
Novell

m
w w w . n o v e l l . c o

Integration Manager™
6 . 0
J u n e 2 7 , 2 0 0 6

T A N D E M C O N N E C T U S E R ’ S G U I D E

Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and specifically disclaims any
express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to revise this
publication and to make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims any express or implied
warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc. reserves the right to make changes to any and all
parts of Novell software, at any time, without any obligation to notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the trade laws of other
countries. You agree to comply with all export control regulations and to obtain any required licenses or classification to export, re-export or
import deliverables. You agree not to export or re-export to entities on the current U.S. export exclusion lists or to any embargoed or terrorist
countries as specified in the U.S. export laws. You agree to not use deliverables for prohibited nuclear, missile, or chemical biological
weaponry end uses. Please refer to www.novell.com/info/exports/ for more information on exporting Novell software. Novell assumes no
responsibility for your failure to obtain any necessary export approvals.

Copyright © 2006 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied, stored on a retrieval system,
or transmitted without the express written consent of the publisher.

Novell, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular,
and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.novell.com/company/legal/patents/ and one or more additional patents or pending patent applications in the U.S. and in other
countries.

Novell, Inc.
404 Wyman Street, Suite 500
Waltham, MA 02451
U.S.A.
www.novell.com

Online Documentation: To access the online documentation for this and other Novell products, and to get updates, see
www.novell.com/documentation.
2 Tandem Connect User’s Guide

Novell Trademarks
For Novell trademarks, see the Novell Trademark and Service Mark list.

Third-Party Trademarks
All third-party trademarks are the property of their respective owners.
3

http://www.novell.com/company/legal/trademarks/tmlist.html

4 Tandem Connect User’s Guide

Contents

About This Book. 7

1 Welcome to Integration Manager and Tandem Connect . 9
Before You Begin. 9
About Integration Manager Connects . 9
What Is Tandem Terminal? . 10
About Integration Manager's Tandem Component . 11
What Applications Can You Build Using the Tandem User Interface Component Editor? . 11

2 Getting Started with the Tandem Component Editor . 13
Steps Commonly Used to Create a Tandem Component . 13
Creating XML Templates for Your Component . 13
Creating a Tandem Connection Resource . 14
About Connection Resources . 14

Code Page Support. 15
About Constant and Expression Driven Connections . 16

3 Creating a Tandem Component . 19
Before Creating a Tandem Component. 19
About the Tandem Component Editor Window . 21
About the Tandem Native Environment Pane . 22
About Tandem Keyboard Support . 22
About the Screen Object . 24

What it is . 24
How it works . 25

Tandem-Specific Buttons. 25
Record Button 25
Connection Button 26
Create Check Screen Button 26

Tandem-Specific Menu Bar Items . 26
Tandem-Specific Context-Menu Items . 26

Native Environment Pane Context Menu . 27
Action Pane Context Menu . 27

4 Performing Tandem Actions. 29
About Actions. 29
About Tandem-Specific Actions. 29

The Send Buffer Action . 30
Editing Text in the Send Buffer Dialog 31

How Keys Are Displayed in the Action Model . 31
The Check Screen Action . 32

Understanding the Check Screen Action 32
Using Actions in Record Mode . 34

Tandem-Specific Expression Builder Extensions . 34
Login . 35
Screen Methods . 35
Keys . 38

Screen Selections in the Tandem Connect . 38
Selecting Continuous Data . 39
Selecting Rectangular Regions. 39

Recording a Tandem Session . 40
Looping Over Multiple Rows in Search of Data . 44
Editing a Previously Recorded Action Model. 48

Changing an Existing Action . 49
Adding A New Action . 52
About Adding Alias Actions . 54
Deleting an Action. 55

Testing your Tandem Component . 55
5

Using the Animation Tools . 56
Tips for Building Reliable Tandem Components. 57
Using Other Actions in the Tandem Component Editor . 59
Handling Errors and Messages. 59

Check Screen Errors 59
Send Buffer Errors 60
Errors Involving Connections 60

Finding a “Bad” Action . 61

5 Advanced Tandem Actions . 63
Data Sets that Span Screens . 63
Dealing with Redundant Data . 64
An Example of Looping over Multiple Screens . 66

Initial Actions 66
Setting Up the Main Loop 68
Screen Caching 68
The Main Loop 69

Performance Considerations . 71

6 Logon Components, Connections, and Connection Pools . 73
Tandem Session Performance . 73

When Will I Need Logon Components? . 73
Connection Pool Architecture . 74

The Logon Connection’s Role in Pooling . 75
How Many Pools Do I Need? . 76
Pieces Required for Pooling. 76

How Do I Implement Pooling? . 77
The Tandem Logon Component . 77

Logon, Keep Alive, and Logoff Actions . 77
Logon Actions . 78

Maximizing Performance with the Logon Component 79
Keep Alive Actions . 79

Maximizing Performance with Keep Alive Actions 81
Logoff Actions . 81
Logon Component Life Cycle . 81

The Tandem Connection . 82
Many-to-One Mapping of Components to Logons 84

Connection Pooling with a Single Sign-On. 84
Creating a Connection Pool . 84

Overview . 84
Creating a Basic Connection . 85
Creating a Logon Component. 85
Creating a Logon Connection using a Pool Connection . 86

Maximizing Performance of Tandem Logon Connection 89
Static versus Dynamically Created Documents/Elements 89

Creating a Logon Connection using a Session Connection . 89
Creating a Tandem Component That Uses Pooled Connections . 91

Maximizing Performance of Tandem Terminal Components 92
Managing Pools . 92
Connection Pool Management and Deployed Services . 95

Connection Discard Behavior. 95
Screen Synchronization . 95

A Tandem Display Attributes . 97
Viewing All Character Attributes at Once 97

B Tandem Keyboard Equivalents. 99

C Glossary . 103

D Reserved Words. 105

E Java Code Pages . 107
About Encodings. 107
6 Tandem Connect User’s Guide

About This Book

Purpose

The guide describes how to use Integration Manager Tandem Connect, referred to as the Tandem
Component Editor. The Tandem Component Editor is a separately-installed component editor in
Integration Manager.

Audience

The audience for the guide is developers and system integrators using Integration Manager to create
services and components which integrate Tandem applications.

Prerequisites

The guide assumes the reader is familiar with and has used Integration Manager’s development
environment and deployment options. You must also have an understanding of the Tandem environment
and building or using applications utilizing Tandem terminals (e.g. Tandem 6530).

Additional documentation

For the complete set of Novell Integration Manager documentation, see the Novell Documentation Web
Site (http://www.novell.com/documentation-index/index.jsp).

Organization

The guide is organized as follows:

Chapter 1, Welcome to Integration Manager and Tandem, gives a definition and overview of the Tandem
Component Editor.

Chapter 2, Getting Started with the Tandem Component Editor, describes the necessary preparations for
creating a Tandem component.

Chapter 3, Creating a Tandem Component, describes the parts of the component editor.

Chapter 4, Performing Tandem Actions, describes how to use the basic Tandem actions, as well as the
unique drag-and-drop conventions of Tandem Connect.

Chapter 5, Advanced Tandem Actions, discusses techniques for solving common Tandem computing
problems in the context of an Action Model.

Chapter 6, Logon Components, Connections, and Connection Pools, describes how to enhance
performance through use of shared connections.

Appendix A, is a glossary.

Appendix B, ANSI Escape Sequences and Control Codes, recognized and /or used by Tandem Connect.

Appendix C, Tandem Attributes, and their display significance along with a discussion of how to use the
getattribute().

Appendix D, Reserved Words, lists those words used only for Tandem Connect.
7

http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp
http://www.novell.com/documentation-index/index.jsp

Conventions Used in the Guide

The guide uses the following typographical conventions.

Bold typeface within instructions indicate action items, including:

Menu selections
Form selections
Dialog box items

Sans-serif bold typeface is used for:

Uniform Resource Identifiers
File names
Directories and partial pathnames

Italic typeface indicates:

Variable information that you supply
Technical terms used for the first time
Title of other Novell publications

Monospaced typeface indicates:

Method names
Code examples
System input
Operating system objects

About the Product Name Change

In version 6.0. we've changed the name of exteNd Composer to Novell Integration Manager. In some
places in the user interface, and in Integration Manager file and directory names, you will still see the
name "exteNd Composer" or "Composer".
8 Tandem Connect User’s Guide

1 Welcome to Integration Manager and Tandem
Connect

Before You Begin
Welcome to the Tandem Connect Guide. This Guide is a companion to the Integration Manager User's
Guide, which details how to use all the features of Integration Manager, except for the Connect
Component Editors. If you haven't looked at the Integration Manager User's Guide yet, please
familiarize yourself with it before using this Guide.

Integration Manager provides separate Component Editors for each Connect. The special features of
each component editor are described in separate Guides like this one.

If you have been using Integration Manager, and are familiar with the XML Map Component Editor,
then this Guide should get you started with the Tandem Component Editor.

Before you can begin working with the Tandem Connect you must have installed it into your existing
Integration Manager. Likewise, before you can run any Services built with this Connect in the
Integration Manager Enterprise Server environment, you must have already installed the server-side
software for this Connect into Integration Manager Enterprise Server.

NOTE: To be successful with this Component Editor, you must be familiar with the Tandem environment
and the particular applications that you want to XML-enable.

About Integration Manager Connects
Integration Manager is built upon a simple hub and spoke architecture (Fig.1-1). The hub is a robust
XML transformation engine that accepts requests via XML documents, performs transformation
processes on those documents and interfaces with XML-enabled applications, and returns an XML
response document. The spokes, or Connects, are plug-in modules that "XML-enable" sources of data
that are not XML aware, bringing their data into the hub for processing as XML. These data sources can
be anything from legacy COBOL/applications to Message Queues to HTML pages.
Welcome to Integration Manager and Tandem Connect 9

Figure 1-1

Integration Manager Connects can be categorized by the integration strategy each one employs to
XML-enable an information source. The integration strategies are a reflection of the major divisions
used in modern systems designs for Internet-based computing architectures. Depending on your B2B
needs and the architecture of your legacy applications, Integration Manager can integrate your business
systems at the User Interface, Program Logic, or Data levels. (See below.)

What Is Tandem Terminal?
The Tandem Connect XML-enables Tandem 6530 terminal-based applications using the User Interface
integration strategy by hooking into the terminal data stream.

Many applications have been developed for Tandem terminal based systems. These systems allow
remote execution of their interface through the Telnet protocol. Host screens can be sent to a client and
keyed data can be accepted from the client. This interaction, through a so-called “dumb” terminal, means
that all the data is processed on the host computer. Tandem terminal emulation software can be used to
make a microcomputer or PC act as if it were an Tandem-type terminal while it is communicating with a
host computer.
10 Tandem Connect User’s Guide

Using the Tandem Connect , you can make legacy applications and their business logic available to the
internet, extranet, or intranet processes. The Tandem Connect Component Editor allows you to build Web
Services by simply navigating through an application as if you were at a terminal session. You will use
XML documents to drive inquiries and updates into the screens rather than keying, use the messages
returned from application screens to make the same decisions as if you were at a terminal, and move data
and responses into XML documents that can be returned to the requestor or continue to be processed. The
Tandem terminal screens appear in the Native Environment Pane of the Tandem Component Editor.

About Integration Manager's Tandem Component
Much like the XML Map component, the Tandem Component is designed to map, transform, and
transfer data between two different XML templates (i.e., request and response XML documents).
However, it is specialized to make a connection (via TCP/IP) to a host application, process the data
using elements from a screen, and then map the results to an output DOM. You can then act upon the
output DOM in any way that makes sense for your integration application. In essence, you're able to
capture data from, or push data to, a host system without ever having to alter the host system itself.

A Tandem Component can perform simple data manipulations, such as mapping and transferring data
from an XML document into a host program, or perform "screen scraping" of a Tandem terminal
program, putting the harvested data into an XML document. A Tandem Component has all the
functionality of the XML Map Component and can process XSL, send mail, and post and receive XML
documents using the HTTP protocol.

What Applications Can You Build Using the Tandem User Interface
Component Editor?

Integration Manager, and consequently the Tandem Connect, can be applied to the the following types
of applications:

1 Business to Business Web Service interactions such as supply chain applications.
2 Consumer to Business interactions such as self-service applications from Web Browsers.
3 Enterprise Application Integrations where information from heterogeneous systems is combined or

chained together.

Fundamentally, the Tandem Component Editor allows you to extend any XML integration you are
building to include any of your business applications that support Tandem-based terminal interactions
(See the Integration Manager User's Guide for more information.)

For example, you may have an application that retrieves a product's description, picture, price, and
inventory from regularly updated databases and displays it in a Web browser. By using the Tandem
Component Editor, you can now get the current product information from the operational systems and
the static information (e.g., a picture) from a database and merge the information from these separate
information sources before displaying it to a user. This provides the same current information to both
your internal and external users.
Welcome to Integration Manager and Tandem Connect 11

12 Tandem Connect User’s Guide

2 Getting Started with the Tandem Component
Editor

Steps Commonly Used to Create a Tandem Component
While there are many ways to go about creating Tandem Components, the most commonly used steps in
creating a simple Tandem Component are as follows:

Create XML Template(s) for the program.
Create a Tandem Connection Resource.
Create a Tandem Component.
Enter Record mode and navigate to the program using terminal emulation available via the
component editor’s Native Environment Pane.
Drag and drop input-document data into the screen as needed.
Drag and drop screen results into the output document.
Stop recording.

In this chapter, we’ll focus on the first two steps: creating XML Templates and creating and a configuring
a Tandem Connection Resource, which is an essential first step in being able to use Tandem Components.

Creating XML Templates for Your Component
Although it is not strictly necessary to do so, your Tandem Component may require you to create XML
templates so that you have sample documents for designing your component. (For more information,
see Chapter 5, “Creating XML Templates,” in the Integration Manager User's Guide.)

In many cases, your input documents will be designed to contain data that a terminal operator might
type into the program interactively. Likewise, the output documents are designed to receive data
returned to the screen as a result of the operator's input. For example, in a typical business scenario, a
terminal operator may receive a phone request from a customer interested in the price or availability of
an item. The operator would typically query the host system via “dumb terminal” in a Tandem session
by entering information (such as a part number) into a terminal when prompted. A short time later, the
host responds by returning data to the terminal screen, and the operator relays this information to the
customer. This session could be carried out by an Integration Manager Web Service that uses a Tandem
Component. The part number (arriving via HTTP) might be represented as a data element in an XML
input document. The looked-up data returned from the host would appear in the component’s output
document. That data might in turn be output to a web page, or sent to another business process as XML,
etc.

NOTE: Your component design may call for any other xObject resources, such as custom scripts or Code
Table maps. If so, it is best to create these before creating the Tandem Component. For more information,
see the Integration Manager User's Guide.
Getting Started with the Tandem Component Editor 13

Creating a Tandem Connection Resource
Once you have the XML templates in place, your next step will be to create a Connection Resource to
access the host program. If you try to create a Tandem Component in the absence of any available
Connection Resources, a dialog will appear, asking if you wish to create a Connection Resource. By
answering Yes to this dialog, you will be taken to the appropriate wizard.

About Connection Resources
When you create a Connection Resource for the Tandem Component, you will have two choices: a
straight “Tandem Connection” and a “Tandem Logon Connection.” Generally speaking, you will use
the straight Tandem Connection to connect to your host environment. The Logon Connection is used for
connection pooling, which will be explained in greater detail in Chapter 6 of this Guide.

You will use a live Tandem Connection to connect to a host environment of your choice. After setting
up your Connection Resource, it will be available for use by any number of Tandem Components that
might require a connection to the host in question.

To create a Tandem Connection Resource:

1 From the Integration Manager File menu, select New>xObject, then open the Resource tab and
select Tandem Connection.
NOTE: Alternatively, under Resource in the Integration Manager window category pane, you can
highlight Connection, click the right mouse button, then select New.

The Create a New Connection Resource Wizard appears.

2 Type a Name for the connection object.
3 Optionally, type Description text.
4 Click Next. The second panel of the wizard appears.
14 Tandem Connect User’s Guide

5 Select the Tandem Connection type from the pulldown menu. The dialog changes appearance to
show just the fields necessary for creating the Tandem connection.

6 In the Host or IP Address field, enter the physical (IP) address or hostname alias for the machine
to which you are connecting.

7 In the Telnet Port field, enter the number of the TCP/IP port. The default port number is 23.
8 In the Code Page field, specify a code page (See “Code Page Support” on page 15.
9 Enter a UserID and Password. These are not actually submitted to the host during the

establishment of a connection. They are simply defined here. (The Password is encrypted.) Right-
mouse-click and choose Expression if you want to make these fields expression-driven. See
discussion further above.
NOTE: After you’ve entered UserID and Password info in this dialog, the ECMAScript global
variables USERID and PASSWORD will point to these values. You can then use these globals in
Send Buffer expressions (or as described under “Native Environment Pane Context Menu” on
page 27).

10 Check Autowrap Characters if you want the cursor to move to the first position of the next line as
soon as the cursor reaches the end of the line.

11 Check 8-bit Data Characters if the communicated data is in 8-bit character format. For 7-bit
characters, uncheck this option and the 8th bit will be truncated.

12 Check Backspace Send Delete if you want the Backspace key to send a delete. If not checked, it
sends a backspace.

13 Check Terminal New Line if the ENTER key should generate a carriage return/line feed
combination.

14 Check the Default check box if you'd like this particular Tandem connection to become the default
connection for subsequent Tandem Components.

