Table 6-8 Time Syntax: Properties

Property Value

Tag Name time-syntax

Required? no

Default Value 1 (integer)

Legal Values 1 (integer) 2 (canonical string) 3 (java string)
Schema-Dependent? True

State Directory

The State Directory parameter specifies where a driver instance should store state data. State data is
currently used for triggerless publication. See “Triggerless Publication Parameters” on page 82.
State data might be used to store additional state information in the future.

Each driver instance has two state files. State filenames follow the formats jdbc_driver-
instance-guid.db and jdbc_driver-instance-guid.lg. For example, jdbc bd2a3dd5-
d571-4171-a195-28869577b87e.dband jdbc bd2a3dd5-d571-4171-a195-28869577b87e.1g
are state filenames.

State files are named to be unique. These names are not intuitive. The names begin with jdbc and
end in . 1g or .db. The rest of the filename is a GUID value that must be looked up by using a
directory browser that can display it.

Defunct state files (those belonging to deleted drivers) in the state directory are deleted each time a
driver instance with the same state directory is started.

Changes That Can Force Triggerless Publisher Resynchronization

If you delete state files, the triggerless publisher will build new state files by resynchronizing. If you
move the JDBC driver without moving the state files, the triggerless publisher builds new state files
by resynchronizing. Changing to and from the Remote Loader is a move. Therefore, if you move the
JDBC driver using triggerless publication and want to avoid a full resync, also move all jdbc_*.1g
and jdbc_*.db files in the state directory.

If more than two files exist in the specified state directory, you must look up the GUID to know
which files belong to the driver instance being moved. To identify a driver instance’s state files, you
can use DSTrace or DSBrowse. For convenience, the Identity Manager engine traces each driver's
GUID in DSTrace on startup.You can use DSbrowse to find the GUID.

If no value is provided for the state directory parameter, or the value is a period (.), the state
directory is the current directory. The current directory depends upon the following:

¢ The platform that the driver is running on

¢ Whether the driver is running locally or remotely

Configuring the JDBC Driver

51

When a process is started, a default directory in the file system is assigned to it. The default
directory is the current directory. If you don't supply a value, the default State Directory is the
current directory (the one that the process is running in).

Table 6-9 Default Directories

Platform or Environment Default Directory
Windows, for the Remote Loader novell\remoteloader
Windows, for Identity Manager (local; not on the c:\novell\nds\dibfiles

Remote Loader)

The current directory might be different for a custom installation.

No data is lost when resynchronization occurs, although additional data might remain. For example,
because deletes are not captured, users that were deleted in the database during the move will not be
disabled/deleted (depending upon the policy).

Moving the driver is not to be undertaken whimsically. As a rule of thumb, don't move the driver
unless you must do so.

Properties

The following table lists the properties of the State Directory parameter:

Table 6-10 State Directory: Properties

Property Value

Tag Name state-dir

Required? no

Case-Sensitive? platform-dependent
Sample Value c:\novell\nds\DIBFiles
Default Value . (current directory)

6.3.2 Database Scoping Parameters

+ “Synchronization Filter” on page 53

¢ “Schema Name” on page 55

¢ “Include Filter Expression” on page 55
¢ “Exclude Filter Expression” on page 56

¢ “Table/View Names” on page 56

52 Identity Manager 3.6.1 Driver for JDBC Implementation Guide

Synchronization Filter

The Synchronization Filter parameter determines which database objects, such as tables and views,

are members of the synchronization schema (the set of tables/views visible to the driver at runtime).

With the addition of this parameter, the driver can now run in two modes: schema-aware or schema-
unaware.

Schema-Unaware Mode

When the Synchronization Filter parameter is present and set to empty (exclude all tables/views),
the driver is schema-unaware. It does not retrieve table/view metadata on startup. Therefore, no
metadata methods are required. See Appendix F, “java.sql.DatabaseMetaData Methods,” on
page 203.

When it is schema-unaware, the synchronization schema can be empty. Both the Schema Name and
Sync Tables/Views parameters are completely ignored. Neither is required. Both can be absent,
present, valued or valueless. See “Schema Name” on page 55 and “Table/View Names” on page 56.

In schema-unaware mode, the driver acts as a passthrough agent for embedded SQL. In this state,
standard XDS events (for example, Add, Modify, and Delete) are ignored. See Chapter 11,
“Embedded SQL Statements in XDS Events,” on page 119. Also, triggered or triggerless publication
no longer work.

Schema-Aware Mode

When the Synchronization Filter parameter is not present or set to a value other than empty (exclude
all tables/views), the driver is schema-aware. It retrieves table/view metadata on a limited number of
tables/views to facilitate data synchronization. You can cache metadata on all tables/views owned by
a single database user (include by schema membership), or cache metadata on an explicit list of
table/view names (include by table/view name). When schema-aware, the driver retrieves database
table/view metadata on startup. For a list of required metadata methods, see Appendix F,
“java.sql.DatabaseMetaData Methods,” on page 203.

When schema-aware, parameter Schema Name or Table/View Names must be present and have a
value. Because these two parameters are mutually exclusive, only one parameter can have a value.
See “Schema Name” on page 55 and “Table/View Names” on page 56.

The following table lists the parameters that require the driver to be schema-aware. When the driver
is schema-unaware, these parameters do not have any effect on driver behavior.

Table 6-11 Schema-Dependent Parameters

Parameter

Lock Statement Generator Class
Enable Referential Attribute Support?
Enable Meta-Identifier Support?

Left Outer Join Operator

Retrieve Minimal Metadata

Supports Schemas in Metadata Retrieval?

Configuring the JDBC Driver

53

Parameter

Sort Column Names By

Disable Statement-Level Locking
Check Update Counts?

Add Default Values on Insert?
Generation/Retrieval Method (Table-Global)
Retrieval Timing (Table-Global)
Retrieval Timing

Disable Publisher?

Disable Statement-Level Locking?
Publication Mode

Enable Future Event Processing?
Event Log Table Name

Delete Processed Rows?

Allow Loopback?

Startup Option

Polling Interval (In Seconds)
Publication Time of Day

Post Polling Statements

Batch Size

The following table lists the properties of the Synchronization Filter parameter:

Table 6-12 Synchronization Filter: Properties

Property Value

Tag Name sync-filter

Required? no

Case-Sensitive? no

Sample Value indirect

Legal Values empty (exclude all tables/views) schema (include by schema membership)

list (include by table/view name)

Default Value: (none)

54 Identity Manager 3.6.1 Driver for JDBC Implementation Guide

Schema Name

The Schema Name parameter identifies the database schema being synchronized. A database
schema is analogous to the name of the owner of the tables or views being synchronized. For
example, to synchronize two tables, usr and grp, each belonging to database user idm, you enter
idm as this parameter’s value.

When using this parameter instead of Table/View Names, names of database objects are implicitly
schema-qualified by the driver. As such, parameters referencing stored procedure, function, or table
names do not need to be schema-qualified unless they reside in a schema other than the one
specified here. In particular, Method and Timing (Table-Local) and Event Log Table Name are
affected. See “Table/View Names” on page 56, “Method and Timing (Table-Local)” on page 73, and
“Event Log Table Name” on page 80.

The following table lists the properties of the Schema Name parameter:

Table 6-13 Schema Name: Properties

Property Value

Tag Name sync-schema

Required? yes

Case-Sensitive? See “Undelimited Identifier Case Sensitivity” on page 147.
Sample Value indirect

Default Value: (none)

When the Schema Name parameter is used without the Synchronization Filter parameter, the Table/
View Names parameter must be left empty or omitted from a configuration. See “Synchronization
Filter” on page 53 and “Table/View Names” on page 56.

