AUTHORIZED DOCUMENTATION

Driver for Java” Messaging Service Implementation Guide

Novell
Identity Manager

3.6.1
October 12, 2009

www.novell.com

Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc. reserves the right to revise this publication and to make changes to its content, at any time,
without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims
any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to
notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the
trade laws of other countries. You agree to comply with all export control regulations and to obtain any required
licenses or classification to export, re-export or import deliverables. You agree not to export or re-export to entities on
the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export laws.
You agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses. For more
information on exporting Novell software, see the Novell International Trade Services Web page (http://
www.novell.com/info/exports/). Novell assumes no responsibility for your failure to obtain any necessary export
approvals.

Copyright © 2004 - 2009 Novell, Inc. All rights reserved. No part of this publication may be reproduced,
photocopied, stored on a retrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S.
patents listed at Novell Legal Patents (http://www.novell.com/company/legal/patents/) and one or more additional
patents or pending patent applications in the U.S. and in other countries.

Novell, Inc.

404 Wyman Street, Suite 500
Waltham, MA 02451

US.A

www.novell.com

Online Documentation: To access the online documentation for this and other Novell products, and to get
updates, see Novell Documentation (http://www.novell.com/documentation/).

http://www.novell.com/info/exports/
http://www.novell.com/company/legal/patents/
http://www.novell.com/documentation/

Novell Trademarks

For a list of Novell trademarks, see Trademarks (http://www.novell.com/company/legal/trademarks/tmlist.html).

Third-Party Materials

All third-party trademarks are the property of their respective owners.

http://www.novell.com/company/legal/trademarks/tmlist.html

4 Identity Manager 3.6.1 Driver for JMS Implementation Guide

Contents

About This Guide 7
1 Overview 9
1.1 Supported JMS Vendors and VErsionst 9
1.2 Key Terminology e 9
1.3 JMS Messaging Models. 10
1.3.1 Point-to-Point Messaging. 10

1.3.2 Publish/Subscribe Messaging 11

1.4 UMS MESSAQES. . . . o oottt 11
141 Message Structure. e 11

14.2 Message TYPeS . . . oo e 12

1.5 How Subscriber and Publisher Channels Work 12
1.5.1 Subscriber Channel 13

15.2 Publisher Channel 13

1.6 Support for Standard Driver Features 14
1.6.1 Local Platforms 14

1.6.2 Remote Platforms e 14

1.6.3 Entitlements. 14

1.6.4 Password Synchronization Support. 15

1.6.5 Information Synchronized 15

1.7 Additional ResourCces e 15
2 Installing Driver Files 17
3 Configuring Messaging Vendors 19
3.1 Installing IBM WebSphere MQ on Win32. 19
3.1.1 Placing Prerequisite Jar Filesand Scripts 19

3.1.2 Creating a Default Queue Manager. i 20

3.1.3 Creating a Server-Connection Channeland Queues 21

3.1.4 Starting the Publish/Subscriber Broker 21

3.1.5 Installing System Queues Necessary for Publish/Subscribe. 21

3.16 CreatingaUser Account i e 21

3.1.7 Setting Up JMS . .o e 22

3.2 Installingon JBOSSMQ 23
3.3 Installing on JBoSsS MeSSaging.ottt 24
3.4 Installing on SonicMQ 25
3.4.1 Locating Prerequisite JarFiles 25

3.4.2 Running Scripts to Configure the Messaging System 26

3.5 Instalingon TIBCO EMS e e e 26
3.5.1 Locating Prerequisite ClientJar Files 26

3.5.2 Running Scripts to Configure the Messaging System 27

4 Creating a New Driver 29
4.1 Creatingthe Driverin Designer 29
411 Importing the Driver Configuration File 29

4.1.2 Configuring the Driver 30

4.1.3 Deploying the Driver e 30

Contents 5

6

414

4.2 Creatingthe DriveriniManager. i e
421 Importing the Driver Configuration File
422 Configuring the Driver
423 Startingthe Driver e
4.3 Activating the Driver.

