
n

Novell SecureLogin 6.0 SP1 Application Definition Guide
Novell

ovdocx (E
N

U
) 10 A

ugust 2006
w w w . n o v e l l . c o m

SecureLogin
6 . 0 S P 1
O c t o b e r 1 3 , 2 0 0 6

A P P L I C A T I O N D E F I N I T I O N G U I D E

novdocx (E
N

U
) 10 A

ugust 2006
Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc. reserves the right to revise this publication and to make changes to its content, at any time,
without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims
any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to
notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the
trade laws of other countries. You agree to comply with all export control regulations and to obtain any required
licenses or classification to export, re-export or import deliverables. You agree not to export or re-export to entities on
the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export laws.
You agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses. Please
refer to www.novell.com/info/exports/ for more information on exporting Novell software. Novell assumes no
responsibility for your failure to obtain any necessary export approvals.

Copyright © 2006 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied,
stored on a retrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S.
patents listed at http://www.novell.com/company/legal/patents/ and one or more additional patents or pending patent
applications in the U.S. and in other countries.

Novell, Inc.
404 Wyman Street, Suite 500
Waltham, MA 02451
U.S.A.
www.novell.com

Online Documentation: To access the online documentation for this and other Novell products, and to get
updates, see www.novell.com/documentation.

novdocx (E
N

U
) 10 A

ugust 2006
Novell Trademarks

For a list of Novell trademarks, see Trademark and Service Mark List (http://www.novell.com/company/legal/
trademarks/tmlist.html).

Third-Party Materials

All third-party trademarks are the property of their respective owners.

http://www.novell.com/company/legal/trademarks/tmlist.html

novdocx (E
N

U
) 10 A

ugust 2006

Contents

novdocx (E
N

U
) 10 A

ugust 2006
About This Guide 9

1 Command Quick Reference 11

2 Application Definition Language Overview 19
2.1 Using Application Definitions . 19
2.2 Advantages of Using Application Definitions . 19
2.3 Defining Single Sign-On Enabled Applications . 20
2.4 Corporate Definitions . 20
2.5 What is an Application Definition? . 20

2.5.1 Using with Dialog Specifier Commands . 20
2.5.2 Capability to Read from and Write to Variables . 21

3 Managing Application Definitions 23
3.1 Application Definition Checklist . 23
3.2 Exporting and Importing Predefined Applications and Application Definitions. 23

3.2.1 Export Using an XML File . 24
3.2.2 Importing in XML Format . 26
3.2.3 Modifying in the Personal Management Utility . 28
3.2.4 Building an Application Definition in the Personal Management Utility 30

3.3 Windows Application Definition Tools . 32
3.3.1 Finding Application Details With Window Finder . 32
3.3.2 Finding Application Details with the Login Watcher . 34

3.4 Application Definition Elements . 36

4 Application Definition Variables 39
4.1 Types of Variables . 39

4.1.1 Using a Variable to Change the Default Platform . 39
4.1.2 Directory Attribute Variables . 40
4.1.3 Stored Variables . 40
4.1.4 Runtime Variables . 41
4.1.5 Passticket Variables . 42

4.2 SecureLogin Supported Variables . 42
4.3 Application Definition Conventions . 43

4.3.1 Symbols Used . 44
4.3.2 Capitalization. 44
4.3.3 Comments . 44
4.3.4 Switches . 44
4.3.5 Variables . 45
4.3.6 Indent Sections . 45
4.3.7 Blank Line Between Sections . 45
4.3.8 Quotation Marks . 46
4.3.9 Password Policy Names . 46

5 Command Reference 49
5.1 Command Reference Conventions . 49
Contents 5

6 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
5.1.1 Command Information . 49
5.1.2 Web Wizard Application Definition Conventions . 50
5.1.3 Site Matching . 51
5.1.4 Form/Field/Option Matching. 51
5.1.5 Form/Field/Option ID’s . 52
5.1.6 Audit Integration . 52
5.1.7 One Time Passwords. 52

5.2 Commands . 53
5.2.1 Regular Expressions . 55
5.2.2 AAVerify . 55
5.2.3 ADD . 58
5.2.4 Attribute . 59
5.2.5 AuditEvent . 60
5.2.6 BeginSplashScreen/EndSplashScreen . 60
5.2.7 Break . 61
5.2.8 BooleanInput . 63
5.2.9 Call . 63
5.2.10 ChangePassword. 64
5.2.11 Class . 66
5.2.12 ClearPlat . 67
5.2.13 ClearSite . 70
5.2.14 Click . 71
5.2.15 ConvertTime. 73
5.2.16 Ctrl . 74
5.2.17 DebugPrint . 75
5.2.18 Decrement . 76
5.2.19 Delay . 77
5.2.20 Dialog/EndDialog . 78
5.2.21 DisplayVariables . 79
5.2.22 Divide . 81
5.2.23 DumpPage . 82
5.2.24 EndScript . 82
5.2.25 Event . 83
5.2.26 Event Specifiers . 83
5.2.27 FocusInput . 83
5.2.28 GenerateOTP. 84
5.2.29 GetCheckBoxState. 86
5.2.30 GetCommandLine . 87
5.2.31 GetEnv . 88
5.2.32 GetIni . 88
5.2.33 GetMD5 . 89
5.2.34 GetReg. 90
5.2.35 GetSessionName . 90
5.2.36 GetText . 91
5.2.37 GetURL . 91
5.2.38 GoToURL . 92
5.2.39 If/Else/Endif . 93
5.2.40 Include . 96
5.2.41 Increment/Decrement. 97
5.2.42 KillApp . 98
5.2.43 Local. 99
5.2.44 MatchDomain . 100
5.2.45 MatchForm . 101
5.2.46 MatchField . 103
5.2.47 MatchForm . 104
5.2.48 MatchOption. 106
5.2.49 MatchReferer . 107
5.2.50 MatchURL . 108
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
5.2.51 MessageBox . 109
5.2.52 Multiply . 112
5.2.53 OnException/ClearException . 113
5.2.54 Parent/EndParent . 115
5.2.55 PickListAdd . 117
5.2.56 PickListDisplay . 118
5.2.57 PositionCharacter . 119
5.2.58 PressInput . 120
5.2.59 ReadText. 120
5.2.60 RegSplit . 123
5.2.61 ReLoadPlat . 124
5.2.62 Repeat/EndRepeat . 126
5.2.63 RestrictVariable . 128
5.2.64 Run . 130
5.2.65 SelectListBoxItem . 131
5.2.66 SendKey . 132
5.2.67 Set . 133
5.2.68 SetCheckBox. 134
5.2.69 SetCursor . 135
5.2.70 SetFocus . 136
5.2.71 SetPlat . 137
5.2.72 SetPrompt . 139
5.2.73 Site/EndSite. 141
5.2.74 StrCat . 142
5.2.75 StrLength. 143
5.2.76 StrLower . 144
5.2.77 StrUpper . 145
5.2.78 Sub/EndSub . 146
5.2.79 Submit . 147
5.2.80 Subtract . 148
5.2.81 Tag/EndTag. 150
5.2.82 TextInput . 150
5.2.83 Title . 151
5.2.84 Type . 152
5.2.85 Sending Keyboard Commands Using Type . 155
5.2.86 WaitForFocus . 156
5.2.87 WaitForText . 157

6 Testing Application Definitions 159
6.1 Using the SecureLogin Test Application . 159

6.1.1 Example Application Definition for the Test Application . 159
6.1.2 Application Definition Explained . 161
6.1.3 Dialog Boxes . 161

7 Reference Commands and Keys 165
7.1 Windows Keyboard Functions . 165

7.1.1 Example for Typing Keys . 165
7.1.2 Table of Windows Keyboard Functions. 165
7.1.3 Terminal Emulator Command Reference . 170

8 Application Definition Commands for SNMP Alerts 173
8.1 Create the SNMP Alert . 173
8.2 Example. 173
Contents 7

8 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
A Documentation Updates 175
A.1 December 12, 2006 . 175
A.2 October 13, 2006 . 175
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
About This Guide

This document contains information on the following:

Chapter 1, “Command Quick Reference,” on page 11
Chapter 2, “Application Definition Language Overview,” on page 19
Chapter 3, “Managing Application Definitions,” on page 23
Chapter 4, “Application Definition Variables,” on page 39
Chapter 5, “Command Reference,” on page 49
Chapter 6, “Testing Application Definitions,” on page 159
Chapter 7, “Reference Commands and Keys,” on page 165
Chapter 8, “Application Definition Commands for SNMP Alerts,” on page 173

Feedback

We want to hear your comments and suggestions about this manual and the other documentation
included with this product. Please use the User Comments feature of each page of the online
documentation, or go to www.novell.com/documentation/feedback.html and enter your comments
there.

Documentation Updates

This is the Support Pack 1 (SP1) release for Novell SecureLogin 6.0. The version for this support
pack in the product is, 6.0.103.

For the most recent version of the SecureLogin 6.0 SP1 Application Definition Guide, visit the
Novell Documentation Web site (http://www.novell.com/documentation/securelogin60).

Additional Documentation

This Application Definition Guide is a part of documentation set for SecureLogin 6.0 SP1. Other
documents include:

Novell SecureLogin 6.0 SP1 Overview
Novell SecureLogin 6.0.SP1 Administration Guide
Novell SecureLogin 6.0 SP1 Installation Guide
Novell SecureLogin 6.0 SP1 User Guide
Novell SecureLogin 6.0 SP1 Citrix and Terminal Services Guide
Novell SecureLogin 6.0 SP1 Congifuration Guide for Terminal Emulation

Documentation Conventions

In Novell documentation, a greater-than symbol (>) is used to separate actions within a step and
items in a cross-reference path.
About This Guide 9

http://www.novell.com/documentation/securelogin60

10 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
A trademark symbol (®, TM, etc.) denotes a Novell trademark. An asterisk (*) denotes a third-party
trademark.
reLogin 6.0 SP1 Application Definition Guide

1
novdocx (E

N
U

) 10 A
ugust 2006
1Command Quick Reference

Table 1-1 Command Quick Reference Table

Command See

“#” Use the hash symbol to define a line of text as a comment field. Comment fields are
used to leave notes. For more information, see Section 3.4, “Application Definition
Elements,” on page 36.

“ ” Use Quotation marks to group together text or variables that contain spaces.
Quotation marks are used with commands such as Type, MessageBox, and If
-Text. For more information, seeSection 3.4, “Application Definition Elements,” on
page 36.

“$” Use the dollar sign to define the use of a SecureLogin variable stored in the directory
for later use by that user. For more information, see Section 3.4, “Application
Definition Elements,” on page 36.

“?” Use the question mark to define the use of a runtime variable. The values of these
variables are not stored in the directory. They are reset each time SecureLogin is
started. For more information, see Section 3.4, “Application Definition Elements,” on
page 36.

“%” Use the percentage sign to define the use of a directory attribute. The attributes that
are available vary depending on the directory in use, and the setup of the directory.
For more information, see Section 3.4, “Application Definition Elements,” on
page 36.

“!” Use the exclamation mark to define the use of a passticket. A passticket is a one-
time password (OTP) that is generated using a combination of an encryption key,
encryption offset, and the current time. For more information, see Section 3.4,
“Application Definition Elements,” on page 36.

“\” Use the backslash with the Type and Send Key commands to specify the use of a
special function. For more information, see Section 3.4, “Application Definition
Elements,” on page 36.

“@” Use this symbol in a similar function to the backslash symbol, except its use is
limited to HLLAPI enabled emulators. For more information, see Section 3.4,
“Application Definition Elements,” on page 36.

“-” Use the hyphen as a switch within several commands, such as If and Type. For
more information, see Section 3.4, “Application Definition Elements,” on page 36.

“AAVerify” Use AAVerify with SecureLogin Advanced Authentication or Novell NMAS to verify
the user. It is typically used before the application Username and Password are
retrieved and entered into the logon box.For more information, see Section 5.2.2,
“AAVerify,” on page 55.

“ADD” Adds one number to another. The numbers can be hard coded into the Application
Definition, or they can be variables. The result can be the ouput of another variable,
or one of the original numbers. For more information, see Section 5.2.3, “ADD,” on
page 58.
Command Quick Reference 11

12 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
“Attribute” Use the Attribute specifier in conjunction with the Tag/EndTag command to specify
which HTML attributes and attribute values must exist for that particular HTML tag.
For more information, see Section 5.2.4, “Attribute,” on page 59.

“AuditEvent” Use the AuditEvent to audit the following events from an application definition:

SecureLogin client started

SecureLogin client exited

SecureLogin client activated by user

SecureLogin client deactivated by user

Password provided to an application by a script

Password changed by the user in response to a changepassword command

Password changed automatically in response to a changepassword command

For more information, see Section 5.2.5, “AuditEvent,” on page 60

“BeginSplashS
creen/
EndSplashScre
en”

Use to display a Novell splash screen across the whole Terminal Emulator window.
This is used to mask any flashing produced by SecureLogin scraping the screen for
text. A Delay command at the start of the Application Definition ensures that the
emulator window is in place before the splash screen is displayed. For more
information, see Section 5.2.6, “BeginSplashScreen/EndSplashScreen,” on page 60.

“BooleanInput
”

Use BooleanInput within a Site block to set the state of a Boolean field (either a
checkbox or radio button). For more information see, Section 5.2.8, “BooleanInput,”
on page 63

“Break” Use Break within the Repeat/EndRepeat commands to break out of a repeat
loop. For more information, see Section 5.2.7, “Break,” on page 61.

“Call” Use the Call command to call and run a subroutine. When a subroutine is called,
the Application Definition begins executing from the first line of the subroutine. For
more information, see Section 5.2.9, “Call,” on page 63.

“ChangePasswo
rd”

Use the ChangePassword command to change a single variable and is used in
scenarios where password expiry is an issue. Set the <Variable> to the new
password. For more information, see Section 5.2.10, “ChangePassword,” on
page 64.

“Class” When a window is created, it is based on a template known as a window class. The
Class command checks to see if the class of the newly created window matches its
<Window-Class> argument. For more information, see Section 5.2.11, “Class,” on
page 66.

“ClearPlat” Use to reset the last chosen platform, causing subsequent calls to ReLoadPlat to do
nothing. For more information, see Section 5.2.12, “ClearPlat,” on page 67.

“ClearSite” Use within a Site block to clear the ‘matched’ status for a given site. For more
information, see Section 5.2.13, “ClearSite,” on page 70

“Click” When used with windows applications, the Click command sends a click instruction
to the specified <#Ctrl-ID>. For more information, see Section 5.2.14, “Click,” on
page 71.

“ConvertTime” Use to convert a numeric time value, for example, ?CurrTime(system), into a
legible format and stores it in <String Time>. For more information, see
Section 5.2.15, “ConvertTime,” on page 73.

Command See
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
“Ctrl” Use the Ctrl command to determine if a window contains the control expressed in
the <#Ctrl-ID> argument. The control ID number is a constant that is established
at the time a program is compiled.For more information, see Section 5.2.16, “Ctrl,”
on page 74.

“Delay” Use the Delay command to delay the execution of the Application Definition for the
time specified in the <Time Period> argument. For more information, see
Section 5.2.19, “Delay,” on page 77.

“Dialog/
EndDialog”

Use the Dialog/EndDialog command to identify the beginning and end of a
dialog specification block respectively. You can use these commands to construct a
dialog specification block, which consists of a series of dialog specification
statements (for example Ctrl, Title, and so on). For more information, see
Section 5.2.20, “Dialog/EndDialog,” on page 78.

“DisplayVaria
bles”

Use the DisplayVariables command to display a dialog box that lists the user's
stored variables (for example, $Username and $Password) for the current
application. For more information, see Section 5.2.21, “DisplayVariables,” on
page 79.

“Divide” Use to divide one number by another. The numbers can be hard coded into the
Application Definition, or they can be variables. The result can be outputted to
another variable, or to one of the original numbers. For more information, see
Section 5.2.22, “Divide,” on page 81.

“DumpPage” Use the DumpPage command to provide information about the current Web page.
Use for debugging Web page Application Definitions. For more information, see
Section 5.2.23, “DumpPage,” on page 82.

“EndScript” Use the EndScript command to immediately terminate execution of the Application
Definition. For more information, see Section 5.2.24, “EndScript,” on page 82.

“Event” Application Definitions generally execute at the point when an application window is
created. This corresponds to the WM_CREATE message that is received from an
application window at start up. By adding the Event specifier to a dialog block, you
can override this behavior, such that an Application Definition only executes when
(and only when) the specified message is generated. If no Event specifier is given,
it is equivalent to Event WM_CREATE. For more information, see Section 5.2.25,
“Event,” on page 83.

“FocusInput” Use within a Site Block to focus on an input field based on the Boolean value of
“focus”. For more information see, Section 5.2.27, “FocusInput,” on page 83.

“GenerateOTP” Used to generate a one time password (OTP) is an authentication method in lieu of a
traditional fixed and static password.

The OTP is a hard token generated by the Vasco Digipass, RSA SecureID or
ActivIdentity* Token and Mini Token products or may be produced bya soft token
generator funtionality embedded in SecureLogin. For more information, see
Section 5.2.28, “GenerateOTP,” on page 84.

“GetCheckBoxS
tate”

Use the GetCheckBoxState command to return the current state of the specified
checkbooks. For more information, see Section 5.2.29, “GetCheckBoxState,” on
page 86.

“GetCommandLi
ne”

Use the GetCommandLine command to capture the full command line of the
program that is loaded, and save it to the specified variable. For more information,
see Section 5.2.30, “GetCommandLine,” on page 87.

Command See
Command Quick Reference 13

14 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
“GetEnv” Use the GetEnv command to read the value of an environment variable and saves it
in the specified <variable>. For more information, see Section 5.2.31, “GetEnv,”
on page 88.

“GetIni” Use the GetIni command to read data from INI file. For more information, see
Section 5.2.32, “GetIni,” on page 88.

“GetMD5” Use the GetMD5 command to generate an MD5 hash value of the current process
the script is running for. GetMD5 works only with the Win32 scripts. For more
information, see Section 5.2.33, “GetMD5,” on page 89

“GetReg” Use the GetReg command to read data from the registry and save it in the specified
<variable>. For more information, see Section 5.2.34, “GetReg,” on page 90.

“GetSessionNa
me”

Use the GetSessionName to find the current HLLAPI session name that is used to
connect and returns it to the specified variable. For more information, see
Section 5.2.35, “GetSessionName,” on page 90.

“GetText” Use the GetText command to get all of the text from the screen and save it to the
specified variable. It is used in a large Web Application Definition that might contain
several If -Text statements. For more information, see Section 5.2.36, “GetText,” on
page 91.

“GetURL” Use the GetURL command to capture the URL of the site that is loaded and save it
to the specified variable. For more information, see Section 5.2.37, “GetURL,” on
page 91.

“GoToURL” Use the GoToURL command to make the browser navigate to the specified <URL>.
By default the command opens the new Web page in the main window, rather than
the frame that started the Application Definition. For more information, see
Section 5.2.38, “GoToURL,” on page 92.

“If/Else/
EndIf”

Use the If command to establish a block to execute if the expression supplied is
true. The Else command works inside an If block. The Else command is executed
if the operator in the If block is false. Use the EndIf command to terminate the If
block. For more information, see Section 5.2.39, “If/Else/Endif,” on page 93.

“Include” Use the Include command to share commonly-used Application Definition
commands by multiple applications. The Application Definition identified by
<Platform-Name> is included at execution time into the calling Application Definition.
The Application Definition included with the Include command must comprise
commands supported by the calling application. For more information, see
Section 5.2.40, “Include,” on page 96.

“Increment/
Decrement”

Use the Increment/Decrement command to add or subtract from a specified
variable. For example, you can use the increment and decrement to count the
number of passes a particular Application Definition has made. For more
information, see Section 5.2.41, “Increment/Decrement,” on page 97.

“KillApp” Use to terminate an application. For more information, see Section 5.2.42, “KillApp,”
on page 98.

“Local” Use the Local command to declare that a runtime variable will only exist for the
lifetime of the Application Definition. Local runtime variables are used in the same
way as normal runtime variables and are still written as ?Variable. For more
information, see Section 5.2.43, “Local,” on page 99.

Command See
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
“MatchDomain” Use MatchDomain inside a Site block to filter a Site based on its domain. If the
domain does not match, the site block fails to match. For more information, see
Section 5.2.44, “MatchDomain,” on page 100.

“MatchField” Use MatchField to filter a form based on the presence of a particular field. If the
field fails to match and it is not specified as optional, then the parent form will fail to
match. For more information, see Section 5.2.44, “MatchDomain,” on page 100.

“MatchForm” Use MatchForm to filter a site based on the presence of a particular field. If the field
fails to match and it is not specified as optional, then the site will fail to match. For
more information, see Section 5.2.45, “MatchForm,” on page 101.

“MatchTitle” Used inside a Site block, MatchTitle is used to filter a Site based on its title. If the
site title does not match, the site block fails to match. For more information, see
Section 5.2.48, “MatchOption,” on page 106.

“MatchURL” Use MatchURL inside a Site block to match or filter an HTML page within a site
based on its URL. The URL can be a complex Web address or a secure Web site.
For more information, see Section 5.2.50, “MatchURL,” on page 108.

“MessageBox” Use the MessageBox command to display a dialog box that contains the text
specified in the <Data> variable. The Application Definition is suspended until the
user reacts to this message. The MessageBox can take any number of text
arguments, including variables, (for example MessageBox "The user " $Username "
has just been logged onto the system"). For more information, see Section 5.2.51,
“MessageBox,” on page 109.

“Multiply” Use to multiply one number by another. You can hard code the numbers into the
Application Definition, or you can use variables. The results can be output to another
variable, or to one of the original numbers. For more information, see Section 5.2.52,
“Multiply,” on page 112.

“OnException/
ClearExceptio
n”

Use the OnException command to detect when certain conditions are met.
Currently, this is when Cancel is pressed on either of two dialog boxes. When the
condition is met, a subroutine is run. Use the ClearException command to reset
the exceptions value. For more information, see Section 5.2.53, “OnException/
ClearException,” on page 113.

“Parent/
EndParent”

Use the EndParent command to terminate a Parent block and set the subject of
the Application Definition back to the original window. You can nest the Parent
command, thereby allowing the Parent block to act on the parent of the parent. For
more information, see Section 5.2.54, “Parent/EndParent,” on page 115.

“PickListAdd” Use the PickList command to allow users with multiple accounts for a particular
system to choose the account to which they will log on. For more information, see
Section 5.2.55, “PickListAdd,” on page 117.

“PickListDisp
lay”

Use the PickListDisplay command to display the pick list entries built by
previous calls to PickListAdd. The PickListDisplay command returns the
result in a <?Variable> sent to the command. For more information, see
Section 5.2.56, “PickListDisplay,” on page 118.

“PositionChar
acter”

Use this command in a password policy Application Definition to enforce that a
certain character in the password is a numeral, uppercase, lowercase, or a
punctuation character. For more information, see Section 5.2.57,
“PositionCharacter,” on page 119.

“PressInput” Used within a Site block to simulate a keyboard enter event. For more information,
see Section 5.2.58, “PressInput,” on page 120.

Command See
Command Quick Reference 15

16 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
“ReadText” Use the ReadText command to run in both Windows and Terminal Launcher
Application Definitions. While the usage and arguments for the use of ReadText with
Windows and Terminal Launcher are different, the results of each command are the
same. For more information, see Section 5.2.59, “ReadText,” on page 120.

“RegSplit” Use the RegSplit command to split a string using a regular expression. <Output-
String1> and <Output-String2> contain the first, and second sub expressions,
respectively. For more information, see Section 5.2.60, “RegSplit,” on page 123.

“ReLoadPlat” Use to set the current platform to the last one chosen by the Application Definition, or
if a platform is not chosen, leaves the platform unset. For more information, see
Section 5.2.61, “ReLoadPlat,” on page 124.

“Repeat/
EndRepeat”

Use the Repeat command to establish an Application Definition block similar to the
If command. The repeat block is terminated by an EndRepeat command.
Alternatively, you can use the Break or EndScript commands to break out of the
loop. For more information, see Section 5.2.62, “Repeat/EndRepeat,” on page 126.

“RestrictVari
able”

Use the RestrictVariable command to monitor a <Variable> and enforce a
specified <Password-Policy> on the <Variable>. Any variable specified must
match the policy or it is not saved. For more information, see Section 5.2.63,
“RestrictVariable,” on page 128.

“Run” Use the Run command to launch the program specified in <Command> with the
specified optional [<Arg1> [<Arg2>] …] arguments. For more information, see
Section 5.2.64, “Run,” on page 130.

“SelectListBo
xItem”

Use the SelectListBoxItem command to select entries from a list box. For more
information, see Section 5.2.65, “SelectListBoxItem,” on page 131.

“SendKey” Use the SendKey command to work only with Generic and Advanced Generic
emulators. You can use the SendKey command in the same manner as the Type
command. Generally, the Type command is the preferred command to use. The
Type command places the text into the clipboard, and then pastes it into the
emulator screen. The SendKey command enters the text directly into the emulator
screen. For more information, see Section 5.2.66, “SendKey,” on page 132.

“Set” Use the Set command to copy the value of <Data> into <Variable>. The <Data>
can be any text, or another variable, whereas the <Variable> must be either a
?Variable or $Variable. For more information, see Section 5.2.67, “Set,” on
page 133.

“SetCheckBox” Use the SetCheckBox command to select or clear a check box. For more
information, see Section 5.2.68, “SetCheckBox,” on page 134.

“SetCursor” Use the SetCursor command to set the cursor to a specified <ScreenPosition>
or <X Co-ordinate> <Y Co-ordinate>. For more information, see
Section 5.2.69, “SetCursor,” on page 135.

“SetFocus” Use the SetFocus command to set the keyboard focus to a specified <#Ctrl-ID>.For
more information, see Section 5.2.70, “SetFocus,” on page 136.

“SetPlat” By default, variables are stored directly against the platform or application on which
you have SecureLogin enabled. For example, if you enable Groupwise.exe, the
Groupwise credentials are stored against the Groupwise.exe platform.SetPlat sets
the platform or application from which variables are read and saved if you have. For
more information, see Section 5.2.71, “SetPlat,” on page 137.

Command See
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
“SetPrompt” Use the SetPrompt command to customize the text in the Enter SecureLogin
Variables dialog boxes. These dialog boxes are used to prompt the user for new
variables. You can also use the DisplayVariables command to customize the prompt
text in the dialog box (for previously stored variables). For more information, see
Section 5.2.72, “SetPrompt,” on page 139.

“Site/
Endsite”

Site/Endsite begins and ends an Application Definition, in place of Dialog/
EndDialog.

Site/Endsite are Web commands added to allow for finer control of site
matching. More detailed information within a loaded Web site can now be matched
upon an used to execute blocks of scripting commands. For more information, see
Section 5.2.73, “Site/EndSite,” on page 141

“StrCat” Use the StrCat command to append the second data string to the first data string.
For example, StrCat ?Result "SecureRemote " "$Username". For more
information, see Section 5.2.74, “StrCat,” on page 142.

“StrLength” Use the StrLength command to count the number of characters in a variable and
output that value to the destination variable. For more information, see
Section 5.2.75, “StrLength,” on page 143.

“StrLower” Use the StrLower command to modify a variable so that all the characters are
lower case. For more information, see Section 5.2.76, “StrLower,” on page 144.

“StrUpper” Use the StrUpper command to modify a variable so that all the characters are
upper case. For more information, see Section 5.2.77, “StrUpper,” on page 145.

“Sub/EndSub” Use the Sub/EndSub commands around a block of lines within an Application
Definition to denote a subroutine. For more information, see Section 5.2.78, “Sub/
EndSub,” on page 146.