Changing the value of the Schema Name parameter forces a resync of all objects when triggerless
publication is used.

Include Filter Expression

The Include Filter Expression parameter is only operative when the Schema Name parameter is
used. See “Schema Name” on page 55.

The following table lists the properties of the Include Filter Expression parameter:

Table 6-14 Include Filter Expression: Properties

Property Value

Tag Name include-table-filter

Required? no

Case-Sensitive? yes

Sample Value idm_.* (all table/view names starting with “idm_")

Configuring the JDBC Driver

55

Property Value

Default Value (none)

Legal Values (any legal Java regular expression)

Exclude Filter Expression

This parameter is only operative when the Schema Name parameter is used. See “Schema Name” on
page 55.

The following table lists the properties of the Exclude Filter Expression parameter:

Table 6-15 Exclude Filter Expression: Properties

Property Value

Tag Name exclude-table-filter

Required? no

Case-Sensitive? yes

Sample Value bin.* (all table/view names starting with “bin”)
Default Value (none)

Legal Values (any legal Java regular expression)

Table/View Names

The Table/View Names parameter allows you to create a logical database schema by listing the
names of the logical database classes to synchronize. Logical database class names are the names of
parent tables and views. It is an error to list child table names.

This parameter is particularly useful for synchronizing with databases that do not support the
concept of schema, such as MySQL, or when a database schema contains a large number of tables or
views of which only a few are of interest. Reducing the number of table/view definitions cached by
the driver can shorten startup time as well as reduce runtime memory utilization.

When using this parameter instead of Schema Name, you probably need to schema-qualify other
parameters that reference stored procedure, function, or table names. In particular, the Method and
Timing (Table-Local) and Event Log Table Name parameters are affected. See “Schema Name” on
page 55, “Method and Timing (Table-Local)” on page 73 and “Event Log Table Name” on page 80.

The following table lists the properties of the Table/View Names parameter:

Table 6-16 Table/View Names: Properties

Property Value
Tag Name sync-tables
Required? yes

56 Identity Manager 3.6.1 Driver for JDBC Implementation Guide

Property Value

Case-Sensitive? See “Undelimited Identifier Case Sensitivity” on page 147.
Delimiters semicolon, white space, comma

Sample Value indirect.usr; indirect.grp

Default Value (none)

When this parameter is used without the Synchronization Filter parameter, the Schema Name
parameter must be left empty or omitted from a configuration. See “Synchronization Filter” on
page 53 and “Schema Name” on page 55.

Changing anything in the Table/View Name parameter other than URL properties forces a
resynchronization of all objects when triggerless publication is used.

6.3.3 Connectivity Parameters

¢ “Use Minimal Number of Connections?” on page 57
¢ “Connection Initialization Statements” on page 58

¢ “Connection Properties” on page 58

Use Minimal Number of Connections?

The Use Minimal Number of Connections? parameter specifies whether the driver should use two
instead of three database connections.

By default, the driver uses three connections: one for subscription, and two for publication. The
Publisher channel uses one of its two connections to query for events and the other to facilitate
query-back operations.

When this parameter is set to Boolean True, the number of required database connections is reduced
to two. One connection is shared between the Subscriber and Publisher channels. It is used to
process subscription and publication query-back events. The other is used to query for publication
events.

In previous versions, the driver was able to support bidirectional synchronization by using a single
connection. The publication algorithm was redesigned to increase performance, enable support for
future event processing, and to overcome limitations of the previous algorithm at the expense of
requiring an additional connection.

Table 6-17 Use Minimal Number of Connections?: Properties

Property Value

Tag Name use-single-connection

Required? no

Default Value (dynamic)

Legal Values 1, yes, true (yes) 0, no, false (no)

Configuring the JDBC Driver

57

58

Property Value

Schema-Dependent False

The Default Value property is derived dynamically from descriptor files at runtime. Otherwise, the
default value is Boolean False.

Setting this parameter to Boolean True reduces performance.

Connection Initialization Statements

The Connection Initialization Statements parameter specifies what SQL statements, if any, should be
executed immediately after connecting to the target database. Connection initialization statements
are useful for changing database contexts and setting session properties. These statements are
executed each time the driver, irrespective of channel, connects or reconnects to the target database.

The following table lists the properties of this parameter:

Table 6-18 Connection Initialization Statements: Properties

Property Value

Tag Name connection-init

Required? no

Case-Sensitive? See “Undelimited Identifier Case Sensitivity” on page 147.
Delimiters semicolon

Sample Value USE idm; SET CHAINED OFF

Default Value (none)

Schema-Dependent False

Connection Properties

The Connection Properties parameter specifies authentication properties. This parameter is useful
for specifying properties that cannot be set via the JDBC URL specified in the Authentication
Context parameter. See “Authentication Context” on page 46.

The primary purpose of this parameter is to enable encrypted transport for third-party JDBC drivers.
For a list of relevant connection properties, see “Sybase Adaptive Server Enterprise JConnect JDBC
Driver” on page 168 and “Oracle Thin Client JDBC Driver” on page 164.

Connection properties are specified as key-value pairs. The key is specified as the value to the left of
the “=" character. The value is the value to the right of the “=" character. You can specify multiple
key-value pairs, but each pair must be delimited by the “;” character.

When you use the Connection Properties parameter, authentication information can be passed via
the JDBC URL specified in the Authentication Context parameter or here. See “Authentication
Context” on page 46.

Identity Manager 3.6.1 Driver for JDBC Implementation Guide

If specified as connection properties, value tokens can be used as placeholders for the database
username specified in the Authentication ID parameter and the password specified in the
Application Password parameter. See “Authentication ID” on page 46 and “Application Password”
on page 47. For username, the token is {$username}. For password, the token is {$password}.

The following table lists the properties of this parameter:

Table 6-19 Connection Properties: Properties

Property Value

Tag Name connection-properties

Required? no

Case-Sensitive? third-party JDBC driver-dependent
Delimiters semicolon

Sample Value

Default Value (none)

Schema-Dependent False

user={$username}; password={$password}; oracle.jdbc.defaultNChar=true

6.3.4 Compatibility Parameters

*

“JDBC Driver Descriptor Filename” on page 60
“Database Descriptor Filename” on page 60

“Use Manual Transactions?” on page 60
“Transaction Isolation Level” on page 61

“Reuse Statements?”” on page 62

“Number of Returned Result Sets” on page 63
“Enable Statement-Level Locking?” on page 63
“Lock Statement Generator Class” on page 64
“Enable Referential Attribute Support?” on page 64
“Enable Meta-Identifier Support?” on page 65
“Force Username Case” on page 65

“Left Outer Join Operator” on page 66

“Retrieve Minimal Metadata” on page 66
“Function Return Method” on page 67

“Supports Schemas in Metadata Retrieval?”” on page 67
“Sort Column Names By’ on page 68

Configuring the JDBC Driver

59

JDBC Driver Descriptor Filename

The JDBC Driver Descriptor Filename parameter specifies the third-party JDBC descriptor file to
use. Descriptor file names must not be prefixed with the underscore character (for example,
_mysqgl jdriver.xml) because such filenames are reserved. Place descriptor files in a jar file
beginning with the case-insensitive prefix “jdbc” (for example, JDBCCustomConfig.jar) and in
the jar file’s com/novell/nds/dirxml/driver/jdbc/db/descriptor/driver directory.