Starting the Driver

Upgrading an Existing Driver

5.1 Supported Upgrade Paths
5.2 What's Newin Version 3.6.1

5.3 Upgrade

Procedure e

Managing the Driver

Troubleshooting

Driver Properties

A.1 Driver Configuration e
A1A1 Driver Module e
A.1.2 Driver Object Password (iManager Only)
A1.3 Authentication
A4 Startup Optiono
A1.5 Driver Parameters e

A2 Global Configuration Values i

Trace Levels

Identity Manager 3.6.1 Driver for JMS Implementation Guide

35

35
35
35

37

39

41

41
41
42
42
43
44
54

57

About This Guide

This guide explains how to install and configure the Identity Manager Driver for Java Messaging
Service (JMS).

¢ Chapter 1, “Overview,” on page 9

¢ Chapter 2, “Installing Driver Files,” on page 17

¢ Chapter 4, “Creating a New Driver,” on page 29

¢ Chapter 5, “Upgrading an Existing Driver,” on page 35

¢ Chapter 3, “Configuring Messaging Vendors,” on page 19

¢ Chapter 6, “Managing the Driver,” on page 37

¢ Chapter 7, “Troubleshooting,” on page 39

¢ Appendix A, “Driver Properties,” on page 41

¢ Appendix B, “Trace Levels,” on page 57

Audience

This guide is intended for developers and administrators using Identity Manager and the JMS driver.

Feedback

We want to hear your comments and suggestions about this manual and the other documentation
included with this product. Please use the User Comments feature at the bottom of each page of the
online documentation, or go to www.novell.com/documentation/feedback.html and enter your
comments there.

Documentation Updates

For the most recent version of this guide, visit the Identity Manager 3.6.1 Driver Documentation
Web site (http://www.novell.com/documentation/idm36drivers).

Additional Documentation

For documentation on Identity Manager and other drivers, see the Identity Manager 3.6.1
Documentation Web site (http://www.novell.com/documentation/idm36).

Documentation Conventions

In Novell® documentation, a greater-than symbol (>) is used to separate actions within a step and
items in a cross-reference path.

A trademark symbol (®, ™ etc.) denotes a Novell trademark. An asterisk (*) denotes a third-party
trademark.

When a single pathname can be written with a backslash for some platforms or a forward slash for
other platforms, the pathname is presented with a backslash. Users of platforms that require a
forward slash, such as Linux* or UNIX*, should use forward slashes as required by your software.

About This Guide

http://www.novell.com/documentation/idm36drivers
http://www.novell.com/documentation/idm36drivers
http://www.novell.com/documentation/idm36
http://www.novell.com/documentation/idm36

8 Identity Manager 3.6.1 Driver for JMS Implementation Guide

Overview

The Identity Manager Driver for Java Messaging Service (JMS), hereafter referred to as the JMS
driver or simply the driver, provides Identity Manager integration with various applications that are
messaging accessible. The driver is JMS-generic and does not target any specific application or
messaging provider. It supports all versions of the JMS API defined by Sun* Microsystems.

The following sections introduce concepts you should understand before using the driver:

*

*

Section 1.1, “Supported JIMS Vendors and Versions,” on page 9

Section 1.2, “Key Terminology,” on page 9

Section 1.3, “JMS Messaging Models,” on page 10

Section 1.4, “JMS Messages,” on page 11

Section 1.5, “How Subscriber and Publisher Channels Work,” on page 12
Section 1.6, “Support for Standard Driver Features,” on page 14

Section 1.7, “Additional Resources,” on page 15

1.1 Supported JMS Vendors and Versions

The driver supports the following vendors and versions:

*

*

*

*

*

JBossMQ v4.2.2

JBoss Messaging 1.3.0
IBM* WebSphere* MQ v6.x
SonicMQ* v7.x

TIBCO* EMS v4 and v5

The driver uses two main specifications of JMS, 1.0.2b and 1.1.

1.2 Key Terminology

The following terms are used throughout this document:

*

JMS: Java Messaging Service. The driver uses two main specifications of JMS, 1.0.2b and
1.1.

JNDI: Java Naming and Directory Interface. JNDI is used to look up, connect, and
authenticate to message brokers.

Message Broker: The server that handles message interchange between messaging clients.

Messaging Client: Messaging clients produce and consume messages. The driver is a
messaging client, and so are third-party applications.

Destination: The abstract term for a topic or a queue.

Session: A per-thread connection. Each thread creates one or more sessions from a connection
to communicate with the message broker.

Overview

+ Persistence: Persistence guarantees that a message is delivered only once; this can be
controlled on a per-message basis. Message brokers usually support persistent storage via an
underlying database. This is sometimes referred to as stable storage.