15 Click Finish. The newly created resource connection object appears in the Integration Manager
Connection Resource detail pane.

Code Page Support
Code Page support in Integration Manager Connection Resources allows you to specify which Character
Encoding scheme to use when translating characters sent between Integration Manager and other host
systems. Integration Manager data uses Unicode character encoding (the Java and XML standard).
Existing legacy and other host systems use a variety of character encoding schemes (i.e., Code Pages)
specific for their language or usage. A mechanism is needed to translate the character encoding between
these systems if they are to communicate with one another. This is handled in Integration Manager by
specifying the Code Page used by a host system in the Connection Resource.
Getting Started with the Tandem Component Editor 15

About Constant and Expression Driven Connections
You can specify Connection parameter values in one of two ways: as Constants or as Expressions. A
constant-based parameter uses the static value you supply in the Connection dialog every time the
Connection is used. An expression-based parameter allows you to set the value in question using a
programmatic expression (that is, an ECMAScript expression), which can result in a different value
each time the connection is used at runtime. This allows the Connection's behavior to be flexible and
vary based on runtime conditions.

For instance, one very simple use of an expression-driven parameter in a Tandem Connection would be
to define the User ID and Password as PROJECT Variables (e.g.:
PROJECT.XPath("USERCONFIG/MyDeployUser"). This way, when you deploy the project, you can
update the PROJECT Variables in the Deployment Wizard to values appropriate for the final
deployment environment. At the other extreme, you could have a custom script that queries a Java
business object in the Application Server to determine what User ID and Password to use.

To switch a parameter from Constant-driven to Expression-driven:

1 Click the right mouse button in the parameter field you are interested in changing.
2 Select Expression from the context menu and the editor button will appear or become enabled. See

below.

3 Click on the Expression Editor button. The Expression Editor appears.
16 Tandem Connect User’s Guide

4 Create an expression (optionally using the pick lists in the upper portion of the window) that
evaluates to a valid parameter value at runtime. Click OK.
Getting Started with the Tandem Component Editor 17

18 Tandem Connect User’s Guide

3 Creating a Tandem Component

Before Creating a Tandem Component
As with all Integration Manager components, the first step in creating a Tandem component—assuming
a Connection Resource is available—is to prepare any XML templates needed by the component. (For
more information, see “Creating a New XML Template” in the Integration Manager User's Guide.)
During the creation of your component, you will use these templates’ sample documents to represent
the inputs and outputs processed by your component.

Also, as part of the process of creating a Tandem component, you must specify a Tandem connection for
use with the component (or you can create a new one). See the previous chapter for information on
creating Tandem Connection Resources.

To create a new Tandem Component:

1 Select File>New>xObject then open the Component tab and select Tandem.
NOTE: Alternatively, under Component in the Integration Manager window category pane you can
highlight Tandem Terminal, click the right mouse button, then select New.

2 The “Create a New Tandem Component” Wizard appears.

3 Enter a Name for the new Tandem Component.
4 Optionally, type Description text.
5 Click Next. The XML Input/Output Property Info panel of the New Tandem Component Wizard

appears.
Creating a Tandem Component 19

6 Specify the Input and Output templates as follows.
Type in a name for the template under Part if you wish the name to appear in the DOM as
something other than “Input”.
Select a Template Category if it is different than the default category.
Select a Template Name from the list of XML templates in the selected Template Category.
To add additional input XML templates, click Add and choose a Template Category and
Template Name for each.
To remove an input XML template, select an entry and click Delete.

7 Select an XML template for use as an Output DOM using the same steps outlined above.
NOTE: You can specify an input or output XML template that contains no structure by selecting
{System}{ANY} as the Input or Output template. For more information, see “Creating an Output
DOM without Using a Template” in the User’s Guide.

8 Click Next. The Temp and Fault XML Template panel appears.

9 If desired, specify a template to be used as a scratchpad under the “Temp Message” pane of the
dialog window. This can be useful if you need a place to hold values that will only be used
temporarily during the execution of your component or are for reference only. Select a Template
Category if it is different than the default category. Then select a Template Name from the list of
XML templates in the selected Template Category.

10 Under the “Fault Message” pane, select an XML template to be used to pass back to clients when
an error condition occurs.
20 Tandem Connect User’s Guide

11 As above, to add additional input XML templates, click Add and choose a Template Category and
Template Name for each. Repeat as many times as desired. To remove an input XML template,
select an entry and click Delete.

12 Click Next. The Connection Info panel of the Create a New Tandem Component Wizard appears.

13 Select a Connection name from the pulldown list. For more information on the Tandem
Connection, see “Creating a Connection Resource” in Chapter 2 of this Guide.

14 Click Finish. The component is created and the Tandem Component Editor appears.

About the Tandem Component Editor Window
The Tandem Component Editor includes all the functionality of Integration Manager’s XML Map
Component Editor. For example, it contains mapping panes for Input and Output XML documents as
well as an Action pane.

There is one main difference, however. The Tandem Component Editor also includes a Native
Environment Pane featuring a Tandem 6530 emulator. This screen appears black until you either click
the Connection icon in the main toolbar or begin recording by clicking the Record button in the toolbar.
Either action establishes a Tandem emulation session inside the Native Environment Pane with the host
that you specified in the connection resource used by this Tandem component.
Creating a Tandem Component 21

About the Tandem Native Environment Pane
The Tandem Native Environment Pane provides Tandem emulation of your host environment. From this
pane, you can execute a Tandem session in real time, interacting with the Native Environment Pane
exactly as you would with the screen on a “dumb terminal.” You can also do the following:

Use data from an Input XML document (or other available DOM) as input for a Tandem screen
field. For example, you could drag a SKU number from an input DOM into the “part number” field
of a Tandem screen, which would then query the host and return data associated with that part
number, such as description and price.
Map the data from the returned Tandem screen and put it into an Output XML document (or other
available DOM, e.g., Temp, MyDom, etc.).
Map header and detail information (such as a form with multiple line items) from the Native
Environment Pane to an XML document using an ECMAScript expression or function.

About Tandem Keyboard Support
The Tandem Native Environment Pane supports the use of numerous special terminal keys. The
Terminal Keypad dialog (see below) is comprised of four Tabs: Common Keys, NumPad Keys, Control
Keys and Other Keys. Each Tab contains a group of keys with specific functionality.

Note that you can also achieve the use of additional keys (such as F13 through F16) by using the
picklists in the Expression Builder dialog, Function/Methods column, under Tandem > Keys.

How to Use the Floating Keypad:

1 Select View/Terminal Keypad from the Integration Manager Menu. A floating Keypad appears.
The Keypad window contains a series of tabs, including the following: Common Keys, NumPad
Keys, Control Keys and Other Keys.

2 Click on the appropriate Tab to display the keys you wish to view on the Terminal Keypad.
22 Tandem Connect User’s Guide

3 Click on the key you wish to invoke. If you require help, hover the mouse over that key. Help will
display the Tandem keyboard equivalent for that key. You will see the result of the key you clicked
in the Native Environment Pane.

4 Click OK to close the keypad. In order for the keypad to redisplay, you must repeat step 1. When
you display the keypad, you will return to the last Tab that you were using.

The following pages illustrate the four Tabs and corresponding keys that can be used to interact with
Tandem.

Common Keys: Includes directional keys, (Arrow Down, Arrow Left, Arrow Right, Arrow Up,
BackSpace, BackTab) as well as Delete, Escape, Linefeed, Return, and Tab. The function keys, F1
through F20, are also displayed.

NumPad Keys: Includes the digits 0-9, Minus, Comma, Period and Enter keys.

Control Keys: Includes 5 keys associated with specific functions. Refer to Appendix B for a complete
listing.
Creating a Tandem Component 23

Other Keys: Includes keys to perform common functions for example: the Menu key.

NOTE: The complete list of special (non-printing) keys and their ANSI equivalents is shown in Appendix
B.

About the Screen Object
The Screen Object is a byte-array representation of the emulator screen shown in the Native
Environment Pane, with methods for manipulating the screen contents.

What it is
The Tandem component communicates with the host environment via a character-mode terminal data
stream, in a TCP/IP session. The user sends data to the host in the form of keystrokes (or XML data
mapped to cursor prompts). The host, in turn, sends the terminal a stream of data which may contain
anything from a single byte to a whole screen’s worth of information. The Screen Object represents the
current screen’s worth of data. For a 24 x 80 terminal screen, this is 1,920 bytes of data.
24 Tandem Connect User’s Guide

How it works
When character data arrive from the host, appropriate updates to the Native Environment Pane occur in
real time. Those updates might be anything from a simple cursor repositioning to a complete repaint of
the terminal screen. The screen content is, in this sense, highly dynamic.

When you have signaled Integration Manager (via a Check Screen action) that you wish to operate on the
current screen’s contents, the screen buffer is packaged into a Screen Object that is made accessible to
your component through ECMAScript.

Many times, it is not necessary for your component to “know” or understand the complete screen
contents prior to sending keystrokes back to the host or prior to mapping data into a prompt. But when
mapping outbound from the screen to a DOM, it can be useful to have programmatic access to the Screen
Object. To make this possible, the Connect for Tandem defines a number of ECMAScript extensions for
manipulating screen contents. These extensions are described in further detail in the next chapter. For
now, a simple example will suffice. Suppose you are interested in obtaining a string value that occurs on
the screen in row 5 at column position 20. If the string is 10 characters long, you could obtain its value by
using the following ECMAScript expression as the Source in a Map action (with an output DOM or temp
DOM as the Target):

Screen.getTextAt(5, 20, 10)

The 10 characters beginning at row 5, column 20 on the screen would be mapped to the Target of the Map
action.

For more examples (and complete API documentation for the Screen object), see the section on
“Tandem-Specific Expression Builder Extensions” on page 34.

Tandem-Specific Buttons
If you are familiar with Integration Manager, you will notice immediately that the Tandem Connect
includes a number of Connect-specific tool icons (and/or icons with Connect-specific functionality) on
the component editor’s main toolbar. They appear as shown below.

Record Button

Record icon (normal state)

Record icon (recording in progress)

Record icon (disabled)

The Record button allows you to capture keyboard and screen manipulations as you interact with the
Native Environment Pane. Recorded operations are placed in the Action Model as actions, which you can
then “play back” during testing.
Creating a Tandem Component 25

Connection Button

Connection (disconnected state)

Connection (connected state)

Connection (connected/disabled state)

The Connection button on Integration Manager’s main toolbar toggles the connection state of the
component (using settings you provided during the creation of the Connection Resource associated with
the component).

NOTE: When you are recording or animating, a connection is automatically established, in which case
the button will be shown in the “connected/disabled” state. When you turn off recording, the connection the
button will return to the enabled state.

Create Check Screen Button

The Create Check Screen button on Integration Manager’s main toolbar should be clicked
before the first user interaction with any given terminal screen. This signals Integration
Manager that you intend to work with the screen data as currently shown in the Native

Environment Pane. Clicking this button causes a new Check Screen Action to be inserted into the Action
Model. (See the next chapter for a detailed discussion of this action type.)

Tandem-Specific Menu Bar Items

Component Menu
Two additional items have been added to the Component drop down menu for the Tandem Connect.
These are Start/Stop Recording and Connect/Disconnect (depending on your current status).

Start/Stop Recording—This menu option manages the automatic creation of actions as you interact
with a host program. Start will enable the automatic creation of actions as you interact with the screen
and Stop will end action creation.

Connect/Disconnect—This menu option allows you to control the connection to the host. When you
are recording or animating, a connection is automatically established (and consequently, the connection
icon is shown in the “connected/disabled” state). However, this button is useful if you are not recording
and you merely want to establish a connection for the purpose of navigating the Tandem environment.

Tandem-Specific Context-Menu Items
The Tandem Connect also includes context-menu items that are specific to this Connect. To view the
context menu, place your cursor in the appropriate pane (Native Environment or Action) and click the
right mouse button.
26 Tandem Connect User’s Guide

Native Environment Pane Context Menu
When you right-mouse-click in the Native Environment Pane, you will see a contextual menu. The menu
items will be greyed out if you are not in record mode. In record mode, the context menu has the
following appearance:

The four commands work as follows:

Send Buffer: USERID—Automatically sends User ID information to the host, based on the value you
supplied (if any) for User ID in the Tandem Connection Resource for this component. Also creates the
corresponding Send Buffer action in the Action Model.

Send Buffer: PASSWORD—Automically transmits Password information to the host, based on the
Password you supplied (if any) in the Tandem Connection Resource for this component. Also creates the
corresponding Send Buffer action in the Action Model.

Send Buffer—Brings up the Send Buffer dialog, allowing you to create a new Send Buffer Action. (See
the next chapter for a detailed discussion of the use of this command.)

Check Screen—Creates a new Check Screen action without bringing up a dialog (same as a click on the
Create Check Screen button in the toolbar).

Action Pane Context Menu
If you click the right mouse button when the mouse is located anywhere in the Action pane, a context
menu appears as shown.

The Tandem-specific functions of the context menu items are as follows:

Send Buffer—Allows you to create a Send Buffer action. The Send Buffer Action dialog will appear,
allowing you to enter text and/or control-key commands that will be sent to the Tandem host
application. (This dialog will also let you enter an ECMAScript expression, or an XPath fragment
Creating a Tandem Component 27

representing the location of string data in your input DOM.) See the next chapter for a detailed
discussion of the use of this command.

Check Screen—This command allows you to create a new Check Screen action (to sync the component
with the host). A dialog appears, allowing you to specify various go-ahead criteria as well as a Timeout
value. See the next chapter for a detailed discussion of the Check Screen action.
28 Tandem Connect User’s Guide

4 Performing Tandem Actions

About Actions
An action is similar to a programming statement in that it takes input in the form of parameters and
performs specific tasks. Please see the chapters in the Integration Manager User's Guide devoted to
Actions.

Within the Tandem Component Editor, a set of instructions for processing XML documents or
communicating with non-XML data sources is created as part of an Action Model. The Action Model
performs all data mapping, data transformation, data transfer between hosts and XML documents, and
data transfer within components and services.

An Action Model is made up of a list of actions that work together. As an example, one Action Model
might read invoice data from a disk, retrieve data from a host inventory database, map the result to a
temporary XML document, make a conversion, and map the converted data to an output XML
document.

The Action Model mentioned above would be composed of several actions. These actions would:

Open an invoice document and perform a Tandem command to retrieve invoice data from a host
database
Map the result to a temporary XML document
Convert a numeric code using a Code Table
Map the result to an Output XML document

About Tandem-Specific Actions
The Tandem Connect includes two actions that are specific to the Tandem environment: Check Screen
and Send Buffer.
Performing Tandem Actions 29

The purpose of these actions is to allow the Tandem component (running in a deployed service) to
replicate, at runtime, the terminal/host interactions that occur in a terminal session. The usage and
meanings of these actions are described in further detail below.

The Send Buffer Action
The Send Buffer action encapsulates “keystroke data” (whether actually obtained from keystrokes, or
through a drag-and-drop mapping, or via an ECMAScript expression built with the Expression Builder)
that will be sent to the host in a single transmission at component execution time. When the Send Buffer
action executes, the buffered data are sent to the host in the form of a properly Tandem 6530-escaped
byte stream. Send Buffer actions should always be preceded by a Check Screen action (see next
section).

The Send Buffer action can be created in several ways:

In Record mode, just begin typing after a Check Screen action has been created. Keystrokes are
automatically captured to a new Send Buffer action.
Right-mouse-click anywhere in the Action Model; a contextual menu appears. Select New Action
and Send Buffer.
In the main menu bar, under Action, select New Action and Send Buffer.

To create a Send Buffer action using menu commands:

1 Right-mouse-click anywhere in the Action Model and select New Action, then Send Buffer, from
the contextual menu (or use the Action menu as described above). The Send Buffer dialog will
appear.

2 To map a DOM element’s contents to the buffer, click the XPath radio button, then select a DOM
from the pulldown list and type the appropriate XPath node name in the text area (or click the
Expression icon at right and build the node name using the Expression Builder).

3 To specify the buffer’s contents using ECMAScript, click the Expression radio button, then use the
Expression Builder dialog to create an ECMAScript expression that evaluates to a string.

Tandem Action Description

Check Screen Allows the component to stay in sync with the host application. This action
signals the component that execution must not proceed until the screen is in
a particular state (which can be specified in the Check Screen setup dialog),
subject to a user-specified timeout value.

Send Buffer Buffers a string for transmission to the host. In Conversational and Block
Mode, Tandem Connect will act as a “dumb” terminal and might only change
the internal buffers of the screen without sending data to the host. The string
is formed from Map actions and/or from user keystrokes. (The Send Buffer
action can be created manually, but will more often be generated
automatically when the user types into the screen or maps data to the
current prompt.)
30 Tandem Connect User’s Guide

4 To specify the contents of the buffer manually (by typing a string into the text field), first check the
Accept Key Strokes checkbox, then begin typing. The Expression radio button will become
selected automatically and every key you press will be entered into a quoted string in the text area.
Control keys (arrow keys, function keys, etc.) will automatically be translated to the appropriate
escape sequences. (See discussion below.)

5 Click OK.

Editing Text in the Send Buffer Dialog

When you are in “Accept Key Strokes” mode, normal editing of text via backspacing, cut/paste, etc. is
not possible, since every keystroke is captured to the dialog as an escaped string-literal value. For
example, if you hit the F11 key, a value of “<F11>” will be appended to the string buffer, instead of the
previous character being deleted. This may not be what you want.

