
Service Desk 25.1
ZENworks Service Desk Developer

Resources
January 2025

Legal Notices
For information about legal notices, trademarks, disclaimers, warranties, export and other use restrictions, U.S.
Government rights, patent policy, and FIPS compliance, see https://www.microfocus.com/en-us/legal.

© Copyright 2008 - 2025 Open Text

The only warranties for products and services of Micro Focus and its affiliates and licensors (“Open Text”) are set forth in
the express warranty statements accompanying such products and services. Nothing herein should be construed as
constituting an additional warranty. Micro Focus shall not be liable for technical or editorial errors or omissions contained
herein. The information contained herein is subject to change without notice.
2

https://www.microfocus.com/en-us/legal

Contents
About This Guide 5

1 ZENworks Service Desk Developer Resources 7
1.1 Rest APIs . 7

1.1.1 Add note to the request – Technician Portal . 7
1.1.2 Bulk Request Update (Close, Reopen and Delete) – Technician Portal 10
1.1.3 Add Attachment to the Request/Note – Technician Portal . 11

1.2 Developer . 12
1.2.1 Integrations . 12
1.2.2 Connectors . 13

1.3 Localizing Service Desk ITSM . 13
1.3.1 Getting Started . 14
1.3.2 Customizing Strings . 14
1.3.3 Simple Messages . 14
1.3.4 Compound Messages . 15
1.3.5 Locales . 15

1.4 ZSD Extensions . 16
1.4.1 Building the Extension . 16
1.4.2 WorkflowListener Arguments . 16
1.4.3 LifecycleListener Arguments . 18
1.4.4 Implementing a Listener . 18
1.4.5 Making the Extension Available to ZSD. 20
1.4.6 Configuring ZSD to Use the Extension. 20

1.5 ZSD Store Extensions . 20
1.5.1 Building the Extension . 21
1.5.2 ExternalStoreExtension Arguments. 21
1.5.3 Implementing the Store Extension . 22
1.5.4 Making the Store Extension Available to ZSD. 23
1.5.5 Configuring ZSD to Use the Extension. 23
Contents 3

4

About This Guide

This document includes ZENworks Service Desk developer resources.

Audience
This guide is intended for developers.

Feedback
We want to hear your comments and suggestions about this manual and the other documentation
included with this product. Please use the User Comments feature at the bottom of each page of the
online documentation.

Additional Documentation
ZENworks Service Desk is supported by other documentation that you can use to learn about and
implement the product. For additional documentation, see the ZENworks Service Desk
documentation site.
About This Guide 5

https://www.novell.com/documentation/zenworks-service-desk/
https://www.novell.com/documentation/zenworks-service-desk/

6 About This Guide

1 1ZENworks Service Desk Developer
Resources

This appendix contains some useful ZENworks Service Desk developer resources.

 Section 1.1, “Rest APIs,” on page 7
 Section 1.2, “Developer,” on page 12
 Section 1.3, “Localizing Service Desk ITSM,” on page 13
 Section 1.4, “ZSD Extensions,” on page 16
 Section 1.5, “ZSD Store Extensions,” on page 20

1.1 Rest APIs
The REST APIs can be accessed using the following URL:

 https://<zenworks_service_desk_server>/servicedesk-apidocs/

Where zenworks_service_desk_server is ZENworks Service Desk server IP or hostname.

1.1.1 Add note to the request – Technician Portal
[POST] https://<zsdserver>/LiveTime/services/v1/user/requests/{requestId}/notes
ZENworks Service Desk Developer Resources 7

Request parameters
Content-Type: multipart/form-data
Body:
noteData: "{
"noteTime":5,
"noteText":"Test note from rest call",
"hidden": false,
"customers": true,
"customerCcs": true,
"technicians": true,
"technicianCcs": true,
"vendors": false,
"addToRelatedIncidents": false,
"addTimeToRelatedIncidents": false,
"createKnowledge": false,
"needInfo": false,
"includeDirectLink": true,
"action":"ADDNOTE",
"existingAttachmentIds": [10,20],
"selectedTechnicianIds": [21,34],
"customerCcAddresses":"user1@zsd.com, user2@zsd.com",
"technicianCcAddresses":"user10@zsd.com, user21@zsd.com",
"parentId": 10
}"

NOTE: For adding attachments, you can provide any name for file and select the required file, but if
additional file information (like private visibility and description) has to be provided, then use the
same name for this data also. For more information, refer to the attached screenshots.