¢ Durability: The message broker stores messages for a message receiver when the receiver is
inactive or disconnected.

+ Acknowledgement: When transactions are not being used, a client acknowledges receipt of a
message to the message broker in CLIENT ACKNOWLEDGE mode. In this mode, the client
must explicitly acknowledge receipt of one or more messages by committing the current
transaction. By rolling back the current transaction, all received messages are re-delivered (or
set to retry, in Identity Manager terminology.)

1.3 JMS Messaging Models

The driver supports two messaging models: Point-to-Point messaging and Publish/Subscribe
messaging.

¢ Section 1.3.1, “Point-to-Point Messaging,” on page 10
¢ Section 1.3.2, “Publish/Subscribe Messaging,” on page 11

The JMS API also uses abstract names. To better understand how these abstract names correspond to
model terminology, see the table below.

Table 1-1 Abstract Names vs. Messaging Model Names

Abstract Terminology Point-to-Point Terminology Publish/Subscribe Terminology
Destination Queue Topic

Sender (or Producer) Sender Publisher

Receiver (or Consumer) Receiver Subscriber

1.3.1 Point-to-Point Messaging

Point-to-Point messaging is used when one client needs to send a message to another client. As
illustrated in Figure 1-1, Client 1 is the sender and Client 2 is the receiver. The queue receives
messages, while the message broker receives any acknowledgements.

In Point-to-Point messaging there is a one-to-one relationship between senders and receivers. You
configure durability on the broker side.

Figure 1-1 Point-to-Point Messaging

Vi

——] MSG
MSG —
JH b Consumes —
Sends <
Queue Acknowledges J
Client 1 Client 2

10 Identity Manager 3.6.1 Driver for JMS Implementation Guide

1.3.2 Publish/Subscribe Messaging

Publish/Subscribe messaging is used when multiple applications need to receive the same messages.
Multiple publishers can send messages to a topic, and all subscribers to that topic receive all the
messages sent to that topic. This model is useful when a group of applications want to notify each
other of a particular event.

Publish/Subscribe messaging allows for one-to-many or many-to-many implementations. Durability
is configured on either the client side or the broker side.

Figure 1-2 Publish/Subscribe Messaging

- Subscribes -
Delivers R
MSG Client 2
Publishes 1EpE
Subscribes
Client 1 »
Delivers -
e MSG Client 3

1.4 JMS Messages

The following sections contain information about JMS message structures and message types, as
well as examples for each.

¢ Section 1.4.1, “Message Structure,” on page 11

¢ Section 1.4.2, “Message Types,” on page 12

1.4.1 Message Structure

JMS messages consist of metadata (comprised of headers and properties) and message data (a body).
In order to make message metadata accessible to policy processing, messages sent to the driver can
be wrapped in an envelope, and messages received by the driver and sent to the Metadirectory
engine are also wrapped in an envelope. All message envelope elements and special attributes must
have a namespace prefix bound to urn:idm:jms. For consistency, the namespace prefix jms is used
throughout this document. The root message envelope element jms:message must be a child of the
XDS input/output elements.

Example JMS Message Envelope

<jms:message xmlns:jms="urn:idm:jms">

<jms:headers>
<!-- standard JMS headers start with "JMS" -->
<!-- client-assignable headers -->
<jms:header jms:name="JMSDeliveryMode"/>
<jms:header jms:name="JMSExpiration"/>
<jms:header jms:name="JMSPriority"/
<jms:header jms:name="JMSReplyTo"/>
<jms:header jms:name="JMSCorrelationID"/>

Overview

1"

<jms:header Jjms:name="JMSType" />

</jms:headers>

<jms:properties>
<!-- standard JMS properties start with "JMSX" -->
<jms:property Jjms:name="JMSXUserID"/>
<jms:property Jjms:name="JMSXAppID"/>
<jms:property jms:name="JIMSXProducerTXID"/>
<jms:property jms:name="JMSXConsumerTXID"/>
<jms:property Jjms:name="JMSXRcvTimestamp"/>
<jms:property jms:name="JMSXDeliveryCount"/>
<jms:property Jjms:name="JMSXState"/>
<jms:property Jjms:name="JMSXGroupID"/>
<jms:property jms:name="JMSXGroupSeq"/>
<!-- provider-specific properties start with "JMS " -->
<!-- application-specific properties start with anything else -->

</jms:properties>

<jms:body/>

</jms:message>

1.4.2 Message Types

Message type refers to how a message is sent, not necessarily what its content is. For example, a text
message can be sent as text or bytes. The driver supports both text and bytes messages.