The following table lists the properties of this parameter:

Table 6-20 JDBC Driver Descriptor Filename: Properties

Property Value

Tag Name jdbc-driver-descriptor

Required? no

Case-Sensitive? platform-dependent

Sample Value my_custom_jdbc_driver_descriptor.xml
Default Value (none)

Schema-Dependent False

Database Descriptor Filename

The Database Descriptor Filename parameter specifies the database descriptor file to use. Do not use
the underscore character in prefixes to Descriptor filenames (for example, mysqgl.xml). Such
names are reserved. Place Descriptor files in a jar file beginning with the case-insensitive prefix
“jdbc” (for example, JDBCCustomConfig.jar). Also, place Descriptor files in the jar file’s com/
novell/nds/dirxml/driver/jdbc/db/descriptor/db directory.

The following table lists the properties of this parameter:

Table 6-21 Database Descriptor Filename: Properties

Property Value

Tag Name jdbc-driver-descriptor

Required? no

Case-Sensitive? platform-dependent

Sample Value my_custom_database_descriptor.xml
Default Value (none)

Schema-Dependent False

Use Manual Transactions?

The Use Manual Transactions? parameter specifies whether to use manual or user-defined
transactions.

60 Identity Manager 3.6.1 Driver for JDBC Implementation Guide

This parameter is primarily used to enable interoperability with MySQL MyISAM table types,
which do not support transactions.

When set to Boolean True, the driver uses manual transactions. When set to Boolean False, each
statement executed by the driver is executed autonomously (automatically).

The following table lists the properties of this parameter:

Table 6-22 Use Manual Transactions?: Properties

Property Value

Tag Name use-manual-transactions
Required? no

Case-Sensitive? no

Default Value (dynamic)

Legal Values 1, yes, true (yes) 0, no, false (no)
Schema-Dependent False

The Default Value property is derived dynamically from descriptor files and database metadata at
runtime.

To ensure data integrity, set this parameter to Boolean True whenever possible.

Transaction Isolation Level

The Transaction Isolation Level parameter sets the transaction isolation level for connections that
the driver uses. Six values exist:

¢ unsupported

¢ none

¢ read uncommitted

¢ read committed

¢ repeatable read

¢ serializable

Five of the values correspond to the public constants defined in the java.sql Interface Connection
(http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Connection.html).

Because some third-party drivers do not support setting a connection’s transaction isolation level to
none, the driver also supports the additional non-standardized value of unsupported. PostgreSQL
online documentation (http://www.postgresql.org/docs/current/static/transaction-iso.html) has one
of the better, concise primers on what each isolation level actually means.

IMPORTANT: The list of supported isolation levels varies by database. For a list of supported
transaction isolation levels for supported databases, see “Supported Transaction Isolation Levels” on
page 147.

Configuring the JDBC Driver

61

http://www.postgresql.org/docs/current/static/transaction-iso.html
http://www.postgresql.org/docs/current/static/transaction-iso.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Connection.html

62

We recommend using a transaction isolation level of read committed because it is the minimum
isolation level that prevents the driver from seeing uncommitted changes (dirty reads).

The following table lists the properties of this parameter:

Table 6-23 Transaction Isolation Level: Properties

Property Value

Tag Name transaction-isolation-level

Required? no

Case-Sensitive? no

Default Value (dynamic)

Legal Values unsupported none read uncommitted read committed repeatable

read serializable

Schema-Dependent False

The Default Value property is derived dynamically from descriptor files at runtime. Otherwise, the
default value is read committed.

Reuse Statements?

The Reuse Statements? parameter specifies whether one or more java.sql.Statement items are active
at a time on a given connection. See java.sql.Statement (http://java.sun.com/j2se/1.5.0/docs/api/
java/sql/Statement.html).

This parameter is primarily used to enable interoperability with Microsoft SQL Server 2000 Driver
for JDBC.

When set to Boolean True, the driver allocates a Java SQL Statement once and then reuses it. When
set to Boolean False, the driver allocates/deallocates statement objects each time they are used,
ensuring that no more than one statement is active at a time on a given connection.

The following table lists the properties of this parameter:

Table 6-24 Reuse Statements?: Properties

Property Value

Tag Name reuse-statements

Required? no

Case-Sensitive? no

Default Value (dynamic)

Legal Values 1, yes, true (yes) 0, no, false (no)
Schema-Dependent False

Identity Manager 3.6.1 Driver for JDBC Implementation Guide

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Statement.html

The Default Vault is derived dynamically from descriptor files at runtime. Otherwise, the default
value is Boolean True.

Setting this parameter to Boolean False degrades performance.

Number of Returned Result Sets

The Number of Returned Result Sets parameter specifies how many java.sql.Result objects can be
returned from an arbitrary SQL statement. See java.sql.ResultSet (http://java.sun.com/j2se/1.5.0/
docs/api/java/sql/ResultSet.html).

This parameter is primarily used to avoid infinite loop conditions in “Oracle Thin Client JDBC
Driver” on page 164 when evaluating the results of arbitrary SQL statements.

The following table lists the properties of this parameter:

Table 6-25 Number of Returned Result Sets: Properties

Property Value

Tag Name handle-stmt-results

Required? no

Sample Value one

Default Value (dynamic)

Legal Values none, no (none) single, one (one) multiple, many, yes (multiple)
Schema-Dependent False

The Default Value property is derived dynamically from descriptor files at runtime. Otherwise, the
default value is multiple, many, or yes.

Enable Statement-Level Locking?

The Enable Statement-Level Locking? parameter specifies whether the driver explicitly locks
database resources before executing SQL statements.

The following table lists the properties of this parameter:

Table 6-26 Enable Statement-Level Locking?: Properties

Property Value

Tag Name enable-locking

Required? no

Default Value 0 (no)

Legal Values 1, yes, true (yes) 0, no, false (no)
Schema-Dependent True

Configuring the JDBC Driver

63

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/ResultSet.html

Lock Statement Generator Class

The Lock Statement Generator Class parameter specifies which DBLockStatementGenerator
implementation to use to generate the SQL statements necessary to explicitly lock database
resources for a pending SQL statement. Information on the DBLockStatementGenerator interface is
in the Java documents that ship with the driver.

The following table lists the properties of this parameter:

Table 6-27 Lock Statement Generator Class: Properties

Property Value

Tag Name lock-generator-class

Required? no

Sample Value com.novell.nds.dirxml.driver.jdbc.db.lock.OraLockGenerator
Default Value (dynamic)

Legal Values 1, yes, true (yes) 0, no, false (no)

Schema-Dependent True

Th Default Value property is derived dynamically from descriptor files at runtime. Otherwise, the
default value is com.novell.nds.dirxml.driver.jdbc.db.lock. DBLockGenerator.

Enable Referential Attribute Support?

The Enable Referential Attribute Support? parameter toggles whether the driver recognizes foreign
key constraints between logical database classes. These are used to denote containment. Foreign key
constraints between parent and child tables within a logical database class are unaffected.

When set to Boolean True, foreign key columns are interpreted as referential. When set to Boolean
False, foreign key columns are interpreted as non-referential.

The primary purpose of this parameter is to ensure backward compatibility with the 1.0 version of
the driver. For 1.0 compatibility, set this parameter to Boolean False.

