Novell
Policies in Designer 2.0

www.novell.com

2.0 @
POLICIES IN DESIGNER 2.0

June 29, 2007

Novell.

Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc. reserves the right to revise this publication and to make changes to its content, at any time,
without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims
any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to
notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the
trade laws of other countries. You agree to comply with all export control regulations and to obtain any required
licenses or classification to export, re-export or import deliverables. You agree not to export or re-export to entities on
the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export laws.
You agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses. See the
Novell International Trade Services Web page (http://www.novell.com/info/exports/) for more information on
exporting Novell software. Novell assumes no responsibility for your failure to obtain any necessary export
approvals.

Copyright © 2007 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied,
stored on a retrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S.
patents listed on the Novell Legal Patents Web page (http://www.novell.com/company/legal/patents/) and one or
more additional patents or pending patent applications in the U.S. and in other countries.

Novell, Inc.

404 Wyman Street, Suite 500
Waltham, MA 02451

US.A

www.novell.com

Online Documentation: To access the latest online documentation for this and other Novell products, see
the Novell Documentation Web page (http://www.novell.com/documentation).

http://www.novell.com/info/exports/
http://www.novell.com/company/legal/patents/
http://www.novell.com/documentation

Novell Trademarks

For Novell trademarks, see the Novell Trademark and Service Mark list (http://www.novell.com/company/legal/
trademarks/tmlist.html).

Third-Party Materials

All third-party trademarks are the property of their respective owners.

http://www.novell.com/company/legal/trademarks/tmlist.html

Contents

About This Guide

1 Overview

1.1 POlICIES . ..o

2 Managing Policies with the Policy Builder

2.1 Accessing the Policy Builder
211 Model Outline View
21.2 Policy Flow View
213 Policy Set ...
2.2 Usingthe Policy Builder. e
2.21 TIPS . et
23 Creating @ PoliCyo
2.3.1 Accessingthe Policy Set.
2.3.2 Usingthe Policy Set
2.3.3 Usingthe Add Policy Wizard.
24 Creatinga Rule
241 CreatingaNew RuUle
242 Using Predefined Rules.
243 Including an Existing Rule.
244 Importing a Policy Froman XML File
2.5 Creating an Argument
26 Editinga Policy
261 Actions and Menu Items in the Policy Builder.
2.6.2 Keyboard Support
26.3 Renaming a PoliCy
2.6.4 Saving Your Worko
2.6.5 Policy Description
2.7 Viewingthe Policy in XML
2.8 Identity Manager DTD Reference e
3 Using Additional Builders
3.1 Action Builder.
3.11 Creating an ACtion. i
3.1.2 Additional Options for the ActionBuilder.
3.2 Actions Builder. e
3.3 Argument Builder.
3.3.1 Launching the Argument Builder.
3.3.2 ArgumentBuilder Example
3.4 Condition BUilder
3.4.1 Creatinga Condition
3.4.2 Additional Options for the Condition Builder
3.5 Match Attribute Builder
3.6 Action Argument Component Builder
3.7 ArgumentValue List Builder
3.8 Named String Builder.
3.9 Condition Argument ComponentBuilder.

13

15
15

17

17
18
18
19
21
21
22
22
23
24
28
29
33
34
35
36
37
38
39
40
40
41
41
42

43

43
43
44
44

45

46
47
49

49
49
50

52
53
54
54

Contents

5

6

3.10
3.1
3.12
3.13

5.1

5.2

5.3
5.4
5.5

6.1

6.2

6.3
6.4
6.5

7.1

Pattern String Builder
String Builder
XPath Builder
Namespace Editor
3.13.1 Accessing Java Classes Using Namespacesiiuiiinnn.n.
4 Using the XPath Builder
5 Defining Schema Mapping Policies
Accessing the Schema Map Editor.
51.1 Outline View.
51.2 Policy Flow View e
5.1.3 Policy Set View
5.1.4 Keyboard SUppOrt
Editing a Schema Mapping Policy
5.2.1 Removing or Adding Classes and Attributes
5.2.2 Refreshing the Application Schema.
5.2.3 Editing tems
524 Sorting tems
525 Managingthe Schema.
Testing Schema Mapping Policies
Accessing the Schema Mapping Policy in XML
Additional Schema Map Policy Options e
5.51 Outline View Additional Options. e
5.5.2 Policy Flow View Additional Options
55.3 Policy Set View Additional Options
6 Controlling the Flow of Objects with the Filter
Accessing the Filter Editor
6.1.1 Model Outline View
6.1.2 Policy FIow View
6.1.3 Policy Set View
6.1.4 Keyboard Support
Editing the Filter
6.2.1 Removing or Adding Classes and Attributes
6.2.2 Modifying Multiple Attributes
6.2.3 Copying an Existing Filter
6.2.4 Setting Default Values for Attributes
6.2.5 Changing the Filter Settings.
Testing the Filter.
Viewing the Filterin XML e
Additional Filter Options e
6.5.1 Outline View Additional Options. e
6.5.2 Policy Flow View Additional Options
6.5.3 Policy Set View Additional Options i
7 Using Predefined Rules
Command Transformation - Create Departmental Container - Part 1andPart2
711 Creatinga Policy
71.2 Importing the PredefinedRule
7.1.3 Howthe Rule Works e
Command Transformation - Publisher Delete toDisable

7.2

Policies in Designer 2.0

59

67

67
67
68
69
70
71
71
72
73
73
73
74
76
76
77
78
79

81

82
82
82
84
84
85
85
86
86
86
87
90
92
93
93
93
94

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.11

7.12

7.13

7.14

7.15

7.21 Creatinga Policy 99

7.2.2 Importing the PredefinedRule. 100
723 HowtheRule Works e 100
Creation - Require Attributes 100
7.3.1 Creatinga Policy e 100
7.3.2 Importing the Predefined Rule. 101
7.3.3 Howthe Rule Works e e 102
Creation - Publisher-Use Template 102
7.41 Creatinga Policy 102
7.4.2 Importing the PredefinedRule. 103
7.4.3 Howthe Rule Works e 103
Creation - Set Default Attribute Value 103
7.5.1 Creatinga Policy 103
7.5.2 Importing the Predefined Rule. 104
753 HowtheRule Works e 105
Creation - Set Default Password e 105
7.6.1 Creatinga Policyo 105
7.6.2 Importing the Predefined Rule. 106
7.6.3 Howthe Rule Works e 106
Event Transformation - Scope Filtering - Include Subtrees. 106
7.71 Creatinga PoliCy 106
7.7.2 Importing the PredefinedRule. 107
7.7.3 HowtheRule Works e e 108
Event Transformation - Scope Filtering - Exclude Subtrees 108
7.8.1 Creatinga Policy 108
7.8.2 Importing the Predefined Rule. 109
7.8.3 Howthe Rule Works e 109
Input or Output Transformation - Reformat Telephone Number from (nnn) nnn-nnnn to nnn-nnn-
0T T 0 109
7.91 Creatinga PoliCyo 109
7.9.2 Importing the Predefined Rule. 110
7.9.3 Howthe Rule Works e 110
Input or Output Transformation - Reformat Telephone Number from nnn-nnn-nnnn to (nnn) nnn-
T 0] 0T 111
7.10.1 Creatinga Policyo 111
7.10.2 Importing the Predefined Rule. 111
7.10.3 Howthe Rule Works e 112
Matching - Publisher Mirrored 112
7111 Creatinga Policy e e 112
7.11.2 Importing the Predefined Rule. 113
711.3 Howthe Rule Works e 114
Matching - Subscriber Mirrored - LDAP Format. 114
7121 Creatinga PoliCy 114
7.12.2 Importing the Predefined Rule. 115
7.12.3 Howthe Rule Works e e 115
Matching - By Attribute Value 116
713.1 Creatinga Policy e e 116
7.13.2 Importing the PredefinedRule. 116
713.3 Howthe Rule Works e 117
Placement - Publisher Mirrored 117
7141 Creatinga PoliCy 117
7.14.2 Importing the Predefined Rule. 118
7143 Howthe Rule Works e 119
Placement - Subscriber Mirrored - LDAP Format 119
7.15.1 Creatinga Policy 119
7.15.2 Importing the Predefined Rule. 120
7.15.3 Howthe Rule Works e e 120

Contents

7

7.16 Placement - Publisher Flat 121

7.16.1 Creatinga Policy e 121

7.16.2 Importing the PredefinedRule 121

7.16.3 Howthe Rule Works e 122

7.17 Placement - Subscriber Flat - LDAP Format i, 122
7171 Creatinga Policy e 122

7.17.2 Importing the PredefinedRule 123
7.17.3 Howthe Rule Works e 124

7.18 Placement - Publisher By Dept. e 124
7.18.1 Creatinga PoliCy 124

7.18.2 Importing the PredefinedRule 125
7.18.3 Howthe Rule WOrks e 125

7.19 Placement - Subscriber By Dept - LDAP Format 126
7.19.1 Creatinga Policy e 126

7.19.2 Importing the PredefinedRule 126
7.19.3 Howthe Rule Works e 127

8 Testing Policies with the Policy Simulator 129
8.1 Accessing the Policy Simulator 129
8.1.1 OUtliNE VieW . . o o 129

8.1.2 Policy FIow View 130

8.1.3 EdOrso 131

8.2 Usingthe Policy Simulator e 131
8.3 Simulating Policies with Java Extensions. 134
9 Storing Information in Resource Objects 137
9.1 Generic Resource ObJECtS ottt 137
9.11 Creating a Resource Object. 137

9.1.2 Using a Generic Resource Object 138

9.2 Mapping Table Objects. e 139
9.2.1 Creating a Mapping Table Object i ... 139

9.2.2 Adding a Mapping Table ObjecttoaPolicy................. 141

9.2.3 Editing a Mapping Table Object. 141

9.24 Testing a Mapping Table Object 142

9.3 ECMASCript Objects. . . . o e 142
9.4 Application Objects. e 143
9.5 Repository Objectso e 143
9.6 Library Objects e 143
9.6.1 Creating Library Objects 143

9.6.2 Adding Policies to the Library Objects i, 144

9.6.3 Using Policies in the Library Objects o 145

10 Using ECMAScript in Policies 147
10.1 Creating an ECMAScript Object. 147
10.2 Usingthe ECMAScript Editor 148
10.2.1 Main Scripting Areao 148

10.2.2 Expression Builder. 151
10.2.3 Functionsand Variables. 153

10.2.4 ErrorDisplay 154

10.2.5 Shell Area.o 155

10.3 Examples of ECMAScripts with Policies. 156
10.3.1 DirXML Script Policy Calling an ECMAScript Function 156
10.3.2 XSLT Policy Calling an ECMAScript Function at the Driver Level. 157

8 Policies in Designer 2.0

10.3.3 XSLT Policy Calling an ECMAScript Function in the Style Sheet..............
10.4 Changing JavaScript Files Preferences. i i

10.4.1 JavaScript Files Preferences

11 Conditions

If Association
If Attribute
If Class Name.

If Destination Attribute

If Destination DN . .
If Entitlement.

If Global Configuration Value

If Local Variable . ..
If Named Password
If Operation Attribute

If Operation Property e e

If Operation.
If Password.
If Source Attribute. .
If Source DN.
If XML Attribute. . . .
If XPath Expression
Variable Expansion.

12 Actions

Add Association . . .

Add Destination Attribute Value
Add Destination Object.

Add Source Attribute
Add Source Object .

Value . ..

Append XML Element.

Append XML Text. .
Break

Clear Destination Attribute Value
Clear Operation Propertyo e e e e
Clear Source Attribute Value
Clear SSO Credential. e e
Clone By XPath EXpression
Clone Operation Attribute

Delete Destination O

DjeCt. . o

Delete Source Object o
Find Matching Object

ForEach.........

Implement Entitlement
Move Destination Object

Move Source Object

Reformat Operation Attribute

Remove Association

163

164
166
169
172
175
176
179
181
184
185
188
190
193
196
198
200
202
204

205

207
208
210
212
213
214
216
218
219
220
221
222
223
224
226
227
228
231
232
235
237
238
240
241
243

Contents

9

Remove Destination Attribute Value 244

Remove Source Attribute Value e 245
Rename Destination Object e 246
Rename Operation Attribute 247
Rename Source Object. 248
Send Email 249
Send Email from Template 251
Set Default Attribute Value 253
Set Destination Attribute Value 255
Set Destination Password 257
SetLocal Variable e 258
Set Operation ASsOCiation. e 260
Set Operation Class Name e 261
Set Operation Destination DN 262
Set Operation Property e 263
Set Operation Source DN e 264
Set Operation Template DN e 265
Set Source Attribute Value 266
Set Source Password 268
Set SSO Credential. e 269
Set SSO Passphrase 270
Set XML Attribute e 271
StatUS . . 272
Start Workflow 273
Strip Operation Attribute e 275
Strip XPath . .. e 276
Trace MESSAQE oottt 277
VB0 . . e 279
Veto If Operation Attribute Not Available. 280
Wil . . 281
Variable EXpansion 282
13 Noun Tokens 283
Added Entitlement. e 284
ASSOCIAtioONo e 285
AUt . . L e 286
Character. 287
Class Name. 288
Destination Attribute e 289
Destination DN 291
Destination Name e e 293
DOCUMEBNt . . . 294
Entitlement 295
Generate PasswWord. 296
Global Configuration Value e e e 297
Local Variable e 298
Named PasswWord e e 300
OperatioN. e 302
Operation Attribute e 303
Operation Property e 305
PasSsSWOrd. e 306

10 Policies in Designer 2.0

QUETY ot
Removed Attribute e
Removed Entitlements e
RESOIVE. . . . e
Source AttHbULE
Source DN L.
SOUICE NaMIEo

Unigue Name e
Unmatched Source DN. e e

14 Verb Tokens

Base64 Decode
Baseb4 Encode
CoNVert TIMe
Escape Destination DN
Escape Source DN

A Documentation Update

Al JUNE 29, 2007 . .o
A1 CoNditioNS . . .o
A1.2 ACHiONS. . . .
A1.3 NOUNS . .. e
A4 Verbs. ...
A2 May 21, 2007 . . . o
A2A1 ACHiONS. . . e

323

324
325
326
327
328
329
330
331
332
334
335
337
338
340
341
342
343

345

345
345
345
345
345
346
346

Contents 11

12 Policies in Designer 2.0

About This Guide

Novell® Identity Manager 3.5 is a data sharing and synchronization service that enables
applications, directories, and databases to share information. It links scattered information and
enables you to establish policies that govern automatic updates to designated systems when identity
changes occur.

Identity Manager provides the foundation for account provisioning, security, single sign-on, user
self-service, authentication, authorization, automated workflows, and Web services. It allows you to
integrate, manage, and control your distributed identity information so you can securely deliver the
right resources to the right people.

This guide provides detailed reference on Policy Builder and Driver Configuration using Designer
for Identity Manager 3.5.

¢ Chapter 1, “Overview,” on page 15

¢ Chapter 2, “Managing Policies with the Policy Builder,” on page 17

¢ Chapter 3, “Using Additional Builders,” on page 43

¢ Chapter 4, “Using the XPath Builder,” on page 59

¢ Chapter 5, “Defining Schema Mapping Policies,” on page 67

¢ Chapter 6, “Controlling the Flow of Objects with the Filter,” on page 81

¢ Chapter 7, “Using Predefined Rules,” on page 95

¢ Chapter 8, “Testing Policies with the Policy Simulator,” on page 129

¢ Chapter 9, “Storing Information in Resource Objects,” on page 137

¢ Chapter 10, “Using ECMAScript in Policies,” on page 147

¢ Chapter 11, “Conditions,” on page 163

¢ Chapter 12, “Actions,” on page 205

¢ Chapter 13, “Noun Tokens,” on page 283

¢ Chapter 14, “Verb Tokens,” on page 323

Audience

This guide is intended for Identity Manager administrators.

Feedback

We want to hear your comments and suggestions about this manual and the other documentation
included with this product. Please use the User Comments feature at the bottom of each page of the
online documentation, or go to www.novell.com/documentation/feedback.html and enter your
comments there.

Documentation Updates

For the most recent version of Policies in Designer, visit the Identity Manager Documentation Web
site (http://www.novell.com/documentation/idm35).

About This Guide

13

http://www.novell.com/documentation/idm35
http://www.novell.com/documentation/idm35

Additional Documentation

For documentation on using the Identity Manager drivers, see the Identity Manager Drivers
Documentation Web site (http://www.novell.com/documentation/idm35drivers/index.html).

For documentation on using Designer, see the Designer 2.0 for Identity Manager 3.5 Documentation
Web site (http://www.novell.com/documentation/designer20/).

Documentation Conventions

In Novell documentation, a greater-than symbol (>) is used to separate actions within a step and
items in a cross-reference path.

A trademark symbol (®, ™_etc.) denotes a Novell trademark. An asterisk (*) denotes a third-party
trademark.

When a single pathname can be written with a backslash for some platforms or a forward slash for
other platforms, the pathname is presented with a backslash. Users of platforms that require a
forward slash, such as Linux* or UNIX*, should use forward slashes as required by your software.

14 Policies in Designer 2.0

http://www.novell.com/documentation/idm35drivers/index.html
http://www.novell.com/documentation/idm35drivers/index.html
http://www.novell.com/documentation/designer20/
http://www.novell.com/documentation/designer20/

Overview

Policies manage the data that is synchronizing between the Identity Vault and the remote data store.
The policies are stored in the policy sets, see Understanding Types of Policies (http://
www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/
policytypesoverview.html). Designer provides a wide set of tools for defining and debugging
policies to control how information flows from one system to another, and under what conditions.
The following sections explain how to use the tools that are provided to help manage the policies:

¢ Chapter 2, “Managing Policies with the Policy Builder,” on page 17

¢ Chapter 3, “Using Additional Builders,” on page 43

¢ Chapter 4, “Using the XPath Builder,” on page 59

¢ Chapter 5, “Defining Schema Mapping Policies,” on page 67

¢ Chapter 6, “Controlling the Flow of Objects with the Filter,” on page 81

¢ Chapter 7, “Using Predefined Rules,” on page 95

¢ Chapter 8, “Testing Policies with the Policy Simulator,” on page 129

¢ Chapter 9, “Storing Information in Resource Objects,” on page 137

¢ Chapter 10, “Using ECMAScript in Policies,” on page 147
This section also contains a detailed reference section to all of the elements in DirXML® Script. For
more information on DirXML Script, see DirXML Script (http://www.novell.com/documentation/
idm35/index.html?page=/documentation/idm35/policy/data/
policydirkmlscript.html#policydirxmlscript).

¢ Chapter 11, “Conditions,” on page 163

¢ Chapter 12, “Actions,” on page 205

¢ Chapter 13, “Noun Tokens,” on page 283

¢ Chapter 14, “Verb Tokens,” on page 323

1.1 Policies

As part of understanding how policies work, it is important to understand the components of
policies.
¢ Policies are made up of rules.

+ A rule is a set of conditions (see Chapter 11, “Conditions,” on page 163) that must be met
before a defined action (see Chapter 12, “Actions,” on page 205) occurs.

¢ Actions can have dynamic arguments that derive from tokens that are expanded at run time.
¢ Tokens are broken up into two classifications: nouns and verbs.

+ Noun tokens (see Chapter 13, “Noun Tokens,” on page 283) expand to values that are
derived from the current operation, the source or destination data stores, or some external
source.

+ Verb tokens (see Chapter 14, “Verb Tokens,” on page 323) modify the concatenated
results of other tokens that are subordinate to them.

Overview

15

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/policytypesoverview.html
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/policydirxmlscript.html#policydirxmlscript

+ Regular expressions (see Regular Expressions (http://www.novell.com/documentation/idm35/
index.html?page=/documentation/idm35/policy/data/
policyregularexpression.html#policyregularexpression)) and XPath 1.0 expressions (see XPath
1.0 Expressions (http://www.novell.com/documentation/idm35/index.html?page=/
documentation/idm35/policy/data/policyxpathexpression.html#policyxpathexpression)) are
commonly used in the rules to create the desired results for the policies.

+ A policy operates on an XDS document and its primary purpose is to examine and modify that
document.

¢ An operation is any element in the XDS document that is a child of the input element and the
output element. The elements are part of the Novell® nds . dtd; for more information, see
NDS DTD (http://www.novell.com/documentation/idm35/index.html?page=/documentation/
idm35/policy dtd/data/dtdndsoverview.html#dtdndsoverview) in the Identity Manager DTD
Reference.

¢ An operation usually represents an event, a command, or a status.

+ The policy is applied separately to each operation. As the policy is applied to each operation in
turn, that operation becomes the current operation. Each rule is applied sequentially to the
current operation. All of the rules are applied to the current operation unless an action is
executed by a prior rule that causes subsequent rules to no longer be applied.

¢ A policy can also get additional context from outside of the document and cause side effects
that are not reflected in the result document.

16 Policies in Designer 2.0

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/policyregularexpression.html#policyregularexpression
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/policyxpathexpression.html#policyxpathexpression
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/policyxpathexpression.html#policyxpathexpression
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_dtd/data/dtdndsoverview.html#dtdndsoverview

Managing Policies with the Policy
Builder

The Policy Builder is a complete, graphical interface for creating and managing the policies that
define the exchange of data between connected systems.

¢ Section 2.1, “Accessing the Policy Builder,” on page 17

¢ Section 2.2, “Using the Policy Builder,” on page 21

¢ Section 2.3, “Creating a Policy,” on page 22

¢ Section 2.4, “Creating a Rule,” on page 28

¢ Section 2.5, “Creating an Argument,” on page 36

+ Section 2.6, “Editing a Policy,” on page 37

¢ Section 2.7, “Viewing the Policy in XML,” on page 41

¢ Section 2.8, “Identity Manager DTD Reference,” on page 42

2.1 Accessing the Policy Builder

There are two different Policy Builders included in Designer 2.0 one that works with the new policy
features for Identity Manager 3.5, and an older one that does not support these features. The Policy
Builder version is determined by the version of Identity Manager. To set the version of Identity
Manager:
1 Open a project in Designer.
2 Click the Outline tab > select the Show Model Outline icon.
3 Right-click the server object, then click Properties.
4 Seclect the Identity Manager Version.
The options are:
*+ 20
¢ 2.0.1
+ 2.0.2
+ 3.0
+ 3.0.1
+ 35

When the Identity Manager version is set to 3.5, the new Policy Builder is available. If the version is
set to anything other than 3.5, the old Policy Builder is available.

The Policy Builder can be accessed from the Model Outline view, from the Policy Flow view, or
from a policy set.

¢ Section 2.1.1, “Model Outline View,” on page 18
¢ Section 2.1.2, “Policy Flow View,” on page 18

Managing Policies with the Policy Builder

17

¢ Section 2.1.3, “Policy Set,” on page 19

2.1.1 Model Outline View

1 Open a project in Designer.
2 Click the Outline tab > select the Show Model Outline icon.
3 Double-click a policy listed in the Model Outline view or right-click and select Edit.

] - o x4 =
&& W S
B sl Project 2 ~

= IDMDESIGMNTREE
=] E IDMDrivers
&/ Delimited Text
& LDap
=-dg) Active Direckary
H InputTransFarm
CukputTransForm
Password{Pub)-Sub Emai
Passwiord{Sub)-Pub Emai
M= schematapping
% Active Directary Filker
=% Publisher

H Command Transform

-
=) el

H Matching

2.1.2 Policy Flow View

1 Open a project in Designer.
2 Select the Outline tab > select the Show Policy Flow icon.

3 Right-click a policy (for example, the Matching policy) in the Policy Flow view, then select
Edit Policy.

or

18 Policies in Designer 2.0

Double-click the Matching policy in the Policy Flow

Active Directory 8

r_— Input || Qutput —‘T|

Schemna Mapping

Publisher | Subscriber

Command -

Placement i
i

Creation

Matching

E Placement Q“““i

“*! Command

Dat... RN

Active Directory Driver Palicy Sets

Z + R - |44

- Matching

4 Seclect the policy, then click Edit.

@ Edit Policy

Select the palicy to edit,

= match

I_ Edit] I_.ﬁ.dd Palicy...] [Cancel]

2.1.3 Policy Set

1 Right-click the policy in the policy set, then click Edit.

or

Managing Policies with the Policy Builder 19

Select the policy in the policy set, then click the Edit the policy icon.

Active Directory |

Publisher
— |
Event

bl

£ 11}] |
] —
Pro... Dat... Pro... =8

Active Direckory Driver Policy Sets

L+ -4 &

To see all of the information in the Policy Builder window without scrolling, double-click the policy
tab so the Policy Builder fills the entire window. To minimize the window, double-click the policy
tab.

20 Policies in Designer 2.0

Figure 2-1 Policy Builder Full Screen

@ Designer - Matching - Designer
Eile

i T

I~ ® i D i@ [| @) Designer |

\5. project 1 - Developer B project 2 - Developer Matching X =&

Edit Project Tools Policy Live Window Help

=1

Policy Builder for IDM 3.5 and Newer 3} h (+] %% 4 & =
T Matching.Publisher ,Active Directory, I0M Driver Set,IDMDESIGHNTREE

¥ Policy Description

Rules

=M Palicy Builder | XML Source | XML Tree

v 5 remember relative position in hierarchy
v fr veto out-of-scope events

v fr match users based on NT logon name
% match users based on full name

v fr match everything else

44Mof 254m ([0 0

Policy Builder Tips

*

Click the “* icon to see a list of values for a field.

2.2 Using the Policy Builder

The Policy Builder enables you to add, view, and delete the rules that make up a policy. You can also
import and save policies and rules, and manage XML namespaces using the Policy Builder. The
Policy Builder contains the “Action Builder” on page 43 and the “Condition Builder” on page 49.

2.2.1 Tips

*

Click 2 icon to disable a policy, rule, condition, or action. Click @ icon to re-enable it.
Click the Edit icon £ to edit the name of a rule or edit the description of a rule.
Click the Delete icon % to delete a rule or a policy.

Click the Rule icon == to add a new rule. If you click the down-arrow on the right, you can add
arule, use predefined rules, include a policy, or create a new Condition Group.

Click the Import Policy from file icon E41 to import a policy or a rule. Click the Save to File icon
&3 to export a policy or a rule.

Click the Edit Namespace icon 22 t0 add multiple XML namespaces to the rule or policy.

Managing Policies with the Policy Builder

21

¢ Click the Launch XPath Builder icon 8 to launch the XPath Builder. It allows you to create
XPath expressions.

¢ Click 'l to expand all of the rules or click =l to collapse all of the rules.
¢ Click T icon to move a rule up. Click ¥ icon to move the rule down.
+ To save your work from the main menu, click File > Save or press Ctrl+S.

¢ To add a comment to a policy or rule, fill in the Policy Description field. Comments are stored
directly in the policy or rule, and can be as long as necessary.

2.3 Creating a Policy

A policy sends data to the connected systems. A policy is created through the policy set.

¢ Section 2.3.1, “Accessing the Policy Set,” on page 22
¢ Section 2.3.2, “Using the Policy Set,” on page 23
¢ Section 2.3.3, “Using the Add Policy Wizard,” on page 24

2.3.1 Accessing the Policy Set

1 Select a driver object from the Qutline view in an open project.

| B W B B 3
= sl Project 2 -
= IDMDESIGMTREE

El toraTesT
IDMDri

Er| QutputTransFormr
EF| Password{Fub)-5
FPassword{Sub)-P
M= SchemaMapping
ﬁ Active Directary |
== publisher
ZH Cammand Tr:
Creaktion
Ewent TransF
Makch

Makching M
< >

el e N e

22 Policies in Designer 2.0

2 Select the Policy Set tab.

Properties | DataFlo =0

Active Directory Driver Policy Sets
= B =

Input TransFormation

=2
H InputTransform
er| Passward{Pub)-5ub Email Motifications
(B output Transformation
(B schema Mapping

(2. Filter

2.3.2 Using the Policy Set

The policy set contains a toolbar and a list of policies.

The policy list displays all the policies contained in the selected policy set. During a transformation,
the policies within the list are executed from top to bottom. The toolbar contains buttons and a drop-
down menu that you can use to manage policies displayed in the list, including, editing, adding,
deleting, renaming, and changing the processing order of the policies.

Figure 2-2 Policy Set

Properties ! =B

LDAP Drriver Policy Sets
£+ K o=

-2 Input TransFormation

HF rassy rd{Pub)-Sub Ernail Matifications
E-{H Qutput Transformation

Password{Sub)-Pub Email Motifications
(B schema Mapping
(B Filer

Policy Set Toolbar

The policy set displays a copy of the policy. The buttons on the toolbar are enabled or disabled
depending upon the item you have selected. The different icons are described below.

Table 2-1 Policy Set Toolbar

Operation Description

Edit a policy Fd Launches the Policy Builder.

Create or add a new policy to the Policy Set + Launches the Add Policy Wizard.

Remove and delete the selected policy X Deletes the policy from the project.

Remove the selected policy from the Policy Set, do Removes the policy from the selected policy set
not delete = object but doesn’t delete the policy.

Move the policy up the policy chain i@ Moves the policy up in the processing order.

Managing Policies with the Policy Builder

23

Operation Description

Move the policy down the policy chain o Moves the policy down in the processing order.

Keyboard Support

You can move through the policy set with keystrokes as well as using the mouse. The supported
keystrokes are listed below.

Table 2-2 Keyboard Support

Keystroke Description

Up-arrow Moves the selected policy up in the processing
order.

Down-arrow Moves the selected policy down in the processing
order.

Delete Deletes the policy from the project.

Minus Removes the policy from the selected policy set,

but does not delete it.

Plus Launches the Add Policy Wizard.
Ctrl+zZ Undoes the last operation.
Ctrl+Y Redoes the last operation.

2.3.3 Using the Add Policy Wizard

The Add Policy Wizard launches when you click the Create or add a new policy to the Policy Set
icon in the toolbar. The Add Policy Wizard enables you to do the following:

¢ “Creating a Policy” on page 25
¢ “Copying a Policy” on page 27
¢ “Linking to a Policy” on page 27

To launch the Add Policy Wizard:

1 Select a driver in the Outline view.

24 Policies in Designer 2.0

2 Select a policy set item in the policy set, then click the Create or add a new policy to the Policy
Set icon in the toolbar.

Properties = 0

ackive Directary Driver Policy Sets

(8 output Transfarmation
B Schema Mapping
2 Filker

Creating a Policy

1 Inthe Add Policy Wizard, select Create a new policy, then click Next.

Select Method

Select the method to add & policy to the policy set.

©reate anew palcy’

() Copy a policy
CiLink & palicy

2 Provide a policy name.

Create Policy

Specify the name of the new policy and the container where it will
be created,

Palicy Mame:

Policy Conkainer:

| Active Directory. IDMDrivers, IDMDESIGNTREE [Erowss

[] open Editor after creating object.

3 Accept the default container, or browse to and select the Driver, Publisher, or Subscriber object
where you want the policy to be created.

If a policy is not reused by multiple drivers, you typically create that policy under the driver or
channel that is using it.

This decision depends on how you want to organize the policies. By default, policies are placed
under the container object that is selected in the Outline tab when the Add Policy Wizard is
launched.

For example, if you move to a Publisher object in the Outline tab and then add a policy to a
policy set, the policy defaults to the Publisher container.

You can change this setting if you want to create policies in a different container. For example,
you can set up a policy library, put all of the common policies under this driver, and then simply

Managing Policies with the Policy Builder

25

26

reference the policies from the other drivers. That way, the policy is common. If you need to
change a policy, you need to do it only once.

4 Select the type of policy you want to implement. The policy type defaults to DirXML Script.
You can select XSLT, if you don’t want to use DirXML® Script.

Select Type

Select how wou want to implement this policy,

(%) DirxML Script

(RSl
5 Click Finish.

If you create a Schema Mapping policy set, then an additional option is available for Schema
Mapping. The new policy appears in the expanded policy set.

You can also add a policy by right-clicking a policy set in the Policy Flow view.

1 Right-click a policy set (for example, Input Transformation Set).
2 Select Add Policy.
3 Select how to implement the policy.

¢ DirXML Script

¢ XSLT

¢ Link To Existing

* Copy Existing

* Schema Mapping (Only displayed, if the Schema Mapping policy set is selected.)

Add Palicy * DirML Scripk
Edit Policy SESEN
¥ Delete Al Set Policies #7 Link To Existing...
= Remove Al Set Policies Copy Existing. ..
Live 4
& Simulate. ..

4 Name the policy.

Set Policy Name

Enter a name faor your new policy,

MName:

e Policy |

[*]open Editor after creating object, :

5 Click Open Editor after creating policy.

Policies in Designer 2.0

6 Click OK.

Copying a Policy

1 In the Add Policy Wizard, select Copy a policy, then click Next.

Select Method e E
Select the method ko add a policy ko the policy set, =

() Create a new policy
Eopy

() Link a policy

2 Name the policy.

3 Accept the default container, or browse to and select the Driver, Publisher, or Subscriber object
where you want the policy to be created.

4 Browse to and select the policy you want to copy, then click OK.

Copy Policy

i

Specify the name of the new palicy, the container where it will be created and
the policy to be copied.

Palicy Manne:
IMatching

Palicy Container:

Active Dirsctory. IDMDrivers. IDMDESIGHTREE
Policy to be Copied:

Matching. Publisher . Active Directory . IDMDrivers, [DMDESIGMTR ‘

Browse..,

[] open Editor after creating object.,

5 Click Finish to make a copy of the selected policy.
Linking to a Policy

1 In the Add Policy Wizard, select Link a policy, then click Next.

Select Method

|

Select the method ko add a policy to the policy sat,

() Create a new policy
") Copy a polic

icy:

Managing Policies with the Policy Builder 27

2 Click Browse to launch the model browser.

Link Policy

Specify the existing policy to link inko the Policy Set,

Palicy to Link:

Browse..,

3 Browse to and select the Policy object you want to link into the policy set, then click OK.
Select an object:

= IOMDESIGMTREE
= E IDMDrivers

o Delimited Text

& LDAP

-dg/ Active Directory
H InputTransform
Password{Pub}-5ub Email Motifications
Il OubputTransform
Password{3ub}-Pub Email Motifications
Mew Policy
& Publisher
%) Subscriber

|l |2 [

Linking a policy into a policy set doesn’t create a new Policy object. Instead, it adds a reference
to an existing policy. This reference can be to any existing policy within the current Identity
Vault. It doesn’t need to be contained within the current Driver object, but the policy type must
be valid for the policy set that it is being linked to. For example, you can’t link a Schema
Mapping policy into an Input policy set.

Linking a policy into a policy set is not permitted when viewing all policies.

4 Click Finish to link to the selected policy.

2.4 Creating a Rule

A rule is a set of conditions that must be met before a defined action occurs. Rules are created from
condition groups, conditions, and actions.

Rules can be created in four different ways:

¢ Section 2.4.1, “Creating a New Rule,” on page 29

¢ Section 2.4.2, “Using Predefined Rules,” on page 33

¢ Section 2.4.3, “Including an Existing Rule,” on page 34

¢ Section 2.4.4, “Importing a Policy From an XML File,” on page 35

28 Policies in Designer 2.0

2.41 Creating a New Rule

When you create a rule, you create condition groups, conditions, and actions. Each rule is composed
of conditions, actions, and arguments. For more information, click the Help icon @ when creating
each item. The help files contain a definition and an example of the item being used.

¢ “Creating a Rule” on page 29

¢ “Creating a Conditional Group” on page 32

¢ “Creating a Condition” on page 33

¢ “Creating an Action” on page 33
Creating a Rule
1 From the Policy Builder toolbar, select Rule.

¢l Project 1 - Developer =0

Policy Builder for IDM 3.5 and Newer T o & 4 ® =

S match,Publisher, Delimited Text, Driver Set,Identity Yault

¢ Policy Description

Rules

There are no rules defined in this policy. Select Add a New Rule from the
toolbar to launch the Create Rule Wizard or right-click and click New =

Rule.

You can also right-click and click New > Rule.

E, Project 1 - Developer match X =B

Policy Builder for IDM 3.5 and Newer __? < v %} r & =
match.Publisher, Delimited Text.Driver Set, Identity Yault

b Policy Description

Rules

There are no rules defined in this policy. Select Add a New Rule from the

£y Import Palicy fram File. .. =2 Predefined Rule
Inchude
2 Edit... =

Either option launches the Create Rule Wizard.

Managing Policies with the Policy Builder

29

30

2 Specify the name of the rule, then click Next.

Mame and Describe Rule

The rule and description display on the rule in the Rule Builder editor,
Both can be edited by double-clicking the rule name in the Rule Builder,

ecify Mame =

<5pecify Description and Comments =
Descripkion

3 Select the condition structure (OR Conditions, AND Groups or AND Conditions, OR Groups)
then click Next.

Select the Condition Structure

Condition skructures define the logic of condition groups. -1'1 =

Condition Structure
() oR Conditions, &MD Groups

(%) AND Conditions, OR Groups

4 Select the condition you want, specify the appropriate information, then click Next.
Define the Condition

Select the values to complete the synkax of the condition, Walues with an * are required 3: =
for & walid condition,

Condition 1 of Group 1

Condition | attribute

"
Mame * | Given Mame o
Operator * | nok available w

Click the Help icon @ for information about each condition you can create.

5 You can define an additional condition or condition group at this point. For this example, there
is only one condition. Select Continue, then click Next.

Continue Defining Conditions?

Select whether ta continue defining wour condition or praceed to defining actions Far
wour rule,

Select one:
(%) Continue (Define ackions For the rule)
(") Define another condition in the same condition group

(") Define a new condition in & new condition group

Policies in Designer 2.0

6 Select the action that you want, then click Next.

Define the Action

Select the values For the synkax of wour action. Values with an * are required.

Ackion 1
Do | weto w

Click the Help icon @ for information about each action you can create.

7 You can define additional actions at this point. For this example, there is only one action. Select
Continue, then click Next.

Continue Defining Actions? |
Select whether to define a new action or select finish to complete the rule.
Select one;

{3} Continue (Go ko Summary Page)

() Define another action

8 The summary page displays the rule that was created. Click Finish to complete the creation of
the rule.

Summary

The following is a summary of the new rule bo be created.

Rule Summary

= Require Users to have Given Mame
= Conditions
=] Group 1
if attribuke 'Given Mame' not available
= Actions
wetol)

You can expand or collapse the view of the rule by clicking the plus or minus sign.

1| Project 1 - Developer *makch X =g

v R @ =

match.Publisher . Delimited Text.Driver Set, Identity Wault

Policy Builder for IDM 3.5 and Newer

e

b Policy Description

Rules

5' Require User to have Given Name

Managing Policies with the Policy Builder 31

Creating a Conditional Group

1 Right-click the Conditions tab or right-click the name of the Condition Group, then click New
> Insert Condition Group Before or Insert Condition Group After.

Rules

Bl 5 Require Users to have Given Name

[tew *[E® aopend Conditon Graup

Expand All Conditions
Callapse All Conditians

Preferences. ..
v "4 YCLUL]

You can also right-click the name of the Condition Group, then click New > Insert Condition
Group Before or Insert Condition Group After.

ne' not available

Rules

B 5 Require Users to have Given Name

Conditions

Condition Group After

[+] Expand Al Conditions
$-<. Append Condition.. .

Actions Callapse All Conditions

4 Move the selected item up

You can change the condition for the Condition Groups by click the 4nd/Or icon.

Conditions

. Condition Group 1
v 5’ if attribuke 'Given Mame' nok available

. Z Condition Group 2

o 5 if attribuke 'Surname’ nok available

32 Policies in Designer 2.0

Creating a Condition

1 Right-click the condition, then click New > Insert Condition Before or Insert Condition After.

Conditions

. & Condition Group 1
v F

Shbeibagbe Tivae Plarsa! ook oo cilable

"%, Insert Condition Before. ..
& Edit... += Insert Condition After. ..

4 Move the selected item up
| A Maove the selected itern down

Actions

You can change the condition by clicking the And/Or icon.

Conditions

.~ & Condition Group 1

v 5' if attribute 'Given Mame' not available

v 5" if attribute "Surname’ not available

Creating an Action

1 Right-click the action, then click New > Insert Action Before or Insert Action After.

Conditions

.~ & Condition Group 1

4 5' if attribute 'Given Mame' nok awvailable

E=_|/ Insert Action Before. ..

i & Insert Action After,..

4 Move the selected item up

b Move the selected item down

2.4.2 Using Predefined Rules

Designer includes a list of predefined rules. You can import and use these rules as well as create
your own rules.

1 Right-click in the Policy Builder and select New > Predefine Rules > Insert Predefined Rule
Before or Insert Predefined Rule After.

Managing Policies with the Policy Builder 33

34

See Using Predefined Rules (http://www.novell.com/documentation/idm35/index.html?page=/
documentation/idm35/policy designer/data/proverview.html) for more information.

Rules
v Z
Rule k]
g Impart Palicy From file. .. Predefined Riule 4 Qj Insert Predefined Rule Before, .,
] Include I FB 1nsert Predefined Rule After. ..
£ Ed. @ Append Condition Group r

2.4.3 Including an Existing Rule

Designer allows you to include the rules from another policy.

1 Right-click in the Policy Builder and click New > Include > Insert Include Before or Insert

Include After.
Rules
Mew 4 Rule 4 |
g2y Impart Palicy from file... Predefined Rule »
e " Insert Inchude Before. .
Edit... -
- @ Append Condition Group o= Insert Include After. .,

2 Click the Browse icon.

Palicy to Include: | | |

I oK H Cancel]

3 Browse to the policy you want to include, then click OK.

Select an object:

=] IDMDESIGMTREE
=%k [DMDrivers
' Delimited Text
& LDAP
= ‘.,I Active Directory
H InputTransform
Passwaord{Pub)-5ub Ernail Motifications
CubputTransform
Passwaord{ Subi-Pub Email Motifications
i Publisher
Event TransForm
E Matching

i
0 | [) |

Policies in Designer 2.0

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_designer/data/proverview.html

4 The field is now populated with the path to the policy. Click OK.

Palicy ko Include: | Matching %

[K H Cancel]

The rule is a link to the original rule. You cannot edit the rule in this location. Access the
original rule to make changes.

Rules

v 5 Require Users to have Given Name

N Include ..\,..', Delimited Text'Publisher'PublisherMatchingRule

2.4.4 Importing a Policy From an XML File

Rules and policies can be saved as XML files. If you have a file that contains a rule or a policy you
want to use, the Policy Builder allows you to import the file.

1 In the Policy Builder, right-click and select Import Policy from file.

Rules

: r_-——!—
4 5 Mew k

. Impart Palicy Fram File. ..

2 Select one of the two options: Append the rules from the imported policy or Replace the rules
from the imported policy.

(#)iappend the rules from the imported policy

("JReplace the rules from the imported policy

Specify the DirkML Script File o import:

[oK H Cancel]

3 Click the browse icon and select the file that contains the policy, then click Open.
4 Click OK.

Managing Policies with the Policy Builder

35

2.5 Creating an Argument

The Argument Builder provides a dynamic graphical interface that enables you to construct complex
argument expressions for use within the Policy Builder. To access the Argument Builder, see
“Argument Builder” on page 45.

Arguments are dynamically used by actions and are derived from tokens that are expanded at run
time.

Tokens are broken up into two classifications: nouns and verbs. Noun tokens expand to values that
are derived from the current operation, the source or destination data stores, or some external source.
Verb tokens modify the results of other tokens that are subordinate to them.

To define an expression, select one or more nouns tokens (values, objects, variables, etc.), and
combine then with verb tokens (substring, escape, uppercase, and lowercase) to construct
arguments. Multiple tokens are combined to construct complex arguments.

Figure 2-3 Argument Builder

Create and edit arguments

Add or remove your components to the expression area to construct your argument. Enter component values under Editor.

= Expression @B (@ & Nouns 4
Texk -
Added Entitlement
Association
Aktribute
Class Mame W
Yerbs
Basefd Decode A
Basetd Encode
Conveert Time
Escape Source DN
Escape Destination DN
Join
Lowercase
Map
Parse DM e
2# Editor * Required @ Description

Conskant kext,

36 Policies in Designer 2.0

For example, if you want the argument set to an attribute value, you select the attribute noun, then
select the attribute name:

1 Double click A#tribute from the list of noun tokens to select it.

f Mouns i

Text A
Added Entitlerent
Associakion

Class Mame

Character

Destination Attribute

Destination DN

Destination MName

Document ¥

2 Browse to and select the attribute name in the Editor field.

£ Editor

5 Do not trace; |False w

Mame: * | Given Marme Q,

If you only want a portion of this attribute, you can combine the attribute token with the
substring token. The expression displays a substring length of 1 for the Given Name attribute
combined with the entire Surname attribute.

- Expression

Substring(length="1"}
&5 Akkribukef"Given Mame")
& AtkribukedSurnams")

After you add a noun or verb, you can provide values in the editor, then immediately add another
noun or verb. You do not need to refresh the Expression pane to apply your changes; they appear
when the next operation is performed.

See “Noun Tokens” on page 283 and “Verb Tokens” on page 323 for a detailed reference on the
noun and verb tokens. See “Argument Builder” on page 45 for more information on the Argument
Builder.

2.6 Editing a Policy

The Policy Builder allows you to create and edit policies. You can drag and drop rules, conditions
and actions. For additional operations, access the Policy Builder toolbar. To display a context menu,
right-click an item.

Managing Policies with the Policy Builder

37

Figure 2-4 Policy Builder Context Menu and Toolbar

\5, Project 1 - Developer *match X =0

Policy Builder for IDM 3.5 and Newer __é} h & BN | 4 ® =
makch.Publisher.Delimited Text,Driver Set, Identity Yaulk

¥ Policy Description

Rules
Ve
gy Impart Policy from file. . Predefined Rule 4
] Include 4
£ Ed... @ Append Condition Graup
of” Cut Ctrl+%
Copy Chrl4C
¥ Celete Celete
—| Collapse all
+] Expand Al
< Undo Ctrl+Z
& Launch Simulator. .,
Preferences. ..

2.6.1 Actions and Menu Items in the Policy Builder

The table contains a list of the different actions and menu items in the Policy Builder.

Table 2-3 Policy Builder Actions and Menu Items

Operation Description

Collapse All '= Collapses all expanded rules.

Copy Copies the selected item to the Clipboard.

Copy and drop Select the item, press Cirl, then drag the item.

cutt Cuts the selected item and copies it to the
Clipboard.

Delete % Deletes the selected item.

Disable = Displays a rule, condition, or action as disabled.

Disable Trace & Disables trace on the rule.

Drag and drop Enables you to select an item, then relocate it.

Select the item, then drag it to the new location.

Edit & Enables you to edit the selected item. To open the
Rule Builder, select a rule, then click Edit.

38 Policies in Designer 2.0

Operation

Description

Enable E
Enable Trace z
Expand All '+

Import Policy from file E21

Launch Simulator E

Move and drop

Move the selected item down **
Move the selected item up i

New > Append Condition Group

New > Include > Insert Include Before or Insert
Include After

New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After

New > Rule > Insert Rule Before or Insert Rule
After

Paste ﬁlj
Preferences 5=

Redo
Select
Undo

Displays a rule, condition, or action as enabled.
Enables tracing on the rule.

Expands all the rules so that you can view the
conditions and actions of each rule.

Imports a policy from the file system and appends it
to the policy, or replaces all the rules of the policy.

Launches the Policy Simulator.

Enables you to select and move an item. Select the
item, then drag it.