To edit the buffer contents directly (using cut, paste, backspace, and so on), first uncheck the Accept Key
Strokes checkbox. Then edit your text. To return to key-capture mode, check Accept Key Strokes. Any
additional keystrokes will then be translated to escape sequences and appended to the existing text.

On some occasions, you may wish to enter a key sequence manually. You can do this by unchecking
Accept Key Strokes and typing the value in question anywhere in the current text string. If you don’t
know the key sequence for a given control key or function key, you can find it by clicking the Expression
icon to the right of the text area (which brings up the Expression Builder dialog) and then double-clicking
the appropriate control-key entry in the picklist in the upper part of the Expression Builder dialog.

If you want to know what a given key sequence means in plain English, simply select (highlight) the key
sequence(s) of interest and let the mouse hover over the selection. See below.

A hover-help box will appear, containing the escape sequence’s plain-English translation. For example,
in the graphic above, the key sequence “03031922< F11>” has been highlighted and the mouse is
hovering over the selection. The hover-help box shows the key sequence translates to “03031922<
F11>”.

If a group of key sequences is selected, you will see (in the hover-help box) all character equivalents,
wrapped in angle brackets.

All special (non-printing) keys and their terminal equivalents are listed in “Tandem Keyboard
Equivalents” on page 99.

How Keys Are Displayed in the Action Model
When a Send Buffer action is created, the keystrokes that are captured in real time are displayed in the
Action Model either as plain alphanumeric values or as a string which represents the key name in angle
brackets. For example, an up arrow will be translated into <up> and F7 will be translated
into <f7>. Backspace and delete keystrokes are also represented as strings. Therefore, if you wish to
correct typos in your Send Buffer action, you may want to doubleclick the action in the Action Model
(which brings up the Send Buffer dialog) and edit the buffer string by hand.
Performing Tandem Actions 31

The Check Screen Action
Because of the latency involved in terminal sessions and the possibility that screen data may arrive in an
arbitrary, host-application-defined order, it is essential that your component can depend on the terminal
screen being in a given state before it operates on the current screen data. The Check Screen action makes
it possible for your component to stay “in sync” with the host. You will manually create Check Screen
actions at various points in your Action Model so that precisely the correct screens are acted on at
precisely the right time(s).

To create a new Check Screen action, you can do one of the following:

Click on the “Create Check Screen Action” button on the main toolbar, or
Perform a right mouse click inside the action list, then select New Action and Check Screen from
the contextual menu, or
In the component editor’s main menu bar, select Action, then New Action, then Check Screen
While you are in Record mode, with your cursor in the Native Environment Pane, right-click then
select Check Screen.

NOTE: You will most often use the toolbar button when you are in Record mode.

To create a Check Screen action using a menu command:

1 With your cursor positioned in the Action Model on the action item after which you want your new
item to appear, perform a right mouse click. Then select New Action and Check Screen from the
contextual menu (or use the Action menu in the main menu bar as described above). The Check
Screen dialog appears.

2 Click one of the three radio buttons (Cursor position, Prompt, or Expression), depending on how
you want to specify the go-ahead (screen readiness) criterion. (The default is “Cursor position.”)
See discussion below.

3 Specify a Timeout value in milliseconds. (See discussion further below.)
4 Specify a Min wait value in milliseconds. (See discussion further below.)
5 Click OK.

Understanding the Check Screen Action

It is important that the execution of actions in your Action Model not proceed until the host application
is ready, and all screen data have arrived (that is, the screen is in a known state).

Your component must have some way of “knowing” when the current screen is ready. The Check Screen
Action is how you specify the readiness criteria.

The purpose of the Check Screen Action dialog is twofold:

It allows you to specify a wait time for program synchronization.
32 Tandem Connect User’s Guide

It allows you to specify an expression which will be used as a criterion to judge whether the screen
is in a state of readiness at execution time.

These factors are discussed in some detail below. Be sure to read and understand the following sections
before creating your first Tandem Component.

Cursor Position

You can base readiness on the location of the terminal’s cursor. Simply enter the row and column number
of the cursor’s “prompt position.” (The values shown in the Row and Column fields of the dialog will
always automatically default to the cursor’s current position. You will normally not have to enter the
numbers manually.)

Prompt

The current prompt position can be specified on the basis of the character string that immediately
precedes the cursor position in the terminal emulation window. For example, the prompt may say
“Choose one: (A, B, C, D)”. In this instance, you could specify “Choose one: (A, B, C, D)”, or “(A, B, C,
D)”, or perhaps simply “)”, as the go-ahead prompt. (The default value shown for the prompt string will
be the current screen contents for the line in which the cursor is positioned. The default string will include
all characters from the beginning of the prompt line up to and including the last space character, if any,
preceding the cursor.)

Expression

It is possible that the prompt position or prompt text could vary dynamically at runtime. For the ultimate
flexibility in determining the go-ahead criterion, you can click the Expression radio button in the Check
Screen Action dialog and enter an ECMAScript expression in the associated text field. At runtime, if the
expression evaluates as “true,” the screen will be considered ready; but not otherwise.

Expressions are discussed in detail in the heading titled “Tandem-Specific Expression Builder
Extensions” on page 34.

Timeout

The timeout value (in milliseconds) represents the maximum amount of time that your component will
wait for screen data to both arrive and meet the readiness criterion specified in the top part of the dialog.
If the available screen data do not meet the readiness criteria before the specified number of milliseconds
have elapsed, an exception is thrown.

NOTE: Obviously, since the latency involved in a terminal session can vary greatly from application to
application, from connection to connection, or even from screen to screen, a great deal of discretion
should be exercised in deciding on a Timeout value. Careful testing of the component at design time as
well as on the server will be required in order to determine “safe” timeout values.

The default Timeout value will vary depending on whether you are in Record mode or you are merely
creating Actions manually. In Record mode, the default Timeout value is a calculated value based on the
actual time that elapses between the last operation and the loading of the new screen. (The value
displayed in the dialog is twice this “observed load time,” rounded up to the nearest full second.) When
you are creating a Check Screen action manually (not in Record mode), the default value is 1500
milliseconds.
Performing Tandem Actions 33

Min Wait

The Min Wait time (in milliseconds) represents the amount of time your component should wait before
the initial check of the screen buffer. For example, if you specify a Min Wait of 500, your component will
check the screen for readiness (according to the criteria you specified) after waiting 500 milliseconds. If
the go-ahead criteria are met, the screen will be rechecked after another 100 milliseconds. Only if the
second check is also good will execution of the component proceed. If not, the screen will be rechecked
at 100-millisecond intervals until the Timeout value (above) has been reached. At that point, if the screen
still does not meet readiness requirements, an exception is thrown.

NOTE: Every Check Screen action checks the screen a minimum of two times. Go-ahead doesn’t occur
unless two consecutive checks are passed.

The default value for Min Wait is 50 milliseconds. But regardless of the Min Wait time, the screen will
be checked one final time at the expiration of the Timeout period, so that even if the Min Wait time is
greater than the Timeout value, the screen will still be checked once.

Using Actions in Record Mode
The easiest way to create an Action Model for your component is to use Record mode. When you build
an Action Model in this way a new Send Buffer action is created for you automaticallyas soon as you
begin typing or drag an element from the Input DOM into the appropriate field onscreen. This makes it
easy to build an Action Model, since all you have to do is click the Check Screen button, begin typing (or
drag an element from the Input DOM into the prompt area onscreen), wait for the next screen to arrive
from the host, click Check Screen, begin typing (or dragging), etc., repeatedly. In this fashion, a sequence
of Check Screen and Send Buffer actions can be built very quickly and naturally.

When a Send Buffer action has been created automatically for you, all of your subsequent keystrokes will
be captured to the buffer until one of the following occurs:

You perform a right-mouse-click.
You begin to create a new action in the Action Model.
You drag data into or out of the Native Environment Pane.
You toggle the Record button to the non-recording state.

Working in record mode will be discussed further below in “Recording a Tandem Session” on page 40.

Tandem-Specific Expression Builder Extensions
The Connect for Tandem exposes a number of Tandem-specific ECMAScript global variables and object
extensions, which are visible in Expression Builder picklists. The Tandem-specific items are listed under
the node labelled “Tandem.” There are three child nodes: Login, Screen Methods, and Keys. See
illustration below.
34 Tandem Connect User’s Guide

Login
Tandem Connection Resources have two global variables that are accessible from Expression Builder
dialogs: the USERID and PASSWORD. These properties (available under the Login node of the
picktree) specify the User ID and Password values that may be requested by the host system when you
connect. You can map these variables into the terminal screen, which eliminates the need for typing user
and password information explicitly in a map action.

NOTE: You can also create a Send Buffer action where the XPath source is defined as $PASSWORD.

Screen Methods
When an Expression Builder window is accessed from a Map or Function action in the Tandem
Component, the picklists at the top of the window expose special Tandem-specific ECMAScript
extensions, consisting of various methods of the Screen object and predefined escape sequences
corresponding to various “special keys” on the virtual terminal’s keyboard.

Hover-help is available if you let the mouse loiter over a given picktree item. (See illustration.)

Tandem-specificpicktree nodes
Performing Tandem Actions 35

In addition, you can obtain more complete online help by clicking Help in the lower left corner of the
dialog.

The Screen object offers methods with the following names, signatures, and usage conventions:

int getAttribute(nRow, nColumn)

This method will return the display attribute value of the character at the screen position given by nRow,
nColumn. The complete set of possible display attribute values is listed in Appendix C. An example of
using this method is:

if (Screen.getAttribute(5, 20) == 1) // if character at 5, 20 is bold

// do something

int getCursorColumn(void)

This method returns the current column position of the cursor in the Tandem terminal emulator screen
(Native Environment Pane). Column positions are one-based rather than zero-based. In other words, in
24x80 mode, this method would return a value from 1 to 80, inclusive.

int getCursorRow(void)

This method returns the current row position of the cursor in the Tandem terminal emulator screen
(Native Environment Pane). Row positions are one-based rather than zero-based. In other words, in
24x80 mode, this method would return a value from 1 to 24, inclusive.

int getColumnCount(void)

This method returns the native column-width dimension of the current screen. (Due to possible mode
changes in the course of host-program execution, this value can change from screen to screen. Do not
depend on this value staying constant over the life of the component.) When the program is in 24x80
mode, this method will return 80. To retrieve all of the contents of row 15 of the current screen, regardless
of its native dimensions, you could do:

var myRow = Screen.getTextAt(15, 1, Screen.getMaxColumn());
36 Tandem Connect User’s Guide

String getPrompt(void)

The getPrompt() method returns the string representing all characters in the cursor’s row, starting at
column 1 and continuing to, but not including, getCursorColumn()—in other words, everything from
the beginning of the line to the cursor position. (This is the same as the default prompt string shown in
the Check Screen dialog.) Example:

var thePrompt = Screen.getPrompt();

if (thePrompt().toLowerCase().indexOf("password") != -1)

Screen.setText(PASSWORD);

int getRowCount(void)

This method returns the native vertical dimension of the current screen. (Due to possible mode changes
in the course of host-program execution, this value can change from screen to screen. Do not depend on
this value staying constant over the life of the component.) When a program is in 24x80 mode, this
method will return 24. To loop over all rows of a screen, regardless of its native dimensions, you could
do:

for (var i = 1; i <= Screen.getMaxRow(); i++)

{

var myRow = Screen.getTextAt(i, 1, Screen.getMaxColumn());

// do something with myRow

}

String getText(nOffset, nLength)

This method returns the string of characters (of length nLength) that occurs in the Screen object at the
byte offset given by nOffset. Note that the offset is one-based, not zero-based. Thus, to obtain all of a
24 x 80 screen as an ECMAScript String, you would do:

var wholeScreen = Screen.getText(1, 24 * 80);

Any attempt to obtain character data beyond the bounds of the screen buffer will result in an exception.
For example, the following call will fail:

var wholeScreen = Screen.getText(1, 1 + 24 * 80); // ERROR!

String getTextAt(nRow, nColumn, nLength)

This method returns an ECMAScript String that represents the sequence of characters (of length
nLength) in the current screen starting at the row and column position specified. Note that nRow and
nColumn are one-based, not zero-based. A zero value for either of these parameters will cause an
exception.

To obtain all of row 20 of a 24x80 screen, you would do:

var myRow = Screen.getTextAt(20, 1, 80);
Performing Tandem Actions 37

The getTextAt() technique is used internally in drag-and-drop Map actions involving screen
selections created as described in “Selecting Continuous Data” on page 39 further below.

String getTextFromRectangle(nStartRow, nStartColumn, nEndRow, nEndColumn)

This method returns a single String consisting of substrings (one per row) comprising all the characters
within the bounding box defined by the top left and bottom right row/column coordinates specified as
parameters. So for example, in 24x80 mode, you could obtain the upper left quarter of the screen by
doing:

var topLeftQuadrant = Screen.getTextFromRectangle(1,1,12,40);

The getTextFromRectangle() method is used internally in drag-and-drop Map actions involving
rectangular screen selection regions created using the Shift-selection method (see “Selecting Rectangular
Regions” on page 39).

Note that the string returned by this method contains newline (\u000a) delimiters between substrings.
That is, there will be one newline at the end of each row’s worth of data. The overall length of the returned
string will thus be the number of rows times the number of columns, plus the number of rows. For
example, Screen.getTextFromRectangle(1,1,4,4).length will equal 20.

void setText(String)

The setText() method allows you to send data to the screen (and therefore the host application)
programmatically, without explicitly creating a Send Buffer action. Example:

var myPhone = "(203) 225-1800";

if (Screen.getPrompt().indexOf("Phone") != -1)

Screen.setText(myPhone + "\r"); // send string + CR

Keys
The Keys node of the Tandem-specific picktree in the Expression Builder dialog has child nodes labelled
Common Keys, NumPad Keys, Control Keys, and Other Keys. These keys were discussed in detail in
“About Tandem Keyboard Support” on page 22. By double-clicking the picklist items under these
categories, you can automatically generate the key string for any non-printing characters, special keys
and function keys you wish to transmit to the host. The detailed contents of these picktree items can be
found in Appendix B.

Screen Selections in the Tandem Connect
There are two main ways of selecting data on the terminal screen (in the Native Environment Pane) at
design time, for purposes of dragging out. One method selects text in a continuous stream, from one
screen-buffer offset to another; the other method selects text in an arbitrary onscreen bounding box or
region.
38 Tandem Connect User’s Guide

Selecting Continuous Data
When you drag across multiple rows of data without holding the Shift key down, all characters from the
initial screen offset (at the mouse-down event) to the final screen offset (at mouse-up) are selected, as
shown in the graphic below. (The selected text is “reversed out.” A partial row has been selected,
followed by three complete rows, followed by a partial row.)

As indicated in the component editor window’s status line (lower left), the selection in the above example
actually begins at row 5, column 26, and ends at row 9, column 35. If you were to drag this selection out
of the Native Environment Pane, into a DOM, a Map action would be generated as follows:

Notice that the getTextAt() method is used. This means the captured screen characters form one string,
which is mapped to Output/Inquiry/Response/Info. No newlines or other special characters are
inserted into the string. (Areas of the screen shown in black are simply represented as space characters in
the string.)

Selecting Rectangular Regions
Sometimes you may not want the selection behavior described above. In certain cases, screen data may
be grouped into zones with their own natural boundaries. For example, in the screen shown previously,
there is a box two-thirds of the way down the screen containing information on the availability of a given
book. You may want to capture (for drag-out purposes) just the data enclosed within this particular
rectangular region on the screen. To do this, first hold the Shift key down, then drag your mouse across
the portion of the screen that you want to select. The selected area is highlighted and the appropriate
row/column start and end points are displayed in the status line of the component editor’s window, as
below:

Selected via
Drag
Performing Tandem Actions 39

In this instance, when you drag the rectangular highlight region out of the Native Environment Pane, into
a DOM, the resulting Map action uses the getTextFromRectangle() method described on page
38.The resulting action looks like:

This method operates in a different fashion from getTextAt(), because the string returned by
getTextFromRectangle() is wrapped at the rectangle’s right edge. Newlines are inserted at the wrap
points as discussed in the API description of getTextFromRectangle(), further above.

Recording a Tandem Session
The Tandem Component differs from other components in that a major portion of the Action Model is
built for you automatically. This happens as you interact with the host in the Native Environment pane
as part of a live Tandem terminal session. Integration Manager records your interactions as a set of auto-
generated actions in the Action Model. Typically, in other Integration Manager components (such as a
JDBC Component), you must manually create actions in the Action Model, which then perform the
mapping, logging, transformation, communication, and other tasks required by the component or
service. By contrast, when you create a Tandem Component, you record requests and responses to and
from the host, which end up as actions in the Action Model. In addition, you can add standard actions
(Map, Log, Function, etc.) to the Action Model just the same as in other components.

NOTE: In order to successfully build a Tandem Component, you should be familiar with the Tandem 6530
commands and the specifics of the application you intend to use in your XML integration project.

The following example demonstrates several common tasks that you will encounter in building Tandem
Components, such as:

Creation of Check Screen actions
Automatic creation of Send Buffer actions
Drag-and-drop mapping of Input DOM elements to Tandem-screen prompts
Drag-and-drop mapping from the Native Environment Screen to the Output DOM
The use of ECMAScript expressions to manipulate Screen object elements

Selected via
Shift-Drag
40 Tandem Connect User’s Guide

In the following example, we start with an input XML document that contains the title and author of a
book. The goal of our Web Service is to do an author search online, using the terminal app, to see if a book
by the given title exists in the library system. If so, we retrieve its ISBN (International Standard Book
Number) code in an Output DOM. Whether we succeed or not, we insert an appropriate status message
in the Output DOM.