The following table lists the properties of this parameter:

Table 6-28 Enable Referential Attribute Support?: Properties

Property Value

Tag Name enable-refs

Required? no

Default Value 1 (yes)

Legal Values 1, yes, true (yes) 0, no, false (no)
Schema-Dependent True

64 Identity Manager 3.6.1 Driver for JDBC Implementation Guide

Enable Meta-ldentifier Support?

The Enable Meta-Identifier Support? parameter toggles whether the driver interprets view column
name prefixes such as pk_and fk_ strictly as metadata. When interpreted as metadata, such prefixes
are not considered part of the view column name.

For example, when meta-identifier support is enabled, column pk_idu has an effective column name
of idu, prohibiting the existence of another column with the same effective name in the same view.
When meta-identifier support is disabled, column pk _idu has the effective column name of pk_idu,
allowing the existence of another column named idu. Furthermore, when meta-identifier support is
enable, a view with a primary key named pk_idu would conflict with a table having a primary key
column named idu. When meta-identifier support is disabled, they would not conflict.

When set to Boolean True, view column prefixes are interpreted as metadata. When set to Boolean
False, view column name prefixes are interpreted as part of the column name proper.

The primary purpose of this parameter is to ensure backward compatibility with the 1.5 version of
the driver. For 1.5 compatibility, set this parameter to Boolean False.

The following table lists the properties of this parameter:

Table 6-29 Enable Meta-Identifier Support?: Properties

Property Value

Tag Name enable-meta-identifiers
Required? no

Default Value 1 (yes)

Legal Values 1, yes, true (yes) 0, no, false (no)
Schema-Dependent True

Force Username Case

The Force Username Case parameter changes the case of the driver’s username used to authenticate
to the target database.

The primary purpose of this parameter is to enable interoperability with the Informix JDBC Driver
when used against ANSI-compliant databases. See “Informix JDBC Driver” on page 160.

The following table lists the properties of this parameter:

Table 6-30 Force Username Case: Properties

Property Value

Tag Name force-username-case

Required? no

Default Value (don’t force)

Legal Values lower (to lowercase) mixed (to mixed case) upper (to uppercase)

Configuring the JDBC Driver

65

66

Property Value

Schema-Dependent False

Left Outer Join Operator

The Left Outer Join Operator parameter specifies the left outer join operator used in the triggerless
publication query. It might be used for other purposes in the future.

The following table lists the properties of this parameter:

Table 6-31 Left Outer Join Operator: Properties

Property Value

Tag Name left-outer-join-operator
Required? no

Default Value (dynamic)

Legal Values *= (+) LEFT OUTER JOIN
Schema-Dependent True

The Default Value property is derived dynamically from descriptor files at runtime. Otherwise, the
default value is LEFT OUTER JOIN.

Retrieve Minimal Metadata

When set to Boolean True, the driver calls only required metadata methods. When set to Boolean
False, the driver calls required and optional metadata methods. For a list of required and optional
metadata methods, refer to Appendix F, “java.sql.DatabaseMetaData Methods,” on page 203.
Optional metadata methods are required for multivalue and referential attribute synchronization.

Table 6-32 Retrieve Minimal Metadata: Properties

Property Value

Tag Name minimal-metadata

Required? no

Default Value (dynamic)

Legal Values 1, yes, true (yes) 0, no, false (no)
Schema-Dependent True

The Default Value property is derived dynamically from descriptor files at runtime. Otherwise, the
default value is Boolean False.

Setting this value to Boolean True improves startup time and third-party JDBC driver compatibility
at the expense of functionality.

Identity Manager 3.6.1 Driver for JDBC Implementation Guide

Function Return Method
The Function Return Method parameter specifies how data is retrieved from database functions.

The primary purpose of this parameter is to enable interoperability with the Informix JDBC driver.
See “Informix JDBC Driver” on page 160.

When set to result set, function results are retrieved through a result set. When set to return
value, the function result is retrieved as a single, scalar return value.

Table 6-33 Function Return Method: Properties

Property Value

Tag Name function-return-method

Required? no

Default Value (dynamic)

Legal Values result set return value (scalar return value)
Schema-Dependent False

The Default Value property is derived dynamically from descriptor files at runtime.

Supports Schemas in Metadata Retrieval?

The Supports Schemas in Metadata Retrieval? parameter specifies whether schema names should be
used when retrieving database metadata.

The primary purpose of this parameter is to enable interoperability with the Informix JDBC Driver
when used against ANSI-compliant databases. See “Informix JDBC Driver” on page 160.

When set to Boolean True, schema names are used. When set to Boolean False, they are not.

Table 6-34 Supports Schemas in Metadata Retrieval?: Properties

Property Value

Tag Name supports-schemas-in-metadata-retrieval
Required? no

Default Value (dynamic)

Legal Values 1, yes, true (yes) 0, no, false (no)
Schema-Dependent False

The Default Value property is derived dynamically from descriptor files at runtime. Otherwise, the
default value is Boolean True.

Configuring the JDBC Driver

67

Sort Column Names By

The Sort Column Names By parameter specifies how column position is to be determined for legacy
databases that do not support sorting by column names.

The primary purpose of this parameter is to enable interoperability with legacy databases, such as
DB2/AS400.

Sorting columns names by hexadecimal value ensures that if a driver instance is relocated to a
different server, it continues to function without modification. Sorting column names by platform or
locale string collation order is more intuitive, but might require configuration changes if a driver
instance is relocated to a different server. In particular, log table column order and compound
column name order might change. In the case of the latter, Schema-Mapping policies and object
association values might need to be updated. In the case of the former, log table columns might have
to be renamed.

It is also possible to specify any fully-qualified Java class name as long as the following occur:

¢ The Java class name implements the java.util. Comparator (http://java.sun.com/j2se/1.5.0/docs/
api/java/util/Comparator.html) interface.

¢ The Java class name accepts java.lang.String (http://java.sun.com/j2se/1.5.0/docs/api/java/
lang/String.html) arguments.

¢ The class is in the runtime classpath.

Table 6-35 Sort Column Names By: Properties

Property Value

Tag Name column-position-comparator

Required? no

Default Value (dynamic)

Legal Values com.novell.nds.dirxml.driver.jdbc.util.config.comp.StringByteCompara

tor (hexadecimal value)
com.novell.nds.dirxml.driver.jdbc.util.config.comp.StringComparator
(string collation order) (any java.util. Comparator that accepts
java.lang.String arguments)

Schema-Dependent True

The Default Value property is derived dynamically from descriptor files at runtime. Otherwise, the
default value is com.novell.nds.dirxml.driver.jdbc.util.config.comp.StringByteComparator.

IMPORTANT: After you set this parameter for a given configuration, don’t change the parameter.

6.4 Subscription Parameters

The following table summarizes Subscriber-level parameters and their properties:

68 Identity Manager 3.6.1 Driver for JDBC Implementation Guide

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Comparator.html
http://java.sun.com/j2se/1.5.0/docs/api/java/lang/String.html

Table 6-36 Subscriber-Level Parameters and Properties

Display Name Tag Name Sample Value Default Value Required
Disable Subscriber? disable 1 (yes) 0 (no) no
Generation/Retrieval key-gen-method auto none
Method (Table-Global) (subscription
event)

Retrieval Timing (Table- key-gen-timing after (after row insertion) before (before no
Global) row insertion)
Method and Timing key-gen usr("?=indirect.proc_idu()", (none) no
(Table-Local) before)
Disable Statement-Level disable-locking 1 (yes) 0 (no) no
Locking?
Check Update Counts? check-update- 0 (no) 1 (yes) no

count
Add Default Values on add-default- 0 (no) (dynamic) no

Insert?

values-on-view-

insert

This default for the Add Default Values on Insert property is derived dynamically from descriptor

files at runtime.