Moves the item down in the list of policies.
Moves the item up in the list of policies.

Creates a new condition group after a selected
item.

Creates a new Include before or after the selected
item.

Inserts a predefined rule before or after the
selected item.

Creates a new rule before or after the selected
item.

Pastes the contents of the Clipboard after the
selected item.

Enables you to change how the information is
displayed.

Redoes the previous action.
Click any item to select it.

Undoes the previous action.

2.6.2 Keyboard Support

You can move through the Policy Builder with keystrokes as well as using the mouse. The supported

keystrokes are listed below.

Table 2-4 Keyboard Support in the Policy Builder

Keystroke Description

Ctrl+C Copies the selected item into the Clipboard.

Ctrl+X Cuts the selected item and adds it to the Clipboard.
Ctrl+VvV Pastes the contents of the Clipboard after the

selected item.

Managing Policies with the Policy Builder

39

Keystroke Description

Delete Deletes the selected Item.
Left-Arrow Collapses a rule node.
Right-Arrow Expands a rule node.
Up-Arrow Navigates up.
Down-Arrow Navigates down.

Ctrl+Z Undo

Ctrl+Y Redo

2.6.3 Renaming a Policy

1 In the Outline view, select the policy you want to rename.
2 Right-click and select Properties.
3 Change the name of the policy in the Policy Name field.

1. General

Policy Mame: | Match
4 Click OK.

2.6.4 Saving Your Work

Do one of the following:

¢ From the Main menu, click File > Save (or Save All).
¢ Close the editor by clicking the X in the editor’s tab.
¢ Select Close from the Main Menu’s file menu.

+ Press Ctrl+S.

40 Policies in Designer 2.0

2.6.5 Policy Description

The description fields provide a place to add notes about the functionality of the policy. You can add
a description for the policy and you can add a description for the rule.

1 In the Policy Builder, double click Policy Description.

Policy Builder for IDM 3.5 and Newer = i %} @ =
S match.PublisherDelimited Text.Driver Set.Identity Vaulk

ﬁ}{_ﬁnlicr Description)

2 Provide a description of the policy.

3 Save the policy by pressing Ctrl+S.
To add a description to a rule:
1 Double-click the name of the rule.

Rules

SRV R cquire User to have Given Namel

Mame | Require User to have Given Mame

<5pecify Description and Commeants =
Description

2 Specify a description of the rule in the Description field.
3 Save the rule by pressing Ctrl+S.

2.7 Viewing the Policy in XML

Designer enables you to view, edit, and validate the XML by using an XML editor. Click the XML
Source or XML Tree tabs to access the XML editor. For more information about the XML editor, see
The Novell XML Editor (http://www.novell.com/documentation/designer20/index.html?page=/
documentation/designer20/admin_guide/data/xml_intro.html).

Managing Policies with the Policy Builder 41

http://www.novell.com/documentation/designer20/index.html?page=/documentation/designer20/admin_guide/data/xml_intro.html

2.8 Identity Manager DTD Reference

This section is a reference to the document type definitions (DTD) that Identity Manager uses. The
guide contains definitions for each of the elements used in Identity Manager. There are separate
DTDs for different components of Identity Manager.

¢ Filter DTD (http://www.novell.com/documentation/idm35/index.html?page=/documentation/
idm35/policy dtd/data/dtdfilteroverview.html)

¢ eDirectory DTD (http://www.novell.com/documentation/idm35/index.html?page=/
documentation/idm35/policy dtd/data/dtdndsoverview.html#dtdndsoverview)

¢ Map DTD (http://www.novell.com/documentation/idm35/index.html?page=/documentation/
idm35/policy dtd/data/dtdmapoverview.html#dtdmapoverview)

¢ DirXML Script DTD (http://www.novell.com/documentation/idm35/index.html?page=/
documentation/idm35/policy dtd/data/dtddirxmloverview.html#dtddirxmloverview)

¢ DirXML Entitlements DTD (http://www.novell.com/documentation/idm35/index.html?page=/
documentation/idm35/policy dtd/data/dtdentitlementoverview.html#dtdentitlementoverview)

42 Policies in Designer 2.0

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_dtd/data/dtdfilteroverview.html
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_dtd/data/dtdndsoverview.html#dtdndsoverview
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_dtd/data/dtdmapoverview.html#dtdmapoverview
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_dtd/data/dtddirxmloverview.html#dtddirxmloverview
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_dtd/data/dtdentitlementoverview.html#dtdentitlementoverview

Using Additional Builders

Although you define most arguments using the Argument Builder, there are several more builders
that are used by the Condition Editor and Action Editor in the Policy Builder. Each builder can

recursively call anyone of the builders in the following list:

¢ Section 3.1, “Action Builder,” on page 43

¢ Section 3.2, “Actions Builder,” on page 44

¢ Section 3.3, “Argument Builder,” on page 45

¢ Section 3.4, “Condition Builder,” on page 49

¢ Section 3.5, “Match Attribute Builder,” on page 50

¢ Section 3.6, “Action Argument Component Builder,” on page 52

¢ Section 3.7, “Argument Value List Builder,” on page 53
¢ Section 3.8, “Named String Builder,” on page 54

¢ Section 3.9, “Condition Argument Component Builder,” on page 54

¢ Section 3.10, “Pattern String Builder,” on page 55
¢ Section 3.11, “String Builder,” on page 56

¢ Section 3.12, “XPath Builder,” on page 57

¢ Section 3.13, “Namespace Editor,” on page 57

3.1 Action Builder

The Action Builder enables you to add, view, and delete the actions that make up a rule. Action can

also contain other actions.

3.1.1 Creating an Action

1 In the Policy Builder, create a new rule or edit and existing rule.

2 Double-click the Actions tab to launch the Action Builder.

=

Define new action below

Cio |=:Se|ect an action= v| 7

3 Select the desired action from the drop-down list, then click OK.

Using Additional Builders

43

3.1.2 Additional Options for the Action Builder

1 Right-click the action to see the additional options:

! - g Insert Action Before. ..
2 Edit... FT Insert Action After..,
of” Cut Chrl+x
Copy Chrl+C

elete elete
3 Delet Delet
< Undo 2
Preferences. ..

¢ New > Insert Action Before: Adds a new action before the current action.

¢ New > Insert Action After: Adds a new action after the current action.

+ Edit: Launches the Action Builder.

+ Move the selected item up: Moves the selected action up in the order of execution.

+ Move the selected item down: Moves the selected action down in the order of execution.
¢ Cut, Copy, Paste, or Delete an Action: Cuts, copies, pastes, or deletes the action.

¢ Undo or Redo: Undoes or redoes the last action.

¢ Preferences: Allows you to set default functionality in the Policy Builder.

+ Help: Select an action, then click the Help icon to see information specific to that action.

3.2 Actions Builder

To launch the Actions Builder, select one of following two actions, then click the Edit the arguments
icon E1.

¢ For Each (page 231)
¢ Implement Entitlement (page 237)

In the following example the add destination attribute value action is performed for each Group
entitlement that is being added in the current operation.

Figure 3-1 For Each Action

Do |For each v (@
Enter node set: * | Added Entitlement{"Group")
Enter action: * | do-add-dest-attr-value

44 Policies in Designer 2.0

To define the action of the add destination attribute value, click the icon that launches the Actions
Builder. In the Actions Builder, you define the desired action. In the following example, the member
attribute is added to the destination object for each added Group entitlement.

Figure 3-2 Argument Action Builder

@

Enter attribute name: * | Member

0Bl 5dd deskination attribuke value

Enter class name: | Group

Select mode: | add to current operation w

Select object: |DM w
Enter DM: * | Local Yariabled"current-node™)

Enter walue type: "
Enker string; * | Cestination DM

3.3 Argument Builder

The Argument Builder provides a dynamic graphical interface that enables you to construct complex
argument expressions for use within Rule Builder.

The Argument Builder consists of five separate sections:

+ Nouns: Contains a list of all of the available noun tokens. Select a noun token, then click Add
to add the noun token to the Expression pane. See “Noun Tokens” on page 283 for more
information.

+ Verbs: Contains a list of all of the available verb tokens. Select a verb token, then click Add to
add the verb token to the Expression pane. See “Verb Tokens™ on page 323 for more
information.

¢ Description: Contains a brief description of the noun or verb token. Click the help icon to
launch additional help.

¢ Expression: Contains the argument that is being built. Multiple noun and verb tokens can be
added to a single argument. Tokens can be arranged in different orders through the Expression
pane.

+ Editor: Provide the values for the nouns and the verbs in the Editor pane.

Using Additional Builders 45

46

Figure 3-3 Argument Builder

Create and edit arguments

Add or remove your components ko the expression area to construct wour argument. Enter component values under Editor.

= Expression EE (7} {4 Nouns

2 Editor * Required

¢ Section 3.3.1, “Launching the Argument Builder,” on page 46
¢ Section 3.3.2, “Argument Builder Example,” on page 47

3.3.1 Launching the Argument Builder

Texk

&dded Entitlament
Association
Attribute

Class Mame

/ Yerbs

Basetd Decode
Basetd Encode
Convert Time

Escape Source DM
Escape Destination DM
Jain

Lowercase

Map

Parse DM

% Description

Constant kexk.

To launch the Argument Builder, select one of the following actions, then click the Edit the

Arguments icon =1,

+ Add Association (page 207)

¢ Add Destination Attribute Value (page 208)
¢ Add Destination Object (page 210)

¢ Add Source Attribute Value (page 212)

¢ Append XML Text (page 216)

<

¢ Clear Destination Attribute Value (page 219) (when the selected object is DN or Association)

¢ Clear Source Attribute Value (page 221) (when the selected object is DN or Association)

¢ Delete Destination Object (page 226) (when the selected object is DN or Association)

¢ Delete Source Object (page 227) (when the selected object is DN or Association)

+ Find Matching Object (page 228)

¢ For Each (page 231)

+ Move Destination Object (page 238)
¢ Move Source Object (page 240)

Policies in Designer 2.0

+ Reformat Operation Attribute (page 241)

+ Remove Association (page 243)

+ Remove Destination Attribute Value (page 244)
+ Remove Source Attribute Value (page 245)

¢ Rename Destination Object (page 246) (when the selected object is DN or Association and
Enter String)

¢ Rename Source Object (page 248) (when the selected object is DN or Association and Enter
String)

¢ Set Destination Attribute Value (page 255) (when the selected object is DN or Association and
Enter Value Type is not structured)

¢ Set Destination Password (page 257)

¢ Set Local Variable (page 258)

¢ Set Operation Association (page 260)
¢ Set Operation Class Name (page 261)
¢ Set Operation Destination DN (page 262)
¢ Set Operation Property (page 263)

¢ Set Operation Source DN (page 264)

¢ Set Operation Template DN (page 265)
+ Set Source Attribute Value (page 266)
¢ Set Source Password (page 268)

+ Set XML Attribute (page 271)

+ Status (page 272)

¢ Trace Message (page 277)

3.3.2 Argument Builder Example

The following example creates an argument for a user name from the first letter of the first name and
the entire last name:

1 Double-click Attribute from the list of nouns.

4 Mouns 4k

Texk rs
Added Entitlerment E
Association

—
Class Mame
Character
Destination Atkribute
Destination DM
Destination Marme
Docurment

|

Using Additional Builders 47

48

2 Specify or select the Given Name attribute.

2# Editor

5 Do not trace:

ik .
Mame: | Siven Marne

3 Double-click Substring from the list of verbs.

/ ¥erbs R
Jain rs
Lowercase |
Map
Parse DM
Replace all

Replace First

Silit —

Uppercase b

4 Type 1 in the Length field.

2# Editor

5 Do not trace:

Skart: I:I
Length:

5 Select the Given Name attribute, then click the Move Down icon.

= Expression 4 'Z'f' @

Attribute!"Given Mame")
/' substringflangth="1")

6 Double-click Attribute from the list of nouns.

7 Specify or browse to the Surname attribute.

o Expression

'8 = bctringllength="1")
b Attribuke"Given Mame")
fh Attribute"Surname")

The argument takes the first character of the Given Name attribute and adds it to the Surname

attribute to build the desired value.

8 Click OK to save the argument.

Policies in Designer 2.0

3.4 Condition Builder

The Condition Builder enables you to add, view, and delete the conditions that make up a rule. A
condition contains one or more conditions and one or more condition groups. The condition groups
contain two different condition structures. Condition structures define the logic of condition groups.
The two condition structures are:

¢ OR Conditions, AND Groups
¢ AND Conditions, OR Groups

¢ Section 3.4.1, “Creating a Condition,” on page 49
¢ Section 3.4.2, “Additional Options for the Condition Builder,” on page 49

3.4.1 Creating a Condition

1 In the Policy Builder, create a new rule or edit and existing rule.

2 Double-click the Conditions tab to launch the Condition Builder.

Conditions

. % Condition Group 1

Define new condition below

Condition |Select a condition w | @

3 Select the desired condition from the drop-down list, then click OK.

3.4.2 Additional Options for the Condition Builder

1 Right-click the condition to see the additional options:

& Edit... /&~ Insert Condition After...
of” Cut Chrl+

Copy Chr+C

[Paste Chrl+y

¥ Delete Delete

<% Undo Chrl42

Preferences...

+ New > Insert Condition Before: Adds a condition before the current condition.

Using Additional Builders 49

+ New > Insert Condition After: Adds a condition after the current condition.
¢ Edit: Launches the Condition Builder.
+ Move the selected item up: Moves the selected condition up in the order of execution.

+ Move the selected item down: Moves the selected condition down in the order of
execution.

¢ Cut, Copy, Paste, or Delete: Cuts, copies, pastes, or deletes the condition.

¢ Undo or Redo: Undoes or redoes the last action.

¢ Preferences: Allows you to set default functionary in the Policy builder.

+ Help: Select a condition, then click the Help icon to see information specific to that

condition.

For additional information on the Conditional Builder and the rules, see Section 2.4, “Creating a
Rule,” on page 28.

3.5 Match Attribute Builder

The Match Attribute Builder enables you to select attributes and values used by the Find Matching
Object (page 228) action to determine if a matching object exists in a data store.

For example, if you wanted to match users based on a common name and a location:

1 Select the action of find matching object.

2 Select the scope of the search for the matching objects. Select from entry, subordinates, or
subtree.

3 Specify the DN of the starting point for the search.
4 Click the Edit match attributes icon = to launch the Match Attribute Builder.

Do |find makching object vl (7
Select scope: | subkree w
Enter DN: | Movell

Enter makch attribukes:

5 Click the Browse attributes “ icon to launch the Schema Browser.

50 Policies in Designer 2.0

6 Click the Attributes tab, then browse to and select the desired attribute.

Classes | Attributes |

Attributes of: | &

&)]

Bindery Property
Bindery Restriction Level
Bindery Type

birthMarne:

buildingrlame
businessCategory

C

cACertificate
CachedattrsOnExtRefs
CA Private Key

CA Public Key

carlicense

Cartridge

Certificate Revocation
certificateRevocationList
Certificate Yalidity Interval
children

Citﬁ

oo

cormmType

Company
Convergence
costCenter

st antarMeerrintinn

<

[only show changes

7 Click OK.

If you want to add more than one attribute, click the Append new item icon ¥ to add another

8

line.

@ Match Atiribute Builder X

Match Attributes

The match attributes specify the attributes that are ko be used ko find a makch For the action,

Match Atributes @ ® "f % i @

= | Q| v

[L v
Click Finish.

The Match Attribute Builder also allows you to specify another value, instead of using the value
from the current object. Select Other Value instead of Use values from current object, to use a
different value. There are multiple value types to specify:

*

counter
dn

int
interval
octet
state

structured

Using Additional Builders

51

52

+ teleNumber

* time
To use the Other Value:

1 Launch the Match Attribute Builder, then select Other Value.

@ Mach Attribute Builder 3

Match Attributes I

The match attributes specify the attributes that are to be used to find a match for the action, 2;

Match Atributes + K °é" [E

Select Value Type: | skring

Enker Skring: | |

2 Select the desired value type.
3 Specify the value, then click OK.

3.6 Action Argument Component Builder

To launch the Action Argument Component Builder, select one of the following actions when the

Enter value type selection is structured, then click the Edit components icon El.

¢ Add Destination Attribute Value (page 208)

+ Add Source Attribute Value (page 212)

¢ Reformat Operation Attribute (page 241)

+ Remove Destination Attribute Value (page 244)
¢ Remove Source Attribute Value (page 245)

¢ Set Destination Attribute Value (page 255)

+ Set Source Attribute Value (page 266)

Figure 3-4 Add Destination Attribute Value Action

Da | add destination attribute value A" | @

Enter attribute name; * | Given Mame

Enter class name: | User

Select mode: |write directly to destination datastore W |

Select object: |DN V|

Enter DM: * | "MovellUsers" |
M| shruckured v|
Enter components: * | Lser |

Policies in Designer 2.0

1 Click the Edit the components icon 2 when the value type is set to structured.
2 Create the value of the action component.

You can type the value, or click the Edit the arguments 2 icon to create the value in the
Argument Builder.

Argument Components

The argument components are struckured argument walues,

Name Yalues + R of @ @
| value | | user]| |

3 Click Finish.

3.7 Argument Value List Builder

To launch the Argument Value List Builder, select the following action, then click the Edit the
arguments icon 1,

¢ Set Default Attribute Value (page 253)

Figure 3-5 Set Default Attribute Value

Do | set default atbribute value v| @
Enter attribute name: * | Companty | Qy
Write back: |False V|
(Enter argument values: *)| |

1 Select the type of the value: counter, dn, int, interval, octet, state, string, structured,
teleNumber, time.

2 Click the Edit the value lists icon 3.

Argument Yalues |

Argument values specify the values that are bo be used For an attribute,

&
[l

@

Type Argument ¥alues = * DE:"/ I%

| structured w | | |

I

3 Click the Edit the arguments icon =1,
4 Create the value of the action component.

You can type the value, or click the Edit the arguments 2 icon to create the value in the
Argument Builder.

5 Click Finish.

Using Additional Builders 53

3.8 Named String Builder

To launch the Named String Builder, select one of the following actions, then click the Edit the
strings icon =,

+ Generate Event (page 232)
¢ Send Email (page 249)
¢ Send Email from Template (page 251)

1 Select the name of the string from the drop-down list.

2 Create the value for the string by clicking the Edit the arguments icon = to launch the

Argument Builder.
MNamed String Builder |-
String elements provide walues for arguments, &‘ =
Mame String ¥alue + ® 05& L% @

[ol El

3 Click Finish.

For a Send Email action, the named strings correspond to the elements of the e-mail:

Named String Builder |-

String elements provide walues For arguments, ﬁ =
Mame String Yalue + K DE{" I% i @
| ko L | | |
| subject w | | |

| | E

A complete list of possible values is contained in the help file corresponding to the action that
launches the Named String Builder.

3.9 Condition Argument Component Builder

To launch the Condition Argument Component Builder, select one of the following conditions, then
select the structured selection for Mode in order to see the Launch ArgComponent Builder icon [

+ If Attribute (page 166)
¢ [f Destination Attribute (page 172)
¢ [f Association (page 164)

Policies in Designer 2.0

Figure 3-6 If Attribute mode

Condition |attribute w | #

1 Specify the name and value of the condition component.

Argument Components

The condition argument components are namefvalue pairs.,

Marpe * | Given Marne | Y
Operator * |equal v|
(Modeﬂstructured v|

Walue | |

= K o B @

MName Yalues

Q
Il

@

2 Click Finish.

3.10 Pattern String Builder

You can launch the Pattern String Builder from the Argument Builder editor when the Unique Name
(page 317) token is selected. The Argument Builder editor pane shows a Pattern field where you can

click to launch the Pattern String Builder.

Using Additional Builders

55

56

Figure 3-7 Unique Name Token in the Argument Builder

Create and edit arguments

Add or remove your components ko the expression area to construct wour argument. Enter component values under Editor.

I Expression S i) (7 &5 Nouns
foa B Linique M: F le=" "y Cperation ~
Password
Query

Removed Attribute
Removed Entitlement

Resalve
Source Attribute v
/ Yerbs

Basetd Decode ~
Basetd4 Encode 3
Convert Time

Escape Source DM

Escape Destination DN —
Join
Lowercase
Map

Parse DM

|£

' -~
2 Editor — % Description

fr Do not trace: & generated unique name.
Attribute name: | | C&
Start search:

(Pattern: #\ |
When to use counters: |Fallback w

1 Click the Edit patterns icon 2 to launch the Pattern Builder.

2 Specify the pattern or click the Edit the arguments icon =l to use the Argument Builder to
create the pattern.

Pattern Builder

Define a list of patterns

Pattern Yalues + ¥ ‘:’3:’ @ @
Pattern: | |

3 Click Finish.

3.11 String Builder

The String Builder enables you to construct name/value pairs for use in certain actions, such as Start
Workflow.

1 Specify the name of the string in the Name field.

2 Click the Edit the arguments icon to construct the value of the string.

3 Click OK, then click Finish.

Policies in Designer 2.0

The Start Workflow action contains an Additional Arguments field that allows you to create the
necessary values for a specific workflow. These fields are unique to each workflow. The string
builder allows you to create strings and set values for these strings.

The following example starts a workflow process each there is an add operation. The workflow is a
request for a cell phone. The strings in the Additional Arguments field are the cell phone provider
and the reason the cell is requested.

Figure 3-8 Start Workflow Example

Do |start workflow v
Specify provisioning request ON: * | Ch=ApproveCellPhone, Ch=RequestDefs, CN=~AppConfig, ChN=
Specify user application URL: * | http:jflocalhost: 3050/ IDMProy
Specify autharized user DM: * | cn=WorkFlowadmin, o=People
specify authorized user password: * | Mamed Password(workflow-adrin®y

Specify recipient DN: * | Parse DN("qualified-slash”, "ldap”, #Path("@qualified-src-dn))

R R IS R

Specify additional argurnents: | SEa0As ANt Ea]

When you click the icon to the right of the Additional Arguments field, the String Builder is
launched. In this example, the value for the provider is set to ACMEWireless, and the value for the
reason is set to new hire. To view this example in XML, see start workflow.xml (../samples/

start_ workflow.xml).

Figure 3-9 String Builder Example

String Builder F_

Skring elements provide values For arguments., f =

Name String ¥alue + K ‘33!/ @ i @
provider "ACMEWireless"
reason "new hirg"

3.12 XPath Builder

The XPath Builder is a powerful tool that allows you to build and test an XPath expression against
any XML document. See “Using the XPath Builder” on page 59 for more information.

3.13 Namespace Editor

The Policy Builder enables you to use multiple XML namespaces within your XML documents. To
define a namespace, specify the namespace prefix in the Name field, and the URI in the URI field.
Leave the Java Extension check box deselected.

You can also access Java* classes through XPath using XML namespaces. To create a namespace
for a Java class, specify the namespace prefix in the Name field, the class name in the URI field, and
select the Java Extension check box.

Using Additional Builders

57

../samples/start_workflow.xml

Figure 3-10 Namespace Editor

@ NMamespace Editor

g‘
Edit Policy's Namespace Definitions \
-
Policy Builder enables wou to use multiple XML namespace definitions within wour XML <
documents,
+ v K| of B @
Prefix LRI Jawva Extension
| [[=
[Finish] [ancel]

3.13.1 Accessing Java Classes Using Namespaces

Novell provides several Identity Manager Java classes that can be called using XPath expressions
from the Policy Builder. The following links open Javadoc references for these Java classes:

¢ com.novell.nds.dirxml.driver.XdsQueryProcessor (http://developer.novell.com/documentation/
dirxml/dirxmlbk/api/com/novell/nds/dirxml/driver/XdsQueryProcessor.html)

¢ com.novell.nds.dirxml.driver. XdsCommandProcessor (http://developer.novell.com/
documentation/dirxml/dirxmlbk/api/com/novell/nds/dirxml/driver/
XdsCommandProcessor.html)

¢ com.novell.nds.dirxml.driver. DNConverter (http://developer.novell.com/documentation/
dirxml/dirxmlbk/api/com/novell/nds/dirxml/driver/DNConverter.html)

The Java Developer Kit (JDK*) also provides several useful classes, such as java.lang.String, and
java.lang.System. References for these classes are available with the JDK.

For additional information on using XPath and the Novell Java classes listed above, consult the
DirXML Driver Developer Kit (http://developer.novell.com/documentation/dirxml/dirxmlbk/ref/
dirxmlfaq.html).

58 Policies in Designer 2.0

http://developer.novell.com/documentation/dirxml/dirxmlbk/api/com/novell/nds/dirxml/driver/XdsQueryProcessor.html
http://developer.novell.com/documentation/dirxml/dirxmlbk/api/com/novell/nds/dirxml/driver/XdsCommandProcessor.html
http://developer.novell.com/documentation/dirxml/dirxmlbk/api/com/novell/nds/dirxml/driver/DNConverter.html
http://developer.novell.com/documentation/dirxml/dirxmlbk/ref/dirxmlfaq.html

Using the XPath Builder

The XPath Builder is a powerful tool that allows you to build and test an XPath expression against
any XML document. You can test different expressions against an XDS document and modify the
XDS document while testing the expression. For more information about XPath expression, see
XPath 1.0 Expressions (http://www.novell.com/documentation/idm35/index.html?page=/
documentation/idm35/policy/data/policyxpathexpression.html#policyxpathexpression).

Figure 4-1 XPath Builder

Create an XPath Expression
Import an ¥0S document, select the current context in the XPath Context Selector, then build and test an XPath P i o o

expression in the ¥Path Expression kext area, L2 ZTA

nPath Selected Context

7 (®) eneric () Unique

Mo context currently selected

D5 Document Locakion:

aML Tree | ©ML Source
wPath Conkext Selec [=] | [5) #Path Expression O

The document is emply.
Right mouse click here ko insert content, B

Results:

Ikem Location

%Path:
‘ ’

[al's] [Cancel

To use the XPath Builder:

1 In the Policy Builder, select any of the following conditions or action, then click the Launch

+ [f XML Attribute (http://www.novell.com/documentation/idm35/index.html?page=/
documentation/idm35/policy _designer/data/ifxmlattr.html#ifxmlattr)

¢ [f XPath Expression (http://www.novell.com/documentation/idm35/index.html?page=/
documentation/idm35/policy designer/data/ifxpathexpression.html#ifxpathexpression)

+ Append XML Element (http://www.novell.com/documentation/idm35/index.html?page=/
documentation/idm35/policy designer/data/
doappendxmlelement.html#doappendxmlelement)

¢ Append XML Text (http://www.novell.com/documentation/idm35/index.html?page=/
documentation/idm35/policy _designer/data/doappendxmltext.html#doappendxmltext)

Using the XPath Builder

59

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/policyxpathexpression.html#policyxpathexpression
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_designer/data/ifxmlattr.html#ifxmlattr
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_designer/data/ifxpathexpression.html#ifxpathexpression
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_designer/data/doappendxmlelement.html#doappendxmlelement
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_designer/data/doappendxmltext.html#doappendxmltext

¢ Clone By XPath Expression (http://www.novell.com/documentation/idm35/
index.html?page=/documentation/idm35/policy designer/data/
doclonebyxpathexpression.html#doclonebyxpathexpression)

¢ Set XML Attribute (http://www.novell.com/documentation/idm35/index.html?page=/
documentation/idm35/policy designer/data/setxmlattribute.html#setxmlattribute)

+ Strip XPath (http://www.novell.com/documentation/idm35/index.html?page=/
documentation/idm35/policy designer/data/dostripxpath.html#dostripxpath)

2 Select Import to browse to and select the XDS document to test.

XD5 Document Location:

[g (=

Designer comes with sample event files you can use to test the XPath expression against. The
files are located in the plug-in

com.novell.designer.idm.policy version\simulation, where version is the
current version of Designer. The events are Add, Association, Delete, Instance, Modify, Move,
Query, Rename, and Status.

Laok jh: |lﬁ simulation V| Q ¥ E* G-
- Cradd,
_'_J IC2) Association
Recent [SiDelete
ﬁlnstance
7 [y Modify
L [CiMove
Desktop CQuery
BRename
. |y 5katus
ty Documents
tdy Computer
‘g File name: | w | I Open l
My W etk Files of type: |’°.:-:m| v| l Cancel]

3 Double-click the folder to display the available events. Each event has different files you can
select. For example, if you select Add you have three options: Organization.xml,

60 Policies in Designer 2.0

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_designer/data/doclonebyxpathexpression.html#doclonebyxpathexpression
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_designer/data/setxmlattribute.html#setxmlattribute
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_designer/data/dostripxpath.html#dostripxpath

OrganizationalUnit.xml, and User.xml. The file indicates the event. If you select
User.xml, itis an Add event for a User object.

Open E]
Lok | £ Add v Q2 E

Organization. xml
Qrganizationallnit, sl

ty Recent
Documents

?[:

Desktop

\$

by Documents

%_—1"'

tdy Compuiter

@ File name: |L|ser.:-<m| w | I Open l

My Mebwark Files of type: * vl v| [Cancel]

4 Select a file, then click Open.

The input document is now displayed in the XPath Context Selector view. The XML Source tab
allows you to use an XML source editor to edit the imported document, or an XML document

Using the XPath Builder 61

from another editor can be copied and pasted into the source view. If you change the document,
click Save As to save the changed document.

ERML Tre | ¥ML Source |

{(%Path Context Selectar) = | 8

P=7 xml

= [e] nds
dedversion 1
ndsversion g

wril:space d
']

[&] input

¥Path:

o)

62 Policies in Designer 2.0

If you want to see the XDS document without scrolling, click the Hide XPath Details icon k. To

see the XPath Expression and Results windows, click Show XPath Details icon L.

EML Tree | =ML Source
®Path Contesxt Selector

T2 el
=l [g] nds
dtdwersion
ndsversion
xml:space
=l |8 inpuk
=l [e] add
class-name
qualified-src-dn
src-dn
8| associakion
(8] add-attr
] add-attr
[e] add-attr
le] add-attr
(8] add-attr
] add-attr
e] add-attr
8] password

FEEEE R E

¥Path: /nds/@dtdwersion

BB

version="1,0" encoding="UUTF-&"

1.0
g.5
default

User
o=dir¥ML Testiou=Usersicn=User1
o=dirxML Testiou=Usersicn=User1

o=dir¥ML Testiou=Usersicn=Lser1

initialpwd

Using the XPath Builder

63

5 Select the current position in the document from which you would like start building your
XPath expression.

EML Tree | wpL Source
#Path Conbext Seleckor = | [8

=7 wml W
= [&] nds
dedversion 1
ndsversion g
«ml:space d
U :
= [e] input
class-name
qualified-src-dn
src-dn
(8] association
[8] add-attr
[8] add-attr
(8] add-attr
[8] add-attr
[e] add-attr
[8] add-attr
[8] add-attr
(8] passward ir

Lo e S = R

¥Path: /ndsfinput[1]{add[1]

The XPath context that you have selected is displayed in the XPath Selected Context as shown.

#Path Selected Conkext
'@' Generic {} Unique
{"Il'nds,l'input,l'add')

6 Select Generic or Unique.

Generic searches the entire XML document to match the specified XPath expression. It returns
results for each instance of the XPath expression. In this example, the XPath expression is ““/
nds/input/add”. It searches the entire XML document for each instance of add.

Unique searches the XML document until it finds a match and stops. The unique XPath
expression is “/nds/input[1]/add[1]”. It searches for the first instance of add and stops. You can
specify which instance you want to use by selecting the next instance of the XPath element in
the XML Context Selector.

64 Policies in Designer 2.0

7 Specify an XPath expression in the XPath Expression field.

%Path Expression
I

password
add-attr
association
kext()

i

{

!
@

<<number ==

NOTE: Using the keystroke combination Ctrl Space 3, /, [, or (triggers code completion. The
expression is evaluated up until the cursor location, and insertable elements are shown in a

drop-down box.

The results of your XPath expression appear in the Results text area below.

%Path Expression
add-attr|

Resulks: 7 nodels

Item

|&] elernent("add-att")
|&] elernent("add-att:")
8] elernent("add-attr")
|&] elernent("add-att:")
|&] elernent("add-att:")
8] element("add-att:")
8] elerent("add-att:")

<

Lacation

line & - 10

lime 11 - 13
line 14 - 16
lime 17 - 19
lime 20 - 22
line 23 - 25
lime 26 - 32

If the XPath editor does not evaluate the expression, click the Evaluate XPath expression icon
© to force the XPath Builder to evaluate the expression.

8 When you are finished building and testing an XPath expression, click OK to close the XPath
Builder. The text displayed in the XPath Expression is placed into the policy that you are

editing.

Using the XPath Builder

65

66 Policies in Designer 2.0

Defining Schema Mapping
Policies

Schema Mapping policies map class names and attribute names between the Identity Vault
namespace and the application namespace. The same schema mapping policy is applied in both
directions. All documents that are passed in either direction on either channel between the
Metadirectory engine and the application shim are passed through the Schema Mapping policy.

There is one Schema Mapping policy per driver.

¢ Section 5.1, “Accessing the Schema Map Editor,” on page 67

¢ Section 5.2, “Editing a Schema Mapping Policy,” on page 71

¢ Section 5.3, “Testing Schema Mapping Policies,” on page 74

¢ Section 5.4, “Accessing the Schema Mapping Policy in XML,” on page 76
¢ Section 5.5, “Additional Schema Map Policy Options,” on page 76

5.1 Accessing the Schema Map Editor

The Schema Map editor allows you to edit the Schema Mapping policies. There are three different
ways to access the Schema Map editor in Designer: through the Outline view, through the Policy
Flow view, or through the Policy Set view.

¢ Section 5.1.1, “Outline View,” on page 67

¢ Section 5.1.2, “Policy Flow View,” on page 68

¢ Section 5.1.3, “Policy Set View,” on page 69

¢ Section 5.1.4, “Keyboard Support,” on page 70

5.1.1 Outline View

1 In an open project, click the Outline tab.
2 (Click the Show Model Outline icon. E

3 Select the driver you want to manage the schema mapping policy on, and click the plus sign to
the right.

4 Double-click the Schema Map icon to launch the Schema Map editor.

or

Defining Schema Mapping Policies

67

Right-click and select Edit.

B W =HE

» i&i

= E{_ Project 1

= (@] 1dentity vault 1

El oefault Server
= E Driverset
= ﬁp- Ackive Directory
EF] InputTransfForm
CukpukTransForm
Password{Pub)-3ub Emz
Password{Sub)-Pub Emz
schematMapping
% Active Directory Filker
%) publisher
+- 4. Subscriber
r’,_=| Ackive Directory
- LDAP
= Password{Pub)-3ub Emz
Password{Sub)-Pub Emz
1=| MappingRule
% LDAP Filker

=<5 Publisher

H password{Pub)-add »

< ¥

-
H=1-=1=1~!

-

5.1.2 Policy Flow View

1 In an open project, click the Outline tab.
2 Click the Show Policy Flow icon. W
3 Double-click the Schema Mapping policy to launch the Schema Map editor.

or

68 Policies in Designer 2.0

Right-click and select Edit Policy to launch the Schema Map editor.

. O— "
Project o= Cutline 32 =0
E (W
Active Directory o
Sﬁﬁ:m.
Input | | Output -
Scherna Mapping
Publisher
Event
Command .
wo i
o= Placement | |
.'='- Bisiching Creation
i Creation Matching
i Placement g m
“* ' Command
Ewent o
< | =
.) o
Properties | [Policy Set 23 1 = O

<

Active Directory Driver Policy Sets

ME SchemaMapping

5.1.3 Policy Set View

1 Double-click the Schema Map policy in the Policy Set view.

or

Defining Schema Mapping Policies

69

Right-click the Schema Map policy and select Edit.

LDAP Directory

Input

Output -

Scherna Mapping

Publisher

prmmmmmmmm s

£

Event

Matching
Creation

Placement

"' Command

Command

Placement
Creation

Matching

Ewent

LDAP Driver Paolicy Sets

.

¥
= B

L+ K =

5.1.4 Keyboard Support

Table 5-1 Schema Map Editor Keyboard Support

Action

Description

Up-arrow
Down-arrow
Left-arrow
Right-arrow
Insert
Ctrl+Insert
Delete

Enter

Moves the cursor up in the Schema Map editor.
Moves the cursor down in the Schema Map editor.
Collapses the information displayed

Expands the information displayed.

Adds a class.

Adds an attribute.

Deletes the selected items.

Accesses the edit mode. Press Enter a second time
to save the changes.

70 Policies in Designer 2.0

Action Description

Esc Exits the edit mode.

5.2 Editing a Schema Mapping Policy

The Schema Map editor allows you to create and edit schema mapping policies. To display a context
menu, right-click an item.

Figure 5-1 Context Menu of the Schema Map Editor

i Manage Identity Yaulk Schema. ..
1, Manage Application Schema. ..

(& Add Class Mapping. ..

@ Add attribuke Mapping. ..

¥ Delete

% Refresh Application Schema. ..

+| Expand all

—| Collapse All

¢ Section 5.2.1, “Removing or Adding Classes and Attributes,” on page 71
¢ Section 5.2.2, “Refreshing the Application Schema,” on page 72

*

Section 5.2.3, “Editing Items,” on page 73

*

Section 5.2.4, “Sorting Items,” on page 73

*

Section 5.2.5, “Managing the Schema,” on page 73

5.2.1 Removing or Adding Classes and Attributes

¢ “Removing a Class or Attribute” on page 71
+ “Adding a Class” on page 72
¢ “Adding an Attribute” on page 72

Removing a Class or Attribute

If you do not want a class or an attribute to be mapped to a class or attribute in the connected system,
the best practice is to completely remove the class or the attribute from the Schema Mapping policy.
There are three different ways to add or remove attributes and classes from the Schema Mapping
policy:

¢ Select the class or attribute you want to remove, then right-click and click Delete.

* Select the class or attribute you want to remove, then click the Delete icon ¥ in the upper right
corner.

¢ Select the class or attribute you want to remove, then press the Delete key.
You can select multiple classes or attributes to delete at the same time.

1 Press Ctrl and select each item with the mouse.

Defining Schema Mapping Policies

7

72

2

Press the Delete key to delete the items.

M Project 1 - Developer T8 MappingRulz X =8
Schema Map Editor E E G, - @ - ¥ E = & @
M= MappingRule LDAP. DriverSet. Idenkity vaulk 1
Mappings
@] Sy
Diractory
Identity Yault LDAP
= User inetCrgPersan
N cn
Descripkion descripkion
Facsimile Telephone Mumber fFacsimiletelephonenumber
Given Mame givenname
Initials initials

Internet EMail Address
I

Ohject Class objectclass

au au

Surnare 5N

Telephone Murnber telephonenumber

Adding a Class

1

Right-click in the Schema Map editor, then click Add Class Mapping.
or

Select the Add Class Mapping icon @ in the upper right corner.
From the drop-down list for the Identity Vault, select the class you want to add.
From the drop-down list for the connected system, select the class you want to map to.

To save the changes, click File > Save.

Adding an Attribute

1

3
4

Right-click in the Schema Map editor, then click Add Attribute Mapping.
or

Select the Add Attribute Mapping icon @ in the upper right corner.
From the drop-down list for the Identity Vault, select the attribute you want to add.
From the drop-down list for the connected system, select the attribute you want to map to.

To save the changes, click File > Save.

5.2.2 Refreshing the Application Schema

If you have modified the schema in the application, these changes need to be reflected in the Schema
Mapping policy. To make the new schema available, click the Refresh application schema icon Sin
the toolbar.

Policies in Designer 2.0

When you create a new class or attribute mapping, you can see the new schema in the drop-down list
for the connected application.

5.2.3 Editing Items

To edit a mapping, double-click the selected row. An in-place editor appears, allowing you to edit
the mapping.

Figure 5-2 Schema Map Editor

Mappings
mm-r
Identity Wault LDaP
CEI | Lser v}| inetOrgPerson
CH cn
Descripkian description

5.2.4 Sorting Items

The Schema editor allows you to sort the items in ascending order based on either Identity Manager
or the connected system. To sort, click the header of either column.

Figure 5-3 Schema Map Editor Sorting Items

Mappings

s

Group groupOfUiniquellames

K Lser inetorgPersan

Organizational Lnit arganizakionallnit

5.2.5 Managing the Schema

Designer allows you to manage the Identity Vault schema and any connected system's schema. You
can import the schema, modify it, and deploy the changed schema back into the Identity Vault or the
connected systems. To manage the Identity Vault schema, right-click in the Schema Map editor and
click Manage Identity Vault Schema. To manage the connected systems schema, right-click in the
Schema Map editor and click Manage Application Schema. For more information about how to
manage the schema, see Managing the Schema in Designer (http://www.novell.com/documentation/
designer20/index.html?page=/documentation/designer20/admin_guide/data/
mgschemaoverview.html).

Defining Schema Mapping Policies

73

http://www.novell.com/documentation/designer20/index.html?page=/documentation/designer20/admin_guide/data/mgschemaoverview.html

5.3 Testing Schema Mapping Policies

Designer comes with a tool called the Policy Simulator. It allows you to test your policies without
implementing them in a production environment. You can launch the Policy Simulator through the
Schema Mapping editor to test your policy after you have modified it.

To access the Policy Simulator and test the Schema Mapping policy:

1 Click the Launch Policy Simulator icon “© in the toolbar.

2 Select To Identity Vault or From Identity Vault as the simulation point of the Schema Map
policy.

3 Select Import to browse to a file that simulates an event.
4 Select the file, then click Open.

This example uses the

com.novell.designer.idm.policy\simulation\add\user.xml file, which
simulates an Add event for a user object.

The Policy Simulator displays the input document of the user Add event.
5 Click Next to begin the simulation.

Customize Input Document @
Select whether to simulate the palicy to or From the Identity Yault, The input

document can also be customized ko add operational data or modify existing

Sirnulation Point: | RS E RT3

Input Docurnenk:

<?xml wersion="1.0" encoding="UTF-S"Y><nd=s dtdwversz#s

{ ! —_—— S S S EEEEEEE=E=EE=E=EE=Es
Input document to add a User.
<input:
<add class-name="Uzser™ qualified-sroc-dn="c
<associationro=dirXML Teathou=lUsers)cr
<add-attr attr-name="ocn™> 3
£ >

Import,.. H Save As..,

The Policy Simulator displays the log of the Add event, the output document, and a comparison
of the input document to the output document that was generated.

74 Policies in Designer 2.0

6 Seclect the Trace tab to see the results of the Add event as you would through DSTRACE.

View Transform Results

Select Trace to view simulation details; Qutput For the transformed docurment; Compare Far the @
differences between Input and Sutput documents.,

Oukpat | Compare

Aoetive Directory @0 Mapping class-name

Mapping attr-name
Mapping atctr-nseoe

'TUser' to
betive Directory

'TUser!'.
'cn' to 'CH'.
'Initials' to

Aoetive Directory

'Initia

¥

Clear Log

Click Clear Log, then click Repeat to run the simulation again with new trace log.

7 Select the Output tab to view the output document that is generated from the Schema Map
policy executed against the input document. In this example, it is the user Add event.

Yiew Transform Results

Select Trace bo wiew simulation details; Qutput For the transformed document; Compare For the @
differences between Input and Outpuk docurments,

Trace ((OUtput) | Compare

<?xml wversion="1.0" encoding="UTF-S"7><nd=s dtdversion="1.0" A
<!

<input:>

<add class-name="User” qualified-sre-dn="o=dirXML T

<azzociationro=dirXML Testhou=Usersi\cn=Userl</a
<add-attr attr-nsme="CH">
<

W
>

Repeat

You can edit the input and output document, then click Save 4s to save the output to an XML
file.

Defining Schema Mapping Policies

75

76

8 Select the Compare tab to compare the text of the input document to the document that is
generated, which is the output document.

View Transform Results @
Select Trace to wiew simulation details; Qutpuk For the transformed document; Compare For the
differences between Input and Oukput documents,

Trace || Cukput

Texk Compare {} {}
Input Docurnent: Cutput Docurnent
Input docwrent to add 3] Input docwment to adc &
============================: ========================= -
<inputx <input>
<add class-name="Uzer™ o] <add class-name="IOser
<aszsociationro=diriH] <associationzro=di

<gadd-attr attr-name= <add-attr attr-ng

9 Click Repeat to select a different input document and see the results of that event.

10 When you have finished testing the Schema Mapping Policy, click Finish to close the Policy
Simulator.

5.4 Accessing the Schema Mapping Policy in
XML

Designer enables you to view, edit, and validate the XML by using an XML editor. Click the XML
Source tab or the XML Tree tab to access the XML editor. For more information about the XML
editor, see The Novell XML Editor (http://www.novell.com/documentation/designer20/
index.html?page=/documentation/designer20/admin_guide/data/xml_intro.html).

5.5 Additional Schema Map Policy Options

When you right-click a Schema Map policy, there are multiple options presented in the Outline
view, the Policy Flow view, and the Policy Set view.

¢ Section 5.5.1, “Outline View Additional Options,” on page 77
¢ Section 5.5.2, “Policy Flow View Additional Options,” on page 78
¢ Section 5.5.3, “Policy Set View Additional Options,” on page 79

Policies in Designer 2.0

http://www.novell.com/documentation/designer20/index.html?page=/documentation/designer20/admin_guide/data/xml_intro.html

5.5.1 Outline View Additional Options

1 Right-click the Schema Map policy in the Outline view.

&2 Edit

Copy...
IH Save As... i
el vl

?" Showa DiataFlow Wiew
o Simulate. ..

Export to File...

Ve 4 M= Deploy...
¥ Delete R Caompare. ..
Delimited 3
Properties

+ Edit: Launches the Schema Map editor. For more information, see Chapter 5, “Defining
Schema Mapping Policies,” on page 67.

¢ Copy: Creates a copy of the Schema Map policy.

+ Save As: Saves the Schema Map policy as a . xm1 file.

¢ New: Creates a Domain Group or an Identity Vault in the Modeler.
+ Show Dataflow View: Launches the Dataflow view.

+ Simulate: Tests the Schema Map policy. For more information, see Section 5.3, “Testing
Schema Mapping Policies,” on page 74.

+ Export to File: Saves the Schema Map policy as a . xm1 file.
+ Live > Deploy: Deploys the Schema Map policy into the Identity Vault.

¢ Live > Compare: Compares the Schema Map policy in Designer to the Schema Map
policy in the Identity Vault.

¢ Delete: Deletes the Schema Map policy.

+ Properties: Allows you to rename the Schema Map policy.

Defining Schema Mapping Policies 77

5.5.2 Policy Flow View Additional Options

1 Right-click the Schema Map policy in the Policy Flow view.

Add Palicy =E Dir<ML Script
=
Edit Palicy p oz LT
ME| Schema Mapping
3 Delete all 5ek Policies
= Remove Al Set Policies ﬁ Lirk T Existing...
Copy Existing...

Live L

o Simulate. ..

¢ Add Policy > DirXML Script: Adds a new Schema Map policy using DirXML® Script.
¢ Add Policy > XSLT: Adds a new Schema Map policy using XSLT.

¢ Add Policy > Schema Mapping: Adds a new Schema Map policy containing no
information.

¢ Add Policy > Link to Existing: Allows you to browse and select an existing Schema
Map policy to link to the current Schema Map policy.

+ Add Policy > Copy Existing: Allows you to browse to and select an existing Schema
Map policy to copy to the current Schema Map policy.

+ Edit Policy > Schema Mapping: Launches the Schema Map editor. For more
information, see Section 5.2, “Editing a Schema Mapping Policy,” on page 71.