Example Text Message

<jms:message xmlns:jms="urn:idm:jms">
<jms:properties>
<!-- send message as text -->
<jms:property name="Novell IDM MessageType">text</jms:property>
</jms:properties>
<jms:body>content</jms:body>
</jms:message>

Example Bytes Message

<jms:message xmlns:jms="urn:idm:jms">
<jms:properties>
<!-- send message as bytes -->
<jms:property name="Novell IDM MessageType">bytes</jms:property>
</jms:properties>
<jms:body>content</jms:body>
</jms:message>

1.5 How Subscriber and Publisher Channels
Work

The following sections contain information about how the Subscriber and Publisher channels work
with the JMS driver. This driver functions differently than traditional Identity Manager drivers, so
it’s important to review this information.

¢ Section 1.5.1, “Subscriber Channel,” on page 13

¢ Section 1.5.2, “Publisher Channel,” on page 13

12 Identity Manager 3.6.1 Driver for JMS Implementation Guide

1.5.1 Subscriber Channel

The Subscriber channel is capable of sending messages to (and optionally receiving messages from)
multiple destinations on a single broker. Multi-broker support is not yet implemented. As a side
effect of sending a JMS message, the Subscriber channel can receive a response within a specified
timeout interval. Message routing and RPC (Remote Procedure Call) emulation are achieved via
three special attributes: jms:send-to, jms:receive-from and jms:receive-timeout.

Example Special Attributes

<jms:message xmlns:jms="urn:idm:jms"
jms:send-to="queueA"
jms:receive-from="queueB"
jms:receive-timeout-seconds="10"/>

These attributes can be used on a jms:message envelope tag or any XDS command that is a child of
input/output elements. The name of the destinations used in these parameters can either be their
JNDI (Java Naming and Directory Interface) name or the unique Identity Manager identifier
assigned to the destination in the driver configuration. By default, the Subscriber sends messages the
first-defined send destination and does not wait for a message response (meaning that the message
receipt is assumed to be asynchronous).

Using a JMS message envelope, it is possible to override headers/properties or add vendor-specific
properties or application properties.

<jms:message xmlns:jms="urn:idm:jms">

<jms:headers>

<!-- override standard headers -->
<jms:header jms:name="JMSType">type</jms:header>
<jms:header jms:name="JMSCorrelationID">blah</jms:header>
<jms:header jms:name="JMSDeliveryMode">non-persistent</jms:header>
<jms:header jms:name="JMSExpiration">10000</jms:header>
<jms:header jms:name="JMSPriority">9</jms:header>
<jms:header jms:name="JMSReplyTo">A</jms:header>

</jms:headers>

<jms:properties>

<!-- add/override vendor-specific properties -->
<jms:property jms:name="JMS IBM Format">MQSTR</jms:property>
<!-- add/override application properties -->

<jms:property jms:name="Novell IDM MessageType">bytes</jms:property>
<jms:property jms:name="Novell IDM ContentType">xml</jms:property>
<jms:property jms:name="Novell IDM CharEncoding">UTF-8</jms:property>
</jms:properties>
<jms:body>text</jms:body>
</jms:message>

1.5.2 Publisher Channel

The Publisher channel is essentially a Subscriber channel (you can send messages to a broker as a
side effect of publishing messages—including heartbeat documents—and wait for a response) with
the added ability to periodically monitor specified destinations to receive messages for publication.

You can configure the Publisher channel to monitor an unlimited number of destinations on a single
message broker bounded only by certain practical considerations. Having too many monitored
destinations can significantly slow down rendering of driver parameters in iManager or Designer, as

Overview

13

14

currently implemented. Having too many destinations can result in decreased performance because
all destinations are being monitored by a single thread. Furthermore, there is a finite amount of
space available for storing a driver's configuration (64 KB).

The Publisher channel polls each monitored destination in a round-robin fashion, starting with the
first declared destination. A polling cycle ends when all monitored destinations fail to return
messages, at which time the Publisher sleeps for the specified polling interval until it's time to start a
new polling cycle.