Subscription parameters are in two subcategories:

¢ Section 6.4.1, “Uncategorized Parameters,” on page 69

¢ Section 6.4.2, “Primary Key Parameters,” on page 71

6.4.1 Uncategorized Parameters

¢ “Disable Subscriber?”” on page 69

¢ “Disable Statement-Level Locking?” on page 70

¢ “Check Update Counts?” on page 70

¢ “Add Default Values on Insert?” on page 71

Disable Subscriber?

The Disable Subscriber? parameter specifies whether the Subscriber channel is disabled.

When this parameter is set to Boolean True, the Subscriber channel is disabled. When the parameter

is set to Boolean False, the Subscriber channel is active.

Table 6-37 Disable Subscriber?: Properties

Property

Value

Tag Name

disable

Configuring the JDBC Driver

69

Property Value

Required? no

Default Value 0 (no)

Legal Values 1, yes, true (yes) 0, no, false (no)
Schema-Dependent False

Disable Statement-Level Locking?

The Disable Statement-Level Locking? parameter specifies whether database resources are
explicitly locked on this channel before each SQL statement is executed. This parameter is active
only if Enable Statement-Level Locking? is set to Boolean True.

When this parameter is set to Boolean True, database resources are explicitly locked. When this
parameter is set to Boolean False, database resources are not explicitly locked.

Table 6-38 Disable Statement-Level Locking?: Properties

Property Value

Tag Name disable-locking

Required? no

Default Value 0 (no)

Legal Values 1, yes, true (yes) 0, no, false (no)
Schema-Dependent True

Check Update Counts?

The Check Update Counts? parameter specifies whether the Subscriber channel checks to see if a
table was actually updated when INSERT, UPDATE, and DELETE statements executed against a table.

When set to Boolean True, update counts are checked. If nothing is updated, an exception is thrown.
When set to Boolean False, update counts are ignored.

When statements are redefined in before-trigger logic, set his parameter to Boolean False
When using Microsoft SQL Server, use the default value, because errors in trigger logic (that might

roll back a transaction) are not propagated back to the Subscriber channel.

Table 6-39 Check Update Counts?: Properties

Property Value

Tag Name check-update-count
Required? no

Default Value 1 (yes)

70 Identity Manager 3.6.1 Driver for JDBC Implementation Guide

Property Value

Legal Values 1, yes, true (yes) 0, no, false (no)

Schema-Dependent True

Add Default Values on Insert?

The Add Default Values on Insert? parameter specifies whether the Subscriber channel provides
default values when executing an INSERT statement against a view.

The primary purpose of this parameter is to enable interoperability with Microsoft SQL Server 2000.
This database requires that view columns constrained NOT NULL have a non-NULL value in an
INSERT statement.

When this parameter is set to Boolean True, default values are provided for INSERT statements
executed against views, and explicit values are not already available. When this parameter is set to
Boolean False, default values are not provided.

Table 6-40 Add Default Values on Insert?: Properties

Property Value

Tag Name add-default-values-on-view-insert
Required? no

Default Value (dynamic)

Legal Values 1, yes, true (yes) 0, no, false (no)
Schema-Dependent True

The Default Value property is derived dynamically from descriptor files at runtime.

6.4.2 Primary Key Parameters

¢ “Generation/Retrieval Method (Table-Global)” on page 72

¢ “Retrieval Timing (Table-Global)” on page 73

¢ “Method and Timing (Table-Local)” on page 73
When processing <add> events, which map to INSERT statements, the Subscriber channel uses
primary key values to create Identity Manager associations. These parameters specify how and when
the Subscriber channel obtains the primary key values necessary to construct association values.

How primary key values are obtained is the primary key generation/retrieval method. The retrieval
timing indicates when primary key values are retrieved.

The following table identifies the supported methods and timings:

Configuring the JDBC Driver

7

Table 6-41 Supported Methods and Timings

Method Timing: before (row insertion) Timing: after (row insertion)
None (subscription event) X 0’

Driver (Subscriber-generated) X

Auto (auto-generated/identity column) 02

(stored procedure/function) X

! The Subscriber channel automatically overrides this timing and changes it to before. > The
Subscriber channel automatically overrides this timing and changes it to after.

Generation/Retrieval Method (Table-Global)

The Generation/Retrieval Method (Table-Global) parameter specifies how primary key values are
generated or retrieved for all parent tables and views. The Method and Timing parameter overrides
this parameter on a per-table/view basis. See “Method and Timing (Table-Local)” on page 73.

When this parameter is set to none, primary key values are assumed to already exist in the
subscription event. When this parameter is set to driver, primary key values are generated by one
of the following:

¢ Using a SELECT (MAX () +1) statement if retrieval timing is set to before
¢ Using a SELECT MAX () statement if retrieval timing is set to after

For string column types, the Subscriber channel generates a value by using the return value of
System.CurrentTimeMillis(). Other data types are not supported.

When this parameter is set to auto, primary key values are retrieved via the
java.sgl.Statement.getGeneratedKeys () : java.sql.ResultSet method. The MySQL
Connector/J JDBC driver implements this method. See “MySQL Connector/J JDBC Driver” on
page 163.

Table 6-42 Generation/Retrieval Method (Table-Global): Properties

Property Value

Tag Name key-gen-method

Required? no

Default Value none (subscription event)

Legal Values none (subscription event) driver (Subscriber-generated) auto (auto-

generated/identity column)

Schema-Dependent True

72 |dentity Manager 3.6.1 Driver for JDBC Implementation Guide

Retrieval Timing (Table-Global)

The Retrieval Timing (Table-Global) parameter specifies when the Subscriber channel retrieves
primary key values for all parent tables and views. The Method and Timing (Table-Local) parameter
overrides this parameter. See “Method and Timing (Table-Local)” on page 73.

When this parameter is set to before, primary key values are retrieved before insertion. When this
parameter is set to after, primary key values are retrieved after insertion.

Table 6-43 Retrieval Timing (Table-Global): Properties

Property Value

Tag Name key-gen-timing

Required? no

Default Value before (before row insertion)

Legal Values before (before row insertion) after (after row insertion)
Schema-Dependent True

Method and Timing (Table-Local)

The Method and Timing (Table-Local) parameter specifies the primary key generation/retrieval
method and retrieval timing on a per parent table/view basis. It essentially maps a generation/
retrieval method and retrieval timing to a table or view name. The syntax for this parameter mirrors
a procedural programming language method call with multiple arguments (such as method-
name(argumentl, argument?)).

When using the Table/View Names parameter, you probably need to explicitly schema-qualify any
tables, views, stored procedures or functions referenced in this parameter’s value. When you use the
Schema Name parameter, tables, views, stored procedures, or functions referenced in this
parameter’s value are implicitly schema-qualified with that schema name. If tables, views, stored
procedures, or functions referenced in this parameter’s value are located in a different schema than
the implicit schema, they must be schema-qualified.