To record a Tandem session:

1 Create a Tandem Component (see “Before Creating a Tandem Component” on page 19).
2 Once created, the Tandem Component Editor window appears, with the words “Tandem Terminal

Emulation” in the center of the Native Environment Pane, indicating that no connection has yet
been established with a host.

3 Click the Record button. You are automatically connected to the host that you selected in the
Connection Resource for the component. An input screen appears in the Native Environment pane
as shown below.
Performing Tandem Actions 41

4 Click the Create Check Screen Action button in the toolbar. A new Check Screen action appears
in the action list. It defaults to a go-ahead condition based on the current cursor position (which we
assume will always be 21,56 on this screen, with every future execution of this component—an
assumption worth questioning). We will tentatively accept the default Timeout of 1500
milliseconds for this Check Screen action, since the CONSULS program has a relatively quick
response time. (Even so, careful testing of the component should be done in order to verify that this
timeout value is safe.)

5 Type the letter A (for Author) in the input screen of the Tandem environment pane. A new Send
Buffer action appears automatically in your component’s action list. Notice that the ‘A’ you typed is
already in the action.
NOTE: Terminal commands are often case-sensitive and should generally be entered in ALL
CAPS.

In this part of this particular host application, merely typing a single character (without hitting
Enter or Return) causes a new screen to appear. The host, in other words, processes the typed
character immediately. This is a common terminal idiom. You will not always need to hit Return or
Enter to get to a new screen.

In response to ‘A’, the host program sends the new screen shown above.
6 Because we wish to terminate the Send Buffer action and go on to interact with the new screen, you

should click the Check Screen button in the toolbar, at this point, to allow the component to “sync”
our next action with the current screen. Click the Create Check Screen Action button now. The
new Check Screen action appears in the action list.
NOTE: Were you to simply start typing your next command at this point (without first creating a
new Check Screen action), the command would be appended to the still-active Send Buffer. In
essence, you would be creating a “type-ahead” buffer. At runtime, the buffer (containing two sets of
screen commands concatenated together) would be sent all at once. While this would work okay in
this particular program, the type-ahead technique could fail in other real-world terminal programs.
Therefore, use caution when deliberately overloading a Send Buffer action. A “best practices”
approach is to create a new Check Screen action for every new screen that appears during your
session.

7 Drag the BOOKINQUIRY/AUTHOR/LASTNAME node from the Input DOM to the cursor
position in the Native Environment Pane. “Clancy” (without quotation marks) appears in the
prompt zone and a new Send Buffer action appears automatically in the Action Model.
42 Tandem Connect User’s Guide

NOTE: This terminal application is expecting the author’s name to be provided as Last Name
followed by First Name (with a space in between). Hence, we dragged the LASTNAME element first.

8 Hit the spacebar on your keyboard. Notice that a space character is added to “Clancy” in the Native
Environment Pane. Also, a new Send Buffer action is created containing just the space character.

9 Drag the BOOKINQUIRY/AUTHOR/FIRSTNAME element from the Input DOM to the cursor
position in the Native Environment Pane. “Tom” (without quotation marks) appears after “Clancy ”
in the prompt zone and a new Send Buffer action appears in the Action Model.

10 Note that the terminal screen has not changed (the host has not acted on our input), because it is
waiting for Return or Enter. Press Enter to tell the host that our query string (the author’s name) is
complete. A new Send Buffer action appears, containing <enter>, and the Native Environment
Pane updates to reflect the query results.

11 Click the Create Check Screen button in the toolbar. A new Check Screen action appears, with a
default go-ahead condition based on the cursor location of row 24, column 38. (Row 24 is the
bottom row and column 38 is about halfway across the 80-column screen; see screenshot above.)
There is no need to change the Check Screen default in this case.

12 In the Native Environment Pane, select the terminal-screen text in row 2, from column 2 to column
18, by clicking and dragging the mouse.
NOTE: Notice that as you click and drag, the onscreen row/column coordinates of the selected
area are displayed in the status line of the component editor window (lower left corner).

13 Lift your finger off the mouse button and place the mouse over the selected text. A finger cursor
will appear. Click-drag the selection to the Output DOM InquiryResponse/Status node. The
selected text is inserted into the DOM at the desired location, and a new Map Action is generated in
the Action Model automatically.

14 Click the Record button to turn recording off.

Drag selected text
to Output DOM

New action appears here
Performing Tandem Actions 43

Looping Over Multiple Rows in Search of Data
In the example above, the goal is to find the ISBN (International Standard Book Number) information for
the book we’re interested in and map it into the Output DOM. Therefore, when the application shows the
result of your author search, you need to scan that screen, looking for the book title in question. If the title
exists, our next action should be to send the corresponding line number, which will cause the application
to display a new screen showing detailed information (including ISBN) for the book.

By simple visual inspection of the terminal emulator screen (see previous illustration), it’s easy to see that
Tom Clancy’s Debt of Honor is listed as line-item number 3 in the search-results screen. But this only
holds true for this particular search. A search on a different author/title combination might yield a hit at
a different line position. (Or if Tom Clancy writes more books, Debt of Honor could assume a different
listing position.) To determine the line position of the book at runtime, we should iterate through lines 4
through 11 of the terminal screen, searching for the string stored in the BOOKINQUIRY/TITLE node of
our Input DOM. The next example shows how to do this, building on the previous example.

To search for a data item one row at a time:

1 At the bottom of the Action Model, add a new Repeat While action. (Perform a right-mouse-click,
then select New Action, Repeat, and Repeat While.) The Repeat While dialog appears.

2 In the While text-entry box, type an expression representing the loop-termination condition you
wish to apply to this loop. In this case, our condition involves a check of the index variable,
rowIndex. We will be checking 8 rows of screen data in all.

3 In the Index Variable text-entry area, enter the name of your index variable (in this case,
rowIndex).

4 Since we are only retreiving a single value (one book) from the screen, we do not need to fill in the
optional Target portion of the dialog. Therefore, just click OK. A new Repeat While action is added
to the component’s Action Model.

5 In this example, we’re looking for a specific string within a given row. If the string is found, we will
take several actions, then break out of the loop. We will perform our row parsing and string search
within a Decision Action. Create a new Decision Action by clicking the right mouse button and
selecting New Action > Decision from the contextual menu. The Decision Action dialog appears.
44 Tandem Connect User’s Guide

6 Enter a Decision Expression. In this example, the three-line expression is:

var myRow = Screen.getTextAt(rowIndex+4, 1, 80).toLowerCase();

var bookTitle =
String(Input.XPath("BOOKINQUIRY/TITLE")).toLowerCase();

myRow.indexOf(bookTitle) != -1

The first line uses the Screen object’s getTextAt() method (see page 35) to retrieve the 80
characters of data (i.e., one full line, in a 24x80 terminal screen) at rowIndex + 4. We add an
offset of 4 to the index variable because our search of screen data should begin at row 4 and
continue through row 11. (The index variable itself will have values from 0 to 7. The loop
terminates when rowIndex reaches 8.)
The second line of code above simply retrieves the book title as a lowercase string from the Input
DOM. (Notice that because we don’t want our search to be case-sensitive, we force both strings—
the query string and the target-object string—to be lowercase.)
The final line of code is the actual “condition check.” It relies on the core-ECMAScript String
method indexOf(), which returns –1 when the argument string is not a substring of the string on
which the method is being called.

7 In the TRUE branch of the Decision Action, create a new Send Buffer action. (Right-mouse-click,
then choose New Action > Send Buffer from the contextual menu.) The Send Buffer dialog
appears.

8 Click the Expression radio button and then enter an ECMAScript expression in the text-edit area.
In this example, we’ve entered:

var item = Screen.getTextAt(rowIndex + 4, 1,10);
var regex = new RegExp("\\d+");

item.match(regex)[0];

The first line retrieves the first ten characters of data in the “hit” row using the getTextAt()
method. Within this string, we want the first substring of numeric characters, representing the line
number of the book (i.e., 3). One way to extract this substring is with the ECMAScript String
method, match(), which takes a regular expression object as an argument. On success, this
method returns an array, of which the zeroth item is the matched text. Our regular expression
consists of backslash-d followed by a plus sign, which means “one or more digit characters in a
row.”
NOTE: The RegExp constructor takes a String argument, in which backslashes that are to appear
as literal backslashes “must be escaped with a backslash.”
Performing Tandem Actions 45

The net result of these lines of ECMAScript is that the number preceding the book title in the target
row (namely, ‘3’) is supplied to the host application via a Send Buffer action. No newline need
accompany the number ‘3’. Upon receiving this number, the host application will immediately send
back a new screen giving detailed information about the indicated book, as shown below.

9 Create a new Check Screen action by performing a right-mouse-click and selecting New
Action > Check Screen from the contextual menu. The Check Screen dialog appears.

10 Select the Expression radio button and enter “true” in the text-edit area. Set a Min wait value of
100, which (in this case) we know from experience is generous.
NOTE: The combination of “true” and 100 means we will automatically accept any screen data that
get sent within 100 milliseconds.

11 Create a new Function Action. (Right-mouse-click: select New Action > Function.) In this action,
we will retrieve the first ISBN number on the page, if one exists, and store it into an ECMAScript
global.
The expression we will use is:

this.isbn = "Not found"; // set up global
var screen = Screen.getText(1, 24 * 80); // fetch whole screen
if (screen.indexOf('ISBN') != -1) // if ‘ISBN’ occurs, get it
 this.isbn = lTrim(screen.split('ISBN')[1]).split(' ')[0];

The first line above simply declares and initializes an ECMAScript global variable (which, on
success, will be overwritten with a valid ISBN value).
The second line of code retrieves the entire screen buffer as a string and places it in a local variable,
text. (We assume here that we’re in 24x80 mode.)
The third line checks the screen buffer to see if “ISBN” occurs in it. If so, we split the buffer into an
array of substrings using “ISBN” as the delimiter. The array member at index 1 will contain the
ISBN number, trailed by a partial screen’s worth of information (and possibly containing one or
more leading space characters). The custom ECMAScript function lTrim() is used to trimming
leading spaces, while the split method is again employed to break our string into an array of
substrings, assuming spaces to be the delimiters. The zeroth item of this final array is the ISBN
string that we’re looking for. See the series of graphics below.
46 Tandem Connect User’s Guide

Performing Tandem Actions 47

12 On finding the information we’re looking for, we no longer need to iterate through line items.
Therefore, create a Break Action to break out of the loop. (Right-mouse-click; New Action;
Break.)

13 Create a Map action that maps this.isbn to the InquiryResponse/ISBN node of the Output
DOM.

The completed Action Model looks like this:

Editing a Previously Recorded Action Model
You will encounter times when you need to edit a previously recorded action model. Unlike the
situation with other components, editing a Tandem Component requires extra attention. When a Tandem
Component executes, it plays back a sequence of actions that expect certain screens and data to appear
at certain times in order to work properly. So when editing a component you must be careful not to
make the action model sequence inconsistent with the host program execution sequence you recorded
earlier.

In general, to ensure successful edits, the following recommendations apply:
48 Tandem Connect User’s Guide

Exercise extreme care when using Cut, Copy, and/or Paste to delete, move, or replicate actions in
your Action Model. Actions that were created automatically during a “Record” session will often
create data dependencies that are easily overlooked in the editing process.
When you need to use drag-and-drop to add new Map actions to your Action Model, click the Start
Animation button in the Action Pane toolbar and step to the line of interest in your Action Model;
then Pause animation and turn on Record mode. At this point, you can safely drag to and from the
screen. Following this procedure will prevent your Action Model from getting out of sync with the
host or conflicting with previously mapped DOM data.

Changing an Existing Action
The following procedure will explain how to change an existing action in a previously recorded session.

To Change an existing action in a previously recorded Action Model:

1 Open the component that includes the Action Model you'd like to edit. The component appears in
the Tandem Component Editor window.

2 Navigate to the action in the Action Model where you’d like to make your edit and highlight the
action.
Performing Tandem Actions 49

3 Click the Toggle Breakpoint button (or press F2). The highlighted action becomes red.

4 Click the Start Animation button. The animation tools (in the Actions pane’s toolbar) become
enabled.

Start Animation

Toggle Breakpoint

Step to Breakpoint/End
50 Tandem Connect User’s Guide

5 Click the Step to Breakpoint/End button. The Action Model executes all of the actions from the
beginning of the Action Model to the breakpoint you set in step 3 above.

6 In the Component Editor tool bar, click the Record button.

7 Perform any additional drag-and-drop (or other) actions that you’d like to make to the Action
Model.

8 Turn off recording. (Toggle the Record button.)
9 Test your component.

Record button
Performing Tandem Actions 51

Adding A New Action
The following procedure explains how to add a new action in a previously recorded session.

To Add a Action to a previously recorded Action Model:

1 Open the component that includes the Action Model you'd like to add an action in. The component
appears in the Tandem Component Editor window.

2 Navigate to the action in the Action Model where you’d like to make your addition and highlight
the action.

3 Click the Toggle Breakpoint button (or press F2). The highlighted action becomes red.
52 Tandem Connect User’s Guide

4 Click the Start Animation button. The animation tools (in the Actions pane’s toolbar) become
enabled.

5 Click the Step to Breakpoint/End button. The Action Model executes all of the actions from the
beginning of the Action Model to the breakpoint you set in step 3 above.

6 In the Component Editor tool bar, click the Record button.

Start Animation

Toggle Breakpoint

Step to Breakpoint/End
Performing Tandem Actions 53

7 Use Integration Manager's drag and drop features to add new Map actions that interact with the
screen. The new action will be added directly under the highlighted line.

8 Turn off recording. (Toggle the Record button.)
9 Test your component.

About Adding Alias Actions
If you are adding Map Actions in a loop that are alias perform the following steps:

To Add an Alias Action to a previously recorded Action Model:

1 Open a component.
2 From the Action menu, select New Action, then Map. The Map Action dialog box displays.

3 Select the Expression for Source, and the dropdown box is grayed out.
4 Either type in the information, or click the Expression Builder button and create a new expression.
5 Create an XPath to be represented by the alias. Click from the dropdown list for the alias.
6 Click OK.
7 The new action is inserted below the line you select. (New line is highlighted in the screen below to

show it was inserted.

Record button
54 Tandem Connect User’s Guide

Deleting an Action
The following procedure explains how to delete an action in a previously recorded session

To Delete an Action to a previously recorded Action Model:

Highlight the action line that you want to delete and click on the RMB and select Delete from the menu.
You may also highlight the line and press the Delete button on your keyboard.

Testing your Tandem Component
Integration Manager includes animation tools that allow you to easily test your component. On the
Tandem Component Editor tool bar you'll find the Execute button, which allows you to execute the
entire Action Model and verify that your component works as you intend. It is important to test a newly
created Tandem Component to be sure that Timeout values in all Check Screen actions are appropriate
and that Send Buffer and other actions work as intended.
Performing Tandem Actions 55

To execute a Tandem Component:
1 Open a Tandem Component. The Tandem Component Editor window appears.

2 Select the Execute button. The actions in the Action Model execute. If the component executes
successfully, a message appears as follows.

3 Click OK.

After executing the component, you may want to doublecheck the contents of your DOMs to be sure all
of the appropriate data mappings occurred as expected. To make all data elements visible, select Expand
XML Documents from the View menu. This expands all of the parents, children, data elements, etc. of
the DOM trees, so that you can easily see the results of execution of the component.

Using the Animation Tools
In the Action Model, you'll find animation tools that allow you to test a particular section of the Action
Model by setting one or more breakpoints. Using these tools, you can run through the actions that work
properly, stop at the actions that are giving you trouble, and then troubleshoot the problem actions one at
a time.

The following procedure is a brief example of the functionality of the animation tools. For a complete
description of all the animation tools and their functionality, please refer to the Integration Manager
User's Guide.

Execute button
56 Tandem Connect User’s Guide

To run a Tandem Component using Animation Tools:

1 1.Open a Tandem Component. The component appears in the Tandem Component Editor window.
NOTE: Animation and Recording are mutually exclusive modes in the component. In order to
record during animation, you must either pause, or stop animation and then turn on record mode.

2 Click the Start Animation button in the Action Model tool bar, or press F5 on the keyboard. All of
the tools on the tool bar become active, and a connection is established with the host. The Native
Environment Pane becomes active.

3 Click the Step Into button. The first Check Screen action becomes highlighted.

4 Click the Step Into button again. The Check Screen action (above) executes and the next action
becomes highlighted.

5 Click the Step Into button repeatedly to execute actions one-by-one.
6 Click other buttons (Step Over, Run To Breakpoint, Pause, etc.) as desired to control the execution

of the component. Note that you can set a breakpoint at any time during execution by clicking the
mouse on an action line and hitting F2 or using the Set Breakpoint button.

7 Once execution is complete, the following message appears.

Tips for Building Reliable Tandem Components
The following tips may be helpful to you in building reliable Tandem Components.