All available actions:
ADDNOTE, SOLUTION, PROPOSE, DRAFT, DELETEDRAFT

Get applicable actions for the request
[GET] https://<zsdserver>/LiveTime/services/v1/user/requests/{requestId}/requestActions

“addNote” - true (for ADDNOTE)

[GET] https://<zsdserver>/LiveTime/services/v1/user/requests/{requestId}/noteprivileges

"isDraft" - true (for DELETEDRAFT)
 "showSolutionButton" - true (for SOLUTION)
 "showProposeButton" - true (for PROPOSE)

NOTE: Some parameters in the add note service are eligible if the respective value is true in the
following service:

[GET] https://<zsdserver>/LiveTime/services/v1/user/requests/{requestId}/noteprivileges

For example : “createKnowledge” can be set in addnote service if “showCreateKnowledge” is true in
the noteprivilege service.
8 ZENworks Service Desk Developer Resources

Examples
ZENworks Service Desk Developer Resources 9

1.1.2 Bulk Request Update (Close, Reopen and Delete) – Technician
Portal
[PUT] https://<zsdserver>/LiveTime/services/v1/user/requests/bulkUpdate

Query Parameters
"currentPage" : String (Allowed values - mytask, incident, service,
change, problem)
"filterId" : int
"includeAll" : Boolean
"includedExcludedIds" : List<Integer>

Request Parameters
Content-Type: multipart/form-data
Body:
data: "{
"action":"CLOSE",
"searchCriteria" : {
 "slaBreachedOnly": false,
 "escalatedOnly": false,
 "awaitingInfoOnly": false,
 "awaitingMyApprovalOnly": false,
 "searchTerm" : "test",
 "requestFilterInfo" : {
"type": "incident", (incident/service/change/problem)
"scope": "My Tasks", (My Tasks, My Team Tasks)
"incidentId": "100003",
"groupName": "test",
"loggedBy": "User1",
"technicians": [12, 15],
"teams": [2, 8],
10 ZENworks Service Desk Developer Resources

"workflowId": 7,
"statusSearchType": 0, (Allowed values: 0/1/2/3)
"statusTypes": [12,14],
"problemtypeId": 10,
"customClassString": "test",
"priorityTypes": [1, 2],
"solId": 1,
"waId": 2,
"firstName": "first name",
"lastName": "last name",
"email": "user1@gmail.com",
"orgUnit": "My Company",
"clientRoom": "10",
"clientCity": "bangalore",
"incidentLocation": "Chennai",
},
"requestAdditionalSearchInfo" : {
 "incidentId": 100120,
 "item": "test item",
 "itemType": "Software",
 "itemStatus": "Available",
 "team": "Incident team",
 "workflow": "Incident workflow"
}
}
}"

All Available Actions
CLOSE, REOPEN and DELETE.

NOTE: 1.If “includeAll “ is false then action will be performed on the requests provided in the
“includedExcludedIds “. (The other request search parameters will not be considered)

2. If “includeAll “ is true, then the action will be performed on the requests depends on the search
criterias provided. In this case the request ids provided in the “includedExcludedIds” will be
excluded from the results.

3. If any request is not eligible for the provided action, that request will be skipped.

1.1.3 Add Attachment to the Request/Note – Technician Portal
[POST] https://<zsdserver>/LiveTime/services/v1/user/requests/100002/attachments
ZENworks Service Desk Developer Resources 11

Request Parameters
Content-Type: multipart/form-data
Body:
 "file1": Selected File,
"file1": {
 "privatevisibility": true,
 "description": "Request Attachment 1"
},
 "file2": Selected File,
"file2": {
"privatevisibility": false,
 "description": "Request Attachment 2"
}

NOTE: For adding attachments, you can provide any name for file and select the required file, but if
additional file information (like private visibility and description) has to be provided, then use the
same name for this data also. For more information, refer to the above example and the following
screenshot.