¢+ “BNF” on page 73
¢ “Generation or Retrieval Method” on page 74

¢ “Retrieval Timing” on page 76

BNF

The BNF (Backus Naur Form (http://cui.unige.ch/db-research/Enseignement/analyseinfo/
AboutBNF.html)) notation for this parameter’s value is the following:

<key-gen> ::= <table-or-view-name> " (" <generation-retrieval-method>,
<retrieval-timing> ")" {[<delimiter>] <key-gen>}
<generation-retrieval-method> ::= none | driver | auto |

""" <procedure-signature> """
""" <function-signature> """

<table-or-view-name> ::= <legal-undelimited-database-table-or-view-

Configuring the JDBC Driver

73

http://cui.unige.ch/db-research/Enseignement/analyseinfo/AboutBNF.html

74

identifier>
<delimiter> ::= ";" | "," | <white-space>

<procedure-signature> ::= <schema-qualifier> "." <stored-routine-
name>" ("<argument-list>")"

<function-signature> ::= "?=" <procedure-signature>

<schema-qualifier> ::= <legal-undelimited-database-username-identifier>

<stored-routine-name> ::= <legal-undelimited-database-stored-routine
-identifier>

<argument-list> ::= <column-name>{"," <column-name>}

<column-name> ::= <column-from-table-or-view-name-previously-specified>

Generation or Retrieval Method

The generation or retrieval method specifies how primary key values are to be generated, if
necessary, and retrieved. The possible methods are None, Driver, Auto, and Stored Procedure/
Function:

None: By default, the Subscriber channel assumes that the Identity Vault is the authoritative source
of primary key values and that the requisite values are already present in a given <add> event. If this
is the case, no primary values need to be generated because they already exist. They only need to be
retrieved from the current <add> event. This method is desirable when an eDirectory attribute, such
as GUID, is explicitly schema-mapped to a parent table or view’s primary key column.

Assuming the existence of a table named usr and a view named view usr where the Identity Vault
is the authoritative source of primary key values, this parameter’s value would be similar to the
following:

usr(none); view_usr (none)

When you use this method, we recommend mapping GUID rather than CN to a parent table or
view’s primary key column.

Driver: This method assumes that the database is the authoritative source of primary key values for
the specified parent table or view.

When prototyping or in the initial stages of deployment, it is often desirable to have the Subscriber
channel generate primary key values before a stored procedure or function is written. You can also
use this method against databases that do not support stored procedures or functions. When you use
this method in a production environment, however, all SQL statements generated by an <add> event
should be contained in a serializable transaction. For additional information, refer to “Transaction
Isolation Level” on page 61.

Instead of making all transactions serializable, you can also set individual transaction isolation
levels by using embedded SQL attributes. For additional information, refer to Section 11.6,
“Transaction Isolation Level,” on page 126.

Identity Manager 3.6.1 Driver for JDBC Implementation Guide

For any numeric column types, the Subscriber channel uses the following to generate primary key
values:

+ A simple SELECT (MAX+1) statement for before timing

¢ A SELECT MAX ()statement for after timing

For string column types, the Subscriber channel generates a value by using the return value of
System.CurrentTimeMillis(). Other data types are not supported.

Assuming the existence of a table named usr and a view named view usr, where the database is
the authoritative source of primary key values, this parameter’s value would be similar to the
following:

usr(driver); view usr(driver)

When you use this method, we recommend that you omit primary key columns from Schema
Mapping policies and channel filters.

Auto: This method assumes that the database is the authoritative source of primary key values for
the specified parent table or view.

Some databases support identity columns that automatically generate primary key values for
inserted rows. This method retrieves auto-generated primary key values through the JDBC 3
interface method java.sql.Statement.getGeneratedKeys () : java.sqgl.ResultSet. The
MySQL Connector/J JDBC driver is the only supported third-party JDBC driver that currently
implements this method. See “MySQL Connector/J JDBC Driver” on page 163.

Assuming the existence of a table named usr and a view named view usr, where the database is
the authoritative source of primary key values, this parameter’s value would be similar to the
following:

usr(auto); view usr(auto)

When you use this method, we recommend that you omit primary key columns from Schema
Mapping policies and channel filters.

Stored-Procedure/Function: This method assumes that the database is the authoritative source of
primary key values for the specified parent table or view.

Assuming

¢ The existence of a table named usr with a primary key column named idu
¢ A view named view usr with a primary key values named pk idu

¢ The existence of a database function func_last usr idu and stored procedure
sp_last view usr pk idu that both return the last generated primary key value for their
respective table/view

This parameter’s value would be similar to the following:
usr ("?=func_last usr idu()"); view usr("sp last view usr pk idu(pk idu)")

In the previous examples, a parameter is passed to the stored procedure. Parameters can also be
passed to functions, but this is not usually necessary. Unlike functions, stored procedures usually
return values through parameters. For stored procedures, primary key columns must be passed as IN
OUT parameters. Non-key columns must be passed as IN parameters.

Configuring the JDBC Driver

75

76

For both stored procedures and functions, parameter order, number and data type must correspond to
the order, number and data type of the parameters expected by the procedure or function.

When you use this method, we recommend that you omit primary key columns from Schema
Mapping policies and channel filters.

Retrieval Timing
The Retrieval Timing parameter specifies when primary key values are retrieved.

An <add> event always results in at least one INSERT statement against a parent table or view. This
portion of this parameter specifies when primary key values are to be retrieved relative to the initial
INSERT statement.

Before: This is the default setting. When this setting is specified, primary key values are retrieved
before the initial INSERT statement.

This retrieval timing is supported for all generation/retrieval methods except auto. Retrieval timing
is required for the none method.

After: When this setting is specified, primary key values are retrieved after the initial INSERT
statement.

This retrieval timing is supported for all generation/retrieval methods except none. Retrieval timing
is required for the auto method.

The following examples augment the previous ones by adding retrieval timing information:
usr (none, before); view usr(none, before)

usr (driver, before); view usr(driver, after)

usr (auto, after); view usr(auto, after)

usr ("?=func_last usr idu()", before);
view usr("sp last view usr pk idu(pk idu)", after)

The following table lists the properties of this parameter:

Table 6-44 Retrieval Timing: Properties

Property Value

Tag Name key-gen

Required? no

Case-Sensitive? See “Undelimited Identifier Case Sensitivity” on page 147.
Sample Value usr("?=proc_idu()", before)

Default Value (none)

Legal Values (any string adhering to the BNF)

Schema-Dependent True

Identity Manager 3.6.1 Driver for JDBC Implementation Guide

6.5 Publication Parameters

The following table summarizes publisher-level parameters and their properties:

Table 6-45 Publisher-Level Parameters and Properties

Display Name Tag Name Sample Value Default Value Required

Disable Publisher? disable 1 (yes) 0 (no) no

Disable Statement-Level disable-locking 1 (yes) 0 (no) no

Locking?

Publication Mode publication-mode 2 (triggerless) 1 (triggered) no

Event Log Table Name log-table indirect_process (none) yes1

Delete Processed delete-from-log 0 (no) 1 (yes) no

Rows?

Allow Loopback? allow-loopback 1 (yes) 0 (no) no

Enable Future Event handle-future-events 1 (yes) 0 (no) no

Processing?

Startup Option startup-option no

Polling Interval (In polling-interval 60 10 no?

Seconds)

Publication Time of Day time-of-day 15:30:00 (none) no?

Post Polling Statements post-poll-stmt DELETE FROM (none) no
direct.direct_process

Batch Size batch-size 16 1 no

Heartbeat Interval (In pub-heartbeat-interval 10 0 no

Minutes)

! Required for triggered publication mode. 2 These parameters are mutually exclusive.