+ Delete All Set Policies: Deletes all policies in the selected policy set.
+ Remove All Set Policies: Removes all policies from the selected policy set, but does not
delete the existing policies.
Add Policy L4

Edit: Policy L4

3 Delete &l Set Policies

= Remove all Set Policies

G mport Driver

5}' Deploy Driver

& Simulate. ..

|7 Creation Matching * Driver Configuration

| >
——| &) Driver Status..,

ireckory Driver Policy Sets ﬁ Stop Driver
gk @) Restart Driver

¢ Live > Import Driver: Imports an existing driver from the Identity Vault.

¢ Live > Deploy Driver: Deploys the existing driver into the Identity Vault.

78 Policies in Designer 2.0

+ Live > Driver Configuration > Import Attributes: Allows you to import attributes
from the Identity Vault and compare the attributes from the Identity Vault to what is in
Designer.

+ Live > Driver Configuration > Deploy Attributes: Allows you to deploy attributes
from Designer into the Identity Vault and compare the attributes from Designer with the
attributes in the Identity Vault.

+ Live > Driver Status: Displays the status of the driver.
¢ Live > Start Driver: Starts the driver.

¢ Live > Stop Driver: Stops the driver.

¢ Live > Restart Driver: Restarts the driver.

¢ Simulate: Tests the Schema Map policy. For more information, see Section 5.3, “Testing
Schema Mapping Policies,” on page 74.

5.5.3 Policy Set View Additional Options

1 Right-click the Schema Map policy in the Policy Set view.

£ Edit
Copy...

LnJ Save hs..

= Remave
gﬁ Link To Existing Policy...

Export ko File...
Live L4
¥ Delete
Properties
& Simulate. ..

?" Shows Dataflow Yiew

¢ Edit: Launches the Schema Map editor. For more information, see Section 5.2, “Editing a
Schema Mapping Policy,” on page 71.

¢ Copy: Creates a copy of the Schema Map policy.
+ Save As: Saves the Schema Map policy as a . xm1 file.

+ Remove: Removes the Schema Map policy from the policy set, but does not delete the
Schema Map policy from the Identity Vault.

+ Link to Existing Policy: Allows you to browse to another Schema Map policy and link it
into the existing policy.

+ Move Up: Moves the Schema Map policy up in the execution order of the policy.
¢+ Move Down: Moves the Schema Map policy down in the execution order of the policy.

+ Export to File: Saves the Schema Map policy as a . xm1 file.

Defining Schema Mapping Policies

79

+ Live > Deploy: Deploys the Schema Map policy into the Identity Vault.

+ Live > Compare: Compares the Schema Map policy in Designer to the Schema Map
policy in the Identity Vault.

+ Delete: Deletes the Schema Map policy.
+ Properties: Allows you to rename the Schema Map policy.

¢ Simulate: Tests the Schema Map policy. For more information, see Section 5.3, “Testing
Schema Mapping Policies,” on page 74.

+ Show Dataflow View: Launches the Dataflow view.

80 Policies in Designer 2.0

Controlling the Flow of Objects
with the Filter

The Filter editor allows you to manage the filter. In the Filter editor, you define how each class and
attribute should be handled by the Publisher and Subscriber channels.

¢ Section 6.1, “Accessing the Filter Editor,” on page 82

*

*

*

*

Section 6.2, “Editing the Filter,” on page 85

Section 6.3, “Testing the Filter,” on page 90

Section 6.4, “Viewing the Filter in XML,” on page 92
Section 6.5, “Additional Filter Options,” on page 93

When information is synchronized between connected systems, the connected system can receive
the changes or just be notified that a change has occurred. Designer displays this information in the
Policy Flow view as Sync and Notify filters.

Figure 6-1 Filter in Policy Flow View

Delimited Text

-

Scherna Mapping

=

Publisher

Command

Placement
Matching Creation
Creation Matching

Placement E m

**! Command

Identity ¥ault

If a filter is set to Sync, then the objects modifications are automatically synchronized to the
connected system. If the filter is set to Notify, then the object modification is reported to the
Metadirectory engine, but the object is not automatically synchronized. For more information, see
Section 6.2.5, “Changing the Filter Settings,” on page 87.

Controlling the Flow of Objects with the Filter

81

6.1 Accessing the Filter Editor

The Filter editor allows you to edit the filter. There are three different ways to access the Filter
editor: through the model outline, through the policy flow, and through the Policy Set view.

¢ Section 6.1.1, “Model Outline View,” on page 82

¢ Section 6.1.2, “Policy Flow View,” on page 82
¢ Section 6.1.3, “Policy Set View,” on page 84
¢ Section 6.1.4, “Keyboard Support,” on page 84

6.1.1 Model Outline View

1 In an open project, click the Outline tab.
2 Click the Show Model Outline icon.
3 Select the driver you want to manage the filter for, then click the plus sign to the right.
4 Double-click the Filter icon and to launch the Filter editor.
or

Right-click and select Edit.

=I-Tie| Project 1
- [&l] 1om wauk
El 13:EmsEM
-t ds

+ g/ Active Directary

+ g Driver

+-g) EDIR-Driver

+ U Entitlements Service Driver (#1)

-l LDAP
M= MappingRule
ZH PasswordiPub)-5ub Email Motifications
Password{Sub)-Pub Email Maotifications

b L0 Filcer

6.1.2 Policy Flow View

1 In an open project, click the Outline tab.
2 Select the Show Policy Flow icon.

82 Policies in Designer 2.0

3 Double-click the Sync icon or the Notify icon to launch the Filter editor.

LDAP Directory -

or

Right-click and select Edit Policy > Filter.

Controlling the Flow of Objects with the Filter 83

6.1.3 Policy Set View

1 Double-click the filter policy in the Policy Set view.

Project EE Outline &3 =8
B W

LDAP Directory

Directory

Input | | Output -

Schema Mapping

Publisher

e |

Command -

- i

e @ Placement

E Matching Creation
Creation Matching

H
H H
H H
H "
H H
H H
H "
H H
i Placement H
H Mo
' i =
H

"' Command

IDM ¥ault

Data Flow = O

LDAP Driver Policy Sets

i LDAP Filter

6.1.4 Keyboard Support

Table 6-1 Filter Editor Keyboard Support

Action Description

Up-arrow Moves the cursor up in the Filter editor.
Down-arrow Moves the cursor down in the Filter editor.
Left-arrow Collapses the information displayed

Right-arrow Expands the information displayed.

Insert Adds a class.

Ctrl+Insert Adds an attribute.

Delete Deletes the selected items.

Enter Accesses the edit mode. Press Enter a second time

to save the changes.

84 Policies in Designer 2.0

Action Description

Esc Exits the edit mode.

6.2 Editing the Filter

The Filter editor allows you to create and edit the filter. To display a context menu, right-click an
item.

Figure 6-2 Filter Options

(& Add Classes...
@ Add Attributes. ..

¥ Delete
&2 Copy an Existing Filker. ..
< Unda Chrl+2
7 Redo Chrl+¥

+| Expand all

=] Collapse All

¢ Section 6.2.1, “Removing or Adding Classes and Attributes,” on page 85
¢ Section 6.2.2, “Modifying Multiple Attributes,” on page 86

¢ Section 6.2.3, “Copying an Existing Filter,” on page 86

*

Section 6.2.4, “Setting Default Values for Attributes,” on page 86

*

Section 6.2.5, “Changing the Filter Settings,” on page 87

6.2.1 Removing or Adding Classes and Attributes

By removing or adding classes and attributes, you determine the objects that synchronize between
the connected data store and the Identity Vault.

Removing a Class or Attribute

If you do not want a class or an attribute to synchronize, the best practice is to completely remove
the class or the attribute completely from the filter. There are two different ways to add or remove
attributes and classes from the filter:

+ Right-click the class or attribute you want to remove, then select Delete.

+ Select the class or attribute you want to remove, then click the Delete icon ¥ in the upper right
corner.

Adding a Class

1 Right-click in the Filter editor, then click Add Classes.

or

Click the Add Classes icon & in the upper right corner

2 Browse and select the class you want to add, then click OK.

Controlling the Flow of Objects with the Filter

85

3 Change the options to synchronize the information.

4 To save the changes, click File > Save.

Adding an Attribute
1 Right-click in the Filter editor, then click Add Attribute.
or

Click the A#tribute icon @ in the upper right corner.
2 Browse and select the attribute you want to add, then click OK.
3 Change the options to synchronize the information.

To save the changes, click File > Save.

6.2.2 Modifying Multiple Attributes

The Filter editor allows you to modify more than one attribute at a time. Press the Ctrl key and select
multiple attributes; when the option changes, it is changed for all of the selected attributes.

6.2.3 Copying an Existing Filter

You can copy an existing filter from another driver and use it in the driver you are currently working
with.

1 Click the Copy an Existing Filter icon 4=
or

Right-click in the Filter editor, then click Copy an Existing Filter.
2 Browse to and select the filter object you want to copy, then click OK.

If you have more than one Identity Vault in your project, you can copy filters from the other
Identity Vaults. When you are browsing to select the other object, you can browse to the other
Identity Vault and use a filter stored there.

.MudelBrnwser

Select an object:

= \g_ project 1
¥

(@] 1dentity vault

6.2.4 Setting Default Values for Attributes

You can define the default values for new attributes when they are added to the filter.

1 Click the Set Default Values for New Attributes icon ¥ in the upper right corner.

2 Select the options you want new attributes to have, then click OK.

86 Policies in Designer 2.0

6.2.5 Changing the Filter Settings

The Filter editor gives you the option of changing how information is synchronized between the
Identity Vault and the connected system. The filter has different settings for classes and attributes.

1 In the Filter editor, select a class.

Filter Settings

SR Group |

TIRR T R Ry

U cn
O@ Description
L€ Member

EF &y NGW: Groupwise Id
BB [WGW: Post Office

BB WG visibility

EF ™ GroupWise Distribution List
BB (™ Groupwise Post Office
@Q Grouphise Resource

EP &y User

Class Mame: Group
Publish
R (®) Synchronize
) Olgnore
Subscribe
£ (%) Synchronize
' () Ignore

Create home direckory

Track member of template

O Yes
@ Mo

2 Change the filter settings for the selected class.

Options Definitions
Publish ¢ Synchronize: Allows the class to synchronize from the
connected system into the Identity Vault.
+ Ignore: Does not synchronize the class from the connected
system into the Identity Vault.
Subscribe + Synchronize: Allows the class to synchronize from the Identity

Create Home Directory

*

Vault into the connected system.

Ignore: Does not synchronize the class from the Identity Vault
into the connected system.

Create Home Directory allows you to create a home directory for a

User object in eDirectory. The option only works for eDirectory.

*

*

Track Member of Template ¢

Yes: Automatically creates home directories.

No: Does not create home directories.

Yes: Determines whether or not the Publisher channel
maintains the Member of Template attribute when it creates
objects from a template.

No: Does not track the Member of Template attribute.

When a User object is created using an eDirectory Template
object, the eDirectory driver maintains the Member of Template
attribute, if the Track Member of Template option is selected.
The option only works for eDirectory.

Controlling the Flow of Objects with the Filter

87

3 Select an attribute.

Filter Settings

= @ @ Group

o [y B

o

U@ Description

[y member

P @ MGw: Groupwise Id
BB ™y NG Post Office

BB ™y nGw: Wisihility

P Groupwise Distribution Lisk
BB ™ Grouphise Post OFfice
BB Grouptise Resource

@@ User

Class Name: Group
Attribute Name: CN

Publish

R () Synchronize
) () Ionare

% O nokify

} () Reset

Subscribe

ER (#) synchronize

Y () Ignore
% O notify
} () Reset

Merge Authority
) Default

(&) Identity Vault
) application

O Mone

Qpkimize modifications bo Identity Yault
@' Yes
(:) Mo

4 Change the filter settings for the selected attribute.

Options

Definitions

Publish

+ Synchronize: Changes to this object are reported and

automatically synchronized.

Ignore: Changes to this object are neither reported nor
automatically synchronized.

Notify: Changes to this object are reported, but not automatically
synchronized.

Reset: Resets the object value to the value specified by the
opposite channel. (You can set this value on either the Publisher
channel or Subscriber channel, not both.)

The Reset option makes a data store the authoritative source of
information. For example, if employee addresses should only be
changed in the HR database, then set the Reset option in the filter
for this attribute. When an address is changed in the e-mail
system and sent to the HR database, the filter sends the
information from the HR database back to the e-mail system and
the employee’s address is not changed.

88 Policies in Designer 2.0

Options

Definitions

Subscribe

Merge Authority

+ Synchronize: Changes to this object are reported and
automatically synchronized.

+ Ignore: Changes to this object are neither reported nor
automatically synchronized.

+ Notify: Changes to this object are reported, but not automatically
synchronized.

+ Reset: Resets the object value to the value specified by the
opposite channel. (You can set this value on either the Publisher
channel or Subscriber channel, not both.)

The Reset option makes a data store the authoritative source of
information. For example, if employee addresses should only be
changed in HR database, then set the Reset option in the filter for
this attribute. When an address is changed in the e-mail system
and sent to the HR database, the filter sends the information from
the HR database back to the e-mail system and the employee’s
address is not changed.

+ Default: If an attribute is not being synchronized in either channel,
no merging occurs.

If an attribute is being synchronized in one channel and not the
other, then all existing values on the destination for that channel
are removed and replaced with the values from the source for that
channel. If the source has multiple values and the destination can
only accommodate a single value, then only one of the values is
used on the destination side.

If an attribute is being synchronized in both channels and both
sides can accommodate only a single value, the connected
application acquires the Identity Vault values unless there is no
value in the Identity Vault. If this is the case, the Identity Vault
acquires the values from the connected application (if any).

If an attribute is being synchronized in both channels and only one
side can accommodate multiple values, the single-valued side’s
value is added to the multi-valued side if it is not already there. If
there is no value on the single side, you can choose the value to
add to the single side.

This is always valid behavior.

+ ldentity Vault: Behaves the same way as the default behavior if
the attribute is being synchronized on the Subscriber channel and
not on the Publisher channel.

This is valid behavior when synchronizing on the Subscriber
channel.

+ Application: Behaves the same as the default behavior if the
attribute is being synchronized on the Publisher channel and not
on the Subscriber channel.

This is valid behavior when synchronizing on the Publisher
channel.

+ None: No merging occurs regardless of synchronization.

Controlling the Flow of Objects with the Filter

89

Options Definitions

Optimize Modification to * Yes: Changes to this attribute are examined on the Publisher
Identity Manager channel to determine the minimal change made in the Identity
Vault.

+ No: Changes are not examined.

When an operation is a Modify on the Publisher channel, the
Metadirectory engine examines the current state of the object in
the Identity Vault and changes the Modify to update only the
values that are changing. For example, if an object has attributes
of a, b, ¢, and d and the Publisher channel receives a Modify event
to remove all existing values and add a, b, d, and e, the optimize
process knows that the minimal change is to remove d and add e.

Using this option can take a long time to process events on
attributes that have more than 1,000 values.

5 Click the Save icon [5] to save the changes.

6.3 Testing the Filter

Designer comes with a tool called the Policy Simulator, which allows you to test your policies
without implementing them in a production environment. You can launch the Policy Simulator
through the Filter editor to test your policy after you have modified it.

1 Click the Launch Policy Simulator icon “& in the toolbar.

2 Select To Identity Vault or From Identity Vault as the simulation point of the filter.
3 Select Import to browse to a file that simulates an event.
4

Select the file, then click Open. This example uses the
com.novell.designer.idm.policy\simulation\add\User.xml file, which
simulates an Add event for a User object.

The Policy Simulator displays the input document of the user Add event.

90 Policies in Designer 2.0

5 Click Next to begin the simulation.

Customize Input Document

Select whether to simulate the policy to ar From the Identity Yault, The @
input docurment can also be customized ko add operational data or

Simulation Point: | To Identity Yaulk W
Input Docurment:

<Zxml wversion="1.0" encoding="UTF-8"7?:<nd=s d

< !__ B PP L
Input docwment to add a User.
<input>
<add class-name="User™ gqualified-srco
<aszociationro=dirXML Testhou=Us
<gdd-atcy attr-name="on -
arm lnesTT=zer1s fsralne v
< >
Impaort... |[Save As..,

:
The Policy Simulator displays the log of the Add event, the output document, and a comparison
of the Input document to the Output document that is generated.

Select the Trace tab to display the results of the Add event as you would through DSTRACE.

View Transform Results

Select Trace bo wiew simulation details; Qukput For the transformed @
document; Compare For the differences between Input and Qukput

Oukput | Compare

LDAP Filtered out <add-attr attr-name='F
LDLP Filtered ocut <add-attr attr-natwes='Gce
<

*

Clear Log

Click Clear Log, then click Repeat to run the simulation again with new trace log

Controlling the Flow of Objects with the Filter 91

7 Select the Output tab to see the output document that is generated when the filter is executed
against an input document. The input document is the user Add event.

view Transform Results

Select Trace bo wiew simulation details; Cutput For the transformed
docurnent; Compare For the differences between Input and Qukput

Trace |i.'0'-ltl3u'i.:!| Compare

33

<Zxml wersion="1.0" encoding="UTF-5"2><nds=s

<input:>

<add class-name="User"™ gqualified-sre
<cagzociation>o=dirXML Testhou=U:
<add-attr attr-name="cn'-

|

L

W

X

You can edit the input and output documents. If you want to keep the changes, click Save 4s.

8 Select the Compare tab to compare the text of the input document to the output document that
is generated.

Yiew Transform Results

Select Trace ko wiew simulation details; Qutput For the transformed
document; Compare for the differences between Input and Qukput

Trace | Cukput |

33

Text Compare

Input Docurment: Oukput Document:
<add-at| A
Ratycl
did-attr: </ O
<add-attr = <,f’add—a|
A3 | L4 < A

9 Click Repeat to select a different input document and see the results of that event.

10 When you have finished testing the filter, click Finish to close the Policy Simulator.

6.4 Viewing the Filter in XML

Designer enables you to view, edit, and validate the XML by using an XML editor. Click the XML
Source tab or the XML Tree tab to access the XML editor. For more information about the XML

92 Policies in Designer 2.0

editor, see The Novell XML Editor (http://www.novell.com/documentation/designer20/
index.html?page=/documentation/designer20/admin_guide/data/xml_intro.html).

6.5 Additional Filter Options

When you right-click a filter object, there are multiple options presented in the Outline view, the
Policy Flow view, and the Policy Set view.

¢ Section 6.5.1, “Outline View Additional Options,” on page 93
¢ Section 6.5.2, “Policy Flow View Additional Options,” on page 93
¢ Section 6.5.3, “Policy Set View Additional Options,” on page 94

6.5.1 Outline View Additional Options
1 Right-click the filter object in the Outline view.

£# Edit
IHI Save As..,
My L

?* Showe Dataflow Yiew
o Simulate, .
Live 4

5 Clear

+ Edit: Launches the Filter editor. For more information, see Section 6.2, “Editing the
Filter,” on page 85.

+ Save As: Saves the filter as a . xm1 file.
¢ New: Creates a Domain Group or an Identity Vault in the modeler.
+ Show Dataflow View: Launches the Dataflow view.

¢ Simulate: Launches the Policy Simulator. For more information, see Section 6.3, “Testing
the Filter,” on page 90.

+ Live > Deploy: Deploys the filter into the Identity Vault.

¢ Clear: Deletes all content from the filter policy, but leaves the object.

6.5.2 Policy Flow View Additional Options

1 Right-click the filter object in the Policy Flow view.

Edit Paolicy i LDWAP Filker

+ Edit Policy > Filter: Launches the Filter editor. For more information, see Section 6.2,
“Editing the Filter,” on page 85.

¢ Simulate: Launches the Policy Simulator. For more information, see Section 6.3, “Testing
the Filter,” on page 90.

Controlling the Flow of Objects with the Filter

93

http://www.novell.com/documentation/designer20/index.html?page=/documentation/designer20/admin_guide/data/xml_intro.html

6.5.3 Policy Set View Additional Options
1 Right-click the filter object in the Policy Set view.
£ Edit

L.:,_| Save As...
Live L4
Clear
& Simulate. .

f‘* Shiowe Dakaflow View

+ Edit: Launches the Filter editor. For more information, see Section 6.2, “Editing the
Filter,” on page 85.

+ Save As: Saves the filter as a XML file.
+ Live > Deploy: Allows you to deploy the filter into the Identity Vault.
¢ Clear: Deletes all content from the filter policy, but leaves the object.

¢ Simulate: Launches the Policy Simulator. For more information, see Section 6.3, “Testing
the Filter,” on page 90.

+ Show Dataflow View: Launches the Dataflow view.

94 Policies in Designer 2.0

Using Predefined Rules

Designer includes 19 predefined rules. You can import and use these rules as well as create your
own rules. These rules include common tasks that administrators use. You need to provide
information specific to your environment to customize the rules.

*

Section 7.1, “Command Transformation - Create Departmental Container - Part 1 and Part 2,”
on page 97

Section 7.2, “Command Transformation - Publisher Delete to Disable,” on page 99
Section 7.3, “Creation - Require Attributes,” on page 100

Section 7.4, “Creation - Publisher - Use Template,” on page 102

Section 7.5, “Creation - Set Default Attribute Value,” on page 103

Section 7.6, “Creation - Set Default Password,” on page 105

Section 7.7, “Event Transformation - Scope Filtering - Include Subtrees,” on page 106
Section 7.8, “Event Transformation - Scope Filtering - Exclude Subtrees,” on page 108

Section 7.9, “Input or Output Transformation - Reformat Telephone Number from (nnn) nnn-
nnnn to nnn-nnn-nnnn,” on page 109

Section 7.10, “Input or Output Transformation - Reformat Telephone Number from nnn-nnn-
nnnn to (nnn) nnn-nnnn,” on page 111

Section 7.11, “Matching - Publisher Mirrored,” on page 112

Section 7.12, “Matching - Subscriber Mirrored - LDAP Format,” on page 114
Section 7.13, “Matching - By Attribute Value,” on page 116

Section 7.14, “Placement - Publisher Mirrored,” on page 117

Section 7.15, “Placement - Subscriber Mirrored - LDAP Format,” on page 119
Section 7.16, “Placement - Publisher Flat,” on page 121

Section 7.17, “Placement - Subscriber Flat - LDAP Format,” on page 122
Section 7.18, “Placement - Publisher By Dept,” on page 124

Section 7.19, “Placement - Subscriber By Dept - LDAP Format,” on page 126

Using Predefined Rules

95

To access the predefined rules:

1 In the Policy Builder, right-click and select New > Predefined Rules > Insert Predefined Rule
Before or Insert Predefined Rule After.

\5, Project 1 - Developer Matching X

Policy Builder -
Matching. Publisher .Delimited Text.Driver Set, IDMWALLT

¥ Policy Description

Rules

Wl R equire users bo havepaCinso Manag
[mew e v

B3 = Insert Predefined Rule Before. ..

Insert Predefined Rule After... Include
& ¢ Append Condition Group

The Predefined Rules dialog box displays a list of the available rules.

@ Predefined Rules E|

Select Predefined Rules

‘d
Select a predefined rule and click, OF,
@

Command Transformation - Create Departmental Container - Part 1

Carmmand Transformation - Create Departmental Container - Park 2

Carmmand Transformation - Publisher Delete ko Disable

Creation - Require attribute(s)

Creation - Publisher - Use Template

Creation - Set Defaulk Attribute Yalue

Creation - Set Defaulk Password

Event Transformation - Scope Filkering - Include subtresds)

Event Transformation - Scope Filkering - Exclude subtreeis)

Imput ar Dutpuk Transfarmation - Refarmat Telephaone Murmber From {nnnd nnn-nnnn ba nnn-nnn-nnnn
Input or Dutpuk Transformation - Reformat Telephone Mumber from nnn-nnn-nnnn o {nnnd nnn-nnnn
Matching - Publisher Mirrored

Matching - Subscriber Mirkored - LDAP Faormat

Matching - by attribuke walue

Placement - Publisher Mirrored

Placement - Subscriber Mirrored - LDAP Format

Placement - Publisher Flak

Placement - Subscriber Flak - LDAP Formak

Placement - Publisher By Dept

Placement - Subscriber By Depk - LDAP Format

(@ Ok l [Cancel

96 Policies in Designer 2.0

7.1 Command Transformation - Create
Departmental Container - Part 1 and Part 2

This rule creates a department container in the destination data store, if one does not exist.
Implement the rule on the Command Transformation policy in the driver. You can implement the
rule on either the Subscriber or the Publisher channel or on both channels.

There are two steps involved in using the predefined rules: creating a policy in the Command
Transformation policy set and importing the predefined rule. If you already have a Command
Transformation policy that you want to add this rule to, skip to “Importing the Predefined Rule” on
page 97.

7.1.1 Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher or Subscriber channel.

2 Select the Command Transformation policy set in the Policy Set view, then click Create or add
a new policy to the Policy Set icon ¥ to create a new policy.

3 Click Create a new policy, then click Next.
4 Name the policy.

5 Use the default location or browse and select another location to place the policy in the driver.

Create Policy

il

Specify the name of the new policy and the container where it will be
created.

Policy Marme:
Create Container|

Palicy Container:

Publisher LDWP.IDM Driver Set 2, IDMDESIGNTREE

Open the editor after creating the object.

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.

A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and
continue?” Click Yes. The Policy Builder is launched and the new Command
Transformation policy is saved.

9 Continue with Section 7.1.2, “Importing the Predefined Rule,” on page 97.

7.1.2 Importing the Predefined Rule

1 Right-click in the Policy Builder, then click New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.

Using Predefined Rules

97

98

2 Select Command Transformation - Create Department Container - Part 1, then click OK.

B « 5’ Command Transformation - Create Departmental Container - Part 1

Conditions

. & Condition Group 1
v % i operation equal "add"

"G G —

v 5 set local variabled"target-container”, Destination DMlength="-2"Y)

v 7

set local wariable!"does-target-exist”, Destination Attribute("objectdass”, class name="C0rganizational
nit", dnfLocal variable("target-container™)

3 Right-click in Policy Builder and click New > Predefined Rule > Insert Predefined Rule Before
or Insert Predefined Rule After.

4 Select Command Transformation - Create Department Container - Part 2, then click OK.

B « 57 Command Transformation - Create Departmental Container - Part 2

Conditions

. % Condition Group 1
N i |ocal variable 'does-targe ;
v F if local variable ‘does-target-gxist' equal ™

v/ 5 add destination objecticlass name="Crganizational Unit", direct="true", dniLocal
Wariable{"target-container 1))

add destination attribute walue!"ou”, direct="true", dniLocal Wariable{"target-container™)), Parse
Dr("dest-dn”, "dot", length="1", start="-1", Local Yariable{"target-container"}))

v 7

5 Save the rule by clicking File > Save.

There is no information to change that is specific to your environment.

IMPORTANT: Make sure that the rules are listed in order. Part 1 must be executed before Part 2.

7.1.3 How the Rule Works

This rule is used when the destination location for an object does not exist. Instead of getting a veto
because the object cannot be placed, this rule creates the container and places the object in the
container.

Part 1 looks for any Add event. When the Add event occurs, two local variables are set. The first
local variable is named target-container. The value of target-container is set to the destination DN.
The second local variable is named does-target-exist. The value of does-target-exist is set to the
destination attribute value of objectclass. The class is set to OrganizationalUnit. The DN of the
OrganizationalUnit is set to the local variable of target-container.

Policies in Designer 2.0

2# Editor

5 Do not trace; |False

Mame: * | ohiectclass A,

Class name: | Organizational Unit 3,
Select object: | DM W

Specify DN: * | Local Yariabledtarget-container')

Part 2 checks to see if the local variable does-target-exist is available. It also checks to see if the
value of the local variable does-target-exist is set to a blank value. If the value is blank, then an
Organizational Unit object is created. The DN of the organizational unit is set to the value of the
local variable target-container. It also adds the value for the OU attribute. The value of the OU
attribute is set to the local variable of target-container. It uses the source format as the destination
DN and the destination format is dot format.

7.2 Command Transformation - Publisher Delete
to Disable

This rule transforms the Delete event for a user object into disabling the user object. Implement the
rule on the Command Transformation policy in the driver. The rule needs to be implemented on the
Publisher channel.

There are two steps involved in using the predefined rules: creating a policy in the Command
Transformation policy set and importing the predefined rule. If you already have a Command
Transformation policy that you want to add this rule to, skip to “Importing the Predefined Rule” on
page 100.

7.2.1 Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher channel.

2 Select the Command Transformation policy set in the Policy Set view, then click Create or add
a new policy to the Policy Set icon ¥ to create a new policy.

3 Click Create a new policy, then click Next.
4 Name the policy.

5 Use the default location or browse and select another location to place the policy in the driver.

Create Policy

i

Specify the name of the new policy and the container where it will be
created.

Palicy Mame:
Delete to Disable

Policy Container:

Publisher LDAP.IDM Driver Set 2, IDMDESIGNTREE

[#]iopen the editor after creating the objeck.,

6 Select Open Editor after creating policy, then click Next.

Using Predefined Rules

99

7 Select DirXML Script for the type of policy, then click Finish.

8 A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and
continue?” Click Yes. The Policy Builder is launched and the new Command
Transformation policy is saved.

9 Continue with Section 7.2.2, “Importing the Predefined Rule,” on page 100.

7.2.2 Importing the Predefined Rule

1 Right-click in the Policy Builder, then click New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.

2 Select Command Transformation - Publisher Delete to Disable, then click OK.

B 5 Command Transformation - Publisher Delete to Disable

% Condition Group 1

v 5 if operation equal "delete”

v & iF class name equal "User"

v & set destination attribute value{"Login Disabled”, "trus™)

v 5’ remove associationdassociation] Association])))

3 Save the rule by clicking File > Save.

There is no information to change in the rule that is specific to your environment.

7.2.3 How the Rule Works

This rule is used when a Delete event occurs in the connected data store. Instead of the user object
being deleted in the Identity Vault, the User object is disabled. Anytime a Delete event occurs for a
User object, the destination attribute value of Login Disabled is set to True and the association is
removed from the User object. The User object can no longer log in into the Novell® eDirectory™
tree, but the User object was not deleted.

7.3 Creation - Require Attributes

This rule does not allow user objects to be created unless the required attributes are populated.
Implement the rule on the Creation policy in the driver. You can implement the rule on either the
Subscriber or the Publisher channel or on both channels.

There are two steps involved in using the predefined rules: creating a policy in the Creation policy
set and importing the predefined rule. If you already have a Creation policy that you want to add this
rule to, skip to “Importing the Predefined Rule” on page 101.

7.3.1 Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher or Subscriber channel.

100 Policies in Designer 2.0

2 Select the Creation policy set in the Policy Set view, then click Create or add a new policy to
the Policy Set icon * to create a new policy.

3 Click Create a new policy, then click Next.
4 Name the policy.

5 Use the default location or browse and select another location to place the policy in the driver.

Create Policy

Specify the name of the new policy and the container where it will be
created.

Policy Mame:

| Creation Policy |

Policy Containet:

| Publisher LDAP. IDM Driver Set 2, IDMDESIGMTREE | Browse, ..

[#]iDpen the editor after creating the objeck, :

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.

8 A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and
continue?” Click Yes. The Policy Builder is launched and the new Creation policy is saved.

9 Continue with Section 7.3.2, “Importing the Predefined Rule,” on page 101.

7.3.2 Importing the Predefined Rule

1 Right-click in the Policy Builder and click New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.

2 Select Creation - Require attributes, then click OK.

B 5’ Creation - Require attribute{s)

Conditions

. & Condition Group 1

v 5 if class name equal "User”

| W 5 veto if operation attribute not availabled [Enter name of required attribute]™) |

3 Edit the action by double-clicking the Actions tab.

4 Delete [Enter name of required attribute] from the Enter Name field.

5 Browse to and select the attributes you require for a User object to be created, then click OK.
6 Click OK.

7 Save the rule by selecting File > Save.

Using Predefined Rules 101

7.3.3 How the Rule Works

This rule is used when your business processes require a user to have specific attributes populated
when the user object is created. When a user object is created, the rule vetoes the creation of the
object unless the required attributes are provided. You can have one or more required attributes.

If you want more than one required attribute, right-click the action and select New > Append Action.
Select veto if operation attribute not available, then browse to the attribute you want to require.

7.4 Creation - Publisher - Use Template

This rule allows the use of a Novell eDirectory template object during the creation of a User object.
Implement the rule on the Publisher Creation policy in the driver. You can implement the rule only
on the Publisher channel.

There are two steps involved in using the predefined rules: creating a policy in the Creation policy
set and importing the predefined rule. If you already have a Creation policy that you want to add this
rule to, skip to “Importing the Predefined Rule” on page 103.

7.4.1 Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher channel.

2 Select the Creation policy set in the Policy Set view, then click Create or add a new policy to
the Policy Set icon ¥ to create a new policy.

3 Click Create a new policy, then click Next.
4 Name the policy.

5 Use the default location or browse and select another location to place the policy in the driver.

Create Policy

[l

specify the name of the new policy and the container where it will be
created,

Policy Mame:
Creation Policy

Policy Caontainer:

Publisher LDAP.IDM Driver Set 2, IDMDESIGHTREE

[¥]open the editar after creating the object, :

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.

A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and
continue?” Click Yes. The Policy Builder is launched and the new Creation policy is saved.

9 Continue with Section 7.4.2, “Importing the Predefined Rule,” on page 103.

102 Policies in Designer 2.0

7.4.2 Importing the Predefined Rule
1 Right-click in the Policy Builder, then click New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.
2 Select Creation - Publisher - Use Template, then click OK.

B 5 Creation - Publisher - Use Template

% Condition Group 1

v 5 if class name equal "User"
v 5’ set operation kemplate DRdn("[Enter DM of Template object]"y)

3 Edit the action by double-clicking the Actions tab.
4 Delete [Enter DN of Template object] from the Enter DN field.
5 Click the Edit Arguments icon = to launch the Argument Builder.
6 Select Text in the Noun list.
7 Double-click 7Text to add it to the argument.
8 In the Editor, click the browse icon, browse to and select the template object, then click OK.
9 Click OK.
10 Save the rule by clicking File > Save.

7.4.3 How the Rule Works

This rule is used when you want to use a template object to create a user in the Identity Vault. If you
have attributes that are the same for different users, using the template saves time. You fill in the
information in the template object, and when the User object is created, Identity Manager calls the
template and uses that to create the User object.

During the creation of User objects, the rule performs the action of the set operation template DN.
The action calls the template object and creates the User object with the information in the template.

7.5 Creation - Set Default Attribute Value

This rule allows you to set default values for attributes that are assigned during the creation of User
objects. Implement the rule on the Subscriber Creation policy or Publisher Creation policy in the
driver.

There are two steps involved in using the predefined rules: creating a policy in the Creation policy
set and importing the predefined rule. If you already have a Creation policy that you want to add this
rule to, skip to “Importing the Predefined Rule” on page 104.

7.5.1 Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher or Subscriber channel.

Using Predefined Rules 103

2 Select the Creation policy set in the Policy Set view, then click the Create or add a new policy
to the Policy Set icon ¥ to create a new policy.

3 Click Create a new policy, then click Next.
4 Name the policy.

5 Use the default location or browse and select another location to place the policy in the driver.

Create Policy

Specify the name of the new policy and the container where it will be
created.

Policy Mame:

| Creation Policy |

Policy Containet:

| Publisher LDAP. IDM Driver Set 2, IDMDESIGMTREE | Browse, ..

[#]iDpen the editor after creating the objeck, :

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.

8 A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and
continue?” Click Yes. The Policy Builder is launched and the new Creation policy is saved.

9 Continue with Section 7.5.2, “Importing the Predefined Rule,” on page 104.

7.5.2 Importing the Predefined Rule

1 Right-click in the Policy Builder, then click New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.

2 Select Creation - Set Default Attribute Value, then click OK.

B 5 Creation - Set Default Attribute ¥alue

Conditions

% Condition Group 1

v 5 if class name equal "User"

v 5’ set default attribute valued"[Enter attribute name]”, write-back="true", "[Enter default attribute value]")

3 Edit the action by double-clicking the Actions tab.

4 Delete [Enter attribute name] from the Enter attribute name field.

5 Click the browse icon, then browse to and select the attribute you want to create.
6 Delete [Enter default attribute value] from the Enter arguments values field.

7 Click the Edit Arguments icon = to launch the Argument Values List Builder.

8 Select the type of data you want the value to be.

9 Click the Edit Arguments icon [to launch the Argument Builder.

104 Policies in Designer 2.0

10 Create the value for the attribute in the Argument Builder, then click OK.
11 Click OK.

12 Save the rule by clicking File > Save.

7.5.3 How the Rule Works

This rule is used when you want to create a User object with default attributes and values. When a
User object is created, the rule sets the attribute and the value for that attribute.

If you want more than one attribute value defined, right-click the action and click New > Append
Action. Select the action, set the default attribute value, and follow Step 1 on page 104 through
Step 12 on page 105 to assign the value to the attribute.

7.6 Creation - Set Default Password

During the creation of user objects, this rule sets a default password for user objects. Implement the
rule on the Creation policy in the driver. You can implement the rule on either the Subscriber or the
Publisher channel or on both channels.

There are two steps involved in using the predefined rules: creating a policy in the Creation policy
set and importing the predefined rule. If you already have a Creation policy that you want to add this
rule to, skip to “Importing the Predefined Rule” on page 106.

7.6.1 Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher or Subscriber channel.

2 Select the Creation policy set in the Policy Set view, then click Create or add a new policy to
the Policy Set icon ¥ to create a new policy.

3 Click Create a new policy, then click Next.
4 Name the policy.

5 Use the default location or browse and select another location to place the policy in the driver.

Create Policy

i

Specify the name of the new policy and the container where it will be
created.

Policy Mame:
Creation Palicy

Policy Containet:

Publisher . LOAP.IDM Driver Set 2. IDMDESIGMTREE

[#]iDpen the editor after creating the objeck, :

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.

8 A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and
continue?” Click Yes. The Policy Builder is launched and the new Creation policy is saved.

Using Predefined Rules 105

9 Continue with Section 7.6.2, “Importing the Predefined Rule,” on page 106.

7.6.2 Importing the Predefined Rule

1 Right-click in the Policy Builder, then click New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.

2 Select Creation - Set Default Password, then click OK.

SIFENEAN (= ation - Set Default Password

.~ % Condition Group 1

vy 5 if class name equal "User"

v 5’ set destination password{Attributes "Given Name"Haktributed"Surname"y)

3 Save the rule by clicking File > Save.

There is no information to change in the rule that is specific to your environment.

7.6.3 How the Rule Works

This rule is used when you want User objects to be created with a default password. During the
creation of a User object, the password that is set for the User object is the Given Name attribute
plus the Surname attribute of the User object.

You can change the value of the default password by editing the argument. You can set the password
to any other value you want through the Argument Builder.

7.7 Event Transformation - Scope Filtering -
Include Subtrees

This rule excludes all events that occur except for the specific subtree. Implement the rule on the
Event Transformation policy in the driver. You can implement the rule on either the Subscriber or
the Publisher channel or on both channels.

There are two steps involved in using the predefined rules: creating a policy in the Event
Transformation policy set and importing the predefined rule. If you already have an Event
Transformation policy that you want to add this rule to, skip to Importing the Predefined Rule
(page 107).

7.7.1 Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher or Subscriber channel.

2 Select the Event Transformation policy set in the Policy Set view, then click Create or add a
new policy to the Policy Set icon ¥ to create a new policy.

3 Click Create a new policy, then click Next.
4 Name the policy.

106 Policies in Designer 2.0

5 Use the default location or browse and select another location to place the policy in the driver.

Create Policy

Specify the name of the new policy and the container where it will be
created.

Policy Mame:

| Ewvent Transformation |

Policy Container:

| Publisher, LDAP,IDM Driver Set 2, IDMDESIGNTREE | Browse. ..

[¥]open the editor after creating the object, |

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.

8 A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and

continue?” Click Yes. The Policy Builder is launched and the new Event Transformation
policy is saved.

9 Continue with Section 7.7.2, “Importing the Predefined Rule,” on page 107.

7.7.2 Importing the Predefined Rule

1 Right-click in the Policy Builder, then select New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.

2 Seclect Event Transformation - Scope Filtering - Include subtrees, then click OK.

B 5' Event Transformation - Scope Filtering - Include subtree(s)

Conditions

% Condition Group 1

v 5’ if source DM not in subtree "[Enter a subtree to include]”

| « Z vetol) |

3 Edit the condition by double-clicking the Conditions tab.

4 Delete [Enter a subtree to include] in the Value field.

5 Click the browse button to browse the Identity Vault for the part of the tree you were you want
events to synchronize, then click OK.

6 Click OK.
7 Save the rule by clicking File > Save.

Using Predefined Rules 107

7.7.3 How the Rule Works

This rule is used when you want to exclude part of the Identity Vault from synchronizing. It allows
you synchronize some objects and not other objects, without using the Filter. When an event occurs
anywhere but in that specific part of the Identity Vault, it is vetoed.

7.8 Event Transformation - Scope Filtering -
Exclude Subtrees

This rule excludes all events that occur in a specific subtree. Implement the rule on the Event
Transformation policy in the driver. You can implement the rule on either the Subscriber or the
Publisher channel or on both channels.

There are two steps involved in using the predefined rules: creating a policy in the Event
Transformation policy set and importing the predefined rule. If you already have an Event
Transformation policy that you want to add this rule to, skip to “Importing the Predefined Rule” on
page 109.

7.8.1 Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher or Subscriber channel.

2 Select the Event Transformation policy set in Policy Set view, then click Create or add a new
policy to the Policy Set icon ¥ to create a new policy.

3 Click Create a new policy, then click Next.
4 Name the policy.

5 Use the default location or browse and select another location to place the policy in the driver.

Create Policy - E
Specify the name of the new policy and the container where it will be =
created.

Policy Mame:
Event Transformation

Policy Container:

Publisher.LDAP DM Driver Set 2, IDMDESIGNTREE

[“]iopen the editor after creating the object,

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.

8 A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and
continue?” Click Yes. The Policy Builder is launched and the new Event Transformation
policy is saved.

9 Continue with Section 7.8.2, “Importing the Predefined Rule,” on page 109.

108 Policies in Designer 2.0

7.8.2 Importing the Predefined Rule

1 Right-click in the Policy Builder, then click New > Predefined Rule.
2 Select Event Transformation - Scope Filtering - Exclude subtrees, then click OK.

= 5 Event Transformation - Scope Filtering - Exclude subtree(s)

5’ Condition Group 1

f' if source DN in subtree "[Enter a subtree to exclude]”

5 wekol)

3 Edit the condition by double-clicking the Conditions tab.
4 Delete [Enter a subtree to exclude] in the Value field.

5 Click the browse button to browse the Identity Vault for the part of the tree where you want to
exclude events from synchronizing, then click OK.

6 Click OK.
7 Save the rule by clicking File > Save.

7.8.3 How the Rule Works

This rule is used when you want to exclude part of the Identity Vault from synchronizing. It allows
you synchronize some objects and not other objects, without using the Filter. When an event occurs
in that specific part of the Identity Vault, it is vetoed.

7.9 Input or Output Transformation - Reformat
Telephone Number from (nnn) nnn-nnnn to nnn-
nnn-nnnn

This rule transforms the format of the telephone number when a desired condition is met. Implement
the rule on the Input or Output Transformation policy in the driver. You can implement the rule on
either the Subscriber or the Publisher channel or on both channels.

There are two steps involved in using the predefined rules: creating a policy in the Input or Output
Transformation policy set and importing the predefined rule. If you already have an Input or Output
Transformation policy that you want to add this rule to, skip to “Importing the Predefined Rule” on
page 110.

7.9.1 Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher or Subscriber channel.

2 Select the Input or Output Transformation policy set in the Policy Set view, then click Create or
add a new policy to the Policy Set icon ¥ to create a new policy.

3 Click Create a new policy, then click Next.
4 Name the policy.

Using Predefined Rules

109

5 Use the default location or browse and select another location to place the policy in the driver.

Create Policy

[l

specify the name of the new policy and the container where it will be
created.

Policy Mame:
Input Transformation

Palicy Container:

Publisher LDAP.IDM Driver Set: 2. IDMDESIGNTREE

[¥]open the editor after creating the object,

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.

8 A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and
continue?” Click Yes. Policy Builder is launched and the new Input or Output
Transformation policy is saved.

9 Continue with Section 7.9.2, “Importing the Predefined Rule,” on page 110.

7.9.2 Importing the Predefined Rule

1 Right-click in the Policy Builder, then click New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.

2 Select Input or Output Transformation - Reformat Telephone Number from (nnn) nnn-nnnn to
nnn-nnn-nnnn, then click OK.

g 5 Input or Output Transformation - Reformat Telephone Number from {nnn) nnn-nnnn to
nNN-NNN-NNNn

5 Condition Group 1

Define new condition here

2 refarmat operation attributel"phone”, Replace First("~WOdidid) s+ 0 A d)-Od\ A\, "$1-$2-43",
Local Variable"current-walue"in)

3 Edit the condition by double-clicking the Conditions tab.

4 Define the condition you want to have occur when the telephone number is reformatted.
5 Click OK.
6 Save the rule by clicking File > Save.

7.9.3 How the Rule Works

This rule is used when you want to reformat the telephone number. You define the condition that is
to be met when the telephone number is reformatted.

110 Policies in Designer 2.0

7.10 Input or Output Transformation - Reformat
Telephone Number from nnn-nnn-nnnn to (nnn)
nnn-nnnn

This rule transforms the format of the telephone number when a desired condition is met. Implement
the rule on the Input or Output Transformation policy. You can implement the rule on either the
Subscriber or the Publisher channel or on both channels.

There are two steps involved in using the predefined rules; creating a policy in the Input or Output
Transformation policy set and importing the predefined rule. If you already have an Input or Output
Transformation policy that you want to add this rule to, skip to “Importing the Predefined Rule” on
page 111.

7.10.1 Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher or Subscriber channel.

2 Select the Input or Output Transformation policy set in the Policy Set view, then click Create or
add a new policy to the Policy Set icon ¥ to create a new policy.

3 Click Create a new policy, then click Next.
4 Name the policy.

5 Use the default location or browse and select another location to place the policy in the driver.

Create Policy

i

Specify the name of the new policy and the container where it will be
created.

Policy Mame:
Input Transformation

Palicy Container:

Publisher LDAP.IDM Driver Set: 2, IDMDESIGNTREE

[¥]open the editor after creating the object,

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.

A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and
continue?” Click Yes. Policy Builder is launched and the new Input or Output
Transformation policy is saved.

9 Continue with Section 7.10.2, “Importing the Predefined Rule,” on page 111.

7.10.2 Importing the Predefined Rule

1 Right-click in the Policy Builder and click New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.

Using Predefined Rules 111

2 Click Input or Output Transformation - Reformat Telephone Number from nnn-nnn-nnnn to
(nnn) nnn-nnnn, then click OK.

Input or Output Transformation - Reformat Telephone Number from nnn-nnn-nnnn to {nnn)

nnn-nnnn

5 Condition Group 1

Define new condition here

5 reformat operation attributes"phone”, Replace First{"~{dh dydd-Oudh didd-O0h it i, "$10 $2-43", Local
Yariablef"current-value")))

3 Edit the condition by double-clicking the Conditions tab.

4 Define the condition you want to have occur when the telephone number is reformatted.
5 Click OK.

6 Save the rule by clicking File > Save.

7.10.3 How the Rule Works

This rule is used when you want to reformat the telephone number. You define the condition that is
to be met when the telephone number is reformatted.