“Submit” Use the Submit command only in Web Application Definitions, and only with
Internet Explorer to allow for enhanced control of how and when a form is submitted.
The Submit command performs a Submit on the form in which the first password
field is found. The Submit command is ignored if used with Netscape. For more
information, see Section 5.2.79, “Submit,” on page 147.

“Subtract” Use the Subtract command to subtract one value from another. This is useful if
you are implementing periodic password change functionality for an application. You
can use the subtract command (in conjunction with the Divide function and the
Slina DLL) to determine the number of days that have elapsed since the last
password change. Other numeric commands include the Add, Divide, and Multiply.
For more information, see Section 5.2.80, “Subtract,” on page 148.

“Tag/EndTag” Use the Tag/EndTag commands to find HTML tags. For more information, see
Section 5.2.81, “Tag/EndTag,” on page 150.

“TextInput” Use within a Site block to input text into a special field. For more information, see
Section 5.2.82, “TextInput,” on page 150

“Title” Use the Title command to retrieve the title of a window and compare it against the
string specified in the <Window-Title> argument. For this block of the Application
Definition to run, the retrieved window title and the <Window-Title> argument must
match the text supplied to the Title command in the dialog block. For more
information, see Section 5.2.83, “Title,” on page 151.

Command See
Command Quick Reference 17

18 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
“Type” Use the Type command to enter data, such as usernames and passwords into
applications. There are reserved character sequences that are used to type special
characters, for example TAB and ENTER. If it is not possible to determine Control
IDs in a Windows application, and the Type command is not working, use the
SendKey command instead.For more information, see Section 5.2.84, “Type,” on
page 152.

“WaitForFocus
”

Use the WaitForFocus command to suspend the running of the Application
Definition until the <#Ctrl-ID> has received keyboard focus, or the <Repeat-
Loops> expire. The <Repeat-Loops> is an optional value that defines the number
of loop cycles to run. The <Repeat-Loops> value defaults to 3000 loops if nothing
is set. Once focus is received, the Application Definition continues. For more
information, see Section 5.2.86, “WaitForFocus,” on page 156.

“WaitForText” Use the WaitForText command so the Terminal Launcher waits for the specified
<text> to display before continuing. This command allows the user to wait for
particular text to display before continuing. For example, waiting for a username field
to display before attempting to type a username. For more information, see
Section 5.2.87, “WaitForText,” on page 157.

Command See
reLogin 6.0 SP1 Application Definition Guide

2
novdocx (E

N
U

) 10 A
ugust 2006
2Application Definition Language
Overview

The capability of Novell® SecureLogin to create proprietary Application Definitions is a powerful
feature. This Application Definition command language facilitates SecureLogin of all types of
applications.

SecureLogin implements Application Definition commands to provide a flexible single sign-on and
monitoring environment. For example, the SecureLogin Windows Agent watches for application
login boxes. When a login box is identified, the agent runs an Application Definition to enter the
username, password, and background authentication information.

This section contains the following information:

Section 2.1, “Using Application Definitions,” on page 19
Section 2.2, “Advantages of Using Application Definitions,” on page 19
Section 2.3, “Defining Single Sign-On Enabled Applications,” on page 20
Section 2.4, “Corporate Definitions,” on page 20
Section 2.5, “What is an Application Definition?,” on page 20

2.1 Using Application Definitions
You can use Application Definitions to:

Execute the retrieval and entering of correct login details. Application Definitions are stored
and secured within the directory to ensure maximum security, support for single-point
administration, and manageability.
Automate many login processes, such as multi-page log in and login panels requiring other
information that you can store in the directory (such as surname or telephone number).
Application Definitions can include commands to automate password changes on behalf of
users and to request user input when required.

2.2 Advantages of Using Application Definitions
SecureLogin Application Definitions provide the following advantages:

Enables you to define single sign-on methods for almost any Windows*, Mainframe, Internet,
Intranet, Terminal Server, or UNIX application.
There is no need to install backend modules on your application servers.
Provides the flexibility for you and your application owners to choose what to do once an
application generated message is detected, giving you full control over your single sign-on
environment.
Allows more sophisticated single sign-on to supported applications, including the ability to
seamlessly handle several versions of one application. This feature is especially important
when you upgrade your applications.
Application Definition Language Overview 19

20 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
SecureLogin data such as user credentials is stored and protected in the directory.
On startup, SecureLogin performs the following tasks:

Locate these objects in the directory.
Cache their encrypted contents in memory (and optionally on disk) for later use by the
workstation's SecureLogin agent.

2.3 Defining Single Sign-On Enabled
Applications
SecureLogin provides the option to define which applications will be single sign-on enabled. This
option gives you:

Full control on deciding which applications need to be single sign-on enabled.
The ability to update the entire directory database with a new application log on Application
Definition by updating a single object.

2.4 Corporate Definitions
Corporate Application Definitions are stored in a Container Object rather than on the individual
User Objects. For users, the result is a less complex system. For you as the administrator, the
improved login mechanisms provide the following:

A greater level of accountability with increased productivity and security.
A reduced workload at the help desk because of significantly fewer password resets.

2.5 What is an Application Definition?
An Application Definition is essentially a list of instructions that SecureLogin follows in order to
perform various tasks on various windows. For example, in the case of a Windows application
(*.exe), an Application Definition is written for each executable file that you want SecureLogin to
act upon. In that Application Definition you are able to assign different instructions to each dialog
box or screen that executable file or application may produce. In this manner you have the choice of
acting upon only the login panel, only selected windows, or every window that is produced by the
executable file, such as account locked, invalid username, invalid password, backend database is
down, password expiry, and so on.

SecureLogin follows Application Definition from left to right, top to bottom. However, with the use
of flow control commands, such as Call, it is possible to skip, repeat or jump to certain parts of the
Application Definition.

2.5.1 Using with Dialog Specifier Commands
It is possible to assign individual sections of an Application Definition to the different windows an
executable file may produce, with the use of Dialog Specifier commands. This allows the login
dialog box for example to be treated differently from the Error Message box and so on.

Many of the SecureLogin commands such as Repeat and Dialog, have one or two commands
that are used to close them.
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
2.5.2 Capability to Read from and Write to Variables
Application Definition commands have the capability to read from and write to variables. These
variables enable SecureLogin to use corporate Application Definitions, while each individual user's
secrets are securely stored in the directory. It is also possible to read attributes, such as the user's full
name and phone number from attributes in the directory.

SecureLogin is not only able to write information to the screen, but is also able to read from it with
the use of commands such as ReadText. This can be used to extract usernames, domains in use,
error messages and other useful information. Variable Manipulator commands can then be used to
perform calculations, break apart information, and join it back again.

All these features come together to form an extremely powerful language that is able to accomplish
almost any task that is required.

NOTE: When writing an Application Definition that requires a “-“ (dash) in the command syntax,
make sure you use a short ASCII dash (en dash) and not an extended dash (em dash) as generated in
Microsoft* Word.

In Microsoft Word, when you type a space and one or two hyphens between text, Microsoft Word
automatically inserts an ASCII dash or en dash (–). If you type two hyphens and do not include a
space before the hyphens, then an em dash (—) is created. This may have implications for
definitions that are created in or have been copied and pasted from Microsoft Word documents.
Application Definition Language Overview 21

22 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
reLogin 6.0 SP1 Application Definition Guide

3
novdocx (E

N
U

) 10 A
ugust 2006
3Managing Application Definitions

Application definitions are generally imported, built, or modified in the Management Utility of
Novell® SecureLogin, tested locally, and then copied to the relevant container, or the organizational
unit in multi-user directory environments. Application definitions are imported and exported in the
XML file format for ease of distribution and deployment.

This section contains the following information:

Section 3.1, “Application Definition Checklist,” on page 23
Section 3.2, “Exporting and Importing Predefined Applications and Application Definitions,”
on page 23
Section 3.3, “Windows Application Definition Tools,” on page 32
Section 3.4, “Application Definition Elements,” on page 36

3.1 Application Definition Checklist
When you have built or modified your application definitions, it is recommended that you test each
supported application or the Web page for the following scenarios:

Entering correct username or password.
Entering incorrect username or password.
User canceling a log on.
Exceeding maximum password retries.
User changing own password.
User attempting to change to illegal password.
User canceling password change.
Administrator changing user password.
User password expiring.
Account locked out.
User attempting a simultaneous log on.

3.2 Exporting and Importing Predefined
Applications and Application Definitions
SecureLogin provides export and import functionality to facilitate distribution of predefined
applications and application definitions. Converting predefined applications and application
definitions to XML format allows you to distribute and deploy predefined applications and
application definitions across directories, software, and hardware platforms.

This section contains the following information:

Section 3.2.1, “Export Using an XML File,” on page 24
Section 3.2.2, “Importing in XML Format,” on page 26
Managing Application Definitions 23

24 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
Section 3.2.3, “Modifying in the Personal Management Utility,” on page 28
Section 3.2.4, “Building an Application Definition in the Personal Management Utility,” on
page 30

3.2.1 Export Using an XML File
You can manage application definitions for applications by using the iManager, the Microsoft
Management Console (MMC) or the SecureLogin Manager (slmanager.exe).

To export SecureLogin data using an XML file through iManager, do the following:

1 Log in to iManager.
2 In the object field, specify your object name, then click OK.

3 Click Distribution. The distribution details are displayed.
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
4 Click Save. The save dialog box is displayed.

5 In the Select Securelogin Configuration section, do the following:
5a Select Applications.
5b Clear the other Select Securelogin Configuration check boxes.
5c Select Not Encrypted in the Select File Protection section.

NOTE: This option is not present for iManager.

6 Click Export. The Do you want to open or save dialog box is displayed.
7 Click Save. The save dialog box is displayed.

8 Select the file location and specify a file name in the File Name field.
9 Make sure XML document is selected in save as type.

10 Click Save. The SecureLogin confirmation message is displayed.
Managing Application Definitions 25

26 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
11 Click OK.

3.2.2 Importing in XML Format
Use the following procedure to import SecureLogin data in XML format:

1 Log in to iManager.
2 Select Securelogin SSO > Manage Securelogin SSO. The Manage SecureLogin SSO page is

displayed.
3 In the object field, specify your object name, then click OK.
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
4 Click Distribution. The Distribution details are displayed.

5 Click Load. The Load dialog box is displayed.

6 In the dialog box do the following:
6a Select the Applications check box.
6b Clear the other check boxes.

7 Browse and select the exported XML file.
8 Click OK to select the file.

The selected:
Predefined applications and application definition are copied across to the receiving
organizational unit or container.
Securelogin configuration is copied across to the receiving object.

If a predefined applications and application definition currently exists in the receiving object, a
confirmation message is displayed to confirm or reject overwrite with the imported data.

9 Click Import to confirm or click Cancel to reject overwriting with the imported data.
Managing Application Definitions 27

28 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
10 A SecureLogin message is displayed to confirm SecureLogin data is loaded.

3.2.3 Modifying in the Personal Management Utility
SecureLogin predefined applications and application definitions are easily modified to cater to your
organization's requirements.

Use the following procedure to modify a SecureLogin predefined application or application
definition.

1 Double-click the SecureLogin system tray icon to display the Personal Management Utility.
2 Click Applications. The Applications pane is displayed.
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
3 Double-click the required application definition. The application details are displayed.

4 Select the Definition tab. The Application Definition editor is displayed.

5 Modify the application definition or the predefined application, as required.

NOTE: It is a good practice to include the date and a description of the changes made for
future reference.

6 Click OK to save changes and close the Personal Management Utility.

For information on how to modify specific functions see, Chapter 5, “Command Reference,” on
page 49.
Managing Application Definitions 29

30 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
3.2.4 Building an Application Definition in the Personal
Management Utility
This section describes how to create and modify SecureLogin application definitions in the Personal
Management Utility. It is recommended that you test the application definitions locally and then
copy them to the relevant container or organizational unit in multi-user directory environments.

Use the following procedure to create an application definition for a Windows application.

1 Double-click the SecureLogin system tray icon to display the Personal Management Utility.
2 On the File menu, point to New, and then click Application. The New Application dialog box is

displayed.

3 Click New Application Definition, and select the required application type from the Type drop-
down list.

4 Specify the name of the application executable for Windows* applications in the EXE field.
5 Specify a description and click OK. The application definition is added to the left pane under

applications and the details display in the right pane.
6 Select Definition, and delete the text, # place your application definition
here.

7 Specify your application details, and click OK to save the changes and close the Personal
Management Utility.

NOTE: If you are creating multiple application definitions, click Apply to save changes
without closing the Personal Management Utility.
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
Settings Tab

The Settings tab includes the following Advanced options for application definitions and predefined
applications.

The following table lists the options in the Settings tab:

Table 3-1 Settings Options

Option Description

Allow web page to load while Application Definition
is running (Web applications only)

Applies to Microsoft Internet Explorer and
Application Definitions created for Web pages and
JavaScript log on that execute in a Web page.

Set to No by default, this suspends completion of
any other Internet Explorer tasks until the log on
has completed.

Selecting Yes, SecureLogin allows Internet
Explorer to continue functioning while SecureLogin
is executing log on.

Enable third party access for this platform This option is set to No by default, disabling API
access for this Predefined application or
Application definition.

Clear to disable API access for this Predefined
Application or Application Definition.
Managing Application Definitions 31

32 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
3.3 Windows Application Definition Tools
SecureLogin provides wizards to assist with the creation of basic application definitions (refer to the
SecureLogin administration guide for wizards instructions). For more complex applications and
requirements, SecureLogin provides the following tools to assist with finding the application
information required to build an application definition:

Section 3.3.1, “Finding Application Details With Window Finder,” on page 32
Section 3.3.2, “Finding Application Details with the Login Watcher,” on page 34

3.3.1 Finding Application Details With Window Finder
Window Finder finds windows applications details including control and dialog IDs. SecureLogin
may require this information to identify specific objects in order to uniquely identify the application.

Control IDs are used to uniquely identify objects within a window. Window Finder extracts this
information from the application for use in the application definition.

Password field must exist on Internet Explorer page
for Application Definition to run (Web applications
only)

Applies to Microsoft Internet Explorer and
Application Definitions created for Web pages and
JavaScripts within Web pages.

Selecting this option ensures SecureLogin does not
execute automated log on for pages without a
password field.

Clear this option if your Web application returns
errors on pages without password fields that you
need to handle with SecureLogin. For example,
password change successful.

Synchronize with Mobile Device This option is set to No by default, enabling
synchronization to an API enabled handheld
device, for this Predefined application or
Application Definition.

Clear to disable synchronization to an API enabled
handheld device for this Predefined application or
Application Definition.

Option Description
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
Start SecureLogin’s Window Finder

The following procedure uses the Novell SecureLogin test application provided on the SecureLogin
distribution CD.

1 On the Windows start menu, select All Programs > Novell Securelogin > Window Finder. The
WinSSO Window Finder is displayed.

2 Right-click the securelogin icon in the dialog box, drag to the required window, field or
control, and release the mouse button.

WINSSO Window Finder Details

The following table lists the fields in the WinSSO Window Finder:

Table 3-2 Window finder details

Field Description

Module Details section

Module Name Windows executable name for the selected application.

This is the application name for a Windows Application Definition/
Predefined Application.

Command Line The full command line used to start the application.

You can use this information in conjunction with GetCommandLine
command.

Parent Details section
Managing Application Definitions 33

34 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
3.3.2 Finding Application Details with the Login Watcher
Login Watcher records log on and Windows application data to provide information that you may
need for creating an application definition.

Order Information is Recorded and Stored

Information is recorded and stored in a text file in the following order:

Time||Module Name||Window Handle||Window Text||Class Name||Parent||Visible Flag||Title
Flag||Control ID

NOTE: Login watcher records all log on information, including usernames and passwords, in a text
file. This text file may be a security issue.

Information Details

Window Title Title of the window of the selected control.

Use with the Title command in the Dialog/EndDialog section of the
Application Definition.

Window Class Windows class name for this dialog or window.

Use with the Class command in a Dialog or EndDialog section.

Handle The internal Windows handle for this window.

Generally not used in Application Definitions.

Control Details section

Dialog ID The unique number identifying the control.

Use with various commands including Type, SetPlat, and Click.

Class Name Windows class name for the control.

SecureLogin supported classes, which include Edit, Combo box, and
Static.

Window Text Test that exists on the control.

Useful to copy and paste into the Application Definition editor.

Note or copy the required details from the WinSSO Window Finder
window from the relevant fields.

Click Close to quit and close the WinSSO Window Finder window.

Information Item Description

Time Milliseconds elapsed since logon Watcher started.

Module name Name of the executable being recorded.

Field Description
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
SecureLogin Test Application Example

The following procedure uses the SecureLogin test application:

Starting Login Watcher

1 Right-click the SecureLogin task bar icon.
2 Select close from the menu.
3 Double-click loginwatch.exe, by default located at <...>\program
files\novell\securelogin\tools. the logon watcher dialog box is displayed.

4 Specify the executable filename in the Login Watcher field.
5 Click Start. The Now Recording Log confirmation dialog box appears.

6 Log on to the relevant application.
7 Click Stop when logged on successfully to return to the login watcher dialog box.

Window handle Unique identifier for the window.

Window text All text displayed in the window, which includes text entered during log on and text
displayed as labels for fields and buttons.

Class name Name of the window class.

Parent Window handle of the parent window.

Visible flag Refers to top level windows that have the style set to Visible.

If set to Visible, the word Visible displays, otherwise the field is empty.

Title flag Refers to top level windows that have the style set to display the Window Title.

If the title is not displayed, then the field is empty.

Control ID The unique numerical identifier for the windows object.

Information Item Description
Managing Application Definitions 35

36 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
8 click View Log. SecureLogin starts the Notepad application and displays the watch.txt file
with log on details recorded.

9 Note the required information or save the text file with a different name.
10 Click the Login Watcher dialog box. Click Close.

3.4 Application Definition Elements
Application Definitions use various symbols to define the function of each line. The following table
lists the definitions for these symbols.

Table 3-3 Description of symbols

Symbol Description

Use the hash symbol to define a line of text as a comment field. Comment fields are
used to leave notes.

Any line that starts with a # is ignored.

Use comment lines for the following:

Define sections of an Application Definition, for example the logon window,
Change Password window, and so on.

Explain complex sections.

Remove command lines during creation and editing of the Application Definition.
This saves having to continuously delete and rewrite lines while testing.

Make notes such as when the Application Definition was written, what version of
the software it was written for, and so on.

When used within a command, the pound or hash symbol takes on a different meaning.
When used as part of a command, such as Class or Type, the symbol specifies a
numerical value. You can use these numerical values to specify a target for the
command. Further details on this use are provided within the command listings.

" " Use Quotation marks to group together text or variables that contain spaces. Quotation
marks are used with commands such as Type, MessageBox, If -Text, and so
on.

For these command lines to work, you must use quotation marks in the following
method to group the text together:

Type "Database 2"

MessageBox "Please confirm your log on details."

If -Text "Log on failure"

$ Use the dollar sign to define the use of a SecureLogin variable stored in the directory for
later use by that user.

These variables are used to store information such as usernames and passwords.
Further explanation on the various types of variables is provided in the next chapter.
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
? Use the question mark to define the use of a runtime variable. The values of these
variables are not stored in the directory; they are reset each time SecureLogin is
started.

Alternatively, with the use of the Local command, these variables are reset each time
the Application Definition is started.

These variables are used to store temporary information, such as counting, data
processing, and date information. The question mark is also used with several internal
system generated variables.

% Use the percentage sign to define the use of a directory attribute. The attributes that are
available vary depending on the directory in use, and the setup of the directory.

Examples of the attributes you can use are FCN and %Surname.

! Use the exclamation mark to define the use of a passticket. A passticket is a one-time
password (OTP) that is generated using a combination of an encryption key, encryption
offset, and the current time.

Such passwords are only valid for a short period of time (generally between 30 seconds
and 2 minutes). You can manually define the encryption key and offset, or the
SecureLogin can generate it automatically.

If the exclamation mark is included as the first character in a text string, then precede it
with a backslash, otherwise SecureLogin will attempt to define a passticket. For
example, Type \!xyz" will type "!xyz" to the application.

\ Use the backslash with the Type and SendKey commands to specify the use of a
special function.

The backslash is used in conjunction with values to perform the simulation of pressing
keys. Examples of frequently used functions are provided in the following table:

Simulated Key Stroke: Description

Alt-F: Alt/F on the keyboard in Windows and Web applications.

\D: Delete key in a Windows and Web applications. Not applicable to terminal
emulators.

\N: Enter key in a Windows and Web applications. Not applicable to terminal emulators.

\T: Tab in Windows and Web applications.

\-T: Shift+Tab in Windows and Web applications.

@ Use this symbol in a similar function to the backslash symbol, except its use is limited to
HLLAPI enabled emulators.

This symbol is used in conjunction with values to perform the simulation of key presses.
For example, use @E to simulate pressing ENTER in a terminal emulator application.

- Use the hyphen as a switch within several commands, such as If and Type.

The hyphen is used in conjunction with values to modify the behavior of commands
(such as -Raw), or switch on or off certain functions (such as -YesNo).

Symbol Description
Managing Application Definitions 37

4
novdocx (E

N
U

) 10 A
ugust 2006
4Application Definition Variables

This section contains the following information:

Section 4.1, “Types of Variables,” on page 39
Section 4.2, “SecureLogin Supported Variables,” on page 42
Section 4.3, “Application Definition Conventions,” on page 43

4.1 Types of Variables
SecureLogin supports the use of four different types of variables:

Stored
Runtime
Directory attribute
Passticket

NOTE: Specify variables without spaces, for example $Username_Alias. If you use spaces you
must enclose the entire variable in quotation marks, for example "$Username Alias".

This section contains the following information:

Section 4.1.1, “Using a Variable to Change the Default Platform,” on page 39
Section 4.1.2, “Directory Attribute Variables,” on page 40
Section 4.1.3, “Stored Variables,” on page 40
Section 4.1.4, “Runtime Variables,” on page 41
Section 4.1.5, “Passticket Variables,” on page 42

4.1.1 Using a Variable to Change the Default Platform
Each variable defaults to the platform specified in the Application Definition/Predefined
Application name. You can use a variable to change the platform, for example you may have an
Application Definition named www.website1.com, for example:
type $username
type $password password

An Application Definition named www.website2.com may use the variables from
www.website1.com, for example:
type $username(www.website1.com)
type $password(www.website1.com) password
Directory attribute variables

SecureLogin has the ability to read directory attributes from the currently logged on user's object.
For example:
type%cn
Application Definition Variables 39

40 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
will read the CN attribute from the currently logged on user's object and type it in. You can only use
the percentage sign (%) variables when SecureLogin is configured to use a directory, and only on
single-valued text attributes.

4.1.2 Directory Attribute Variables
SecureLogin has the ability to read directory attributes from the currently logged on user's object.
For example:

type%cn

The above command reads the CN attribute from the currently logged on user's object and types it
in. You can only use the percentage sign (%) variables when SecureLogin is configured to use a
directory, and only on single-valued text attributes.

4.1.3 Stored Variables
Stored variables are the most common style of variable used in Application Definitions and
Predefined Applications. They are preceded with a dollar sign ($). Use these variables to store the
values used during the log on process, such as usernames, passwords and any other details that are
required.

This section contains the following information:

“Where the Variables are Stored” on page 40
“About Using Stored Variables” on page 40

Where the Variables are Stored

The values of these variables are stored in the directory under the user object. They are encrypted so
that only the user can access them. You can store variables separately for each Application
Definition and Predefined Application, so that you can have a different username variable for one
application from the username variable for another application. It is, however, possible to set an
application to read variables from another application's Application Definition and Predefined
Application. This is useful for applications that share user accounts or passwords. For details on how
to do this, see Section 5.2.71, “SetPlat,” on page 137.

About Using Stored Variables

If a stored variable is referenced in an Application Definition and Predefined Application, and there
is no value stored for that variable for example, the first time the program is run, SecureLogin
prompts the user to enter a value for the variable. This is an automatic process. It is also possible to
manually trigger this process to prompt a user to enter new values for particular variables. For more
information, see Section 5.2.21, “DisplayVariables,” on page 79 and Section 5.2.10,
“ChangePassword,” on page 64.

Example of stored variables in use:
Dialog
Class #32770
Title "Log on"
EndDialog
Type $Username #1001
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
Type $Password #1002
Click #1

NOTE: If you want to hide a variable from an administrator by displaying it as **** instead of
clear text, begin the variable name with $Password. For example, the $PasswordPIN
variable is protected as described, however $PIN is not.

4.1.4 Runtime Variables
Runtime variables are generally used for storage of calculations, processing data, and date
information. You can also use them for temporary passwords and usernames.

Runtime variables are preceded with the question mark symbol (?). They have two modes:

Normal runtime variables are reset each time SecureLogin is started.
Local runtime variables are reset each time the Application Definition and Predefined
Application is started.

Runtime variables are Normal by default. For details on how to switch a runtime variable to Local
mode, see Section 5.2.43, “Local,” on page 99.

Using Runtime Variable

Runtime variables are not stored in the directory or the SecureLogin cache; they are used straight
from the computer's memory. For this reason, it is important not to use runtime variables for the
storage of usernames, passwords, or other details SecureLogin will need to access in the future. If
runtime variables are used for such details, the user is prompted to enter them each time the
Application Definition or Predefined Application is run, or each time SecureLogin is restarted.
Users are not prompted for ?variables that have no value. These variables are given the value
<NOTSET>.

Example of using a runtime variable:
Dialog
Class #32770
Title "ERROR"
EndDialog
Local?ErrorCount
Increment?ErrorCount
If?ErrorCount Eq "2"
MessageBox "This is the second time you have8 received this error.
Would you like to reset the8 application?" -YesNo?Result
If?Result Eq "Yes"
KillApp "App.exe"
Run "C:\App\App.exe"
Else
Set?ErrorCount "0"
EndIf
EndIf
Application Definition Variables 41

42 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
4.1.5 Passticket Variables
Passticket variables are preceded with the exclamation mark symbol (!). To use a passticket variable,
you must create and define numerical values for stored variables with the names $DESKEY and
$DESOFFSET. These numbers are then used by the SecureLogin Application Definition or
Predefined Application parser to generate the one time password.

Use a Passticket Variable to Generate a Password

Once you have defined the stored variables, use the following passticket variable to generate a
password.
!<Name of application definition>

or
!default

For example, if you wanted to use a passticket variable for the Outlook application, you would
create two stored variables called $DESKEY and $DESOFFSET under the Outlook application
definition. You then set values for the two stored variables, which allows you to use the variable
"!Outlook" whenever you need to generate a one time password.

You could also use "!Default" which automatically reads the values from the current application
definition.

If the credentials used to generate One Time Passwords (OTP's) do not already exist in a secured
area of the SecureLogin cache (that is, the $DESKEY and $DESOFFSET variables are not defined),
then they are retrieved from the closest SecureLogin Advanced Authentication server. For more
information on this, contact Novell Technical Services.

4.2 SecureLogin Supported Variables
SecureLogin is able to read details from the system and use them to create variables that you can
incorporate into the Application Definition. These variables are automatically generated as Runtime
Variables and used in the same manner within any application definition.

Table 4-1 Variables and Descriptions

Variable Description

?SysVersion(system) The local SecureLogin windows agent version.

You can use this variable to determine if specific support is built
into the product running on the user's workstation. Version
convention is two digits for each section read from right to left,
and leading zeroes are removed. For example, version 3.0.4.0
would be returned as 03000400.

?BrowserType(system) Contains Internet Explorer or Netscape and indicates in which
browser the Application Definition or Predefined Application is
running.

This variable is only set in a Web Application Definition or
Predefined Application.
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
4.3 Application Definition Conventions
The following are some of the best practice rules to follow when creating an Application Definition.
These rules make reading the Application Definition easier and also help if you need to make
modifications in the future.