Publication parameters fall into four major subcategories:

¢ Section 6.5.1, “Uncategorized Parameters,” on page 77

¢ Section 6.5.2, “Triggered Publication Parameters,” on page 80

¢ Section 6.5.3, “Triggerless Publication Parameters,” on page 82

¢ Section 6.5.4, “Polling Parameters,” on page 83

6.5.1 Uncategorized Parameters

¢ “Disable Publisher?” on page 78

¢ “Disable Statement-Level Locking?” on page 78

¢ “Publication Mode” on page 78

+ “Enable Future Event Processing?”” on page 79

Configuring the JDBC Driver

77

Disable Publisher?

The Disable Publisher? parameter specifies whether the Publisher channel is disabled. When
disabled, the Publisher channel does not query for database events. Unlike the Disable Subscriber?
parameter, you can still issue database queries on the Publisher channel to facilitate alternative
publication algorithms.

When this parameter is set to Boolean True, the Publisher channel is disabled. When this parameter
is set to Boolean False, the Publisher channel is active.

Table 6-46 Disable Publisher?: Properties

Property Value

Tag Name disable

Required? no

Default Value 0 (no)

Legal Values 1, yes, true (yes) 0, no, false (no)
Schema-Dependent True

Disable Statement-Level Locking?

The Disable Statement-Level Locking? parameter specifies whether database resources should be
explicitly locked on this channel before each SQL statement is executed. This parameter is only
active if the Enable Statement-Level Locking? parameter is set to Boolean True.

When this parameter is set to Boolean True, database resources are explicitly locked. When this
parameter is set to Boolean False, database resources are not explicitly locked.

Table 6-47 Disable Statement-Level Locking?: Properties

Property Value

Tag Name disable-locking

Required? no

Default Value 0 (no)

Legal Values 1, yes, true (yes) 0, no, false (no)
Schema-Dependent True

Publication Mode
The Publication Mode parameter specifies which publication algorithm is used.

When set to 1 (triggered), the Publisher channel polls the event log table for events. When set to 2
(triggerless), the Publisher channel searches all tables/views in the synchronization schema for
changes, and synthesizes events.

The following table lists the properties of this parameter:

78 Identity Manager 3.6.1 Driver for JDBC Implementation Guide

Table 6-48 Publication Mode: Properties

Property Value

Tag Name publication-mode
Required? no

Default Value 1 (triggered)

Legal Values 1 (triggered) 2 (triggerless)
Schema-Dependent True

Enable Future Event Processing?

For triggered publication, Enable Future Event Processing? specifies whether rows in the event log
table are ordered and processed by insertion order (the record id column) or chronologically (the
event time column).

When this parameter is set to Boolean False, rows in the event log table are published by order of
insertion. When this parameter is set to Boolean True, rows in the event log table are published
chronologically.

For triggerless publication, Enable Future Event Processing specifies whether database local time is
published with each event. This additional information can be used to force a retry of future-dated
events. In order for this to work, a column specifying when an event should be processed must be
part of each logical database class utilizing this feature and placed in the Publisher filter as a
notification-only attribute.

Database local time is published as an attribute on each XDS event (for example, add, modify,
delete). The attribute name is jdbc:database-local-time, where the jdbc namespace prefix is
bound to urn:dirxml:jdbc. The format is the Java string representation of a java.sql. Timestamp:
yyyy-mm-dd hh:mm:ss.fffff££ff. Depending upon the value of the Time Syntax parameter, the
value indicating when an event should be processed can be published as an integer, as a canonical
string, or as a Java string. See “Time Syntax” on page 49.

Regardless of the publication syntax, this value can be parsed and compared to the database local
time value. The following table maps the time syntax to the appropriate parse method.

Table 6-49 Mapping Time Syntax to Parse Methods

Time Syntax Parse Method

integer java.sqgl.Timestamp(long) (http://java.sun.com/j2se/1.5.0/docs/api/java/sql/
Timestamp.html)

canonical string com.novell.nds.dirxml.driver.jdbc.db.DSTime(java.lang.String, java.lang.String,
java.lang.String, java.lang.String)

java string java.sql.Timestamp.valueOf(java.lang.String):java.sql. Timestamp (http://
java.sun.com/j2se/1.5.0/docs/api/java/sql/Timestamp.html)

Configuring the JDBC Driver

79

http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Timestamp.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Timestamp.html

80

After both time values are in a common Timstamp object representation, they can be compared by
using the following methods:

¢ com.novell.nds.dirxml.driver.jdbc.db. TimestampUtil.before(java.sql. Timestamp,
java.sql. Timestamp):boolean

¢ com.novell.nds.dirxml.driver.jdbc.db. TimestampUltil.after(java.sql. Timestamp,
java.sql. Timestamp):boolean

An example policy is provided in Appendix L, “Policy Example: Triggerless Future Event
Processing,” on page 219.

When this parameter is set to Boolean True, local database time is published with each event. When
this parameter is set to Boolean False, this information is omitted.

The following table lists the properties of this parameter:

Table 6-50 Enable Future Event Processing?: Properties

Property Value

Tag Name handle-future-events

Required? no

Default Value 0 (no)

Legal Values 1, yes, true (yes) 0, no, false (no)
Schema-Dependent True

6.5.2 Triggered Publication Parameters

The JDBC driver can use any of four triggered publication parameters.

¢ “Event Log Table Name” on page 80
¢ “Delete Processed Rows?” on page 81

+ “Allow Loopback?” on page 82

Event Log Table Name

The Event Log Table Name parameter specifies the name of the event log table where publication
events are stored.

The table specified here must conform to the definition of Chapter 10, “The Event Log Table,” on
page 107.

When using “Table/View Names” on page 56, you should explicitly schema-qualify this table name.
When you use “Schema Name” on page 55, this table name is implicitly schema-qualified with that
schema name. If this table is located in a schema other than the implicit schema, it must be schema-
qualified.

The following table lists the properties of this parameter:

Identity Manager 3.6.1 Driver for JDBC Implementation Guide

Table 6-51 Event Log Table Name: Properties

Property Value

Tag Name log-table

Required? no

Case-Sensitive? See “Undelimited Identifier Case Sensitivity” on page 147.
Sample Value eventlog

Default Value (none)

Schema-Dependent True

This parameter is required if “Publication Mode” on page 78 is set to 1 (triggered publication).

Delete Processed Rows?

The Delete Processed Rows? parameter specifies whether processed rows are deleted from the event
log table.

When this parameter is set to a Boolean True, processed rows are deleted. When this parameter is set
to Boolean False, processed row’s status field values are updated.

To mitigate the performance hit caused when processed rows remain in the event log table, we
recommend periodically moving the rows into a history table. Do one of the following:

¢ Call a clean-up stored procedure via the parameter “Post Polling Statements” on page 84.

+ Place a before-delete trigger on the event log table to intercept delete events executed against
the event log table and to move deleted rows to a history table before they are deleted from the
event log table.

The following table lists the properties of this parameter:

Table 6-52 Delete Processed Rows?: Properties

Property Value

Tag Name delete-from-log

Required? no

Default Value 0 (no)

Legal Values 1, yes, true (yes) 0, no, false (no)
Schema-Dependent True

Setting this parameter to Boolean False degrades publication performance unless processed rows are
periodically removed from the event log table.

Configuring the JDBC Driver

81

Allow Loopback?

The Allow Loopback? parameter specifies whether events caused by the driver’s database user
account should be published.

When this parameter is set to Boolean True, loopback events are published. When this parameter is
set to Boolean False, loopback events are ignored.

The following table lists the properties of this parameter:

Table 6-53 Allow Loopback?: Properties

Property Value

Tag Name allow-loopback

Required? no

Default Value 0 (no)

Legal Values 1, yes, true (yes) 0, no, false (no)
Schema-Dependent True

Setting this parameter to Boolean True might degrade performance because extraneous events might
be published.