1.2 Developer
 Section 1.2.1, “Integrations,” on page 12
 Section 1.2.2, “Connectors,” on page 13

1.2.1 Integrations
SOAP APIs are no longer supported. It is recommended that you use REST APIs. For more
information, see Rest APIs or contact OpenText Customer Support.
12 ZENworks Service Desk Developer Resources

1.2.2 Connectors
service desk AMIE engine (Asset Management Integration Engine) provides a unique mechanism to
connect to any third party Asset Management system.By default service desk provides many built-in
connectors. This is expanding every release. One of the unique properties of connectors built using
AMIE is that they readily adapt to schema changes on the foreign host so in most cases there is no
need to change them between upgrades.

Users have the ability to create their own mapping files and we provide some great examples on
how to do this step by step in AMIE Part I and AMIE Part II.

1.3 Localizing Service Desk ITSM
Internationalization is the process of designing an application so that it can be adapted to various
languages and regions without engineering changes. Sometimes the term internationalization is
abbreviated as i18n, because there are 18 letters between the first i and the last n.

The Service Desk product suite is an internationalized program that has the following characteristics:

 With the addition of localized data, the same executable can run worldwide.
 Textual elements, such as status messages and the GUI component labels, are not hard coded in

the program. Instead they are stored outside the source code and retrieved dynamically.
 Support for new languages does not require re-compilation.
 Culturally-dependent data, such as dates and currencies, appear in formats that conform to the

end user’s region and language.
 Service Desk can be localized quickly.

Localization is the process of adapting software for a specific region or language by adding locale-
specific components and translating text. The term localization is often abbreviated as l10n, because
there are 10 letters between the l and the n.

The Service Desk internationalized framework is very intuitive and flexible, allowing Users to localize
it for a particular language and character encoding scheme.

 Section 1.3.1, “Getting Started,” on page 14
 Section 1.3.2, “Customizing Strings,” on page 14
 Section 1.3.3, “Simple Messages,” on page 14
 Section 1.3.4, “Compound Messages,” on page 15
 Section 1.3.5, “Locales,” on page 15
ZENworks Service Desk Developer Resources 13

1.3.1 Getting Started
The primary task of Users performing localization of the Service Desk application is to translate the
user interface elements in the external text file – LiveTime.properties.

The following steps guide you through the localization process. We will assume a French localization
for this example, which uses the ISO-8859-1 character set.

1 Ensure you have the appropriate character set installed on your Desktop’s Operating System.
The localization file and rendering will both require the character set to be available for data
entry and data presentation.

2 Ensure your RDBMS has been created using the appropriate character set, usually UTF-8. This is
required so that French data entry can be successfully saved and retrieved from the database.

3 Specify the correct character set encoding for Service Desk. Edit the ‘Properties’ file (/
CONTAINER_APPS_PATH>/LiveTime/WEB-INF/LiveTime.woa/Contents/Resources folder) and
specify the character set to use for presentation to the end user. This character set will be sent
to the end users to control presentation in both the user interface and outbound email.

1.3.2 Customizing Strings
The LiveTime.properties file (/CONTAINER_APPS_PATH>/LiveTime/WEB-INF/LiveTime.woa/
Contents/Resources folder) stores the externalized user interface content. This file is stored in plain
text. The names of the localized files do follow a standard. In our example of French,
livetime_fr.properties was the resultant file name. The fr component of this name comes from iso
639-1. The default (English) is encoded using the ISO-8859-1 character set. You can create
alternative versions of this file in any text editor, that allows the file to be saved in the necessary
character set.

The first step in creating a local version of this file is to save a copy of it representing the appropriate
language. Being a French translation, there is no need to worry about the file encoding, so simply
save a copy of the file called livetime_fr.properties.

1.3.3 Simple Messages
The copy of this file consists of a collection of name-value pairs, each are broken up into clusters
representing user interface components. For example:

ClassName.greetings=Hello
ClassName.farewell=Goodbye
ClassName.inquiry=How are you?
The name or key section (ClassName.greetings) of these strings is of little relevance to the end user.
They are simply markers inside the application representing where each string goes.

The value component of these pairs (Hello) represents the corresponding user interface value. The
(French) translator can safely edit these values and they will appear within Service Desk.

ClassName.greetings=Bonjour.
ClassName.farewell=Au revoir.
14 ZENworks Service Desk Developer Resources

ClassName.inquiry=Comment allez-vous?