Always precede a Send Buffer action with a Check Screen action.
Aways follow a Send Buffer action with a Check Screen action.
In Check Screen actions, accept the default go-ahead condition (based on cursor position) only
when you are certain that the absolute cursor position will always be constant for the given screen.
Many times, it is safer to write a custom expression.
Performing Tandem Actions 57

A fast, accurate way to create a prompt-based Check Screen action during recording is to highlight
(select) the characters of interest immediately preceding the cursor (up to but not including the
cursor position), then click the right mouse button and select Check Screen. This automatically
creates a Check Screen action based on the prompt you highlighted.
When typing a custom prompt string under Prompt (in the Check Screen dialog), remember to
escape any quotation marks that might appear within the prompt string.
Avoid using Check Screen go-ahead criteria based on variable information, such as dates, times,
etc.
Avoid Check Screens that do nothing but wait a specified period of time using the Min Wait setting.
While this technique may work, it can create significant performance bottlenecks.
Remember that the default Timeout values used in Check Screen actions are calculated from actual
response times during the design session. This has a couple of implications. First, the default
Timeout value may need to be increased, for load-sensitive applications. Secondly, deleting a
Check Screen action may cause synchronization timeouts on subsequent executions. Careful testing
will reveal these sorts of problems.
When disjoint go-ahead criteria come into play, such as when the middle of a screen remains
constant during a repaint but the first and last lines change, you may want to create two Check
Screen actions then combine them into one action that’s based on an expression.
58 Tandem Connect User’s Guide

Using Other Actions in the Tandem Component Editor
In addition to the Check Screen and Send Buffer actions, you have all the standard Basic and Advanced
Integration Manager actions at your disposal as well. The complete listing of Basic Integration Manager
Actions can be found in Chapter 7 of the Integration Manager User's Guide. Chapter 8 contains a
listing of the more Advanced Actions available to you.

Handling Errors and Messages
In testing a Tandem Component, you may encounter errors relating to Check Screen and/or Send Buffer
actions. The result is a dialog similar to the following:

This section discusses possible error conditions and how to deal with them.

Check Screen Errors

Most of the errors you are likely to encounter at execution time will be related to Check Screen actions.
It is important to realize that every one of the Check Screen errors discussed below is a timeout error. If
one of the errors described below occurs, it means that the go-ahead criteria you specified in the Check
Screen setup dialog were not met within the Timeout period. Therefore, you should first try to determine
whether slow host response might be the real problem (in which case, the solution is to increase the
Timeout value for the Check Screen action in question). If the error still occurs after the Timeout value
has been increased, then you can be sure the error is due to an incorrect or inappropriate go-ahead
condition in your Check Screen action.

The following paragraphs describe typical error messages and their meanings.

“Expected cursor position (Row = {0}, Column = {1}) was not established”

This error means that the Check Screen failed because the cursor was not at the expected location at the
expiration of the Timeout period. Perhaps the host application changed, or the prompt line may be
varying dynamically in some way that you weren’t anticipating, etc. It’s also possible, as explained
above, that the Check Screen simply “timed out” for reasons having to do with heavy host load or a bad
connection. Try increasing the Timeout value for the given Check Screen action. If that doesn’t help (or
if you suspect that the problem involves an inappropriate choice of go-ahead criteria), try rewriting the
Check Screen go-ahead condition based on something other than fixed cursor coordinates. For example,
specify a prompt string, or use an Expression to validate the screen contents in some way.
Performing Tandem Actions 59

“Expected prompt text {0} was not established”

This error means that the Check Screen failed because the prompt was not identical to the specified
(expected) prompt string prior to the expiration of the Timeout period. The prompt line may be varying
dynamically in some way that you weren’t anticipating. Or (as explained above) the host response time
may simply have increased unexpectedly due to heavy load or other factors. If you suspect that host
latency is a problem, try increasing the Timeout value for the Check Screen action. Otherwise, rewrite
your Check Screen go-ahead criteria to be based on something other than a hard-coded prompt value. For
example, specify an Expression that validates the prompt in some way.

“Screen Check Expression {0} was evaluated as false”

This error happens when the Check Screen go-ahead is based on an ECMAScript expression and the
expression happens to evaluate as false at execution time. Once again, it’s important to realize that this
sort of error can be triggered simply on the basis of slow host response (timeout). When the host is slow
to respond, it means that your ECMAScript expression will be evaluated on the basis of whatever is in
the screen buffer as of the moment of timeout. If no data (or insufficient data) have arrived, the expression
is bound to evaluate as false.

To fix this sort of problem, either increase the Timeout value for this Check Screen action (if you suspect
that the problem is host latency) or try modifying the logic in your ECMAScript expression.

Send Buffer Errors

Send Buffer errors will, in general, be rare. Be on guard, however, for Send Buffers that contain more
than one screen’s worth of commands (so-called “type-ahead” buffering). Such actions are easy to create
accidentally. An Action Model with overloaded Send Buffers may work correctly as you step through
actions at animation time, but can fail when the component-as-a-whole is executed, due to screen
synchronization problems. The way to avoid problems here is to make sure that for every Send Buffer
action, there is always be a corresponding Check Screen action.

Errors Involving Connections

If connection pooling is used, and there has been an attempt to log on with a bad UserID or Password,
that connection instance will not be usable and that member of the pool will be skipped over in
subsequent connection requests. An error message will be sent to the server log saying “Logon
connection in pool <Pool name> was discarded for User ID <User ID>.” You should check for messages
of this sort during preproduction testing and/or any time performance issues arise.
60 Tandem Connect User’s Guide

Finding a “Bad” Action
When you have a large Action Model (containing dozens or hundreds of Check Screen and Send Buffer
actions), simply locating the action that’s responsible for an error can be a challenge. One way to find the
problematic action is to:

1 Select and Copy the text after “Expected” in the error dialog. (Click the Details button if need be, to
expose the full error description. Highlight the relevant text, such as cursor coordinates. Then use
Control-C to Copy.)

2 Click inside the Action Model.
3 Use Control-F to initiate a search.
4 Paste the error text into the search dialog.
5 Execute the search.

Of course, if you have multiple Check Screen actions that are based on identical go-ahead criteria, the
foregoing technique won’t necessarily be helpful. If that’s the case, set a breakpoint at the midpoint of
your Action Model, and run the component. If the error doesn’t occur, move the breakpoint to a spot
halfway between the original breakpoint and the end of the action list. (Otherwise, if the error does
happen, set the breakpoint at a spot one quarter of the way down from the top of the action list.) Run the
component again. Keep relocating the breakpoint, each time halving the distance between the last
breakpoint or the top or bottom of the action list, as appropriate. In this way, you can quickly narrow
down the location of the problematic action. (Using this “binary search” strategy, you should be able to
debug an Action Model containing 128 actions in just 7 tries.)
Performing Tandem Actions 61

62 Tandem Connect User’s Guide

5 Advanced Tandem Actions

Terminal-based computing differs from other types of computing (including other IBM terminal-based
interactions) in a number of important ways:

Data arrive a character at a time, rather than in chunks.
There is no obvious structure to arriving data; and the data may arrive in an arbitrary order.
Screen updates may involve just a portion of the screen (perhaps a single character) or the whole
screen.
Retrieval of data sets may require repeated roundtrip communications with the host. (One query
may bring many screens’ worth of data, which must be captured through multiple “page forward”
commands, etc.)
Information that spans screens may be (and often is) partially duplicated on the final screen.

These factors can make automating a terminal interaction (via an Action Model) challenging. The goal
of this chapter is to suggest some strategies for dealing with common (yet potentially problematic)
terminal-computing situations in the context of an eXtend Action Model.

To get the most out of this chapter, you should already have read Chapter 4, “Performing Tandem
Actions” and you should be familiar with Action Model programming constructs (such as looping via the
Repeat While action). In addition, you should have some experience using ECMAScript.

Data Sets that Span Screens
A common requirement in terminal computing is to capture a data set that spans multiple screens. In
cases where the screen contains a line that says something like “Page 1 of 4,” it’s a straightforward matter
to inspect the screen at the point where this line occurs (using one of the ECMAScript Screen-object
methods described earlier, in the section titled “Tandem-Specific Expression Builder Extensions” on
page 34) and construct a loop that iterates through all available screens. But sometimes it’s not obvious
how many screens’ worth of data there may be. In some cases, the only clue that you have may be the
presence of a “More” command (for example) at the top or bottom of the screen, which changes to
“Back” (or “End,” or some other message) when you reach the final screen. In other cases, you may be
told how many total records exist, and you may be able to determine (by visual inspection) how many
records are displayed per screen; hence, you can calculate the total number of screens of information
awaiting you.

The point is that if your query results in (potentially) more than one screen’s worth of information, you
must be prepared to iterate through all available screens using a Repeat/While action, and stop when no
additional screens are available. You will have to supply your own custom logic for deciding when to stop
iterating. Your logic might depend on one or more of the following strategies:

Determine the total number of screens to visit by “scraping” that information, if available, off the
first screen.
Divide “total records” (if this information is available) by the number of records per screen (if this
is known in advance), and add one.
Visit screens one-by-one and break when a blank record is detected.
Visit screens one-by-one until a special string (such as “End” or “Go Back”) is detected.
Advanced Tandem Actions 63

Visit screens one-by-one until two consecutive identical screens have been encountered.

Obviously, the strategy or strategies you should use will depend on the implementation specifics of the
terminal application in question. For some applications, iterating through screens until a blank record is
encountered would be appropriate, whereas for others, it wouldn’t be.

An example of an Action Model that combines two of these strategies will be discussed in detail further
below.

Dealing with Redundant Data
In terminal applications, it’s common for the final screen of a multiscreen result set to be “padded” with
data from the previous screen. In this way, the appearance of a full screen is maintained.

Consider the following two screen shots. The top one shows the next-to-last screen’s worth of
information in a query that returned six screens of information. Notice that the reversed-out status line
(row 2 from the top) says “43 entries found, entries 33–40 are:”, followed by line entries. Since there are
43 records in the overall data set, and the next-to-last screen ends with record number 40, you’d expect
the next (and final) screen to show records 41 through 43. Instead, the final screen looks like the one at
the bottom of the next page. Notice that it shows records 36 through 43—that is, it contains five records
(36 through 40) from the previous screen. In most cases, you will not want to capture this redundant data.
The question is: How can you detect and reject redundant records of this sort?

ECMAScript offers an easy and convenient way of maintaining unduplicated lists. The trick is to create
a bare (uninitialized) Object, then attach record names as properties. Since no object can ever have two
properties with identical names, assigning record names as property names means the object’s property
list is an unduplicated list of record names.
64 Tandem Connect User’s Guide

A short example will make this clearer. Suppose you have an array of items in which some items are listed
more than once:

var myArray = new Array("Tom","Amy","Greg","Tom","Amy");

To unduplicate this array, you could assign properties to a bare object, where the property names equal
the array values:

var myObject = new Object(); // create a bare object

for (var i = 0; i < myArray.length; i++) // loop over array

{

var arrayMember = myArray[i]; // fetch array member

myObject[arrayMember] = true; // create the property

}

// Now obtain all property names

// in a new, unduplicated array:

var uniqueValues = new Array();

var n = 0; // counter

for (var propertyName in myObject) // enumerate property names

uniqueValues[n++] = propertyName;

// Now ’uniqueValues’ contains just "Tom","Amy","Greg"

We will use this trick to our advantage in the terminal application example discussed below.
Advanced Tandem Actions 65

An Example of Looping over Multiple Screens
Let’s look at a sample Tandem component that combines several of the strategies we’ve been talking
about. The host application is a university library system’s book locator service. In this example, we have
an input document that specifies an author’s name. Based on that name, we want to query the library for
all available book titles by that author and capture the results to an output DOM. We want the output
document to contain an unduplicated list of titles.

This example will demonstrate:

How to "scrape" data from multiple screens, without knowing in advance how many screens there
are.
How to reject duplicate records as they are encountered.
How to create Output DOM nodes programmatically.
Breaking out of the main loop if a blank record is encountered or the final screen has been reached.

The logic for our Action Model’s main loop can be summarized (in pseudocode) as follows:

Determine the number of records-per-screen

While (true) // enter a "forever" loop

Fetch a record

IF Record is Valid // i.e., not blank

Write data to Output DOM

IF Screen has been completely processed

IF this is not the final screen

Fetch next screen

ELSE BREAK // final screen processed

ELSE BREAK // blank record reached

Initial Actions

The initial portion of the Action Model for this example looks exactly like the actions created in the
earlier example (in the "Tandem Actions" chapter) under “Recording a Tandem Session” on page 40,
except that in this case our author is Thomas Aquinas. The initial actions are simply the Check Screen
and Send Buffer actions necessary to conduct an Author search on "Thomas Aquinas."

The initial screen of our result set looks like:
66 Tandem Connect User’s Guide

At the very beginning of the second row, we’re told how many records ("entries") were found. We can
capture this information by using a Function Action:

This three-line script obtains all of Row 2 in a local variable called line2, trims leading spaces off the
line, and splits the line on space characters (capturing the zeroth member of the resulting array into a
variable, totalHits). After this, it’s a simple matter to write the "total hits" number into the Output
DOM using a Map Action.

At this point, we could use the "total hits" number as the basis for our main loop. But for illustration
purposes, we’re going to bypass that tactic, because not every Tandem host reports "total hits"
information on the first response screen. We will, however, take advantage of the fact that this particular
application reports the number of records per screen (in row two). Here again, though, it’s possible—with
clever ECMAScript programming—to determine "records-per-screen" information dynamically, at
runtime. Alternatively, you can just hard-code this value after visually inspecting the screen.

NOTE: At some point, you will have to decide whether (and under what circumstances) it makes sense
to hard-code something like the number of records per screen, as opposed to applying runtime logic. With
terminal applications, it’s rare that you can count on being able to determine every important screen
characteristic dynamically. Some fore-knowledge of the host application’s behavior will almost always be
implicit in the final Action Model.

We will store the records-per-screen number in an ECMAScript variable, booksPerScreen. In this
example, there are eight records per screen.
Advanced Tandem Actions 67

Setting Up the Main Loop

Before creating our main loop, we need to set up an index variable that will be used when creating nodes
in our Output DOM. This index (called bookNumber)will start at one and will be incremented once for
every book title we capture to Output. The reason this index starts at one instead of zero is that DOM
nodes use one-based indexing. We will be using bookNumber to index our nodes.

We also will use an ECMAScript expression (in a Function Action) to create a blank ECMAScript object:

var bookTable = new Object();

By storing book titles as property names on this object, we can keep an unduplicated list of records, as
explained further above (see “Dealing with Redundant Data” on page 64).

To create the loop, we place a Repeat While action in the Action Model. (Right-mouse-click, then select
New Action > Repeat > Repeat While.) The dialog settings for this look like:

By setting the While condition to true, we are—in effect—creating an infinite loop. The exit conditions
for this loop are twofold:

If a blank record (all space characters) is encountered, the loop is terminated.
If the current screen is identical to the previous one, the loop is terminated.

The latter condition provides a suitably robust way to break out of our infinite loop.What’s more, it’s
generally applicable to a wide range of terminal applications—not just the library-query application.

The index variable i, which cycles from zero to booksPerScreen – 1, serves two roles:

6 It lets us know when it’s time to fetch a new screen (namely, when the value reaches
booksPerScreen – 1), and

7 It serves as the basis for our row offset when fetching records.

Screen Caching

One additional bit of pre-loop setup code involves caching the current screen. We include the following
Function Action statement immediately before beginning the loop:

previousScreen = Screen.getTextAt(1,1,Screen.getColumnCount() *
Screen.getRowCount());
68 Tandem Connect User’s Guide

The variable previousScreen caches the contents of the last-looked-at screen so that we can check
newly obtained screens against it. If a newly obtained screen has exactly the same content as the screen
we just processed, this is a hint that we have reached the final screen (and we should therefore terminate
the loop).

The Main Loop

We’re now in a position to look at what our Action Model’s main loop actually does.

First Half

Consider the first portion of the loop as shown below. This is where most of the real work takes place.

The first action inside the loop is a Function Action, which fetches the 53 characters beginning at column
9 of row 4 + i. The rows we’re interested in include rows 4 through 11, inclusive; this is the zone in
which the host reports our line items. Since i cycles from zero to 7, we can use "4 + i" as a row offset in
our code.

Once we’ve obtained a record, we do a validation check before proceeding. Only if the zone that the
record came from is non-empty will we continue with the loop. We use a Decision Action with a decision
expression of:

Screen.getTextAt(4 + i, 9, 53) != (new Array(53)).join(" ")

The statement on the right side of the expression means "create a new, empty array of length 53, and
convert it to a String by joining the array members together, using a single space character as the
delimiter." Since each array member is null, this essentially forms a String consisting of 53 space
characters in a row. We can compare this String with the onscreen string to determine if a blank record
was encountered.

In the TRUE branch of our Decision Action, we immediately check to see if the book title we just fetched
has already been encountered. (We don’t want duplicates.) Since we’ve been using the tactic of keeping
book titles as property names on the bookTable object (see discussion further above), all we have to do
to check for prior existence of the book is execute a Decision Action against the expression:

bookTable[bookTitle] == null
Advanced Tandem Actions 69

If this statement is true, it means the bookTable object has no property whose name matches the String
in bookTitle. When this is the case, it means we can go ahead and do our mapping operations.
(Otherwise, we fall through and keep iterating.)

In the TRUE branch of this decision, we mark bookTable[bookTitle] as true; this assigns a new,
non-null property to bookTable. We then map an index number as well as the book title to new nodes in
our Output DOM. By applying a target expression of

Output.createXPath("InquiryResponse/Books[$bookNumber]/Title")

for mapping, we are able to use the running index in bookNumber to create a new node instance under
InquiryResponse/Books with element name Title.