This section contains the following information:

Section 4.3.1, “Symbols Used,” on page 44
Section 4.3.2, “Capitalization,” on page 44
Section 4.3.3, “Comments,” on page 44
Section 4.3.4, “Switches,” on page 44
Section 4.3.5, “Variables,” on page 45
Section 4.3.6, “Indent Sections,” on page 45
Section 4.3.7, “Blank Line Between Sections,” on page 45
Section 4.3.8, “Quotation Marks,” on page 46
Section 4.3.9, “Password Policy Names,” on page 46

?SysUser(system) The name of the user currently using SecureLogin Single
Sign-On.

?SysPassword(system) The directory password of the user currently using SecureLogin.

This variable is only available if the appropriate options are
chosen when installing SecureLogin.

?SysContext(system) The context within which the current SecureLogin user's directory
object exists.

?SysTree(system) The name of the directory tree that the SecureLogin Single
Sign-On is currently using.

?SysServer(system) The name of the server that was entered in the Novell log on.

This variable is only available if the Novell client log on extension
is installed.

?CurrTime(system) The running time in seconds from January 1970 to the present.
You can use this variable to force password changes every X
days, and so on.

Do not use the Application Definition to force a password change
if you wish to continue having the application generate the
change password event (recommended). Use this variable on
applications where you cannot set a password expiry at the
application back end.

Variable Description
Application Definition Variables 43

44 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
4.3.1 Symbols Used

Table 4-2 Description of Symbols

4.3.2 Capitalization
Use capitalization where applicable.

Table 4-3 Capitalization

4.3.3 Comments
Use comments throughout to explain what each section does and how it does it.

Table 4-4 Comments

4.3.4 Switches
Switches are placed directly after the command, for example, Type -Raw, If -Text.

Symbol Description

< > Angle brackets represent an item.

For example, text, variable, or value.

[] Square brackets represent an optional item.

If an item is not marked with square brackets, it is a compulsory item.

Indicates a line break.

Instead of... Use...

messagebox "some text" -yesno ?result MessageBox "Some text" -YesNo ?Result.

Instead of... Use...

Dialog

Class #32770

Title

"Log on"EndDialog

Written By: B. Smith 07/Jun/2002

Last Modified By: C. Silvagni 13/Mar/2003

Logon Dialog Box

Dialog

Class #32770

Title "Log on"

EndDialog
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
Table 4-5 Switches

4.3.5 Variables
All variable names start with a capital letter.

Table 4-6 Variables

4.3.6 Indent Sections
Indent sections between pairs of commands, for example Dialog, Repeat, If.

An indent of three spaces is recommended.

Table 4-7 Indent Sections

4.3.7 Blank Line Between Sections
Leave a blank line between sections, for example, between the Dialog Block and the rest of the
Application Definition.

Instead of... Use...

Type $Username -Raw Type -Raw $Username

Instead of... Use...

Type $username Type $Username

Instead of... Use...

If -Text "Some text"

#Do thisElse

#Do This

EndIf

If -Text "Some text"

#Do thisElse

#Do this

EndIf
Application Definition Variables 45

46 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
Table 4-8 Blank Line Between Sections

Write Subroutine Sections

Write subroutine sections at the bottom of the Application Definition and not half way through.

The name of the subroutine should describe its function. Do not use a numeric name. The name
should follow the capitalization rule.

Wherever possible, use the Include command to create generic Application Definitions for
frequently used elements, for example password change procedures. For common processes within
the same Application Definition, use Subroutines.

4.3.8 Quotation Marks
Always use quotation marks around segments of text in commands.

Table 4-9 Enter Table Title Here

4.3.9 Password Policy Names
Password policy names should represent the program they are used for. Do not use numerical names.

Table 4-10 Password Policy Names

Instead of... Use...

Log on Dialog Box

Dialog

Class #32770

Title "Log on"

EndDialog

Type $Username #1001

Type $Password #1002

Click #1

Logon Dialog Box

Dialog

Class #32770

Title "Log on"

EndDialog

Type $Username #1001

Type $Password #1002

Click #1

Instead of... Use...

Type TextOrIf -Text Login Type "Text"OrIf -Text "Log on"

Instead of... Use...

PasswordPolicy3 GroupwisePasswordPolicy
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
At the top of the Application Definition enter and comment out information, for example, the author
and the date of the last modification.

Table 4-11 Example

NOTE: Always place the Title command after all other commands in the Dialog block.

Instead of... Use...

Dialog

Class #32770 Title "Log on"

EndDialog

Written By: B. Smith 07/Jun/2002

Last Modified By: C. Silvagni 13/
Mar/2003

Logon Dialog Box

Dialog

Class #32770

Title "Log on"

EndDialog
Application Definition Variables 47

48 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
reLogin 6.0 SP1 Application Definition Guide

5
novdocx (E

N
U

) 10 A
ugust 2006
5Command Reference

This section contains the following information:

Section 5.1, “Command Reference Conventions,” on page 49
Section 5.2, “Commands,” on page 53

5.1 Command Reference Conventions
This section consists of descriptions and examples of the commands that make up Novell®
SecureLogin Application Definitions.

NOTE: For a list of commands and corresponding page references, see Chapter 1, “Command
Quick Reference,” on page 11.

This section contains the following information:

Section 5.1.1, “Command Information,” on page 49
Section 5.1.2, “Web Wizard Application Definition Conventions,” on page 50
Section 5.1.3, “Site Matching,” on page 51
Section 5.1.4, “Form/Field/Option Matching,” on page 51
Section 5.1.5, “Form/Field/Option ID’s,” on page 52
Section 5.1.6, “Audit Integration,” on page 52
Section 5.1.7, “One Time Passwords,” on page 52

5.1.1 Command Information
The information for each of the commands includes:

Use With Values

Table 5-1 Command Description

Command Description

Java Use as part of a Java* Application Definition.

Startup Use as part of a Startup.

Terminal Launcher Use as part of a terminal launcher Application Definition.

Advanced Web Use as part of a manually created web site/internet Application
Definition. Not compatible with Web Wizard Application Definition
language.
Command Reference 49

50 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
Type Values

Table 5-2 Command Description

5.1.2 Web Wizard Application Definition Conventions
The SecureLogin advanced WebWizard makes it easier for users to enable single sign-on Web sites
and capture user’s Web-based log on details. When the user accesses a Web page from the browser,
SecureLogin automatically launches the Web Wizard.

The Web Wizard captures the user’s log on details and adds them to the user’s Web Application
Definitions.

When managing user’s Web log on credentials, the Definition tab of the Advanced Setting page
allows administrators to customize site and user credential details. Also available under the

Web Wizard Use a part of Application Definitions created automatically by the
Web Wizard. Web Wizard Application Definitions can be kept in
their original XML format or converted to an ASCII script for
advanced editing.

Windows Use as part of a Windows* Application Definition.

Command Description

Action Performs an action, for example the Type command types
information into a field.

Dialog specifiers Defines dialog boxes, for example, the Parent and Class
commands.

Flow control commands Directs SecureLogin to a specific location in the Application
Definition, for example, Repeat and EndScript commands.

Variable manipulators Modifies variables, such as the Add and Subtract
commands.

Command Description
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
Definitions tab is an Advanced function which provides more functionality with their associated
values and the option to convert the user’s log on credentials to an Application Definition.

For more details on how to manage Application Definitions, see Chapter 3, “Managing Application
Definitions,” on page 23.

5.1.3 Site Matching
In SecureLogin version 3.5 and higher, Web commands have been added to allow for much finer
control of site matching. Detailed information of the loaded Web site can be matched upon and used
to execute blocks of scripting commands.

The technique used to specify constraints upon a site match are similar to those constraints used in
windows scripting.

Instead of Dialog/EndDialog commands, equivalent Site/EndSite commands have been
created and can now be used.

Within these Site blocks, Match commands can be used to filter a given site. If one of the
specified match commands fails to match, then the Site block will fail to match as a whole. For
more information, see Section 5.2.73, “Site/EndSite,” on page 141.

5.1.4 Form/Field/Option Matching
When matching a specific form, field or other match option it is often the case that multiple items
will match the selection criteria. In these cases, the first item on the Web site which matches is
considered to be the match.

To access the other fields which also need to be matched, subsequent match commands may be
added with the same selection criteria.

For example:
Command Reference 51

52 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
MatchField #1:1 -type "password"
MatchField #1:2 -type "password"

matches a site with two password fields. The first is given the ID '#1:1' , the second is given the id
'#1:2'

NOTE: Matched items may only be matched once.
Each ID must be unique and not used previously.

5.1.5 Form/Field/Option ID’s
When matching a site, match methods are used to give specific fields, forms and options their own
unique ID.

Once the site has been successfully matched, the given ID is used in input commands to specify
particular items.

The actual ID's are denoted with a # followed by 1, 2 or 3 numbers each separated by a colon. For
instance "#1:3:2".

5.1.6 Audit Integration
SecureLogin 6.0 SP1 incorporates a Novell Audit integration for those enterprises that have Novell
Audit as part of their infrastructure. Novell Audit allows administrators to audit events from scripts
and have the Novell Audit client write audit events in response to certain triggering events.

For more information, see Section 5.2.5, “AuditEvent,” on page 60.

5.1.7 One Time Passwords
The use of multiple passwords places a high maintenance overhead on large enterprises. Users are
routinely required to use and manage multiple passwords which can result in a significant cost,
particularly with regard to calls to the helpdesk to reset forgotten passwords, or ensure all passwords
are provisioned when a new user starts or are deleted when an existing user leaves the organization.

One of the main benefits of implementing one time password systems is that it is impossible for a
password to be captured on the wire and replayed to the server.This is particularly important if a
system does not encrypt the password when it is sent to the server, as is the case with many legacy
Mainframe systems.

one time passwords also offer advantages in terms of disaster recovery because the encryption key is
used to generate the OTP will rarely change. System restoration, which may be hours or be many
months old, can be achieved without consideration for restoring users' passwords or notifying staff
of new passwords.

SecureLogin 6.0 SP1 now provides a secure, robust and scalable infrastructure by integrating
ActivCard one time password authentication functionality. It provides administrators access to the
application definition command GenerateOTP which can be used to generate synchronous
authentication and asynchronous authentication soft token support for smartcard user authentication
as well as hard token support for Vasco Digipass token generator.

For more information, see Section 5.2.28, “GenerateOTP,” on page 84.
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
5.2 Commands
This section contains the following information:

Section 5.2.1, “Regular Expressions,” on page 55
Section 5.2.2, “AAVerify,” on page 55
Section 5.2.3, “ADD,” on page 58
Section 5.2.4, “Attribute,” on page 59
Section 5.2.5, “AuditEvent,” on page 60
Section 5.2.6, “BeginSplashScreen/EndSplashScreen,” on page 60
Section 5.2.7, “Break,” on page 61
Section 5.2.8, “BooleanInput,” on page 63
Section 5.2.9, “Call,” on page 63
Section 5.2.10, “ChangePassword,” on page 64
Section 5.2.11, “Class,” on page 66
Section 5.2.12, “ClearPlat,” on page 67
Section 5.2.13, “ClearSite,” on page 70
Section 5.2.14, “Click,” on page 71
Section 5.2.15, “ConvertTime,” on page 73
Section 5.2.16, “Ctrl,” on page 74
Section 5.2.17, “DebugPrint,” on page 75
Section 5.2.18, “Decrement,” on page 76
Section 5.2.19, “Delay,” on page 77
Section 5.2.20, “Dialog/EndDialog,” on page 78
Section 5.2.21, “DisplayVariables,” on page 79
Section 5.2.22, “Divide,” on page 81
Section 5.2.23, “DumpPage,” on page 82
Section 5.2.24, “EndScript,” on page 82
Section 5.2.25, “Event,” on page 83
Section 5.2.26, “Event Specifiers,” on page 83
Section 5.2.27, “FocusInput,” on page 83
Section 5.2.28, “GenerateOTP,” on page 84
Section 5.2.29, “GetCheckBoxState,” on page 86
Section 5.2.30, “GetCommandLine,” on page 87
Section 5.2.31, “GetEnv,” on page 88
Section 5.2.32, “GetIni,” on page 88
Section 5.2.33, “GetMD5,” on page 89
Section 5.2.34, “GetReg,” on page 90
Section 5.2.35, “GetSessionName,” on page 90
Command Reference 53

54 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
Section 5.2.36, “GetText,” on page 91
Section 5.2.37, “GetURL,” on page 91
Section 5.2.38, “GoToURL,” on page 92
Section 5.2.39, “If/Else/Endif,” on page 93
Section 5.2.40, “Include,” on page 96
Section 5.2.41, “Increment/Decrement,” on page 97
Section 5.2.42, “KillApp,” on page 98
Section 5.2.43, “Local,” on page 99
Section 5.2.44, “MatchDomain,” on page 100
Section 5.2.45, “MatchForm,” on page 101
Section 5.2.46, “MatchField,” on page 103
Section 5.2.47, “MatchForm,” on page 104
Section 5.2.48, “MatchOption,” on page 106
Section 5.2.49, “MatchReferer,” on page 107
Section 5.2.50, “MatchURL,” on page 108
Section 5.2.51, “MessageBox,” on page 109
Section 5.2.52, “Multiply,” on page 112
Section 5.2.53, “OnException/ClearException,” on page 113
Section 5.2.54, “Parent/EndParent,” on page 115
Section 5.2.55, “PickListAdd,” on page 117
Section 5.2.56, “PickListDisplay,” on page 118
Section 5.2.57, “PositionCharacter,” on page 119
Section 5.2.58, “PressInput,” on page 120
Section 5.2.59, “ReadText,” on page 120
Section 5.2.60, “RegSplit,” on page 123
Section 5.2.61, “ReLoadPlat,” on page 124
Section 5.2.62, “Repeat/EndRepeat,” on page 126
Section 5.2.63, “RestrictVariable,” on page 128
Section 5.2.64, “Run,” on page 130
Section 5.2.65, “SelectListBoxItem,” on page 131
Section 5.2.66, “SendKey,” on page 132
Section 5.2.67, “Set,” on page 133
Section 5.2.68, “SetCheckBox,” on page 134
Section 5.2.69, “SetCursor,” on page 135
Section 5.2.70, “SetFocus,” on page 136
Section 5.2.71, “SetPlat,” on page 137
Section 5.2.72, “SetPrompt,” on page 139
Section 5.2.73, “Site/EndSite,” on page 141
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
Section 5.2.74, “StrCat,” on page 142
Section 5.2.75, “StrLength,” on page 143
Section 5.2.76, “StrLower,” on page 144
Section 5.2.77, “StrUpper,” on page 145
Section 5.2.78, “Sub/EndSub,” on page 146
Section 5.2.79, “Submit,” on page 147
Section 5.2.80, “Subtract,” on page 148
Section 5.2.81, “Tag/EndTag,” on page 150
Section 5.2.82, “TextInput,” on page 150
Section 5.2.83, “Title,” on page 151
Section 5.2.84, “Type,” on page 152
Section 5.2.85, “Sending Keyboard Commands Using Type,” on page 155
Section 5.2.86, “WaitForFocus,” on page 156
Section 5.2.87, “WaitForText,” on page 157

5.2.1 Regular Expressions
^Match character at beginning of the string. The expression "^A" will match an ‘A’ only at the

beginning of the string.
 ^The caret (^) immediately following the left-bracket ([) has a different meaning. It is used to

exclude the remaining characters within brackets from matching the target string. The expression
"[^0-9]" indicates that the target character should not be a digit.

$ The dollar sign ($) will match the end of the string. The expression "abc$" will match the sub-
string "abc" only if it is at the end of the string.

| The alternation character (|) allows either expression on its side to match the target string. The
expression "a|b" will match ‘a’ as well as ‘b’.

 . The dot (.) will match any character.
* The asterix (*) indicates that the character to the left of the asterix in the expression should match

0 or more times.
+ The plus (+) is similar to asterix but there should be at least one match of the character to the left

of the + sign in the expression.
? The question mark (?) matches the character to its left 0 or 1 times.
() The parenthesis affects the order of pattern evaluation and also serves as a tagged expression that

can be used when replacing the matched string with another expression.
[] Brackets ([and]) enclosing a set of characters indicates that any of the enclosed characters may

match the target

5.2.2 AAVerify

Table 5-3 Command Description

Use With Startup, Terminal Launcher, Web and/or Windows

SecureLogin Version All (Arguments added in version 3.0)
Command Reference 55

56 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
Type Action

Usage AAVerify [-Method <Defined method to use>] [-User
<Username>]
[-Tree <Tree name>] [?Result]

Arguments Method

The name of the NMAS method you wish to use. If not specified
AAVerify uses the method that was chosen during initial
authentication to the directory.

NOTE: You can specify multiple methods.

User

The name of the user you wish to use for the AAVerify command.
If not specified, AAVerify reauthenticates the currently logged on
user.

Tree

The name of the tree the user is in. You must use this with the -User
argument.

[?Result]

A variable name (preferably a temporary variable) that receives the
result of the AAVerify. Set this variable to true for success or false
for failure.
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
Description Use AAVerify with SecureLogin Advanced Authentication or Novell
NMAS to verify the user. It is typically used before the application
Username and Password are retrieved and entered into the login dialog
box.

This provides application reauthentication using a strong log on method.
For example, a user might be forced to enter their smartcard and PIN
before the application logs on using single sign-on, even though the
application natively knows nothing about smartcards and PINs. If the
verification succeeds, the [?Result] is set to true, otherwise it is set
to false.

NMAS Specific: If AAVerify is called with no arguments, then the
currently logged on user is reauthenticated using the log on method that
they used for their current log on.

AA Specific: When AAVerify is called in an AA environment, the -
method parameter must be present. The method must be one of the
following:

Any

Biometric

Smartcard

Token

Password

Passphrase

Directory

Password

SecureID

You can specify more than one -method argument. In this case the
user is allowed to reauthenticate with any of the specified methods. For
example, you could use the command to request authentication using a
fingerprint device or a smartcard.

NOTE: When the AAVerify command is added to an Application
Definition, it only increases the security of the target application if it is not
possible to alter the Application Definition. If the Application Definition
could be modified or overridden, then the AAVerify command could be
removed and there would be no additional security. For this reason it is
imperative that Application Definition access be restricted through
directory ACLs and SecureLogin’s preferences, so that only a small,
trusted group of administrators can modify, add and override Application
Definitions.

Syntax Examples AAVerify

AAVerify -Method "Enhanced Password" ?Result

AAVerify -Method "Enhanced Password"-User 8 "BSmith" -
Tree "Production" ?Result
Command Reference 57

58 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
5.2.3 ADD

Table 5-4 Description of Add Command

Example Windows Application Definition

This example detects the login dialog box, but before SecureLogin
Single Sign-On enters the user's credentials, it prompts the user to
provide their Advanced Authentication credentials such as smartcard
and PIN, biometric and token.
Log on Dialog Box
Dialog
Ctrl #32770
Title “Log on”
EndDialog
AAVerify –Method “Enhanced Password” ?Result
If ?Result Eq “True”
Type “$Username” #1001
Type “$Password” #1002
Click #1
Else
MessageBox “Authentication failed! Please verify
your smart card is inserted and your PIN is
correct. IT x453”
EndIf

Used With Startup, Terminal Launcher, Web and/or Windows

SecureLogin Version 3.0

Type Variable Manipulator

Usage Add <Variable1> <Variable2> [?Result]

Arguments <Variable1>

The first argument, the number to which the second argument is added.
This argument contains the result of the addition equation if the optional
[?Result] argument is not passed in. If used without the [?Result]
argument, <Variable1> must be a SecureLogin variable. Otherwise,
<Variable1> can be any numeric value.

<Variable2>

The second argument, the number added to the first argument in the
equation. <Variable2> can be a SecureLogin variable or numeric
value.

[?Result]

Optional, the sum, or the result of the equation.

Description Adds one number to another. The numbers can be hard coded into the
Application Definition, or they can be variables. The result can be output
to another variable, or to one of the original numbers.
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
5.2.4 Attribute

Table 5-5 Description of Attribute

Syntax Examples Add 1 2 ?Result

Add ?LoginAttempts ?LoginFailures

Add ?LoginAttempts ?LoginFailures ?Result

Add ?LoginAttempts 3Add ?LoginAttempts 3 ?Result

Example Windows Application Definition

This example reads the values of Control IDs 103 and 104 into
variables. From there they are added, and the result is typed into Control
ID 1
ReadText #103 ?Number1
ReadText #104 ?Number2
Add ?Number1 ?Number2 ?Result
Type ?Result #1

Use With Advanced Web Application Definition

SecureLogin Version 3.5

Type Specifier

Usage Attribute <Attribute Name> <Attribute Name>

Arguments < Attribute Name>

Name of the HTML Attribute to discover.

< Attribute Value>

The value the above HTML Attribute must contain for the condition to be
true.

Description Use the Attribute specifier in conjunction with the Tag/EndTag
command to specify which HTML attributes and attribute values must
exist for that particular HTML tag.

For more information, see Section 5.2.81, “Tag/EndTag,” on page 150.

Example This example finds the form that has an attribute of name with a value of
log on.
Tag "Form"
Attribute "Name" "Log on"
EndTag
Command Reference 59

60 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
5.2.5 AuditEvent

Table 5-6 Description of AuditEvent

5.2.6 BeginSplashScreen/EndSplashScreen

Table 5-7 BeginSplashScreen/EndSplashScreen Description

Use With Startup, Terminal Launcher, Web and Windows applications definitions
for those enterprises that have Novell Audit as part of their infrastructure

SecureLogin Version 6.0 SP1

Type Specifier

Usage AuditEvent [<message>]

Arguments <message> The variable or text string passed to the Novell Audit
server.

Description Use AuditEvent to log SecureLogin events to the Novell Audit server.

If the Type command is used with ChangePassword command to
generate a $password variable, this will then trigger a log event to the
Novell Audit server.

Example If the Audit platform agent is not present on the workstation, no event is
logged.

AuditEvent “message”

The parameter “message” is the string passed to the Novell Audit
server.

AuditEvent $message

The parameter $message is the variable passed to the Novell Audit
server.

Use with Terminal Launcher (Generic and Advanced Generic Only)

SecureLogin Version 3.0.4

Type Action

Usage BeginSplashScreen

EndSplashScreen

Arguments None

Description Use to display a Novell splash screen across the whole Terminal
Emulator window. This is used to mask any flashing and so on that is
produced by SecureLogin scraping the screen for text. A Delay
command at the start of the Application Definition ensures the emulator
window is in place before the splash screen is displayed.
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
5.2.7 Break

Table 5-8 Description of Break

Example Terminal Launcher Application Definition

This example launches the emulator and the SecureLogin Single Sign-
On waits 2 seconds for it to connect. The splash screen is displayed to
cover the flashing, the log on is detected, the username is entered, then
the splash screen disappears.
Delay 2000
BeginSplashScreen
WaitForText "ogin:"
Type $Username
EndSplashScreen
Type @E

Use With Startup, Terminal Launcher, Web and Windows

SecureLogin Version 3.5.1

Type Action

Usage Break

Arguments None

Description Use Break within the Repeat/EndRepeat commands to break out
of a repeat loop.

Example 1 Windows Application Definition

This example reads the screen and the content is searched for the
word log on. If log on is found, the Repeat loop is broken and the
Application Definition continues. If log on is not found, the Application
Definition will check again.
Dialog
Class #32770
Title "Log on"
EndDialog
Repeat
ReadText #301 "?Text"
If ?Text Eq "Log on"
Break
EndIf
Delay 100
EndRepeat
Command Reference 61

62 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
Example 2 Terminal Application Definition

This example reads the terminal emulator screen and the content is
searched for a successful log on (in this case the application main
menu appears). Once the user is logged in, the Repeat loop is broken
and the Application Definition continues. If the log on is not successful,
the Application Definition will check again. Terminal Emulators use
repeat loops for error handling and to break out of the loop as
appropriate.
Initial System Login
WaitForText "ogin:"
Type $Username
Type @E
WaitForText "password:
"Type $Password
Type @E
Delay 500
Repeat loop for error handling
Repeat
Check to see if password has expired
If -Text "EMS: The password has expired."
ChangePassword $Password
Type $Password
Type @E
Type $Password
Type @E
EndIf

Example 2 (Contd) #User has an invalid Username and / or Password
stored.
If -Text "Log on Failed" DisplayVariables
"The username and / or password stored by
SecureLogin is invalid. Please verify your
credentials and try again. IT x453."
Type $Username
Type @E
Delay 500
WaitForText "password:"
Type $Password
Type @E
Delay 500
EndAccount is locked for some reason, possibly
inactive. If -Text "Account Locked"If#
MessageBox "Your account has been locked,
possibly due to inactivity for 40 days. Please
contact the administrator on x453." EndIf#
Main Menu, user has logged on #successfully.
If
-Text "Application Selection" Break
EndIf
Delay100
EndRepeat
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
5.2.8 BooleanInput

Table 5-9 Description of Boolean Input

5.2.9 Call

Table 5-10 Description of Call

Use With Advanced Application Definitions created using the Web Wizard.

SecureLogin Version 3.5.1

Type Action

Usage BooleanInput #FormID:FieldID -check "check"

Arguments #FormID

The ID to be given to the matched form. The ID must be a static
unsigned integer.

#FieldID

The ID to be given to the matched field. The ID must be a static unsigned
integer.

-check "check"

"check" is a Boolean value indicating a set or unset state for the
specified field.

Description Used inside a Site block to set the state of a Boolean field (either a
checkbox or radio button).

Example In this example the value of field #1:3 is being checked by the
Application Definition.
=== Login Application Definition #2 ==
=== Google Initial Login ====
#==
Site Login -userid “Google Log On” -initial
MatchDoimain “www.google.com”
MatchField #1:1 -name “Email” -type “text”
MatchField #1:2 -name “Passwd” -type “password”
MatchField #1:3 -name “Cookie” -type “check”
EndSite
SetPrompt “Enter your user credentials”
TextInput #1:1 -value “$Username”
TextInput #1:2 -value “$Password”
FocusInput#1:2 -focus “true”BooleanInput #1:3 -
check “false”
PressInput
Endscript

Use With Startup, Terminal Launcher, Web and/or Windows

SecureLogin Version 3.5.1
Command Reference 63

64 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
5.2.10 ChangePassword

Table 5-11 Description of ChangePassword

Type Flow control

Usage Call <SubRoutine>

Arguments <SubRoutine>

The name of the subroutine called. This name must be identical to the
name specified in the Sub command.

Description Use the Call command to call and run a subroutine. When a subroutine
is called, the Application Definition begins executing from the first line of
the subroutine.

When the subroutine completes, the Application Definition resumes
executing from the command immediately following the Call command.

Example Terminal Application Definition

This example looks for the word Username, if it is found on the screen the
subroutine Log on is launched. If Wrong Password is found, the
subroutine WrongPassword is launched.

Subroutines are useful when you would otherwise have to repeat the
same lines of Application Definition over again.
Repeat
If -Text "Username"
Call "Log on"
EndIf
If -Text "Wrong Password"
Call "WrongPassword"
EndIf
Delay 100
EndRepeat#
Login Subroutine
Sub Login
Type $Username
Type @E
Type $Password
Type @E
EndSub#
Wrong Password Subroutine
Sub WrongPassword
DisplayVariables "The password entered is
incorrect. Please verify your password and click
OK to retry log on. IT x453."? $Password
Call Log on
EndSub

Use With Startup, Terminal Launcher, Web and Windows

SecureLogin Version All
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
Type Action

Usage ChangePassword <Variable> [<Text>] "Random"

Arguments <Variable>

A normal or runtime variable in which the password is stored.

[Text]

The text you want displayed in the change password dialog box.

[Random]

Random invokes the random password generator.