The Publisher channel receives messages in a synchronous fashion as opposed to an asynchronous
one. The main reason for this is to prevent client overrun—when the message broker feeds messages
to the driver faster than it can process them—that can lead to memory exhaustion.

1.6 Support for Standard Driver Features

The following sections provide information about how the JMS driver supports these standard driver
features:

¢ Section 1.6.1, “Local Platforms,” on page 14

¢ Section 1.6.2, “Remote Platforms,” on page 14

*

Section 1.6.3, “Entitlements,” on page 14

*

Section 1.6.4, “Password Synchronization Support,” on page 15

*

Section 1.6.5, “Information Synchronized,” on page 15

1.6.1 Local Platforms

On a local machine, install the JMS driver files on the Metadirectory server and connect to the JMS
server by using the JMS Broker URL (Connection Properties). See the instructions in “Installing the
Metadirectory Server” in the Identity Manager 3.6.1 Installation Guide.

The JMS driver can be installed on the same operating systems supported by the Metadirectory
server. For information about the operating systems supported by the Metadirectory server, see
“Metadirectory Server” in “System Requirements” in the Identity Manager 3.6.1 Installation Guide.

1.6.2 Remote Platforms

The JMS driver can use the Remote Loader service. The Remote Loader service for the JMS driver
can be installed on any of the Identity Manager supported platforms.

For more information about installing the Remote Loader services, see “Remote Loader” in the
Identity Manager 3.6.1 Installation Guide.

1.6.3 Entitlements

The JMS driver does not have Entitlement functionality defined in its basic configuration files. The
driver does support entitlements, if there are policies created for the driver to consume.

Identity Manager 3.6.1 Driver for JMS Implementation Guide

1.6.4 Password Synchronization Support

The basic configuration files for the JMS driver do not include policies for synchronizing
passwords.

1.6.5 Information Synchronized

The JMS driver synchronizes any messaging format you want. By default, the driver is set up with a
Loopback driver configuration.

1.7 Additional Resources

For more information about JMS and messaging models, see the following Web sites:

Sun’s Developer Network FAQ on the JMS API (http://java.sun.com/products/jms/faq.html)

Getting Started with JMS (http://java.sun.com/developer/technical Articles/Ecommerce/jms/
index.html)

JMS Tutorial (http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html)

*

*

*

*

JMS Specifications (1.0.2b and 1.1) (http://java.sun.com/products/jms/docs.html)

Overview 15

http://java.sun.com/products/jms/faq.html
http://java.sun.com/developer/technicalArticles/Ecommerce/jms/index.html
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html
http://java.sun.com/products/jms/docs.html

16 Identity Manager 3.6.1 Driver for JMS Implementation Guide

Installing Driver Files

By default, the JMS driver files are installed on the Metadirectory server at the same time as the
Metadirectory engine. The installation program extends the Identity Vault’s schema and installs both
the driver shim and the driver configuration files. It does not create the driver in the Identity Vault
(see Chapter 4, “Creating a New Driver,” on page 29) or upgrade an existing driver’s configuration
(seeChapter 5, “Upgrading an Existing Driver,” on page 35).

The JMS driver must be located on the same server as your JMS vendor. If the driver is not on that
server, you have the following options:

¢ On a local machine: Install the IMS driver files on the Metadirectory server and connect to the
JMS server by using the JMS Broker URL (Connection Properties). See the instructions in
“Installing the Metadirectory Server” in the Identity Manager 3.6.1 Installation Guide.

+ On a remote machine: Install the JMS driver files on the Remote Loader. See the instructions in
“Installing the Remote Loader” in the Identity Manager 3.6.1 Installation Guide.

Installing Driver Files 17

18 Identity Manager 3.6.1 Driver for JMS Implementation Guide

Configuring Messaging Vendors

The following sections provide information about configuring your JMS vendor to work with the
JMS driver:

*

*

*

*

*

Section 3.1, “Installing IBM WebSphere MQ on Win32,” on page 19
Section 3.2, “Installing on JBossMQ,” on page 23

Section 3.3, “Installing on JBoss Messaging,” on page 24

Section 3.4, “Installing on SonicMQ,” on page 25

Section 3.5, “Installing on TIBCO EMS,” on page 26

3.1 Installing IBM WebSphere MQ on Win32

As part of installing WebSphere for the driver, you should complete the following tasks
consecutively. These instructions are for Windows*, but you can follow the same procedure for
other platforms.