Finally, we increment bookNumber.

Second Half

In the final portion of our loop, we check to see if it’s time to fetch a new screen. If so, we execute the
necessary Send Buffer command to tell the host we want to page forward to the next screen.

Notice that as soon as we’ve fetched the new screen, we capture its contents into a String variable,
thisScreen. Then we execute a Decision Action in which we simply compare thisScreen to
previousScreen. If the two are equal, we use a Break Action to break out of the loop. Otherwise we
fall through and continue executing.

NOTE: Use care when deciding a Min Wait time for the Check Screen action shown above. If the Min
Wait is short and the go-ahead condition is true, it’s possible you could unintentionally skip a screen and
break out of the loop prematurely.

If we’re still executing, we reset i (the row index variable) and stuff thisScreen into
previousScreen in preparation for the next round.

The Output DOM resulting from our loop ends up looking something like this:
70 Tandem Connect User’s Guide

The DOM lists all the titles found for this author, numbered sequentially. And even though the final
screen’s worth of data contains a significant amount of information duplicated from the preceding screen,
our DOM contains no duplicate titles.

Performance Considerations
You can perform millisecond-based timing of your Action Model’s actions by wrapping individual
actions (or block of actions) in timing calls.

To time an Action:

1 Click into the Action Model and place a new Function Action immediately before the action you
wish to time. (Right-mouse-click, then New Action > Function.)

2 In the Function Action, enter an ECMAScript expression of the form:
startTime = Number(new Date)

3 Insert a new Function Action immediately after the action you wish to time.
4 In the Function Action, enter an ECMAScript expression of the form:

endTime = Number(new Date)

5 Create a Map Action that maps endTime – startTime to a temporary DOM element. (Right-
mouse-click, New Action > Map.)

6 Run the Component. (Click the Execute button in the main toolbar.)

If you do extensive profiling of your Action Model, you will probably find that the overwhelming
majority of execution time is spent in Check Screen actions. (You will seldom, if ever, encounter a Check
Screen that executes in less than 150 milliseconds.) Two implications of this worth considering are:
Advanced Tandem Actions 71

ECMAScript expressions (in Map and/or Function actions) will seldom, if ever, be a performance
consideration for the component as a whole.
Overall component performance rests on careful tuning of Min Wait and Timeout values in Check
Screen actions.

Finally, remember that testing is not truly complete until the deployed service has been tested (and proven
reliable) on the app server.

For additional performance optimization through the use of shared connections, be sure to read the next
chapter, on Logon Components.
72 Tandem Connect User’s Guide

6 Logon Components, Connections, and
Connection Pools

Tandem Session Performance
The overall performance of any service that uses back-end connectivity is usually dependent on the time
it takes to establish a connection and begin interacting with the host. Obtaining the connection is
“expensive” in terms of wait time. One strategy for dealing with this is connection pooling, a scheme
whereby an intermediary process (whether the app server itself, or some memory-resident background
process not associated with the server) maintains a set number of preestablished, pre-authenticated
connections, and oversees the “sharing out” of these connections among client apps or end users.

Connection pooling overcomes the latency involved in opening a connection and authenticating to a host.
But in terminal-based applications, a considerable amount of time can be spent “drilling down” through
menu selections and navigating setup screens in order to get to the first bonafide application screen of the
session. So even when connections are reused through pooling, session-prolog overhead can be a serious
obstacle to performance.

Integration Manager addresses these issues by providing connection pooling, managed by a special kind
of component (called a logon component) that can maintain an open connection at a particular “drill-
down” point in a terminal session, so that clients can begin transactions immediately at the proper point
in the session.

When Will I Need Logon Components?
Logon Components are useful in several types of situations:

When you have a need for multiple tiers of pooling based on multiple security challenges within
your system. (For example, users may need one set of logon credentials to get into the network,
another to get into the mainframe, and another to get into database.) Serial log-in requirements may
dictate the use of multiple logon components.
When your service needs stateful “session-based” connections.
When you need the performance advantages available through connection pooling.

If performance under load is not a high-priority issue and your connectivity needs are relatively
uncomplicated, you may not need to use Logon Components at all. But there is no way to know if
performance is adequate merely by testing services at design time, on a desktop machine.

Components and services built with the Tandem Component Editor may appear to execute quickly at
design time (in Animation Mode, for example). But in real-world conditions—which is to say under load,
with dozens or even hundreds of requests per second arriving at the server—session overhead can be a
significant factor in overall transaction time. The only way to know whether you need to use the special
performance enhancement features described in this chapter is to do load testing on a server, under test
conditions that mimic real-world “worst case” conditions.
Logon Components, Connections, and Connection Pools 73

Connection Pool Architecture
When you install the Connect for Tandem, two types of Connection Resources are added to the
Connection creation wizard:

a Tandem Connection
Tandem Logon Connection (henceforth referred to as a Logon Connection)

The Tandem Connection is a true terminal connection and (when used by a Tandem component) can
establish a session with a host system. This is the connection-type we have been using throughout this
Guide.

The Tandem connection resource is designed to make an individual connection to the host on an as-
needed basis. The connection is made just-in-time and discarded as soon as the client is done. It is not
reused in any way.

The Logon Connection, on the other hand, is different. It defines a pool of User IDs and passwords, each
of which can make its own connection. The Logon Connection also serves as an indirection layer to allow
clients to connect to the host at exactly the point in the host program (exactly the screen) where the client
needs to start. This entry-point-location behavior is made possible by the Logon Component. (A Logon
Connection always uses a Logon Component to get to the actual connection.) The architecture is shown
in the following graphic.
74 Tandem Connect User’s Guide

A Connection Resource is always required in order to get to the host. (This is true for any Integration
Manager service that uses Tandem components.) For simplicity, this diagram shows the Connection
Resource going directly to the host; in the real world, there may be intervening delegation layers for
security purposes.

The Logon Component contains Actions (an action model) designed to find a particular screen of interest
in the host program. This drill-down location is the effective entry point of the transaction for any
upstream process that uses this Logon Component. You can think of the Logon Component as a go-
between between the physical connection (represented by the Connection Resource) and the logic layer
(represented by the Tandem Component itself.

In order for a Tandem Component (at the top of the diagram) to use a Logon Component, it needs to enlist
the aid of a Logon Connection resource. The Logon Connection is the bridge between the Tandem
Component and the Logon Component.

The kinds and responsibilities of the various objects discussed above are summarized in the following
table.

The Logon Connection’s Role in Pooling
The Logon Connection differs from the ordinary “host-direct” connection resource in that it manages
pooling (the sharing of connection instances and Logon Component instances at runtime).

In the context of a Integration Manager service, pooling not only allows reuse of (open) connections at
runtime, it also increases the effective bandwidth of a deployed service. Consider the simple case where
you’ve designed a Tandem component that uses a regular connection resource. In creating the connection
resource, you will have specified a UserID and password for the resource to use so that at runtime, the
component can log in to the host. When an actual running instance of your component is using that
connection, no other instance of the component can log in to the host using that same set of credentials.
The bandwidth of your service is limited to one connected instance at a time.

With a Logon Connection, on the other hand, numerous host connections can be maintained in a “live”
state so that multiple instances of your component can access the host (each on its own connection)
without waiting. Throughput is dramatically increased.

Object Role

Tandem Connection
Resource

Allows a connection to be established with a host system.

Logon Component Specialized type of component in which the action model contains Logon,
Keep Alive, and Logoff action blocks. This component can maintain a
connection at a particular launch screen in a host program.

Logon Connection Specialized type of Connection Resource that associates a pool of
UserIDs and passwords with a given Logon Component type. At runtime,
connections are established for client processes on demand (and
reused), with one Logon Component instance per connection. Every
connection in the pool provides ready access to a given point (a particular
launch screen) in the host program, thanks to the associated Logon
Component (see above).

Tandem Terminal
Component

Contains the action model that comprises the business logic for a
particular Tandem interaction (or transaction).
Logon Components, Connections, and Connection Pools 75

The diagram below shows one possible runtime case where three component instances (two instance of
Tandem Terminal Component A and one instance of Tandem Terminal Component B) are executing on
the server. Instance 1 of Component A is using UserID ‘E’ to obtain a connection. This component has
its own dedicated instances of Logon Component M and Connection S.

Terminal Component B has just finished executing and is relinquishing its connection (established
through credentials defined by UID ‘F’). Note that because connection pooling is in effect, Component
B’s downstream resources (its Logon Component instance, M2, and its Connection instance, S2) are not
simply discarded; they remain live. As a result, Terminal Component A2 is able to obtain (reuse) the
M2/S2 resource instances that were previously held by Terminal Component B.

In this diagram, Logon Connection D is associated with four connections based on four UIDs (user IDs
or credentials: A-thru-F). One is in use; another (UID ‘F’) is alive but not being used; and two are inactive
but available (i.e., valid UIDs have been assigned, so these two connections can be made live at any
time).

How Many Pools Do I Need?
It’s possible for several different Tandem components to draw from the same connection pool. It’s also
possible for different components to draw from different pools. This means different Logon Connections.

An important factor in deciding how many Logon Connection resources (in effect, how many pools) your
service needs is the number of different start screens (or entry point screens) needed by the various
components in your project. Suppose Terminal Component A needs to begin its work at a particular
starting screen in a host application, but you’ve also designed another component—Terminal Component
B—that needs to start on a different screen. Components A and B will need separate Logon Connections,
and the separate Logon Connections will point to separate Logon Components. (In any given connection
pool, Integration Manager objects are shared in such a way that every user of the pool must start at the
same screen.)

Pieces Required for Pooling
The combination of a Logon Connection, a Logon Component, and its Connection Resource form the
basis of a connection pool. Starting from the host layer and working up the chain:

The Connection Resource defines the most basic parameters necessary for establishing a
connection with the host. When connection pooling is in effect, runtime instances of this object are
kept alive and reused.
The Logon Component defines the set of steps (actions) necessary to get to a particular entry point
in the host program. (At runtime, an instance of this component will actually carry out those steps
in order to arrive at, and maintain ready-to-use, a particular screen location in the host program.)
When connection pooling is in effect, instances of this object are kept alive and reused.
76 Tandem Connect User’s Guide

The Logon Connection is a special type of resource that contains all the information needed to
define a connection pool. This resource is designed to encapsulate pool-management info and does
not establish host connections directly; instead, it delegates those responsibilities to the Logon
Connection (which delegates them, in turn, to the appropriate Connection Resource).

How Do I Implement Pooling?
To create the various pieces required for pooling, you’ll go through the following basic steps (each of
which will be discussed in greater detail in the sections to follow):

1 First, you’ll create a basic Tandem connection resource, as demonstrated in “Creating a Tandem
Connection Resource” on page 14.

2 Next, you’ll create a Logon Component that uses the connection resource defined in Step 1. As part
of this process, you’ll create an action model designed to navigate to a certain point in the host
program.

3 You will create a Logon Connection resource, which is a specialized type of connection resource
that relies on a Logon Component (from Step 2) to make the basic connection (through the resource
defined in Step 1).

4 Finally, you’ll create a Tandem Terminal Component and associate it with the Logon Connection
resource of Step 3.

These steps are described in detail starting with the discussion in “Creating a Connection Pool” further
below. Before going to that section, however, you should become familiar with the design principles
behind the Logon Component (and also the Logon Connection). We’ll start with the Logon Component,
since it’s impossible to create a Logon Connection without using a Logon Component.

The Tandem Logon Component
The Logon Component is a special type of component: it has an Action Model, yet can be used as a con-
nection resource as well. The Action Model of this type of component is designed to manage a connec-
tion that will be used by multiple Tandem terminal components. In most respects, the Logon
Component is the same as a Tandem Terminal component. The differences are:

1 In a Logon Component, the Action Model is organized around connection-management tasks.
Those tasks are implemented via special actions: the Logon Action, Keep Alive Action, and Logoff
Action.

2 A Logon Component is not invoked directly by another component or service. Its invocation is
under the control of a Logon Connection.
NOTE: A Logon Component must and can only be used in conjunction with a Logon Connection.

Instead of calling the Logon Component directly, using (for example) a Component Action, you will
associate the Logon Component with a special connection resource called a Logon Connection. When
your Tandem Terminal Component executes, it executes via the Logon Connection, which in turn
executes the Logon Component.

Logon, Keep Alive, and Logoff Actions
The Logon Component provides several screen-management capabilities that are important factors in
overall performance. These capabilities are implemented in terms of Logon, Keep Alive, and Logoff
actions:
Logon Components, Connections, and Connection Pools 77

Logon Actions - These actions navigate through the host environment and park at a desired launch
screen in the host system. The connection is activated using User IDs from the pool. The Tandem
components that subsequently reuse the connection have the performance benefit of already being
at the launch screen and won’t incur the overhead of navigating to the launch screen as if they had
come in under their own new session.
Keep Alive Actions - These actions do two important tasks. First, they prevent the host from
dropping a connection if it is not used within a standard timeout period defined by the host.
Second, these actions must insure that the connection is always positioned at the “launch screen in
the host, even after performing the Keep Alive actions needed to prevent the connection from
dropping (the first important task).
Logoff Actions - These actions exit the host environment in a manner you prescribe for all the
connections made by User IDs from the pool, when a connection is being terminated.

These actions and their meanings will be discussed in greater detail below. For now, it’s enough to know
that these three action groupings are created for you automatically when you first create a Logon
Component. Note the (empty) Logon, Keep Alive, and Logoff action blocks in the action model shown
below:

Logon Actions
Actions you place in the Logon group are primarily concerned with signing into the host security screen
and then navigating through the host menu system to a launch screen where each Tandem component's
Action Model will start. It is important that any Tandem component using a Logon component be able
to start execution at the same common screen. Otherwise, the performance gains of avoiding navigation
overhead won't be realized and more importantly, the odd Tandem component won't work.

You can create actions under the Logon Actions block the same way as you would in an ordinary Tandem
Terminal Component—namely by using the Record feature to create (in real time) whatever actions are
necessary in order to enter sign-on info such as User ID and Password (as well as your initial menu
choices to arrive at the launch screen).

NOTE: Remember to use the User IDs and Passwords from the Logon Connection Pool. (See the
discussion in “Creating a Logon Connection using a Pool Connection” on page 86.) To do this, you need
to map the two special system variables called USERID and PASSWORD to the appropriate fields on the
screen. By specifying these two variables, you make it possible for Integration Manager to automatically
locate and use values from the next active and free Pool slot.

The launch screen is a common point of execution for all the Tandem Terminal Components that use the
User ID pool provided by a Logon Connection. The Logon actions in a Logon Component (which are
executed only once when a new connection is established) let the calling component—your Tandem
Terminal Component—begin execution at a given screen in the host program.
78 Tandem Connect User’s Guide

Maximizing Performance with the Logon Component

The Logon Actions must be structured properly and therefore always begin and end with a Check Screen
Action as shown in the screen below.

The final Check Screen action in the Logon block guarantees that control is not turned over to the Tandem
Component before the screen of interest has arrived in the connection. Without this, the Tandem
Component could start at an invalid screen, throw an exception, and possibly corrupt a transaction.

NOTE: You may notice when animating a Logon Component that the ending Check Screen is skipped.
This is normal design-time behavior. In a production environment , the actions in a Logon Component
always execute in an interleaved manner with an Tandem Terminal Component. Animating a Logon
Component from start to finish actually creates an abnormal sequence of events that would result in two
Check Screens being processed in succession, which is not allowed.

The performance benefit comes into play as a result not only of connection reuse but launch-screen reuse.
For example, if a User ID pool of three entries is fully used and (ultimately) reused by the execution of a
component fifteen times, the overhead of navigating to a menu item that executes the transaction of
interest will occur only three times. Likewise, there will only be three logons to the host because the
Logon actions at the top of a Logon Component are executed only once—when a new connection is
activated (not when it is reused). This is key to obtaining maximum performance in a high-transaction-
volume production settings.

NOTE: When possible, use the Try/On Error action to trap potential logon errors that may be
recoverable. Otherwise, the UserID trying to establish the failed logon will be discarded from the pool,
decreasing the potential pool size. The pool size will remain smaller until you manually reset the discarded
connections using the Integration Manager Enterprise Server Console for Tandem. See the Managing
Pools Sections in this Chapter for more details.

Keep Alive Actions
The Keep Alive block is where you will place actions that “ping the host” in whatever way necessary to
keep the connection alive so that it can be reused.

Keep Alive actions usually involve sending a key like <ENTER>, to the host at some specified interval.
However, if after sending the key the screen changes to some screen that is different than the launch
screen, you must be sure to return the Logon Component to the launch screen in the Keep Alive section.
Failure to do so will leave the next component at an incorrect screen, causing it to fail.
Logon Components, Connections, and Connection Pools 79

The Pool Info dialog of a Logon Connection (see discussion in “Creating a Logon Connection using a
Pool Connection” on page 86) is where you control how often the Keep Alive actions will execute. If you
specify in your Logon Connection pool that you would like to keep a free connection active for 5 minutes,
but the host will normally drop a connection after two minutes of activity, you can specify keyboard
actions to let the host know the connection is still active such as sending an <ENTER>key.

Keep Alive actions may be executed multiple times, but after the Keep Alive Time Period defined on the
Pool Info dialog of the Logon Connection.

NOTE: The execution of the Keep Alive actions does not cause the Inactivity Lifetime clock to reset in
the Logon Connection. Only a Tandem Component’s execution will reset the Inactivity Lifetime.