Description Use ChangePassword to change a single variable and is used in
scenarios where password expiry is an issue. Set the <Variable>
to the new password.

The flag for this command is Random.

If Random is:

Set, the new password is generated automatically in compliance
with the variable's password policy.

Not set, a dialog box prompts the user to enter a new password.
The new password is tried against any variable password
policies that are in place. For more information see
Section 5.2.64, “Run,” on page 130.

Syntax Examples ChangePassword $NewPassword

ChangePassword ?NewPassword "Please enter a new
password"

ChangePassword ?NewPassword Random
Command Reference 65

66 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
5.2.11 Class

Table 5-12 Description of Class

Example Windows Application Definition

This example detects the change password event. The application
requires the current username and password, and then the new
password and confirmation of the new password. The Application
Definition creates a backup of the old password in case the password
change fails (which is detected by the message that is displayed), and
then generates and enters a new password.
Change Password Dialog
BoxDialog
Class #32770
Title "Change Password"
EndDialog
Set $PasswordBackup $Password
Type $Password #1015
ChangePassword $Password Random
Type $Password #1005
Type $Password #1006
Click #1#
Change Password Failed Dialog Box
Dialog
Class #32770
Title "Change Password Failed"
EndDialog
Set the password back as the password change
failedSet
$Password $PasswordBackupMessageBox "The
change password process failed. Please retry
the password change at your next log on. IT
x453."

Use With Startup, Windows

SecureLogin Version All

Type Dialog Specifier

Usage Class <-Class>

Arguments <Window-Class>

A string specifying the window class that this statement will match.
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
5.2.12 ClearPlat
For each dialog block in an Application Definition, the chosen User ID is reset and you must select
it again. Select it again by using a SetPlat command or by having the user select again from a list.

When an application first presents a log on screen, SecureLogin directs the user to select an
appropriate User ID from a list. SecureLogin enters the selected User ID's credentials into the
application and submits them.

Resolving Issue of Reentering User ID Details

If the log on fails due to incorrect credentials, SecureLogin prompts the user to change the
credentials. SecureLogin does not retain User ID details and prompts the user to enter them again.
However, this could result in changing the wrong credentials if the user selects the incorrect User
ID.

To resolve this issue, you can use the SetPlat, ReLoadPlat and ClearPlat commands.
ReloadPlat sets the current User ID to the one which was chosen last for the given application,
or leaves the User ID unset if a User ID has not been selected previously. ClearPlat resets the
last chosen User ID.

For more information see Section 5.2.61, “ReLoadPlat,” on page 124 and Section 5.2.12,
“ClearPlat,” on page 67.

Description When a window is created, it is based on a template known as a window
class. The Class command checks to see if the class of the newly
created window matches its <Window-Class> argument.

If the window:

Matches the <Window-Class> argument, the execution of the
Application Definition continues to the next line.

Does not match the <Window-Class> argument, execution
continues at the next dialog statement.

NOTE: Use the SecureLogin Window Finder tool to determine the window
class.

Example Windows Application Definition

This example checks the dialog box generated by the application to
determine if the Window Class is #32770. If true and its title is log on, that
section of the Application Definition will execute. If false, the Application
Definition will check the next Dialog block.
Log on Dialog Box
Dialog
Class "#32770"
Title "Log on"
EndDialog
Type $Username #1001
Type $Password #1002
Click #1
Command Reference 67

68 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
Table 5-13 Description of ClearPlat

Use With Startup, Terminal Launcher, Web and/or Windows

SecureLogin Version V.3.6.0 SP1

Type Action

Usage There are three main places where code needs to be added to use the
ClearPlat command. They are:

Application Startup

When an application first starts up, use ClearPlat to clear the previously
chosen platform. You can do this in a Windows application by adding an
extra dialog statement for the main window.

Change Credentials Canceled

Call ClearPlat if the user decides not to modify the chosen platform's
credentials, thus giving them a chance to choose a different platform next
time.

Successful Log on

Call ClearPlat to allow the user to relog on with a different platform at a
later stage

Arguments None

Description Use to reset the last chosen platform, causing subsequent calls to
ReLoadPlat to do nothing.
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
Example Windows Application Definition
#== BeginSection: Application startup ====
Dialog
Class "#32770"
Title "Password Test Application"
EndDialog
ClearPlat
== EndSection: Application startup====
==== BeginSection: Log on ====
Dialog
Class "#32770"
Ctrl #1001
Title "Log on"
EndDialog
ReLoadPlat
SetPrompt "Username =====>"
Type $Username #1001
SetPrompt "Password =====>"
Type $Password #1002
SetPrompt "Domain =====>
"Type $Domain #1003
Click #1
==== EndSection: Log on ====
====BeginSection: Log on Successful ====
Dialog
Class "#32770"
Title "Log on Successful"
EndDialog
ClearPlat
Command Reference 69

70 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
5.2.13 ClearSite

Table 5-14 Description of ClearSite

Example (Cont.) Click #2
==== EndSection: Log on Successful ====
==== BeginSection: Log on Failure ====
Dialog
Class "#32770"
Title "Log on Failure"
EndDialog
Click #2
ReLoadPlat
OnException ChangePasswordCancelled Call
ChangeCancelled
ChangePassword $password
ClearException ChangePasswordCancelled
Type -raw \Alt+F
Type -raw L
==== EndSection: Log on Failure ====
==== BeginSection: Change Credentials Cancelled
====
Sub ChangeCancelled
ClearPlat
EndScript
EndSub
==== EndSection: Change Credentials
Canceled ===

Use with Startup, Terminal Launcher, Web and/or Windows and Advanced Application
Definitions created using the Web Wizard.

SecureLogin Version 3.6.10

Type Action

Usage ClearSite “SiteName”

Arguments SiteName”

The name of the site to clear

Description Used inside a Site block to clear the 'matched' status for a given site.This
allows -initial sites to match again and causes -recent and -subsequent sites
to fail to match.

The ClearSite command needs to have the complete URL specified in the
line before the ClearSite command.

Example 1 In this example the user is redirected to the main Google portal and any
previous user information is cleared.
GotoURL “http://www.google.com”
ClearSite Login
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
5.2.14 Click

Table 5-15 Description of Click

Example 2 In this example the ClearSite command is used with as part of
conditional statement and if a particular condition is true the user information
is cleared.
MessageBox "Would you like to login again?" -
yesno
?Continue
If ?Continue eq "Yes"
TextInput #1:1 -value "$Username"
TextInput #1:2 -value "$Password"
FocusInput #1:2 -focus "true"
BooleanInput #1:3 -check "false"
PressInput
Else
ClearSite Login
EndIf

Use With Java, Web, Windows

SecureLogin Version All

Type Action

Windows Usage Usage One:Click <#Ctrl-ID> [-Raw] [-Right]

Usage Two:Click <# Ctrl-ID > [-Raw [-x < X Co-ordinate >
-y <Y Co-ordinate >]]

Web Usage Click <#Number>
Command Reference 71

72 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
Arguments <#Ctrl-ID>

The ID number of the control to be pressed.

[-Raw]

Raw eliminates the mouse and sends a direct click.

[-Right]

Right, used only with the -Raw flag, will send a right mouse click.

<X Co-ordinate>

X represents the horizontal co-ordinate relative to the client area of the
application (not the screen).

<Y Co-ordinate>

Y represents the vertical coordinate relative to the client area of the
application (not the screen).

<#Number>

The pound/hash symbol followed by the sequential number/control ID
of the button to be pressed.

Web specific

The number of the button is determined by the Web page layout. See
Section 5.2.24, “EndScript,” on page 82.

Windows specific

This is the control ID. Use the Windows Finder tool to discover the
control ID.

Java specific

The index to use is put in an example Application Definition created by
the Java wizard.

Description When used with Windows applications, the Click command sends a click
instruction to the specified <#Ctrl-ID>.

NOTE: If the button to be clicked does not have a control ID, the Type
"\N" command often clicks the default button in a Windows application.

You can set the –Raw flag if the button or control does not respond to the
Click command. The –Raw flag causes SecureLogin Single Sign-On to
emulate the mouse and send a direct click message to the control. Using
the -Right flag with the -Raw flag sends a right-click to the control.

Setting the <#Ctrl-ID> to 0 (zero) sends the click instruction to the
window on which the Application Definition is running.

If -Raw is specified, then you can set the X coordinate and the Y
coordinates. These coordinates are relative to the client area of the
application, not the screen.

When used with Web Application Definitions, the Click command takes a
single argument, which is the sequential number on the page of the button
to be pressed. Click #3 will click the third button on the page. Keep in
mind that due to Web page layout and design, the sequential order of the
buttons may not be obvious, and that you may have to use the DumpPage
command to discover the field layout. For more information see
Section 5.2.24, “EndScript,” on page 82.
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
5.2.15 ConvertTime

Table 5-16 Description of ConvertTime

Syntax Examples Click #1

Click #1 -Raw -Right

Click -X 12 -Y 24

Example 1 Windows Application Definition

This example detects the login dialog box, enters the username and
password, and clicks the button number 1.
Log on Dialog Box
Dialog
Class #32770
Title "Log on"
EndDialog
Type $Username #1001
Type $Password #1002
Click #1

Example 2 Web Application Definition

This example enters the username and password, and clicks the login
button.
Type $Username
Type $Password Password
Click #1

Example 3 Windows Application Definition

This example uses the Java application, so there is no Control ID. Instead,
the Click command is told to click a particular place on the window.
Log on Dialog Box
Dialog
Class #32770
Title "Log on"
End Dialog
Type $Username
Type $Password
Click -X 12 -Y 24

Use With Startup, Terminal Launcher, Web and Windows

SecureLogin Version 3.0.4

Type Variable Manipulator

Usage ConvertTime <time> <String Time>

Arguments <String Time>

The output variable.
Command Reference 73

74 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
5.2.16 Ctrl

Table 5-17 Description of Ctrl

Description Use to convert a numeric time value, for example,?CurrTime(system),
into a legible format and stores it in <String Time>.

Example Windows Application Definition

This example converts the time to a readable format, and displays it in a
dialog box.
Log on Dialog Box
Dialog
Class #32770
Title "Log on"
End Dialog
ConvertTime ?CurrTime(system) ?TimeMessageBox
?Time

Use With Startup, Windows, Java

SecureLogin Version All

Type Dialog Specifier

Usage Ctrl <#Ctrl-ID> [<Regular Expression>]

Arguments <#Ctrl-ID>

The ID number of the control to check.

[<RegEx>]

The regular expression.

Description Use the Ctrl command to determine if a window contains the control
expressed in the <#Ctrl-ID> argument. The control ID number is a
constant that is established at the time a program is compiled.

Third party software control ID numbers may not be consistent from one
version to the next. Use the Window Finder tool to determine the control
ID.

Using the [<RegEx>] argument adds a further check that allows the
Application Definition to skip to the next command. If the text on the
specified <#Ctrl-ID> does not conform to the [<RegEx>], the
Application Definition will skip to the next dialog statement as though the
<#Ctrl-ID> did not exist.

Syntax Examples Ctrl #1

Ctrl #1 "OK"
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
5.2.17 DebugPrint

Table 5-18 Description of DebugPrint

Example Windows Application Definition

This example tests the dialog box to see if it contains the correct Control
ID's with the correct values. If any of the Control IDs are missing, or the
text does not match, the Application Definition passes on to the next dialog
block.
Log on Dialog Box
Dialog
Ctrl #1 "OK"
Ctrl #2 "Cancel"
Ctrl #3 "Help"
Title "Log on"
EndDialog
Type $Username
Type "\T"
Click #1

Use With All

SecureLogin Version 6.0

Type Action

Usage DebugPrint <data>

Arguments <data> The text displayed to the user.

<Data> can be serveral strings, variables, or a combination of both.

Description Use the DebugPrint command to display the text specified in the
<data> variable in the Debug console. The command can take any
number of text arguments, including variables, (for example DebugPrint
“The user “$Username” has just been logged onto the system”).

Syntax Examples DebugPrint “Caught the login dialog”

DebugPrint “Setting Platform to” ?Platform
Command Reference 75

76 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
5.2.18 Decrement

Table 5-19 Description of Decrement

Example Windows Application Definition

This example displays the the text specified in the ?ServerName variable
on the Debug console.
Login Dialog
#
Dialog
 Class "#32770"
 Title "Log on"
EndDialog
 ReadText #1003 ?ServerText
 RegSplit "Server: (.*)" ?ServerText ?Server-
 Name
 DebugPrint "Setting the platform to " ?Server-
 Name
 SetPlat ?ServerName
 Type $Username #1001
 Type $Password #1002
 Click #1

Use with All

SecureLogin Version 3.5.1 to 6.0

Type Variable Manipulator

Usage Decrement <variable>

Arguments <variable>

The name of the variablle to decrease in value.

Description Use the Decrement command to subtract from a specified variable. For
example, you can use decrement to count the number of passes a
particularApplication Definition has made.

Once the number of instances is equal to the specified number, you can
instruct the Application Definition to run another task or end the Application
Definition. This is useful when configuring an application whose logon panel
is similar to other windows within the application, or to easily control the
number of attempts a user can have to access an application.

For more information, see Section 5.2.41, “Increment/Decrement,” on
page 97.

Syntax Examples Decrement ?RunCount
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
5.2.19 Delay

Table 5-20 Description of Delay

Example Windows Application Definition

Each time the Application Definition is run, a variable is incremented. This
example counts the number of times the dialog box is displayed. If the dialog
box is displayed more than three times, the application is closed. If the log on
is successful, the count is reset.
#Log on Dialog Box
Dialog
 Class #32770
 Title “Log on”
EndDialog

Decrement ?RunCount
If ?RunCount Gt “3”
 MessageBox “Log on has been attempted too many
 times. The application will be closed.”
 KillApp “app.exe”
Else
 Type $Username #1001
 Type $Password #1002
 Click #1
EndIf

Log on Successful Message
Dialog
 Ctrl #1
 Title “Log on Successful”
EndDialog

Set ?RunCount “0”

Use with All

SecureLogin Version 3.5.1 to 6.0

Type Action

Usage Delay <Time Period>

Arguments <Time Period>

A period of time, expressed in milliseconds (1/1000 of a second), during
which the Application Definition execution is paused.
Command Reference 77

78 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
5.2.20 Dialog/EndDialog

Table 5-21 Description of Dialog/EndDialog

Description Use the Delay command to delay the execution of the Application Definition
for the time specified in the <Time Period> argument

The time specified in the <Time Period> argument is noted in milliseconds
(for example, Delay 5000 creates a 5 second pause). You can use the Delay
command to accommodate an introduction screen or another custom feature.

Example Windows Application Definition

This example detects the logon box, but the Application Definition waits half a
second before acting upon it to make sure that the box is complete.
Log on Dialog Box
Dialog
Class #32770
Title "Log on"
EndDialog

Delay 500
Type $Username #1001
Type $Password #1002
Click #1

Use With Java, Windows

SecureLogin Version All

Type Dialog Specifier

Usage DialogEndDialog

Arguments None

Description Use the Dialog/EndDialog command to identify the beginning and end
of a dialog specification block respectively. You can use these commands
to construct a dialog specification block, which consists of a series of dialog
specification statements (for example Ctrl, Title, and so on).

When a dialog block is executed, each of the dialog specification
statements is executed in sequence. If any statement within the dialog block
is not found, the entire dialog block is considered false, and then Application
Definition execution proceeds to the next dialog block, if any. You need to
specify as much information in the dialog block to make the dialog box (for
example, Log on, Change Password, and so on) unique.

The portion of the Application Definition that follows the EndDialog
command is called the Application Definition body. Another dialog block, or
the end of the Application Definition, terminates the Application Definition
body.
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
5.2.21 DisplayVariables

Table 5-22 Description of Display Variables

Example Windows Application Definition

This example tests the dialog box in order to determine its identity. If it is
determined to be the login dialog box, the Application Definition parses the
Type and Click commands to complete the login process.
Log on Dialog Box
Dialog
Ctrl #1 "OK"
Title "Log on"
Parent
Title "Application 1"
EndParent
EndDialog

Type $Username #1001
Type $Password #1002
Click #1

Use With All

SecureLogin Version All

Type Action

Usage DisplayVariables [<User Prompt>] [<Variable>
[<variable>] …]

Arguments [<User Prompt>]

Optional, customized text displayed in the Enter SecureLogin Variables
dialog box.

[<Variables>]

The name of the variables for which you want the user prompted. If not
specified, SecureLogin prompts for all variables that are used by the
Application Definition.
Command Reference 79

80 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
Description Use the DisplayVariables command to display a dialog box that
lists the user's stored variables (for example, $Username and
$Password) for the current application.

About Editing Variables

The user can edit the variables from this dialog box. For example, if the
log on is unsuccessful due to an incorrect username or password, the
DisplayVariables command prompts the user to edit the stored
username or password values. The log on process proceeds as normal
from that point. You can specify a particular variable to display.

If the <variables> parameter is specified, DisplayVariables prompts
only for the variables specified. Enter the replacement text in quotation
marks after the DisplayVariables command. This replaces the
default prompt text in the Enter SecureLogin Variables dialog box.

If there are no variables stored for the user, the first time SecureLogin
attempts to single sign-on to the application, the prompt will not be
customized.

Once there are variables stored for the user, the prompt is customized
when the Application Definition is run.The SetPrompt command can
also be used to customize the prompt text in the dialog box.

NOTE: You can use the OnException
EnterVariablesCancelled command to prevent a user from
canceling the DisplayVariables prompt.

Syntax Examples DisplayVariables

DisplayVariables "Please enter your details"

DisplayVariables "Please enter a new password"
$Password

DisplayVariables "Please enter your username and
password" $Username $Password

DisplayVariables "" $Username $Password

Example Windows Application Definition

This example detects the Wrong Password dialog box, and
SecureLogin prompts the user to enter a new username and password.
Once specified, SecureLogin enters them into the dialog box, and the
user clicks OK.
Wrong Password
Dialog Box
Dialog
Class #32770
Title "Wrong Password"
EndDialog
DisplayVariables "Enter a new username and
password"?$Username $Password
Type $Username #1001
Type $Password #1002
Click #1
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
5.2.22 Divide

Table 5-23 Description of Divide

Use With Startup, Terminal Launcher, Web and/or Windows

SecureLogin Version 3.0

Type Variable Manipulator

Usage Divide <Variable1> <Variable2> [?Result]

Arguments <Variable1>

The dividend, the first argument, the number that is divided by the
second argument. Also this argument contains the result if the
optional [?Result] argument is not passed in. If used without the
[?Result] argument, <Variable1> must be a SecureLogin
variable, either?Variable1 or $Variable1. Otherwise
<Variable1> can be any numeric value.

<Variable2>

The divisor, the second argument, the number by which the first
argument is divided. <Variable2> can be a SecureLogin variable or
a numeric value.

[?Result]Optional, the quotient, or the result of the equation.

Description Use to divide one number by another. The numbers can be hard
coded into the Application Definition, or they can be variables. The
result can be output to another variable, or to one of the original
numbers.

NOTE: This is an integer arithmetic that is 5/2, not 2.5.

Syntax Examples Divide “1” “2”?Result

Divide ?Login Attempts ?LoginFailures

Divide ?LoginAttempts ?LoginFailures ?Result

Divide ?LoginAttempts "3"

Divide ?LoginAttempts "3" ?Result

Example Windows Application Definition

This example read the values of Control IDs 103 and 104 into
variables. From there they are divided, and typed into Control ID 1.
ReadText #103 ?Number1
ReadText #104 ?Number2
Divide ?Number1 ?Number2 ?Result
Type ?Result #1
Command Reference 81

82 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
5.2.23 DumpPage

Table 5-24 Description of Dump Page

5.2.24 EndScript

Table 5-25 Description of EndScript

Use With Advanced Web Application Definition

SecureLogin Version 3.5

Type Action

Usage DumpPage <Variable>

Arguments <Variable>

The string variable to receive the page information.

Description Use the DumpPage command to provide information about the current
Web page. Use for debugging Web page Application Definitions.

Example DumpPage ?dump
MessageBox ?dump

Use With Startup, Terminal Launcher, Web and/or Windows

SecureLogin Version All

Type Action

Usage EndScript

Arguments None

Description Use the EndScript command to immediately terminate execution of
the Application Definition.

Example Windows Application Definition

This example detects the login dialog box, and SecureLogin enters the
username and password, and the user clicks OK. If the Incorrect
Password message is detected, SecureLogin displays a message that
the password was incorrect, and terminates the Application Definition.
Dialog
Title "Log on Failure"
Ctrl #1
EndDialog
ReadText #65535 ?ErrorMsg
If "Incorrect Password" -In ?ErrorMsg
MessageBox "You have entered an incorrect
password"
EndScript
EndIf
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
5.2.25 Event

Table 5-26 Description of Event

5.2.26 Event Specifiers
For details on Windows Event commands, see the Microsoft* MSDN Web site located at http://
msdn.microsoft.com. Microsoft's Spy++, or similar Windows* message spy tools, are also
useful for trapping event names in specific windows. Information regarding Spy ++ is also available
on the MSDN Web site.

5.2.27 FocusInput

Table 5-27 Description of FocusInput

Use With Windows

SecureLogin Version 3.5

Type Dialog Specifier

Usage Event <Event>

Arguments <Event>

The application event to monitor. This corresponds to a Windows event,
which usually begins with WM_.

Description Application Definitions generally execute at the point when an
application window is created. This corresponds to the WM_CREATE
message that is received from an application window at start up. By
adding the Event specifier to a dialog block, you can override this
behavior, such that an Application Definition only executes when (and
only when) the specified message is generated. If no Event specifier is
given, it is equivalent to Event WM_CREATE.

You can only apply the Event specifier within a Dialog and EndDialog
statement block. Only one Event may be specified per Dialog block. If
there is a requirement to monitor for multiple events, each must be
specified within their own Dialog block.

Syntax Examples Dialog
Class "someclass"
Event WM_ACTIVATE
EndDialog
MessageBox "Caught the WM_ACTIVATE message"

Use With Startup, Terminal Launcher, Web and/or Windows and Advanced
Application Definitions created using the Web Wizard.

SecureLogin Version 3.5.1

Type Action

Usage FocusInput #FormID:FieldID [-focus "focus"]
Command Reference 83

84 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
5.2.28 GenerateOTP

Table 5-28 Description of GenerateOTP

Arguments #FormID

The ID to be given to the matched form. The ID must be a static
unsigned integer.

#FieldID

The ID to be given to the matched field. The ID must be a static
unsigned integer.

-focus "focus"

Focuses the input field based upon the Boolean value of "focus". The
Boolean value can be either "true" or "false.

Description Used to focus on an input field based upon the Boolean value of
"focus".

Example In this example the value of field #1:2 is being checked by the
Application Definition.
=== Login Application Definition #2 ==
=== Google Initial Login ====
#==
Site Login -userid “Google Log On” -initial
MatchDoimain “www.google.com”
MatchField #1:1 -name “Email” -type “text”
MatchField #1:2 -name “Passwd” -type
“password”
MatchField #1:3 -name “Cookie” -type “check”
EndSite
SetPrompt “Enter your user credentials”
TextInput #1:1 -value “$Username”
TextInput #1:2 -value “$Password”
FocusInput #1:2 -focus “true”
BooleanInput #1:3 -check “false”
PressInput
Endscript

Use With Startup, Terminal Launcher, Web and Windows

SecureLogin Version 3.5.0 and higher

Type Action

Usage GenerateOTP -mode <string>-challenge <string>
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
Arguments <result>

A variable that receives the value of the one time password that is generated.

-mode

Specifies the type One Time Password (OTP) that is dynamically generated.
The default value for mode is set to "soft" for the Vasco soft token. Setting this
to "AISC-SKI" makes SecureLogin use the algorithm to generate an OTP
based on the user’s smartcard.

-challenge

When the OTP generated is based on a challenge/response or asynchronous
mode, the challenge needs to be passed to the GenerateOTP command as
an argument, normally by means of a script that reads the challenge from the
screen.

Description A one time password (OTP) is an authentication method specifically designed
to avoid the security exposures inherit with traditional fixed and static
password usage.

OTPs rely upon a pre-defined relationship between the user and the
authenticating server. The encryption key is shared between the user's token
generator and the server, with each performing the pseudo-random code
calculation at user logon. If the codes match, the user is authenticated.

GenerateOTP was an undocumented command initially developed in
SecureLogin version 3.5.1 to meet a specific client requirement and was for
use with the Vasco Digipass hard token generator. For information regarding
this configuration please contact Novell Technical Support about Mainframe
OTP solutions.

In SecureLogin version 6 the GenerateOTP command was enhanced to
incorporate OTP soft token generation functionality embedded in Smartcard
functionality.

Soft tokens can be generated in synchronous and asynchronous mode which
now allows soft tokens to be loaded onto mobile devices such PDAs and can
even sent to cell phones as SMS text messages.

Synchronous Mode: Synchronous authentication replaces static alpha/
numeric passwords with a pseudo random code that is dynamically generated
at configured time intervals generally around each 60 seconds. The pseudo
random code is based on a shared encryption key and the current time.

Asynchronous Mode: Asynchronous authentication or challenge/response
authorization replaces static alpha/numeric passwords with a pseudo random
code that is dynamically generated based on a shared encryption key, the
current time and a challenge/response combination.

The application definition example 1 shows a typical command structure to
enable OTP for use with a Vasco Digipass hard token generator.

The application definition example 2 shows a typical command structure to
enable OTP for use with the Smartcard technology.
Command Reference 85

86 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
5.2.29 GetCheckBoxState

Table 5-29 Description of GetCheckBoxState

Example In SecureLogin version 6, the GenerateOTP command has been enhanced to
integrate with smartcards.

In Synchronous mode the GenerateOTP command will require the
administrator to pass the -mode variable, AISC-SKI to the command.

In this instance AISC-SKI is the Smartcard and SKI is the name of the applet
used on the smartcard.

An example application definition enabling synchronous OTP encryption key
distribution for use with smartcards is as follows:
Dialog
Title "Test App"
EndDialog
ReadText #12 ?tmp
GenerateOTP -mode "AISC-SKI" -challenge ?tmp ?Otp
Type ?OtpResult #14

It is assumed that a call without a challenge passed in is synchronous.

The -mode parameter, instead of being passed in via the script, can also be
created as a single sign-on variable in the script platform.

If the -mode parameter is not passed in as a parameter to the GenerateOTP
command Securelogin checks for a variable named mode before assuming
the default which is to generate a Vasco Token. Values passed into the
command via the script over rides values defined as variables. This is for
future integration with SecureLogin For Mobiles.

NOTE: It is assumed that the acomx.dll is present on the machine and in
the path. If not, then additional code may be required to specify the location
this library file.

The smartcard is assumed to be in the card reader at OTP generation time
and a single card reader is also assumed.

If the user's smartcard has not been authenticated the user is prompted to
enter a PIN to unlock the card. This is required only once as the PIN is
normally cached.

Use with Advanced Web Application Definition

SecureLogin Version 3.5

Type Action

Usage GetCheckBoxState <#Item Number> <Variable>
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
5.2.30 GetCommandLine

Table 5-30 Description of GetCommandLine

Arguments <Item Number>

The ID of the checkbox.

<Variable>

The target variable for the status of the specified check box. Value returned is
Checked or Unchecked. The variable can be a question mark (?) or a dollar
sign ($) variable.

Description Use the GetCheckBoxState command to return the current state of the
specified checkbooks.

Example GetCheckBoxState #25 ?state1
GetCheckBoxState #26 ?state2
MessageBox ?state1
MessageBox ?state2

Use with Startup, Windows

SecureLogin Version 3.0.4

Type Action

Usage GetCommandLine <Variable>

Arguments <Variable>

This variable defines where to store the captured command line.

Description Use the GetCommandLine command to capture the full command
line of the program that is loaded, and save it to the specified variable.