1.3.4 Compound Messages
Compound messages contain variable data – that is data that Service Desk will substitute into the
message at run time. For example, given the message Hello Sunshine, the string Sunshine may vary.
This message is difficult to translate because the position of the string in the sentence is not the
same in all languages, or the value may need to be generated by Service Desk based on some
business logic.

Where this substitution is necessary, the localized strings will have a set of braces containing an id
number (a substitution variable). These blocks will be replaced at run time by Service Desk and are
identified by their presence. The localized version of a given String must contain the same number of
substitution variables.

For example:

ClassName.helloSunshine=hello {0}
This will render as hello sunshine?, however we could modify this message to read sunshine, hello
by doing this:

ClassName.helloSunshine={0}, hello

1.3.5 Locales
The LiveTimeLocales.xml file (/CONTAINER_APPS_PATH>/LiveTime/WEB-INF/LiveTime.woa/
Contents/Resources folder) defines the language code and charset used in order to process the
strings defined in the external properties file.

Typically, this will be the charset used when saving the external properties file. By default the
following language locale is selected:

<LOCALE language="en" country="" charset="ISO-8859-1"/>
To enable our French external properties file to behave correctly, we will need to uncomment the
following line:

<LOCALE language="fr" country="" charset="UTF-8"/>
This will enable the application to use both English and French based on the user's browser and
operating system settings. For convenience, many values are already supplied in this file, you need to
uncomment the necessary entry.

If an entry for your locale language doesn’t exist, then you can define it in this file by supplying the
language code, country code, and charset, as illustrated in the above examples.

Instructions for setting browser locales is outside the scope of this document as each browser/OS
combo handles this differently.
ZENworks Service Desk Developer Resources 15

1.4 ZSD Extensions
ZENworks Service Desk (ZSD) has the ability to add customized extensions to request workflow state
transitions and item lifecycle state transitions. In order to implement custom functionality on these
state transitions, there are several steps a user must follow:

 Section 1.4.1, “Building the Extension,” on page 16
 Section 1.4.2, “WorkflowListener Arguments,” on page 16
 Section 1.4.3, “LifecycleListener Arguments,” on page 18
 Section 1.4.4, “Implementing a Listener,” on page 18
 Section 1.4.5, “Making the Extension Available to ZSD,” on page 20
 Section 1.4.6, “Configuring ZSD to Use the Extension,” on page 20

1.4.1 Building the Extension
Two java interfaces are provided, in a standalone jar file ‘livetime-listen.jar’, which can be found in:

{ZSD Installation Folder}/LiveTime.woa/Contents/Resources/Java/
This jar file contains two interfaces, each of which has two methods:

WorkflowListener
public Map<String, String> stateEntered(Map<String, Object>argsMap) throws Exception
public Map<String, String> stateExited(Map<String, Object>argsMap) throws Exception
LifecycleListener
public Map<String, String> stateEntered(Map<String, Object>argsMap) throws Exception
public Map<String, String> stateExited(Map<String, Object>argsMap) throws Exception

Naturally the WorkflowListener is used for integrating with the Request Workflow, whilst the
LifecycleListener is used for integrating with the Item Lifecycle.

The task for the developer is to create a java class that implements the appropriate interface to
achieve the integration objective. The two methods exist to provide flexibility to the developer
implementing the integration, by allowing them to perform tasks based on a state being ‘exited’ and
then a state being ‘entered’.

The implementing class is required to return a Map for all methods. Non-implemented interfaces
can return null, and this will be treated as a no-op internally. Methods that provide functionality
should return a map which will be parsed for two parameters:

 ‘success’ : ‘true’ or ‘false’
 ‘message’ : Description to be stored against the history of the request or item

Each method is passed a Map of parameters that relate to the request or item being updated.
ZSDZSD will pass a String for all values, the method takes for future extensions that may require the
use of Objects. Implementations should check the object is a String prior to casting to future-proof
the implementation.