This key sequence corresponds
to “1” and “Backspace.”

interaction every
2 minutes

active connection for
60 minutes
80 Tandem Connect User’s Guide

Maximizing Performance with Keep Alive Actions

Check Screens must also be processed at the beginning and end of the Keep Alive section. Not only does
the keep Alive section prevent the connection from closing, but it must make sure that the launch screen
is present when the execution is completed. The beginning Check Screen checks to make sure that during
the time the connection was available but not in use, that an unexpected screen didn’t arrive from the host.
And again, the ending Check Screen prevents releasing the connection to the next Tandem Component
prematurely after executing the Keep Alive actions. See the following screen.

Logoff Actions
Logoff actions essentially navigate the User ID properly out of the host system. Logoff actions execute
only once for a connection and only when a connection times out (i.e. the Inactivity Lifetime expires) or
screen expression criteria is not met, or the connection is closed via the Tandem Server Console.

Logoff actions execute only once for a connection and only when a connection times out (i.e. the
Inactivity Lifetime expires) or screen expression criteria is not met, or the connection is closed via the
Tandem Server Console.

In a “best practices” sense, it’s vitally important to make Logoff Actions bulletproof. If an exception
occurs during execution of the Logoff actions, Integration Manager will break its connection with the
host, freeing the UserID in the pool. But the UserID may still be active on the host. Until the host kills the
UserID (from inactivity), a subsequent attempt by the pool to log on with that UserID may fail, unless
you’ve coded your logon to handle the situation. Logon failures cause the UserID to be discarded from
the pool, reducing the potential pool size and performance overall. As with Logon and Keep Alive
actions, the way to guarantee you are on the proper screen at the end of the logoff is to end with a Check
Screen.

Logon Component Life Cycle
Each time a User ID is activated from the Logon Connection Pool, an instance of the corresponding
Logon Component is created and associated with that User ID. Then the Logon actions are executed until
the desired launch screen is reached. At this point the Tandem Terminal component execution begins.
When it is finished another Tandem Terminal component using the same Logon Connection may begin
executing, starting at the same launch screen.

If no other component requests the connection, then the connection-instance in question enters an active
but free state (an “idle state”) defined by the Inactivity Lifetime and Keep Alive settings on the Pool Info
dialog of the Logon Connection. If the Keep Alive period (e.g., 2 minutes) is shorter than the Inactivity
Lifetime (e.g., 60 minutes), then at appropriate (2-minute) intervals, the Keep Alive actions will be
executed, preventing a host timeout and dropped connection; and the Keep Alive Period begins anew.

A Logon Component’s execution lifetime is dependent on the activity of the Logon Connection that uses
it. As long as one entry in the Logon Connection pool is active, then one instance of the Logon
Component will be in memory in a live state. A Logon Component instance will go out of scope (cease
executing) when the last remaining pool entry expires due to inactivity. The only other way to stop
execution of a Logon Component is through the Tandem Console on the Server.
Logon Components, Connections, and Connection Pools 81

NOTE: If a connection attempt involves a bad User ID or Password, that connection instance will not be
usable and that member of the pool will be skipped over in subsequent connection requests. An error
message will be sent to the server log saying “Logon connection in pool <Pool name> was discarded for
User ID <User ID>.”

The Tandem Connection
The Logon Connection is not a true connection object like a Tandem Connection Resource, but a pointer
to a Logon Component (which in turn connects to a host either through a conventional Connection
Resource or yet more intervening Logon Connection/Logon Component pairs). The Logon Connection
encapsulates information needed to describe a pool of connections. That includes User IDs and
passwords, plus pool settings involving the time interval between retries on discarded connections, etc.
Another function of the Logon Connection is that it ensures the use of different instances of the same
Logon Component for all the User IDs for which connections are made.

The dialogs you’ll use in setting up a pool of User IDs for a Logon Connection are shown in the following
set of illustrations. Arrows denote the buttons that lead to continuation dialogs.
82 Tandem Connect User’s Guide

Every Logon Connection is associated with a given Logon Component. In addition, the Logon Connec-
tion provides the following User ID pool functionality:

1 It allows the specification of multiple User IDs in advance ensuring that clients are able to secure a
connection when one is needed

2 It allows the reuse of a User ID/connection once it is established to eliminate repeated user
authentications and disconnects

3 It allows a single User ID to use multiple connections if this is supported by the host system
4 It keeps a connection active to prevent host timeouts during inactive periods
5 It lets you specify when to remove a connection from the active pool
6 It sets a timeout period to use for a fully active pool to provide a free connection
7 It lets you specify error handling dependent on the state of the Logon Component used by the

Logon Connection
Logon Components, Connections, and Connection Pools 83

Many-to-One Mapping of Components to Logons

In order for multiple instances of a Tandem component or different Tandem components to use the same
Logon Connection, the following conditions must be met:

1 All the Tandem components must use the same Connection Resource (thereby sharing the Tandem
Host, Port and Terminal type).

2 All the Tandem components must have a common launch screen in the host system from which
they can begin execution (see “The Tandem Logon Component” on page 77).

Connection Pooling with a Single Sign-On
If your host system security supports multiple logins from a single user ID, you may have circumstances
where you wish to pool the single User ID. This can be accomplished by performing the following
steps:

Specify a User ID/Password in the Connection Resource used by the Logon Component
On the Pool Info dialog of the Logon Connection, specify a Pool Size greater than one
Do NOT check the Override the UID/PWD setting in the Pool Info dialog of the Logon
Connection.

These steps will cause each pool slot to use the User ID and Password contained in the Connection
object and not use and User IDs from the pool.

Creating a Connection Pool

Overview
When creating a Tandem component, you must first create the Connection object it needs first. Simi-
larly, when creating the object comprising a Connection Pool, you must create the needed objects first,
which implies starting at the host and working your way backwards to the Tandem Component that will
access the host.

A typical sequence of steps for creating a Connection Pool is outlined in the diagram below:

Step One:
Create a basic host

Connection Resource

Step Two:
Create Logon Component

that uses basic Connection

Step Three:
Create Logon Connection

that uses Logon Component

Step Four:
Create standard Components

using Logon Connection
84 Tandem Connect User’s Guide

Creating a Basic Connection
This step is simple. Create a new Connection Resource as described in “Creating a Tandem Connection
Resource” on page 14 of this Guide. Even though you will be using User IDs and Passwords defined in
the Logon Connection later, you should still define one in the Connection as well. This will be needed
when you define the Logon Component in the next step. Alternatively, you can simply use an existing
Connection Resource.

Creating a Logon Component
To create a Tandem Logon Component:

1 From the Integration Manager File menu, select New> xObject, then open the Component tab and
select Tandem Logon.
The Header Info panel of the New xObject Wizard appears.

2 Type a Name for the connection object.
3 Optionally, type Description text.
4 Click Next and the Connection Info panel appears.

5 Select a Connection from the drop down list. (This will be the basic connection, not the logon
connection.)
Logon Components, Connections, and Connection Pools 85

6 Click Finish and the Logon Component Editor appears.
NOTE: Recording actions follows a series of steps. The cursor must be positioned over LOGON;
then turn Record on, and when you are done, turn Record off. Position the cursor to Keep Alive, turn
Record on, and when you are done, turn Record off. Position the cursor to LOGOFF, turn Record on,
then when you are done, turn Record off.

7 Record Logon Actions for logging into the host and navigating to the launch screen using the same
Recording techniques described in Chapter 4 of this Guide.

8 Edit the Logon Map actions that enter a User ID and Password to instead use the special USERID
and PASSWORD variables described in the section titled “Tandem-Specific Expression Builder
Extensions” on page 34 in Chapter 4 of this Guide.

9 Create the needed Send Buffer actions in the Keep Alive section of the Action Model (a quick way
is to copy an existing SEND key action, Paste it, and then modify the key code sent).

10 Record LOGOFF actions for properly exiting the host
11 Save and close the logon Component.

Creating a Logon Connection using a Pool Connection
To create a Tandem Logon Connection:

1 From the Integration Manager File menu, select New>xObject, then open the Resource tab and
select Connection, or you can click on the icon.
The Header Info panel of the New xObject Wizard appears.

2 Type a Name for the connection object.
3 Optionally, type Description text.
4 Click Next and the Connection Info panel appears.
86 Tandem Connect User’s Guide

5 For the Connection Type select "Tandem Logon Connection" from the drop down list.
6 In the Logon Via control, select the Logon Component you just created.
7 Click on the Pool Info button and the Pool Info dialog appears.

8 Enter a Pool Size number. This represents the total number of connections you wish to make
available in this pool. For each connection, you will be expected to supply a UserID/Password
combination later.

9 Enter a Keep Alive time period. This number represents (in minutes) how often you wish to
execute the Keep Alive actions in the associated Logon Component whenever the connection is
active but free (i.e. not being used by a Tandem component). The number you enter here should be
less than the Timeout period defined on the host for an inactive connection.

10 Enter an Inactivity Lifetime. This number represents (in minutes) how long you wish to keep an
active free connection available before closing out the connection and returning it to the inactive
portion of the connection pool. Remember, that once the connection is returned to its inactive state
in the pool, it will incur the overhead of logging in and navigating host screens when it is re-
activated.

11 Enter an Entry Wait time in seconds. This time represents how long a Tandem component will
wait for a free connection when all the pool entries are active and in use. If this time period is
reached, an Exception will be thrown to the Application Server.
Logon Components, Connections, and Connection Pools 87

12 Checking Override UID/PWD means you wish to specify User ID/Password combinations for use
in the connection pool. When checked, this activates the Set USERID/PASSWORD button. Click
on the button to display the Set USERIDs and PASSWORDS dialog.

On the Toolbar there are three icons: Add which adds an empty row, Delete, which deletes a highlighted
row and Paste which allows you to copy/paste information from a spreadsheet into the table. For more
on this, see the following Note.

NOTE: Alternate and faster ways to enter data are to copy data from a spread sheet and paste it into the
table. Make sure your selection contains at least two columns, UserID and Password. The first and second
column must contain data, all other columns will be disregarded. The first number column you see in the
screen is automatically generated. Open the spreadsheet, copy the two columns and as many rows as
needed. Open the table and immediately press the Paste button. You can also copy data from tables in a
Microsoft Word® document using the same technique.

13 Enter as many USERID/PASSWORD combinations until you reach the size of the pool you
specified and click OK. Pool size will be adjusted depending upon how many rows you entered.

14 Click OK to dismiss the “Set User IDs and Passwords” dialog and return to the Pool Info dialog.
15 Optionally check the Use Sequential Connections control if you want Integration Manager to

establish connections in the same order that User IDs were listed in the “Set User IDs and
Passwords” dialog. Connections will be made in numerical sequence.

16 Optionally check the Reuse connection only if expression is true control. This control allows you
to enter an ECMAScript expression that evaluates to true or false based on some test of the launch
screen. The purpose of the expression is to check to make sure the launch screen is the proper one
each time a new Tandem Component is about to reuse an active free connection. Under
circumstances unrelated to your Integration Manager service, it’s possible that the launch screen
will be replaced by the host with a different screen. For instance, if there is a system ABEND on the
host, the launch screen in the Logon Component may be replaced by a System Message screen.
The following a is a sample Custom Script used to see if a particular screen is present. If it is not,
the script writes a message to the console stating that the screen is bad and the logon connection is
being released. This function is called from the “Reuse connect only if expression is true” control
on the Pool Info dialog.

Paste

Add

Delete
88 Tandem Connect User’s Guide

17 Click OK to return to the Connection Info panel.
18 Click on Finish and the Logon Connection is saved.

Maximizing Performance of Tandem Logon Connection

To prevent Tandem Components from beginning execution on a connection that may have been left on
an invalid screen by a previous Tandem component, the Logon Connection Resource allows the
connection itself to check for the presence of the launch screen. This is accomplished by using the option
titled “Reuse connection only if expression is true” on the Pool Info dialog of the Logon Connection. The
screen test you specify here is executed each time a Tandem Component completes execution. If the test
fails, Integration Manager will immediately disconnect from the host, possibly leaving a dangling
UserID on the host. As noted before, the host will eventually kill the user, but the UserID may be
discarded from the pool if it is accessed again before being killed, thereby reducing the pool size and
consequently overall performance.

Another reason to use the “Reuse connection only if true” option is that you can perform very detailed
tests against the screen to make sure it is your launch screen. While Map Screen actions do perform a
screen check, they only look at the number of fields in the terminal data stream. In most cases, this is
sufficient. However, it is possible two different screens can have the same number of fields in which case
the expression based test that examines the content of the screen will produce more rigorous results. A
best practices approach mandates that you use this feature all the time.

Static versus Dynamically Created Documents/Elements

In some Integration Manager applications, users have a need to place various control, auditing, and/or
meta-data in an XML document. This document may or may not be in addition to the actual
elements/documents being processed (i.e. created from an information source). If this document structure
and data is dynamically created by multiple Map actions (i.e. over 100) performance of the component
and therefore the entire service may suffer. To boost performance, create the portion of the document
structure without the dynamic content ahead of time, then load it into the Service at runtime via an XML
Interchange action and retain the Map actions for dynamic content. This can boost performance as much
as 30% in some cases.

Creating a Logon Connection using a Session Connection
Sometimes, you may want the extra level of control over session parameters that a Logon Connection
affords, without necessarily wanting to use pooling. In this case, you can follow the procedure outlined
below.

function checkValidLaunchScreen(ScreenDoc)
{
 var screenText = ScreenDoc.XPath("SCREEN").item(0).text
 if((screenText.indexOf("MENU") != -1 || screenText.indexOf("APLS") != -1) &&
 (screenText.indexOf("COMMAND UNRECOGNIZED") == -1 ||

screenText.indexOf("UNSUPPORTED FUNCTION") == -1))
 {
 return true;
 }
 else
 {
 java.lang.System.out.println("Warning - Releasing logon connection at bad screen");
 java.lang.System.err.println("Warning - Releasing logon connection at bad screen");
 return false;
 }
}
Logon Components, Connections, and Connection Pools 89

To create a Tandem Logon Connection:

1 From the Integration Manager File menu, select New>xObject, then open the Resource tab and
select Connection, or you can click on the icon.
The Header Info panel of the New xObject Wizard appears.

2 Type a Name for the connection object.
3 Optionally, type Description text.
4 Click Next and the Connection Info panel appears.

5 For the Connection Type select “Tandem Logon Connection” from the drop down list.
6 In the Connect Via control, select the Logon Component you just created.
7 Click the Session Connections radio button and then on Session Info.
90 Tandem Connect User’s Guide

8 The Keep Alive (minutes) number represents (in minutes) how often you wish to execute the Keep
Alive actions in the associated Logon Component whenever the connection is active but free (i.e.
not being used by a Tandem Terminal component). The number you enter here should be less than
the Timeout period defined on the host for an inactive connection.

9 The Inactivity Lifetime (minutes) number represents (in minutes) how long you wish to keep an
active free connection available before closing out the connection and returning it to the inactive
portion of the connection pool. Remember, that once the connection is returned to its inactive state
in the pool, it will incur the overhead of logging in and navigating host screens when it is re-
activated.

10 Click in the checkmark box if you want to Reuse connection only if expression is true. If you
choose to do so, the expression field automatically displays and you can click on the expression
icon to display the if the expression is true dialog.

Creating a Tandem Component That Uses Pooled Connections
At this point, you are ready to create a Tandem Component that can use the Connection Pool. For the
most part, you will build the component as you would a normal Tandem component, the only difference
being the Connection you specify on the New xObject Wizard.(You’ll specify a Logon Connection
instead of a regular Tandem Connection.)

To create a Tandem Component:

1 From the Integration Manager File menu, select New>xObject, then open the Component tab and
select Tandem.
The Header Info panel of the New xObject Wizard appears.
Logon Components, Connections, and Connection Pools 91

2 Type a Name for the component.
3 Optionally, type Description text.
4 Click Next and the XML Property Info panel appears.
5 Select the necessary Input and Output Templates for your component.
6 Click Next. The Connection Info panel appears.
7 Select the Logon Connection you created and click on Next. The Component editor appears.
8 Build the component as described in “Before Creating a Tandem Component” on page 19.

Maximizing Performance of Tandem Terminal Components

Once the launch screen is obtained by the logon Component’s logon actions, it is handed to the Tandem
Terminal Component that uses the connection. Then the Tandem Terminal component (when finished
executing) leaves the screen handler back at the launch screen. If the Tandem Component finishes
without being on the launch screen,(i.e. it releases the connection back to the pool with an invalid screen)
then it is possible that all subsequent Tandem Components that use the connection may throw exceptions
rendering the connection useless. It also will degrade overall performance and possibly cause data
integrity problems within the component processing.

Once again, ensure that the launch screen is present, the last action to execute in a Tandem Component
must be a Check Screen that checks for the launch screen. This can be tricky if your component has many
decision paths that may independently end component execution. You must be sure that each path ends
with a Check Screen action.

Managing Pools
Connections pools can be managed through the Tandem Console Screen.
92 Tandem Connect User’s Guide

How to Access the Console

1 If you are using the Novell exteNd Application Server, log on to your Server via your web browser
using http://localhost/SilverMaster50 (or whatever is appropriate for the version in use). In this
example, Novell exteNd App Server 5.0 is used.