NOTE: You can use the GetCommandLine to detect and differentiate
backend systems and database for use with multiple logon in the SAP
application.

Example Windows Application Definition

This example reads the command line of the application, and then
tests the line to see if it is Notepad.exe. If it is, Notepad is closed. If
it is not, the Application Definition ends.
GetCommandLine ?Text
If ?Text Eq "C:\Winnt\Notepad.exe" KillApp
Notepad.exe
EndIf
Command Reference 87

88 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
5.2.31 GetEnv

Table 5-31 Description of GetEnv

5.2.32 GetIni

Table 5-32 Description of GetIni

Use with All

SecureLogin version 3.5

Type Action

Usage GetEnv <envvar> <variable>

Arguments <EnvVar>

This is the environment variable name you wish to retrieve.

<variable>

This variable defines where to store the retrieved environment variable
data.

Description Use the GetEnv command to read the value of an environment variable
and saves it in the specified <variable>.

Example Windows Application Definition
GetEnv "SESSIONNAME" ?SessionName
If ?SessionName eq "console" MessageBox
"Running from Citrix Server Console"
EndIf

Use With Windows, Web, Terminal, Java*

SecureLogin Version 3.5

Type Action

Usage GetIni <ini file> <section> <key> <variable>

Arguments <Ini File>

This is the filename from which you wish to read the section or key.

<Section>

Name of the section that contains the key name.

<Key>

Name of the key to read.

<variable>

This variable defines where to store the retrieved environment variable
data
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
5.2.33 GetMD5

Table 5-33 Description of GetMD5

Description Use the GetIni command to read data from INI file.

Example Windows Application Definition

GetIni "c:\program files\lotus\notes\notes.ini"
"Notes"? "KeyFileName ?NotesDefaultIDFileSetPlat
?NotesDefaultIDFile

Use With All

SecureLogin Version 3.5

 Type Action

Usage GetMD5 <value>

Arguments <value>

Returns the MD5 hash value.

Description Use the GetMD5 command to generate an MD5 hash value of the
current process the script running for. GetMD5 works only with
Win32 scripts.

Message-Digest algorithm 5 (MD5) is employed in SecureLogin and
can be used to check the integrity of files against a known hash
value.

MD5 hash is widely used in software to provide assurance that a
particular file has not been altered. The administrator can compare a
published MD5 sum with the checksum of another file to recognize
corrupt or incomplete files, particularly for large executable files.

Example In a Windows Application Definition the MD5 hash value is stored as
a variable which is then passed in as the argument to the command,
which could be a ?tmp or $hash_value type variable.

GetMD5 ?tmp

or

GetMD5 $hash_value

The MD5 hash value would normally be obtained from the windows
finder tool on a window from the applicaiton, then copy the MD5
hash from WindowFinder. This MD 5 value would then be put in a
script then the GetMD5 command used to compare the two MD5
hash values. If the MD5 hash values do not match, then the
excutable file may have been changed.
Command Reference 89

90 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
5.2.34 GetReg

Table 5-34 Description of GetReg

5.2.35 GetSessionName

Table 5-35 Description of GetSessionName

Use With All

SecureLogin Version 3.5

Type Action

Usage GetReg <regentry> <variable>

Arguments <regentry>

This is the registry entry to read.

<variable>

This variable defines where to store the retrieved environment variable data.

Description Use the GetReg command to read data from the registry and save it in the
specified <variable>.

The following is format for the registry entry input:

HIVE\KEY\Value

ValueValid hives are:

"HKCR" HKEY_CLASSES_ROOT"HKCC
"HKEY_CURRENT_CONFIG"HKCU"HKEY_CURRENT_USER"HKLM
"HKEY_LOCAL_MACHINE"HKU"HKEY_USERS

Example Windows Application Definition
GetReg "HKLM\Software\ABCCorp\ProductID""_
?ProductIDIf ?ProductID noteq "xxxxxxxxxx"_
#Not corporate desktop
EndScript
EndIf

Use With Terminal Emulator

SecureLogin Version 3.5

Type Action

Usage GetSessionName <?variable>

Arguments <Variable>

The target variable that the session name is copied into.

Description Use the GetSessionName to find the current HLLAPI session name that is
used to connect and returns it to the specified variable.
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
5.2.36 GetText

Table 5-36 Description of GetText

5.2.37 GetURL

Table 5-37 Description of GetURL

Example Windows Application Definition

GetSessionName ?Session_name

Use With Web, Terminal Launcher

SecureLogin Version 3.0

Type Action

Usage GetText <Variable>

Arguments <Variable>

This variable defines where to store the captured text.

Description Use the GetText command to get all of the text from the screen and
save it to the specified variable. It is used in a large Web Application
Definition that might contain several If -Text statements.

Under Netscape, each If -Text statement scans the screen to find the
specified text, each scan of the screen results in the screen flashing.
However, by using GetText, (for example If ?Text -in
?FromGetText) the Application Definition can contain multiple If -Text
commands with only one scan of the screen.

Example Web Application Definition

This example copies the text content of the Web page to the ?Text
variable. SecureLogin tests for the presence of the word Log on. If Log
on exists, SecureLogin enters the credentials and submits them
automatically.
GetText ?Text
If "Log on" -In ?Text
Type $Username
Type $Password Password
EndIf

Use With Web

SecureLogin Version 3.0

Type Action

Usage GetURL <Variable>
Command Reference 91

92 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
5.2.38 GoToURL

Table 5-38 Description of GoToURL

Arguments <Variable>

This variable defines where to store the captured URL

Description Use the GetURL command to capture the URL of the site that is loaded
and save it to the specified variable.

Example Web Application Definition

This example copies the URL of the Web site to the ?URL variable and
tests the URL to see if it matches text being searched for. If it does,
SecureLogin pops up a message box and redirects the user to the
Intranet.
GetURL ?URL
If "Log off" -In ?URL MessageBox "You have
chosen to log off the applications. You will now
be redirected to the Intranet home page."
GoToURL "http://Intranet"
EndIf

Use with Web

SecureLogin version 3.5.1

Type Action

Usage GoToURL <URL> [<-frame>]

Arguments <URL>

The URL to which the browser will navigate.

<-frame>

Opens the URL in the frame which started the Application Definition.

Description Use the GoToURL command to make the browser navigate to the specified
<URL>. By default the command opens the new Web page in the main
window, rather than the frame that started the Application Definition.

When using the -frame option on a framed Web page, the URL redirect
occurs only in the current frame rather than the parent window.

You must specify http:// before the URL.

Example Web Application Definition

This example detects an incorrect password message, displays a message
box informing the user, and then browses the Novell Web site.
If -Text "Incorrect Password"
MessageBox "You have entered an incorrect
password"
GoToURL "http://www.novell.com"
EndIf
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
5.2.39 If/Else/Endif

Table 5-39 Description of If/Else/Endif

Use with Startup, Terminal Launcher and/or Windows

SecureLogin version All

Type Flow Control

Usage 1 If <Value1> <Gt|Lt> <Value2> #
Do This
[Else] #
Do This
EndIf

Usage 2 If <Value1> <Eq|NEq > <Value2> [-I|-S] #
Do This
[Else] #
Do This
EndIf

Usage 3 If <Value1> <-In|-NotIn> <Value2> [-I|-S] #
Do This
[Else] #
Do This
EndIf

Usage 4 If -Text [-Frame] <Text> #
Do This
[Else] #
Do This
EndIf

Usage 5 If -exists <Variable> #
Do This
[Else] #
Do This
EndIf

Arguments <Value1>

The left hand side of the expression for evaluation.

<Value2>

The right hand side of the expression for evaluation.

<Text>

The text for which you are searching.
Command Reference 93

94 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
Description Use the If command to establish a block to execute if the expression
supplied is true. The Else command works inside an If block. The
Else command is executed if the operator in the If block is false. Use
the EndIf command to terminate the If block.

Text Comparison Operators Supported

The text comparison operators supported by the If command are:

:Eq: Evaluates to true if the left hand side is equal to the right
hand side.

NEq: Evaluates to true if the left hand side is not equal to the right
hand side.

-In: Evaluates to true if the left hand side is a substring of the right
hand side.

-NotIn: Evaluates to true if the left hand side is not a substring of
the right hand side.

When using these text comparison operators, you may optionally
specify whether the comparison is to take into account the case of the
strings being compared. If -I is specified, the comparison is case
insensitive. If -S is specified, then the comparison is case sensitive. By
default the Eq and NEq operators are not case sensitive, while the -In
and -NotIn operators are case sensitive.

Numerical Comparison Operators Supported

Two numerical comparison operators are supported by the If command
Gt/Lt. The command evaluates to true if the left hand side is greater
than/less than the right hand side. This is a numerical comparison, so
the right hand side and left hand side must be numbers.

An operator is supplied to check for the existence of a stored
variable:- Exists: Evaluates to true if the specified variable exists.

Finally, an operator is supplied to directly query the application for a
particular string:-Text: Evaluates to true if the specified text is found
in the application windows of the application. For Internet Explorer
Application Definitions, you can supply an optional -Frame argument,
which restricts the command to look for the specified text in the current
frame.

Syntax Examples If ?Value1 Gt ?Value2

If -Text "Log on"

If -Exists $RunBefore

If "Log on" -In ?Text
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
Example 1 Web Application Definition

This example tests for an Incorrect Password. If it is found, an incorrect
password message box is displayed. If the error message is not found,
SecureLogin logs in as normal.
If -Text "Incorrect Password"
DisplayVariables "You have an incorrect
password. Please verify it and retry log on."
EndScript
Else
Type $Username
Type $Password Password
EndIf

Example 2 Windows Application Definition

Each time the Application Definition is run, a variable is incremented.
This example counts the number of times the dialog box is displayed. If
it is displayed more than three times, the application is closed. If the log
on is successful, the count is reset.
Log on Dialog Box
Dialog
Class #32770
Title “Log on”
EndDialog
ReadText #1001 ?Username
If –Exists $Username
Else
Set $Username ?Username
EndIf
Increment ?RunCount
If ?RunCount Gt “3”
MessageBox “Log on has been attempted too many
times. The application will be closed.”
KillApp “app.exe”
Else
Type $Username #1001
Type $Password #1002
Click #1
EndIf
Log on Successful Dialog Box
Dialog
Ctrl #1
Title “Log on Successful”
EndDialog
Set ?RunCount “0”
Command Reference 95

96 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
5.2.40 Include

Table 5-40 Description of Include

Example 3 Web Application Definition

This example copies the text content of the Web page to ?WebText.
The variable is then tested to see if Log on is present. If it is,
SecureLogin performs the log on process. If it is not present, the
Application Definition is terminated.
GetText ?WebText
If “Log on” –In ?WebText
Type $Username
Type $Password Password
Else
EndScript
EndIf

Example 4 Startup

This example tests, upon SecureLogin loading, to see if SecureLogin
has been run by the user. If it has not, SecureLogin sets the variable so
that the message is only displayed once, and then displays a welcome
message along with the option for further details on SecureLogin.
If –Exists $LoadedBefore
EndScript
Else
MessageBox –YesNo ?Result “Welcome to
SecureLogin Single Sign-On, a new password
management tool that will save you the hassle
of remembering your passwords. Would you like
more details on how to use SecureLogin and what
it can do for you?”
Set $LoadedBefore “Yes”
If ?Result Eq “Yes”
GoToURL “http://www.company.com/SecureLogin
Details.htm”
EndIf
EndIf

Use With All

SecureLogin Version 3.0

Type Flow Control

Usage Include <Platform-Name>

Arguments <Platform-Name>

The name of the Application Definition to include.
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
5.2.41 Increment/Decrement

Table 5-41 Description of Increment/Decrement

Description Use the Include command to share commonly-used Application
Definition commands by multiple applications. The Application
Definition identified by <Platform-Name> is included at execution
time into the calling Application Definition. The Application Definition
included with the Include command must comprise commands
supported by the calling application.

Example Windows Application Definition

This example detects the logon dialog, the notepad.exe Application
Definition is executed, and then the user's credentials are entered.
Log on Dialog Box
Dialog
Class #32770
Title “Log on”
EndDialog
Include Notepad.exe
Type $Username #1001
Type $Password #1002
Click #1

Use With All

SecureLogin Version All

Type Variable Manipulator

Usage Increment <Variable>

Decrement <Variable>

Arguments <Variable>

The name of the variable to increase or decrease in value.

Description Use the Increment/Decrement command to add or subtract from
a specified variable. For example, you can use the increment and
decrement to count the number of passes a particular Application
Definition has made.

Once the number of instances is equal to the specified number, you
can instruct the Application Definition to run another task or end the
Application Definition. This is useful when configuring an application
whose logon panel is similar to other windows within the application,
or to easily control the number of attempts a user can have to access
an application.

Syntax examples Increment ?RunCount

Decrement ?RunCount
Command Reference 97

98 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
5.2.42 KillApp

Table 5-42 Description of KillApp

Example Windows Application Definition

Each time the Application Definition is run, a variable is incremented.
This example counts the number of times the dialog box is displayed.
If the dialog box is displayed more than three times, the application is
closed. If the log on is successful, the count is reset.
#Log on Dialog Box
Dialog
Class #32770
Title “Log on”
EndDialog
Increment ?RunCount
If ?RunCount Gt “3”
MessageBox “Log on has been attempted too many
times. The application will be closed.”
KillApp “app.exe”
Else
Type $Username #1001
Type $Password #1002
Click #1
EndIf
Log on Successful Message
Dialog
Ctrl #1
Title “Log on Successful”
EndDialog
Set ?RunCount “0”

Use With All

SecureLogin Version All

Type Action

Usage KillApp <Process-Name>

Arguments <Process-Name>

The name of the process to terminate.

Description Use to terminate an application.
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
5.2.43 Local

Table 5-43 Description of Local

Example Windows Application Definition

Each time the Application Definition is run, a variable is incremented.
This example counts the number of times the dialog box is displayed. If
the dialog box is displayed more than three times, the application is
closed. If the log on is successful, the count is reset.
#Log on Dialog Box
Dialog
Title “Log on”
Class #32770
EndDialog
Increment ?RunCount
If ?RunCount Gt “3”
MessageBox “Log on has been attempted too many
times. The application will be closed.”
KillApp “app.exe”
Else
Type $Username #1001
Type $Password #1002
Click #1
EndIf
Log on Successful Message
Dialog
Title “Log on Successful”
Ctrl #1
EndDialog
Set ?RunCount “0”

Use with All

SecureLogin Version All

Type Variable Manipulator

Usage Local <?Variable>

Arguments <?Variable>

The runtime variable to declare as local.
Command Reference 99

100 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
5.2.44 MatchDomain

Table 5-44 Description of MatchDomain

Description Use the Local command to declare that a runtime variable only exists
for the lifetime of the Application Definition. Local runtime variables are
used in the same way as normal runtime variables and are still written
as ?Variable.

Declare local runtime variables as local by using the Local command,
followed by the variable name. When runtime variables are declared
local, you cannot set them back again. You can declare a runtime
variable local at any time in an Application Definition.

Using local runtime variables increases the performance of
SecureLogin, although only slightly. Local runtime variables are used to
run Application Definitions multiple times and not store the runtime
variables between each run of the Application Definition.

Local runtime variables are also used to prevent runtime variables from
overwriting each other, which could happen if two instances of an
Application Definition are running at the same time. For example, use
the Local command if two instances of Terminal Launcher are running,
each instance running the same Application Definition, but attached to
different emulator sessions.

Example Windows Application Definition

This example declares a variable as local, and then uses it to count the
number of times a dialog box is displayed. If the dialog box is displayed
too many times, SecureLogin alerts the user, then closes the
application.
Invalid Log on Message
Dialog
Class #32770
Title "Log on Failure"
EndDialog
Local ?RunCount
Increment ?RunCount
If ?RunCount Gt "5"
MessageBox "Closing Application"
KillApp "PasswordText.exe"
EndIf
Type $Username
Type $Password

Use With Advanced Application Definitions created using the Web Wizard.

SecureLogin Version 3.5.1

Type Action

Usage MatchDomain "Domain"

Arguments Domain

The Domain name or address to be matched.
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
5.2.45 MatchForm

Table 5-45 Description of MatchForm

Description Use MatchDomain inside a Site block to filter a Site based on its
domain. If the domain doesn't match, the site block fails to match.

The domain matched is a normally a low level domain name such as
www.yahoo.com and not http://www.yahoo.com/mymail/login

 Example This example the web site www.google.com is being matched by the
Application Definition.
=== Login Application Definition #2 ==
=== Google Initial Login ====
#==
Site Login -userid “Google Log On” -initial
MatchDomain “www.google.com”
MatchField #1:1 -name “Email” -type “text”
MatchField #1:2 -name “Passwd” -type “password”
MatchField #1:3 -name “Cookie” -type “check”
EndSite
SetPrompt “Enter your user credentials”
TextInput #1:1 -value “$Username”
TextInput #1:2 -value “$Password”
FocusInput#1:2 -focus “true”
BooleanInput #1:3 -check “false”
PressInput
Endscript

Use With Advanced Application Definitions created using the Web Wizard.

SecureLogin Version 3.5.1

Type Action

Usage MatchForm #FormID [-optional] [-name "name"] [-action
"action"] [-method "method"] [-target "target"]
Command Reference 101

102 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
Arguments FormID

The ID to be given to a matching form. The ID must be a static unsigned
integer.

-optional

Specifies that matching this form is not required to successfully match
site.

-name "name"

Specifies the form name to match against. The form name is an optional
value given to a form by the creator of the web site.

-action "action"

Specifies the form action to match against. The URL to which the form
content is sent for processing.

-method "method"

Specifies the form method to match against. The method or how to send
the form data to the server.

-target "target"

Specifies the form target to match against. The window or frame at
which to the form targets its contents.

Description Use MatchForm to filter a site based on the presence of a particular
form. If the form fails to match and it is not specified as optional, then
the site fails to match.

Example In this example the form name “log on” within the web site
www.google.com .com is being matched by the Application Definition.
=== Login Application Definition #2 ==
=== Google Initial Login ====
#==
Site Login -userid “Google Log On” -initial
MatchForm #1 -name “log on”
MatchDomain “www.google.com”
MatchField #1:1 -name “Email” -type “text”
MatchField #1:2 -name “Passwd” -type “password”
MatchField #1:3 -name “Cookie” -type “check”
EndSite
SetPrompt “Enter your user credentials”
TextInput #1:1 -value “$Username”
TextInput #1:2 -value “$Password”
FocusInput#1:2 -focus “true”
BooleanInput #1:3 -check “false”
PressInput
Endscript
The form name may be a “null”
MatchForm #1 -name “”
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
5.2.46 MatchField

Table 5-46 Description of MatchField

Use With Advanced Application Definitions created using the Web Wizard.

SecureLogin Version 3.5.1

Type Action

Usage MatchField #FormID:FieldID [-optional] [-name "name"]
[-type "type"] [-value "value"] [-defaulValue
"defaultValue"]

Arguments FieldID

The ID to be given to the matched field. The ID must be a static unsigned
integer.

-optional

Specifies that matching this field is not required to successfully match
the parent form.

-name "name"

Match against the field name.

-type "type"

Match against the field type. Type can be one of the following:

Button

Checkbox

File

Image

Hidden

Password

Radio

Reset

Submit

Text

Select-multiple

Select-one

-value "value"

Match against the field value.

-defaultValue "defaultValue"

Match against the fields default value.

Description Use MatchField to filter a form based on the presence of a particular
field. If the field fails to match and it is not specified as optional, then the
parent form fails to match.
Command Reference 103

104 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
5.2.47 MatchForm

Table 5-47 Description of MatchForm

Example In this example the web site fields Email, Password and Cookie within
the web site www.google.com .com are being matched by the
Application Definition.
=== Login Application Definition #2 ==
=== Google Initial Login ====
#==
Site Login -userid “Google Log On” -initial
MatchForm #1 -name “log on”
MatchDomain “www.google.com”
MatchField #1:1 -name “Email” -type “text”
MatchField #1:2 -name “Passwd” -type “password”
MatchField #1:3 -name “Cookie” -type “check”
MatchField #1:4 -name “SAVEOPTION” -type
“checkbox”
-value “YES”
MatchField #1:5 -name “Submit2” -type “submit”
EndSite
SetPrompt “Enter your user credentials”
TextInput #1:1 -value “$Username”
TextInput #1:2 -value “$Password”
FocusInput#1:2 -focus “true”
BooleanInput #1:3 -check “false”
BooleanInput #1:4 -check “false”
PressInput
Endscript

Use With Advanced Application Definitions created using the Web Wizard.

SecureLogin Version 3.5.1

Type Action

Usage MatchForm #FormID [-optional] [-name "name"] [-action
"action"] [-method "method"] [-target "target"]
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
Arguments FormID

The ID to be given to a matching form. The ID must be a static unsigned
integer.

-optional

Specifies that matching this form is not required to successfully match
site.

-name "name"

Specifies the form name to match against. The form name is an optional
value given to a form by the creator of the web site.

-action "action"

Specifies the form action to match against. The URL to which the form
content is sent for processing.

-method "method"

Specifies the form method to match against. The method or how to send
the form data to the server.

-target "target"

Specifies the form target to match against. The window or frame at
which to the form targets its contents.

Description Use MatchForm to filter a site based on the presence of a particular
form. If the form fails to match and it is not specified as optional, then
the site fails to match.

Example In this example the form name “log on” within the web site
www.google.com .com is being matched by the Application Definition.
=== Login Application Definition #2 ==
=== Google Initial Login ====
#==
Site Login -userid “Google Log On” -initial
MatchForm #1 -name “log on”
MatchDomain “www.google.com”
MatchField #1:1 -name “Email” -type “text”
MatchField #1:2 -name “Passwd” -type “password”
MatchField #1:3 -name “Cookie” -type “check”
EndSite
SetPrompt “Enter your user credentials”
TextInput #1:1 -value “$Username”
TextInput #1:2 -value “$Password”
FocusInput#1:2 -focus “true”
BooleanInput #1:3 -check “false”
PressInput
Endscript
The form name may be a “null”
MatchForm #1 -name “”
Command Reference 105

106 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
5.2.48 MatchOption

Table 5-48 Description of MatchOption

Use With Advanced Web Application Definitions created using the Web Wizard.

SecureLogin Version 3.5.1 to 6.0

Type Action

Usage MatchOption #FormID:FieldID:OptionID [-optional] [-
text "text"] [-value "value"]

Arguments OptionID

The ID to be given to the specific option within the given field. The ID is a
static, unsigned integer.

-Optional

Specifies that matching this option is not required to successfully match
the parent field.

-text “text”

Specifies the text string for this particular option.

NOTE: The text is what is displayed to the user.

-value “value”

Specifies the value for this particular option.

NOTE: The value is what is passed to the server when a form is
submitted.

Description Use the MatchOption command to filter a field based on the presence of
a particular option.

An option is an item within a specific combo box or list box. If the option is
not found, and it is not specified as optional, then the parent field will also
fail to match.
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
5.2.49 MatchReferer

Table 5-49 Description of MatchReferer

Example This example the form name “log on” within the secure web site
www.lotto.com .com is being matched by the Application Definition.
=== Login Application Definition #4 ==
=== Lotto User Initial Login ====
#==
Site Login -userid “Member Log In” -initial
MatchForm #1 -name “log in”
MatchDomain “https://site10.Lotto.com”
MatchField #1:1 -name “Member ID” -type “text”
MatchField #1:2 -name “Passwd” -type “password”
MatchOption #1:3 -name “Secure” -type “text”
EndSite
SetPrompt “Enter your user credentials”
TextInput #1:1 -value “$Username”
TextInput #1:2 -value “$Password”
FocusInput #1:2 -focus “true”
BooleanInput #1:3 -check “true”
PressInput
Endscript

Use With Advanced Web Application Definitions created using the Web
Wizard.

SecureLogin Version 3.5.1 to 6.0

Type Action

Usage MatchReferer "Referer"

Arguments MatchReferer

Used inside a Site block, MatchReferer is used to filter a Site
based on a referer. If the site referer does not match, the site block
fails to match.

"Referer"

The site referer which is to be matched. If PageA.htm includes a link
to PageB.htm then the referer is "PageA.htm".

Description Use MatchReferer inside a Site/EndSite block to match or filter a
Site based on a referer.
Command Reference 107

108 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
5.2.50 MatchURL

Table 5-50 Description of MatchURL

Example This example the referring HTML page “www.lotteries/index.html” is
being matched by the Application Definition.
=== Login Application Definition #5 ==
=== Lotto User Initial Login ====
#==
Site Login -userid “Member Log In” -initial
MatchForm #1 -name “log in”
MatchReferer “www.Lotteries.com/index.html”
MatchDomain “https://site10.Lotto.com”
MatchField #1:1 -name “Member ID” -type “text”
MatchField #1:2 -name “Passwd” -type
“password”
MatchOption #1:3 -name “Secure” -type “text”
EndSite
SetPrompt “Enter your user credentials”
TextInput #1:1 -value “$Username”
TextInput #1:2 -value “$Password”
FocusInput #1:2 -focus “true”
BooleanInput #1:3 -check “true”
PressInput
Endscript

Use With Advanced Web Application Definitions created using the Web
Wizard.

SecureLogin Version 3.5.1

Type Action

Usage MatchURL "URL"

Arguments MatchURL

Used inside a Site block, MatchURL is used to filter a Site based on
its URL. If the URL doesn't match, the site block fails to match.

"URL"

The Site URL which is to be matched. This need not be the URL
listed in the navigation field of the web browser as the given page
may not have been loaded from there.

Description Use MatchURL inside a Site block to match or filter an HTML page
within a Site based on its URL. The URL can be a complex web
address or a secure web site.
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
5.2.51 MessageBox

Table 5-51 Description of Message Box

Example In this example the URL "https://www.nytimes.com/auth/login" is
matched.
=== Initial Login ===
Site Login -userid "nytimes.com #1" -initial
MatchURL "https://www.nytimes.com/auth/
login"MatchDomain "www.nytimes.com"
MatchTitle "The New York Times > Log In"
MatchForm #1 -name "login"
MatchField #1:1 -name "USERID" -type "text"
MatchField #1:2 -name "PASSWORD" -type
"password"
MatchField #1:3 -name "SAVEOPTION" -type
"checkbox" -value "YES"
MatchField #1:4 -name "Submit2" -type "submit"
EndSite

Use With Startup, Terminal Launcher, Web and Windows

SecureLogin Version All

Type Action

Usage MessageBox <Data> [-Background] [-DefaultNo] [-
YesNo <?Variable>] [-YesNoCancel <?Variable>]
Command Reference 109

110 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
Arguments <-YesNo>

The -YesNo flag allows the user to select Yes or No within the
message box, rather than being limited to an OK button only.

<-YesNoCancel>

The -YesNoCancel flag allows the user to select Yes, No, or Cancel
when a message box is displayed.

<?Variable>

This runtime variable is required with the -YesNo / -
YesNoCancel flag to store the result of the user action.

<-Background>

When specified, this parameter allows the user to open an application
and work in that application, without having to respond to the
MessageBox. If this parameter is not used, the MessageBox remains
the top most Window. In Web applications, you must respond to the
MessageBox before you can continue with any other work.

<-DefaultNo>

This optional parameter is used only with the -YesNo and -
YesNoCancel flags. When the -DefaultNo parameter is set, the No
button has the default focus rather than the Yes button.

<Data>

The text displayed to the user. <Data> can be several strings,
variables, or a combination of both.

Description Use the MessageBox command to display a dialog box that contains
the text specified in the <Data> variable. The Application Definition is
suspended until the user reacts to this message. The MessageBox
can take any number of text arguments, including variables, for
example MessageBox "The user " $Username " has just been
logged onto the system".