6.5.3 Triggerless Publication Parameters

The Startup Option parameter specifies what happens when a triggerless publisher starts.

Table 6-54 Startup Option: Settings and Results

Setting Result

1 All objects are assumed to have changed and are republished.
2 Past and present changes are ignored.

3 All past and present changes are published.

The following table lists the properties of this parameter:

Table 6-55 Startup Option: Properties

Property Value

Tag Name startup-option
Required? no

Default Value 1 (process all changes)

82 Identity Manager 3.6.1 Driver for JDBC Implementation Guide

Property Value

Legal Values 1 (resync all objects) 2 (process future changes only) 3 (process all
changes)
Schema-Dependent True

The following configuration changes can force a full resynchronization:
¢ Changing anything in the Authentication Context parameter other than URL properties forces a
resynchronization of all objects when triggerless publication is used.

¢ Changing the value of the Schema Name parameter or the Table/View Names parameter forces
a resynchronization of all objects when triggerless publication is used.

+ Changing the State Directory parameter value.

+ Moving or deleting state files. See “Changes That Can Force Triggerless Publisher
Resynchronization” on page 51.

¢ Changing the table/view structure in the database (in particular, changing the position or type
of key columns).

6.5.4 Polling Parameters

¢ “Polling Interval (In Seconds)” on page 83
¢ “Publication Time of Day” on page 84

+ “Post Polling Statements” on page 84

+ “Batch Size” on page 85

¢ “Heartbeat Interval (In Minutes)” on page 85

Polling Interval (In Seconds)

The Polling Interval (In Seconds) parameter specifies how many seconds of inactivity elapse
between polling cycles.

The following table lists the properties of this parameter:

Table 6-56 Polling Interval (In Seconds): Properties

Property Value

Tag Name polling-interval
Required? no

Default Value 10 (seconds)
Legal Values 1-604800 (1 week)
Schema-Dependent True

We recommend that you set this value to no less than 10 seconds.

Configuring the JDBC Driver

83

84

Publication Time of Day

The Publication Time of Day parameter specifies at what time, each day, publication begins. Time is
understood to mean server local time (the time on the server where the driver is running). You can
specify a single time each day, or multiple times.

The following table lists the properties of this parameter:

Table 6-57 Publication Time of Day: Properties

Property Value

Tag Name time-of-day
Required? no

Sample Value (Single time) 13:00:00 (1PM)

Sample Value (Multiple times) 13:00:00 (1 PM), 16:00:00 (4 PM), 20:00:00 (8PM)

Default Value (none)
Legal Values hh:mm:ss (h = hour, m = minute, s = second)
Schema-Dependent True

This parameter overrides the parameter Polling Interval (In Seconds). See “Polling Interval (In
Seconds)” on page 83.

Post Polling Statements

The Post Polling Statements parameter specifies the SQL statements that are executed at the end of
each active polling cycle. An active polling cycle is one where some publication activity has
occurred.

The primary purpose of this parameter is to allow cleanup of the event log table following
publication activity.

You should explicitly schema-qualify any database objects (for example, tables, stored procedures,
and functions) referenced in these statements.

The following table lists the properties of this parameter:

Table 6-58 Post Polling Statements: Properties

Property Value

Tag Name post-poll-stmt

Required? no

Case-Sensitive? See “Undelimited Identifier Case Sensitivity” on page 147.
Delimiters semicolon

Sample Value DELETE FROM direct.direct_process

Identity Manager 3.6.1 Driver for JDBC Implementation Guide

Property Value

Default Value (none)

Legal Values (any set of legal SQL statements)
Schema-Dependent True

Batch Size

The Batch Size parameter specifies how many events are sent in a single publication document.
Basically, the larger the batch, the better the performance.

+ Larger batches necessitate fewer trips across the network in both directions.

+ More events in a single document require fewer trips from the Publisher channel to the Identity
Manager engine (assuming that query-back events are not being used).

¢ Larger batches minimize the number of trips from the Publisher channel to the database
(assuming that the third-party JDBC driver and database support batch processing).

¢ Larger batches require fewer commits to state files in the local file system.
Commits can also be costly.
This parameter defines an upper bound. The Publisher channel might override the specified value
under certain conditions. The upper bound of 128 was chosen to minimize the likelihood of

overflowing the Java heap and to mitigate delaying termination of the Publisher thread on driver
shutdown.

The following table lists the properties of this parameter:

Table 6-59 Batch Size: Properties

Property Value

Tag Name batch-size
Required? no
Default Value 1

Legal Values 1to 128
Schema-Dependent True

Heartbeat Interval (In Minutes)

The Heartbeat Interval (In Minutes) parameter specifies how many minutes the Publisher channel
can be inactive before it sends a heartbeat document. In practice, more than the number of minutes
specified can elapse. That is, this parameter defines a lower bound. The Publisher channel sends a
heartbeat document only if the Publisher channel has been inactive for the specified number of
minutes. Any publication document sent is, in effect, a heartbeat document.

The following table lists the properties of this parameter:

Configuring the JDBC Driver

85

Table 6-60 Heartbeat Interval (In Minutes): Properties

Property Value

Tag Name pub-heartbeat-interval

Required? no

Default Value 0

Legal Values 0 to 2,147,483,647 (java.lang.Integer.MAX_VALUE)
Schema-Dependent False

6.6 Trace Levels

To see debugging output from the driver, add a DirXML-DriverTraceLevel attribute value from 1 to
7 on the driver set containing the driver instance. This attribute is commonly confused with the
DirXML-XSL TraceLevel attribute. For more information on driver set trace levels, refer to
“Viewing Identity Manager Processes” in the Identity Manager 3.6.1 Common Driver
Administration Guide.

The driver supports the following seven trace levels:

Table 6-61 Supported Trace Levels

Level Description

1 Minimal tracing

2 Database properties

3 Connection status, SQL statements, event log records

4 Verbose output

5 Database resource allocation/deallocation; state file contents

6 JDBC API (invoked methods, passed arguments, returned values, etc.)
7 Third-party driver

Levels 6 and 7 are particularly useful for debugging third-party drivers.

6.7 Configuring Third-Party JDBC Drivers

The following guidelines help you configure third-party drivers. For specific configuration
instructions, refer to your third-party driver’s documentation.

+ Use the latest version of the driver.

¢ Third-party driver behavior might be configurable.

In many cases, incompatibility issues can be resolved by adjusting the driver’s JDBC URL
properties.

86 Identity Manager 3.6.1 Driver for JDBC Implementation Guide

+ When you work with international characters, you often must explicitly specify to third-party
drivers the character encoding that the database uses.

Do this by appending a property string to the end of the driver’s JDBC URL.

Properties usually consist of a property keyword and character encoding value (for example,
jdbc:odbc:mssql; charSet=Big5). The property keyword might vary among third-party
drivers.

The possible character encoding values are defined by Sun. For more information, refer to
Sun’s Supported Encoding Web site (http://java.sun.com/j2se/1.5.0/docs/guide/intl/
encoding.doc.html).

The following table lists the recommended settings for maximum driver compatibility. These
settings are useful when you use an unsupported third-party driver during initial configuration.

Table 6-62 Recommended Settings for Third-Party JDBC Drivers

Parameter Name Compatibility Value
Synchronization filter empty

Reuse statements? 0 (no)

Use manual transactions? 0 (no)

Use minimal number of