NOTE: If you are not using the exteNd app server, enter a URL of this form:

http://<hostname>:<port>/exteNdComposer/Console

2 Click on the exteNd Composer link and a list of installed Connects displays to the left of the main
console page.

3 Click on the Tandem link in the left (nav) frame and the Tandem General Properties Screen will
come into view.
Logon Components, Connections, and Connection Pools 93

4 Click on Console. displays. A browser popup window (the Tandem Connection Pool Management
Screen) should appear.

5 To initialize a Logon Connection Pool, enter its deployment context, the word "connection", and
the actual connection name in the text field near the bottom of the screen. (See illustration above.)
Then click the Initialize Pool button.
NOTE: Refer to the appropriate Integration Manager Enterprise Server guide for more information.

6 Optionally click the Refresh Console button to update the view.
94 Tandem Connect User’s Guide

Connection Pool Management and Deployed Services
The Connection Pool Management Screen displays the current state of the connection(s) with the
Tandem Connect. The screen contains a table listing the Pool Name, Description of the connection, the
maximum number of connections in the pool, the number of connections in use, the number of
connections available, the number of connections discarded. It also contains several buttons allowing you
to perform various actions related to connection pooling, which are outlined in the table below.

Connection Discard Behavior
The performance benefits of connection pooling are based on the ability of more than one user to access
a resource, or set of resources, at once. The way a connection is established begins with the logon
component picking the User ID and Password from the table. If the connection fails, then it is discarded
for this User ID and Password and tries another until a connection is established. The failure of one
connection doesn’t prevent a successful connection to be established.

The Connect for Tandem addresses the “one bad apple” problem by discarding any connection that can’t
be established (for whatever reason: bad user ID, timed-out password, etc.) and reusing the others. When
a connection is determined to be unusable, the Connect for Tandem will write a message to the system
log that says: “Logon connection in pool <Pool name> was discarded for User ID <User ID>.”

Screen Synchronization
Screen synchronization has special ramifications for users of pools. If a situation arises in which a user
leaves a connection without the screen returning to its original state, the next user will begin a session
with the screen in an unexpected state and an error will occur. To prevent this, we have a screen
expression which the user can specify in the connection pool. It is important that the last action in a
Tandem Component be a correct Send Attention Key action that will result in the session ending with the
correct logon screen active.

NOTE: The last action should be an empty Check Screen action so that the Tandem Terminal component
waits until the launch screen arrives before giving up the connection.

Table 1-1:

Button Name Action

Reset Discarded Resets the Discarded connections which are then
reflected in the table

Reset (Pool) Resets the Available and Discarded connections
which are then reflected in the table

 Refill (Pool) Refills the pool with the maximum number of
connections

Additional Buttons on Tandem Connection Pool Manager Console

 Refresh
Console

Shows the current status of the connection pool

 Initialize Pool Initializes a Logon Connection Pool by entering a
relative path to the deployed lib directory. This will
not work unless the deployed jar is extracted. Click
on the SUBMIT button when finished.
Logon Components, Connections, and Connection Pools 95

If you want to check, at runtime, for the presence of a bad screen at the end of a user session, include a
Function action at the end of your component’s action model that executes a function similar to the one
shown below:

function checkValidReleaseScreen(ScreenDoc)
{
 var screenText = ScreenDoc.XPath("SCREEN").item(0).text
 if((screenText.indexOf("MENU") != -1 || screenText.indexOf("APLS") != -1)
&&
 (screenText.indexOf("COMMAND UNRECOGNIZED") == -1 ||
screenText.indexOf("UNSUPPORTED FUNCTION") == -1))
 {
 return true;
 }
 else // Write error messages to

// System.out and System.err:
 {

java.lang.System.out.println("Warning - Releasing logon connection at bad
screen");

java.lang.System.err.println("Warning - Releasing logon connection at bad
screen");
 return false;
 }
}

This function checks the screen text and returns false if the final screen is not correct. The check returns
true if the screen contains “MENU” or “APLS” and does not contain “COMMAND UNRECOGNIZED”
nor “UNSUPPORTED FUNCTION.”
96 Tandem Connect User’s Guide

A Tandem Display Attributes

The Screen.getAttribute() method will return one of the values shown below, representing the
current attribute state of the onscreen character at the given location.

Viewing All Character Attributes at Once

Using the Screen.getAttribute() method, you can easily write a function that captures all
attributes (at all screen locations) at once. The following ECMAScript function, for example, can be used
at design time to display screen attributes in an alert dialog.

function showAttributes(myScreen)

{

var attribs = new String(); // create empty string

// Iterate over all rows and columns:

for (var i = 1; i <= myScreen.getRowCount(); i++, attribs += "\n")

for (var k = 1; k <= myScreen.getColumnCount(); k++)

attribs += myScreen.getAttribute(i,k);

// display the results:

alert(attribs);

}

The following illustrations show a Tandem screen and the result of applying the showAttributes()
function to the screen:

Number Attribute

 0 normal display

 1 bold on

 2 faint

 3 standout

 4 underline (mono only)

 5 blink on

 7 reverse video on

 8 nondisplayed (invisible)
Tandem Display Attributes 97

98 Tandem Connect User’s Guide

B Tandem Keyboard Equivalents

Tandem Common Keys Keyboard Equivalent

 Arrow Down Arrow Down

 Arrow Left Arrow Left

 Arrow Right Arrow Right

 Arrow Up Arrow Up

 BackSpace BackSpace

 Back Tab Back Tab

 Delete Delete

 Escape Escape

 Linefeed Linefeed

 Return Return

 Tab Tab

 F1 F1

 F2 F2

 F3 F3

 F4 F4

 F5 F5

 F6 F6

 F7 F7

 F8 F8

 F9 F9

 F10 F10

 F11 F11

 F12 F12
Tandem Keyboard Equivalents 99

 F13 F13

 F14 F14

 F15 F15

 F16 F16

Tandem NumPad Keys Keyboard Equivalent

 0 Numpad 0

 1 Numpad 1

 2 Numpad 2

 3 Numpad 3

 4 Numpad 4

 5 Numpad 5

 6 Numpad 6

 7 Numpad 7

 8 Numpad 8

 9 Numpad 9

 Minus Numpad -

 Comma Numpad ,

 Period Numpad .

 Enter Numpad Enter

Tandem Control Keys Keyboard Equivalent

 BS CTRL+H

 CR CTRL+M

 ESC CTRL+[

 HT CTRL+I

 LF CTRL+J
100 Tandem Connect User’s Guide

Tandem Other Keys

 MENU No Keyboard Equivalent

 BREAK No Keyboard Equivalent

 Help No Keyboard Equivalent

 Insert Insert

 KeyEnd End

 Key Home Home

 NextScn Page Down

 PrevScn Page Up

 Remove No Keyboard Equivalent

 Select No Keyboard Equivalent

 Set Tab No Keyboard Equivalent

 Clear Tab No Keyboard Equivalent

 Insert Char No Keyboard Equivalent

 Delete Char No Keyboard Equivalent

 Insert Line No Keyboard Equivalent

 Delete Line No Keyboard Equivalent

 Roll Up No Keyboard Equivalent

 Roll Down No Keyboard Equivalent

 EOP No Keyboard Equivalent

 EOL No Keyboard Equivalent

 Soft Reset No Keyboard Equivalent

 Hard Reset No Keyboard Equivalent

 Number Pad Tab No Keyboard Equivalent
Tandem Keyboard Equivalents 101

102 Tandem Connect User’s Guide

C Glossary

ANSI
American National Standards Institute.

Check Screen
An action that action signals the component that execution must not proceed until the screen is in a particular state, subject to
a user-specified timeout value.

Dumb Terminal
A computer terminal that has no onboard CPU, memory, or storage devices, beyond the minimum necessary to communicate
with a more powerful host machine.

ECMAScript
Any JavaScript-like language that conforms to European Computer Manufacturers Association standard No. 262.

Tandem 6530
The Tandem 6530 is a desktop display terminal device manufactured by Tandem Computer Corporation (now part of the
Hewlett-Packard Company).

Native Environment Pane
A pane in the Tandem Component Editor that provides an emulation of an actual Tandem terminal session.

Screen Object
A special DOM in the Tandem component editor window representing the current Tandem screen display as an XML
document.

Send Buffer
An action that appears in the Action Model whenever a there is map to the screen or keys entered on the screen.

TCP/IP
Abbreviation for Transmission Control Protocol/Internet Protocol

Type-ahead
A technique for preloading a keyboard buffer with more than one screen’s worth of commands.

Terminal Emulation
A technique for imitating the runtime behavior of a “dumb terminal” on a desktop (or other) machine.
Glossary 103

104 Tandem Connect User’s Guide

D Reserved Words

The following terms are reserved words in Integration Manager Tandem Connect and should not be used
as labels for any user-created variables, methods, or objects.

• USERID
• PASSWORD
• PROJECT
• Screen
• getAttribute
• getCursorColumn
• getColumnCount
• getPrompt
• getRowCount
• getText
• getTextAt
• getTextFromRectangle
• setText
Reserved Words 105

106 Tandem Connect User’s Guide

E Java Code Pages

About Encodings
Integration Manager’s ability to perform character encoding conversions is tied directly to the Java VM
in use. The supported encodings vary between different implementations of the Java 2 platform. Sun's
Java 2 Software Development Kit, Standard Edition, v. 1.2.2 for Windows or Solaris and the Java 2
Runtime Environment, Standard Edition, v. 1.2.2 for Solaris support. The encodings can be found at the
Sun web page:

http://java.sun.com/products//jdk/1.2/docs/guide/internat/encoding.doc.html

Sun's Java 2 Runtime Environment, Standard Edition, v. 1.2.2 for Windows comes in two different
versions: US-only and international. The international version (which includes the lib\i18n.jar file)
supports all encodings in both tables.
Java Code Pages 107

108 Tandem Connect User’s Guide

Index
Symbols
$PASSWORD 35

A
About Adding Alias Actions 54
Accept Key Strokes 31
actions, editing 48
Adding A New Action 52
Animation 50, 53

tools 57
animation 57
applications 11
array, unduplicating an 65
attributes, screen 97

B
binary search technique 61
blank record 68
breakpoint 61
breakpoints 51, 53, 57
buttons, toolbar 25

C
caching screens 68
calculated Timeout 33
Changing an Existing Action 49
Check Screen Action 32

purpose of 32
Clancy, Tom 42
Code Pages

encodings 107
support 15

Common Keys 23
comparing screens 68
Connection Discard Behavior 95
Connection Pool Architecture 74
Connection Pool Console, refreshing 95
Connection Pool Management and Deployed Services 95
Connection Pooling with a Single Sign-On 84
Connection Pools

implementing 77
Connection Resource 13

constant-driven 16

expression-based 16
how to create 17

ConnectionPools
status 95

Connections
resetting discarded 95

context menus 26
Control Keys 23
control keys (also see Appendix B) 31
coordinates, onscreen 43
Create Check Screen button 26
createXPath() method 70
Creating a Connection 85
Creating a Connection Pool 84
Creating a Logon Connection 86
Cursor Position 33
Cutting/Copying actions 49

D
debugging 59
Decision Action 44
default Min Wait time 34
default Timeout value 33
Deleting an Action 55
DOM 22
drag and drop 39, 49
dumb terminal 22

E
ECMAScript

DG-specific methods 34
unduplicating data with 64

editing an Action Model 48
errors and error messages 59
exceptions 34, 59
Expression Builder

picklists in 35
Expression Editor 16

F
F13 through F16 22
final screen, detecting 64
Floating Keypad 22
Function Action 67
109

G
getAttribute() 36
getColumnCount() 36
getCursorColumn() 36
getCursorRow() 36
getPrompt() 37
getRowCount() 37
getText() 37
getTextAt() 37, 39
getTextFromRectangle() 38, 40

H
hard-coded values 67
Host or IP Address 15
hover-help box, escape codes and 31

I
Inactivity Lifetime 80, 87
index variables 68
indexOf() 45, 46
infinite loop 68
Initialize Pool 95
Insert Char and Delete Char 22
ISBN 41, 44, 46
iterating through screens 64

J
join() method 69

K
KeepAlive Actions 77
keepalive actions 78
key sequence value 31

L
latency 33
LOGOFF Actions 81
logoff actions 78
logon actions 78
Logon Component 77
Logon Connection 74
Logon Connections 14
looping over multiple screens 66
lTrim() 46

M
Managing Pools 92
Maximizing Performance of DG Logon Connection 89
Maximizing Performance of DG Terminal Components 92
Maximizing Performance with KEEP ALIVE Actions 81

Maximizing Performance with the Logon Component 79
millisecond timing 71
Min Wait 32

default of 50ms 34
multiple screens, grabbing data from 63

N
Native Environment Pane 21
newlines, in rectangular screen selections 40
non-printing characters 38
non-printing keys 24
NumPad Keys 22, 23

O
Other Keys

 24
Output DOM notes, creating 66
Override the UID/PWD 84
Override UID/PWD 88

P
padded screens 64
PASSWORD global 35
performance tuning 71
picklists 35
Pool Info dialog 80
pool size 87
pools

checking status 95
implementing 77
initializing 95
refilling 95
resetting 95

Port 15
profiling 71
PROJECT Variables 16
Prompt 33
prompt string 58
property names 68
pseudocode 66

R
recording 26, 40
rectangular onscreen selections 39
redundant data, dealing with 64
Refill Pool 95
Refresh Consolel 95
RegExp constructor 45
RegExp() 45
regular expressions 45
rejection of duplicates 64
Repeat While action 68
Reset Discarded 95
Reset Pool 95
110

S
scraping data 63
scraping data from multiple screens 66
screen caching 68
Screen Object 24

API for all methods 36
screen scraping 11
Screen Selections 38
Screen Synchronization 95
screens, comparing 68
selecting onscreen data 38
Send Buffer

PASSWORD 27
USERID 27

Send Buffer Action 30
creating 30
exiting 34
hover help in dialog 31
Record Mode and 34

setText() 38
Shift key down, dragging with 39
shift-drag selection technique 39
split() 46
Static versus Dynamically Created Documents/Elements 89
Step to Breakpoint 51, 53
strategies for loop termination 63

T
Temp XML Document 20

testing 55
Thomas Aquinas 66
Timeout 32, 33, 34
Tips for building DG Components 57
To create an DG Component

 91
To create an DG Logon Connection

 86
Toggle Breakpoint 50, 52
toolbar buttons 25
troubleshooting 59
type-ahead 42, 60

U
unduplicating records 64
Unicode 15
USERID global 35

W
While (Repeat-While action) 44

X
XML Templates 13
XPath 30
XSL 11
111

112 Tandem Connect User’s Guide

	Contents
	About This Book
	1 Welcome to Integration Manager and Tandem Connect
	Before You Begin
	About Integration Manager Connects
	What Is Tandem Terminal?
	About Integration Manager's Tandem Component
	What Applications Can You Build Using the Tandem User Interface Component Editor?

	2 Getting Started with the Tandem Component Editor
	Steps Commonly Used to Create a Tandem Component
	Creating XML Templates for Your Component
	Creating a Tandem Connection Resource
	About Connection Resources
	Code Page Support

	About Constant and Expression Driven Connections

	3 Creating a Tandem Component
	Before Creating a Tandem Component
	About the Tandem Component Editor Window
	About the Tandem Native Environment Pane
	About Tandem Keyboard Support
	About the Screen Object
	What it is
	How it works

	Tandem-Specific Buttons
	Tandem-Specific Menu Bar Items
	Tandem-Specific Context-Menu Items
	Native Environment Pane Context Menu
	Action Pane Context Menu

	4 Performing Tandem Actions
	About Actions
	About Tandem-Specific Actions
	The Send Buffer Action
	How Keys Are Displayed in the Action Model
	The Check Screen Action
	Using Actions in Record Mode

	Tandem-Specific Expression Builder Extensions
	Login
	Screen Methods
	Keys

	Screen Selections in the Tandem Connect
	Selecting Continuous Data
	Selecting Rectangular Regions

	Recording a Tandem Session
	Looping Over Multiple Rows in Search of Data
	Editing a Previously Recorded Action Model
	Changing an Existing Action
	Adding A New Action
	About Adding Alias Actions
	Deleting an Action

	Testing your Tandem Component
	Using the Animation Tools
	Tips for Building Reliable Tandem Components
	Using Other Actions in the Tandem Component Editor
	Handling Errors and Messages
	Finding a “Bad” Action

	5 Advanced Tandem Actions
	Data Sets that Span Screens
	Dealing with Redundant Data
	An Example of Looping over Multiple Screens
	Performance Considerations

	6 Logon Components, Connections, and Connection Pools
	Tandem Session Performance
	When Will I Need Logon Components?

	Connection Pool Architecture
	The Logon Connection’s Role in Pooling
	How Many Pools Do I Need?
	Pieces Required for Pooling

	How Do I Implement Pooling?
	The Tandem Logon Component
	Logon, Keep Alive, and Logoff Actions
	Logon Actions

	Keep Alive Actions
	Logoff Actions
	Logon Component Life Cycle

	The Tandem Connection
	Connection Pooling with a Single Sign-On

	Creating a Connection Pool
	Overview

	Creating a Basic Connection
	Creating a Logon Component
	Creating a Logon Connection using a Pool Connection
	Creating a Logon Connection using a Session Connection
	Creating a Tandem Component That Uses Pooled Connections
	Managing Pools
	Connection Pool Management and Deployed Services
	Connection Discard Behavior
	Screen Synchronization

	A Tandem Display Attributes
	B Tandem Keyboard Equivalents
	C Glossary
	D Reserved Words
	E Java Code Pages
	About Encodings

	Index