You can set the -YesNo flag when calling a MessageBox. If the -
YesNo flag is set, the MessageBox prompts the user with a box that
has a Yes and a No button, rather than an OK button.

Use a runtime <?Variable> to capture the MessageBox result
immediately after the flag. The variable value is set to Yes, No, or
Cancel.

Syntax examples MessageBox "Application Definition completed
successfully"

MessageBox "Do you wish to continue?" -YesNo
?Result

MessageBox "Do you wish to continue?" -YesNoCancel
?Result -Background -

DefaultNo
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
Example 1 Windows Application Definition

This example detects the change password dialog box. A message
box is displayed prompting the user whether or not they would like to
change their password, and to inform them it was successful.
Change Password Dialog Box
Dialog
Class #32770
Title "Change Password"
EndDialog
MessageBox -YesNo ?Result "Your password has
expired, would you like to change it now?"
If ?Result Eq "Yes"
Type $Username #1015
Type $Password #1004
ChangePassword $Password Random
Type $Password #1005
Type $Password #1006
Click #1
MessageBox "Password changed successfully"
Else
Click #2
MessageBox "You elected not to change your
password."
EndIf

Example 2 Terminal Launcher Test Application Definition

Use message boxes when troubleshooting Application Definitions.
This example displays a message box before each step in the
Application Definition to allow the writer to see where the Application
Definition execution if failing.

The WaitForText cuts off the first character because it finds both
Password and password, and responds to all password entry points.
MessageBox "Beginning wait for Log on prompt"
WaitForText "ogin:"
MessageBox "Log on detected, now entering
Username"
Type $Username
MessageBox "Username entered, now simulating
Enter"
Type @E
MessageBox "Enter has been simulated. Now
waiting for?
Password"WaitForText "password:"
MessageBox "Password detected, now entering
Password"
Type $Password
MessageBox "Password entered, now simulating
Enter"
Type @E
MessageBox "Sequence completed, the user
should now be logged on"
Command Reference 111

112 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
5.2.52 Multiply

Table 5-52 Description of Multiply

Use With All

SecureLogin Version 3.0

Type Variable Manipulator

Usage Multiply <Variable1> <Variable2> [?Result]

NOTE: You must use integer arithmetic.

Arguments <Variable1>

The multiplicand, the first argument, is the number multiplied by the
second argument. Also this argument contains the result if the optional
[?Result] argument is not passed in. If used without the [?Result]
argument, <Variable1> must be a SecureLogin variable, either
?Variable1 or $Variable1. Otherwise <Variable1> can be any
numeric value.

<Variable2>

The multiplier, the second argument, is the number by which the first
number is multiplied. <Variable2> can be a SecureLogin variable or
numeric value.

[?Result]

Optional, the product, or result of the equation.

Description Use to multiply one number by another. You can hard code the numbers
into the Application Definition, or you can use variables. The results can
be output to another variable, or to one of the original numbers.

Syntax examples Multiply "1" "2" ?Result

Multiply ?LoginAttempts ?LoginFailures

Multiply ?LoginAttempts ?LoginFailures

?Result

Multiply ?LoginAttempts "3"

Multiply ?LoginAttempts "3" ?Result

Example Windows Application Definition

This example reads the values of Control IDs 103 and 104 into variables.
From there they are multiplied, and typed into Control ID 1.
ReadText #103 ?Number1
ReadText #104 ?Number2
Multiply ?Number1 ?Number2 ?Result
Type ?Result #1
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
5.2.53 OnException/ClearException

Table 5-53 Description of OnException/ClearException

Use With All

SecureLogin Version 3.0.4

Type Flow Control

Usage OnException <Exception Name> Call <SubRoutine>

ClearException <Exception Name>

Arguments <Exception Name>

The name of the exception on which you wish to act. Currently two
exceptions are supported:

1. ChangePasswordCancelled. When a user clicks Cancel on the
Change Password dialog box.

2. EnterVariablesCancelled. When a user clicks Cancel on the
automatic variable prompt dialog box.

<SubRoutine>

The name of the subroutine you want to run when the exception
condition is true.

Description Use the OnException command to detect when certain conditions are
met. Currently, this is when Cancel is pressed on either of two dialog
boxes. When the condition is met, a subroutine is run. Use the
ClearException command to reset the exceptions value.

Syntax examples OnException ChangePasswordCancelled Call Display

ErrorClearException ChangePasswordCancelled
Command Reference 113

114 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
Example 1 Windows Application Definition

In this example the log on failed because the user has invalid credentials
stored. This provides the user with an opportunity to verify their
username and password, but what happens if the user clicks Cancel? If
the user clicks Cancel, the exception is executed and forces the user to
enter their credentials.
Log on Failed Dialog Box
Dialog
Class #32770
Title "Log on Failed"
EndDialog
OnException EnterVariablesCancelled Call
Variables Cancelled
DisplayVariables "Please verify your Username
and Password and try again. Helpdesk x5555."
ClearException EnterVariablesCancelled
Type $Username #1001
Type $Password #1002
Click #1
Sub VariablesCancelled
OnException EnterVariablesCancelled Call
Variables Cancelled
Display Variables "You cannot cancel this
verification dialog box. Please verify your
Username and Password when prompted and click OK
to retry log on."
ClearException EnterVariablesCancelled
EndSub
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
5.2.54 Parent/EndParent

Table 5-54 Description of Parent/EndParent

Example 2 Windows Application Definition

This example prompts the user to change their password. SecureLogin
must handle password changes so the password is updated both in the
application and in the user's 3DES encrypted store in the directory
against their user object.
Change Password Dialog Box
Dialog
Class #32770
Title “Change Password”
EndDialog
Type $Username #1005
Type $Password #1006
OnException ChangePasswordCancelled Call
ForceChangePwd
ChangePassword $Password “Please enter a new
password for the Human Resources? application.
IT x5555”
Type $Password #1007
Type $Password #1008
ClearException ChangePasswordCancelled
Sub ForceChangePwd
OnException ChangePasswordCancelled Call
ForceChangePwd
ChangePassword $Password “You must enter a new
password and cannot Cancel.?
IT x5555”
Type $Password #1007
Type $Password #1008
ClearException ChangePasswordCancelled
EndSub

Use With Windows

SecureLogin Version All

Type Dialog Specifier

Usage ParentEnd

Parent

Arguments None
Command Reference 115

116 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
Description Use the Parent command to begin a Parent block in which the
statements act upon a window's Parent. The commands that follow
the Parent command function identically to commands used in a
dialog block; if they equate to false then the Application Definition
ends.

For example, the command Title in a Parent block returns false if
the title of the Parent does not match the one specified in the
command. However, if a command in a Parent block returns a false
result, the execution does not skip to the next Parent block, as it
would in a dialog block. Instead, the Parent block proceeds to the
next dialog block, or the Application Definition terminates if no further
dialog blocks exists.

The Parent command is particularly useful in applications where the
dialog box (for example Logon dialog box) is the child of an open
window, typically in the background. If you are unable to single sign-
on to an application after enabling it with the wizard, you typically need
to specify Parent blocks.

You can also use the Parent command to execute commands on a
dialogs parent. For example, it is possible to get a Application
Definition to click a button on the parent window. An example of this
use is shown in Example 2.

EndParent Command

Use the EndParent command to terminate a Parent block and set
the subject of the Application Definition back to the original window.
You can nest the Parent command, thereby allowing the Parent
block to act on the parent of the parent.

NOTE: If you use the wizard or try to enable an application and it does
not seem work, try using the Parent command. It is able to handle
windows that are within windows, and so on.

Example 1 Windows Application Definition

This example specifies the dialog box that is used for log on. In this
case, the parent of the logon box has a class of "Centura:MDIFrame".
#Log on Dialog BoxDialog
Class "Centura:Dialog"
Ctrl #4098
Ctrl #4100
Title "Log on"
Parent
Class "Centura:MDIFrame"
EndParent
EndDialog
Type $Username #4098
Type $Password #4100
Click #4101
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
5.2.55 PickListAdd

Table 5-55 Description of PickListAdd

Example 2 Windows Application Definition

This example is used to click a button on the Logon windows parent.
Log on Dialog Box
Dialog
Class #32770
Title "Log on"
EndDialog
Type $Username #1001
Type $Password #1002
Parent
Click #1
EndParent

Use With All

SecureLogin Version All

Type Action

Usage PickListAdd <Display-Text> [<Return-Value>]

Arguments <Display-Text>

The text displayed in the pick list for the specified option.

<Return-Value>

The value returned from the pick list. If not specified, the return value is
the display text.

Description Use the PickList command to allow users with multiple accounts for a
particular system to choose the account to which they will log on.

You can also use the PickList command to choose from multiple
sessions on one mainframe account. In fact, use the PickList to build
a list of databases, phone numbers, or any list from which your user can
choose. You can then set variables or take action accordingly.

PickListAdd is always used with the PickListDisplay and is
typically also used in conjunction with the SetPlat command.
Command Reference 117

118 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
5.2.56 PickListDisplay

Table 5-56 Description of PickListDisplay

Example Windows Application Definition

In this example, the user has to pick which of the three accounts to use.
They pick which account they want to use, and SecureLogin switches to
that set of credentials using the SetPlat command.
Log on Dialog Box
Dialog
Class #32770
Title "Log on"
EndDialog
PickListAdd "Account One" "One"
PickListAdd "Account Two" "Two"
PickListAdd "Account Three" "Three"
PickListDisplay ?Account "Please select the
account you wish to use"-NoEdit SetPlat ?Account
Type $Username #1001
Type $Password #1002
Click #1

Use With Startup, Terminal Launcher, Web and/or Windows

SecureLogin Version All

Type Action

Usage PickListDisplay <?Variable> <Display-Text> [-NoEdit]

Arguments <?Variable>

The output variable for the selected option.

<Display-Text>

The description text for the pick list box.

-NoEdit

The -NoEdit flag disables the addition of extra variables by the user.

Description Use the PickListDisplay command to display the pick list entries
built by previous calls to PickListAdd. The PickListDisplay
command returns the result in a <?Variable> sent to the command.

If the desired entry is not among the displayed entries, the user can
enter their own data into an edit field at the bottom of the pick list. Set
the -NoEdit flag to turn this feature off.

Syntax examples PickListDisplay ?Choice

PickListDisplay ?Choice "Please select the account
you wish to use"

PickListDisplay ?Choice "Please select the account
you wish to use" -NoEdit
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
5.2.57 PositionCharacter

Table 5-57 Description of Position Character

Example Windows Example

In this example, the user has three accounts to this application, and
wants to pick which one to use. They pick which account they want to
use, and SecureLogin uses the SetPlat command to switch to that set
of credentials.
Log on Dialog Box
Dialog
Class #32770
Title "Log on"
EndDialog
PickListAdd "Account One" "One"
PickListAdd "Account Two" "Two"
PickListAdd "Account Three" "Three"
PickListDisplay ?Account "Please select the
account you wish to use" -NoEdit
SetPlat ?AccountType $Username #1001
Type $Password #1002
Click #1

Use With Password Policy Application Definitions

SecureLogin Version All

Type Action

Usage POSITIONCHARACTER [NUMERAL] [UPPERCASE] [LOWERCASE]
[PUNCTUATION] <Position>, [<Position>].

Arguments [NUMERAL]

The character at <Position> must be a numeral.

[UPPERCASE]

The character at <Position> must be an uppercase character.

[LOWERCASE]

The character at <Position> must be a lowercase character.

[PUNCTUATION]

The character at <Position> must be a punctuation character.

<Position>

The character position in the password.

Description Use this command in a password policy Application Definition to enforce
that a certain character in the password is a numeral, uppercase,
lowercase, or a punctuation character.

You can specify multiple positions.
Command Reference 119

120 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
5.2.58 PressInput

Table 5-58 Description of PressInput

5.2.59 ReadText

Table 5-59 Description of ReadText

Example The password is not valid unless the first, sixth, and seventh characters
are uppercase.

POSITIONCHARACTER UPPERCASE 1,6,7

Use With Advanced Web Application Definitions created using the Web Wizard.

SecureLogin Version 3.5.1

Type Action

Usage PressInput [#FormID:FieldID [-press "press"]]

Arguments PressInput

Simulates a keyboard enter event. Optionally focusing a given field
beforehand.

-press "press”

Description Simulates pressing the keyboard enter key.ess"

Example This example the PressInput command within the Application
Definition is the equivalent of clicking the Sign On button on the
www.google.com web site.
=== Login Application Definition #2 ==
=== Google Initial Login ====
#==
Site Login -userid “Google Log On” -initial
MatchForm #1 -name “log on”
MatchDomain “www.google.com”
MatchField #1:1 -name “Email” -type “text”
MatchField #1:2 -name “Passwd” -type “password”
MatchField #1:3 -name “Cookie” -type “check”
EndSite
SetPrompt “Enter your user credentials”
TextInput #1:1 -value “$Username”
TextInput #1:2 -value “$Password”
FocusInput#1:2 -focus “true”
BooleanInput #1:3 -check “false”
PressInput
Endscript

Use With Terminal Launcher, Windows. This command applies specifically to
HLLAPI, WinHLLAPI and HLLAPI 16 terminal emulators.
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
SecureLogin Version All

Type Action

Windows Usage

Terminal Launcher Usage

ReadText <#Ctrl-ID> <?Variable>

ReadText <?Variable> <Character-Number> <Row-
Number>
<Column-Number>

Arguments <#Ctrl-ID>

The control ID number of the text to read.

<?Variable>

The variable that receives the text that is read.

<Character-Number>

The number of characters to read.

<Row-Number>

The horizontal position number of the first character to read (for
example, row).

<Column-Number>

The vertical position number of the first character to read (for
example, column).

Description Use the ReadText command to run in both Windows and Terminal
Launcher Application Definitions. While the usage and arguments
for the use of ReadText with Windows and Terminal Launcher are
different, the results of each command are the same.

Windows Application Definition

In a Windows Application Definition, the ReadText command reads
the text from any given <#Ctrl-ID>, and sends it to the specified
variable. For this command to function correctly, the <#Ctrl-ID>
must be valid.

Terminal Launcher Application Definition

In a Terminal Launcher Application Definition, the ReadText
command reads a specified number of characters, starting at the
<Row-Number>, and sends those characters to the specified
<Variable>. The ReadText command will not work with Generic or
Advanced Generic emulators, it only works with HLLAPI and some
DDE emulators. For Generic or Advanced Generic emulators use
the If -Text or Gettext commands.

For more information, see Section 5.2.39, “If/Else/Endif,” on
page 93 and Section 5.2.36, “GetText,” on page 91.
Command Reference 121

122 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
Example 1 HLLAPI emulator

Readtext ?result "X" "Y" "Z"

X = The number of characters to read.

Y= The row from which the characters are read.

Z= The column from which the characters are read

Example 2 Windows script

ReadText #1004 ?result

Syntax examples ReadText #301 ?Text

ReadText ?Text 4 6

Example 1 Windows Application Definition

The same Title and Class appear in the error message dialog box
when a user fails to log on.

This example distinguishes between errors and provides users with
more specific information, rather than a general message stating
their username and password is incorrect, or the account is locked.
In this case, the example reads the error message, clicks OK, and
prompts the user with a customized message.
Log on Failed Message
Dialog
Class #32770
Title "Log on Failed"
EndDialog
ReadText #65535 ?ErrorMsg
Click #1
If "Invalid Username" -In ?ErrorMsg
DisplayVariables "Please verify your
Username and try again." $Username
Type $Username #1001
Type $Password #1002
Click #1
EndIf
If "Invalid Password" -In ?ErrorMsg
DisplayVariables "Please verify your
Password and try again." $Password
Type $Username #1001
Type $Password #1002
Click #1
EndIf
If "Account Locked" -In ?ErrorMsg
MessageBox "Your account is locked. Please
contact the Helpdesk on x3849."
Endscript
EndIf
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
5.2.60 RegSplit

Table 5-60 Description of RegSplit

Example 2 Windows Application Definition

This example reads the text from a Control ID and sets the
database variable so the user is not prompted to set the variable.
Log on Dialog Box
Dialog
Class #32770
Title "Log on"
EndDialog
ReadText #15 ?Database
If -Exists $Database
Else
Set $Database ?Database
EndIf
Type $Username #1001
Type $Password #1002
Type $Database #1003
Click #1

Example 3 Terminal Launcher Application Definition

This example reads a message in a Terminal Emulator and
displays the message in a user friendly format.
ReadText ?Message 30 24 2
MessageBox ?Message

Use With All

SecureLogin Version All

Type Action

Usage RegSplit <RegEx> <Input-String> [<Output-String1>
[<Output-String2>]...]

Arguments <RegEx>

The regular expression.

<Input-String>

The string that to split.

<Output-String1>

The first sub expression.

<Output-String2>

The second sub expression.

Description Use the RegSplit command to split a string using a regular expression.
<Output-String1> and <Output-String2> contain the first, and
second sub expressions, respectively.
Command Reference 123

124 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
5.2.61 ReLoadPlat
When an application first presents a logon screen, SecureLogin displays a message box prompting
the user to select an appropriate platform from a list. Once selected, SecureLogin enters the chosen
platform's credentials into the application and submits them.

Resolving the Issue of Reentering User ID Details

If log on fails due to incorrect credentials, SecureLogin prompts the user to change their credentials.
SecureLogin does not retain the platform details and prompts the user to reenter the information.
This could result in the user changing the wrong credentials if they select the incorrect platform.

The SetPlat, ReLoadPlat and ClearPlat commands resolve this issue. ReloadPlat sets
the current platform to the one which was last chosen (for the given application), or if a platform not
previously selected, the command leaves it unset.

For more information see Section 5.2.61, “ReLoadPlat,” on page 124 and Section 5.2.12,
“ClearPlat,” on page 67.

Table 5-61 Description of ReLoadPlat

Example Windows Application Definition

This example copies text from Control ID #301 to the ?Text variable.
The RegSplit command is then used to strip the username details out
of the text that was read. The platform is set to that username, and the
correct password is entered by SecureLogin.
Log on Dialog Box
Dialog
Class #32770
Title "Log on"
EndDialog
ReadText #65535 ?Text
RegSplit "Please enter the password ?for (.*)
account" ?Text ?UserSetPlat ?User
Type $Username #1001
Type $Password #1002
Click #1

Open Text
Example

#?InputString: "This is a long string with a few
components in it"

Command RegSplit "This (.*) a long (.*) with (.*)
components (.*)" ?InputString ?First ?Second ?Third
?Fourth

Result ?First = "is", ?Second = "string", ?Third = "a few",
?Fourth = "in it"

Use With Startup, Terminal Launcher, Web and/or Windows

SecureLogin Version All

Type Action
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
Usage Use the ReLoadPlat command at:

Log on. Before the user first logs onto the application, call
ReLoadPlat. This prevents the user from having to reselect a
platform after a failed log on.

Failed Log on. Call ReLoadPlat to reselect the platform that
contained the incorrect credentials. This gives the user an
opportunity to change the credentials using a ChangePassword or
a DisplayVariables command.

Arguments None

Description Use to set the current platform to the last one chosen by the Application
Definition, or if a platform is not chosen, leaves the platform unset.

Example Windows Application Definition
==== BeginSection: Application startup ====
Dialog
Class "#32770"
Title "Password Test Application"
EndDialog
ClearPlat
==== EndSection: Application startup ====
==== BeginSection: Log on ====
Dialog
Class "#32770"
Title "Log on"
Ctrl #1001
EndDialog
ReLoadPlat
SetPrompt "Username =====>
"Type $Username #1001
SetPrompt "Password =====>
"Type $Password #1002
SetPrompt "Domain =====>
"Type $Domain #1003
Click #1
==== EndSection: Log on ====
==== BeginSection: Log on Successful ====
Dialog
Class "#32770
"Title "Log on Successful"
EndDialog
ClearPlat
Click #2
==== EndSection: Log on Successful ====
Command Reference 125

126 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
5.2.62 Repeat/EndRepeat

Table 5-62 Description of Repeat/EndRepeat

Example (Cont.) # ==== BeginSection: Log on Failure ====
Dialog
Class "#32770"
Title "Log on Failure"
EndDialog
Click #2
ReLoadPlat
OnException ChangePasswordCancelled Call
ChangeCancelled
ChangePassword $password
ClearException ChangePasswordCancelled
Type -raw \Alt+F
Type -raw L
==== EndSection: Log on Failure ====
==== BeginSection: Change Credentials
Cancelled
====
Sub ChangeCancelled
ClearPlat
EndScriptEndSub
==== EndSection: Change Credentials
Cancelled ===

Use With All

SecureLogin Version All

Type Action

Usage Repeat [Loop#] EndRepeat

Arguments [Loop#]

The number of times the repeat Application Definition block is repeated.
If not specified, the repeat continues indefinitely unless broken by other
commands.

Description Use the Repeat command to establish an Application Definition block
similar to the If command. The Repeat block is terminated by an
EndRepeat command. Alternatively, you can use the Break or
EndScript commands to break out of the loop.

Syntax Examples Repeat

Repeat 3
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
Example Terminal Application Definition

This example uses the repeat command to watch the screen for the
messages and responds accordingly. You can use the Break command
to jump to the next repeat loop in the Application Definition.
Initial System Log on
WaitForText "ogin:"
Type $Username
Type @E
WaitForText "assword:"
Type $Password
Type @E
Delay 500
#Repeat loop for error handling
Repeat
#Check to see if password has expired
If -Text "EMS: The password has expired."
ChangePassword
#Password
Type $Password
Type @E
Type $Password
Type @E
EndIf
#User has an invalid Username and / or #
Password stored.
If -Text "Log on Failed"
DisplayVariables "The username and / or password
stored by SecureLogin is invalid. Please verify
your credentials and try again. IT x453."

Example
(Cont.)

Type $Username
Type @E
Delay 500
WaitForText "password:"
Type $Password
Type @E
Delay 500
EndIf
Account is locked for some reason, possibly
inactive.
If -Text "Account Locked"
MessageBox "Your account has been locked,
possibly due to inactivity for 40 days. Please
contact the administrator on x453."
EndIf
Main Menu, user has logged on successfully.
If -Text "Application Selection"
Break
EndIf
Delay 100
EndRepeat
Command Reference 127

128 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
5.2.63 RestrictVariable

Table 5-63 Description of RestrictVariable

Use With All

SecureLogin Version All

Type Action

Usage RestrictVariable <Variable-Name>

<Password-Policy>

Arguments <Variable-Name>

The name of the variable to restrict.

<Password-Policy>

The name of the policy to enforce on the variable.

Description Use the RestrictVariable command to monitor a <Variable> and
enforce a specified <Password-Policy> on the <Variable>. Any
variable specified must match the policy or it is not saved.

When restricting variables to policies, if you are making a tighter policy
than is already in place, and you restrict a variable that does not match the
policy today, then the user cannot save it the first time. This is because
when SecureLogin detects there is no saved credential, a user who has a
password of 6 characters today, cannot save it if the policy restricts the
$Password variable to 8 characters and 2 numbers.

Example 2 works around this by restricting a new password variable
(?NewPwd), instead of restricting the $Password variable. The user can
store their existing password when SecureLogin prompts for the
credentials first time, and enforces the stronger password policy when the
password expires in x days.

You can restrict any variable using a password policy, not just a
$Password. You can also use RestrictVariable to make sure other
variables are entered in the correct format. For example, you can enforce
that $Username is always lowercase or $Database is 6 characters and no
numbers.
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
Example 1 Windows Application Definition

This example uses the Application Definition to restrict the $Password
variable to the Finance password policy. The user's password must match
the policy when they first save their credentials. When the password
requires changing, the Application Definition generates a new password
randomly based on that policy (no user intervention is required).
Set the Password to use the Finance Password
Policy
RestrictVariable $Password FinancePwdPolicy#
Log on Dialog Box
Dialog
Class #32770
Title "Log on"
EndDialog
Type $Username #1001
Type $Password #1002#
Change Password Dialog Box
Dialog
Class #32770
Title "Change Password
"EndDialog
Type $Username #1015
Type $Password #1004
ChangePassword $Password Random
Type $Password #1005
Type $Password #1006
Click #1
Command Reference 129

130 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
5.2.64 Run

Table 5-64 Description of Run

Example 2 Windows Application Definition

This example uses the Application Definition to restricts the ?NewPwd
variable to the Finance password policy. When the application starts for
the first time and prompts the user to enter their credentials, then their
current password ($Password) is saved and used.

When the password expires, the password policy is enforced on any new
password. This is a way to enforce tougher password policies (than are
currently in place) when you cannot guarantee all existing passwords meet
the new policy.
Set the Password to use the Finance Password
Policy
RestrictVariable ?NewPwd FinancePwdPolicy
Log on Dialog Box
Dialog
Class #32770
Title "Log on"
EndDialog
Type $Username #1001
Type $Password #1002
Click #1
Change Password
Dialog Box
Dialog
Class #32770
Title "Change Password"
EndDialog
Type $Username #1015
Type $Password #1004
ChangePassword ?NewPwd Random
Type ?NewPwd #1005
Type ?NewPwd #1006
Set $Password ?NewPwd
Click #1

Use With Startup, Terminal Launcher, Web and/or Windows

SecureLogin Version All

Type Action

Usage Run <Command> [<Arg1> [<Arg2>] ...]

Arguments <Command>

The full path of the program to execute.

<Arg1>, <Arg2>

An optional list of arguments and switches for the command.
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
5.2.65 SelectListBoxItem

Table 5-65 Description of SelectListBoxItem

Description Use the Run command to launch the program specified in <Command>
with the specified optional [<Arg1> [<Arg2>] …] arguments.

The Application Definition does not wait for the launched program to
complete.

Example Startup

This example prompts the user to start the Finance System.

If they click:

Yes, the Run command is used to start the application with the
necessary switches.

No, a message box is displayed, and the application is not
started.

MessageBox "Would you like to connect to the
Finance System?" -YesNo ?Result
If ?Result Eq "Yes"
Run "C:\Program Files\HRS\Finance.exe" "/
DB:HRS" "/Debug"
Else
MessageBox "You have chosen not to run the
Finance System. Please do so manually."
EndScript
EndIf

Use With Advanced Web Application Definitions

SecureLogin Version All

Type Action

Usage SelectListBoxItem <Text of Item to set to>
[<#Item Number>] [<-multiselect>]

Arguments <Text of Item to set to>

The text item that you want SecureLogin to select in the list box.

<#Item Number>

When multiple list boxes are found, this specifies which list box to
address.

<-multiselect>

Used to select multiple list box entries by using a subsequent
SelectListBoxItem command.
Command Reference 131

132 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
5.2.66 SendKey

Table 5-66 Description of SendKey

Description Use the SelectListBoxItem command to select entries from a list
box.

For instruction on determining item numbers, see Section 5.2.24,
“EndScript,” on page 82.

Example SelectListBoxItem "Remember Defects" #2 -
multiselect

SelectListBoxItem "Remember Enhancements" #2 -
multiselect

Use With Terminal Launcher

SecureLogin Version All

Type Action

Usage SendKey <Text>

Arguments <Text>

The text typed into the emulator screen.

Description Use the SendKey command to work only with Generic and Advanced
Generic emulators. You can use the SendKey command in the same
manner as the Type command. Generally, the Type command is the
preferred command to use. The Type command places the text into the
clipboard, and then pastes it into the emulator screen. The SendKey
command enters the text directly into the emulator screen.

About using the Type Command

Variables do not work with the SendKey command. If you want to use
variables, use the Type command.

The Type command has many special functions, and some you can use
with the SendKey command. For more information, see Section 5.2.85,
“Sending Keyboard Commands Using Type,” on page 155 and
Section 5.2.84, “Type,” on page 152. For more information on these
functions, see Chapter 7, “Reference Commands and Keys,” on page 165.