7.11 Matching - Publisher Mirrored

This rule matches for objects in the Identity Vault by using the mirrored structure in the data store
from a specified point. Implement the rule on the Matching policy in the driver. You can implement
the rule only on the Publisher channel.

There are two steps involved in using the predefined rules: creating a policy in the Matching policy
set and importing the predefined rule. If you already have a Matching policy that you want to add
this rule to, skip to Importing the Predefined Rule (page 113).

7.11.1 Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher channel.

2 Select the Matching policy set in the Policy Set view, then click Create or add a new policy to
the Policy Set icon ¥ to create a new policy.

3 Click Create a new policy, then click Next.
4 Name the policy.

112 Policies in Designer 2.0

5 Use the default location or browse and select another location to place the policy in the driver.

Create Policy

Specify the name of the new policy and the container where it will be
created,

Palicy Mame:

| Matching |

Policy Container:

| Publisher.LDAP.IDM Driver Set 2, IDMDESIGMTREE | Erowse

[“]open the editor after creating the objeck, :

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.

8 A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and
continue?” Click Yes. The Policy Builder is launched and the new Matching policy is saved.

9 Continue with Section 7.11.2, “Importing the Predefined Rule,” on page 113.

7.11.2 Importing the Predefined Rule

1 Right-click in the Policy Builder, then click New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.

2 Select Matching - Publisher Mirrored, then click OK.

B 5 Matching - Publisher Mirrored

Conditions

. Z Condition Group 1

v 5 if source DM in subtree "[Enter base of source higrarchy]”

e 5' set local variablel"dest-base”, "[Enter base of destination hierarchy]")

v 5 find matching object{scope="entry", dniLocal Yariablel"dest-base"1+""+Unmatched Source
Dh{convert="true"i1

3 Edit the condition by double-clicking the Conditions tab.

F N

Delete [Enter base of source hierarchy] from the Value field.

Browse to and select the container in the source hierarchy where you want the matching to
start, then click OK.

Click OK.

Edit the action by double-clicking the Actions tab.

Delete [Enter base of destination hierarchy] from the Enter string field.
Click the Edit Arguments icon = to launch the Argument Builder.

o O 0 N o

Select 7ext in the Noun list.
11 Double-click 7ext to add it to the argument.

Using Predefined Rules

113

12 1In the Editor, click the browse button, browse to the container in the destination hierarchy
where you want the source structure to be matched, then click OK.

13 Click OK.
14 Save the rule by clicking File > Save.

7.11.3 How the Rule Works

This rule matches for objects in the Identity Vault by using the mirrored structure in the data store
from a specified point. When an Add event occurs and the driver checks to see if the object exists, it
starts checking at the specific DN in the data store. The driver then sets a local variable of dest-base
to be the starting point in the Identity Vault that the structure is mirrored to in the data store. The
driver then creates the context it is searching by adding the local variable of dest-base plus a \ and
the source DN of the object. It creates the path it is looking for in the slash format.

7.12 Matching - Subscriber Mirrored - LDAP
Format

This rule matches for objects in the data store by using the mirrored structure in the Identity Vault
from a specified point. Implement the rule on the Matching policy in the driver. You can implement
the rule only on the Subscriber channel.

There are two steps involved in using the predefined rules: creating a policy in the Matching policy
set and importing the predefined rule. If you already have a Matching policy that you want to add
this rule to, skip to “Importing the Predefined Rule” on page 115.

7.12.1 Creating a Policy

1 From the Outline view or the Policy Flow view, select the Subscriber channel.

2 Select the Matching policy set in the Policy Set view, then click Create or add a new policy to
the Policy Set icon ¥ to create a new policy.

3 Click Create a new policy, then click Next.
4 Name the policy.

5 Use the default location or browse and select another location to place the policy in the driver.

Create Policy

i

Specify the name of the new policy and the container where it will be
created.

Policy Mame:
Matching

Policy Container:

Publisher.LDAR.IDM Driver Set 2, IDMDESIGNTREE

[#]iopen the editor after creating the objeck, :

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.

114 Policies in Designer 2.0

8 A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and
continue?” Click Yes. The Policy Builder is launched and the new Matching policy is saved.

9 Continue with Section 7.12.2, “Importing the Predefined Rule,” on page 115.

7.12.2 Importing the Predefined Rule

1 Right-click in the Policy Builder, then click New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.

2 Seclect Matching - Subscriber Mirrored - LDAP format, then click OK.

SIVENE Mat ching - Subscriber Mirrored - LDAP format

Conditions

.~ % Condition Group 1

v 5 if source DM in subtree "[Enter base of source hierarchy]"

v 5' set local variablef"dest-base”, "[Enter base of destination hierarchy]"

v 5 find matching objeck{scope="entry", dn{Unmaktched Source DM{convert="true"1+","+Local
Variablel"dest-base"i))

3 Edit the condition by double-clicking the Conditions tab.
4 Delete [Enter base of source hierarchy] from the Value field.

5 Browse to and select the container in the source hierarchy where you want the matching to
start, then click OK.

Click OK.

Edit the action by double-clicking the Actions tab.

Delete [Enter base of destination hierarchy] from the Enter String field.
Click the Edit Arguments icon = to launch the Argument Builder.
Select Text in the Noun list.

o © 0 N o

11 Double-click 7ext to add it to the argument.

12 1In the Editor, click the browse icon, browse to and select the container in the destination
hierarchy where you want the source structure to be matched, then click OK.

13 Click OK.
14 Save the rule by clicking File > Save.

7.12.3 How the Rule Works

This rule matches for objects in the data store by using the mirrored structure in the Identity Vault
from a specified point. When an Add event occurs and the driver checks to see if the object exists, it
starts checking at the specific DN in the Identity Vault. The driver then sets a local variable of dest-
base to be the starting point in the data store that the structure is mirrored to in the Identity Vault.
The driver then creates the context it is searching by adding the source DN of the object and a local
variable of dest-base. It creates the path it is looking for in LDAP format.

Using Predefined Rules 115

7.13 Matching - By Attribute Value

This rule matches for objects by specific attribute values. Implement the rule on the Matching policy
in the driver. You can implement the rule on either the Subscriber or the Publisher channel or on
both channels.

There are two steps involved in using the predefined rules; creating a policy in the Matching policy
set and importing the predefined rule. If you already have a Matching policy that you would like to
add this rule to, skip to “Importing the Predefined Rule” on page 116.

7.13.1 Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher or Subscriber channel.

2 Select the Matching policy set in the Policy Set view, then click Create or add a new policy to
the Policy Set icon ¥ to create a new policy.

3 Click Create a new policy, then click Next.
4 Name the policy.

5 Use the default location or browse and select another location to place the policy in the driver.

Create Policy

i

specify the name of the new policy and the container where it will be
created,

Policy Mame:
Matching

Policy Container:

Publisher LOAP. I0M Driver Set 2, IDMDESIGHTREE

[w]open the editor after creating the object, :

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.

8 A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and
continue?” Click Yes. The Policy Builder is launched and the new Matching policy is saved.

9 Continue with Section 7.13.2, “Importing the Predefined Rule,” on page 116.

7.13.2 Importing the Predefined Rule

1 Right-click in the Policy Builder, then click New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.

116 Policies in Designer 2.0

2

0 N 6o g b~ W

9
10
1"

12
13

Select Matching - by attribute value, then click OK.

B 5 Matching - by attribute value

Conditions

. & Condition Group 1

v 5' if class name equal "User”

find matching object{dni"[Enter base DM to start search]™), makchi"[Enter name of attribute ko match

on]'))

v 7

Edit the action by double-clicking the Actions tab.

Delete [Enter base DN to start search] from the Enter DN field.
Click the Edit Arguments icon = to launch the Argument Builder.
Select Text in the Noun list.

Double-click 7ext to add it to the argument.

In the Editor, click the browse button, browse to and select the container where you want the
search to start, then click OK.

Delete [Enter name of attribute to match on] from the Enter Match Attributes field.
Click the Edit Arguments icon = to launch the Match Attributes Builder.

Click the browse button and select the attributes you want to match. You can select one or more
attributes to match against, then click OK.

Click OK.
Save the rule by clicking File > Save.

7.13.3 How the Rule Works

This rule matches for User objects by attributes. When a User object is synchronized, the driver uses
the rule to check and see if the specified attributes exist. If they attributes do not exist, a new User
object is created.

7.14 Placement - Publisher Mirrored

This rule places objects in the Identity Vault by using the mirrored structure in the data store from a
specified point. Implement the rule on the Placement policy in the driver. You can implement the
rule only on the Publisher channel.

There are two steps involved in using the predefined rules: creating a policy in the Placement policy
set and importing the predefined rule. If you already have a Placement policy that you want to add
this rule to, skip to “Importing the Predefined Rule” on page 118.

7.14.1 Creating a Policy

1
2

From the Outline view or the Policy Flow view, select the Publisher channel.

Select the Placement policy set in the policy set, then click Create or add a new policy to the
Policy Set icon ¥ to create a new policy.

Using Predefined Rules

117

3 Click Create a new policy, then click Next.
4 Name the policy.

5 Use the default location or browse and select another location to place the policy in the driver.

Create Policy

Specify the name of the new policy and the container where it will be
created,

Policy Mame:

| Matching |

Policy Container:

| Publisher LDAP.IDM Driver Set 2, IDMDESIGMTREE | Browse, ..

[w]open the editor after creating the object, :

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.

8 A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and

continue?” Click Yes. The Policy Builder is launched and the new Placement policy is
saved.

9 Continue with Section 7.14.2, “Importing the Predefined Rule,” on page 118.

7.14.2 Importing the Predefined Rule

1 Right-click in the Policy Builder, then click New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.

2 Select Placement - Publisher Mirrored, then click OK.

Bl 5 Placement - Publisher Mirrored

Conditions

. % Condition Group 1

v 5 if source DN in subkree "[Enter base of source hierarchy]

4 5 set local variablef"dest-base”, "[Enter base of destination hierarchy]")

e 5 set operation destination DM{dn{Local Yariable("dest-base™+"|"+Unmatched Source DR convert="trug"))

3 Edit the condition by double-clicking the Conditions tab.
Delete [Enter base of source hierarchy] from the Value field.

Browse to and select the container in the source hierarchy where you want the object to be
acted upon, then click OK.

Edit the action by double-clicking the Actions tab.
Delete [Enter base of destination hierarchy] from the Enter String field.

Click the Edit Arguments icon = to launch the Argument Builder.
Select Text in the Noun list.

© 0 N O

118 Policies in Designer 2.0

10 Double-click Text to add it to the argument.

11 1In the Editor, click the browse button, browse to and select the container in the destination
hierarchy where you want the object to be placed, then click OK.

12 Click OK.
13 Save the rule by clicking File > Save.

7.14.3 How the Rule Works

If the User object resides in the source hierarchy, the object is placed in the mirrored structure from
the data store. The placement starts at the point that the local variable dest-base is defined. It places
the User object in the location of dest-base\unmatched source DN. The rule uses the slash format.

7.15 Placement - Subscriber Mirrored - LDAP
Format

This rule places objects in the data store by using the mirrored structure in the Identity Vault from a
specified point. Implement the rule on the Placement policy in the driver. You can implement the
rule only on the Subscriber channel.

There are two steps involved in using the predefined rules: creating a policy in the Placement policy
set and importing the predefined rule. If you already have a Placement policy that you want to add
this rule to, skip to “Importing the Predefined Rule” on page 120.

7.15.1 Creating a Policy

1 From the Outline view or the Policy Flow view, select the Subscriber channel.

2 Select the Placement policy set in the Policy Set view, then click Create or add a new policy to
the Policy Set icon ¥ to create a new policy.

3 Click Create a new policy, then click Next.
4 Name the policy.

5 Use the default location or browse and select another location to place the policy in the driver.

Create Policy e ﬁ
Specify the name of the new policy and the container where it will be =
created,

Palicy Mame:
Placement Policy

Palicy Container:

Publisher . LD&P. 10M Driver Set 2, IDMDESIGMTREE

[»]open the edicor after creaking the object,

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.

8 A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and

Using Predefined Rules

119

continue?” Click Yes. The Policy Builder is launched and the new Placement policy is
saved.

9 Continue with Section 7.15.2, “Importing the Predefined Rule,” on page 120.

7.15.2 Importing the Predefined Rule

1 Right-click in the Policy Builder, then click New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.

2 Select Placement - Subscriber Mirrored - LDAP format, then click OK.

B 5 Placement - Subscriber Mirrored - LDAP format

Conditions

% Condition Group 1

vy 5 if source DM in subtree "[Enter base of source hierarchy]"

v 5 sek local wariable!"dest-base”, "[Enter base of destination hierarchyw]™

v 5 sek operation destination DR{dn{Unmatched Source DMN{convert="true")+","+Local Yariable!" dest-base™)

3 Edit the condition by double-clicking the Conditions tab.
4 Delete [Enter base of source hierarchy] from the Value field.

5 Browse to the container in the source hierarchy where you want the object to be acted upon,
then click OK.

Edit the action by double-clicking the Actions tab.

Delete [Enter base of destination hierarchy] from the Enter String field.
Click the Edit Arguments icon = to launch the Argument Builder.
Select Text in the Noun list.

© 0 N O

10 Double-click Text to add it to the argument.

11 In the Editor, click the browse button, browse to the container in the destination hierarchy
where you want the object to be placed, then click OK.

12 Click OK.
13 Save the rule by clicking File > Save.

7.15.3 How the Rule Works

If the User object resides in the source hierarchy, then the object is placed in the mirrored structure
from the Identity Vault. The placement starts at the point that the local variable dest-base is defined.
It places the User object in the location of unmatched source DN, dest-base. The rule uses LDAP
format.

120 Policies in Designer 2.0

7.16 Placement - Publisher Flat

This rule places objects from the data store into one container in the Identity Vault. Implement the

rule on the Placement policy in the driver. You can implement the rule only on the Publisher
channel.

There are two steps involved in using the predefined rules: creating a policy in the Placement policy
set and importing the predefined rule. If you already have a Placement policy that you want to add
this rule to, skip to “Importing the Predefined Rule” on page 121.

7.16.1 Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher channel.

2 Select the Placement policy set in the Policy Set view, then click Create or add a new policy to
the Policy Set icon ¥ to create a new policy.

3 Click Create a new policy, then click Next.
4 Name the policy.

5 Use the default location or browse and select another location to place the policy in the driver.

Create Policy

|

Specify the name of the new palicy and the container where it will be
created.

Palicy Mame:
Placement Policy

Policy Container:

Publisher LDAP. I0M Driver Set 2. IDMDESIGMTREE

[¥]iopen the editar after creating the object,

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.

8 A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and

continue?” Click Yes. The Policy Builder is launched and the new Placement policy is
saved.

9 Continue with Section 7.16.2, “Importing the Predefined Rule,” on page 121.

7.16.2 Importing the Predefined Rule

1 Right-click in the Policy Builder, then click New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.

Using Predefined Rules

121

2 Select Placement - Publisher Flat, then click OK.

= 5 Placement - Publisher Flat

5 Condition Group 1

5 if class name equal "User"

5 set local variables'dest-base”, "[Enter DM of destination container]")

set operation destination DH{dnLocal Yariable"dest-base+""+Escape Destination DH{Unique

5_ Marne("CN", scope="subtree”, LowercaselSubstring(length="1", Operation Attributel ' Given
Marme"Y)+Operation Attributed"Surname")), Lowercase{Substring(length="2", Operation Attribute!"Given
Mame"Y)+Operation Attributed"Surname" i)

3 Edit the action by double-clicking the Actions tab.

4 Delete [Enter DN of destination container] from the Enter String field.
5 Click the Edit Arguments icon = to launch the Argument Builder.

6 Select Text in the Noun list.

7 Double-click 7Text to add it to the argument.

8 In the Editor, click the browse button, then browse to and select the destination container where
you want all of the User objects to be placed, then click OK.

Click OK.
10 Save the rule by clicking File > Save.

©

7.16.3 How the Rule Works

This rule places all User objects in the destination DN. The rule sets the DN of the destination
container as the local variable dest-base. The rule then sets the destination DN to be the dest-
base\CN attribute. The CN attribute of the User object is the first two letters of the Given Name
attribute plus the Surname attribute as lowercase. The rule uses slash format.

7.17 Placement - Subscriber Flat - LDAP Format

This rule places objects from the Identity Vault into one container in the data store. Implement the
rule on the Subscriber Placement policy in the driver.

There are two steps involved in using the predefined rules: creating a policy in the Placement policy
set and importing the predefined rule. If you already have a Placement policy that you want to add
this rule to, skip to “Importing the Predefined Rule” on page 123.

7.17.1 Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher channel.

2 Select the Placement policy set in Policy Set view, then click Create or add a new policy to the
Policy Set icon ¥ to create a new policy.

3 Click Create a new policy, then click Next.

122 Policies in Designer 2.0

4 Name the policy.

5 Use the default location or browse and select another location to place the policy in the driver.

Create Policy

|

Specify the name of the new palicy and the container where it will be
created.

Palicy Mame:
Placement Policy

Palicy Container:

Publisher . LD&P. 10M Driver Set 2, IDMDESIGMTREE

[w]iopen the editor after creating the object,

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.

8 A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and
continue?” Click Yes. The Policy Builder is launched and the new Placement policy is
saved.

9 Continue with Section 7.17.2, “Importing the Predefined Rule,” on page 123.

7.17.2 Importing the Predefined Rule

1 Right-click in the Policy Builder, then click New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.

2 Select Placement - Subscriber Flat - LDAP format, then click OK.

= 5 Placement - Subscriber Flat - LDAP format

5 Condition Group 1
5' if class name equal "User"

5 set local variable("dest-base”, "[Enter DN of destination container]")

set operation destination DN{dn("uid="+Escape Destination DN{Jnique Mame('uid", scope="subtres",

5 Lowercase!substringlength="1", Operation Attribute!"Given Mame"+0peration Attribubel"Surname™)),
Lowercasel substring(length="2", Operation Attribute!"Given Mame"+Operation
attributed"surname 1 +", "+Local Yariable("dest-base™)))

Edit the action by double-clicking the Actions tab.

Delete [Enter DN of destination container] from the Enter String field.
Click the Edit Arguments icon = to launch the Argument Builder.
Select Text in the Noun list.

Double-click Text to add it to the argument.

0 N o g A~ W

In the Editor, add the destination container where you want all of the User objects to be placed.
Make sure the container is specified in LDAP format, then click OK.

Using Predefined Rules

123

9 Click OK.
10 Save the rule by clicking File > Save.

7.17.3 How the Rule Works

This rule places all User objects in the destination DN. The rule sets the DN of the destination
container as the local variable dest-base. The rule then sets the destination DN to be uid=unique
name,dest-base. The uid attribute of the User object is the first two letters of the Given Name
attribute plus the Surname attribute in lowercase. The rule uses LDAP format.

7.18 Placement - Publisher By Dept

This rule places objects from one container in the data store into multiple containers in the Identity
Vault. Implement the rule on the Placement policy in the driver. You can implement the rule only on
the Publisher channel.

There are two steps involved in using the predefined rules: creating a policy in the Placement policy
set and importing the predefined rule. If you already have a Placement policy that you want to add
this rule to, skip to “Importing the Predefined Rule” on page 125.

7.18.1 Creating a Policy

1 From the Outline view or the Policy Flow view, select the Publisher channel.

2 Select the Placement policy set in the Policy Set view, then click Create or add a new policy to
the Policy Set icon ¥ to create a new policy.

3 Click Create a new policy, then click Next.
4 Name the policy.

5 Use the default location or browse and select another location to place the policy in the driver.

Create Policy

il

Specify the name of the new palicy and the container where it will be
created,

Palicy Mame:
Placement Policy

Policy Container:

Publisher LDAP.IDM Driver Set 2, IDMDESIGMTREE

[¥]iopen the editor after creating the object,

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.

A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and

continue?” Click Yes. The Policy Builder is launched and the new Placement policy is
saved.

9 Continue with Section 7.18.2, “Importing the Predefined Rule,” on page 125.

124 Policies in Designer 2.0

7.18.2 Importing the Predefined Rule

1 Right-click in Policy Builder, then click New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.

2 Select Placement - Publisher By Dept, then click OK.

=] =dl Placement - Publisher By Dept

5 Condition Group 1
f' if class name equal "User”

And 5 if attribute 'OU" available

% set local variablef"dest-base”, "[Enter DN of destination Organization]")

set operation destination DN(dniLocal variable!"dest-base") +""+attribute"OU"+" "+Escape Destination

5 DREURique Marmel"CN", scope="subtree”, Lawercase(Substringilength="1", Operation Attribute"Given
Mame"+0peration Attribute"3urname)), Lowercase(Substringllength="2", Operation Attribubel " Given
Mame'")+ peration Attributed"Surname" 10

3 Edit the action by double-clicking the Actions tab.

4 Delete [Enter DN of destination Organization] from the Enter String fields.
5 Click the Edit Arguments icon = to launch the Argument Builder.

6 Select Text in the Noun list.

7 Double-click Text to add it to the argument.

8 In the Editor, click the browse button, then browse to and select the parent container in the
Identity Vault. Make sure all of the department containers are child containers of this DN, then
click OK.

Click OK.
10 Save the rule by clicking File > Save.

©

7.18.3 How the Rule Works

This rule places User objects in proper department containers depending upon the value that is
stored in the OU attribute. If a User object needs to be placed and has the OU attribute available,
then the User object is placed in the dest-base\value of OU attribute\CN attribute.

The dest-base is a local variable. The DN must be the relative root path of the department containers.
It can be an organization or an organizational unit. The value stored in the OU attribute must be the
name of a child container of the dest-base local variable.

The child containers must be associated for the user objects to be placed. The value of the OU
attribute must be the name of the child container. If the OU attribute is not present, this rule is not
executed.

The CN attribute of the User object is the first two letters of the Given Name attribute plus the
Surname attribute in lowercase. The rule uses slash format.

Using Predefined Rules

125

7.19 Placement - Subscriber By Dept - LDAP
Format

This rule places objects from one container in the Identity Vault into multiple containers in the data
store based on the OU attribute. Implement the rule on the Placement policy in the driver. You can
implement the rule only on the Subscriber channel.

There are two steps involved in using the predefined rules: creating a policy in the Placement policy
set and importing the predefined rule. If you already have a Placement policy that you want to add
this rule to, skip to “Importing the Predefined Rule” on page 126.

7.19.1 Creating a Policy

1 From the Outline view or the Policy Flow view, select the Subscriber channel.

2 Select the Placement policy set in the Policy Set view, then click Create or add a new policy to
the Policy Set icon ¥ to create a new policy.

3 Click Create a new policy, then click Next.
4 Name the policy.

5 Use the default location or browse and select another location to place the policy in the driver.

Create Policy

i

Specify the name of the new palicy and the container where it will be
created.

Palicy Mame:
Placement Policy

Policy Container:

Publisher LDAP. I0M Driver Set 2. IDMDESIGMTREE

[¥]iopen the editar after creating the object,

6 Select Open Editor after creating policy, then click Next.
7 Select DirXML Script for the type of policy, then click Finish.

8 A file conflict window appears with the message “Before editing this item you
need to save. Do you wish to save the editor’s changes and

continue?” Click Yes. The Policy Builder is launched and the new Placement policy is
saved.

9 Continue with Section 7.19.2, “Importing the Predefined Rule,” on page 126.

7.19.2 Importing the Predefined Rule

1 Right-click in the Policy Builder, then click New > Predefined Rule > Insert Predefined Rule
Before or Insert Predefined Rule After.

126 Policies in Designer 2.0

2 Select Placement - Subscriber By Dept - LDAP format, then click OK.

= 5 Placement - Subscriber By Dept - LDAP format

< Condition Group 1
5 if class name equal "Jser”

And 5 if attribute 'OU" available

5 set local variable"dest-base”, "[Enker DM of destination Organization]")

sek aperation destination DM{dn("uid="+Escape Destination DM{Unique Mame"uid”, scope="subtres",

5 LowercaselSubstringlength="1", Operation Attribute!"Given Name"Y)+Cperation Attribute!"Surname")),
Lowercasel Substringflength="2", Operation Attribute("Given Mame"))+COperation
Attributed"Surname"+", ou="+Atkributel 0" +", "+ Local Yariable!"dest-base"y)

3 Edit the action by double-clicking the Actions tab.

4 Delete [Enter DN of destination Organization] from the Enter string field.
5 Click the Edit Arguments icon = to launch the Argument Builder.

6 Select Text in the Noun list.

7 Double-click Text to add it to the argument.

8 In the Editor, add the parent container in the data store. The parent container must be specified
in LDAP format. Make sure all of the department containers are child containers of this DN,
then click OK.

9 Click OK.
10 Save the rule by clicking File > Save.

7.19.3 How the Rule Works

This rule places User objects in proper department containers depending upon the value that is
stored in the OU attribute. If a User object needs to be placed and has the OU attribute available,
then the User object is placed in the uid=unique name,ou=value of OU attribute,dest-base.

The dest-base is a local variable. The DN must be the relative root path of the department containers.
It can be an organization or an organizational unit. The value stored in the OU attribute must be the
name of a child container of the dest-base local variable.

The child containers must be associated for the User objects to be placed. The value of the OU
attribute must be the name of the child container. If the OU attribute is not present, then this rule is
not executed.

The uid attribute of the User object is the first two letters of the Given Name attribute plus the
Surname attribute as lowercase. The rule uses LDAP format.

Using Predefined Rules

127

128 Policies in Designer 2.0

Testing Policies with the Policy
Simulator

The Policy Simulator allows you to execute a policy at any point in the flow of the driver and see the
results without implementing the policy in the Identity Vault. You can test the policies without
affecting the production environment or the connected system.

For more information about common tasks with the Policy Simulator, see the following sections:

¢ Section 8.1, “Accessing the Policy Simulator,” on page 129

¢ Section 8.2, “Using the Policy Simulator,” on page 131

¢ Section 8.3, “Simulating Policies with Java Extensions,” on page 134
The Policy Simulator uses XML. The eDirectory™ document type definition file (nds.dtd)
defines the schema of the XML documents that the Metadirectory engine can process. XML
documents that do not conform to this schema generate errors. To verify whether the document
conforms to the nds . dtd and find information about why errors are occurring, see the NDS DTD

(http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy dtd/
data/dtdndsoverview.html#dtdndsoverview) in the Identity Manager DTD Reference.

If the policy uses a mapping table object or ECMAScript object, the Policy Simulator tests these
object when the policy is tested.

The Policy Simulator cannot simulate the initial policy sets from application drivers such as SOAP
and Delimited text. These drivers use comma-separated files or text files as input, and the XML or

XDS is derived from policies in the policy chain. Currently, the Policy Simulator only accepts valid
XML or XDS as input. Additional functionality is being considered for future releases.

8.1 Accessing the Policy Simulator

The Policy Simulator can be accessed in three different ways:

¢ “Outline View” on page 129
¢ “Policy Flow View” on page 130
+ “Editors” on page 131

8.1.1 Outline View

1 Click the Show Model Outline icon E.

Testing Policies with the Policy Simulator

129

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_dtd/data/dtdndsoverview.html#dtdndsoverview

2 Right-click the driver, publisher, subscriber, mapping rule, filter, or any policy you want to
simulate, then click Simulate.

a—
Praject =08 M Project 1 - Develope
BEELIEEES
= sl Project 1 ~
EREIR LN

B 1ENSEN
EI E Driver Set
= G,.I Aitive Direckory

I InputTransfarm
CukpukTransforrm
Password({Publ-Sub Emai
M=

Passwaord(Sub)-Pub Emai
Schematapping
ﬁ Active Directory Filker

Credential Provisioning 4
Add Palicy 4

‘(@ Export Channel ko Configuration File. ..

Live Operations 4
& Simulate. .
Properties
H=Er V
1 — [l
< | L& o

8.1.2 Policy Flow View

1 Click the Show Policy Flow icon .

2 Right-click the Input, Output, Schema Mapping, filter, or any policy set icons you want to
simulate, then click Simulate.

Project | o= Outine 5% = O || pr
il ==ES
Active Directory ha]
D Add Palicy -
(8 Edit Palicy r
A_Input
¥ Delete All Set Policies
Schema _ pemaove all Set Policies
Fublisher !ﬁ___,__ﬂ Live Operations 4
’\E‘"El"t e Simulate. ..

130 Policies in Designer 2.0

8.1.3 Editors

You can access the Policy Simulator through the Policy Builder, the Schema Mapping editor, or the
Filter editor by selecting the Policy Simulator icon “2 in the toolbar of each editor.

8.2 Using the Policy Simulator

The Policy Simulator allows you to select a point in the driver flow to test the policy with a specific
operation. It allows you to edit the input and output documents while you are testing. If you want to
keep the changes, select the Save As icon to save the document as an XML file.

To use the Policy Simulator:

1 From the Simulation Point drop-down list, select the place in the driver flow that you want to
test the policy.

You can select the any of the following items: Publisher Channel, Subscriber Channel, Input,
Schema Mapping, Event, Sync Filter, Matching, Creation, Placement, Command and Notify

Filter.

Customize Input Document

Select the channel or specific policy set to simulate. The inpuk document can also be

33

customized to add operational data or to modify existing values,

Sirmulation Poink:

Input Documen :

Publisher Channel

Inpuk

< 9uml w4chema Mapping Inbound

<1

Publisher Event
Publisher Swnc Filter

< in)Publisher Matching

</ nds>

Publisher Creation
Publisher Placerment
Publisher Command
Publisher Makify Filker
Subscriber Channel

Cgkput

Schema Mapping Cutbound
Subscriber Mokify Filker
Subscriber Command
Subscriber Placement

g ?rands>
hput docwment here —->

l Import,.. H Save As..,]

If you select a specific policy or rule to test, the Simulation Point option only shows To Identity

Vault or From

Identity Vault.

2 Select Import, then browse to and select a file to test.

Designer comes with sample event files you can use. The files are located in the plug-in
com.novell.designer.idm.policy\simulation. The event are Add,
Association, Delete, Instance, Modify, Move, Query, Rename, and Status.

3 Double-click a folder and to display the available events.

Testing Policies with the Policy Simulator

131

Each event has different files you can select. For example, if you select Add, you have three

options: Organization.xml, OrganizationalUnit.xml, and User.xml. The file
indicates the event. If you select User . xm1, it is an Add event for a user object.

4 Sclect a file, then click Open to display the input document in the window.

5 Click Next to begin the simulation.

Customize Input Document

Select whether to simulate the policy ko or From the Identity Vaulk, The input document can @
also be customized to add operational data or modify existing values.,

Sirmulation Paoint: | To Identity Yault e
Inpuk Docurnent:

<?xml wersion="1.0" encoding="UTF-5"?><nds dtdversion=".

<input:>
<add class-name="User"” gqualified-sroc-dn="o=dirX

<azsociationro=dirEIML Testhou=Usershcn=User

<add-attr attr-name="cn'":>
<valuerUserl</valuex>

</ add-attr>

<add-attr attr-name="3urname':>
<waluexZurnamel</valus:>

>

[1mport,.. §|l Save fs...

132 Policies in Designer 2.0

6 Select the Trace tab to display the results of the Add event as you would through DSTRACE.

View Transform Results @
Select Trace ko wiew simulation details; select Qutput For the transformed document; or
select Compare For the differences between Input and Qutput documents,

Qutput | Compare

Aetive Directory thpplying policy: $+C314CCreation:-C. A

Active Directory : Applyving to add #1.

Aetive Directory Evaluating selection criteria for

Aotive Directory Fule selected.

Aetive Directory Applying rule 'add attributes for

Aotive Directory Aotion: do-add-dest-attr-wvalue|

Aotive Directory arg-string ("DirXML-Applicatio

Aetive Directory token-text ("DirEMlL-Applicat

Aotive Directory Arg Value: "DirZHML-Applicat

Aetive Directory Aetion: do-set-dest-attr-wvalues |

Aotive Directory arg-string (token-src-dni)

fmtrdzra Tidivracstmrrr o= ralarn—srcadds 1)

< >
@ I Finish l[Cancel]

Click Clear Log, then click Repeat to run the simulation again with the new trace log.

7 Select the Output tab to see the output document that is generated when the policy is executed
against an input document. The input document is the user Add event.

View Transform Results @
Seleck Trace bo wiew simulation details; select Output For the transformed document; or
select Compare for the differences bebween Input and Output documents,

Trace Compare

<?xml wersion="1.0" encoding="UTF-5"2><nds drodwversion="T s

{I__ B P A
Input document to add a User.
<input:>
<add class-name="User" qualified-sro-dn="o=dirX
<associationro=dirXML Testhou=Users'cn=User
wadd-attr attr-nawe="cn">
<valuerUserl</valuex
</ add-attr>
wadd-attr attr-nawe="3urname":>
Arralinna@arnemwmad S fara Tiias b
< >
(7 Finish] [Cancel

Testing Policies with the Policy Simulator 133

You can edit the input and output documents. If you want to keep the changes, click Save 4s.
Select the Compare tab to compare the output document to the input document.

View Transform Results

Select Trace b view simulation details; select Output For the transformed document; or @
seleck Compare For the differences between Input and Sutput documents,

Trace | Cutput |(_:C0mpare)l

Text Compare

Input Docurment: Oukput Docurment:

<add-attr attr-n:
<wvalue type=!
<Componel
<Componel

<oompone]
<fvalues

</ add>

</ add:> [l
</ input> </ input>
</ndss> </nds> b’
< | 3 @ | >
@ < Back Mext = I Einish l l Zancel]

9 Click Repeat to select a different input document and see the results of that event.

10 When you are finished testing, click Finish to close the Policy Simulator.

8.3 Simulating Policies with Java Extensions

Policies that contain references to external Java® extensions can now be simulated by specifying the
directory where the . jar file is located.

To determine or change the extension directory:

1 Select Windows > Preferences from the tool bar.

2 Navigate to the Designer for IDM > Simulation page.

134 Policies in Designer 2.0

3 Copy the jar file containing the Java class to the specified directory and simulate the policy.

bype Filter bext Simulation

+- Gaeneral — :

= Designer For IDM Ir&ctores | Options
Configuration

Document Generation Input
Entitlements C:\Program FilesiMovell\Designerieclipsel pluginsicom, nos
iManager
ImportfDeploy Output

+- Modeler - - - -

4 Policy Buider C:fProgram FilesMovel{Designet feclipse/pluginsfcom, noy
Project Checker
Schema Jawva Extensions

Simulation C:fProgram Files/Movell/Designer/eclipse/plugins/com. now -m
Trace
+- Help
+- Mowvell
+- Provisioning
+-'Web and XML
< >
. . ’Restu:ure Qefaults] ’ apply l

4 Click Apply to save your changes, or click OK to save your changes and close the window.

NOTE: The Enable unsupported and experimental pre-release functionality option enables the
Policy Simulator to test the policies against a live Identity Vault or the connected systems. This
option is not supported in Designer 2.0 M5 and is not documented.

Designer allows you to specify more than one directory that contains the external Java classes. To
specify an additional directory:

1 Click Add.
2 Browse to and select the desired directory, then click OK.

3 To remove a directory, click Remove.

Testing Policies with the Policy Simulator 135

136 Policies in Designer 2.0

Storing Information in Resource
Objects

Resource objects store information that drivers use. The resource objects can hold arbitrary data in
any format. Novell® Identity Manager 3.5 contains different types of resource objects.

¢ Section 9.1, “Generic Resource Objects,” on page 137

¢ Section 9.2, “Mapping Table Objects,” on page 139

¢ Section 9.3, “ECMAScript Objects,” on page 142

*

Section 9.4, “Application Objects,” on page 143

*

Section 9.5, “Repository Objects,” on page 143

*

Section 9.6, “Library Objects,” on page 143

9.1 Generic Resource Objects

Generic Resource objects allow you store information that a policy consumes. It can be any
information stored in text or XML format. A resource object is stored in a library or driver object.
An example of using a resource object, is when multiple drivers need the same set of constant

parameters. The resource object stores the parameters and the drivers use these parameters at any
time.

¢ Section 9.1.1, “Creating a Resource Object,” on page 137
+ Section 9.1.2, “Using a Generic Resource Object,” on page 138

9.1.1 Creating a Resource Object
1 In the Outline view, right-click on the location where you want to create the resource object,
then select New > Resource.
2 Specify the name of the resource object.
3 Select the content type, XML or Text.
4 Select the check box for Open the editor after creating the object, then click OK.

Set Resource Name R rael)
1 s
Enter a name Far wour new resource., L m—
Marne: | Creation F‘arameters|
Conktent type: | Text v
Cpen the editor after creating the object.
[al 4] [Cancel

Storing Information in Resource Objects 137

5 Click Yes in the file conflict messages.

@ File Conflict f‘Z

9 Befaore editing this item, vou need ko save, Do you want ko save this editor's
\:) changes and continue?

T3 *Project 1 - Developer match E Creation Parameters X =B

Resource Editor @
E Creation Parameters.Library 1.0river Set. Identity Waul

Text Editor

&2 Configuration

9.1.2 Using a Generic Resource Object

A resource object is a box to store information. It is an eDirectory object and to use the information
in the object, you treat it as any other eDirectory object. The attribute DirXML-Data stores the
information in the resource object, and the attribute DirXML-Content type stores the label of the
information.

138 Policies in Designer 2.0

To read the information stored in the resource object, use the Source Attribute (page 311) or
Destination Attribute (page 289) tokens. To write information to the object, use the following
actions:

¢ Clear Destination Attribute Value (page 219)
¢ Clear Source Attribute Value (page 221)

¢ Set Default Attribute Value (page 253)

¢ Set Source Attribute Value (page 266)

9.2 Mapping Table Objects

A mapping table object is used by a policy to map a set of values to another set of corresponding
values. After a mapping table object is created, the Map (page 331) token maps the results of the
specified tokens from the values specified in the mapping table.

To use a mapping table object, the following steps must be completed:

1. Section 9.2.1, “Creating a Mapping Table Object,” on page 139
2. Section 9.2.2, “Adding a Mapping Table Object to a Policy,” on page 141

To edit a mapping table, see Section 9.2.3, “Editing a Mapping Table Object,” on page 141.

9.2.1 Creating a Mapping Table Object

A mapping table object can be created in a library, driver object, Publisher channel, or Subscriber
channel.

1 In the Outline view, right-click the location to create the mapping table, then select New >
Mapping Table.

2 Specify the name of the mapping table object.
3 Select the check box for Open the editor after creating the object, then click OK.

Choose Mapping Table name \ {
Create a Mapping Table resource !

Mame: | Mapping Table Departments

[#]iopen the editor after creating the object,

QK] [Cancel

Storing Information in Resource Objects 139

4 Click Yes in the file conflict message to save the mapping table.

@ File Conflict f‘Z

Befaore editing this item, vou need ko save, Do you want ko save this editor's

‘? %
\t/ changes and continue?

5 Click the untitled column.

H makching policies match B Mapping Table Dep... X

I
]
)

Mapping Table Editor mme =

Mapping Table Departments.Library 1,Driver Set,Identity Yault

{ = Untitled Calumn)

Mew Value

6 Specify the name of the column, then select if the value is Case Sensitive, Case Insensitive, or
Numeric.

Calumn Mame: | dept|

Column Type
{:} Case Sensitive

(%) Case Insensitive
{:} MNumeric

Close

7 Click Close.
8 Click New Value, then specify the value for the row.

= dept

9 (Optional) To add an addition column, right-click in the Mapping Table editor, then select Add
Column.

or
Click the Add Column icon, then repeat Step 5 through Step 7 on page 140.

10 (Optional) To add an additional row, right-click in the Mapping Table editor, then select Add
Row.

or

140 Policies in Designer 2.0

Click the Add Row icon, then repeat Step 8.
11 Press Ctrl+S to save the mapping table object.
12 Continue with Section 9.2.2, “Adding a Mapping Table Object to a Policy,” on page 141.

9.2.2 Adding a Mapping Table Object to a Policy

Either create a policy to use the mapping table in, or select an existing policy to edit.
Launch the Argument Builder in the Policy Builder.
Double-click Map from the list of Verbs to add it to the expression panel.

Select either true or false to indicate whether you want this mapping table traced.

a » ON =

In the Editor field, browse to and select the mapping table object created in Section 9.2.1,
“Creating a Mapping Table Object,” on page 139.

6 Specify the source column name.

7 Specify the destination column name.

22 Editor

f' Do not trace: [False | »

Mapping Table DR: * | .4, \Library 13Mapping Table Departrments Q

[]1ake mapping kable DM relative ko the policy.}

Source column name: * | dept

Destination column name: * | code

The mapping table can be used in any manner at this point. In this example, the OU attribute is
populated with the value derived from the mapping table.

Map({dest="code", src="dept", table=",.\. \Library 1\Mapping Table Departments")
1 Operation Attribute("oU")

9.2.3 Editing a Mapping Table Object

Designer provides the following options to edit the mapping table:

Storing Information in Resource Objects 141

Figure 9-1 Editing a Mapping Table

\E{, Project 1 - Deve. .. makching polic. .. Mapping Table De. ..

Mapping Table Editor ""ﬁ e = XE @

Mapping Table Departments, Library 1,Driver Set. Identity Yaul:

= dept = code = location
Engineering | 00001 Mew York
Sales 00002 London of” Cut
Accounting 00003 Paris 2y Copy
Marketing nooog Rome P ;
aske

4 Move Row Up
I Move Row Down

= Add Row
||||ﬁ Add Column

L= Remove Row

[Remave Colurn

¢ Cut: Cuts the selected row.

¢ Copy: Copies the selected row.

+ Paste: Pastes the selected row.

¢+ Move Row Up: Moves the selected row up one row.

+ Move Row Down: Moves the selected row down one row.

*

Add Row: Adds a row to the mapping table.

*

Add Column: Adds a column to the mapping table.

*

Remove Row: Deletes a row from the mapping table.

*

Remove Column: Deletes a column from the mapping table.

9.2.4 Testing a Mapping Table Object

You can test the functionality of the mapping table with the Policy Simulator. The Policy Simulator
tests the mapping table by testing the policy that is using the mapping table. For more information,
see Testing Policies with the Policy Simulator (http://www.novell.com/documentation/idm35/
index.html?page=/documentation/idm35/policy designer/data/simoverview.html#simoverview).

9.3 ECMAScript Objects

ECMAScript objects are resource objects that store ECMAScripts. The ECMAScript is used by
policies and style sheets. For more information on ECMAScript, see Using ECMAScript in Policies
(http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/

policy designer/data/ecmaoverview.html).

142 Policies in Designer 2.0

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_designer/data/simoverview.html#simoverview
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_designer/data/ecmaoverview.html

9.4 Application Objects

Application objects store authentication parameter values for Novell Credential Provisioning
policies. There application objects for Novell SecureLogin and Novell SecretStore®. For
information on how to create application objects for SecureLogin, see Creating an Application
Object for Novell SecureLogin (http://www.novell.com/documentation/idm35/index.html?page=/
documentation/idm35/policy credprov/data/credprovnslapplication.html#credprovnslapplication).
For information on how to create application objects for SecretStore, see Creating an Application
Object for Novell SecretStore (http://www.novell.com/documentation/idm35/index.html?page=/
documentation/idm35/policy_credprov/data/credprovssoapplication.html#credprovssoapplication).

9.5 Repository Objects

Repository objects store static configuration information for Novell Credential Provisioning
policies. There are repository objects for Novell SecureLogin and Novell SecretStore. For
information on how to create repository objects for SecureLogin, see Creating a Repository Object
for Novell SecureLogin (http://www.novell.com/documentation/idm35/index.html?page=/
documentation/idm35/policy _credprov/data/credprovnslrepository.html#credprovnslrepository).
For information on how to create repository objects for SecretStore, see Creating a Repository
Object for Novell SecretStore (http://www.novell.com/documentation/idm35/index.html?page=/
documentation/idm35/policy _credprov/data/credprovssorepository.html#credprovssorepository).

9.6 Library Objects

Library objects store multiple policies and other resources that are shared by one or more drivers. A
library object can be created in a driver set object or any eDirectory™ container. Multiple libraries
can exist in an eDirectory tree. Drivers can reference any library in the tree as long as the server
running the driver holds a Read/Write or Master replica of the library object.

Style sheets, policies, rules, and other resource objects can be stored in a library and be referenced
by one or more drivers.

¢ Section 9.6.1, “Creating Library Objects,” on page 143

¢ Section 9.6.2, “Adding Policies to the Library Objects,” on page 144

¢ Section 9.6.3, “Using Policies in the Library Objects,” on page 145
9.6.1 Creating Library Objects

1 Right-click a driver set or the Identity Vault object in the Outline view, then click New >
Library.

Storing Information in Resource Objects 143

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_credprov/data/credprovnslapplication.html#credprovnslapplication
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_credprov/data/credprovnslapplication.html#credprovnslapplication
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_credprov/data/credprovssoapplication.html#credprovssoapplication
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_credprov/data/credprovssoapplication.html#credprovssoapplication
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_credprov/data/credprovnslrepository.html#credprovnslrepository
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_credprov/data/credprovnslrepository.html#credprovnslrepository
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_credprov/data/credprovssorepository.html#credprovssorepository
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_credprov/data/credprovssorepository.html#credprovssorepository

2 Specify the name of the library object, then click OK.

Set Library Name
Enter a name for your new library,

Mame: | Library 1]

I Ok H Cancel]

9.6.2 Adding Policies to the Library Objects

Libraries can hold any policy, XSLT style sheets, or any type of resource object.

1 Right-click the library object, then select New and what ever type of object you want stored in
the library. The options are:

Eﬁ’ Credential Application...
:_;,Jj’ Credential Repositary...
ZE DirxML Scripk...

= ECMascript. ..

E{ Mapping Table...

2} Resource..

MZ Schema Map...
EHaLT..

Fram Copy. ..

¢ Credential Application: Stores application authentication parameter values for Novell
Credential Provisioning policies. For information, see Novell Credential Provisioning
Policies for Identity Manager 3.5 (http://www.novell.com/documentation/idm35/
index.html?page=/documentation/idm35/policy credprov/data/bookinfo.html).

+ Credential Repository: Stores static configuration information for Novell Credential
Provisioning policies. For information, see Novell Credential Provisioning Policies for
Identity Manager 3.5 (http://www.novell.com/documentation/idm35/index.html?page=/
documentation/idm35/policy credprov/data/bookinfo.html).

+ DirXML Script: Creates a policy set. See Creating a Policy (http://www.novell.com/
documentation/idm35/index.html?page=/documentation/idm35/policy designer/data/
pbcreatepolicy.html#pbcreatepolicy) for more information.

¢+ ECMAScript: Creates an ECMAScript object. See Creating an ECMAScript Object
(http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/
policy designer/data/ecmacreate.html#ecmacreate) for more information.

+ Mapping Table: Creates a mapping table object. For more information, see Creating a
Mapping Table Object (http://www.novell.com/documentation/idm35/index.html?page=/
documentation/idm35/policy designer/data/roverview.html).