1.4.2 WorkflowListener Arguments
The parameter Map passed in to the WorkflowListener interface methods consists of:
16 ZENworks Service Desk Developer Resources

Parameter Description

triggerStatusId The ID of the status that has triggered the listener
event:

 statusExited: originalStatus
 statusEntered: newStatus

triggerStatusName The name of the status that triggered the listener
event

requestId The ID of the request being updated

 1000 = Incident
 2000 = Problem
 3000 = Change Request
 7000 = Service Request
 9000 = Deployment Task

requestType The type of request being updated

 1000 = Incident
 2000 = Problem
 3000 = Change Request
 7000 = Service Request
 9000 = Deployment Task

statusId The current state of the request:

 statusExited: newStatus
 statusEntered: same as triggerStatus

statusName The name of the state defined by statusId above

classificationId The ID of the classification assigned to the request

customerId The ID of the customer assigned to the request

customerFirstName The first name of the customer assigned to the
request

customerLastName The last name of the customer assigned to the
request

customerEmail The email address of the customer assigned to the
request

orgUnitId The ID of the Org Unit associated with the request

orgUnitName The name of the Org Unit associated with the request

itemNumber The item number of the CI associated with the
request
ZENworks Service Desk Developer Resources 17

As this is a first iteration of the call-out interface, these parameters have been deemed sufficient to
allow a developer to perform non-trivial tasks like update an external system that may require
request updates.

1.4.3 LifecycleListener Arguments
The parameter Map passed in to the LifecycleListener interface methods consists of:

These are the initial parameters deemed appropriate to allow a developer to perform non-trivial
tasks like (for example) to feed state changes into a monitoring tool to reset an alert trigger.

1.4.4 Implementing a Listener
This requires some Java knowledge, to either define the entire functionality, using these entry
points, or to create a JNI wrapper to page out to code written in an alternate language, although this
does have platform implications. A JNI (Java Native Interface) implementation is outside the scope of
this document, and the following sample focuses on a Java Implementation.

The user needs to create a class, for example ‘MyWorkflowListener’ which implements the
WorkflowListener Interface, or MyLifecycleListener, which implements the LifecycleListener
interface. These methods then need to be made to perform some work. A non-trivial example would
be one where the listener calls a web service to an external system. Consider the following usage
scenario.

A company has (for whatever reason) two ZSD instances, and they are needing to, on occasion feed
updates to the secondary system on request state changes. ZSD has an inbound web services
interface, and now, an outgoing interface for communicating changes to third parties.

Parameter Description

triggerStatusId The ID of the status that has triggered the listener
event:

 statusExited: originalStatus
 statusEntered: newStatus

triggerStatusName The name of the status that triggered the listener
event

itemNumber The Item Number assigned to the CI

itemStatusId The current state of the request:

 statusExited: newStatus
 statusEntered: same as triggerStatus

itemStatusName The name of the state defined by statusId above

itemtypeId The Item Type ID

itemtypeName The name of the Item Type the Item is an instance of

categoryId The Category ID

categoryName The name of the Category the Item Type belongs to
18 ZENworks Service Desk Developer Resources

The SOAP WSDL’s can be used to generate Java classes to make calls into the secondary system,
which can now be called from the outgoing interface. Generating the SOAP equivalent java classes,
and calling them from a WorkflowListener might yield a listener class that looks something like the
following.

package com.livetime.sample;
import com.livetime.ws.listen.WorkflowListener;
import java.util.Map;
public class WorkflowListenerImpl implements WorkflowListener
{
public WorkflowListenerImpl() {}
public Map<String, String> statusEntered(Map<String, Object>argsMap) throws Exception
{BaseRequest baseRequest = new BaseRequest();
String requestId = (String)argsMap.get("requestId");
String statusName = (String)argsMap.get("triggerStatusName");
Map temp = new HashMap();
temp.put("subject", "Request Created via Outbound WebServices Call");
temp.put("description", "Request #" + requestId + " has entered status " + statusName);
return baseRequest.createRequest(temp);
}
public Map<String, String> statusExited(Map<String, String>argsMap) throws Exception
{
BaseRequest baseRequest = new BaseRequest();
String requestId = (String)argsMap.get("requestId");
String statusName = (String)argsMap.get("triggerStatusName");
Map temp = new HashMap();
temp.put("subject", "Request Created via Outbound WebServices Call");
temp.put("description", "Request #" + requestId + " has exited status " + statusName);
return baseRequest.createRequest(temp);
}
}