¢ Section 3.1.1, “Placing Prerequisite Jar Files and Scripts,” on page 19

¢ Section 3.1.2, “Creating a Default Queue Manager,” on page 20

¢ Section 3.1.3, “Creating a Server-Connection Channel and Queues,” on page 21
¢ Section 3.1.4, “Starting the Publish/Subscriber Broker,” on page 21

¢ Section 3.1.5, “Installing System Queues Necessary for Publish/Subscribe,” on page 21

¢ Section 3.1.6, “Creating a User Account,” on page 21

¢ Section 3.1.7, “Setting Up JMS,” on page 22

3.1.1 Placing Prerequisite Jar Files and Scripts

1 On your messaging server, locate the following jar files:

*

*

*

*

*

*

*

com.ibm.mqg.jar
com.ibm.mgjms.jar
connect.jar
dhbcore.jar
jta.jar
fscontext.jar

jndi.Jjar

2 Copy the jar files to the Identity Manager server.

The following table identifies where to place jar files on an Identity Management server, by
platform.

Configuring Messaging Vendors

19

Platform Directory Path

Windows Local installation: novel1\NDS\1lib

Remote installation: novell\RemoteLoader\1ib

Linux*/UNIX* Local installation: /usr/1ib/dirxml/classes (pre-eDirectory 8.8) or
opt/novell/eDirectory/lib/dirxml/classes (eDirectory 8.8)

Remote installation: /usr/lib/dirxml/classes (pre-eDirectory 8.8) or
/opt/novell/eDirectory/lib/dirxml/classes (eDirectory 8.8)

3 Locate where you installed the installation script during the JMS driver installation. The
following table indicates the default directories where scripts are installed, by platform.

Platform Directory Path
Windows C:\Novell\NDS\DirXMLUtilities\jms\webmg
Linux\UNIX install-dir/lib/dirxml/rules/jms\webmg

4 Copy the script to your messaging server.

5 If necessary, restart your eDirectory™ server.

3.1.2 Creating a Default Queue Manager

The following instructions are for Windows; equivalent steps vary by platform.

¢ “Manually Creating a Queue Manager through WebSphere MQ Explorer” on page 20
+ “Setting Up Auto-Start for the Topic Message Broker” on page 20

Manually Creating a Queue Manager through WebSphere MQ Explorer

Click Start > Programs > IBM WebSphere MQ > WebSphere MQ Explorer.
Right-click the IBM WebSphere MQ > Queue Managers folder.

Select New > Queue Manager.

Select the Make this the default queue manager.

Fill in the Name field.

If you don’t name the queue, you might later see an error indicating “MQJIMS5053: *** No
broker response. Please ensure that the broker is running. If you are using
the WebSphere MQ broker, check that your brokerVersion is set to VI1.***”
This error is a side effect caused by the OS application event log filling up (on Windows).

a o ON =

6 Type SYSTEM.DEAD.LETTER.QUEUE for the Dead Letter Queue field.
7 Click the Finish button and wait for the operation to finish.
8 Continue with “Setting Up Auto-Start for the Topic Message Broker” on page 20.

Setting Up Auto-Start for the Topic Message Broker

1 Click Start > Programs > IBM WebSphere MQ > WebSphere MQ Explorer

20 Identity Manager 3.6.1 Driver for JMS Implementation Guide

2 Right-click the IBM WebSphere MQ > Queue Managers > Advanced > Services folder.
3 Select New > Service.
4 Fill in the Name field. (For example, startBroker.)
5 Under General:
5a Set the Service control field to Queue Manager Start.
5b Set the Start command field to strmqbrk.
5¢ Set the Stop command field to endmqbrk.

6 Click Finish and wait for a success message.

3.1.3 Creating a Server-Connection Channel and Queues

1 From the command line, change directories to Program Files\IBM\WebSphere
MO\ Java\bin

2 From the command line, execute the following command:

runmgsc QM < idm mg_install.mgsc

This file is provided only as an example; you might need to customize the content.

3.1.4 Starting the Publish/Subscriber Broker

1 From the command line, execute the following command:

strmgbrk -m QM

You should see a message indicating that the broker is running.

3.1.5 Installing System Queues Necessary for Publish/
Subscribe

1 From the command line, execute the following command:

runmgsc QM < MQJMS PSQ.mgsc

You should see some tracing, indicating successful queue creation.