144 Policies in Designer 2.0

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_credprov/data/bookinfo.html
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_credprov/data/bookinfo.html
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_credprov/data/bookinfo.html
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_credprov/data/bookinfo.html
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_designer/data/pbcreatepolicy.html#pbcreatepolicy
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_designer/data/ecmacreate.html#ecmacreate
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_designer/data/roverview.html
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_designer/data/roverview.html

+ Resource: Creates a generic resource object. For more information, see Creating a
Resource Object (http://www.novell.com/documentation/idm35/index.html?page=/
documentation/idm35/policy designer/data/resouceobject.html#resouceobject).

¢ Schema Map: Creates a Schema Map object. For more information, see Defining Schema
Mapping Policies (http://www.novell.com/documentation/idm35/index.html?page=/
documentation/idm35/policy designer/data/smoverview.html).

¢ XSLT: Creates an XSLT style sheet in the library. For more information, see Defining
Policies by Using XSLT Style Sheets (http://www.novell.com/documentation/idm35/
index.html?page=/documentation/idm35/policy/data/boswvmS5.html).

+ From Copy: Creates a copy of an existing object.

9.6.3 Using Policies in the Library Objects

After you have created the library, you can use any of the resources stored in the library in any
policy.

1 Double-click the desired policy in the Outline view.

2 Right-click in the Policy Builder, then select New > Include > Insert Include Before or Insert
Include After.

3 Browse to and select the desired resource stored in the library object, then click OK twice.

Select an object:

= [1dentity vault
= E Driver Set
+ ﬁ) Active Directory
+-dg) Delimited Text
+-dg LDAP
+ g/ IA5 PIV Life Cycle Driver
+ ﬂ,,n Enrollment Driver For Honewwell SmartPlus Syskem
+ ﬁv PACS Inteqgration Driver For Honewwell SmartPlus System
= i’f Library 1
Er) matching policies

Storing Information in Resource Objects 145

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_designer/data/resouceobject.html#resouceobject
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_designer/data/resouceobject.html#resouceobject
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_designer/data/smoverview.html
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_designer/data/smoverview.html
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/boswvm5.html
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/boswvm5.html

146 Policies in Designer 2.0

Using ECMAScript in Policies

ECMAScript is a scripting programming language, standardized by Ecma International. It is often
referred to as JavaScript® or JScript*, but these are implementations of ECMAScript. Identity
Manager 3.5 supports a new object type called ECMAScript objects. ECMAScript objects are
resource objects that store ECMAScripts. The ECMAScript is called through a policy to provide
advanced functionality that DirXML® Script or XSLT style sheets cannot provide.

Identity Manager uses the ECMACScript objects in two different ways: to create a custom form in

the provisioning request definition editor, and to call an ECMAScript function in policies. For more
information on custom forms, see Creating Custom Forms (http://www.novell.com/documentation/
idm35/dgpro/data/prdefcreateformschapter.html).

This section explains how to use the ECMAScript editor, how to use ECMAScript with policies, and
how to use ECMAScript with custom forms. It does not explain the ECMAScript language. See the
ECMAScript Language Specification (http://www.ecma-international.org/publications/standards/
Ecma-262.htm) for information on how to use the ECMAScript language.

¢ Section 10.1, “Creating an ECMAScript Object,” on page 147

¢ Section 10.2, “Using the ECMAScript Editor,” on page 148

¢ Section 10.3, “Examples of ECMAScripts with Policies,” on page 156
¢ Section 10.4, “Changing JavaScript Files Preferences,” on page 159

10.1 Creating an ECMAScript Object

ECMAScript objects can be created in a library, driver object, Publisher channel, or Subscriber
channel.

1 In the Outline view, right-click the location to create the ECMAScript object, then select New >
ECMAScript.

2 Specify the name of the ECMAScript object.
3 Select the check box for Open the editor after creating the object, then click OK.

New ECMAScript
Create a Mew ECMASCHpE ECMA
Mame: | ECMASCript Policy Examples|

Cpen the editor after creating the object.

(0]] [Cancel

Using ECMAScript in Policies 147

http://www.novell.com/documentation/idm35/dgpro/data/prdefcreateformschapter.html
http://www.ecma-international.org/publications/standards/Ecma-262.htm

4 Click Yes in the file conflict message to save the ECMAScript object.

® File Conflict x|

, Befaore editing this item, vou need ko save, Do you want ko save this editor's
__*H changes and continue?

5 Either type the ECMAScript, or copy the ECMAScript into the editor from an existing file.
6 To save the ECMAScript press ctrl+S after the ECMAScript is finished.

For information on how to use the ECMAScript editor, see Section 10.2, “Using the ECMAScript
Editor,” on page 148.

10.2 Using the ECMAScript Editor

ECMAScript objects are supported only with servers that have Identity Manager 3.5 version. If a
server in a selected driver set is earlier than Identity Manager 3.5, an error message is displayed, and
Designer does not allow the object to be created. Change the version of the server to Identity
Manager 3.5 on the properties of the server, then the ECMAScript object can be created.

Designer provides an ECMAScript editor, which also includes an ECMA Expression Builder. You
use both to create the ECMAScript.

To access the ECMAScript editor:
1 Right-click an ECMAScript object in the Outline view, then select Edit.
or

When creating an ECMAScript object, select the check box Open the editor after creating the
object.

The ECMAScript editor provides different types of functionality depending upon which section you
are using.

*

Section 10.2.1, “Main Scripting Area,” on page 148

*

Section 10.2.2, “Expression Builder,” on page 151

*

Section 10.2.3, “Functions and Variables,” on page 153

*

Section 10.2.4, “Error Display,” on page 154
Section 10.2.5, “Shell Area,” on page 155

*

10.2.1 Main Scripting Area

The ECMAScript editor provides a main scripting area where the ECMAScript is created. You can
type a new script, or copy an existing one.

148 Policies in Designer 2.0

Figure 10-1 Main Scripting Area

F=] ECMAScript Policy Examples.Library 1.Driver Set.Identity Yault

7 =

ECMAScript Editor
= @ igetBo4imager| |
& rabyal
& g
&l
& gy
& bAdos
=@ split
& document
& nodeSet
& figlds
& Tigld
& texthlode
- @ join
< | =

importClass (java. lang. 3ystem) ;
importClass (Jjava.net.TRL)

imwportClass (java.io.3tringliriter) ;

* ftype String
w
i

war retiWal = r:

1

importPackage (Packages. com.novell,. xml.
importPackage (Packages.com.novell. nds.

importClass (Packages.cow.novell. io.Bas

S %% Bead an image from a UBL and retur
* @param {3tring! url3tring URL of th

* freturn Basefd encoded content of t©
function getBodImageFrowmURL (url3tring)

A4 return walue - initialize to emw

.

importPackage (Fackages. com.novell.xml. &

| £

¢ “Using an Existing ECMAScript” on page 149

¢ “Editing an ECMAScript” on page 150
¢ “Coding Help for ECMAScript” on page 150

Using an Existing ECMAScript

1 Open the ECMAScript in a text editor, then copy the script.

2 Paste the ECMAScript into the ECMAScript editor.
3 Press Ctrl+S to save the ECMAScript.

Using ECMAScript in Policies 149

Editing an ECMAScript

1 Right-click in the main scripting area, then select the desired option.

<7 Unda Typing Chrl+2
W Reds Chri+y
o Cirl
Copy Chrl+C
EEI% Paste Chrl+y
¥ Delete Delete

Select All -,

FindiReplace. .. Chrl4+F

@ Show Expression Builder

¢ Undo Typing: Undoes the typing that has occurred.

+ Redo: Redoes the last action.

¢ Cut: Cuts the selected area.

+ Copy: Copies the selected area.

+ Paste: Pastes the information in the Clipboard into the main scripting area.
+ Delete: Deletes the selected information from the main scripting area.

¢ Select All: Selects all of the information in the main scripting area.

+ Find/Replace: Finds and replaces the specified information.

¢ Show Expression Builder: Launches the Expression Builder. For more information, see
Section 10.2.2, “Expression Builder,” on page 151.

Coding Help for ECMAScript

1 Right-click in the left margin of the main scripting area, then select the desired option.

Toggle Breakpaints

Add Bookmark. ..
Add Task...

v Show Quick, Diff Chrl+Shift+0
Show Line Mumbers

Preferences...

+ Toggle Breakpoints: To be implemented.

+ Enable Breakpoints: Set breakpoints in the ECMAScript.

+ Breakpoint Properties: View the properties of the breakpoints.

¢ Add Bookmark: Places a bookmark icon on a line in the ECMAScript editor.

+ Add Task: Places a task icon in a line as a reminder of additional work that needs to be
done. If you open the Task view from the toolbar, by selecting Window > Show View >
Tasks, the task is displayed.

150 Policies in Designer 2.0

¢ Show Quick Diff: To be implemented.

¢ Show Line Numbers: Displays line numbers in the main scripting area.

+ Preferences: Sets the line delimitation and sets the suffix for the files created in the

ECMAScript editor. By default, there is no translation for line delimiters, and the suffix is

Js.

10.2.2 Expression Builder

The Expression Builder helps in creating ECMAScript expressions. The Expression Builder can be
accessed in two ways through the ECMAScript editor, it can also be accessed through the Policy
Builder and the Argument Builder.

To access the Expression Builder in the ECMAScript editor:

1 Right-click in the main scripting area of the ECMAScript editor.

or

Right-click the shell area of the ECMAScript editor.

To access the Expression Builder through the Policy Builder:

1 Click the Launch ECMA Expression Builder icon next to the following actions or conditions:.

*

*

*

*

*

*

XPath expression

append XML element
append XML text

clone by XPath expressions
set XML attribute

strip XPath expression

To access the Expression Builder through the Argument Builder:

1 Double click the XPath noun token.
2 Click the Launch ECMA Expression Builder icon in the Argument Builder.

The Expression Builder has three panes; ECMAScript/Variables, Functions/Methods, and
ECMAScript Operators.

Using ECMAScript in Policies 151

Figure 10-2 Expression Builder

ECMASCript Wariables Functions/Methods ECMASCrpt Operators
= [Zl Functions = : ; +-8 Math

@ split +-® Relational
@ join +-{® Boolean +-® Logical
@ getB64ImageFramURL + @ Date F- @ Skring

+ @ Function

+-{® Global

-8 Math

+- (& Mumber

+ (& Object

+ @ Skring

+- =2 DirXML Script Objects
[[H Cancel][CheckSyntax]

ECMAScript/Variables lists all of the current defined functions in the ECMAScript. Function/
Methods contains the standard ECMAScript functions and the DirXML Script functions.
ECMAScript Operators displays the standard ECMAScript operators.

To use the Expression Builder:

1 (Optional) Click the desired ECMAScript/Variables.
2 (Optional) Click the desired Functions/Methods.

3 (Optional) Click the desired ECMAScript Operators.
4 Click Check Syntax to validate the expression.

5 Click OK to close the Expression Builder.

In the following example, the join ECMAScript variable is used with the NodeSet function or
method, but there is no ECMAScript operator selected.

152 Policies in Designer 2.0

Figure 10-3 Expression Builder Example

ECMASCript Yariables Functions/Methods ECMASCript Operators
= =] Functions - =2 ECMAScript =& Math
@ split = =5 Dir£ML Script Objects +-{8 Relational
@ join +-(® Modeset +-& Logical
@ getB&4ImageFromURL + @ Mode [+ @ Skring

join{nodeSet, delimiter)

0K] [Cancel] |§Check Synka |

10.2.3 Functions and Variables

As functions and variables are defined in the ECMAScript, they are displayed on the left side of the
ECMAScript editor.

Using ECMAScript in Policies 153

Figure 10-4 Functions and Variables

ECMASCript Editor 7 =

F=] ECMAScript Policy Examples.Library 1.Driver Set.Identity Yault

=@ getBﬁ4ImageF importPackage (Packages.com.novell.xml.
& retial importPackage (Packages. com.novell,. xml.
& g importPackage (Packages.com.novell. nds.
&l importiClass (java. lang. System) ; =
& cy importClass (Jjava.net.URL)
& bAdos importilass (Packages.com.novell.io. Bas
=@ split importiClass (java. io.S3tringlriter) ;
& document
& nodeSet
& fields %% Read an image from a URL and retur
& figld * @param {3cringd url3tring URL of th
& texthode * ftype String
@ join * @return Basesd encoded content of t©
w
function getBodImageFrowmURL (url3tring)
{
A4 return value - initialize to em
ver resval = ot v
< ' —

Ea

.3 2)

All of the variables that are stored in a function are grouped together. You can expand a function to
view all of the variables, by clicking the plus icon (arrow icon in Linux). You can view the function
without the variables by clicking the minus icon (arrow icon in Linux).

10.2.4 Error Display

As the ECMAScript is created, errors are displayed in the main scripting area and in the Problem
view. The main scripting area displays the errors as a red X on the line where the error occurs.

154 Policies in Designer 2.0

Figure 10-5 Main Scripting Area Errors

€0

4

war count = 0: L
war result = M2
f4 loop through the Nodez in the N
for (war node = nodelet.firsti); n
{

ff if not first Node, append t

if [(count+4+ > 0O)

{

result += deliwiter:;

}

f4 append the string value of

result += XPathlUtil.getlNodeVWal
}
return result:

The Problem view accumulates the errors as the ECMAScript is typed, displays the cause of the

€rror.

Double-click the error in the Problem view. The cursor jumps to the problem line in the main
scripting area.

To access the Problem view:

1 In the toolbar select Window > Show View > Other > General Problems.

The Problem view is displayed below the ECMAScript editor.

[Pratlems &2 Y =0

1 error, 0 warnings, O infos

Description

= - Errors (1 item)

10.2.

€3 missing) in parenthetical

5 Shell Area

The shell area of the ECMAScript area allows you execute the ECMAScript. After the ECMAScript
is created, you can test the functionality of the script.

Using ECMAScript in Policies 155

Figure 10-6 Shell Area

ECMAScript Editor 7 =

=@ arealfCircle _function areaffCircle(radius | | *l

return 2 ¥ Math.PI * (radius * radius):

" of

f} b

=areaCfCirclel 10
628,3185307179587

*

Creryiew | SitorkFlow | Forms | Signature Declarations I\Eﬂ:g/

Figure 10-6 contains an example of a function that determines the area of a circle. The function is
tested by specifying a value of areaOfCircle (10). The shell displays the value of
628.3185307179587.

To execute the expression, press the Enter key. If you want to enter more than one line of code in the
console, press Enter on the numeric-keypad.

10.3 Examples of ECMAScripts with Policies

The following examples use the ECMAScript file demo.js (../samples/demo.js) with different
policies. The demo . j s file contains three ECMAScript function definitions.

¢ Section 10.3.1, “DirXML Script Policy Calling an ECMAScript Function,” on page 156

¢ Section 10.3.2, “XSLT Policy Calling an ECMAScript Function at the Driver Level,” on
page 157

¢ Section 10.3.3, “XSLT Policy Calling an ECMAScript Function in the Style Sheet,” on
page 159

10.3.1 DirXML Script Policy Calling an ECMAScript Function

The DirXML Script policy converts an attribute that is a URL reference to a photo to the Base64
encoded photo data by calling the ECMAScript function getB64 ImageFromURL () .The policy
can be used as an Input Transformation or Output Transformation policy.

The function reads an image from a URL and returns the content as a Base64 encoded string.

<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE policy PUBLIC "policy-
builder-dtd"™ "C:\Program
Files\Novell\Designer\eclipse\plugins\com.novell.designer.idm.policybu
ilder 1.2.0.200612180606\DTD\dirxmlscript.dtd"><policy>

<rule>

<description>Reformat photo from URL to octet</
description>

<conditions/>

156 Policies in Designer 2.0

../samples/demo.js

<actions>
<do-reformat-op-attr name="photo">
<arg-value type="octet">

<token-xpath
expression="es:getB64ImageFromURL (string ($Scurrent-value))"/>

</arg-value>
</do-reformat-op-attr>
</actions>
</rule>
</policy>

Function: <static> String getB64ImageFromURL (<String> urlString)
Parameters: urlString (URL of the image file)
Returns: Base64 encoded content of the image (or empty string if error)

The file ReformatPhoto.xml (../samples/ReformatPhoto.xml) calls the ECMAScript function
getB64ImageFromURL from a DirXML Script policy. The file phototest.xml (../samples/
phototest.xml) is a sample input document that shows the policy in action.

Figure 10-7 Reformat Photo Example

4 5 reformat operation attributel"phota”, XPath("es:getEe4ImageFromURLstringl $ourrent-valuei™)

Do |reformat operation attribute v @
Specify name: * | photo C%
Specify value bype: w
Enter ocket: * | ¥Path{"es:getBa4ImageFromURL{string{$current-valug))")

The ECMAScript calls the getB64ImageFromURL function, which then returns the current value as
a string.

10.3.2 XSLT Policy Calling an ECMAScript Function at the
Driver Level
The XSLT policy either splits a single comma-delimited value into multiple values, or joins multiple

values into a single comma-delimited value. The XSLT policy is defined at the driver level and can
be used as an Input Transformation or Output Transformation policy.

NOTE: DirXML Script has the split and join functionality built into it, but XSLT does not. This
type of function allows XSLT to have the split and join functionality.

There are two functions:

¢ “Join” on page 158

* “Split” on page 158

Using ECMAScript in Policies 157

../samples/ReformatPhoto.xml
../samples/phototest.xml

Join

The Join function joins the text values of Nodes in a NodeSet into a single string

<!-- template that joins the joinme attribute wvalues into a single
value -->

<xsl:template match="*[Qattr-name='joinme']//*[value] | *[@attr-
name="'joinme'] [value] ">

<xsl:copy>
<xsl:apply-templates select="@*|node () [not (self::value)]"/>
<value>
<xsl:value-of select="es:join (value)"/>
</value>
</xsl:copy>
</xsl:template>

Function: <static> String join (<NodeSet> nodeSet, <string> delimiter)

Parameters: nodeSet (the input NodeSet) and delimiter (the delimiter to split on (optional: default
=none))

Returns: The concatenation of the string values of the Nodes in the nodeSet, separated by the
delimiter.

Split

The Split function splits a string into a NodeSet.

<!-- template that splits the splitme attribute values into multiple
values -->

<xsl:template match="*[Q@attr-name='splitme']//value">

<xsl:for-each select="es:split(string(.))">
<value>
<xsl:value-of select="."/>
</value>

</xsl:for-each>
</xsl:template>

Function: <static> NodeSet split(<String> inputString, <String>
delimiter)

Parameters: inputString (the script to split) and delimiter (the delimiter to split on (optional:
default = "))

Returns: A NodeSet containing text nodes.

The file SplitJoin.xsl (../samples/SplitJoin.xsl) calls the join or split functions in an XSLT style
sheet. The file splitjointest.xml (../samples/splitjointest.xml) is an input document that shows the
style sheet in action.

158 Policies in Designer 2.0

../samples/SplitJoin.xsl
../samples/splitjointest.xml

10.3.3 XSLT Policy Calling an ECMAScript Function in the Style
Sheet

The XSLT policy demonstrates embedding ECMAScript function definitions with the XSLT style
sheet. The functions convert a string to uppercase.

<!-- define ecmascript functions -->
<es:script>
function uppercase (input)

{
return String (input) .toUpperCase() ;

}
</es:script>

The file uppercase.xsl (../samples/uppercase.xsl) defines the ECMAScript function with the XSLT
style sheet. The file uppercasetest.xml (../samples/uppercasetest.xml) is an input document that
shows the style sheet in action.

10.4 Changing JavaScript Files Preferences

Designer allows you to change how JavaScript files are displayed and used. ECMAScript is a
JavaScript and these preferences affect the ECMAScript editor. To change the preferences:

1 In the Designer toolbar, select Window > Preferences > Web and XML > JavaScript Files.
2 Change the desired settings, then click OK.

See Section 10.4.1, “JavaScript Files Preferences,” on page 159 for a list of all of the
preferences.

10.4.1 JavaScript Files Preferences

Changes how JavaScript files are handled by Designer. There are multiple options to change.

+ “JavaScript Files” on page 159

+ “JavaScript Files > JavaScript Source” on page 160
¢ “JavaScript Files > JavaScript Styles” on page 161
¢ “JavaScript Validation” on page 162

JavaScript Files

Changes how JavaScript files are created.

Using ECMAScript in Policies 159

../samples/uppercase.xsl
../samples/uppercasetest.xml

Figure 10-8 JavaScript Files

JavaScript Files T

Creating or saving files
The Following line delimiter will apply:

Line delimiter: | Mo translation W

Creating files

add this suffix (f not specified): | js

Table 10-1 JavaScript Files

Setting Description

Creating or saving files: Line delimiter Sets what type of line delimiter is applied to the file.
The options are:

* No translation
* UNIX
¢ Mac

* Windows

Creating files: Add this suffix (if not specified) Sets the suffix to file. The default value is js. It can
be set to any value.

JavaScript Files > JavaScript Source
Changes the formatting for the JavaScript files.

Figure 10-9 JavaScript Files > JavaScript Source

JavaScript Source b=

Formatting

(%) Indenk using tabs

C' Indent using spaces
Indentation size: —

Cankent assist

Aukomatically make suggestions

Prompt when these characters are inserted:

160 Policies in Designer 2.0

Table 10-2 JavaScript Files > JavaScript Source

Setting Description

Formatting Sets the formatting for the editor. The options are:

* Indent using tabs

* Indent using spaces

* Indention size: Changes the indention size by
setting a numeric value.

Content assist Helps with prompts when creating the files.

Automatically make suggestions: Can be enabled
or disabled if the check box is selected.

Prompt when these characters are inserted: Allows
you to receive prompts when the specified
characters are entered.

JavaScript Files > JavaScript Styles
Customizes the content of the JavaScript files.

Figure 10-10 JavaScript Files > JavaScript Styles

JavaScript Styles =) <

Customize the syntax highlighting by selecting the bvpe of kext whose style you want bo custamize From
gither the combo box or the sample text area

Content kype; [Comments « | | Restore Default

Foreground: - Background: [J Bod

Sample kext;

function initci)
fWersions = new Arravyi):
fWersions[1l] = 'Version 1':
fWersions[2] = 'Version 2';

/4 For which vwersion is the user requesting support?
i
function selectVWersion(f) |
war cnt = 0;
var i;
for (i = 0 ; i < f.wversion.length ; i++) |
if [(f.wversion[i] .selected) |

cnt++;
K
H
var doall = (cnt == f.product.length || cnt == 0);
String unfinishedString = "resource;

Using ECMAScript in Policies 161

Table 10-3 JavaScript Files > JavaScript Styles

Setting Description

Content type Selects the content to be customized. You can
change each element independently. The sections
that can be changed are:

+ Comments

Default Code

* Keywords

*

* Lijteral Strings

* Unfinished Strings and Comments

If you select the element in the sample text field,
the content type changes to what is selected.

Foreground Displays the color that is set for the foreground.
Double-click the color field to select another color.

Background Displays the color that is set for the background.
Double-click the color field to select another color.

Bold Allows you to bold an element. Select the element,
the click the Bold check box.

Sample text Displays a sample file to see the changes.

JavaScript Validation

Allows the editor to validate the JavaScript as it is entered. Select Automatically validate scripts to
automatically validate the scripts. If it is not select the JavaScript will not be validated.

162 Policies in Designer 2.0

Conditions

Conditions define when actions are performed. Conditions are always specified in either
Conjunctive Normal Form (CNF) (http://mathworld.wolfram.com/ConjunctiveNormalForm.html)
or Disjunctive Normal Form (DNF) (http://mathworld.wolfram.com/DisjunctiveNormalForm.html).
These are logical expression forms. The actions of the enclosing rule are only performed when the
logical expression represented in CNF or DNF evaluates to True or when no conditions are
specified.

This section contains detailed information about all conditions that are available through the Policy
Builder interface.

+ “If Association” on page 164

+ “If Attribute” on page 166

¢ “If Class Name” on page 169

¢ “If Destination Attribute” on page 172

¢ “If Destination DN on page 175

¢ “If Entitlement” on page 176

+ “If Global Configuration Value” on page 179

¢ “If Local Variable” on page 181

¢ “If Named Password” on page 184

¢ “If Operation Attribute” on page 185

¢ “If Operation Property” on page 188

+ “If Operation” on page 190

+ “If Password” on page 193

¢ “If Source Attribute” on page 196

¢ “If Source DN” on page 198

¢ “If XML Attribute” on page 200

+ “If XPath Expression” on page 202

¢ “Variable Expansion” on page 204

Conditions 163

http://mathworld.wolfram.com/ConjunctiveNormalForm.html
http://mathworld.wolfram.com/DisjunctiveNormalForm.html

If Association

Performs a test on the association value of the current operation or the current object. The type of
test performed depends on the operator specified by the operation attribute.

Fields

Operator
Select the condition test type.

Operator Returns True when...

Associated There is an established association for the current object.

Not Association There is not an established association for the current object.

Available There is a non-empty association value specified by the current
operation.

Not available The association is not available for the current object.

Equal The association value specified by the current operation is exactly equal

to the content of the if association.

Not Equal The association value specified by the current operation is not equal to
the content of the if association.

Greater Than The association value specified by the current operation is greater than
the content of the condition when compared using the specified
comparison mode.

Not Greater Than Greater Than or Equal would return False.

Less Than The association value specified by the current operation is less than the
content of the condition when compared using the specified comparison
mode.

Not Less Than Less Than or Equal would return False.

Value

Contains the value defined for the selected operator. The value is used by the condition. Each
value supports variable expansion. For more information, see Variable Expansion (page 204).
The operators that contain the value field are:

¢ Equal

+ Not Equal
Greater Than

+ Not Greater Than
¢ Less Than

¢ Not Less Than

*

Comparison Mode

The condition has a comparison mode parameter that indicates how a comparison is done.

164 Policies in Designer 2.0

Mode Description

Case Sensitive Character-by-character case sensitive comparison.

Case Insensitive Character-by-character case insensitive comparison.

Regular Expression The regular expression matches the entire string. It defaults to case
insensitive, but can be changed by an escape in the expression.

See Sun’s Web site (http://java.sun.com/j2se/1.4/docs/api/java/util/regex/
Pattern.html).

The pattern options CASE_INSENSITIVE, DOTALL, and UNICODE_CASE
are used but can be reversed using the appropriate embedded escapes.

Source DN Compares using semantics appropriate to the DN format for the source data
store.

Destination DN Compares using semantics appropriate to the DN format for the destination
data store.

Numeric Compares numerically.

Binary Compares the binary information.

The operators that contain the comparison mode parameter are:
¢ Equal
+ Not Equal
¢ Greater Than
¢ Not Greater Than
¢ Less Than
¢ Not Less Than

Example

This example tests to see if the association is available. When this condition is met, the actions that
are defined are executed.

Condition | association W @

Cperator * | available W

Conditions 165

http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html

If Attribute

Performs a test on attribute values of the current object in either the current operation or the source
data store. It can be logically thought of as If Operation Attribute or If Source Attribute, because the
test is satisfied if the condition is met in the source data store or in the operation. The test performed
depends on the specified operator.

Fields

Name

Specify the name of the attribute to test.

Operator

Select the condition test type.

Operator

Returns True when...

Available

There is a value available in either the current operation or the source
data store for the specified attribute.

Not Available

Available would return False.

Equal

There is a value available in either the current operation or the source
data store for the specified attribute, which equals the specified value
when compared using the specified comparison mode.

Not Equal

Equal would return False.

Greater Than

There is a value available in either the current operation or the source
data store for the specified attribute that is greater than the content of the
condition when compared using the specified comparison mode.

Not Greater Than

Greater Than or Equal would return False.

Less Than

There is a value available in either the current operation or the source
data store for the specified attribute that is less than the content of the
condition when compared using the specified comparison mode.

Not Less Than

Less Than or Equal would return False.

Value

Contains the value defined for the selected operator. The value is used by the condition. Each
value supports variable expansion. For more information, see Variable Expansion (page 204).
The operators that contain the value field are:

¢ Equal
¢ Not Equal

*

*

*

Less Than

*

166 Policies in Designer 2.0

Greater Than
Not Greater Than

Not Less Than

Comparison Mode

The condition has a comparison mode parameter that indicates how a comparison is done.

Mode

Description

Case Sensitive

Character-by-character case sensitive comparison.

Case Insensitive

Character-by-character case insensitive comparison.

Regular Expression

The regular expression matches the entire string. It defaults to case
insensitive, but can be changed by an escape in the expression.

See Sun’s Web site (http://java.sun.com/j2se/1.4/docs/api/java/util/regex/
Pattern.html).

The pattern options CASE_INSENSITIVE, DOTALL, and UNICODE_CASE
are used but can be reversed using the appropriate embedded escapes.

Source DN

Compares using semantics appropriate to the DN format for the source data
store.

Destination DN

Compares using semantics appropriate to the DN format for the destination
data store.

Numeric

Compares numerically.

Binary

Compares the binary information.

The operators that contain the comparison mode parameter are:

+ Equal
+ Not Equal

+ QGreater Than

+ Not Greater Than

+ Less Than

+ Not Less Than

Example

The example uses the condition If Attribute when filtering for User objects that are disabled or have

a certain title. The policy is Policy to Filter Events, and it is available for download from the
Novell® Support Web site. For more information, see Downloading Identity Manager Policies
(http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/
data/policydownloadable.html). To view the policy in XML, see 001-Event-
FilterByContainerDisabledOrTitle.xml (../samples/001-Event-
FilterByContainerDisabledOrTitle.xml).

Conditions

167

http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/policydownloadable.html
../samples/001-Event-FilterByContainerDisabledOrTitle.xml
../samples/001-Event-FilterByContainerDisabledOrTitle.xml

B « 5' Filter events: From Users sub-tree, Users not disabled, no consultants or sales people

Conditions

. & Condition Group 1

o 5' if source DM not in subtree "Users”

v 5’ if attribute 'Login Disabled' equal "True"
v 5’ if attribute 'Title' match ", *consulkant|sales . *"

| V7 vetol)

The condition is looking for any User object that has an attribute of Title with a value of consultant
or sales.

Candition | attribute w | @

hame * | Title

Cperator * | equal

v|
Mode |regular EXpression V|
Value | Feonsulkant|sales. * | Q

168 Policies in Designer 2.0

If Class Name

Performs a test on the object class name in the current operation.

Fields

Operator
Select the condition test type.

Operator Returns True when...

Available There is an object class name available in the current operation.

Not Available Available would return False.

Equal There is an object class name available in the current operation, and it

equals the specified value when compared using the specified
comparison mode.

Not Equal Equal would return False.

Greater Than There is an object class name available in the current operation, and it is
greater than the content of the condition when compared using the
specified comparison mode.

Not Greater Than Greater Than or Equal would return False.

Less Than There is an object class name available in the current operation, and it is
less than the content of the condition when compared using the specified
comparison mode.

Not Less Than Less Than or Equal would return False.

Value

Contains the value defined for the selected operator. The value is used by the condition. Each
value supports variable expansion. For more information, see Variable Expansion (page 204).
The operators that contain the value field are:

+ Equal

+ Not Equal

¢ Greater Than

+ Not Greater Than
¢ Less Than

¢ Not Less Than

Comparison Mode

The condition has a comparison mode parameter that indicates how a comparison is done.

Mode Description

Case Sensitive Character-by-character case sensitive comparison.

Case Insensitive Character-by-character case insensitive comparison.

Conditions 169

Mode Description

Regular Expression The regular expression matches the entire string. It defaults to case
insensitive, but can be changed by an escape in the expression.

See Sun’s Web site (http://java.sun.com/j2se/1.4/docs/api/javalutil/regex/
Pattern.html).

The pattern options CASE_INSENSITIVE, DOTALL, and UNICODE_CASE
are used but can be reversed using the appropriate embedded escapes.

Source DN Compares using semantics appropriate to the DN format for the source data
store.

Destination DN Compares using semantics appropriate to the DN format for the destination
data store.

Numeric Compares numerically.

Binary Compares the binary information.

The operators that contain the comparison mode parameter are:
¢ Equal
+ Not Equal
¢ Greater Than
+ Not Greater Than
¢ Less Than
¢ Not Less Than

Example

The example uses the condition If Class Name to govern group membership for a User object based
on the title. The policy is Govern Groups for User Based on Title Attribute, and it is available for
download from the Novell Support Web site. For more information, see Downloading Identity
Manager Policies (http://www.novell.com/documentation/idm35/index.html?page=/documentation/
idm35/policy/data/policydownloadable.html). To view the policy in XML, see 004-Command-
GroupChangeOnTitleChange.xml (../samples/004-Command-GroupChangeOnTitleChange.xml).

B « 5' User changing from Manager to Employee

. % Condition Group 1

v 5' if class name equal "User"
v 5 if destination attribute Title' match " *manager. *"
v 5‘ if operation attribute 'Title' not-match . *managet . *"

v 5 set destination attribute valuel"Group Membership”, "UsersiEmployeesGroup™
v 5 clone operation atkribukedGroup Membership”, "Security Equals™)

Checks to see if the class name of the current object is User.

170 Policies in Designer 2.0

http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/policydownloadable.html
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/policydownloadable.html
../samples/004-Command-GroupChangeOnTitleChange.xml
../samples/004-Command-GroupChangeOnTitleChange.xml

Condition | class name v| @

Operakor * |equal V|
Mode |case insensitive V|
Yalue | User | QQ

Conditions 171

If Destination Attribute

Performs a test on attribute values of the current object in the destination data store. The test
performed depends on the specified operator.

Fields

Name

Specify the name of the attribute to test.

Operator

Select the condition test type.

Operator

Returns True when...

Available

There is a value available in the destination data store for the specified
attribute.

Not Available

Available would return False.

Equal

There is a value available for the specified attribute in the destination data
store that equals the specified value when compared using the specified
comparison mode.

Not Equal

Equal would return False.

Greater Than

There is a value available for the specified attribute in the destination data
store that is greater than the content of the condition when compared
using the specified comparison mode. If mode="structured”, the
content must be a set of <component> elements; otherwise, it must be
text.

Not Great Than

Greater Than or Equal would return False.

Less Than

There is a value available for the specified attribute in the destination data
store that is greater than the content of the condition when compared
using the specified comparison mode. If mode="structured”, the
content must be a set of <component> elements; otherwise, it must be
text.

Not Less Than

Less Than or Equal would return False.

Value

Contains the value defined for the selected operator. The value is used by the condition. Each
value supports variable expansion. For more information, see Variable Expansion (page 204).
The operators that contain the value field are:

¢ Equal

¢ Not Equal

¢ Greater Than

¢ Not Greater Than
¢ Less Than

¢ Not Less Than

172 Policies in Designer 2.0

Comparison Mode

The condition has a comparison mode parameter that indicates how a comparison is done.

Mode

Description

Case Sensitive

Character-by-character case sensitive comparison.

Case Insensitive

Character-by-character case insensitive comparison.

Regular Expression

The regular expression matches the entire string. It defaults to case
insensitive, but can be changed by an escape in the expression.

See Sun’s Web site (http://java.sun.com/j2se/1.4/docs/api/java/util/regex/
Pattern.html).

The pattern options CASE_INSENSITIVE, DOTALL, and UNICODE_CASE
are used but can be reversed using the appropriate embedded escapes.

Source DN

Compares using semantics appropriate to the DN format for the source data
store.

Destination DN

Compares using semantics appropriate to the DN format for the destination
data store.

Numeric Compares numerically.
Binary Compares the binary information.
Structured Compares the structured attribute according to the comparison rules for the

structured syntax of the attribute.

The operators that contain the comparison mode parameter are:

+ Equal
+ Not Equal

+ QGreater Than

+ Not Greater Than

+ Less Than

+ Not Less Than

Example

The example uses the condition If Attribute to govern group membership for a User object based on
the title. The policy is Govern Groups for User Based on Title Attribute, and it is available for
download from the Novell Support Web site. For more information, see Downloading Identity
Manager Policies (http://www.novell.com/documentation/idm35/index.html?page=/documentation/
idm35/policy/data/policydownloadable.html). To view the policy in XML, see 004-
CommandGroupChangeOnTitleChange.xml (../samples/004-Command-
GroupChangeOnTitleChange.xml).

Conditions

173

http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/policydownloadable.html
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/policydownloadable.html
../samples/004-Command-GroupChangeOnTitleChange.xml
../samples/004-Command-GroupChangeOnTitleChange.xml

B « 5' User changing from Manager to Employee

Condikions

. % Condition Group 1

v 5' if class name equal "User"
v 5 if destination attribute Title' match " *manager. *"
v 5’ if operation attribute 'Title' not-match . *managet . *"

v 5 set destination attribute valuel"Group Membership”, "UsersiEmployeesGroup™

v 5 clone operation atkribukedGroup Membership”, "Security Equals™)

The policy checks to see if the value of the title attribute contains manager.

Condition | destination attribute vl @
Marme * | Title Q
Operator * |equa| v|
Mode ‘regular EXpression V|
value | Fmanager.* Q

174 Policies in Designer 2.0

If Destination DN

Performs a test on the destination DN in the current operation. The test performed depends on the
specified operator.

Fields

Operator
Select the condition test type.

Operator Returns True when...

Available There is a destination DN available.

Not Available Available would return False.

Equal There is a destination DN available, and it equals the specified value

when compared using semantics appropriate to the DN format of the
destination data store.

Not Equal Equal would return False.

in Container There is a destination DN available, and it represents an object in the
container, specified by value, when compared using semantics
appropriate to the DN format of the destination data store.

Not in Container In Container would return False.

In Subtree There is a destination DN available, and it represents an object in the
subtree, specified by value, when compared using semantics appropriate
to the DN format of the destination data store.

Not In Subtree In Subtree would return False.

Value

Contains the value defined for the selected operator. The value is used by the condition. Each
value supports variable expansion. For more information, see Variable Expansion (page 204).
The operators that contain the value field are:

+ Equal
+ Not Equal
+ In Container

+ Not in Container

*

In Subtree

*

Not in Subtree

Example
Condition | destination DN v @
Operator * |in conkainer v
Yalue | Users C{,

Conditions 175

If Entitlement

Performs a test on entitlements of the current object, in either the current operation or the Identity
Vault. The test performed depends on the specified operator.

Fields

Name

Specify the name of the entitlement to test for the selected condition.

Operator

Select the condition test type.

Operator

Returns True when...

Available

The named entitlement is available in either the current operation or the
Identity Vault.

Not available

Available would return False.

Equal There is a value available for the specified attribute in the destination data
store that equals the specified value when compared using the specified
comparison mode.

Not Equal Equal would return False.

Greater Than

The named entitlement is available and granted in either the current
operation or the Identity Vault and has a value that is greater than the
content of the condition when compared using the specified comparison
mode.

Not Greater Than

Greater Than or Equal would return False.

Less Than

The named entitlement is available and granted in either the current
operation or the Identity Vault and has a value that is less than the content
of the condition when compared using the specified comparison mode.

Not Less Than

Less Than or Equal would return False.

Changing The current operation contains a change (modify attribute or add attribute)
of the named entitlement.
Not Changing Changing would return False.

Changing From

The current operation contains a change that removes a value (remove
value) of the named entitlement, which has a value that equals the
specified value, when compared using the specified comparison mode.

Not Changing From

Changing From would return False.

Changing To

The current operation contains a change that adds a value (add value or
add attribute) to the named entitlement. It has a value that equals the
specified value, when compared using the specified comparison mode.

Not Changing To

Changing To would return False.

176 Policies in Designer 2.0

Value

Contains the value defined for the selected operator. The value is used by the condition. Each
value supports variable expansion. For more information, see Variable Expansion (page 204).

The operators that contain the value field are:

¢ Equal
+ Not Equal
¢ Changing To

¢ Changing From

+ Not Changing To

¢ Not Changing From

+ QGreater Than

+ Not Greater Than

+ Less Than

+ Not Less Than

Comparison Mode

The condition has a comparison mode parameter that indicates how a comparison is done.

Mode

Description

Case Sensitive

Character-by-character case sensitive comparison.

Case Insensitive

Character-by-character case insensitive comparison.

Regular Expression

The regular expression matches the entire string. It defaults to case
insensitive, but can be changed by an escape in the expression.

See Sun’s Web site (http://java.sun.com/j2se/1.4/docs/api/javalutil/regex/
Pattern.html).

The pattern options CASE_INSENSITIVE, DOTALL, and UNICODE_CASE
are used but can be reversed using the appropriate embedded escapes.

Source DN

Compares using semantics appropriate to the DN format for the source data
store.

Destination DN

Compares using semantics appropriate to the DN format for the destination
data store.

Numeric

Compares numerically.

Binary

Compares the binary information.

The operators that contain the comparison mode parameter are:

+ Equal
+ Not Equal
¢ Changing To

¢ Changing From

+ Not Changing To

¢ Not Changing From

Conditions 177

http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html

*

Greater Than
Not Greater Than
Less Than

Not Less Than

*

*

*

Example

Zondition ‘ entitlement w |)]

Mame * | niokes-group

Operakor * |changing From

Mode | case insensitive

Walue | |sers

178 Policies in Designer 2.0

If Global Configuration Value

Performs a test on a global configuration value. The test performed depends on the specified

operator.

Remark

For more information on using variables with policies, see Understanding Policies Components
(http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/
data/policycomponents.html).

Fields

Name

Specify the name of the global value to test for the selected condition.

Operator

Select the condition test type.

Operator Returns True when...

Available There is a global configuration value with the specified name.

Not Available Available would return False.

Equal There is a global configuration value with the specified name, and its
value equals the specified value when compared using the specified
comparison mode.

Not Equal Equal would return False.

Greater Than

There is a global configuration value with the specified name, and its
value is greater than the content of the condition when compared using
the specified comparison mode.

Not Greater Than

Greater Than or Equal would return False.

Less Than

There is a global configuration value with the specified name, and its
value is less than the content of the condition when compared using the
specified comparison mode.

Not Less Than

Less Than or Equal would return False.

Value

Contains the value defined for the selected operator. The value is used by the condition. Each
value supports variable expansion. For more information, see Variable Expansion (page 204).
The operators that contain the value field are:

¢ Equal
+ Not Equal

+ Greater Than

+ Not Greater Than

+ Less Than

Conditions

179

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/policycomponents.html

+ Not Less Than

Comparison Mode

The condition has a

comparison mode parameter that indicates how a comparison is done.

Mode

Description

Case Sensitive

Character-by-character case sensitive comparison.

Case Insensitive

Character-by-character case insensitive comparison.

Regular Expression

The regular expression matches the entire string. It defaults to case
insensitive, but can be changed by an escape in the expression.

See Sun’s Web site (http://java.sun.com/j2se/1.4/docs/api/javalutil/regex/
Pattern.html).

The pattern options CASE_INSENSITIVE, DOTALL, and UNICODE_CASE
are used but can be reversed using the appropriate embedded escapes.

Source DN

Compares using semantics appropriate to the DN format for the source data
store.

Destination DN

Compares using semantics appropriate to the DN format for the destination
data store.

Numeric

Compares numerically.

Binary

Compares the binary information.

The operators that contain the comparison mode parameter are:

+ Equal
+ Not Equal

¢ Greater Than

+ Not Greater Than

+ Less Than
+ Not Less Than

Example

Condition |global configuration value @

180 Policies in Designer 2.0

Mame * | ryGlobalvarisble Q>

Operator * | available L

http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html

If Local Variable

Performs a test on a local variable. The test performed depends on the specified operator.

Remark

For more information on using variables with policies, see Understanding Policies Components
(http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/
data/policycomponents.html).

Fields

Name

Specify the name of the local variable to test for the selected condition.

Operator

Select the condition test type.

Operator Returns True when...

Available There is a local variable with the specified name that has been defined by
an action of a earlier rule within the policy.

Not Available Available would return False.

Equal There is a local variable with the specified name, and its value equals the
specified value when compared using the specified comparison mode.

Not Equal Equal would return False.

Greater Than There is a local variable with the specified name, and its value is greater
than the content of the condition when compared using the specified
comparison mode.

Not Greater Than Greater Than or Equal would return False.

Less Than There is a local variable with the specified name, and its value is less than

the content of the condition when compared using the specified
comparison mode.

Not Less Than

Less than or equal would return False.

Value

Contains the value defined for the selected operator. The value is used by the condition. Each
value supports variable expansion. For more information, see Variable Expansion (page 204).
The operators that contain the value field are:

¢ Equal
¢ Not Equal

*

Greater Than
+ Not Greater Than
Less Than

*

Conditions 181

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/policycomponents.html

+ Not Less Than

Comparison Mode

The condition has a comparison mode parameter that indicates how a comparison is done.

Mode Description

Case Sensitive Character-by-character case sensitive comparison.

Case Insensitive Character-by-character case insensitive comparison.

Regular Expression The regular expression matches the entire string. It defaults to case
insensitive, but can be changed by an escape in the expression.

See Sun’s Web site (http://java.sun.com/j2se/1.4/docs/api/javalutil/regex/
Pattern.html).

The pattern options CASE_INSENSITIVE, DOTALL, and UNICODE_CASE
are used but can be reversed using the appropriate embedded escapes.

Source DN Compares using semantics appropriate to the DN format for the source data
store.

Destination DN Compares using semantics appropriate to the DN format for the destination
data store.

Numeric Compares numerically.

Binary Compares the binary information.

The operators that contain the comparison mode parameter are:
+ Equal
+ Not Equal
¢ Greater Than
¢ Not Greater Than
¢ Less Than
+ Not Less Than

Example

The example adds a User object to the appropriate group, Employee or Manager, based on Title. It
also creates the group, if needed, and sets up security equal to that group. The policy is Govern
Groups for User Based on Title Attribute, and it is available for download from the Novell Support
Web site. For more information, see Downloading Identity Manager Policies (http://
www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/
policydownloadable.html).To view the policy in XML, see 003-Command-AddCreate-Groups.xml
(../samples/003-Command-AddCreateGroups.xml).

182 Policies in Designer 2.0

http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/policydownloadable.html
../samples/003-Command-AddCreateGroups.xml

v 5 Set local variables to test existence of groups and for placement

B 5 Create ManagersGroup, if needed

Conditions

. % Condition Group 1

W [|cal variable 'manager-group-info' available

v 5 if local variable ‘manager-group-info’ nok equal “group”

v 5 add destination objecticlass name="Group”, when="before", dniLocal ¥ariablel"manager-group-dn'1))

v ;’7 Create EmployeesGroup, if needed
v 5 If Title indicates Manager, add to ManagerGroup and set rights

& IfTitle does not indicate Manager, add to EmployeeGroup and set rights

The policy contains five rules that are dependent on each other.

E Z Setlocal variables to test existence of groups and for placement

Conditions

% Condition Group 1
v 5 if class name equal "User"
And
% Condition Group 2

& if operation equal "add"

v 5’ if operation equal "modify"

set local variable("manager-group-dn”, "UsersiManagersGroup”)

set local variable("manager-group-infa®, Destination Attribute("Object Class", dnilocal Variable("manager-group-dn®™ 1)

set local variable!"emploves-group-dn”, "UsersiEmploveesaroup™

v Z
v Z
v 7
v Z

set local variable!"emploves-graup-infa”, Destination Attribuke™Object Class”, dnilocal Yariable!"emploves-graup-dn™i

For the If Locate Variable condition to work, the first rule sets four different local variables to test
for groups and where to place the groups.

Condition {local variahle v @
Mame * | manager-group-info SN
Cperator * ||‘|l:|t equal v|
Mode |case insensitive V|
Walue | group G

The condition the rule is looking for is to see if the local variable of manager-group-info is available

and if manager-group-info is not equal to group. If these conditions are met, then the destination
object of group is added.

Conditions 183

If Named Password

Performs a test on a named password from the driver in the current operation with the specified
name. The test performed depends on the selected operator.