Example Terminal Launcher Application Definition

The example sends the username and password to the terminal emulator.
#Send Username
SendKey "DJones"
SendKey "\N"#
Send Password
SendKey "Hu7%f"
SendKey "\N"
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
5.2.67 Set

Table 5-67 Description of Set

Use With All

SecureLogin Version All

Type Action

Usage Set <Variable> <Data>

Arguments <Variable>

The variable to which the data is being assigned.

<Data>

The text or variable read from and assigned to the variable.

Descriptions Use the Set command to copy the value of <Data> into <Variable>.
The <Data> can be any text, or another variable, whereas the
<Variable> must be either a ?Variable or $Variable.

Example 1 Windows Application Definition

This example uses the Application Definition to set a ?RunCount
variable to count the number of times the application is run.
Log on Dialog Box
Dialog
Class #32770
Title "Log on"
EndDialog
If ?RunCount Eq <NOTSET>
Set ?RunCount "1"
Else
Increment ?RunCount
EndIf
Type $Username #1001
Type $Password #1002
Click #1
Command Reference 133

134 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
5.2.68 SetCheckBox

Table 5-68 Description of SetCheckBox

Example 2 Windows Application Definition

This example uses the Application Definition to set the ?NewPwd to the
stored $Password variable.
Log on Dialog Box
Dialog
Class #32770
Title "Log on"
EndDialog
Type $Username #1001
Type $Password #1002
Click #1
Change Password Dialog Box
Dialog
Class #32770
Title "Change Password"
EndDialog
Type $Username #1015
Type $Password #1004
ChangePassword ?NewPwd Random
Type ?NewPwd #1005
Type ?NewPwd #1006
Set $Password ?NewPwd
Click #1

Example 3 Windows Application Definition

This example uses the Application Definition to read the value of Ctrl
#15, and sets the $Database variable so the user does not have to set
the variable.
Log on Dialog Box
Dialog
Class #32770
Title "Log on"
EndDialog
ReadText #15 ?Database
If -Exists $Database
Else
Set $Database ?Database
EndIf

Use With Advanced Web Application Definition

SecureLogin Version 3.5

Type Action

Usage SetCheckBox <Item Number> <Option>
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
5.2.69 SetCursor

Table 5-69 Description of SetCursor

Arguments <Item Number>

The check box in reference to the number of check boxes found.

<Option>

Specifies the status of the check box as Checked or Unchecked.

Description Use the SetCheckBox command to select or clear a check box.

Example Messagebox "Scroll down so you can see the
'Search Language' section and all the Languages
with the check boxes then click OK on this
messagebox"setcheckbox #1 "checked"
setcheckbox #2 "checked"
setcheckbox #3 "checked"
setcheckbox #4 "checked"
setcheckbox #25 "checked"
setcheckbox #26 "checked"
setcheckbox #27 "checked"
Messagebox "Did it select the first four
languages and Norwegian, Polish and Portuguese
Languages" -yesno ?advweb
if ?advweb eq yes
set ?cmd37 "Setcheckbox command worked"elseset
?cmd37 "Setcheckbox failed"
endifset
checkbox #1 "unchecked"
setcheckbox #2 "unchecked"
setcheckbox #3 "unchecked"
setcheckbox #4 "unchecked"
setcheckbox #26 "unchecked"
setcheckbox #27 "unchecked"
Messagebox "Did it clear all the languages
except Norwegian" -yesno ?
advweb2
if ?advweb2 eq yes
set ?cmd38 "setcheckbox command worked"
else
set ?cmd38 "setcheckbox failed"
endif

Use With Terminal Launcher (Only available in HLLAPI and some DDE emulators)

SecureLogin Version All

Type Action

Usage 1 SetCursor <Screen-Position>

Usage 2 SetCursor <X Co-ordinate> <Y Co-ordinate>
Command Reference 135

136 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
5.2.70 SetFocus

Table 5-70 Description of SetFocus

Arguments <Screen-Position>

The position on the screen to move the cursor.

<X Co-ordinate>

The horizontal coordinate. When specified, a row or column conversion
is carried out before the cursor is set to the position.

<Y Co-ordinate>

The vertical coordinates. When specified, a row or column conversion is
carried out before the cursor is set to the position.

Description Use the SetCursor command to set the cursor to a specified
<ScreenPosition> or <X Co-ordinate> <Y Co-ordinate>.

The position is noted by a number greater than 0 (zero), for example,
SetCursor 200. Terminal Launcher displays an error message if the
screen position is invalid.

Syntax examples SetCursor 200

SetCursor 100 500

Example Terminal Launcher Application Definition

This example sets the cursor to the correct position, and then you enter
credentials.
SetCursor 200
Type $Username
Type @E
Type $Password
Type @E

Use With Java, Web, Windows

SecureLogin Version All

Type Action

Arguments <#Ctrl-ID>

The ID number of the control to which the keyboard focus is directed.

Description Use the SetFocus command to set the keyboard focus to a specified
<#Ctrl-ID>.

A valid <#Ctrl-ID> is required for the SetFocus command to function
correctly.
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
5.2.71 SetPlat

Table 5-71 Description of SetPlat

Example Windows Application Definition

This example sets the focus to the username field (#1001). The
username is typed and a tab stop is simulated, and then the password is
typed and pressing ENTER is simulated.
Log on Dialog Box
Dialog
Class #32770
Title "Log on"
EndDialog
SetFocus #1001
Type $Username
Type \T
Type $Password
Type \N

Use With All

SecureLogin Version All

Type Action

Usage 1 SetPlat <Application-Name>

Usage 2 SetPlat <RegEx> <Variable> <#Ctrl-ID>

Arguments <Application-Name>

Application name from which to read the variables.

<RegEx>

Regular expression to use as application name.

<Variable>

Use a previously set ?Variable, for example using a PickList (For
more information see Section 5.2.61, “ReLoadPlat,” on page 124)

<#Ctrl-ID>

The control ID number of the regular expression.
Command Reference 137

138 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
Description By default, variables are stored directly against the platform or
application on which you have SecureLogin enabled. For example, if you
enable Groupwise.exe, the Groupwise credentials are stored against
the Groupwise.exe platform.

SetPlat sets the platform or application from which variables are read
and saved if you have:

Multiple accounts (for example, your own log on and an admin log
on) accessing the same platform or application.

Multiple platforms or applications using a common set of
credentials?

Other uses of SetPlat include:

Configuring application1 to read it's $Username and $Password
from application2. This saves a user from entering the credentials
twice and having to remember to update them in both locations
when they change, and so on.

Configuring application1, application2, and application3 to read the
users credentials from Platform Common. This results in a single
store of common credentials which you only need to update once.

Example 1 Web Application Definition

A dialog box appears when you try to access a password-protected site
using Netscape Navigator.

When you specify the Title, Class, Username, and Password fields for
this dialog box they are always the same. If you stored the Username
and Password against this platform without using the SetPlat
command, the same Username and Password for
www.serversystems.com is entered to log on to any site (and are
obviously invalid for any other site).

However, the previous dialog box always contains the name of the Web
site to which to log on. You can use this name as the unique identifier in
order to set a new platform and to save the log on credentials.

Using a Dialog Block with a SetPlat Statement

The solution is to use a dialog block with a SetPlat statement such as:
Dialog
Ctrl #330
Ctrl #214
Ctrl #331
Ctrl #1
Ctrl #2
Title "Username and Password Required"
SetPlat #331 "Enter username for .* at (.*):"
EndDialog
Type $Username #214
Type $Password #330
Click #1
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
5.2.72 SetPrompt

Table 5-72 Description of SetPrompt

Example 1 (Contd) The power of this Application Definition is the line:

SetPlat #331 "Enter username for .* at (.*):"

This reads the line from dialog control ID 331, enters the username for
Control Panel at www.serversystems.comNext, and applies the regular
expression to this text. Regular expressions are a way of manipulating
text strings, however, for most purposes a few very basic commands
work

When the user has run the Application Definition, they will see the
Username and Password saved as www.serversystems.com.The text
matched inside the brackets then becomes the symbol application. If a
dialog <#Ctrl-ID> is not specified, the symbol application is
unconditionally changed to the application specified in <RegEx>. An
unconditional SetPlat command is only valid if specified before
Dialog/EndDialog statements.

Example 2 Windows Application Definition

This example displays a pick list and sets a new platform so multiple
users can log on to the application. In this case, SetPlat creates a new
platform called Default User, Global Administrator, or Regional
Administrator, and the respective $Username and $Password is saved
there.
log on Dialog Box
Dialog
Class #32770
Title "Log on"
EndDialog
PickListAdd "Default User"
PickListAdd "Global Administrator"
PickListAdd "Regional Administrator"
PickListDisplay ?Choice "Please select the
account you wish to use"-NoEdit
SetPlat ?Choice
Type $Username #1001
Type $Password #1002
Click #3

Use with All

SecureLogin Version All

Type Action

Usage SetPrompt <Prompt-Text>

Arguments <Prompt-Text>

The customized text prompt displayed in the Enter SecureLogin
Variables dialog box.
Command Reference 139

140 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
Description Use the SetPrompt command to customize the text in the Enter
SecureLogin Variables dialog boxes. These dialog boxes are used to
prompt the user for new variables. You can also use the
DisplayVariables command to customize the prompt text in the
dialog box (for previously stored variables).

For more information, see Section 5.2.21, “DisplayVariables,” on
page 79.

NOTE: Positioning of the setprompt command is crucial. Position it
before the first usage of each variable to name that variable, and apply
the final Setprompt to the text displayed at the top of the prompt screen.

Example 1 Windows Application Definition

This example replaces the default text prompt in the Enter SecureLogin
Variables dialog box, and places the SetPrompt command at the
bottom of the Application Definition.
Log on Dialog Box
Dialog
Class #32770
Title "Log on"
EndDialog
Type $Username #1001
Type $Password #1002
Click #1
SetPrompt "Please enter your Username and
Password for accessing the Human Resources
system. These credentials will be remembered by
SecureLogin and you will be automatically logged
on in future. IT Helpdesk x4564"

Example 2 Windows Application Definition

This example replaces the text prompt next to any variable entry field in
the Enter SecureLogin Variables box, and places the SetPrompt
command immediately before the variable in the Application Definition.
Log on Dialog Box
Dialog
Class #32770
Title "Log on"
EndDialog
SetPrompt "Enter Username==>"
Type $Username #1001
SetPrompt "Enter Password==>
"Type $Password #1002
Click #1
SetPrompt "Please enter your Username and
Password for accessing the Human Resources
system. These credentials will be remembered by
SecureLogin and you will be automatically logged
on in future. IT Helpdesk x4564"
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
5.2.73 Site/EndSite

Table 5-73 Description of Site/EndSite

Use With Advanced Web Application Definitions created using the Web
Wizard.

SecureLogin Version 3.6.1

Type Action

Usage Site ["Name" [-userid "userid"] [-initial|-
subsequent|-recent timeout] [-nonexclusive]]

Arguments Site

The Site/EndSite commands are used to match a particular site
given a set of filters. Site/Endsite usage is much the same as
the Dialog/End-Dialog commands found in the windows
scripting commands.

"Name"

Name is a static string used to denote the site being matched. The
Name cannot be a variable and the same value can be used by
multiple Site commands to specify a match for the same site under
differing conditions.

-userid "userid"

Specifies the default set of credentials to be used for this site block.

NOTE: "userid" must be a static string.

-initial

Specifies that this site block will only match the first time.

-subsequent

Specifies that this site block will only match after an initial match
has already been made.

-recent timeout

Specifies that this site block will only match if a previous match was
made within the given timeout period.

Timeout is given in milliseconds.

-nonexclusive

Specifies that even if this site block matches, other scripts and
wizards will not be prevented from running.
Command Reference 141

142 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
5.2.74 StrCat

Table 5-74 Description of StrCat

Description SIte/EndSite begins and ends an Application Defintion, in place
of Dialog/EndDialog.

The Site/EndSite commands have been added to allow for
much finer control of web site matching. No longer is a URL all that
can be matched on. Detailed information of the loaded web site can
now be matched upon and used to execute blocks of scripting
commands.

Site/EndSite blocks are used to define all the parameters
SecueLogin would expect to find on a web page to run the
applicxation definition.

'Match' commands can be used to filter a given site. If one of the
contained match commands fails to match, then the site block fails
to match as a whole.

Example 1 This simple example would locate the web site www.mybank.com.
=== My Bank Initial Login ===
Site “www.mybank.com” -userid “My Login
Credentials”
-initial
EndSite

Example 2 This simple example would locate the web site www.google.com,
locate the login form and log on to the users account using the
users email address, account number and password.
=== Login Application Definition #2 ==
=== Google Initial Login ====
#==
Site Login -userid “Google Log On” -initial
MatchDomain “www.google.com”
MatchField #1:1 -name “Email” -type “text”
MatchField #1:2 -name “Passwd” -type
“password”
MatchField #1:3 -name “Cookie” -type “check”
EndSite
SetPrompt “Enter your user credentials”
TextInput #1:1 -value “$Username”
TextInput #1:2 -value “$Password”
FocusInput#1:2 -focus “true”
BooleanInput #1:3 -check “false”
PressInput
Endscript

Use With All

SecureLogin Version All

Type Action
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
5.2.75 StrLength

Table 5-75 Description of StrLength

Usage StrCat <Variable> <Input-String1> <Input-String2>

Arguments <Variable>

The variable to which you want to result saved.

<Input-String1>

First data string or variable.

<Input-String2>

Second data string or variable.

Description Use the StrCat command to append the second data string to the first
data string. For example, StrCat ?Result "SecureRemote "
"$Username".

In this case "$Username" is "Tim", and the variable "?Result" now
contains the value "SecureRemote Tim".

Example: Windows Application Definition

This example reads the username from #1001 into ?Username and uses
the StrCat command to join the username onto the password. The
result is a LogonID, which SecureLogin uses to log on to the system.
Log on Dialog Box
Dialog
Class #32770
Title "Log on"
EndDialog
ReadText #1001 ?Username
StrCat ?LoginID ?Username $Password
Type ?LoginID #1002
Click #1

Use With All

SecureLogin Version 3.0.4

Type Variable Manipulator

Usage StrLength <Destination> <String>

Arguments <Destination>

The output variable. Also the input variable if no source is specified.

<String>

The string whose length you want to measure.

Description Use the StrLength command to count the number of characters in a
variable and output that value to the destination variable.
Command Reference 143

144 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
5.2.76 StrLower

Table 5-76 Description of StrLower

Example Windows Application Definition

This example reads the password from #301 and then uses StrLength
to count the number of characters. If it is less that 4, an error message is
displayed.
Log on Dialog Box
Dialog
Class #32770
Title "Log on"
EndDialog.ReadText #301 ?Password
StrLength ?Length ?Password
If ?Length Lt "4"
MessageBox "Password is too short"
EndIf

Use with All

SecureLogin Version 3.0.4

Type Variable Manipulator

Usage StrLower <Destination> [<Source>]

Arguments <Destination>

The output variable. Also the input variable if no source is specified.

[<Source>]

The input variable. If not specified, SecureLogin reads the destination
variable, makes the necessary changes, and writes over the variable.

Description Use the StrLower command to modify a variable so that all the characters
are lower case.

If only a:

Destination variable is specified, the string is read from the
destination, then is stored back to it.

Source variable is specified, the string is read from the source, and
the modified value is stored in the destination variable. In this case,
the source variable remains unchanged.
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
5.2.77 StrUpper

Table 5-77 Description of StrUpper

Example Windows Application Definition

The example reads the username from #1001 and copies it into
?Username. The StrLower command is then used to make sure the
username is all lower case.
Log on Dialog Box
Dialog
Class #32770
Title "Log on"
EndDialog
ReadText #1001 ?Username
StrLower ?LowerCaseUsername ?Username
Type ?LowerCaseUsername #1002
Click #1

Use With All

SecureLogin Version 3.0.4

Type Variable Manipulator

Arguments <Destination>

The output variable. Also the input variable if no source is specified.

[<Source>]

The input variable. If not specified, SecureLogin reads the destination
variable, makes the necessary changes, and writes over the variable.

Description Use the StrUpper command to modify a variable so that all the
characters are upper case.

If only a:

Destination variable is specified, the string is read from the
destination and is then stored back to it.

Source variable is specified, the string is read from the source, and
the modified value is stored in the destination variable. In this case,
the source variable remains unchanged.
Command Reference 145

146 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
5.2.78 Sub/EndSub

Table 5-78 Description of Sub/EndSub

Example Windows Application Definition

This example reads the username from #1001 and copies it into
?Username. The StrUpper command is then used to make sure the
username is all upper case.
Log on Dialog Box
Dialog
Class #32770
Title "Log on"
EndDialog
ReadText #1001 ?Username
StrUpper ?UpperCaseUsername ?Username
Type ?UpperCaseUsername #1002
Click #1

Use With Startup, Terminal Launcher, Web and/or Windows

SecureLogin Version 3.5.1

Type Flow Control

Usage Sub <Name> EndSub

Arguments <Name>

Any name entered to identify the subroutine.

Description Use the Sub/EndSub commands around a block of lines within an
Application Definition to denote a subroutine.

You can also call a subroutine using the Call command. For more
information, see Section 5.2.10, “ChangePassword,” on page 64.
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
5.2.79 Submit

Table 5-79 Description of Submit

Example Terminal Launcher Application Definition

This example checks the emulator screen for the text Log on or Wrong
Password. If either is found, the appropriate subroutine is called and run
before the next part of the Application Definition.
If -Text "Log on"
Call "Log on"
EndIf
If -Text "Wrong Password"
Call "WrongPassword"
EndIf
Sub Login
Type $Username
Type @E
Type $Password
Type @E
EndSub
Sub WrongPassword
DisplayVariables "Enter correct password"
$Password
Call Login
EndSub

Use With Web

SecureLogin Version All

Type Action

Usage Submit

Arguments None
Command Reference 147

148 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
5.2.80 Subtract

Table 5-80 Description of Subtract

Description Use the Submit command only in Web Application Definitions, and only
with Internet Explorer to allow for enhanced control of how and when a form
is submitted. The Submit command performs a Submit on the form in
which the first password field is found. The Submit command is ignored if
used with Netscape.

The function performed by the Submit command is automatically
performed by Web Application Definition by default. For example, the
Application Definition:

Type $Username

Type $Password Password

Types the username and password and submits the form.

When Submits Do Not Occur Automatically

However, submits do not occur automatically if any of the following
commands are in the Application Definition: Type \N, Type \T,
Submit, or Click. If any of these commands are used, you must use the
Submit command or some other means to submit the form.

Furthermore, an automatic submit does not occur if you type text into a
specific text entry field. For example, in the Application Definition segment
below, the Submit command must follow the Type command for the
Application Definition to work properly:
Type $Username #1001
Submit

Example Web Application Definition

This example enters the username and password and then executes a
manual Submit.
Type $Username #1
Type $Password #2
Submit

Use With Startup, Terminal Launcher, Web and/or Windows

SecureLogin Version 3.0

Type Variable Manipulator

Usage Subtract <Start-Value> <Subtract-Value> [?Result]
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
Arguments <Start-Value>

The <Start-Value> argument is the start number from which the second
argument is subtracted. This argument contains the result if the optional
[?Result] argument is not passed in.

If used:

Without the [?Result] argument, then <Start-Value> must be a
SecureLogin variable, for example, ?StartValue or $StartValue.

With the [?Result] argument, then <Start-Value> can be a
SecureLogin variable or a numeric value.

<Subtract-Value>

The <Subtract-Value> argument is the number subtracted from the first
argument. <Subtract-Value> can be a SecureLogin variable or a numeric
value.

[?Result]

The result of the equation. This argument is optional, but If used, set to
<Start-Value> - <Subtract-Value>. The [?Result] must be a
SecureLogin variable, for example, $Result or ?Result.

Description Use the Subtract command to subtract one value from another. This is
useful if you are implementing periodic password change functionality for an
application. You can use the Subtract command (in conjunction with the
Divide function and the Slina DLL) to determine the number of days that
have elapsed since the last password change. Other numeric commands
include the Add, Divide, and Multiply.

For more information see Section 5.2.4, “Attribute,” on page 59 and
Section 5.2.22, “Divide,” on page 81.

NOTE: The Subtract command correctly subtracts when
<StartValue>, <Subtract-Value> and <Result-Value> are
between -2147483648 and +2147483647.

Syntax Examples Subtract "1" "2" ?Result

Subtract ?LoginAttempts ?LoginFailures

Subtract ?LoginAttempts ?LoginFailures ?Result

Subtract ?LoginAttempts "3"

Subtract ?LoginAttempts "3" ?Result

Example Windows Application Definition

This example reads the values of Control IDs 103 and 104 into variables.
From there they are subtracted, and typed into Control ID 1.
ReadText #103 ?Number1
ReadText #104 ?Number2
Subtract ?Number1 ?Number2 ?Result
Type ?Result
Command Reference 149

150 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
5.2.81 Tag/EndTag

Table 5-81 Description of Tag/End Tag

5.2.82 TextInput

Table 5-82 Description of TextInput

Use With Advanced Web Application Definition

SecureLogin Version All

Type Tag Specifier

Usage Tag

EndTag

Arguments None

Description Use the Tag/EndTag commands to find HTML tags.

Example This example finds the form that has an attribute of name with a value of log
on.
Tag "Form"
Attribute "Name"
"Log on"EndTag

Use With Advanced Web Application Definitions created using the Web Wizard.

SecureLogin Version 3.5.1

Type Action

Usage TextInput #FormID:FieldID -value "value"

Arguments #FormID

The ID to be given to the matched form. The ID must be a static unsigned
integer.

#FieldID

The ID to be given to the matched field. The ID must be a static unsigned
integer.

-value "value"

The text value to be input.

Description Used inside a Site block to input text into a specied field.
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
5.2.83 Title

Table 5-83 Description of Title

Example In this example the text value of the system username and Password are
passed to the Application Definition.
=== Login Application Definition #2 ==
=== Google Initial Login ====
#==
Site Login -userid “Google Log On” -initial
MatchDomain “www.google.com”
MatchField #1:1 -name “Email” -type “text”
MatchField #1:2 -name “Passwd” -type “password”
MatchField #1:3 -name “Cookie” -type “check”
EndSite
SetPrompt “Enter your user credentials”
TextInput #1:1 -value “$Username”
TextInput #1:2 -value “$Password”
FocusInput#1:2 -focus “true”
BooleanInput #1:3 -check “false”
PressInput
Endscript

Use With Java, Windows

SecureLogin Version All

Type Dialog Specifier

Usage Title <Window-Title>

Arguments <Window-Title>

The text to test against the window title.
Command Reference 151

152 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
5.2.84 Type

Table 5-84 Description of Type

Description Use the Title command to retrieve the title of a window and compare it
against the string specified in the <Window-Title> argument. For this
block of the Application Definition to run, the retrieved window title and
the <Window-Title> argument must match the text supplied to the Title
command in the dialog block.

Title is one of the main commands to identify a window. However, the
Title command alone may not be enough - if there is more than one
window in a platform (application) with the specified title, the SecureLogin
Application Definition will run every time that window is detected.

Always place the Title command after all other commands in the
Dialog block.

Uniquely Identifying a Window

To uniquely identify a window, the Title command is typically used with
the Class or Ctrl commands. For more information, see
Section 5.2.11, “Class,” on page 66 and Section 5.2.16, “Ctrl,” on
page 74.

NOTE: Use the SecureLogin Window Finder tool to determine the
window title.

Example Windows Application Definition

This example tests the dialog box to see if it has the correct title. If the title
is not correct, the Application Definition passes on to the next Dialog
block.
Log on Dialog Box
Dialog
Class #32770
Title "Logon"
EndDialog
Type $Username #1001
Type $Password #1002
Click #1

Use With Java, Terminal Launcher, Web and/or Windows

SecureLogin version All

Type Action

Terminal Usage Type [-Raw] <Text>

Windows Usage Type <Text> [<#Ctrl-ID>]

Type [-Raw] <Text>

Web Usage Type <Text> [<#Field-ID>]

Type <Text> ["password"]
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
Arguments [-Raw]

By default, when typing into a Terminal Emulator or Windows application,
SecureLogin verifies that the window exists before continuing. This
verification process is disabled when the -Raw argument is provided.
Further, instead of trying to set the text in the field directly, this option
simulates actual keystrokes, causing SecureLogin to type into whichever
window has focus.

<Text>

The text to type into this area. This text can be static text, such as ABC or
any SecureLogin variable, such as $Username.

[<#Ctrl-ID>]

For Windows Application Definitions, this optional argument specifies the
control into which to type the text. Use the Windows Finder Tool to extract
these control IDs. For more information, see Windows Specific on page
151.

[<#Field-ID>]

For Web Application Definitions, this optional argument specifies the text
field into which to type the text. For more information, see Web Specific
on page 151.

[password]

For Web Application Definitions, this optional argument specifies to
perform this type into the password field on this form. If [password] is
used, that application's Application Definition cannot use a <#Ctrl-ID>
argument. For more information, see Web Specific on page 151.
Command Reference 153

154 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
Description Use the Type command to enter data, such as usernames and
passwords into applications. There are reserved character sequences
that are used to type special characters, for example TAB and ENTER. If
it is not possible to determine Control IDs in a Windows application, and
the Type command is not working, use the SendKey command instead.
For more information see Section 5.2.66, “SendKey,” on page 132.

Windows Specific

In Windows, if the <#Ctrl-ID> argument is:

Provided, it must be a number that refers to a control ID as identified
by the Windows Finder Tool. SecureLogin Single Sign-On will then
send the contents of the <Text> argument directly to the window
and to the specific control that matches the <#Ctrl-ID> argument.

Not specified, SecureLogin will send keystrokes to whichever
control has focus. In the Windows environment, the -Raw option is
often useful when the Window Finder Tool is unable to determine
control IDs for the text entry areas of an application, or these control
IDs are changing. If using the -Raw option, then you cannot use the
<#Ctrl-ID> argument.

Web Specific

For Web pages there are two ways to specify which field receives
<Text>.

The first method uses absolute positioning by means of the
<#FieldID> argument. The <#Field-ID> is a number that refers
to the location of the field within the HTML form. For example, #1
refers to the first text entry field in the Web form; #2 refers to the
second text entry field, and so on.

The second method uses relative position using the password
argument. In this method the SecureLogin agent first locates the text
field within the HTML form that is a password field, and types
<Text> into that field. Other type commands send their <Text>
parameters to fields that are relative to the first password field.

For example, the Type command immediately preceding the Type
command that has the [Password] argument, is sent to the text field
immediately preceding the first password field. See Web Application
Definition on page 153.

Example 1 Windows Application Definition

This example is a typical use of the Type command in a Windows
Application Definition.
Log on Dialog Box
Dialog
Class #32770
Title "Log on"
EndDialog
Type $Username #1001
Type $Password #1002
Type "DB2" #1003
Click #1
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
5.2.85 Sending Keyboard Commands Using Type
SecureLogin can send special keyboard keystrokes to Windows and Internet based applications to
emulate the user's keyboard entry. The Type command can pass keystrokes through to the window
that the Application Definition is working. These special commands include the ability to select
Menu items, send ALT, and send other keyboard combinations.

Special Key Commands

Table 5-85 Description of Special Key Commands

Example 2 Windows Application Definition

This example shows the use of the -Raw switch. This switch is not
actually required in this instance, and is only there as an example.
Calculator Is Active
Dialog
Class #SciCalc
Title "Calculator"
EndDialog
Type -Raw "15"
Type -Raw "+"
Type -Raw "20"
Type -Raw "="

Example 3 Web Application Definition

This example uses the SecureLogin agent to automatically generate this
Application Definition for the mail.yahoo.com site. This example shows
the use of Password as the [<Field Name>] argument.
Type $Username
Type $Password Password

In the Application Definition above, the SecureLogin agent locates the
first password field. The first Type command sends $Username to the
field immediately before the password field. The second Type command
sends $Password to the password field. The same Application Definition
could be rewritten using absolute placement as shown below. In the
following example, the Submit command is also used to automatically
submit the page.
Type $Username #1
Type $Password #2
Submit

Type Simulates

\Alt+<key> Pressing the ALT key plus the desired <key>.