NOTE: If you don’t enter this command, you might see the following error: “MQJMS1111: JMS
1.1 The required Queues/Publish Subscribe services are not set up {0} error.’

b

3.1.6 Creating a User Account

¢ “Creating a User” on page 21

¢ “Making the User a Member of the mgm Group” on page 22

Creating a User

1 Click Start > Programs > Administrative Tools > Computer Management.

2 Expand the Local Users and Groups subtree.

Configuring Messaging Vendors

21

3 Right-click the Users folder, then select New User.

4 Specify a username. The scripts referenced in these instructions assume idm.

5 Specify a password. The scripts referenced in these instructions assume novell.
6 Deseclect the User must change password at next login check box.

7 Click the Create button.

8 Click the Close button.

Making the User a Member of the mgm Group

1 Right-click the newly created user, then click Properties.
2 Select the Member Of tab.

3 Left-click the mgm group

4 Click Add.

5 Click OK twice.

3.1.7 Setting Up JMS

1 Edit the Program Files\IBM\WebSphere MQ\Java\bin\JMSAdmin.bat file

@echo off
::add this line at the beginning of the file
setlocal

::add the following line before call to java
set JRE_PATH=C:\Program Files\IBM\WebSphere MQ\gskit\jre

::replace call to Java

"$JRE_PATH%\bin\java" -cp "$CLASSPATHS"

-DMQJMS INSTALL="%MQ JAVA INSTALL PATH%" -
DMQJMS LOG DIR="%MQ JAVA DATA PATH%"\log -
DMQJMS TRACE DIR="$MQ JAVA DATA PATH%"\errors -
DMQJMS INSTALL PATH="%MQ JAVA INSTALL PATHS%"
com.ibm.mg.jms.admin.JMSAdmin %1 %2 %3 %4 %5

::add this line at end of file
endlocal

2 Edit the Program Files\IBM\WebSphere MQ\Java\bin\JMSAdmin.config file

comment out all of the INITIAL CONTEXT FACTORY lines using

comment char “#” and add this line:

INITIAL CONTEXT FACTORY=com.sun.jndi.fscontext.RefFSContextFactory
comment out all PROVIDER URL lines and add this one:

PROVIDER URL=file://<hostmname>:<port>/<path of binding file>

3 Locate where you installed the installation script during the driver installation. The following
table indicates the default directories where scripts are installed by platform.

Platform Directory Path
Windows C:\Novell\NDS\DirXMLUtilities\jms\webmg
Linux/UNIX install-dir/lib/dirxml/rules/jms/webmg

22 |dentity Manager 3.6.1 Driver for JMS Implementation Guide

4 Copy the following scripts to the Program Files\IBM\WebSphere MQ\Java\bin directory
on your messaging server:

¢ idm jms_install.scp

¢ idm jms uninstall.scp

¢ idm mg install.mgsc

¢ idm mg uninstall.mgsc

¢ install.bat

¢ uninstall.bat
5 Update the connection factory IP addresses and port in idm jms_install.scp.
6 Update the listener port in idm mg_install.mgsc.

7 From the command line, change directories to Program Files\IBM\WebSphere
MQ\Java\bin

8 From the command line, execute the following command:
JMSAdmin.bat -v < idm jms install.scp
This file is provided as an example only; you may need to customize the content.

9 From the command line, manually start the publish/subscribe broker by executing the
following command:

Program Files\IBM\WebSphere MQ\bin\strmgbrk.exe.

10 From the command line, ensure that the publish/subscribe broker is configured correctly by
executing the following command:

Program Files\IBM\WebSphere MQ\Java\PSIVTRun.bat -nojndi -t
11 Make sure the .bindings file resides in the correct location.

If the driver, WebSphere MQ, Metadirectory engine, and Identity Vault are all on the same
server, make sure the .bindings file resides in the location specified by the PROVIDER URL
option for the driver configuration (see““Show standard JNDI context parameters” on page 45).

If the driver and WebSphere MQ are on one server and the Metadirectory engine and Identity
Vault are on another server (a Metadirectory server), copy the .bindings file to the
Metadirectory server and make sure the PROVIDER URL includes the correct path to the file.
If multiple Metadirectory servers connect to the WebSphere MQ server, copy the .bindings