Fields

Name

Specify the name of the named password to test for the selected condition.

Operator
Select the condition test type.

Operator Returns True when...
Available There is a password with the specified name available.
Not Available Available would return False.
Example
Condition | named password vl (@
Mame * | password Q,
Operator * | available L

184 Policies in Designer 2.0

If Operation Attribute

Performs a test on attribute values in the current operation. The test performed depends on the
specified operator.

Fields

Name

Specify the name of the attribute to test.

Operator

Select the condition test type.

Operator Returns True when...

Available There is a value available in the current operation other than a remove
value for the specified attribute.

Not Available Available would return False.

Equal There is a value available in the current operation other than a remove
value for the specified attribute. It equals the specified value when
compared using the specified comparison mode.

Not Equal Equal would return False.

Greater Than

There is a value available in the current operation other than a remove
value for the specified attribute that is greater than the content of the
condition when compared using the specified comparison mode. If
mode="structured”, the content must be a set of <component>
elements; otherwise, it must be text.

Not Greater Than

Greater Than or Equal would return False.

Less Than

There is a value available in the current operation other than a remove
value for the specified attribute that is less than the content of the
condition when compared using the specified comparison mode. If
mode="structured” then the content must be a set of <component>
elements; otherwise, it must be text.

Not Less Than

Less Than or Equal would return False.

Changing The current operation contains a change other than a remove value for
the specified attribute.
Not Changing Changing would return False.

Changing From

The current operation contains a change that removes a value other than
a remove value of the specified attribute. It equals the specified value
when compared using the specified comparison mode.

Not Changing From

Changing From would return False.

Changing To

The current operation contains a change that adds a value other than a
remove value to the specified attribute. It equals the specified value when
compared using the specified comparison mode.

Not Changing To

Changing To would return False.

Conditions

185

Value

Contains the value defined for the selected operator. The value is used by the condition. Each
value supports variable expansion. For more information, see Variable Expansion (page 204).
The operators that contain the value field are:

¢ Equal

+ Not Equal

¢ Changing To

¢ Changing From

+ Not Changing To

¢ Not Changing From
¢ Greater Than

+ Not Greater Than

¢ Less Than

¢ Not Less Than

Comparison Mode

The condition has a comparison mode parameter that indicates how a comparison is done.

Mode Description

Case Sensitive Character-by-character case sensitive comparison.

Case Insensitive Character-by-character case insensitive comparison.

Regular Expression The regular expression matches the entire string. It defaults to case
insensitive, but can be changed by an escape in the expression.

See Sun’s Web site (http://java.sun.com/j2se/1.4/docs/api/javalutil/regex/
Pattern.html).

The pattern options CASE_INSENSITIVE, DOTALL, and UNICODE_CASE
are used but can be reversed using the appropriate embedded escapes.

Source DN Compares using semantics appropriate to the DN format for the source data
store.

Destination DN Compares using semantics appropriate to the DN format for the destination
data store.

Numeric Compares numerically.

Binary Compares the binary information.

Structured Compares the structured attribute according to the comparison rules for the

structured syntax of the attribute.

The operators that contain the comparison mode parameter are:
+ Equal
Not Equal

*

*

Changing To

*

Changing From

186 Policies in Designer 2.0

http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html

+ Not Changing To

¢ Not Changing From
¢ Greater Than

¢ Not Greater Than

¢ Less Than

¢ Not Less Than

Example

The example adds a User object to the appropriate group, Employee or Manager, based on Title. It
also creates the group, if needed, and sets up security equal to that group. The policy name is Govern
Groups for User Based on Title Attribute, and it is available for download from the Novell Support
Web site. For more information, see Downloading Identity Manager Policies (http://
www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/
policydownloadable.html). To view the policy in XML, see 003-Command-Add-CreateGroups.xml
(../samples/003-Command-AddCreateGroups.xml).

v 5’ Set local variables to test existence of groups and for placement

o 5 Create ManagersGroup, if needed
o 5 Create EmployeesGroup, if needed

B 5 If Title indicates Manager, add to ManagerGroup and set rights

Conditions

. % Condition Group 1

4 5 if class name equal "User"

v 5’ if operation attribute 'Tite' match *. *manager. *"

v 5 set destination attribute value("Group Membership”, Local Yariable!"manager-group-dn"))

v 5' clone operation attribute!"Group Membership", "Security Equals™)

v 5’ If Title does not indicate Manager, add to EmployeeGroup and set rights

Condition |nperatiu:un attribute v| @
Name * | Title Q
Operator * |equal v|
Mode |reqular expression v
Yalue | Mmanager,* | oY

The condition is checking to see if the attribute of Title is equal to .*manager*, which is a regular
expression. This means that it is looking for a title that has zero or more characters before manager
and a single character after manager. It would find a match if the User object’s title was sales
managers.

Conditions 187

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/policydownloadable.html
../samples/003-Command-AddCreateGroups.xml

If Operation Property

Performs a test on an operation property on the current operation. An operation property is a named
value that is stored as an attribute on an <operation-data> element within an operation and is
typically used to supply additional context that might be needed by the policy that handles the
results of an operation. The test performed depends on the selected operator.

Fields

Name

Specify the name of the operation property to test for the selected condition.

Operator

Select the condition test type.

Operator

Returns True when...

Available

There is an operation property with the specified name on the current
operation.

Not Available

Available would return False.

Equal

There is a an operation property with the specified name on the current
operation, and its value equals the provided content when compared
using the specified comparison mode.

Not Equal

Equal would return False.

Greater Than

There is a an operation property with the specified name on the current
operation, and its value is greater than the content of the condition when
compared using the specified comparison mode.

Not Greater Than

Greater Than or Equal would return False.

Less Than

There is a an operation property with the specified name on the current
operation, and its value is less than the content of the condition when
compared using the specified comparison mode.

Not Less Than

Less Than or Equal would return False.

Value

Contains the value defined for the selected operator. The value is used by the condition. Each
value supports variable expansion. For more information, see Variable Expansion (page 204).
The operators that contain the value field are:

¢ Equal
¢ Not Equal

¢ QGreater Than

+ Not Greater Than

+ Less Than
+ Not Less Than

188 Policies in Designer 2.0

Comparison Mode

The condition has a comparison mode parameter that indicates how a comparison is done.

Mode

Description

Case Sensitive

Character-by-character case sensitive comparison.

Case Insensitive

Character-by-character case insensitive comparison.

Regular Expression

The regular expression matches the entire string. It defaults to case
insensitive, but can be changed by an escape in the expression.

See Sun’s Web site (http://java.sun.com/j2se/1.4/docs/api/java/util/regex/
Pattern.html).

The pattern options CASE_INSENSITIVE, DOTALL, and UNICODE_CASE
are used but can be reversed using the appropriate embedded escapes.

Source DN

Compares using semantics appropriate to the DN format for the source data
store.

Destination DN

Compares using semantics appropriate to the DN format for the destination
data store.

Numeric

Compares numerically.

Binary

Compares the binary information.

The operators that contain the comparison mode parameter are:

+ Equal
+ Not Equal

+ QGreater Than

+ Not Greater Than

+ Less Than

+ Not Less Than

Example

Condition | operation property

¥ @
Mame * | myStoredvariable

Operator * | available v

Conditions 189

http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html

If Operation

Performs a test on the name of the current operation. The type of test performed depends on the
specified operator.

Fields

Operator
Select the condition test type.

Operator Returns True when...

Equal The name of the current operation is equal to the content of the condition
when compared using the specified comparison mode.

Not Equal Equal would return False.

Greater Than The name of the current operation is greater than content of the condition
when compared using the specified comparison mode.

Not Greater Than Greater Than would return False.

Less Than The name of the current operation is less than content of the condition
when compared using the specified comparison mode.

Not Less Than Less Than would return False.

Value

Contains the value defined for the selected operator. The value is used by the condition. Each
value supports variable expansion. For more information, see Variable Expansion (page 204).
The operators that contain the value field are:

¢ Equal
+ Not Equal
¢ Greater Than
+ Not Greater Than
¢ Less Than
¢ Not Less Than
There are defined operations that the Metadirectory engine looks for:
¢ add
¢ add-association
¢ check-object-password
¢ check-password
* delete
¢ get-named-password
¢ init-params
¢ instance

+ modify

190 Policies in Designer 2.0

+ modify-association

+ modify-password

* move

¢ password

¢ query

¢ query-schema

+ remove-association

¢ rename
+ schema-def
* status

¢ sync

This list is not exclusive. Custom operations can be implemented by drivers and administrators.

Comparison Mode

The condition has a

comparison mode parameter that indicates how a comparison is done.

Mode

Description

Case Sensitive

Character-by-character case sensitive comparison.

Case Insensitive

Character-by-character case insensitive comparison.

Regular Expression

The regular expression matches the entire string. It defaults to case
insensitive, but can be changed by an escape in the expression.

See Sun’s Web site (http://java.sun.com/j2se/1.4/docs/api/javalutil/regex/
Pattern.html).

The pattern options CASE_INSENSITIVE, DOTALL, and UNICODE_CASE
are used but can be reversed using the appropriate embedded escapes.

Source DN

Compares using semantics appropriate to the DN format for the source data
store.

Destination DN

Compares using semantics appropriate to the DN format for the destination
data store.

Numeric

Compares numerically.

Binary

Compares the binary information.

The operators that contain the comparison mode parameter are:

¢ Equal
+ Not Equal

¢ Greater Than

+ Not Greater Than

¢ Less Than
+ Not Less Than

Conditions 191

http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html

Example

The example adds a User object to the appropriate group, Employee or Manager, based on Title. It
also creates the group, if needed, and sets up security equal to that group. The policy name is Govern
Groups for User Based on Title Attribute, and it is available for download from the Novell Support
Web site. For more information, see Downloading Identity Manager Policies (http://
www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/
policydownloadable.html). To view the policy in XML, see 003-Command-AddCreateGroups.xml
(../samples/003-Command-AddCreateGroups.xml).

E Z Setlocal variables to test existence of groups and for placement

Conditions

% Condition Group 1
v 5' if class name egual "User"
And
2% Condition Group 2

¢ & if operation equal "add”

v 7 f operation equal "modify"

set local variable("manager-group-dn”, "UsersiManagersGroup”)
set local variable!"manager-group-info”, Destination AttribukeObject Class", drnilocal Yariable!"manager-group-dn®y

set local variable!"emploves-group-dn”, "UsersiEmplovessaroup™

7
v 3
v 3
v 3

set local variable("emplovee-group-infa”, Destination Attribute!"Object Class”, dniLaocal Variable{"emplovee-group-dn®™ i)

Condition | aperation v| ®
Operator * | equal v
Mode | case insensitive v
Value | modiy Q

The condition is checking to see if an Add or Modify operation has occurred. When one of these
occurs, it sets the local variables.

192 Policies in Designer 2.0

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/policydownloadable.html
../samples/003-Command-AddCreateGroups.xml

If Password

Performs a test on a password in the current operation. The test performed depends on the specified
operator.

Fields

Operator
Select the condition test type.

Operator Returns True when...

Available There is a password available in the current operation.

Not Available Available would return False.

Equal There is a password available in the current operation, and its value

equals the content of the condition when compared using the specified
comparison mode.

Not Equal Equal would return false.

Greater Than There is a password available in the current operation, and its value is
greater than the content of the condition when compared using the
specified comparison mode.

Not Greater Than Greater Than or Equal would return False.

Less Than There is a password available in the current operation, and its value is
less than the content of the condition when compared using the specified
comparison mode.

Not Less Than Less Than or Equal would return False.

Value

Contains the value defined for the selected operator. The value is used by the condition. Each
value supports variable expansion. For more information, see Variable Expansion (page 204).
The operators that contain the value field are:

+ Equal

+ Not Equal
Greater Than

+ Not Greater Than
¢ Less Than

¢ Not Less Than

*

Comparison Mode

The condition has a comparison mode parameter that indicates how a comparison is done.

Mode Description

Case Sensitive Character-by-character case sensitive comparison.

Conditions

193

Mode

Description

Case Insensitive

Character-by-character case insensitive comparison.

Regular Expression

The regular expression matches the entire string. It defaults to case
insensitive, but can be changed by an escape in the expression.

See Sun’s Web site (http://java.sun.com/j2se/1.4/docs/api/java/util/regex/
Pattern.html).

The pattern options CASE_INSENSITIVE, DOTALL, and UNICODE_CASE
are used but can be reversed using the appropriate embedded escapes.

Source DN

Compares using semantics appropriate to the DN format for the source data
store.

Destination DN

Compares using semantics appropriate to the DN format for the destination
data store.

Numeric

Compares numerically.

Binary

Compares the binary information.

The operators that contain the comparison mode parameter are:

+ Equal
+ Not Equal

¢ Greater Than

+ Not Greater Than

+ Less Than

+ Not Less Than

Example

If you are implementing Novell Credential Provisioning Policies Novell Credential Provisioning

Policies for Identity Manager 3.5 (http://www.novell.com/documentation/idm35/index.html?page=/
documentation/idm35/policy credprov/data/bookinfo.html), there is a sample Subscriber Command

Transformation policy that uses the password condition. The sample file is called
SampleSubCommandTransform.xml. It is found in the DirXML® Utilities folder on the

Identity Manager media. For more information, see Example Credential Provisioning Policies (http:/
/www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy credprov/

data/credprovnlsexample.html). To view the policy in XML, see
SampleSubCommandTransform.xml (../samples/SampleSubCommandTransform.xml).

The Subscriber Command Transformation policy checks if a password is available when an object is

added. If the password is available, then the Novell SecureLogin and Novell SecretStore®
credentials are provisioned.

194 Policies in Designer 2.0

http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_credprov/data/bookinfo.html
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_credprov/data/bookinfo.html
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_credprov/data/credprovnlsexample.html
../samples/SampleSubCommandTransform.xml

£ 5 Add operation-data element to password subscribe operations {if needed)

+ 5 Add payload data to modify-password subscribe operations

= 5 Add payload data to add subscribe operations

5 Condition Group 1

&nd

L L L L L L R R

Condition | passwaord

if operation equal "add"

if password available

append =ML element{'sso-sync-data”, "operation-data™)

append =ML element"sso-target-user-dn”, "operation-data/sso-sync-data")

append XML text("operation-data)sso-sync-data)sso-target-user-dn”, Source Attribute"DirsML-ADContext")
append XML element"sso-app-username”, "operation-datafsso-sync-data™)

append XML text("oper ation-datassso-sync-data)sso-app-username”, Source Attribute(" ")

append =ML element"password”, "operation-datafsso-sync-data™)

append XML text("operation-dataysso-sync-datafpassword”, Passwordi())

append =ML element("nsl-set-passphrase-answer", "operation-data)sso-sync-data™)

append XML text("oper ation-datafsso-sync-data/nsl-set-passphrase-answer”, Source Attribute"workforceID'™)

v @

Operator * | available w

Conditions 195

If Source Attribute

Performs a test on attribute values of the current object in the source data store. The test performed
depends on the specified operator.

Fields

Name

Specify the name of the source attribute to test for the selected condition.

Operator
Select the condition test type.

Operator Returns True when...

Available There is a value available in the source data store for the specified
attribute.

Not Available Available would return False.

Equal There is a value available in the source data store for the specified

attribute. It equals the specified value when compared using the specified
comparison mode.

Not Equal Equal would return False.

Greater Than There is a value available in the source data store for the specified
attribute that is greater than the content of the condition when compared
using the specified comparison mode. If the mode is structured, the
content must be a set of components; otherwise, it must be text.

Not Great Than Greater Than or Equal would return False.

Less Than There is a value available in the source data store for the specified
attribute that is less than the content of the condition when compared
using the specified comparison mode. If the mode is structured, the
content must be a set of components; otherwise, it must be text.

Not Less Than Less Than or Equal would return False.

Value

Contains the value defined for the selected operator. The value is used by the condition. Each
value supports variable expansion. For more information, see Variable Expansion (page 204).
The operators that contain the value field are:

¢ Equal

Not Equal
Greater Than
Not Greater Than
Less Than

Not Less Than

*

*

*

*

*

196 Policies in Designer 2.0

Comparison Mode

The condition has a comparison mode parameter that indicates how a comparison is done.

Mode

Description

Case Sensitive

Character-by-character case sensitive comparison.

Case Insensitive

Character-by-character case insensitive comparison.

Regular Expression

The regular expression matches the entire string. It defaults to case
insensitive, but can be changed by an escape in the expression.

See Sun’s Web site (http://java.sun.com/j2se/1.4/docs/api/java/util/regex/
Pattern.html).

The pattern options CASE_INSENSITIVE, DOTALL, and UNICODE_CASE
are used but can be reversed using the appropriate embedded escapes.

Source DN

Compares using semantics appropriate to the DN format for the source data
store.

Destination DN

Compares using semantics appropriate to the DN format for the destination
data store.

Numeric Compares numerically.
Binary Compares the binary information.
Structured Compares the structured attribute according to the comparison rules for the

structured syntax of the attribute.

The operators that contain the comparison mode parameter are:

+ Equal
+ Not Equal

+ QGreater Than

+ Not Greater Than

+ Less Than

+ Not Less Than

Example

Condition |source attribuke

¥ @
Mame * | CU Q,
COperator * | equal w
Mode | case insensitive b
Walue | Users Q,

Conditions 197

http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html

If Source DN

Performs a test on the source DN in the current operation. The test performed depends on the
specified operator.

Fields

Operator
Select the condition test type.

Operator Returns True when...

Available There is a source DN available.

Not Available Available would return False.

Equal There is a source DN available, and it equals the content of the specified

value in-container.

Not Equal Equal would return False.

In Container There is a source DN available, and it represents an object in the
container specified by the content of If Source DN, when compared using
semantics appropriate to the DN format of the source data store.

Not In Container In Container would return False.

In Subtree There is a source DN available, and it represents an object in the subtree
identified by the specified value.

Not In subtree In Subtree would return False.

Value

Contains the value defined for the selected operator. The value is used by the condition. Each
value supports variable expansion. For more information, see Variable Expansion (page 204).
The operators that contain the value field are:

¢ Equal

¢ Not Equal

¢ In Container

+ Not in Container

+ In Subtree

*

Not in Subtree

Example

The example uses the condition If Source DN to check if the User object is in the source DN. The
rule is from the predefined rules that come with Identity Manager. For more information, see Event
Transformation - Scope Filtering - Exclude Subtrees (http://www.novell.com/documentation/idm35/
index.html?page=/documentation/idm35/policy designer/data/
prfilterexcludesubtree.html#prfilterexcludesubtree). To view the policy in XML, see

198 Policies in Designer 2.0

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_designer/data/prfilterexcludesubtree.html#prfilterexcludesubtree
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_designer/data/prfilterexcludesubtree.html#prfilterexcludesubtree

predef transformation_filter exclude subtrees.xml (../samples/
predef transformation_filter exclude subtrees.xml).

H 5 Event Transformation - Scope Filtering - Exclude subtree(s)

Conditions

.~ % Condition Group 1

v 5 if source DM in subtree "[Enter a subtree to exclude]”

| 7 weto() |

Condition |snurce i v| @
Operator * ‘in subtres V|
Yalue | [Enter a subtree ko excude] | Q

The condition is checking to see if the source DN is in the Users container. If the object is coming
from that container, it is vetoed.

Conditions 199

../samples/predef_transformation_filter_exclude_subtrees.xml

If XML Attribute

Performs a test on an XML attribute of the current operation. The type of test performed depends on
the operator specified by the operation attribute.

Fields

Name
Specify the name of the XML attribute. An XML attribute is a name/value pair associated with
an element in an XDS document.

Operator
Select the condition test type.

Operator Returns True when...

Available There is an XML attribute with the specified name on the current
operation.

Not available Available would return False.

Equal There is a an XML attribute with the specified name on the current

operation, and its value equals the content of the condition when
compared using the specified comparison mode.

Not Equal Equal would return False.

Greater Than There is a an XML attribute with the specified name on the current
operation, and its value is greater than the content of the condition when
compared using the specified comparison mode.

Not Greater Than Greater Than or Equal would return False.

Less Than The association value specified by the current operation is less than the
content of the condition when compared using the specified comparison
mode.

Not Less Than Less Than or Equal would return False.

Value

Contains the value defined for the selected operator. The value is used by the condition. Each
value supports variable expansion. For more information, see Variable Expansion (page 204).
The operators that contain the value field are:

¢ Equal

+ Not Equal

¢ Greater Than

¢ Not Greater Than
¢ Less Than

Not Less Than

*

Comparison Mode

The condition has a comparison mode parameter that indicates how a comparison is done.

200 Policies in Designer 2.0

Mode

Description

Case Sensitive

Character-by-character case sensitive comparison.

Case Insensitive

Character-by-character case insensitive comparison.

Regular Expression

The regular expression matches the entire string. It defaults to case
insensitive, but can be changed by an escape in the expression.

See Sun’s Web site (http://java.sun.com/j2se/1.4/docs/api/java/util/regex/
Pattern.html).

The pattern options CASE_INSENSITIVE, DOTALL, and UNICODE_CASE
are used but can be reversed using the appropriate embedded escapes.

Source DN

Compares using semantics appropriate to the DN format for the source data
store.

Destination DN

Compares using semantics appropriate to the DN format for the destination
data store.

Numeric

Compares numerically.

Binary

Compares the binary information.

The operators that contain the comparison mode parameter are:

¢ Equal
+ Not Equal

+ QGreater Than

+ Not Greater Than

+ Less Than

+ Not Less Than

Example

Condition | %ML atbribute

¥ @
Mame * | From-merge

Operatar * | available v

Conditions 201

http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html

If XPath Expression

Performs a test on the results of evaluating an XPath 1.0 expression.

Fields

Operator
Select the condition test type.

Operator Returns True when...
True The XPath expression evaluates to True.
Not True True would return False.

Remarks

For more information on using XPath expression with policies, see XPath 1.0 Expressions (http://
www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/
policyxpathexpression.html#policyxpathexpression).

Example

If you are implementing Novell Credential Provisioning policies, there is a sample Subscriber
Command Transformation policy that uses the XPath Expression condition. The sample file is called
SampleSubCommandTransform.xml. It is found in the DirXML Ultilities folder on the
Identity Manager media. For more information, see Example Credential Provisioning Policies (http:/
/www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy credprov/
data/credprovnlsexample.html). To view the policy in XML, see
SampleSubCommandTransform.xml (../samples/SampleSubCommandTransform.xml).

The sample Credential Provisioning policy is checking each Add operation to see if there is
operation data associated with the Add. If there is no operation data, the Novell SecureLogin and
Novell SecretStore credentials are provisioned.

202 Policies in Designer 2.0

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/policyxpathexpression.html#policyxpathexpression
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_credprov/data/credprovnlsexample.html
../samples/SampleSubCommandTransform.xml

B 5’ Add operation-data element to password subscribe operations (if needed)

Conditions

. Z Condition Group 1

v & i operation equal "add"

v 7 password available

v 5 if ®Path expression not true "operation-dats"

. Z Condition Group 2

v 5 if operation equal "modify-passwaord”
v 5 if ®Path expression not true "operation-dats"

v 5 append ¥ML element("operation-data”, ".")

v 5’ Add payload data to modify-password subscribe operations

v 5’ Add payload data to add subscribe operations

Condition |><F'ath ExprEssion v| @

Operator * |n|:|t krue W |

T

Yalue | operakion-data

Conditions 203

Variable Expansion

Allows for the use of dynamic variables in the condition.

Remark

Many conditions support dynamic variable expansion in their attributes or content. Where
supported, an embedded reference of the form $<variable-name>$ is replaced with the value of the
local or global variable with the given name. $<variable-name>$ must be a legal variable name. For
information on what is a legal XML name, see W3C Extensible Markup Language (XML) (http://
www.w3.0rg/TR/2004/REC-xml1-20040204/#NT-Name).

If the given variable does not exist, the reference is replaced with the empty string. Where it is
desirable to use a single $ and not have it interpreted as a variable reference, it should be escaped
with an additional $ (for example, You owe me $$100.00).

204 Policies in Designer 2.0

http://www.w3.org/TR/2004/REC-xml-20040204/#NT-Name

Actions

Actions are performed when conditions of the enclosing rule are met. Some actions have a Mode
field. The mode is not honored at run time if the context in which the policy is running is
incompatible with the selected mode.

This section contains detailed information about all actions that are available through using the
Policy Builder interface.

+ “Add Association” on page 207

¢ “Add Destination Attribute Value” on page 208

¢ “Add Destination Object” on page 210

¢ “Add Source Attribute Value” on page 212

¢ “Add Source Object” on page 213

+ “Append XML Element” on page 214

+ “Append XML Text” on page 216

¢ “Break” on page 218

¢ “Clear Destination Attribute Value” on page 219

¢ “Clear Operation Property” on page 220

¢ “Clear Source Attribute Value” on page 221

¢ “Clear SSO Credential” on page 222

¢ “Clone By XPath Expression” on page 223

¢ “Clone Operation Attribute” on page 224

¢ “Delete Destination Object” on page 226

+ “Delete Source Object” on page 227

+ “Find Matching Object” on page 228

¢ “For Each” on page 231

+ “Generate Event” on page 232

¢ “If” on page 235

¢ “Implement Entitlement” on page 237

* “Move Destination Object” on page 238

+ “Move Source Object” on page 240

+ “Reformat Operation Attribute” on page 241

+ “Remove Association” on page 243

+ “Remove Destination Attribute Value” on page 244

+ “Remove Source Attribute Value” on page 245

¢ “Rename Destination Object” on page 246

¢ “Rename Operation Attribute” on page 247

+ “Rename Source Object” on page 248

Actions 205

¢ “Send Email” on page 249

¢ “Send Email from Template” on page 251

¢ “Set Default Attribute Value” on page 253

¢ “Set Destination Attribute Value” on page 255
¢ “Set Destination Password” on page 257

¢ “Set Local Variable” on page 258

+ “Set Operation Association” on page 260

+ “Set Operation Class Name” on page 261

¢ “Set Operation Destination DN on page 262
¢ “Set Operation Property” on page 263

+ “Set Operation Source DN on page 264

¢ “Set Operation Template DN on page 265

+ “Set Source Attribute Value” on page 266

* “Set Source Password” on page 268

+ “Set SSO Credential” on page 269

¢ “Set SSO Passphrase” on page 270

+ “Set XML Attribute” on page 271

+ “Status” on page 272

+ “Start Workflow” on page 273

* “Strip Operation Attribute” on page 275

¢ “Strip XPath” on page 276

+ “Trace Message” on page 277

* “Veto” on page 279

* “Veto If Operation Attribute Not Available” on page 280
¢ “While” on page 281

¢ “Variable Expansion” on page 282

206 Policies in Designer 2.0

Add Association

Sends an add association command with the specified association to the Identity Vault.

Fields

Mode

Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

DN
Specify the DN of the target object or leave the field blank to use the current object.
Association

Specify the value of the association to be added.

Example

Do | add assoriation v @
Select mode: | add to current operation A
@ Leave the DN field below blank ko use the current object
Specify DM: | Source D)

Specify assodation: * | Source Mamed)

Actions 207

Add Destination Attribute Value

Adds a value to an attribute on an object in the destination data store.

Fields

Attribute Name
Specify the name of the attribute. Supports variable expansion. For more information, see
Variable Expansion (page 282).

Class Name
(Optional) Specify the class name of the target object. Leave the field blank to use the class
name from the current object. Supports variable expansion. For more information, see Variable
Expansion (page 282).

Mode
Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Object
Select the target object type. This object can be the current object, or can be specified by a DN
or an association.

DN

Specify the DN, association, or current object as the target object.

Value Type

Select the syntax of the attribute value to be added. The options are string, counter, dn, int,
interval, octet, state, structured, teleNumber, or time.

Value
Specify the attribute value to be added.

Example

The example adds the destination attribute value to the OU attribute. It creates the value from the
local variables that are created. The rule is from the predefined rules that come with Identity
Manager. For more information, see Command Transformation - Create Departmental Container -
Part 1 and Part2 (http://www.novell.com/documentation/idm35/index.html?page=/documentation/
idm35/policy designer/data/prdeptcontainer.html#prdeptcontainer). To see the policy in XML, see
predef command create dept containerl.xml (../samples/

predef command create dept containerl.xml) and predef command create dept container2.xml
(../samples/predef command create dept container2.xml).

208 Policies in Designer 2.0

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_designer/data/prdeptcontainer.html#prdeptcontainer
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_designer/data/prdeptcontainer.html#prdeptcontainer
../samples/predef_command_create_dept_container1.xml
../samples/predef_command_create_dept_container2.xml

B 5' Command Transformation - Create Departmental Container - Part 1

Conditions

. % Condition Group 1

v Z if operation equal "add"

v 5 set local variable("target-container”, Destination DMN{length="-2"}

v 5' set local vwariable("does-target-exist”, Destination Attributel"objectclass", class name="Crganizational
Unit", dniLocal Wariablel"target-container"i)))

A ¢ 5' Command Transformation - Create Departmental Container - Part 2

Conditions

.~ % Condition Group 1
W |l variable ! ist’ available
v 5 if local watiable 'does-target-exist' equal ™

s 5’ add destination object{class name="0rganizational Unit", direct="true", dniLocal
‘ariabled"target-container")))

s 5' add destination attribute walue("ou", direct="trug", dniLocal Variable!"target-container")), Parse
Dr("dest-dn”, "dot", length="1", start="-1", Local Vatiable{"target-container"yi)

(oa] |au:|n:| destination attribute value w |)
Specify attribuke name; * | au | Q
Specify class name: | | Q
Select mode: |write directly to destination datastore W |
Select object: |DN v|
Specify DM: * | Local Variablel"target-containet™) |
Specify value bype: | v|

Enker string: * | Parse DM("desk-dn", "dot”, length="1", start="-1", Local Wariak |

Actions 209

Add Destination Object

Creates an object of the specified type in the destination data store, with the name and location
specified in the Enter DN field. Any attribute values to be added as part of the object creation must
be done in subsequent Add Destination Attribute Value actions using the same DN.

Fields

Class Name
Specify the class name of the object to be created. Supports variable expansion. For more
information, see Variable Expansion (page 282).

Mode
Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

DN
Specify the DN of the object to be created.

Remarks

Any attribute values to be added as part of the object creation must be done in subsequent Add
Destination Attribute Value actions using the same DN.

Example

The example creates the department container that is needed. The rule is from the predefined rules
that come with Identity Manager. For more information, see Command Transformation - Create
Departmental Container - Part 1 and Part2 (http://www.novell.com/documentation/idm35/
index.html?page=/documentation/idm35/policy designer/data/
prdeptcontainer.html#prdeptcontainer) from the predefined rules. To see the policy in XML, see
predef command create dept containerl.xml (../samples/

predef command create dept containerl.xml) and predef command create dept container2.xml
(../samples/predef command create dept container2.xml).

B 5' Command Transformation - Create Departmental Container - Part 1

Conditions

. % Condition Group 1

& i operation equal "add"

v 5' set local wariable("target-containet”, Destination DR{length="-2"}

v Z

set local variable("does-target-exist", Destination Attribute"objectclass", class name="Crganizational
Unit", dni{Local Yariablef"target-container)})

210 Policies in Designer 2.0

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_designer/data/prdeptcontainer.html#prdeptcontainer
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_designer/data/prdeptcontainer.html#prdeptcontainer
../samples/predef_command_create_dept_container1.xml
../samples/predef_command_create_dept_container2.xml

EH 5 Command Transformation - Create Departmental Container - Part 2

Conditions

.~ Z rCondition Group 1

s 5 add destination object{class name="Crganizational Unit", direct="trug", dniLocal
‘ariabled"target-container™)))

s 5 add destination attribute walue!"ou", direck="true", dnfLocal Variable!"target-container")), Parse
Dn("dest-dn”, "dot", length="1", start="-1", Local Variable{"target-container"i)

Do | add destination object v| @
Specify class name; * | Organizational Unit | C%
Select mode: ‘write directly to destination datastore " |
Specify Dk * | Local Yariabled"target-containet) |

The OU object is created. The value for the OU attribute is created from the destination attribute
value action that occurs after this action.

Actions 211

Add Source Attribute Value

Adds the specified attribute on an object in the source data store.

Fields

Attribute Name
Specify the name of the attribute. Supports variable expansion. For more information, see
Variable Expansion (page 282).

Class Name

(Optional) Specify the class name of the target object. Leave the field blank to use the class
name from the current object. Supports variable expansion. For more information, see Variable
Expansion (page 282).

Object

Select the target object type. This object can be the current object, or can be specified by a DN
or an association.

DN
Specify the DN, association, or the current object as the target object.
Value Type
Select the syntax of the attribute value to be added. The options are string, counter, dn, int,
interval, octet, state, structured, teleNumber, or time.
String
Specify the attribute value to be added.
Example
Do | add source attribute value v (@
Specify attribute name: * | Title Q
Specify class name: | User C%
Select object: | Association W
Specify assodiation: * | Source Mamed)
Specify value bype: | string "
Enter string: * | Manager

212 Policies in Designer 2.0

Add Source Object

Creates an object of the specified type in the source data store, with the name and location provided
in the DN field. Any attribute values to be added as part of the object creation must be done in
subsequent Add Source Attribute Value actions using the same DN.

Fields

Class Name

Specify the class name of the object to be added. Supports variable expansion. For more
information, see Variable Expansion (page 282).

DN
Specify the DN of the object to be added.

Example
Do | add source object ¥ @
Specify class namne; * | User Q
Specify Dh: * | "Users) John Srmith"

Actions 213

Append XML Element

Appends a custom element, with the name specified in the Name field, to the set of elements
selected by the XPath expression. If Before XPath Expression is not specified, the new element is
appended after any existing children of the selected elements. If Before XPath Expression is
specified, it is evaluated relative to each of the elements selected by the expression to determine
which of the children to insert before. If Before XPath Expression evaluates to an empty node set or
a node set that does not contain any children of the selected element, the new element is appended
after any existing children; otherwise, the new element is inserted before each of the nodes in the
node set selected by before that are children of the selected node.

Fields

Name

Specify the tag name of the XML element. This name can contain a namespace prefix if the
prefix has been previously defined in this policy. Supports variable expansion. For more
information, see Variable Expansion (page 282).

XPath Expression

Specify an XPath 1.0 expression that returns a node set containing the elements to which the
new elements should be appended.

Before XPath Expression

Specify an XPath 1.0 expression that evaluates relative to each of the nodes selected by the
expression that returns a node set containing the child nodes that the new elements should be
inserted before.

Remarks

For more information on using XPath expressions with policies, see XPath 1.0 Expressions (http://
www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/
policyxpathexpression.html#policyxpathexpression).

Example

If you are implementing Novell Credential Provisioning Policies, there is a sample Subscriber
Command Transformation policy that uses the XPath Expression condition. The sample file is called
SampleSubCommandTransform.xml. It is found in the DirXML® Utilities folder on the
Identity Manager media. For more information, see Example Credential Provisioning Policies (http:/
/www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy credprov/
data/credprovnlsexample.html). To view the policy in XML, see
SampleSubCommandTransform.xml (../samples/SampleSubCommandTransform.xml).

The sample file uses the append XML element action to add the Novell® SecureLogin or Novell
SecretStore® credentials to the user object when it is provisioned.

214 Policies in Designer 2.0

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/policyxpathexpression.html#policyxpathexpression
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_credprov/data/credprovnlsexample.html
../samples/SampleSubCommandTransform.xml

£ 5 Add operation-data element to password subscribe operations {if needed)

+ 5 Add payload data to modify-password subscribe operations

= 5 Add payload data to add subscribe operations

5 Condition Group 1
5 if operation equal "add"

&nd Z password available

append =ML element{'sso-sync-data”, "operation-data™)

append =ML element"sso-target-user-dn”, "operation-data/sso-sync-data")

append XML text("operation-data)sso-sync-data)sso-target-user-dn”, Source Attribute"DirsML-ADContext")
append XML element"sso-app-username”, "operation-datafsso-sync-data™)

append XML text("oper ation-datassso-sync-data)sso-app-username”, Source Attribute(" ")

append =ML element"password”, "operation-datafsso-sync-data™)

append XML text("operation-dataysso-sync-datafpassword”, Passwordi())

append =ML element("nsl-set-passphrase-answer", "operation-data)sso-sync-data™)

L L L L L L R R

append XML text("oper ation-datafsso-sync-data/nsl-set-passphrase-answer”, Source Attribute"workforceID'™)

Do |append ML element v @
Enter variable name: * | sso-sync-data R
Specify ®Path expression: * | operation-data -EE_. B Q:,.,
Insert: | Append to end of XPath expression "

Actions 215

Append XML Text

Appends the specified text to the set of elements selected by the XPath expression. If Before XPath
Expression is not specified, the text is appended after any existing children of the selected elements.
If Before XPath Expression is specified, it is evaluated relative to each of the elements selected by
the expression to determine which of the children to insert before. If Before XPath Expression
evaluates to an empty node set or a node set that does not contain any children of the selected
element, then the text is appended after any existing children; otherwise, the text is inserted before
each of the nodes in the node set selected by before that are children of the selected node.

Fields

XPath Expression

Specify the XPath 1.0 expression that returns a node set containing the elements to which the
new elements should be appended.

Before XPath Expression

Specify the XPath 1.0 expression that evaluates relative to each of the nodes selected by the
expression that returns a node set containing the child nodes that the text should be inserted
before.

String
Specify the text to be appended.

Remarks

For more information on using XPath expressions with policies, see XPath 1.0 Expressions (http://
www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/
policyxpathexpression.html#policyxpathexpression).

Example

If you are implementing Novell Credential Provisioning Policies, there is a sample Subscriber
Command Transformation policy that uses the XPath Expression condition. The sample file is called
SampleSubCommandTransform.xml. It is found in the DirXML Ultilities folder on the
Identity Manager media. For more information, see Example Credential Provisioning Policies (http:/
/www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy credprov/
data/credprovnlsexample.html). To view the policy in XML, see
SampleSubCommandTransform.xml (../samples/SampleSubCommandTransform.xml).

The example is using the append XML text action to find the Novell SecureLogin or Novell
SecretStore application username. By obtaining the application name, the credentials can be set for
the user object when it is provisioned.

216 Policies in Designer 2.0

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/policyxpathexpression.html#policyxpathexpression
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_credprov/data/credprovnlsexample.html
../samples/SampleSubCommandTransform.xml

£ 5 Add operation-data element to password subscribe operations {if needed)

+ 5 Add payload data to modify-password subscribe operations

= 5 Add payload data to add subscribe operations

5 Condition Group 1

7
And &

L L L L L L R R

Do | append XML bext

if operation equal "add"

if password available

append =ML element{'sso-sync-data”, "operation-data™)

append =ML element"sso-target-user-dn”, "operation-data/sso-sync-data")

append XML text("operation-data)sso-sync-data)sso-target-user-dn”, Source Attribute"DirsML-ADContext")
append XML element"sso-app-username”, "operation-datafsso-sync-data™)

append XML text("oper ation-datassso-sync-data)sso-app-username”, Source Attribute(" ")

append =ML element"password”, "operation-datafsso-sync-data™)

append XML text("operation-dataysso-sync-datafpassword”, Passwordi())

append =ML element("nsl-set-passphrase-answer", "operation-data)sso-sync-data™)

append XML text("oper ation-datafsso-sync-data/nsl-set-passphrase-answer”, Source Attribute"workforceID'™)

v @
Specify »Path expression: * | operation-datafsso-sync-datafsso-target-user-dn a8 Q\,}-,
Specify string: * | Source AttributelDirsML-ADConkext") E

Insert: | Append to end of XPath expression "

Actions 217

Break

Ends processing of the current operation by the current policy.

Example

Do break vl (3

218 Policies in Designer 2.0

Clear Destination Attribute Value

Removes all values for the named attribute from an object in the destination data store.

Fields

Attribute Name
Specify the name of the attribute. Supports variable expansion. For more information, see
Variable Expansion (page 282).

Class Name
(Optional) Specify the class name of the target object. Leave the field blank to use the class
name from the current object. Supports variable expansion. For more information, see Variable
Expansion (page 282).

Mode
Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Object

Select the target object type. This object can be the current object, or can be specified by a DN
or an association.

DN
Select the DN, association, or the current object as the target object.
Example
Do |clear destination attribute value | @
Specify attribute name: * | Member Q’
Specify class name: Q,
Select mode: | add to current operation “
Select objeck: | DM L
Specify DM * | Movel|UsersiManagerGroup

Actions 219

Clear Operation Property
Clears any operation property with the provided name from the current operation. The operation

property is the XML attribute attached to an <operation-data> element by a policy. An XML
attribute is a name/value pair associated with an element in the XDS document.

Fields

Property Name

Specify the name of the operation property to clear. Supports variable expansion. For more
information, see Variable Expansion (page 282).

Example

Do | clear operation property v @l

Specify property name: * | MyStoredProperty

220 Policies in Designer 2.0

Clear Source Attribute Value

Removes all values of an attribute from an object in the source data store.

Fields

Attribute Name

Specify the name of the attribute. Supports variable expansion. For more information, see
Variable Expansion (page 282).

Class Name

(Optional) Specify the class name of the target object. Leave the field blank to use the class
name from the current object. This value might be required for schema mapping purposes if the
object is other than current object. Supports variable expansion. For more information, see
Variable Expansion (page 282).

Object

Select the target object type. This object can be the current object, or can be specified by a DN
or an association.

DN
Select the DN, association, or current object as the target object.
Example
Do |clear source attribute value v B
Specify attribute name: * | Member Q
Specify class name: Q
Select object: | DM A
Specify DN: * | "NovelliUsersiManagerGroup”

Actions 221

Clear SSO Credential

Clears the Single Sign On credential so objects can be deprovisioned. Additional information about
the credential to be cleared can be entered in the Enter login parameter strings field. The number of
the strings and the names used are dependent on the credential repository and application for which
the credential is targeted. For more information, see Novell Credential Provisioning Policies (http://
www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy credprov/

data/bookinfo.html).

Fields

Credential Repository Object DN
Specify the DN of the repository object. Supports variable expansion. For more information,
see Variable Expansion (page 282).

Target User DN
Specify the DN of the target users.

Application Credential ID
Specify the application credential that is stored in the application object. Supports variable
expansion. For more information, see Variable Expansion (page 282).

Login Parameter Strings

Specify each login parameter for the application. The login parameters are the authentication
keys stored in the application object.

Example
Do | clear 550 credential v @
Specify credential repository object DM: * | L \Grouphsise|Groupiise_Repositary Q

Render browsed DN relative to policy
Specify target user DMy * | "MovelliUsers"

Populate the Following From an application objeck

Specify application credential ID: * | GroupWise_Credential

Specify login parameter strings: | Username, Password

222 Policies in Designer 2.0

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_credprov/data/bookinfo.html

Clone By XPath Expression

Appends deep copies of the nodes specified by the source field to the set of elements specified by
the destination field. If Before XPath Expression is not specified, the non-attribute cloned nodes are
appended after any existing children of the selected elements. If Before XPath Expression is
specified, it is evaluated relative to each of the elements selected by expression to determine which
of the children to insert before. If Before XPath Expression evaluates to an empty node set or a node
set that does not contain any children of the selected element, the non-attribute cloned nodes are
appended after any existing children; otherwise, the non-attribute cloned nodes are inserted before
each of the nodes in the node set previously selected that are children of the selected node.

Fields

Source XPath Expression

Specify the XPath 1.0 expression that returns a node set containing the nodes to be copied.

Destination XPath Expression
Specify the XPath 1.0 expression that returns a node set containing the elements to which the
copied nodes are to be appended.

Insert

Select whether to insert the XPath expression before the source XPath expression or append the
XPath expression to the end of the current node in the destination XPath expression.

Remarks

For more information on using XPath expressions with policies, see XPath 1.0 Expressions (http://
www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/
policyxpathexpression.html#policyxpathexpression).

Example
Do | clone by ¥Path expressions LY @
Specify source ¥Path expression: * | @* [ﬂ_‘. [2\4;-;.
Specify destination ¥Path expression: * | . Jmodify[last()] [ﬂﬂ B S;;.}

it ppend bo end of ¥Path expression w

Actions

223

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/policyxpathexpression.html#policyxpathexpression

Clone Operation Attribute

Copies all occurrences of an attribute within the current operation to a different attribute within the
current operation.

Fields

Source Name
Specify the name of the attribute to be copied from. Supports variable expansion. For more
information, see Variable Expansion (page 282).

Destination Name

Specify the name of the attribute to be copied to. Supports variable expansion. For more
information, see Variable Expansion (page 282).

Example

The example adds a User object to the appropriate group, Employee or Manager, based on Title. It
also creates the group, if needed, and sets up security equal to that group. The policy is Govern
Groups for User Based on Title Attribute, and it is available for download from the Novell Support
Web site. For more information, see Downloading Identity Manager Policies (http://
www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/
policydownloadable.html). To see the policy in XML, see 003-Command-AddCreateGroups.xml (../
samples/003-Command-AddCreateGroups.xml).

v 5 %et local variables to test existence of groups and for placement

v 5 Create ManagersGroup, if needed
e 5 Create EmployeesGroup, if needed

B 5' IF Title indicates Manager, add to ManagerGroup and set rights

. % Condition Group 1

v 5 if class name equal "User"

v 5 if operation attribute 'Title' match . *manager, "

v 5 set destination attribute value("Group Membershin”, Local Yariable!'manager-group-dn"))

o fr clone operation attribute!"Group Membership", "Security Equals™)

o 5 If Title does not indicate Manager, add to EmployeeGroup and set rights

Do | clane operation atkribute v @
Specify source name: * | Group Membership C%
Specify deskination name: | Security Equals Q

224 Policies in Designer 2.0

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/policydownloadable.html
../samples/003-Command-AddCreateGroups.xml

The Clone Operation Attribute is taking the information from the Group Membership attribute and
adding that to the Security Equals attribute so the values are the same.

Actions 225

Delete Destination Object

Deletes an object in the destination data store.

Fields

Mode

Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Object

Select the target object type to delete in the destination data store. This object can be the current
object, or can be specified by a DN or an association.

DN
Select the DN, association, or current object as the target object.
Example
Do |delete destination object v| @
Select mode: | add to current operation A
Select object: |DM A
Specify DN: * | "MovelliUsersiManagerGroup®

226 Policies in Designer 2.0

Delete Source Object

Deletes an object in the source data store.

Fields

Object

Select the target object type to delete in the source data store. This object can be the current
object, or can be specified by a DN or an association.

DN
Select the DN, association, or current object as the target object.
Example
Do |delete source object v (B
Select objeck: |DM w
Specify DM: * | "NovelliUsers\ManagerGroup”

Actions 227

Find Matching Object

Finds a match for the current object in the destination data store.

Fields

Scope

Select the scope of the search. The scope might be an entry, a subordinate, or a subtree.

DN
Specify the DN that is the base of the search.

Match Attributes

Specify the attribute values to search for.

Remarks

Find Matching Object is only valid when the current operation is an add.

The DN argument is required when scope is “entry,” and is optional otherwise. At least one match
attribute is required when scope is “subtree” or “subordinates.”

The results are undefined if scope is entry and there are match attributes specified. If the destination
data store is the connected application, then an association is added to the current operation for each
successful match that is returned. No query is performed if the current operation already has a non-
empty association, thus allowing multiple find matching object actions to be strung together in the
same rule.