With the createRequest method in the class BaseRequest looking like this:

public Map<String, String> createRequest(Map<String, String>
properties)
{
// try and connect, if successful, create request and logout
 if(connect()) {
java.net.URL requestURL = null;
HashMap response = new HashMap();
try {
// Service endpoint
requestURL = new
java.net.URL(props.getRequestServiceURL());
// Get handle to the service
Request_Service service = new
Request_ServiceLocator();
Request_PortType port = service.getRequest(requestURL);
// Call BaseClient method to populate persistent
headers populateHeaders((javax.xml.rpc.Stub)port);
String subject = (String)properties.get("subject");
String description = (String)properties.get("description");
response = port.createIncident(props.getTargetItemNumber(),
props.getTargetClassificationId(), subject,
description, new HashMap());
}
catch(Exception ex)
{

ZENworks Service Desk Developer Resources 19

return buildErrorMessage("An error occurred whilst creating");
}
if(disconnect())
{
return response;
}
else {
return buildErrorMessage("An error occurred whilst disconnecting");
}
}
else {
return buildErrorMessage("An error occurred whilst connecting");
}
}

In this example, the listener simply creates a new request in the second system, stating the nature of
the change, but this highlights some of the possibilities of outbound functionality.

NOTE: This example has been heavily truncated to illustrate the key functionality.

1.4.5 Making the Extension Available to ZSD
This is a rather simple process for users with an install on their own infrastructure.

In order for the class to be accessible to ZSD, the compiled code needs to be on the ZSD classpath. In
this case, this means the compiled jar, along with any associated components, need to be copied into
the lib folder of the ZSD installation ({ZSD Path}/WEB-INF/lib), and the ZSD instance needs to be
restarted, so these resources are picked up by the classloader.

1.4.6 Configuring ZSD to Use the Extension
At this point a new class (or classes) exist and have been loaded, now ZSD simply needs to be
configured to use them. This is a two part process. Firstly the option needs to be enabled by a system
administrator to enable outbound web services. This option can be found in the Administrator
portal, under Setup > Privileges > System (Outbound Web Services).

Once set to ‘On’ and saved, a new field appears in both the Workflow State and Lifecycle State
Editors respectively. The ‘Listener Class’ can now be populated per workflow (or lifecycle) state,
allowing each state to call the same, or different implementations as necessary. This allows different
workflows to behave per the designers’ requirements.

1.5 ZSD Store Extensions
ZENworks Service Desk (ZSD) has the ability to add the customized store extensions for the auto
assignment of store item. In order to implement custom functionality on the assignment state
follow:
20 ZENworks Service Desk Developer Resources

1.5.1 Building the Extension
Java interface provided in a standalone jar file livetime-listen.jar, and it is available at:

{ZSD Installation Folder}/LiveTime.woa/Contents/Resources/Java/

The livetime-listen.jar file contains the ExternalStoreExtension interface, with the
following method:

public Map<String, String> statusEntered(Map<String, Object> argsMap) throws
Exception;

The developer task is to create a java class that implements above interface to achieve the
integration objective.

The implementing class is required to return a Map. Method that provide functionality should return
a map which will be parsed for the following parameters:

 success: ‘true’ or ‘false’
 message: Description to be stored against the history and note of the store request.

The method is passed a Map of parameters that relate to the store request being updated. ZSD will
pass a string for all the values, this method takes for future extensions that might require the use of
objects. Implementations should check whether the object is a String prior to casting to future-proof
the implementation.

1.5.2 ExternalStoreExtension Arguments
The parameter Map passed in to the ExternalStoreExtension interface method consists:

Parameter Description

triggerStatusId ID of the status that has triggered the extension:

 statusEntered: newStatus
triggerStatusName Name of the status that triggered the extension.

requestId ID of the request being updated.

requestType Type of the request being updated.

 7000 = Service Request

statusId Current state of the request same as assignment
state.

statusName Name of the state defined by statusId above.

classificationId ID of the classification assigned to the request.

customerId ID of the customer assigned to the request.

customerFirstName The first name of the customer assigned to the
request.
ZENworks Service Desk Developer Resources 21

As this is the first iteration of the call-out interface, these parameters have been deemed sufficient
to allow a developer to perform tasks such as update an external system that might require request
updates.

1.5.3 Implementing the Store Extension
Requires Java knowledge, to either define the entire functionality, using these entry points, or to
create a Java Native Interface (JNI) wrapper to page out to code written in an alternate language,
although this does have platform implications. A JNI implementation is outside the scope of this
document, and the following sample focuses on a Java Implementation.