\Shift+<key> Pressing the SHIFT key plus the desired <key>.

\Ctrl+<key> Pressing the CTRL key plus the desired <key>.

\LWin+<key> Pressing the left Windows key plus the desired <key>.

\RWin+<key> Pressing the right Windows key plus the desired <key>.
Command Reference 155

156 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
Raw Key Commands

You can also use the Type command to send a combination of raw key commands. For more
information on available keyboard sequences you can use with the Type command see Section 7.1,
“Windows Keyboard Functions,” on page 165.

Table 5-86 Description of Raw Key Commands

Type Commands Used with Terminal Launcher

Terminal Launcher uses the High Level Language Application Programming Interface (HLLAPI) to
interface with a wide range of mainframe emulators that implement this programming standard. The
list are the @ commands that you can use in the SecureLogin Application Definition Type
command. These commands perform specific emulator and mainframe functions. For example, you
can send an ENTER, TAB, or cursor key or issue a mainframe emulator print screen or reset
function.

The @ commands are used in Application Definition language in the following format:

TYPE @ command

WAITFORTEXT "Log on:"

Type $username

Type @T

Type $password

Type @E

For more information on the available terminal emulator commands that you can use within a
terminal emulator Application Definition see Chapter 7, “Reference Commands and Keys,” on
page 165.

5.2.86 WaitForFocus

Table 5-87 Description of WaitForFocus

\Apps+<key> Pressing the Application key plus the desired <key>.

Type Simulates

 \|<xxx> The format for sending a raw key command, where <xxx> represents the keyboard
code.

 \18+65 Pressing the ALT-A keys in sequence.

Use With Windows

SecureLogin Version All

Type Flow Control

Type Simulates
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
5.2.87 WaitForText

Table 5-88 Description for WaitForText

Usage WaitForFocus <#Ctrl-ID> [<Repeat-Loops>]

Arguments <#Ctrl-ID>

The ID number of the control with the focus.

[<Repeat-Loops>]

The number of repeat-loops that will run.

Description Use the WaitForFocus command to suspend the running of the
Application Definition until the <#Ctrl-ID> has received keyboard
focus, or the <Repeat-Loops> expire. The <Repeat-Loops> is an
optional value that defines the number of loop cycles to run. The
<Repeat-Loops> value defaults to 3000 loops if nothing is set. Once
focus is received, the Application Definition continues.

Set the figure to a negative number (for example WaitForFocus
"#1065" "-1") for the <Repeat-Loops> never to expire. If the
<#Ctrl-ID> is set to 0 (zero), it loops until the window defined in the
Dialog/ EndDialog statement is given keyboard focus.

NOTE: Do not place WaitForFocus commands within Dialog /
EndDialog statements.

Syntax Examples WaitForFocus #301

WaitForFocus #301 "2000"

WaitForFocus #301 "0"

WaitForFocus #301 "-1"

Example Windows Application Definition

This example has the SecureLogin waiting indefinitely for window #301
to get focus. Once the Logon dialog box is detected, it enters the user
credentials.
Log on Dialog Box
Dialog
Class #32770
Title "Log on"
EndDialog
WaitForFocus #301 "-1"
Type $Username
Type \T
Type $Password
Type \N

Use With Terminal Launcher

SecureLogin Version All
Command Reference 157

158 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
Type Flow Control

Usage WaitForText <Text>

Arguments <Text>

The text for which the Application Definition is waiting.

Description Use the WaitForText command so the Terminal Launcher waits for
the specified <Text> to display before continuing. This command
allows the user to wait for particular text to display before continuing.
For example, waiting for a username field to display before attempting
to type a username.

The <Text> may appear anywhere on the terminal screen and is
usually case sensitive (this depends on the Terminal Emulator itself). If
the <Text> is written in the wrong case, the terminal launcher will
pause and try to find the correct <Text> in the correct case, until the
terminal screen times out.

If WaitForText is not working, try leaving the initial letter off the
<Text> to avoid any conflict with case sensitivity. For example,
WaitForText ogin will work regardless of whether the word log on is
presented on the terminal screen as Log on or log on. However,
WaitForText "Log on" will only work if the word log on is presented
on the screen as "Log on".

Also, some terminal emulators will not correctly match text that is hard
against the left margin of the window. Again, if you encounter this
situation try to match text without the leading character.

Example Terminal Launcher Application Definition

This command uses the SecureLogin to wait for the text ogin: to appear
on the emulator screen before entering the username. It will then wait
for assword: to display before entering the password.
WaitForText "ogin:"
Type $Username
Type @E
WaitForText "assword:"
Type $Password
Type @E
reLogin 6.0 SP1 Application Definition Guide

6
novdocx (E

N
U

) 10 A
ugust 2006
6Testing Application Definitions

This section contains the following information:

Section 6.1, “Using the SecureLogin Test Application,” on page 159

6.1 Using the SecureLogin Test Application
To allow Administrators and other Application Definition writers to practice their Application
Definition creation skills, the Password Test application is included in the software package. It is
designed to replicate an application logon panel and supports the following processes:

Initial log on
Wrong password
Password change

If you do not have the test application, contact Novell Technical Support.

The following example, Application Definition for the Password Test application, further explains
the SecureLogin Application Definition principles.

6.1.1 Example Application Definition for the Test Application
The Application Definition for the PSL Password Test Application (PasswordTest.Exe)
provides an example of a typical Windows* Application Definition, including error handling and
changing the password. Remember, the password for this application is hard coded to single when
the application is closed and restarted. This can cause confusion when setting strong password
policies and changing passwords. You must also create a password policy called
PwdTestPolicy, per the password policy defined in this Application Definition. The password
policy must require a minimum of 6 characters, but no complex rules, in order to use single as a
password.

Here is the sample Application Definition in its entirety. Following this Application Definition is the
explanation of what each section does.
Set Password Policy
RestrictVariable $Password PwdTestPolicy
Application Definition continued on the next page
==== BeginSection: Log on ====
Dialog
Class "#32770"
Ctrl #1001
Title "Log on"
EndDialog
SetPrompt "Username =====>"
Type $Username #1001
SetPrompt "Password =====>"
Type $Password #1002
SetPrompt "Domain =====>"
Type $Domain #1003
Click #1
Testing Application Definitions 159

160 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
SetPrompt "Please enter your Username and Password to access NSL Test.
SecureLogin will remember and automatically log you on in future. IT
Helpdesk x4546"
==== EndSection: Log on ====
==== BeginSection: Log on Failure ====
Dialog
Class "#32770"
Title "Log on Failure"
EndDialog
Read the error message and set it as a temporary variable, then clear
it
ReadText #65535 ?ErrorMessage
Click #2
If log on failed, display the current stored Username and Password
and prompt the user to verify them, then retry log on
If "You have failed to log on." -In ?ErrorMessage
DisplayVariables "Log on to PSL Test Application failed. The password
for this app must be single when it first starts up. IT Helpdesk x4563"
Press Alt>F and L to invoke the Logon box so the User doesn't have
to.
Type -Raw "\Alt+F"
Type -Raw "L"
Type $Username
Type $Password
Type $Domain
EndIf
==== EndSection: Log on ====
==== Begin Section: Change Password ====
Change Password Dialog Box
Dialog
Class "#32770"
Title "Change Password"
EndDialog
Backup password, fill in the Old Username and Password, then start
the change password routine
Application Definition continued on the next page
Set ?PwdBackup $Password
Type $Username #1015
Type $Password #1004
ChangePassword ?NewPwd "Please enter a new password for the
application."
Type ?NewPwd #1005
Type ?NewPwd #1006
Click #1
Change Password Successful message
Dialog
Class "#32770"
Ctrl #65535 "You have changed the password successfully."
Title "Change Successful"
EndDialog
Clear Application owned message and accept new password
Click #2
Set $Password ?NewPwd
==== End Section: Change Password ====
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
6.1.2 Application Definition Explained
You can use the same Application Definition to show what function each section performs.
Dialog/EndDialog blocks define a windows dialog box. When the dialog box appears,
SecureLogin detects this dialog box is based on the information found within the dialog block. The
Dialog/EndDialog block must contain enough information for the block to be unique, or the
Application Definition will run when other dialog boxes owned by the same executable with the
same information appear.

When SecureLogin detects all the information between Dialog and EndDialog is contained in
the dialog box on the screen (for example, the application logon box, the change password box, or
the failed logon box), it runs the Application Definition commands until it sees the next dialog
statement or the end of the Application Definition, whichever is applicable. The order does not
matter in windows Application Definitions, because SecureLogin watches for all dialog boxes while
the executable is running. Use a logical order for troubleshooting purposes.

6.1.3 Dialog Boxes
The following Application Definition example shows screen captures of the relevant dialog boxes.
You can use the Window Finder tool to gather information about the title of the window, class
names, dialog IDs, and so on. Use the wizard to automate the Application Definition creation.

Table 6-1 Description

 Application Definition SectionComments Comments

Set Password PolicyRestrictVariable
$Password PwdTestPolicy

This restricts the $Password variable to comply
with the Password Policy "PwdTestPolicy".

==== BeginSection: Log on ====Dialog
Class "#32770" Ctrl #1001 Title "Log
on"EndDialog

When PasswordTest.Exe runs, SecureLogin
will watch for dialog boxes that appear and
match the information defined between the
Dialog/EndDialog commands.

You can specify all values, or a few, as long as
the information specified is unique to that
dialog box.

SetPrompt "Username =====>
"Type $Username #1001
SetPrompt "Password =====>
"Type $Password #1002
SetPrompt "Domain =====>"
Type $Domain #1003
Click #1
SetPrompt "Please enter your Username and
Password to access NSL Test. SecureLogin
will remember and automatically log you
on in future. IT Helpdesk x4546"
==== EndSection: Log on ====

Type the stored ($) Username variable into
#1001, and so on. SetPrompt is used to
customize the window the user sees when they
have no credentials stored.

When the user first runs a newly single sign-on
enabled application, SecureLogin will prompt
for their logon credentials, and store and
remember them for future log on attempts.
Testing Application Definitions 161

162 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
Title is Log on.

Class is #32770.

Username field is Control ID #1001.

Password field is Control ID #1002.

Other field is Control ID #1003.

The OK button is Control ID #1.

This dialog box is only displayed the first time
the Application Definition is run by a user. It
prompts the user to enter their credentials for
SecureLogin to store them.

The SetPrompt command is used throughout
the example Application.

This is the logon failure dialog box.

Title is logon Failure.

Class is #32770.

The OK button is Control ID #2.

The error message is Control ID #65535

This is the change password dialog box.

Username field is Control ID #1015.

Old Password field is Control ID #1004.

New Password field is Control ID #1005.

Confirm field is Control ID #1006.

The OK button is Control ID #1.

 Application Definition SectionComments Comments
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
The ChangePassword command is used in
the example Application Definition to display a
dialog box for the user to enter their new
password.

The dialog box is customized to provide more
information for the user.

 Application Definition SectionComments Comments
Testing Application Definitions 163

164 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
reLogin 6.0 SP1 Application Definition Guide

7
novdocx (E

N
U

) 10 A
ugust 2006
7Reference Commands and Keys

This section contains the following information:

Section 7.1, “Windows Keyboard Functions,” on page 165

7.1 Windows Keyboard Functions
The following tables list the Windows* keyboard functions. You can use these functions in
conjunction with the Type command by referencing the appropriate keyboard code.

For more information about the Type command, see Section 5.2.84, “Type,” on page 152.

7.1.1 Example for Typing Keys
Do not type quotation marks before and after the keys. In this case the keys are taken literally, as
shown in the following table.

Table 7-1 Example Typing Keys

7.1.2 Table of Windows Keyboard Functions

Table 7-2 Enter Table Title Here

For this Command Type

Alt+Print Screen \Alt+\|44

Shift+Home \Shift+\|36

Shift+End \Shift+\|35

Function Decimal Comment

Left Mouse button 1

Right Mouse button2 2

CTRL-Break 3

Middle Mouse button 4

X1 Mouse button 5

X2 Mouse button 6

Backspace 8

Tab 9

Clear 12 5 on the keypad
Reference Commands and Keys 165

166 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
Enter 13

Shift 16

CTRL 17

ALT 18

Pause 19

Cap Lock 20

Escape 27

Space 32

Page Up 33

Page Down 34

End 35

Home 36

Left Arrow 37

Up Arrow 38

Right Arrow 39

Down 40

Select 41

Execute 43

Print 44

Insert 45

Delete 46

Help Key 47

0 48

1 49

2 50

3 51

4 52

5 53

6 54

7 55

8 56

9 57

Function Decimal Comment
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
A 65

B 66

C 67

D 68

E 69

F 70

G 71

H 72

I 73

J 74

K 75

L 76

M 77

N 78

O 79

P 80

Q 81

R 82

S 83

T 84

U 85

V 86

W 87

X 88

Y 89

Z 90

Left Windows Key 91

Right Windows Key 92

Application Key 93

Sleep Key 94

Keypad 0 96

Keypad 1 97

Function Decimal Comment
Reference Commands and Keys 167

168 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
Keypad 2 98

Keypad 3 99

Keypad 4 100

Keypad 5 101

Keypad 6 102

Keypad 7 103

Keypad 8 104

Keypad 9 105

Keypad Asterisk (*) 106

Keypad Plus Sign (+) 107

Keypad Separator 108

Keypad Minus Sign (-) 109

Keypad Period (.) 110

Keypad Slash mark (/) 111

F1 Key 112

F2 Key 113

F3 Key 114

F4 Key 115

F5 Key 116

F6 Key 117

F7 Key 118

F8 Key 119

F9 Key 120

F10 Key 121

F11 Key 122

F12 Key 123

F13 Key 124

F14 Key 125

F15 Key 126

F16 Key 127

F17 Key 128

F18 Key 129

Function Decimal Comment
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
F19 Key 130

F20 Key 131

F21 Key 132

F22 Key 133

F23 Key 134

F24 Key 135

Num Lock Key 144

Scroll Lock 145

Left Shift 160

Right Shift 161

Left Control 162

Right Control 163

Left Menu 164

Right Menu 165

Browser Back Key 166 Applies to Windows 2000 +

Browser Forward Key 167 Applies to Windows 2000 +

Browser Refresh Key 168 Applies to Windows 2000 +

Browser Stop Key 169 Applies to Windows 2000 +

Browser Search Key 170 Applies to Windows 2000 +

Browser Favorites Key 171 Applies to Windows 2000 +

Browser Start and Home Key 172 Applies to Windows 2000 +

Volume Mute Key 173 Applies to Windows 2000 +

Volume Down Key 174 Applies to Windows 2000 +

Volume Up Key 175 Applies to Windows 2000 +

CD Next Track Key 176 Applies to Windows 2000 +

CD Previous Track Key 177 Applies to Windows 2000 +

CD Stop Media Key 178 Applies to Windows 2000 +

CD Play/Pause Key 179 Applies to Windows 2000 +

Launch Mail Key 180 Applies to Windows 2000 +

Media Select Key 181 Applies to Windows 2000 +

Start Application 1 Key 182 Applies to Windows 2000 +

Start Application 2 Key 183 Applies to Windows 2000 +

Function Decimal Comment
Reference Commands and Keys 169

170 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
7.1.3 Terminal Emulator Command Reference
The following table lists the terminal commands in Terminal Emulator Application Definitions.

Table 7-3 Terminal Emulator Command Reference

; 186 Semi Colon/Colon

= 187 Equals/Plus Key

, 188 Comma/Less Than

- 189 Minus/Underscore

. 190 Period/Greater Than

/ 191 Slash/Question Mark

` 192 Single Open Quote/Tilde

[219 Left Square/Curley Bracket

\ 220 Back slash/Pipe

] 221 Right Square/Curley Bracket

' 222 Single Close Quote Double
Quote

Play Key 250

Zoom Key 251

The Type Command Meaning The Type Command Meaning

@B Left Tab @A@C Test

@C Clear @A@D Word Delete

@D Delete @A@E Field Exit

@E Enter @A@F Erase Input

@F Erase EOF @A@H System Request

@H Help @A@I Insert Toggle

@I Insert @A@J Cursor Select

@J Jump (Set Focus) @A@L Cursor Left Fast

@L Cursor Left @A@Q Attention

@N New Line @A@R Device Cancel (Cancels
Print Presentation
Spaces)

@O Space @A@T Print Presentation
Space

Function Decimal Comment
reLogin 6.0 SP1 Application Definition Guide

novdocx (E
N

U
) 10 A

ugust 2006
@P Print @A@U Cursor Up Fast

@R Reset @A@V Cursor Down Fast

@T Right Tab @A@Z Cursor Right Fast

@U Cursor Up @A@9 Reverse Video

@V Cursor Down @A@b Underscore

@X* DBCS (reserved) @A@c Reset Reverse Video

@Y Caps Lock (No action) @A@d Red

@Z Cursor Right @A@e Pink

@0 Home @A@f Green

@1 PF1/F1 @A@g Yellow

@2 PF2/F2 @A@h Blue

@3 PF3/F3 @A@i Turquoise

@4 PF4/F4 @A@l Reset Host Colours

@5 PF5/F5 @A@j White

@6 PF6/F6 @A@t Print (personal
Computer)

@7 PF7/F7 @A@y Forward Word Tab

@8 PF8/F8 @A@z Backward Word Tab

@9 PF9/F9 @A@ -Field-

@a PF10/F10 @A@< Record Backspace

@b PF11/F11 @A@ +Field+

@c PF12/F12 @S@x Dup

@d PF13 @S@E Print Presentation
Space or Host

@e PF14 @S@y Field Mark

@f PF15 @X@c Split Vertical Bar (|)

@g PF16 @X@7 Forward Character

@h PF17 @X@6 Display Attribute

@i PF18 @X@5 Generate SO/SI

@j PF19 @X@1 Display SO/SI

@k PF20 @M@0 VT Numeric Pad 0

@l PF21 @M@1 VT Numeric Pad 1

@m PF22 @M@2 VT Numeric Pad 2

The Type Command Meaning The Type Command Meaning
Reference Commands and Keys 171

172 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
@n PF23 @m@3 VT Numeric Pad 3

@o PF24 @M@4 VT Numeric Pad 4

@q End @M@5 VT Numeric Pad 5

@s SrcLk (No action) @M@6 VT Numeric Pad 6

@t Num Lock (No action @M@7 VT Numeric Pad 7

@u Page Up @M@8 VT Numeric Pad 8

@v Page Down @M@9 VT Numeric Pad 9

@x PA1 @M@- VT Numeric Pad

@y PA2 @M@, VT Numeric Pad

@z PA3 @M@. VT Numeric Pad

@M@h VT Hold Screen @M@e VT Numeric Pad Enter

@M@N Control Code SO @M@f VT Edit Find

@M@M Control Code CR @M@i VT Edit Insert

@M@L Control Code FF @M@r VT Edit Remove

@M@K Control Code VT @M@s VT Edit Select

@M@J Control Code LF @M@p VT Edit Previous
Screen

@M@I Control Code HT @M@n VT Edit Next Screen

@M@H Control Code BS @M@a VT PF1

@M@G Control Code BEL @M@b VT PF2

@M@F Control Code ACK @M@c VT PF3

@M@(space) Control Code NUL @M@d VT PF4

@M@E Control Code ENQ @M@O ControlCode S1

@M@D Control Code EOT @M@Q ControlCode DC1

@M@C Control Code ETX @M@P ControlCode DLE

@M@B Control Code STX @M@A ControlCode SOH

The Type Command Meaning The Type Command Meaning
reLogin 6.0 SP1 Application Definition Guide

8
novdocx (E

N
U

) 10 A
ugust 2006
8Application Definition Commands
for SNMP Alerts

SecureLogin produces SNMP (Simple Network Management Protocol) for network monitoring
software to trap. A simple application definition command is used to send the alerts.

NOTE: You may have to copy the LIBSNMP.DLL file to the Windows\System32 directory for
SNMP support to work.

8.1 Create the SNMP Alert
In order to produce an SNMP alert, place the following command in the Application Definition
where you would like to create the alert:

Run C:\Progra~1\Novell\Secure~1\Slsnmp.exe <Community Name>
<Host IP Address> <Text>

Where:

<Community Name> is the case-sensitive community name to which this computer sends
trap messages.
<Host IP Address> is the IP address of the SNMP host.
<Text> is the text displayed as the message at the host.

8.2 Example
The following is an example Application Definition:
Dialog
Class #32770
Title "Incorrect Password"
EndDialog
Run C:\Progra~1\Novell\Secure~1\Slsnmp.exe SNMPCommunity1
192.168.156.23 "PSL - Incorrect password in finance system."
MessageBox "You have entered an incorrect password. The administrator
has been notified. Please restart the application and try again."
KillApp "PasswordText.exe"
Application Definition Commands for SNMP Alerts 173

174 Novell Secu

novdocx (E
N

U
) 10 A

ugust 2006
reLogin 6.0 SP1 Application Definition Guide

Documentation Updates

A
novdocx (E

N
U

) 10 A
ugust 2006

175

ADocumentation Updates

This section lists updates to the Novell SecureLogin 6.0 Application Definition Guide that have
been made since the initial release of Novell SecureLogin 6.0.

The information helps you to keep current on documentation updates and, in some cases, software
updates (such as a Support Pack release).

The information is grouped according to the date when the Novell SecureLogin 6.0 Application
Definition Guide was republished. Within each dated section, the updates are listed by the names of
the main table of contents sections.

The Novell SecureLogin 6.0 Application Definition Guide has been updated on the following dates:

Section A.1, “December 12, 2006,” on page 175
Section A.2, “October 13, 2006,” on page 175

A.1 December 12, 2006

A.2 October 13, 2006

Location Description

Section 5.2.17, “DebugPrint,” on page 75 Description of DebugPrint command included.

Section 5.2.18, “Decrement,” on page 76 Description of Decrement command included.

Section 5.2.48, “MatchOption,” on page 106 Description of MatchOption command included.

Section 5.2.49, “MatchReferer,” on page 107 Description of MatchReferer command included.

Location Description

Section 5.2.1, “Regular Expressions,” on page 55 A section with information on Regular Expressions
included.

	Novell SecureLogin 6.0 SP1 Application Definition Guide
	About This Guide
	1 Command Quick Reference
	2 Application Definition Language Overview
	2.1 Using Application Definitions
	2.2 Advantages of Using Application Definitions
	2.3 Defining Single Sign-On Enabled Applications
	2.4 Corporate Definitions
	2.5 What is an Application Definition?
	2.5.1 Using with Dialog Specifier Commands
	2.5.2 Capability to Read from and Write to Variables

	3 Managing Application Definitions
	3.1 Application Definition Checklist
	3.2 Exporting and Importing Predefined Applications and Application Definitions
	3.2.1 Export Using an XML File
	3.2.2 Importing in XML Format
	3.2.3 Modifying in the Personal Management Utility
	3.2.4 Building an Application Definition in the Personal Management Utility

	3.3 Windows Application Definition Tools
	3.3.1 Finding Application Details With Window Finder
	3.3.2 Finding Application Details with the Login Watcher

	3.4 Application Definition Elements

	4 Application Definition Variables
	4.1 Types of Variables
	4.1.1 Using a Variable to Change the Default Platform
	4.1.2 Directory Attribute Variables
	4.1.3 Stored Variables
	4.1.4 Runtime Variables
	4.1.5 Passticket Variables

	4.2 SecureLogin Supported Variables
	4.3 Application Definition Conventions
	4.3.1 Symbols Used
	4.3.2 Capitalization
	4.3.3 Comments
	4.3.4 Switches
	4.3.5 Variables
	4.3.6 Indent Sections
	4.3.7 Blank Line Between Sections
	4.3.8 Quotation Marks
	4.3.9 Password Policy Names

	5 Command Reference
	5.1 Command Reference Conventions
	5.1.1 Command Information
	5.1.2 Web Wizard Application Definition Conventions
	5.1.3 Site Matching
	5.1.4 Form/Field/Option Matching
	5.1.5 Form/Field/Option ID’s
	5.1.6 Audit Integration
	5.1.7 One Time Passwords

	5.2 Commands
	5.2.1 Regular Expressions
	5.2.2 AAVerify
	5.2.3 ADD
	5.2.4 Attribute
	5.2.5 AuditEvent
	5.2.6 BeginSplashScreen/EndSplashScreen
	5.2.7 Break
	5.2.8 BooleanInput
	5.2.9 Call
	5.2.10 ChangePassword
	5.2.11 Class
	5.2.12 ClearPlat
	5.2.13 ClearSite
	5.2.14 Click
	5.2.15 ConvertTime
	5.2.16 Ctrl
	5.2.17 DebugPrint
	5.2.18 Decrement
	5.2.19 Delay
	5.2.20 Dialog/EndDialog
	5.2.21 DisplayVariables
	5.2.22 Divide
	5.2.23 DumpPage
	5.2.24 EndScript
	5.2.25 Event
	5.2.26 Event Specifiers
	5.2.27 FocusInput
	5.2.28 GenerateOTP
	5.2.29 GetCheckBoxState
	5.2.30 GetCommandLine
	5.2.31 GetEnv
	5.2.32 GetIni
	5.2.33 GetMD5
	5.2.34 GetReg
	5.2.35 GetSessionName
	5.2.36 GetText
	5.2.37 GetURL
	5.2.38 GoToURL
	5.2.39 If/Else/Endif
	5.2.40 Include
	5.2.41 Increment/Decrement
	5.2.42 KillApp
	5.2.43 Local
	5.2.44 MatchDomain
	5.2.45 MatchForm
	5.2.46 MatchField
	5.2.47 MatchForm
	5.2.48 MatchOption
	5.2.49 MatchReferer
	5.2.50 MatchURL
	5.2.51 MessageBox
	5.2.52 Multiply
	5.2.53 OnException/ClearException
	5.2.54 Parent/EndParent
	5.2.55 PickListAdd
	5.2.56 PickListDisplay
	5.2.57 PositionCharacter
	5.2.58 PressInput
	5.2.59 ReadText
	5.2.60 RegSplit
	5.2.61 ReLoadPlat
	5.2.62 Repeat/EndRepeat
	5.2.63 RestrictVariable
	5.2.64 Run
	5.2.65 SelectListBoxItem
	5.2.66 SendKey
	5.2.67 Set
	5.2.68 SetCheckBox
	5.2.69 SetCursor
	5.2.70 SetFocus
	5.2.71 SetPlat
	5.2.72 SetPrompt
	5.2.73 Site/EndSite
	5.2.74 StrCat
	5.2.75 StrLength
	5.2.76 StrLower
	5.2.77 StrUpper
	5.2.78 Sub/EndSub
	5.2.79 Submit
	5.2.80 Subtract
	5.2.81 Tag/EndTag
	5.2.82 TextInput
	5.2.83 Title
	5.2.84 Type
	5.2.85 Sending Keyboard Commands Using Type
	5.2.86 WaitForFocus
	5.2.87 WaitForText

	6 Testing Application Definitions
	6.1 Using the SecureLogin Test Application
	6.1.1 Example Application Definition for the Test Application
	6.1.2 Application Definition Explained
	6.1.3 Dialog Boxes

	7 Reference Commands and Keys
	7.1 Windows Keyboard Functions
	7.1.1 Example for Typing Keys
	7.1.2 Table of Windows Keyboard Functions
	7.1.3 Terminal Emulator Command Reference

	8 Application Definition Commands for SNMP Alerts
	8.1 Create the SNMP Alert
	8.2 Example

	A Documentation Updates
	A.1 December 12, 2006
	A.2 October 13, 2006