If the destination data store is the Identity Vault, then the destination DN attribute for the current
operation is set. No query is performed if the current operation already has a non-empty destination
DN attribute, thus allowing multiple find matching object actions to be strung together in the same
rule. If only a single result is returned and it is not already associated, then the destination DN of the
current operation is set to the source DN of the matching object. If only a single result is returned
and it is already associated, then the destination DN of the current operation is set to the single
character ￼. If multiple results are returned, then the destination DN of the current
operation is set to the single character �,.

Example

The example matches on Users objects with the attributes CN and L. The location where the rule is
searching starts at the Users container and adds the information stored in the OU attribute to the DN.
The rule is from the predefined rules that come with Identity Manager. For more information, see
Matching - By Attribute Value (http://www.novell.com/documentation/idm35/index.html?page=/
documentation/idm35/policy _designer/data/prmatchattrvalue.html#prmatchattrvalue). To see the
policy in XML, see predef match_by_attribute.xml (../samples/predef match by attribute.xml).

228 Policies in Designer 2.0

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_designer/data/prmatchattrvalue.html#prmatchattrvalue
../samples/predef_match_by_attribute.xml

B « 5’ Matching - by attribute walue

Conditions

. % Condition Group 1

v 5 if class name equal "User"

find matching objeck{dn{"[Enter base DM ta start search]"), match("[Enter name of attribute to match

7 oy
Do |find matching object V| @
Select scope: |su|:utree V|
Specify DM: | "ol |
Spedify match attribukes: | Ch, L |

When you click the Argument Builder icon, the Match Attribute Builder comes up. You specify the
attribute you want to match on in the builder. This example uses the CN and L attributes.

Match Atributes
Lo =

| L | % | Use walues from the current object

Jse values from the current object]

The left fields store the attributes to match. The right fields allow you to specify to use the value
from the current object to match or to use another value. If you select Other Value, there are multiple
value types to specify:

¢ counter

¢ dn

¢ int

+ interval

* octet

+ state

¢ string

¢ structured

¢ teleNumber

* time

Actions 229

To use the Other Value:
1 Launch the Match Attribute Builder, then select Other Value.

@ Maich Attribute Builder

Match Attributes |
The match attributes specify the attributes that are to be used to find a match For the action, 5 =
Match Atributes + XK °$b I% @
v
Select value Twpe: | string w |
Enter String: | |

2 Select the desired value type.
3 Specify the value, then click OK.

230 Policies in Designer 2.0

For Each

Repeats a set of actions for each node in a node set.

Fields

Node Set
Specify the node set.

Action

Specify the actions to perform on each node in the node set.

Remarks

The current node is a different value for each iteration of the actions, if a local variable is used.

If the current node in the node set is an entitlement element, then the actions are marked as if they
are also enclosed in an Implement Entitlement action. If the current node is a query element returned
by a query, then that token is used to automatically retrieve and process the next batch of query
results.

Example
Do |Fc|r gach v‘ @
Enter nade set: * | Added EntitementiGroup") |
Erter action; * |d0-add-dest-attr-value |

The following is an example of the Argument Actions Builder, used to provide the action argument:

] ad-:l destination attribute value w | @

Enker atbribube namme: * | Mermnber | Qy
Enter class name: | @roup | Q

Select mode: |a|:|c| ko current operation V|

Select ohject: |DN v|

Enter DN: * | Local Yariable("current-node") |

Enter value bype: | v|

Eriker string: * | Diestination DM |

Actions 231

Generate Event

Sends a user-defined event to Novell Audit or Sentinel.

Fields

ID

ID of the event. The provided value must result in an integer in the range of 1000-1999 when
parsed using the parselnt method of java.lang.Integer.

Level

Level of the event.

Level Description

log-emergency Events that cause the Metadirectory engine or driver to shut down.

log-alert Events that require immediate attention.

log-critical Events that can cause parts of the Metadirectory engine or driver to
malfunction.

log-error Events describing errors that can be handled by the Metadirectory

engine or driver.

log-warning Negative events not representing a problem.

log-notice Events (positive or negative) that an administrator can use to understand
or improve use and operation.

log-info Positive events of any importance.

log-debug Events of relevance for support or engineers to debug the operation of
the Metadirectory engine or driver.

Strings

Specify user-defined string, integer, and binary values to include with the event. These values
are provided using the Named String Builder.

Tag Description
target The object being acted upon.
target-type Integer specifying a predefined format for the target. Predefined values

for target-type are currently:
+ 0=None

1 = Slash Notation

+ 2 = Dot Notation

*

+ 3 =LDAP Notation
subTarget The subcomponent of the target being acted upon.
text1 Text entered here is stored in the text1 event field.

232 Policies in Designer 2.0

Tag Description

text2 Text entered here is stored in the text2 event field.

text3 Text entered here is stored in the text3 event field.

value Any number entered here is stored in the value event field.

value3 Any number entered here is stored in the value3 event field.

data Data entered here is stored in the blob event field.
Remarks

The Novell Audit or Sentinel event structure contains a target, a subTarget, three strings (textl,
text2, text3), two integers (value, value3), and a generic field (data). The text fields are limited to
256 bytes, and the data field can contain up to 3 KB of information, unless a larger data field is
enabled in your environment.

Example

The example has four rules that implement a placement policy for User objects based on the first
character of the Surname attribute. It generates both a trace message and a custom Novell Audit or
Sentinel event. The Generate Event action is used to send Novell Audit or Sentinel an event. The
policy name is Policy to Place by Surname and is available for download from the Novell Support
Web site. For more information Downloading Identity Manager Policies (http:/www.novell.com/
documentation/idm35/index.html?page=/documentation/idm35/policy/data/
policydownloadable.html). To view the policy in XML, see 001-Placement-BySurname.xml (../
samples/001-Placement-BySurname.xml).

5 Setup Local ¥ariables

= 5 Surname A-I: place in Users1

5 Condition Group 1
5 if class name equal "ser”

And 5 if operation attribuke 'Surname’ match “[a-i].*"

5 set operation destination DM{dn" Training|Users\ActivelUsers1"+""+Operation Attribute("CH"Y))
5 trace messagelcolor="yellmw", Local Yariable"L\WUsers1"))

fr generate event(id="1000", text1=Local Yariable("Lvlsers1"))

5 Surname J-R: place in Users2

5 Surname 5-7Z: place in Users3

Actions 233

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/policydownloadable.html
../samples/001-Placement-BySurname.xml

Do |generate event v| @

Specify ID: * | 1000 |

Select level: |inF0rmatiunal w |

Specify strings: | ket |

The following is an example of the Named String Builder, used to provide the strings argument.

Mame String Yalue

w ‘ | Local Wariable("YUsers1")

Generate Event is creating an event with the ID 1000 and displaying the text that is generated by the
local variable of LVUserl. The local variable LVUserl is the string of User:Operation Attribute “cn”
+” added to the “+”Training\Users\Active\Users1”+” container”. The event reads User:jsmith added
to the Training\Users\Active\Users1 container.

234 Policies in Designer 2.0

If

Conditionally performs a set of actions.

Fields

If Conditions
Specify the desired condition.

Then Perform Actions

Specify the desired actions, if the conditions are True.

Else Perform Actions

(Optional) Specify the desired actions, if the conditions are False.

Example

During an Add or Modify operation, if the attribute of Title equals manager, the user object is added
to the ManagerGroup group. If the Title does not equal manager, then the user object is added to the
UsersGroup group. To view the policy in XML, see if.xml (../samples/if.xml).

=v ZH

Conditions

" % Condition Group 1
v % i operation equal "add"

v 5 if operation equal "modify”

e

then

if operation attribute Title' equal "manager”

set destination atkribute walue!"Group Membership”, dass
—name="User", "Novel\Users\ManagerGroup™)

else
set default attribute valuel"Group Membership”,

—"NovelUsersiUsersaroup™

Do |if v @

If conditions: | and(if operation attribute 'Title' equal "manager") |

Then perform actions: | do-set-dest-attr-value |

Else perform actions: | do-set-default-attr-value |

When you create the if action, you must add a condition and one action. In this example, there are
two separate actions. The condition is if a user object has the title of manager.

Actions 235

../samples/if.xml

Condition List

7 5 if operation attribute 'Title' equal "manager"

The action is to add the user object to the ManagerGroup group.

Action List

timation attribute value("Group Membership”, class name=

If the title does not equal manager, the user object is placed in the UsersGroup group.

Action List

Fault atkribute walu roup Membership”, '

236 Policies in Designer 2.0

Implement Entitlement

Designates actions that implement an entitlement so that the status of those entitlements can be
reported to the agent that granted or revoked the entitlement.

Fields

Node Set

Node set containing the entitlement being implemented by the specified actions.

Action

Actions that implement the specified entitlements.

Example
Do [implement entitlernent v
Specify node set: * | Remaved Entitlement " docount™)
Specify action: * | do-add-dest-attr-value

The following is an example of the Argument Actions Builder, used to provide the action argument:

Do |add destination attribute value v B

Specify attribute name: * | Login Disabled C%
Specify class name: | User C%

Select mode: |add to current operation A

Select object: (DN W
Specify DM: * | Local Yariable("current-node")

Specify value bype: w
Enter string: * | Destination DRE)

Actions 237

Move Destination Object

Moves an object into the destination data store.

Fields

Mode
Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Object to Move
Select the object to be moved. This object can be the current object, or can be specified by a
DN or an association.

Container to Move to

Select the container to receive the object. This container is specified by a DN or an association.

DN or Association

Specify whether the DN or association of the container is used.

Example

The example contains a single rule that disables a user’s account and moves it to a disabled
container when the Description attribute indicates it is terminated. The policy is named Disable User
Account and Move When Terminated, and it is available for download from the Novell Support Web
site. For more information, see Downloading Identity Manager Policies (http://www.novell.com/
documentation/idm35/index.html?page=/documentation/idm35/policy/data/
policydownloadable.html). To view this policy in XML, see 005-Command-
DisableMoveOnTermination (../samples/005-Command-DisableMoveOnTermination.xml).

H 5’ 0On Termination, disable user and move to Disabled container

Conditions

./ & Condition Group 1

v 5 if operation equal "modify"

v 5’ if class name equal "User"

v 5 if operation attribute 'Description’ match "~terminated.*"

v 5' set destination attribute walue"Login Disabled”, direct="true", "True")

v 5 move destination objectiwhen="after", dn{"UsersCisabled"})

238 Policies in Designer 2.0

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/policydownloadable.html
../samples/005-Command-DisableMoveOnTermination.xml
../samples/005-Command-DisableMoveOnTermination.xml

Do | move destination object v| @

Select mode: |a|:ld after current operation V‘

Select object to move: |Current obiject V‘
Select conkainer bo move ko: |DI"-.I V‘
Specify DM: * | "Users|Disabled" |

The policy checks to see if it is a modify event on a User object and if the attribute Description
contains the value of terminated. If that is the case, then it sets the attribute of Login Disabled to true
and moves the object into the User\Disabled container.

Actions 239

Move Source Object

Moves an object in the source data store.

Fields

Object to Move
Select the object to be moved. This object can be the current object, or it can be specified by a
DN or an association.

Select Container

Select the container to receive the object. This container is specified by a DN or an association.

Example
Do | move source object b @
Select object bo move: |DM b
Specify DNz * | "Usersiactivelssmith”
Select container to move ko: | DR w
Specify DN: * | "UsersiInackive”

240 Policies in Designer 2.0

Reformat Operation Attribute

Reformats all values of an attribute within the current operation by using a pattern.

Fields

Name

Specify the name of the attribute. Supports variable expansion. For more information, see
Variable Expansion (page 282).

Value Type

Specify the syntax of the new attribute value.

Value

Specify a value to use as a pattern for the new format of the attribute values. If the original
value is needed to constructed the new value, it must be obtained by referencing the local
variable current-value.

Example

The example reformats the telephone number. It changes it from (nnn)-nnn-nnnn to nnn-nnn-nnnn.
The rule is from the predefined rules that come with Identity Manager. For more information, see
Input or Output Transformation - Reformat Telephone Number from (nnn) nnn-nnnn to nnn-nnn-
nnnn (http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/
policy designer/data/prreformattel1.html#prreformattell). To view the policy in XML, see

predef transformation_reformat_telephonel.xml (../samples/

predef transformation_reformat_telephonel.xml).

=V 5 Input or Output Transformation - Reformat Telephone Number from {nnn) nnn-nnnn to
nnn-nOn-nnnn

. % Condition Group 1

Define new condition here

reformat operation attributed"phone”, Replace First("4(didyd i s* 0 dvddd-0dvddvd g, "$1-%2-83",
Local variabled"current-walue"yi)

v &

Do |reformat operation atbribube ¥ @
Specify name: * | phane C%
Specify value type; | string "

Enter string: * | Replace First(" i (did\diis*(iddid)-Odididid)g”, "$1-42-42

The action reformat operation attribute changes the format of the telephone number. The rule uses
the Argument Builder and regular expressions to change how the information is displayed.

Actions 241

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_designer/data/prreformattel1.html#prreformattel1
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_designer/data/prreformattel1.html#prreformattel1
../samples/predef_transformation_reformat_telephone1.xml

- EFlepIan:e First"~\((ddidis* O ddd-Odidididig”, "$1-52-43"
& Local Variable("current-value")

242 Policies in Designer 2.0

Remove Association

Sends a remove association command to the Identity Vault.

Fields

Mode

Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Association

Specify the value of the association to be removed.

Example

The example takes a delete operation and disables the User object instead. The transforms an event.
The rule is from the predefined rules that come with Identity Manager. For more information, see
Command Transformation - Publisher Delete to Disable (http://www.novell.com/documentation/
idm35/index.html?page=/documentation/idm35/policy designer/data/
prdeletetodisable.html#prdeletetodisable). To view the policy in XML, see

predef command delete to disable.xml (../samples/predef command delete to disable.xml).

B « 5' Command Transformation - Publisher Delete to Disable

Conditions

. & Condition Group 1

v 5’ if operation equal "delete"

v 5’ if class name equal "User"

v 5' set destination attribute value("Login Disabled”, "true")

v 5 remove associationfassociation(Association] 11

Da |remwe association v| @
Select mode: |au:|c| ko current operation v‘
Specify association: * | Association() |

When a delete operation occurs for a User object, value of the Login Disabled attribute is set to true
and the association is removed from the object. The association is removed because the associated
object in the connected application no longer exists.

Actions 243

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_designer/data/prdeletetodisable.html#prdeletetodisable
../samples/predef_command_delete_to_disable.xml

Remove Destination Attribute Value

Removes an attribute value from an object in the destination data store.

Fields

Attribute Name
Specify the name of the attribute. Supports variable expansion. For more information, see
Variable Expansion (page 282).

Class Name
(Optional) Specify the class name of the target object. Leave the field blank to use the class
name from the current object. Supports variable expansion. For more information, see Variable
Expansion (page 282).

Mode
Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Select Object
Select the target object. This object can be the current object, or can be specified by a DN or an
association.

Value Type

Specify the syntax of the new attribute value.

String

Specify the value of the new attribute.

Example
Do |remove destination attribute walue v
Specify attribute name: * | Member Q
Specify class name: Q
Select mode: | add ko current operation L
Select ohject: | DM L
Specify DN: * | "NovellUsersiManagerGroup”
Specify value bype: | string "
Enker string: * | Destination DM

244 Policies in Designer 2.0

Remove Source Attribute Value

Removes the specified value from the named attribute on an object in the source data store.

Fields

Attribute Name
Specify the name of the attribute. Supports variable expansion. For more information, see
Variable Expansion (page 282).

Class Name
(Optional) Specify the class name of the target object. Leave the field blank to use the class
name from the current object. Supports variable expansion. For more information, see Variable
Expansion (page 282).

Object
Select the target object. This object can be the current object, or can be specified by a DN or an
association.

Value Type

Specify the syntax of the attribute value to be removed.

String

Specify the attribute value to be removed.

Example
Do | remove source attribute value v | 7

Specify attribute name: * | Member C{’
Specify class name: C{,

Select object: |DM w
Specify DM * | "MoveliUsers\Managercroup”

Specify value type: | string bt
Erter string: * | Source DRE)

Actions 245

Rename Destination Object

Renames an object in the destination data store.

Fields

Mode
Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Object
Select the target object. This object can be the current object, or can be specified by a DN or an
association.

String

Specify the new name of the object.

Example
Do |rename destination object v @
Select mode: | add to current operation A
Select object: (DR A
Specify DN: * | "MoveliUsers|ssmith"
Specify string: * | "Sam3mith"

246 Policies in Designer 2.0

Rename Operation Attribute

Renames all occurrences of an attribute within the current operation.

Fields

Source Name

Specify the original attribute name. Supports variable expansion. For more information, see
Variable Expansion (page 282).

Destination Name

Specify the new attribute name. Supports variable expansion. For more information, see
Variable Expansion (page 282).

Example
Do |rename operation atkribute v @I
Specify source name: * | Surname Qs
Specify destination name: | sn Q&

Actions 247

Rename Source Object

Renames an object in the source data store.

Fields

Select Object
Select the target object. This object can be the current object, or can be specified by a DN or an
association.

String

Specify the new name of the object.

Example
Do | rename source object b @
Select objeck: |DM "
Specify DM: * | "Movel|Users|ssmith"
Specify string: * | "Sam3Smith"

248 Policies in Designer 2.0

Send Email

Sends an e-mail notification.

Fields

ID
(Optional) Specify the User ID in the SMTP system sending the message. Supports variable
expansion. For more information, see Variable Expansion (page 282).

Server
Specify the SMTP server name. Supports variable expansion. For more information, see
Variable Expansion (page 282).

Message Type

Select the e-mail message type.

Password

(Optional) Specify the SMTP server account password.

IMPORTANT: You can store the SMTP server account password as a Named Password on the
driver object. This allows the password to be encrypted; otherwise you enter the password and
it is stored in clear text. For more information on Named Passwords, see Using Named
Password in the Novell Identity Manager Administration Guide (http://www.novell.com/
documentation/idm35/index.html).

Strings

Specify the values containing the various e-mail addresses, subject, and message. The
following table lists valid named string arguments:

String Name Description

to Adds the address to the list of e-mail recipients; multiple instances are
allowed. Can contain a comma-separated list of recipients.

cc Adds the address to the list of CC e-mail recipients; multiple instances
are allowed. Can contain a comma-separated list of recipients.

bcc Adds the address to the list of BCC e-mail recipients; multiple instances
are allowed. Can contain a comma-separated list of recipients.

from Specifies the address to be used as the originating e-mail address.
reply-to Specifies the address to be used as the e-mail message reply address.
subject Specifies the e-mail subject.

message Specifies the content of the e-mail message.

encoding Specifies the character encoding to use for the e-mail message.

custom-smtp-header Specifies a custom SMTP header to add to the e-mail message.

Actions

249

http://www.novell.com/documentation/idm35/index.html

Example

] |senu:| email V| @

Specify I0: | samith |

Specify server; * | smtp, digitalairlines, com |

Select message bype: |text V|
Specify password: | Mamed Password("smtp-admin) |
Specify strings: | ko, subject, message |

The following is an example of the Named String Builder being used to provide the strings

argument:
Name String Yalue
| [a] w | | ManagerGroup@digitalairlines, com
| subject ~ | | This is the e-mail subject
| message ~ | | This is the e-mail messages|

250 Policies in Designer 2.0

Send Email from Template

Generates an e-mail notification using a template.

Fields

Notification DN

Specify the slash form DN of the SMTP notification configuration object. Supports variable
expansion. For more information, see Variable Expansion (page 282).

Template DN

Specify the slash form DN of the e-mail template object. Supports variable expansion. For
more information, see Variable Expansion (page 282).

Password

(Optional) Specify the SMTP server account password.

IMPORTANT: You can store the SMTP server account password as a Named Password on the
driver object. This allows the password to be encrypted; otherwise you enter the password and
it is stored in clear text. For more information on Named Passwords, see Using Named
Passwords in the Novell Identity Manager Administration Guide (http://www.novell.com/
documentation/idm35/index.html).

Strings

Specify additional fields for the e-mail message. The following table contains reserved field
names, which specify the various e-mail addresses:

String Name Description

to Adds the address to the list of e-mail recipients; multiple instances are
allowed. Can contain a comma-separated list of recipients.

cc Adds the address to the list of CC e-mail recipients; multiple instances
are allowed. Can contain a comma-separated list of recipients.

bcc Adds the address to the list of BCC e-mail recipients; multiple instances
are allowed. Can contain a comma-separated list of recipients.

reply-to Specifies the address to be used as the e-mail message reply address.

encoding Specifies the character encoding to use for the e-mail message.

custom-smtp-header Specifies a custom SMTP header to add to the e-mail message.

Each template can also define fields that can be replaced in the subject and body of the e-mail
message.

Actions

251

http://www.novell.com/documentation/idm35/index.html

Example

Do |send email from template v| @
Specify notification OM: * | SecurityiDefault Motification Colleckion | Q
Specify template DM * | SecurityiDefault Motification CollectiontForgot Password | Q
Specify password: | Marned Password("smkp-admin®y |
Specify strings: | ko, cc |

The following is an example of the Named String Builder, used to provide the strings argument:

MName String ¥alue
| to v| | "Manageraroup@digitalairines . com”
| = v| | "ce_SalesGroup@digiralairlings . com”

252 Policies in Designer 2.0

Set Default Attribute Value

Adds default values to the current operation (and optionally to the current object in the source data
store) if no values for that attribute already exist. It is only valid when the current operation is Add.

Fields

Attribute Name
Specify the name of the default attribute. Supports variable expansion. For more information,
see Variable Expansion (page 282).

Write Back

Select whether or not to also write back the default values to the source data store.

Values

Specify the default values of the attribute.

Example

The example sets the default value for the company attribute. You can set the value for an attribute
of your choice. The rule is from the predefined rules that come with Identity Manager. For more
information, see Creation- Set Default Attribute Value (http://www.novell.com/documentation/
idm35/index.html?page=/documentation/idm35/policy designer/data/
prdefaultattr.html#prdefaultattr). To view the policy in XML, see

predef creation_set default attribute value.xml (../samples/

predef creation_set default attribute value.xml).

B « 5 Creation - Set Default Attribute ¥alue

Conditions

% Condition Group 1

v 5 if class name equal "User"

v 5' set default attribute value("[Enter attribute name]”, write-back="true", "[Enter default attribute walue]")

Do |set default attribute value v|)]
Specify attribute name: * | company | Q&
Write back: ‘true V|
Specify argument values: * | "Digital Airlines" |
Type Argument ¥alues
| stringl| v| | "Digital Airlines"

Actions 253

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_designer/data/prdefaultattr.html#prdefaultattr
../samples/predef_creation_set_default_attribute_value.xml

To build the value, the Argument Value List Builder is launched. See Argument Value List Builder
(http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/

policy designer/data/pbvaluebuilder.html#pbvaluebuilder) for more information on the builder. You
can set the value to what is needed. In this case, we used the Argument Builder and set the text to be
the name of the company.

254 Policies in Designer 2.0

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_designer/data/pbvaluebuilder.html#pbvaluebuilder

Set Destination Attribute Value

Adds a value to an attribute on an object in the destination data store, and removes all other values
for that attribute.

Fields

Attribute Name
Specify the name of the attribute. Supports variable expansion. For more information, see
Variable Expansion (page 282).

Class Name
(Optional) Specify the class name of the target object in the destination data store. Leave the
field blank to use the class name from the current object. Supports variable expansion. For
more information, see Variable Expansion (page 282).

Mode
Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Object
Select the target object. This object can be the current object, or can be specified by a DN or an
association.

Value Type

Select the syntax of the attribute value to set.

String
Specify the attribute values to set.

Example

The example takes a Delete operation and disables the User object instead. The rule is from the
predefined rules that come with Identity Manager. For more information, see Command
Transformation - Publisher Delete to Disable (http://www.novell.com/documentation/idm35/
index.html?page=/documentation/idm35/policy designer/data/
prdeletetodisable.html#prdeletetodisable). To view the policy in XML, see

predef command delete to disable.xml (../samples/predef command delete to disable.xml).

B 5 Command Transformation - Publisher Delete to Disable

Conditions

. Z Condition Group 1

v 5' if operation equal "delete"

v 5’ if class name equal "User”

v 5 set destination attribute value("Login Disabled”, "true")

v 5 remove associationfassociation(Association] 11

Actions

255

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_designer/data/prdeletetodisable.html#prdeletetodisable
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_designer/data/prdeletetodisable.html#prdeletetodisable
../samples/predef_command_delete_to_disable.xml

Do | set destination atkribute value w | @

Specify attribute name: * | Login Disabled | Qs
Specify class name: | | Q
Select mode: |ad|:| ko current operation W |

Select object: |Current object V|

Specify value type: | skring V|
Enter string: * | krue |

The rule sets the value for the attribute of Login Disabled to true. The rule uses the Argument
Builder to add the text of true as the value of the attribute. See Argument Builder (http://
www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy designer/
data/pbargbuilder.html#pbargbuilder) for more information about the builder.

256 Policies in Designer 2.0

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_designer/data/pbargbuilder.html#pbargbuilder

Set Destination Password

Sets the password for an object in the destination data store.

Fields

Mode
Select whether this action should be added to, before, or after the current operation, or written
directly to the destination data store.

Object
Select the target object. This object can be the current object, or can be specified by an DN or
an association.

String
Specify the password to be set.

Example

The example sets a default password for the User object that is created. The rule is from the

predefined rules that come with Identity Manager. For more information, see Creation- Set Default
Password (http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/
policy designer/data/prdefaultpassword.html#prdefaultpassword). To view the policy in XML, see

predef creation_set default password.xml (../samples/predef creation set default password.xml).

B 5' Creation - Set Default Password

Conditions

. Z Condition Group 1

v 5’ if class name equal "User”

v 5’ set destination password{Attribute!"Given Mame")+attribute!"surname"))

Do | set destination passward v| @
Select mode; |a|:|c| ko current operation v‘
Select object: |Current object V‘
Specify string: * | Abtributed"Given Mame"H+aktribuke"Surname") |

When a User object is created, the password is set to the Given Name attribute plus the Surname
attribute.

Actions 257

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_designer/data/prdefaultpassword.html#prdefaultpassword
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_designer/data/prdefaultpassword.html#prdefaultpassword
../samples/predef_creation_set_default_password.xml

Set Local Variable

Sets a local variable.

Fields

Variable Name
Specify the name of the new local variable. Supports variable expansion. For more information,
see Variable Expansion (page 282).

Variable Scope

Select the scope of the local variable. This can be set to the driver or to the policy. Supports
variable expansion. For more information, see Variable Expansion (page 282).

Variable Type

Select the type of local variable. This can be a string, an XPath 1.0 node set, or a Java object.

Example

The example adds a User object to the appropriate group, Employee or Manager, based on Title. It
also creates the group, if needed, and sets up security equal to that group. The policy name is Govern
Groups for User Based on Title, and it is available for download from the Novell Support Web site.
For more information, see Downloading Identity Manager Policies (http://www.novell.com/
documentation/idm35/index.html?page=/documentation/idm35/policy/data/
policydownloadable.html). To view the policy in XML, see 003-AddCreateGroups.xml (../samples/
003-Command-AddCreateGroups.xml).

B « 5 Set local variables to test existence of groups and for placement

Zonditions

2% Condition Group 1
v 5 if class name equal "User"
And
% Condition Group 2

& if operation equal "add"

v 5 if aperation equal "madify"

set local variable!"manager-group-dn”, "Users\Managersaroup™)
set local variable("manager-group-infa®, Destination Attribute("Object Class", dnilocal Variable("manager-group-dn®™ 1)

set local variable("emploves-group-dn®, "UsersiEmployveescroup™

v 7
v &
v &
v 7

set local variable!"emploves-group-info”, Destination Attribubed"Object Class”, drilocal Yariabled"emploves-group-dn™iin

258 Policies in Designer 2.0

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/policydownloadable.html
../samples/003-Command-AddCreateGroups.xml

Do | sek local variable w | @

Enker variable name: * | manager-group-dn | Q
Select scope: ‘pnlicy v|

Select variable type: ‘String v|
Specify string; * | "UsersiManagersGroup” |

The local variable is set to the value that is in the User object’s destination attribute of Object Class
plus the Local Variable of manager-group-info. The Argument Builder is used to construct the local
variable. See Argument Builder (http://www.novell.com/documentation/idm35/index.html?page=/

documentation/idm35/policy designer/data/pbargbuilder.html#pbargbuilder) for more information.

Actions 259

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_designer/data/pbargbuilder.html#pbargbuilder

Set Operation Association

Sets the association value for the current operation.

Fields

Association

Provide the new association value.

Example

Do |set operation association v @B

Specify association: * | Source Mamed)

260 Policies in Designer 2.0

Set Operation Class Name

Sets the object class name for the current operation.

Fields

String

Specify the new class name.
Example

Do | set operation class name w @

Specify string: * | "User”

Actions 261

Set Operation Destination DN

Sets the destination DN for the current operation.

Fields

DN
Specify the new destination DN.

Example

The example places the objects in the Identity Vault using the structure that is mirrored from the
connected system. You need to define at what point the mirroring begins in the source and
destination data stores. The rule is from the predefined rules that come with Identity Manager. For
more information, see Placement - Publisher Mirrored (http://www.novell.com/documentation/
idm35/index.html?page=/documentation/idm35/policy designer/data/
prplacepubmirrored.html#prplacepubmirrored). To view the policy in XML, see

predef place pub mirrored.xml (../samples/predef place pub mirrored.xml).

B 5 Placement - Publisher Mirrored

Conditions

. & Condition Group 1

o 5' if source DM in subtree "[Enter base of source hierarchy]"

o 5' set local variablel"dest-base”, "[Enter base of destination hierarchw]")

o 5' set operation destination DM{dniLocal Vatiable("dest-base")+""+Unmatched Source DR{convert="trug"))

Do |set operation destination D v| @

Specify DM * | Local Yariable("dest-base")+""+Unmatched Source Di{conver |

The rule sets the operation destination DN to be the local variable of the destination base location
plus the source DN.

262 Policies in Designer 2.0

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_designer/data/prplacepubmirrored.html#prplacepubmirrored
../samples/predef_place_pub_mirrored.xml

Set Operation Property

Sets an operation property. An operation property is a named value that is stored within an
operation. It is typically used to supply additional context that might be needed by the policy that
handles the results of an operation.

Fields

Property Name

Specify the name of the operation property. Supports variable expansion. For more
information, see Variable Expansion (page 282).

String
Specify the name of the string.

Example

Do | set operation property w @

Specify property name: * | myStoredProperty

Specify string: * | "Fred"

Actions 263

Set Operation Source DN

Sets the source DN for the current operation.

Fields

DN
Specify the new source DN.

Example

Do | set operation source D hd @

Specify DN: * | "NovelliUsers"Hatkribubed"CN")

264 Policies in Designer 2.0

Set Operation Template DN

Sets the template DN for the current operation to the specified value. This action is only valid when
the current operation is add.

Fields

DN
Specify the template DN.

Example

The example applies the Manager template if the Title attribute contains the word Manager. The
name of the policy is Policy: Assign Template to User Based on Tile, and it is available for
download from the Novell Support Web site. For more information, see Downloading Identity
Manager Policies (http://www.novell.com/documentation/idm35/index.html?page=/documentation/
idm35/policy/data/policydownloadable.html). To view the policy in XML, see 003-Create-
AssignTemplateByTitle.xml (../samples/003-Create-AssignTemplateByTitle.xml).

B 5’ Assign Manager template if Title contains "™Manager™

Conditions

. % Condition Group 1
¥ 5’ if class name equal "User"
And v 5 if operation attribute 'Title' available

And v 5 if operation attribute 'Title' match . *manager, *"

| v 5 set operation template DRN{dn("Users\Manager Template"))

v 5 Assign Employee template if Title does not contain "Manager™

Do |set operation kemplate DR v| @

Specify DN: * | "Users\Manager Template" |

The template Manager Template is applied to any User object the has the attribute of Title available
and contains the word Manager somewhere in the title. The policy uses regular expressions to find
all possible matches.

Actions 265

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/policydownloadable.html
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/policydownloadable.html
../samples/003-Create-AssignTemplateByTitle.xml
../samples/003-Create-AssignTemplateByTitle.xml

Set Source Attribute Value

Adds a value to an attribute on an object in the source data store, and removes all other values for
that attribute.

Fields

Attribute Name
Specify the name of the attribute. Supports variable expansion. For more information, see
Variable Expansion (page 282).

Class Name
(Optional) Specify the class name of the target object in the source data store. Leave the field
blank to use the class name from the current object. Supports variable expansion. For more
information, see Variable Expansion (page 282).

Object
Select the target object. This object can be the current object, or can be specified by a DN or an
association.

Value Type

Select the syntax of the attribute value.

Value
Specify the attribute value to be set.

Example

The example detects when an e-mail address is changed and sets it back to what it was. The policy
name is Policy: Reset Value of the E-mail Attribute, and it is available for download from the Novell
Support Web site. For more information, see Downloading Identity Manager Policies (http://
www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/
policydownloadable.html). To view the policy in XML, see 001-Input_PushBackOnEmail (../
samples/001-Input-PushBackOnEmail.xml).

A ¢ 5’ Push back on email changing

Conditions

% Condition Group 1

o 5’ if class name equal "User"

v 5‘ if operation attribute 'Email’ changing

o 5’ set source attribute value("Email", Destination Attributel"Internet EMail Address"))

o 5’ sttip operation aktributed"Email")

266 Policies in Designer 2.0

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/policydownloadable.html
../samples/001-Input-PushBackOnEmail.xml

Do | set source atkribuke value v| @

Specify attribube name: * | Ermail | 3
Specify dass name: | | Q,o
Select object: |Current ohject V|
Specify value tvpe: | skring w |
Enter string: * | Destination Attribute("Internet EMail Address") |

The action takes the value of the destination attribute Internet EMail Address and sets the source
attribute of Email to this same value.

Actions 267

Set Source Password

Sets the password for an object in the source data store.

Fields

Object
Select the target object. This object can be the current object, or can be specified by an DN or
an association.

String
Specify the password to be set.

Example
Do | set source password w @
Select abject: | Current object W
Specify string: * | Attribukel"Given Name")+attribute" Surname")

268 Policies in Designer 2.0

Set SSO Credential

Sets the SSO credential when a user object is created or when a password is modified. This action is
part of the Credential Provisioning policies. For more information, see Novell Credential
Provisioning Policies (http://www.novell.com/documentation/idm35/index.html?page=/
documentation/idm35/policy credprov/data/bookinfo.html).

Fields

Credential Repository Object DN
Specify the DN of the repository object. Supports variable expansion. For more information,
see Variable Expansion (page 282).

Target User DN
Specify the DN of the target users.

Application Credential ID
Specify the application credential that is stored in the application object. Supports variable
expansion. For more information, see Variable Expansion (page 282).

Login Parameter Strings

Specify each login parameter for the application. The login parameters are the authentication
keys stored in the application object.

Example
Do | sek 350 credential »| @
Specify credential repository object DN: * | 4 iGroupWWisel GroupiWise_Repository Q

Render browsed DM relative to policy

Specify target user DM: * | Destination Attributel"DirML-ADCankext", class name="User";

Populate the Following From an application object
Specify application credential ID: * | GroupiWise_Credential

Specify login parameter strings: | Usernanne, Passwiord

Actions 269

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_credprov/data/bookinfo.html
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_credprov/data/bookinfo.html

Set SSO Passphrase

Sets the Novell SecureLogin passphrase and answer when a User object is provisioned. This action
is part of the Credential Provisioning policies. For more information, see Novell Credential
Provisioning Policies (http://www.novell.com/documentation/idm35/index.html?page=/
documentation/idm35/policy _credprov/data/bookinfo.html).

Fields

Credential Repository Object DN

Specify the DN of the repository object. Supports variable expansion. For more information,
see Variable Expansion (page 282).

Target User DN
Specify the DN of the target users.

Question Strings

Specify the SecureLogin passphrase question.

Answer String

Specify the SecureLogin passphrase answer.

Example
Do | set 550 passphrase w | @
Specify credential repository object DM: * | L \Grouphsise|Groupiise_Repositary Q

Rendetr browsed DM relative to paolicy

e

Specify target user DM: * | Destination Atkribute ' DirsML-A0Conkext”, class name="User";
Question string: * | "Employes code?”

Answer string: * | AttributedworkforceID")

The SecureLogin passphrase question and answer are stored as strings in the policy.

270 Policies in Designer 2.0

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_credprov/data/bookinfo.html
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_credprov/data/bookinfo.html

Set XML Attribute

Sets an XML attribute on a set of elements selected by an XPath expression.

Fields

Name
Specify the name of the XML attribute. This name can contain a namespace prefix if the prefix
has been previously defined in this policy. Supports variable expansion. For more information,
see Variable Expansion (page 282).

XPath Expression
XPath 1.0 expression that returns a node set containing the elements on which the XML
attribute should be set.

String
Specify the value of the XML attribute.

Example
Do |set ¥ML aktributs v 3
Enter variable name: * | cert-id C%
Specify ¥Path expression: * | [ﬁ_ﬁj B S:p
Specify string: * | "cilotusidaminaldataieng. id

Actions 271

Status

Generates a status notification.

Fields

Level

Specify the status level of the notification. The levels are error, fatal, retry, success, and
warning. Supports variable expansion. For more information, see Variable Expansion
(page 282).

Message

Provide the status message using the Argument Builder.

Remarks

If level is retry then the policy immediately stops processing the input document and schedules a
retry of the event currently being processed.

If the level is fatal, the policy immediately stops processing the input document and initiates a
shutdown of the driver.

If a the current operation has an event-id, that event-id is used for the status notification, otherwise
there is no event-id reported.

Example
v @
Specify level: * | warning 3
Specify string: * | Source DM{)+": operation vetoed on out-of -scope-object”

272 Policies in Designer 2.0

Start Workflow

Starts the workflow specified by workflow-id for the recipient DN on the User Application server
specified by a URL and using credentials specified by the ID and password. The recipient must be
an LDAP format DN of an object in the directory served by the User Application server. The
additional arguments to the workflow can be specified by named strings. The number of the strings
and the names used are dependent on the workflow to be started.

Fields

Provisioning Request DN
Specify the DN of the workflow to start in LDAP format. Supports variable expansion.
Supports variable expansion. For more information, see Variable Expansion (page 282).

User Application URL
Specify the URL of the User Application server where the workflow will run. Supports variable
expansion. Supports variable expansion. For more information, see Variable Expansion
(page 282).

Authorized User DN

Specify the DN of a user authorized to start workflows on the User Application server in LDAP
format. Supports variable expansion. Supports variable expansion. For more information, see
Variable Expansion (page 282).

Authorized User Password

Specify the password of the authorized user to start workflows on the User Application server.
Store the password as a Named Password on the driver object. This allows the password to be
encrypted when it is stored.

Recipient DN
Specify the DN of the recipient of the workflow in LDAP format.

Additional Arguments
Specify the arguments for the workflow. The arguments are different for each workflow.
Example

The following example starts a workflow process each time there in an add operation. The workflow
is a request for a cell phone. To view the policy in XML, see start workflow.xml (../samples/
start workflow.xml).

Actions

273

../samples/start_workflow.xml

E . Z Start Workflow

Conditions

. Z Condition Group 1

v % if operation equal "add"

start workflow(id="cn="workfowadmin,o=Pecple”, url="http: i/localbost; G050/ IDMProy ",

s & warkflow-id="CM=ApproveellPhone, Ch=ReguestDefs, CM=AppConfig, Ch=UserApplication, Ch=0riverSet, O=nowvel",
arg-passwiord{Mamed Password("worlflow-admin'Y), dni{Parse Dh"gualified-slash”, "ldap", xPath{"@gqualified-src-dn")))
provider="ACMEWireless", reason="new hire"}

stark workflow W | @

Specify provisioning request DK; * | CH=approveCelPhone, CN=RequestDefs, CN=AppConfig, Ch= | Q

Specify user application URL: * | http: /flocalhost: 3030, I0MProy |

Specify authorized user DMy * | cn='Workfowadmin, o=People | Q

Specify authorized user password: * | Mamed Password("workFlow-admin”) |

Specify recipient DM: * | Parse DM("qualified-slash”, "ldap”, ¥Path{"@qualified-src-dn™)) |

Specify additional arguments: | provider, reason |

274 Policies in Designer 2.0

Strip Operation Attribute

Strips all occurrences of an attribute from the current operation.

Fields

Name

Specify the name of the attribute to be stripped. Supports variable expansion. For more
information, see Variable Expansion (page 282).

Example

The example detects when an e-mail address is changed and sets it back to what it was. The policy
name is Policy: Reset Value of the E-mail Attribute, and it is available for download from the Novell
Support Web site. For more information, see Downloading Identity Manager Policies (http://
www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/
policydownloadable.html). To view the policy in XML, see 001-Input-PushBackOnEmail.xml (../
samples/001-Input-PushBackOnEmail.xml).

B 5 Push back on email changing

Condikions

. Z Condition Group 1

v 5 if class name equal "User"

v 5 if operation attribute 'Email’ changing

[Actons

o 5 set source attribute value("Email", Destination Attributel"Internet EMail Address"))
o 5 sktip operation attributedEmail")

strip operation attribute @

Specify name: * ‘ Email | Qa

The action strips the attribute of Email. The value that is kept is what was in the destination Email
attribute.

Actions 275

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/policydownloadable.html
../samples/001-Input-PushBackOnEmail.xml

Strip XPath

Strips nodes selected by an XPath 1.0 expression.

Fields

XPath Expression

Specify the XPath 1.0 expression that returns a node set containing the nodes to be stripped.

Remarks

For more information on using XPath expression with policies, see XPath 1.0 Expressions (http://
www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/
policyxpathexpression.html#policyxpathexpression).

Example

Do |strip ¥Path expression v @

Specify ¥Path expression; * | *{@attr-name="0L1 6l B N

276 Policies in Designer 2.0

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/policyxpathexpression.html#policyxpathexpression

Trace Message

Sends a message to DSTRACE.

Fields

Level

Specify the trace level of the message. The default level is 0. The message only appears if the
specified trace level is less than or equal to the trace level configured in the driver.

For information on how to set the trace level on the driver, see Versioning Information in the
Novell Identity Manager Administration Guide (http://www.novell.com/documentation/idm35/
index.html).

Color

Select the color of the trace message.

String

Specify the value of the trace message.

Example

The example has four rules that implement a Placement policy for User objects based on the first
character of the Surname attribute. It generates both a trace message and a custom Novell Audit or
Sentinel event. The Trace Message action is used to send a trace message into DSTRACE. The
policy name is Policy to Place by Surname and it is available for download from the Novell Support
Web site. For more information, see Downloading Identity Manager Policies (http://
www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/
policydownloadable.html). To view the policy in XML, see 001-Placement-BySurname.xml (../
samples/001-Placement-BySurname.xml).

W cctup Local Yariables

E 5 Surname A-I: place in Users1

Conditions

& Condition Group 1

v 5 if class name equal "ser”

v 5 if operation attribuke 'Surname’ match “[a-i].*"

v 5 set operation destination DM{dn" Training|Users\ActivelUsers1"+""+Operation Attribute("CH"Y))

v 5 trace messagelcolor="yellmw", Local Yariable"L\WUsers1"))

v fr generate event(id="1000", text1=Local Yariable("Lvlsers1"))

o 5 Surname J-R: place in Users2

v 5 Surname 5-7Z: place in Users3

Actions 277

http://www.novell.com/documentation/idm35/index.html
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/policydownloadable.html
../samples/001-Placement-BySurname.xml

Do | trace message v| @

Specify level: | |
Select color: |§.-'Ellnw v|
specify string: * | Local variable("Ly¥Users1") |

The action sends a trace message to DSTRACE. The contents of the local variable is LVUsers1 and
it shows up in yellow in DSTRACE.

278 Policies in Designer 2.0

Veto

Vetoes the current operation.

Example

The example excludes all events that come from the specified subtree. The rule is from the
predefined rules that come with Identity Manager. For more information, see Event Transformation
- Scope Filtering - Exclude Subtrees (http://www.novell.com/documentation/idm35/
index.html?page=/documentation/idm35/policy designer/data/
prfilterexcludesubtree.html#prfilterexcludesubtree) from the predefined rules. To view the policy in
XML, see predef transformation_filter exclude subtress.xml (../samples/

predef transformation_filter exclude subtrees.xml).

EH 5 Event Transformation - Scope Filtering - Exclude subtree(s)

Conditions

.~ Z rCondition Group 1

v 5 if source DM in subkres "[Enter a subtree to exclude]”

| VT weto() |

Do |vetu:| v| @

The action vetoes all events that come from the specified subtree.

Actions 279

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_designer/data/prfilterexcludesubtree.html#prfilterexcludesubtree
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_designer/data/prfilterexcludesubtree.html#prfilterexcludesubtree
../samples/predef_transformation_filter_exclude_subtrees.xml

Veto If Operation Attribute Not Available

Conditionally cancels the current operation and ends processing of the current policy, based on the
availability of an attribute in the current operation.

Fields

Name

Specify the name of the attribute. Supports variable expansion. For more information, see
Variable Expansion (page 282).

Example

The example does not allow User objects to be created unless the attributes Given Name, Surname,
Title, Description, and Internet EMail Address are available. The policy name is Policy to Enforce
the Presences of Attributes, and it is available for download from the Novell Support Web site. For
more information, see Downloading Identity Manager Policies (http://www.novell.com/
documentation/idm35/index.html?page=/documentation/idm35/policy/data/
policydownloadable.html). To view the policy in XML, see 001-Create-RequiredAttrs.xml (../
samples/001-Create-RequiredAttrs.xml).

Bl o 5 User required attributes: First/Last Name, Title, Description, Email

Conditions

. % Condition Group 1

v 5 if class name equal "User"

veto if operation attribute not available!"Given Mame")
veto if operation attribute not available"Surname™)
weto if operation attribute not awvailable"Tite")

veto if operation attribute not available"Description™)

SNENENENEN
R R R

veto if operation attribute not availabled"Internet EMail Address")

Do | veto iF operation attribute not avaiable | (?)

Speciy name: * | Given Name Q’

The actions vetoes the operation if the attributes of Given Name, Surname, Title, Description, and
Internet Email Address are not available.

280 Policies in Designer 2.0

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/policydownloadable.html
../samples/001-Create-RequiredAttrs.xml

While

Causes the specified actions to be repeated while the specified conditions evaluate to True.

Fields

Conditions

Specify the condition to be evaluated.

Actions

Specify the actions to be repeated if the conditions evaluate to True.

Example

SRV Vil |

Conditions

& Condition Group 1

& if operation equal "add"

& setlocal variable("counter”, "1")
& whie
do

if local wariable 'counter' nok greater than "10"

trace messagelcolor="yellow", level="0", "Counter =
—"+Local ¥ariable!"counter")

set local variablel"counter”, ¥Path("$counter + 1)

Do | while v | @

Specify conditions: * | and(if local wariable ‘counter’ not greater than) |

Specify action: * | do-trace-message, do-set-local-varisble |

Actions 281

Variable Expansion

Allows for the use of dynamic variables in the action.

Remark

Many actions support dynamic variable expansion in their attributes or content. Where supported, an
embedded reference of the form $<variable-name>$ is replaced with the value of the local or global
variable with the given name. $<variable-name>$ must be a legal variable name. For information on
what is a legal XML name, see W3C Extensible Markup Language (XML) (http://www.w3.org/TR/
2004/REC-xml-20040204/#NT-Name).