The user needs to create a class, for example ‘MyStoreExtensionImpl’ which implements the
ExternalStoreExtension interface. Implemented method then needs to be made to perform
some work. For example, the extension calls a web service to an external system. Consider the
following usage scenario:

package com.microfocus;
import java.util.HashMap;
import java.util.Map;
import com.novell.store.extension.external.ExternalStoreExtension;
public class BusinessCardExtensionImpl implements ExternalStoreExtension
{
 /**
 * This method will be called at the entry of the state, i.e if workflow has state
hierarchy like state1-> Assignment State-> State2 then this will be called on transition
of state1 to Assignment State
 * @param argsMap
 * @return a map. This map must contain 2 entries.
 * key=message value=A user friendly message summarizing the result of action
performed by this extension.
 * key=success value=true|false in String. this denotes the status of the
extension process.
 * @throws Exception
 */
 @Override
 public Map<String, String> statusEntered(Map<String, Object> arg0)
 throws Exception {
 boolean success = doSomething(); // Your actual business logic goes here.
 Map<String, String> response = new HashMap<>(); //This message will be added as part
of the Note and Audit Trail. E.g

 if(success)
 response.put("message", "Order for Business card has been successfully
placed.");
 else
 response.put("message", "Order for Business card has been failed.");

customerLastName The last name of the customer assigned to the
request.

customerEmail Email address of the customer assigned to the
request.

orgUnitId ID of the Org Unit associated with the request.

orgUnitName Name of the Org Unit associated with the request.

itemNumber Item number of the CI associated with the request.

Parameter Description
22 ZENworks Service Desk Developer Resources

 response.put("success", String.valueOf(success));

 return response;
 }
 private boolean doSomething() {
 //
 //Do Something. Invoke external services handling order for business cards.
 //
 boolean success = true;
 return success;
 }
}

1.5.4 Making the Store Extension Available to ZSD
In order for the class to be accessible to ZSD, the compiled code needs to be on the ZSD classpath. In
this case, the compiled jar, along with any associated components, need to be copied into the lib
folder of the ZSD installation ({ZSD Path}/WEB-INF/lib), and the ZSD instance needs to be
restarted, so these resources are picked up by the classloader.

1.5.5 Configuring ZSD to Use the Extension
At this point a new class or classes exist and have been loaded, now ZSD needs to be configured to
use them.

 Enable the Store feature. For information, see Enabling Store.
 Create the Store Extension. For information, see Creating a Store Extension.
 Assign the extension to applicable Item Category or Item Type.
ZENworks Service Desk Developer Resources 23

https://www.novell.com/documentation/servicedesk-74/service_desk_store/data/service_desk_store.html#t40zq24ekune
https://www.novell.com/documentation/servicedesk-74/service_desk_store/data/service_desk_store.html#t40zrw13tqrn

24 ZENworks Service Desk Developer Resources

	ZENworks Service Desk Developer Resources
	About This Guide
	1 ZENworks Service Desk Developer Resources
	1.1 Rest APIs
	1.1.1 Add note to the request – Technician Portal
	1.1.2 Bulk Request Update (Close, Reopen and Delete) – Technician Portal
	1.1.3 Add Attachment to the Request/Note – Technician Portal

	1.2 Developer
	1.2.1 Integrations
	1.2.2 Connectors

	1.3 Localizing Service Desk ITSM
	1.3.1 Getting Started
	1.3.2 Customizing Strings
	1.3.3 Simple Messages
	1.3.4 Compound Messages
	1.3.5 Locales

	1.4 ZSD Extensions
	1.4.1 Building the Extension
	1.4.2 WorkflowListener Arguments
	1.4.3 LifecycleListener Arguments
	1.4.4 Implementing a Listener
	1.4.5 Making the Extension Available to ZSD
	1.4.6 Configuring ZSD to Use the Extension

	1.5 ZSD Store Extensions
	1.5.1 Building the Extension
	1.5.2 ExternalStoreExtension Arguments
	1.5.3 Implementing the Store Extension
	1.5.4 Making the Store Extension Available to ZSD
	1.5.5 Configuring ZSD to Use the Extension