If the given variable does not exist, the reference is replaced with the empty string. Where it is
desirable to use a single $ and not have it interpreted as a variable reference, it should be escaped
with an additional $ (for example, You owe me $$100.00).

282 Policies in Designer 2.0

http://www.w3.org/TR/2004/REC-xml-20040204/#NT-Name

Noun Tokens

Noun tokens expand to values that are derived from the current operation, the source or destination

data stores, or some external source.

This section contains detailed information about all noun tokens that are available through using the

Policy Builder interface.

*

*

*

*

“Added Entitlement” on page 284
“Association” on page 285
“Attribute” on page 286

“Character” on page 287

“Class Name” on page 288
“Destination Attribute” on page 289
“Destination DN on page 291
“Destination Name” on page 293
“Document” on page 294
“Entitlement” on page 295

“Generate Password” on page 296
“Global Configuration Value” on page 297
“Local Variable” on page 298
“Named Password” on page 300
“Operation” on page 302

“Operation Attribute” on page 303
“Operation Property” on page 305
“Password” on page 306

“Query” on page 307

“Removed Attribute” on page 308
“Removed Entitlements” on page 309
“Resolve” on page 310

“Source Attribute” on page 311
“Source DN on page 312

“Source Name” on page 313

“Time” on page 314

“Text” on page 315

“Unique Name” on page 317
“Unmatched Source DN on page 320
“XPath” on page 321

“Variable Expansion” on page 322

Noun Tokens 283

Added Entitlement

Expands to the values of an entitlement granted in the current operation.

Fields

Name

Name of the entitlement. Supports variable expansion. For more information, see Variable
Expansion (page 322).

Remarks
If the token is used in a context where a node set is expected, the token expands to a node set

containing all of the values for that entitlement. If it is used in a context where a string is expected,
the token expands to the string value found.

Example

& iadded Entitlement;"manager);

284 Policies in Designer 2.0

Association

Expands to the association value from the current operation.

Example

The example is from the predefined rules that come with Identity Manager. For more information on
the predefined rule, see Command Transformation - Publisher Delete to Disable (http://
www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy designer/
data/prdeletetodisable.html#prdeletetodisable).

The action of Remove Association uses the Association token to retrieve the value from the current
operation. The rule removes the association from the User object so that any new events coming
through do not affect the User object. To view the policy in XML, see

predef command delete to disable.xml (../samples/predef command delete to disable.xml).

B é Command Transformation - Publisher Delete to Disable

Conditions

. % Condition Group 1

w4 5' if operation equal "delete"

v 5 if class name equal "User”

v 5’ set destination attribute value!"Login Disabled", "true")

v 5’ remove association(association(Association] 1)

Noun Tokens 285

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_designer/data/prdeletetodisable.html#prdeletetodisable
../samples/predef_command_delete_to_disable.xml

Attribute

Expands to the value of an attribute from the current object in the current operation and in the source
data store. It can be logically thought of as the union of the operation attribute token and the source
attribute token. It does not include the removed values from a modify operation.

Fields

Name

Specify the name of the attribute. Supports variable expansion. For more information, see
Variable Expansion (page 322).

Remarks

If the token is used in a context where a node set is expected, the token expands to a node set
containing all of the values for that attribute. If it is used in a context where a string is expected, the
token expands to the string value found.

Example

The example is from the predefined rules that come with Identity Manager. For more information,
see Creation - Set Default Password (http://www.novell.com/documentation/idm35/
index.html?page=/documentation/idm35/policy designer/data/
prdefaultpassword.html#prdefaultpassword).

The action of Set Destination Password uses the attribute token to create the password. The
password is made up of the Given Name attribute and the Surname attribute. When you are in the
Argument Builder Editor, you browse and select the attribute you want to use. To view the policy in
XML, see predef creation_set default password.xml (../samples/

predef creation_set default password.xml).

B 5' Creation - Set Default Password

Conditions

& Condition Group 1

v 5 if class name equal "User"

v 5 set destination password{Attribute "Given Mame")+aktribute!"Surname"))

fa] EAttribute{"Given Mame")i
& Atbributed"Surname")

22 Editor

5 Da nak krace:

Marne: * | Given Mame | Q

286 Policies in Designer 2.0

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_designer/data/prdefaultpassword.html#prdefaultpassword
../samples/predef_creation_set_default_password.xml

Character

Expands to a character specified by a Unicode* code point.

Remarks

For a listing of Unicode values and characters, see Unicode Code Charts (http://www.unicode.org/
charts/).

Fields

Character Value

The Unicode code point of the character. Supports variable expansion. For more information,
see Variable Expansion (page 322).

A hexadecimal number can be specified if it is prefixed with 0x, as in C-based programming
languages.

Example

i Character{value="10")

2# Editor

5 Do nok krace: [False | w

Character walue: * | 10

Noun Tokens 287

http://www.unicode.org/charts/

Class Name

Expands to the object class name from the current operation.
Example

& Class Mamef

288 Policies in Designer 2.0

Destination Attribute

Expands to the specified attribute value an object.

Fields

Name
Name of the attribute. Supports variable expansion. For more information, see Variable
Expansion (page 322).

Class Name

(Optional) Specify the class name of the target object. Leave the field blank to use the class
name from the current object. Supports variable expansion. For more information, see Variable
Expansion (page 322).

Select Object
Select Current Object, DN, or Association.

Remarks

If the token is used in a context where a node set is expected, the token expands to a node set
containing all of the values for that attribute. If it is used in a context where a string is expected the
token expands to the string value found.

Example

The example is from the Govern Groups for User Based on Title policy, which is available for
download from the Novell Support Web site. For more information, see Downloading Identity
Manager Policies (http://www.novell.com/documentation/idm35/index.html?page=/documentation/
idm35/policy/data/policydownloadable.html). To view the policy in XML, see 003-Command-
AddCreateGroups.xml (../samples/003-Command-AddCreateGroups.xml).

The policy creates the Destination Attribute with the Argument Builder. The action of Set Local
Variable contains the Destination Attribute token.

Noun Tokens 289

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/policydownloadable.html
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/policydownloadable.html
../samples/003-Command-AddCreateGroups.xml
../samples/003-Command-AddCreateGroups.xml

E Z Setlocal variables to test existence of groups and for placement

Conditions

% Condition Group 1
v 5 if class name equal "User"
And
% Condition Group 2

& if operation equal "add"

v 5’ if operation equal "modify"

set local variable("manager-group-dn”, "UsersiManagersGroup”)

set local variable("manager-group-infa®, Destination Attribute("Object Class", dnilocal Variable("manager-group-dn®™ 1)

set local variable!"emploves-group-dn”, "UsersiEmploveesaroup™

set local variable!"emploves-graup-infa”, Destination Attribuke™Object Class”, dnilocal Yariable!"emploves-graup-dn™i

& Destination Attribute"Object Class”, dnii)

22 Editor
5’ Do nak trace:
Mame: * | Object Class | Q,
Class name: | | Q,
Select object:
Specify ON; * | Local Yariable! " emploves-group-dn™) |

You build the Destination Attribute through the Editor. In this example, the attribute of Object Class
is set. DN is used to select the object. The value of DN is the Local Variable of manager-group-dn.

290 Policies in Designer 2.0

Destination DN

Expands to the destination DN specified in the current operation.

Fields

Convert

Select whether or not to convert the DN to the format used by the source data store.

Start
Specify the RDN index to start with:
Index O is the root-most RDN

*

+ Positive indexes are an offset from the root-most RDN
¢ Index -1 is the leaf-most segment

+ Negative indexes are an offset from the leaf-most RDN towards the root-most RDN

Length

Specify the number of RDN segments to include. Negative numbers are interpreted as (total #
of segments + length) + 1. For example, for a DN with 5 segments a length of -1 = (5 + (-1)) +
1=5-2=(5+(2))+1=4,etc.

Remarks

If start and length are set to the default values {0,-1}, the entire DN is used; otherwise only the
portion of the DN specified by start and length is used.

Example

The example uses the Destination DN token to set the value for the local variable of target-container.
The policy creates a department container for the User object if it does not exist. The policy is from
the predefined rules that come with Identity Manager. For more information, see Command
Transformation - Create Departmental Container - Part 1 and Part 2 (http://www.novell.com/
documentation/idm35/index.html?page=/documentation/idm35/policy designer/data/
prdeptcontainer.html#prdeptcontainer). To view the policy in XML, see

predef command create dept containerl.xml (../samples/

predef command create dept containerl.xml).

B 5' Command Transformation - Create Departmental Container - Part 1

Conditions

. % Condition Group 1
v Z if operation equal "add"

v 5' set local wariable"target-containet”, Destination Dr{length="-2"1

v 7

set local wariable"does-target-exist”, Destination Attributel"objectclass", class name="Crganizational
Unit", drn{Local Wariablef"target-container 1))}

Noun Tokens 291

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_designer/data/prdeptcontainer.html#prdeptcontainer
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_designer/data/prdeptcontainer.html#prdeptcontainer
../samples/predef_command_create_dept_container1.xml

I EDestinatinn DN{Iength="-2"]|§

22 Editor

5 Do nok trace: |False |w
Start: | O
Length: | -2

Convert to source DM Format: |False w

292 Policies in Designer 2.0

Destination Name

Expands to the unqualified Relative Distinguished Name (RDN) of the destination DN specified in
the current operation.

Example

&5 Destination Mame()

Noun Tokens 293

Document

Reads the XML document pointed to by the URI and returns the document node in a node set. The
URI can be relative to the URI of the including policy. With any error, the result is an empty node
set.

Fields

XML Document URI
Specify the XML document URI.

Example

i Document"MovellSouth Driver Set\Delimited Text")

2 Editor

5 Do nok trace; |False

¥ML document URI: * | MovellSouthh Driver Set!Delimited Tesxt

294 Policies in Designer 2.0

Entitlement

Expands to the values of a granted entitlement from the current object.

Fields

Name

Name of the entitlement. Supports variable expansion. For more information, see Variable
Expansion (page 322).

Remarks

If the token is used in a context where a node set is expected, the token expands to a node set
containing all of the values for that entitlement. If it is used in a context where a string is expected,
the token expands to the string value found.

Example

i Entitlement"manager™)

2 Editor

5’ Do not trace; |False »

i
Mame: * | manager Q,

Noun Tokens 295

Generate Password

Generates a random password that conforms to the specified password policy.

Fields

Password Policy

The DN of the password policy that receives the randomly generated password. Supports
variable expansion. For more information, see Variable Expansion (page 322).

Render browsed DN relative to policy
Select whether the DN of the password policy is relative to the policy being created.

Example

(& Generate Password{policy-dn="Security|Password PoliciesiSample Password Policy™)

296 Policies in Designer 2.0

Global Configuration Value

Expands to the value of a global configuration variable.

Fields

Name

Name of the global configuration value. Supports variable expansion. For more information,
see Variable Expansion (page 322).

Example

¢t Global Configuration Yalue!"ConneckedSystemiame")

Noun Tokens 297

Local Variable

Expands to the value of a local variable.

Fields

Name

Specify the name of the local variable. Supports variable expansion. For more information, see
Variable Expansion (page 322).

Example

The example is from the Govern Groups for User Based on Title policy, which is available for
download from the Novell Support Web site. For more information, see Downloading Identity
Manager Policies (http://www.novell.com/documentation/idm35/index.html?page=/documentation/
idm35/policy/data/policydownloadable.html). To view the policy in XML, see 003-Command-
AddCreateGroups.xml (../samples/003-Command-AddCreateGroups.xml).

The action Add Destination Object uses the Local Variable token.

v 5 Set local variables to test existence of groups and for placement

H 5’ Create ManagersGroup, if needed

Conditions

. Z Condition Group 1

v 5 if local wariable 'manager-group-info’ available

v 5 if local wariable ‘'manager-group-info’ not equal "group”

o 5 add destination objecticlass name="Group", when="before", dniLocal Variable("manager-group-dn")))

v 5' Create EmployeesGroup, if needed
4 5' IF Title indicates Manager, add to ManagerGroup and set rights

v 5 If Title does not indicate Manager, add to EmployeeGroup and set rights

i Local Yariablet"manager-group-dn™

22 Editor
5' Do nat trace:
Wariable name: * | manager-group-dn | Q

298 Policies in Designer 2.0

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/policydownloadable.html
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/policydownloadable.html
../samples/003-Command-AddCreateGroups.xml
../samples/003-Command-AddCreateGroups.xml

Local Yariable Selector

Select a local wariable From the list,

current-node
current-op
current-value
does-target-exist
employee-group-dn
employee-group-info
FrommMds
ranader-graup-dn
manager-group-info
target-container

[oK H Cancel]

The Local Variable can only be used if the action Set Local Variable has been used previously in the
policy. It sets the value that is stored in the Local Variable. In the Editor, you click the browse icon
and all of the local variables that have been defined are listed. Select the correct local variable.

The value of the local variable is group-manager-dn. In the example, the Set Local Variable action
defined group-manager-dn as DN of the manager’s group Users\ManagersGroup.

Noun Tokens 299

Named

Password

Expands to the named password from the driver.

Fields

Name

Name of the password. Supports variable expansion. For more information, see Variable
Expansion (page 322).

Example

The Named Password noun token can only be used if a Named Password has been set on the driver
object. The Named Password is used to save a password in an encrypted form. Sometimes it is
required to provide a password to allow an action to function. If you enter the password as clear text,
it is a security risk. For more information on Named Passwords, see the Novell Identity Manager
Administration Guide (http://www.novell.com/documentation/idm35/index.html).

The example uses the Start Workflow (page 273) action. It requires that the password for the
workflow administrator be entered. To view the policy in XML, see start workflow.xml (../samples/
start_workflow.xml).

B % start Workflow

Conditions

. & Condition Group 1

v % I operation equal "add"

start workflow(id="cn="workfowadmin,o=People”, url="http: flocalbost; SOS0/I0MProyw ",
warkflow-id="Ch=approveelPhone, Ch=RequestDefs, CN=AppCanfig, Ch=serapplication, Ch=DriverSet, O=naowvel",
arg-password(Mamed Password("worlkflow-admin"Y), dniParse Dh("gualified-slash”, "ldap”, ¥Path@qualified-src-dn™))
provider="ACMEWIreless", reason="rew hire"}

stark workflow

v|@

Specify provisioning request DK; * | CH=approveCelPhone, CN=RequestDefs, CN=AppConfig, Ch= | Q

Specify user application URL: * | http: /flocalhost: 3030, I0MProy |

Specify authorized user DMy * | cn='Workfowadmin, o=People | Q

Specify authorized user password: * | Mamed Password("workFlow-admin”) |

Specify recipient DM: * | Parse DM("qualified-slash”, "ldap”, ¥Path{"@qualified-src-dn™)) |

Specify additional arguments: | provider, reason |

& Mamed Password("waorkflaw-admin®

300 Policies in Designer 2.0

http://www.novell.com/documentation/idm35/index.html
http://www.novell.com/documentation/idm35/index.html
../samples/start_workflow.xml

22 Editor

5’ Do nok trace: |False |w

Lk -
Password name: * | o ekflowm-admin

Select Named Password

The selected named password is passed to the expression in the Argument Builder,

"
Mame Display Mame

srnpt-admin smpk-admin
wirkflow-admin wotkflow-admin

Noun Tokens 301

Operation

Expands to the name of the current operation.

Example

it Operationi)

302 Policies in Designer 2.0

Operation Attribute

Expands to the value of an attribute from the current operation. It does not include the removed
values from a modify operation.

Fields

Name

Specify the name of the attribute. Supports variable expansion. For more information, see
Variable Expansion (page 322).

Example

The example has four rules that implement a Placement policy for User objects based on the first
character of the Surname attribute. It generates both a trace message and a custom Novell Audit or
Sentinel event. The policy name is Policy to Place by Surname, and it is available for download
from the Novell Support Web site. For more information Downloading Identity Manager Policies
(http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/
data/policydownloadable.html). To view the policy in XML, see 001-Placement-BySurname.xml (../
samples/001-Placement-BySurname.xml).

W Setup Local Yariables

= fr Surname A-I: place in Users1

Conditions

.~ % Condition Group 1

v 5 if class name equal "User"

v 5 if operation attribute 'Surname’ match "[a-i].*"

v 5' set operation destination DM(dn(" TrainingiUsersiActivelUsers1"+" "+ Operation Attribute" "))

v 5 trace messageicolor="yellow", Local Yariable"LvUsers1"))

v 5 generate event(id="1000", text1=Local Yariable("L¥sers1"))

o 5 Surname J-R: place in Users2

¥ 5 Surname 5-Z: place in Users3

&b "TrainingiUsersiackive Jsers1"
& |||II||
&b Operation Attributel"C")

22 Editor

5 Da nak ktrace:

Marme: * | oM | Q

Noun Tokens 303

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/policydownloadable.html
../samples/001-Placement-BySurname.xml

The action Set Operation Destination DN contains the Operation Attribute token. The Operation
Attribute token sets the Destination DN to the CN attribute. The rule takes the context of
Training\Users\Active\Users and adds a \ plus the value of the CN attribute.

304 Policies in Designer 2.0

Operation Property

Expands to the value of the specified operation property on the current operation.

Fields

Name

Specify the name of the operation property. Supports variable expansion. For more
information, see Variable Expansion (page 322).

Example

fh Operation Property("myStoredproperty™

Noun Tokens 305

Password

Expands to the password specified in the current operation.

Example

i Password()

306 Policies in Designer 2.0

Query

Causes a query to be performed in the source or destination data store and returns the resulting
instances.

Fields

Datastore
Specify the data store to query.
Scope
Select the scope of the query. The options are entry, subordinates, or subtree.

Max Result Count

Specify the maximum number of results returned from the query.

Class Name

Specify the class name in the query. If a class name is not specified, all classes are searched.
Supports variable expansion. For more information, see Variable Expansion (page 322).

Select Object

Specify the base of the query. It can be the current object, DN, or an association.

Match Attributes
Select the attributes to search for.
Strings

Specify the set of attributes to return. If nothing is specified, no attributes are read. Use an
asterisk to read all attributes.

Example

i Queryidass name="User", scope="subordinates”, matchi"CM"), match{"L"), "Prowa”, "Surname”, "Given Mame")

Datastare: |Destination |
Scope: | Subtree W
Max result count:
Class name: | User Q
Select object: | Current objeck %

Match attributes: | CM, L

Read attribute: | “Provo” %

Noun Tokens 307

Removed Attribute

Expands to the specified attribute value being removed in the current operation. It applies only to a
modify operation.

Fields

Name

Specify the name of the attribute. Supports variable expansion. For more information, see
Variable Expansion (page 322).

Remarks

If the token is used in a context where a node set is expected, the token expands to a node set
containing all of the values for that attribute. If it is used in a context where a string is expected, the
token expands to the string value found.

Example

M Removed AttributelMember™)

308 Policies in Designer 2.0

Removed Entitlements

Expands to the values of the an entitlement revoked in the current operation.

Fields

Name

Specify the name of the entitlement. Supports variable expansion. For more information, see
Variable Expansion (page 322).

Remarks

If the token is used in a context where a node set is expected, the token expands to a node set
containing all of the values for that entitlement. If it is used in a context where a string is expected,
the token expands to the string value found.

Example

& Removed Entitlementi"manager™)

Noun Tokens 309

Resolve

Resolves the DN to an association key, or the association key to a DN in the specified data store.

Fields

Datastore

Select the destination or source data store to be queried.

Selected Resolve Type

Select to resolve the association key to a DN or to resolve the DN to an association key.

Example

fh Resolveldatastore="src", dnf))

22 Editor

5’ Do not trace: |False |»
Datastore: | Source b
Resolve type: |DM bo Association | %

DM: * | "manager”

310 Policies in Designer 2.0

Source Attribute

Expands to the values of an attribute from an object in the source data store.

Fields

Class Name
(Optional) Specify the class name of the target object. Leave the field blank to use the class
name from the current object. Supports variable expansion. For more information, see Variable
Expansion (page 322).

Name
Name of the attribute. Supports variable expansion. For more information, see Variable
Expansion (page 322).

Object

Select the source object. This object can be the current object, or can be specified by a DN or an
association.

Remarks

If the token is used in a context where a node set is expected, the token expands to a node set
containing all of the values for that attribute. If it is used in a context where a string is expected, the
token expands to the string value found.

Example

&b Source Attributei"Member", class name="Group"}

22 Editor

5 Do nok trace: |False |w

Mame: * | mergher

PP

Class name: | Group

Select object: |Current object »

Noun Tokens 311

Source DN

Expands to the source DN from the current operation.

Fields

Convert

Select whether or not to convert the DN to the format used by the destination data store.

Start
Specify the RDN index to start with:
¢ Index 0 is the root-most RDN
+ Positive indexes are an offset from the root-most RDN
¢ Index -1 is the leaf-most segment

+ Negative indexes are an offset from the leaf-most RDN towards the root-most RDN

Length

Number of RDN segments to include. Negative numbers are interpreted as (total # of segments
+ length) + 1. For example, for a DN with 5 segments a length of -1 =(5+(-1))+1=5,-2=(5
+(-2))+1=4,etc.

Remarks

If start and length are set to the default values {0,-1}, the entire DN is used; otherwise only the
portion of the DN specified by start and length is used.

Example

fh Source DMength="-2")

22 Editor

5 Do not trace: |false
Skart: | O
Length: | -2

Convert to destination DM format; |False

312 Policies in Designer 2.0

Source Name

Expands to the unqualified relative distinguished name (RDN) of the source DN specified in the
current operation.

Example

it Source MNamel)

Noun Tokens 313

Time
Expands to the current date/time into the format, language, and time zone specified.

Fields

Format

Specify the date/time format. Select a named time format or specify a custom format pattern.
Supports variable expansion. For more information, see Variable Expansion (page 322).

Language

Specify the language. (It defaults to the current system language.) Supports variable expansion.
For more information, see Variable Expansion (page 322).

Time zone

Specify the time zone. (It defaults to the current system time zone.) Supports variable
expansion. For more information, see Variable Expansion (page 322).

Example

i Time(format="1CTIME", lang="en-U5", kz="GMT0")

2# Editor

5' Do not trace: |False |»

Format: * | Mumber of seconds since midnight, January 1, 1970 [ICTIME] w| D
Language: |English (United Statesi[en-U3] W
Time zone: | GMT-H00:00[GEMTO] “

314 Policies in Designer 2.0

Text

Expands to the text.

Fields

Text

Specify the text. Supports variable expansion. For more information, see Variable Expansion
(page 322).

Example

The example is from the Govern Groups for User Based on Title policy, which is available for
download from the Novell Support Web site. For more information, see Downloading Identity
Manager Policies (http://www.novell.com/documentation/idm35/index.html?page=/documentation/
idm35/policy/data/policydownloadable.html).To view the policy in XML, see 003-Command-
AddCreateGroups.xml (../samples/003-Command-AddCreateGroups.xml).

The Text token is used in the action Set Location Variable to define the DN of the manager’s group.
The Text token can contain objects or plain text.

B « 5 Set local variables to test existence of groups and for placement

Zonditions

% Condition Group 1

v % if class name equal "User"

% Condition Group 2
& f operation equal "add"

v 7 operation equal "modify"

set local variable!"manager-group-dn”, "Users\Managersaroup™)

set local variable!"manager-group-info”, Destination AttribukeObject Class", drnilocal Yariable!"manager-group-dn®y
set local variable("emplovee-group-dn®, "Users\EmploveesGroup™)

set local variable!"emploves-group-info”, Destination Attribubed"Object Class”, dnilocal Yariable"emploves-group-dn™iin

i "UsersiManagersGroup”

£# Editor

5 Da nat trace:

Text: UsersiManagersGroup C%

Noun Tokens 315

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/policydownloadable.html
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/policydownloadable.html
../samples/003-Command-AddCreateGroups.xml
../samples/003-Command-AddCreateGroups.xml

The Text token contains the DN for the manager’s group. You can browse to the object you want like
to use, or type the information into the editor.

316 Policies in Designer 2.0

Unique Name

Expands to a pattern-based name that is unique in the destination data store according to the criteria
specified.

Fields

Attribute Name

Specify the name of attribute to check for uniqueness.

Scope

Specify the scope in which to check uniqueness. The options are subtree or subordinates.

Start Search
Select a starting point for the search. The starting point can be the root of the data store, or be
specified by a DN or association.

Pattern

Specify patterns to use to generate unique values by using the Argument Builder.

Counters Use
Select when to use a counter. The options are:
+ always
* never
¢ fallback

Counters Pattern
Select which pattern to use the counter with. The options are:
* first
+ last
+ all

Start
The starting value of the counter.
Digits
Specify the width in digits of counter; the default is 1. The Pad counter with leading 0's option
prepends 0 to match the digit length. For example, with a digit width of 3, the initial unique
value would be appended with 001, then 002, and so on.
If Cannot Construct Name
Select the action to take if a unique name cannot be constructed. The options are:
¢ Ignore, return empty
+ Generate warning, return empty name
+ Generate error, abort current transaction

+ Generate fatal error, shutdown driver

Noun Tokens 317

Remarks

Each <arg-string> element provides a pattern to be used to create a proposed name.

A proposed name is tested by performing a query for that value in the name attribute against the
destination data store using the <arg—-dn> element or the <arg-association> element as the
base of the query and scope as the scope of the query. If the destination data store is the Identity
Vault and name is omitted, then a search is performed against the pseudo-attribute “[Entry].rdn”,
which represents the RDN of an object without respect to what the naming attribute might be. If the
destination data store is the application, then name is required.

A pattern can be tested with or without a counter as indicated by counter-use and counter-pattern.
When a pattern is tested with a counter, the pattern is tested repeatedly with an appended counter
until a name is found that does not return any instances or the counter is exhausted. The counter
starting value is specified by counter-start and the counter maximum value is specified in terms of
the maximum number of digits as specified by counter-digits. If the number of digits is less than
those specified, then the counter is right-padded with zeros unless the counter-pad attribute is set to
false. The counter is considered exhausted when the counter can no longer be represented by the
specified number of digits.

As soon as a proposed name is determined to be unique, the testing of names is stopped and the
unique name is returned.

The order of proposed names is tested as follows:

¢ FEach pattern is tested in the order specified. If counter-use="always” and the pattern is one of
the patterns indicated by the counter-pattern then the pattern is tested with a counter, otherwise
it is tested without a counter.

¢ Ifno unique name has been found after the patterns have been exhausted and counter-
use="fallback”, then the patterns indicated by the counter-pattern are retried with a counter.

If all specified combinations of patterns and counters are exhausted, then the action specified by the
on-unavailable is taken.

Example

& Unique Mamed"CH", counker-pattern="first", counter-use="fallback", on-unavailable="error", Uppercass()+ppetcasel)+Uppercasely

The following is an example of the Editor pane when constructing the unique name argument:

Atkribute narme: | CM Q
Scope: [Subtree A
Start search: |Root of datastore s
Pattern: * | UppercaselSubstringlength="1", Attribute"Given Mame" i+ At
“When ko use counters: | Fallback
Use counter with which patterm: | Firsk

Caunker skark; | 1 digits: | 1 Pad counter with leading 0's

The following pattern was constructed to provide unique names:

318 Policies in Designer 2.0

= Uppercase()
= Substring{length="1")
i Atbribube!™Given Nams")
i Akbribube{™Surname")
= Uppercasel)
= Substring{length="1"}
& Akkribube"MI"
= Substringflength="1")
i Attribuke!"Given Name™)
i Atbribubef"Surname")
= Lppercasel)
fh Atbribubei™Given Name™
i Attribubef"Surname")

If this pattern does not generate a unique name, a digit is appended, incrementing up to the specified

number of digits. In this example, nine additional unique names would be generated by the
appended digit before an error occurs (patternl - pattern99).

Noun Tokens 319

Unmatched Source DN

Expands to the part of the source DN in the current operation that corresponds to the part of the DN
that was not matched by the most recent match of an If Source DN condition.

Fields

Convert

Select whether or not to convert the DN format used by the destination data store.

Remarks

If there are no matches, the entire DN is used.

Example

The example is from the predefined rules that come with Identity Manager. For more information,
see Matching - Subscriber Mirrored - LDAP Format (http://www.novell.com/documentation/idm35/
index.html?page=/documentation/idm35/policy designer/data/
prmatchsubmirror.html#prmatchsubmirror). To view the policy in XML, see

predef match sub_mirrored.xml (../samples/predef match sub_mirrored.xml).

The action of Finding Matching Object uses the Unmatched Source DN token to build the matching
information in LDAP format. It takes the unmatched portion of the source DN to make a match.

EH 5 Matching - Subscriber Mirrored - LDAP format

Conditions

& Condition Group 1

v 5’ if source DM in subkree "[Enter base of source hierarchy]"

v é set local wariable("dest-base”, "[Enter base of destination hisrarchy ")

S 5' find matching object{scope="entry", dn{Unmatched Source DM{conyvert="trug"+","+Local
‘ariablel"dest-base")))

&5 Unmatched Source DM{convert="trus")
& "_|"
{4 Local Yariable("dest-base™

22 Editor

é Do nok trace:
Convert bo destination DM Format:

320 Policies in Designer 2.0

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_designer/data/prmatchsubmirror.html#prmatchsubmirror
../samples/predef_match_sub_mirrored.xml

XPath

Expands to results of evaluating an XPath 1.0 expression.

Fields

Expression

XPath 1.0 expression to evaluate.

Remarks
For more information on using XPath expressions with policies, see XPath 1.0 Expressions (http://

www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/
policyxpathexpression.html#policyxpathexpression).

Example

I XPathi™*[@attr-name="00"]value]starts-withistringl,), s

22 Editor

fr Do not trace: |False |

xPath expression: * | *[@attr-name="0L"]} valuelstarks-with(stringl.), x0:')] i B .

Noun Tokens 321

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/policyxpathexpression.html#policyxpathexpression

Variable Expansion

Allows for the use of dynamic variables in the noun token.

Remark

Many noun tokens support dynamic variable expansion in their attributes or content. Where
supported, an embedded reference of the form $<variable-name>$ is replaced with the value of the
local or global variable with the given name. $<variable-name>$ must be a legal variable name. For
information on what is a legal XML name, see W3C Extensible Markup Language (XML) (http://
www.w3.0rg/TR/2004/REC-xml1-20040204/#NT-Name).

If the given variable does not exist, the reference is replaced with the empty string. Where it is
desirable to use a single $ and not have it interpreted as a variable reference, it should be escaped
with an additional $ (for example, You owe me $$100.00).

322 Policies in Designer 2.0

http://www.w3.org/TR/2004/REC-xml-20040204/#NT-Name

Verb Tokens

Verb tokens modify the concatenated results of other tokens that are subordinate to them.

This section contains detailed information about all verbs that are available through the Policy

Builder interface.

*

*

*

*

“Base64 Decode” on page 324
“Base64 Encode” on page 325

“Convert Time” on page 326

“Escape Destination DN” on page 327

“Escape Source DN” on page 328
“Join” on page 329

“Lowercase” on page 330

“Map” on page 331

“Parse DN” on page 332
“Replace All” on page 334
“Replace First” on page 335
“Split” on page 337

“Substring” on page 338
“Uppercase” on page 340

“XML Parse” on page 341

“XML Serialize” on page 342
“Variable Expansion” on page 343

Verb Tokens 323

Base64 Decode

Decodes the result of the enclosed tokens from Base64-encoded data to bytes and then converts the
bytes into a string using the specified character set.

Fields

Character Set

Specify the character set that converts the decoded bytes to a string. It can be any Java
supported character set. If the field is left blank the character set defaults to the system
encoding as specified by the file.encoding System property. Supports variable expansion. For
more information, see Variable Expansion (page 343).

Example

= Baset4 Decodel(charset="JTF-5")
& Operation Atkributel"data™)

324 Policies in Designer 2.0

Base64 Encode

Converts the result of the enclosed tokens to bytes using the specified character set, and then
Base64-encodes the bytes.

Fields

Character Set

Specify the character set that converts the string to bytes. It can be any Java supported character
set. If the filed is left blank the character set defaults to the system encoding as specified by the
file.encoding System property. Supports variable expansion. For more information, see
Variable Expansion (page 343).

Example

= Basefd Encodelcharset="UTF-3")
fh Operation AtkribukedSurnanme")

Verb Tokens 325

Convert Time

Converts the date and time represented by the result of the enclosed tokens from the source format,
language, and time zone to the destination format, language, and time zone.

Fields

Source Format
Specify the source date/time format. Select a named time format or specify a custom format
pattern. Supports variable expansion. For more information, see Variable Expansion
(page 343).

Source Language

Specify the source language (defaults to the current system language).Supports variable
expansion. For more information, see Variable Expansion (page 343).

Source Time Zone
Specify the source time zone (defaults to the current system time zone). Supports variable
expansion. For more information, see Variable Expansion (page 343).

Destination Format
Specify the destination date/time format. Select a named time format or specify a custom
format pattern. Supports variable expansion. For more information, see Variable Expansion
(page 343).

Destination Language
Specify the destination language (defaults to the current system language). Supports variable
expansion. For more information, see Variable Expansion (page 343).

Destination Time Zone

Specify the destination time zone (defaults to the current system time zone). Supports variable
expansion. For more information, see Variable Expansion (page 343).

Example

= Convert Timeddest-format="ddMM ", dest-lang="en-15", dest-tz="america/Chicago”, src-format="mMMdd ", src-lang="en-15", =i
{1 Operation Attribute! birthdate")

Source Format: * | MMDdyY W | M
Source language: | English (United States)[en-US] w
Source time zone: | Mountain Standard Time[MST?MOT] W
Destination Format: * | ddMMyYYYY W |
Destination language: | English (United States)[en-US] L
Destination time zone: | Central Standard Time[AmericajChicaga] W

326 Policies in Designer 2.0

Escape Destination DN

Escapes the enclosed tokens according to the rules of the DN format of the destination data store.

Example

The example is from the predefined rules that come with Identity Manager. For more information,
see Placement - Publisher Flat (http://www.novell.com/documentation/idm35/index.html?page=/
documentation/idm35/policy designer/data/prplacepubflat.html#prplacepubflat). To view the policy
in XML, see predef place pub flat.xml (../samples/predef place pub_flat.xml).

The action of Set Operation Destination DN uses the Escape Destination DN token to build the
destination DN of the User object.

SIS Placement - Publisher Flat

Conditions

. & Condition Group 1

v 5’ if class name equal "User"

v 5 set local variablef"dest-base", "[Enter DM of destination container]")

set pperation destination DM{dn{Local Wariable("dest-base)+","+Escape Destination DM{Unique

s 5, Mame("CH", scope="subtree", Lowercase{Substring({length="1", Operation Attributel"Given
Mame"))+Cperation Attribute"surname")), Lowercasel Substringllength="z2", Operation Attribute"Given
Mame")+Cperation Attribute"Surname" i

&5 Local Variablef"dest-base™
&
= -/ Escape Destination DM
&5 Unigue Mame("CH", scope="subtres", Lowercase(, Lowercasel))

The Escape Destination DN token takes the value in Unique Name and sets it to the format for the
destination DN.

Verb Tokens 327

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_designer/data/prplacepubflat.html#prplacepubflat
../samples/predef_place_pub_flat.xml

Escape Source DN

Escapes the enclosed tokens according to the rules of the DN format of the source data store.

Example

= Escape Source D)
& attribubef"surname")

328 Policies in Designer 2.0

Join

Joins the values of the nodes in the node set result of the enclosed tokens, separating the values by
the characters specified by delimiter. If the comma-separated values (CSV) are true, then CSV
quoting rules are applied to the values.

Fields

Delimiter

(Optional) Specify the string used to delimit the joined values. Supports variable expansion.
For more information, see Variable Expansion (page 343).

Apply CSV Quoting Rules
Applies CSV quoting values.
Example

The example combines all of the members of the group into a CSV record.

= Joinfcsw="true", delimiter=","}
& Attributed Member™)

£# Editor

5 Do not trace: |False |

Delimiter: |,

Apply CSY quating rules

Verb Tokens 329

Lowercase

Converts the characters in the enclosed tokens to lowercase.

Example

This example sets the e-mail address to be name(@slartybartfast.com where the name equals the first
character of the Given Name plus the Surname. The policy name is Policy: Create E-mail from
Given Name and Surname, and it is available for download at the Novell Support Web site. For
more information, see Downloading Identity Manager Policies (http://www.novell.com/
documentation/idm35/index.html?page=/documentation/idm35/policy/data/
policydownloadable.html). To view the policy in XML, see 001-Command-
SetEmailByGivenNameAndSurnam.xml (../samples/001-Command-
SetEmailByGivenNameAndSurname.xml).

B 5 Set email address: name@slartybartfast.com; name = (1 char of Given Name + Surname) == 8 chars

Conditions

. Z Condition Group 1
% if class name equal "User"
and v 7 i operation attribuke 'Given Mame' available

and v 5 if operation attribube "Surname’ available

v 5 strip operation atkribute("Internet Email Address™)

s > set destination attribute value!"Internst Email Address", Lowercase{Substringglength="8", Substring{length="1",
Operation Attribute"Firstame"))+Cperation Atkribute!"LastMame'))+"@slarkvbartfast, com"))

= Lowercasel)
= Substring(length="8"
= substring(length="1"}
& Operation Attribute! FirstMame")
& Operation Aktribube"Lasthame")
&L “@slartybartfast, com"

The Lowercase token sets all of the information in the action Set Destination attribute value to
lowercase.

330 Policies in Designer 2.0

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/policydownloadable.html
../samples/001-Command-SetEmailByGivenNameAndSurname.xml
../samples/001-Command-SetEmailByGivenNameAndSurname.xml

Map

Maps the result of the enclosed tokens from the values specified by the source column to the
destination column in the specified mapping table.

Remarks

If this token is evaluated in a context where a node set result is expected and multiple rows are
matched by the value being mapped, a node set is returned that contains the values from the
destination column of each matching row. Otherwise, only the value from the first matching row is
returned.

The table attribute should be the slash form DN of the Resource object containing the mapping table
to be used. The DN might be relative to the including policy.

Fields

Mapping Table DN

Specify the slash form DN of a Resource object containing the mapping table. Supports
variable expansion. For more information, see Variable Expansion (page 343).

Render Browse DN Relative to Policy
When it is enabled, it displays the mapping table DN relative to the policy. This is the default.

Source Column Name

Specify the name of the source column. Supports variable expansion. For more information,
see Variable Expansion (page 343).

Destination Column Name

Specify the name of the destination column. Supports variable expansion. For more
information, see Variable Expansion (page 343).

Example

= Map({dest="code", src="dept", table="..\Department Table")
i Operation Atkribuked"0U")

£ Editor

5 Do not trace: |False W

Mapping Table DM: * | ..\Department Table C&,

[#]11ake mapping table DM relative ko the policy |

Source column name: * | dept

Destination column name: * | code

Verb Tokens 331

Parse DN

Converts the enclosed token’s DN to an alternate format.

Fields

Start
Specify the RDN index to start with:
¢ Index 0 is the root-most RDN
+ Positive indexes are an offset from the root-most RDN
¢ Index -1 is the leaf-most segment

¢ Negative indexes are an offset from the leaf-most RDN towards the root-most RDN

Length
Number of RDN segments to include. Negative numbers are interpreted as (total # of segments
+ length) + 1. For example, for a DN with 5 segments a length of -1 =(5+(-1))+1=5,-2=(5
+(-2)) +1=4,etc.

Source DN Format

Specifies the format used to parse the source DN.

Destination DN Format

Specify the format used to output the parsed DN.

Source DN Delimiter

Specify the custom source DN delimiter set if Source DN Format is set to custom.

Destination DN Delimiter

Specify the custom destination DN delimiter set if Destination DN Format is set to custom.

Remarks

If start and length are set to the default values {0,-1}, then the entire DN is used; otherwise only the
portion of the DN specified by start and length is used.

When specifying custom DN formats, the eight characters that make up the delimiter set are defined
as follows:
¢ Typed Name Boolean Flag: 0 means names are not typed, and 1 means names are typed

¢ Unicode No-Map Character Boolean Flag: 0 means don’t output or interpret unmappable
Unicode characters as escaped hex digit strings, such as \FEFF. The following Unicode
characters are not accepted by eDirectory: Oxfeff, Oxftfe, Oxfffd, and Oxffff.

¢ Relative RDN Delimiter
+ RDN Delimiter

¢ Name Divider

¢ Name Value Delimiter

¢ Wildcard Character

332 Policies in Designer 2.0

¢ Escape Character

If RDN Delimiter and Relative RDN Delimiter are the same character, the orientation of the name is
root right, otherwise the orientation is root left.

If there are more than eight characters in the delimiter set, the extra characters are considered as
characters that need to be escaped, but they have no other special meaning.

Example

The example uses the Parse DN token to build the value the Add Destination Attribute Value action.
The example is from the predefined rules that come with Identity Manager. For more information,
see Command Transformation - Create Departmental Container - Part 1 and Part 2 (http://
www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy designer/
data/prdeptcontainer.html#prdeptcontainer). To view the policy in XML, see

predef command create dept container2.xml (../samples/

predef command create dept container2.xml).

H ¢ 5' Command Transformation - Create Departmental Container - Part 2

Conditions

.~ % Condition Group 1
v 5 if local wariable 'does-target-

v 5’ if local wariable ‘does-target-exist’ equal ™

add destination object{class name="0rganizational Unit", direct="true", dnfLocal
‘ariabled"target-container™)))

v Z

S 5’ add destination attribute walue("ou", direct="trug", dnilocal Variable!"target-container")), Parse
Dh{"dest-dn", "dot”, length="1", start="-1", Local ¥ariable"target-container")}

= -/ Parse DMN{"dest-dn", "dot", length="1", start="-1"}
i Local Yariable("target-container")

2 Editor

fr Do ok krace;

Stark: | -1

Length: |1

Source DN Format: | destination DM

II

Destination DM Format: | dot

The Parse DN token is taking the information from the source DN and converting it to the dot
notation. The information from the Parse DN is stored in the attribute value of OU.

Verb Tokens 333

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_designer/data/prdeptcontainer.html#prdeptcontainer
../samples/predef_command_create_dept_container2.xml

Replace All

Replaces all occurrences of a regular expression in the enclosed tokens.

Fields

Regular Expression

Specify the regular expression that matches the substring to be replaced. Supports variable
expansion. For more information, see Variable Expansion (page 343).

Replace With

Specify the replacement string. Supports variable expansion. For more information, see
Variable Expansion (page 343).

Remarks

For details on creating regular expressions, see:

+ Sun’s Java Web site (http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html)

+ Sun’s Java Web site (http://java.sun.com/j2se/1.4/docs/api/java/util/regex/
Matcher.html#replaceAll (java.lang.String))

The pattern options CASE_INSENSITIVE, DOTALL, and UNICODE CASE are used but can be
reversed by using the appropriate embedded escapes.

Example

= Replace All")", "$1™)
fh Destination DM
22 Editor

5 Do not trace: [False
Regular expression: * | ()

Replace with: | $1

334 Policies in Designer 2.0

http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Matcher.html#replaceAll (java.lang.String)

Replace First

Replaces the first occurrence of a regular expression in the enclosed tokens.

Fields

Regular Expression
Specify the regular expression that matches the substring to replace. Supports variable
expansion. For more information, see Variable Expansion (page 343).

Replace With

Specify the replacement string. Supports variable expansion. For more information, see
Variable Expansion (page 343).

Remarks

The matching instance is replaced by the string specified in the Replace with field.
For details on creating regular expressions, see:

+ Sun’s Web site (http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html)

+ Sun’s Web site (java.lang.String) (http://java.sun.com/j2se/1.4/docs/api/java/util/regex/
Matcher.html#replaceAll (java.lang.String))

The pattern option CASE_INSENSITIVE, DOTALL, and UNICODE_ CASE are used but can be
reversed using the appropriate embedded escapes.

Example

The example reformats the telephone number (nnn)-nnn-nnnn to nnn-nnn-nnnn. The rule is from the
predefined rules that come with Identity Manager. For more information, see Input or Output
Transformation - Reformat Telephone Number from (nnn) nnn-nnnn to nnn-nnn-nnnn (http://
www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy designer/
data/prreformattel1.html#prreformattell). To view the policy in XML, see

predef transformation_reformat_telephonel (../samples/

predef transformation_reformat_telephonel.xml).

The Replace First token is used in the Reformat Operation Attribute action.

=V 5 Input or Output Transformation - Reformat Telephone Number from {nnn) nnn-nnnn to
nNN-NON-nnnn

Conditions

. Z Condition Group 1

Define new condition here

reformat operation attributed"phone”, Replace First(" (O ddyd)s*0 A d)-0dvddvddg”, "$1-%2-$3",
Local variabled"current-value"1i)

v &

Verb Tokens 335

http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Pattern.html
http://java.sun.com/j2se/1.4/docs/api/java/util/regex/Matcher.html#replaceAll (java.lang.String)
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_designer/data/prreformattel1.html#prreformattel1
http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy_designer/data/prreformattel1.html#prreformattel1
../samples/predef_transformation_reformat_telephone1.xml

= Replace First(" (O ddidins*Oddd)-Oddididdg”, $1-$2-43")
& Local variable"current-value™

£ Editor

5’ Do not trace; |False
Regular expression: * | -~ (0d\dvdins* 0 didd-Od dvd db
Replace with: | $1-$2-43

The regular expression of "\((\d\d\d)\)\s*(\d\d\d)-(\d\d\d\d)$ represents (nnn) nnn-nnnn and the
regular expression of $1-$2-$3 represents nnn. This rule transforms the format of the telephone
number from (nnn) nnn-nnnn to nnn-nnn-nnnn.

336 Policies in Designer 2.0

Split

Splits the result of the enclosed tokens into a node set consisting of text nodes based on the pattern
specified by delimiter. If comma-separated values (CSV) are true, then CSV quoting rules are
honored during the parsing of the string.

Fields

Delimiter

Regular expression that matches the delimiter characters. Supports variable expansion. For
more information, see Variable Expansion (page 343).

Apply CSV Quoting Rules
Applies CSV quoting values.

Example

= Spliticsv="true", delimiter=","
+--00 "Doe,John,Doe, John"

22 Editor

% Donottrace: |false w

Delirmiter: * |,

Apply C5Y guoting rules

Verb Tokens 337

Substring

Extracts a portion of the enclosed tokens.

Fields

Start
Specify the starting character index:
+ Index 0 is the first character.
+ Positive indexes are an offset from the start of the string.
¢ Index -1 is the last character.
+ Negative indexes are an offset from the last character toward the start of the string.
For example, if the start is specified as -2, then it starts reading the first character from the end.
If -3 is specified, then is starts 2 characters from the end.
Length

Number of characters from the start to include in the substring. Negative numbers are
interpreted as (total # of characters + length) + 1. For example, -1 represents the entire length or
the original string. If -2 is specified, the length is the entire -1. For a string with 5 characters a
length of -1=(5+(-1))+1=5,-2=(5+(-2)) + 1 =4, etc.

Example

This example sets the e-mail address to be name@slartybartfast.com where the name equals the first
character of the Given Name plus the Surname. The policy name is Policy: Create E-mail from
Given Name and Surname, and it is available for download at the Novell Support Web site. For
more information, see Downloading Identity Manager Policies (http://www.novell.com/
documentation/idm35/index.html?page=/documentation/idm35/policy/data/
policydownloadable.html). To view the policy in XML, see 001-Command-
SetEmailByGivenNameAndSurname.xml (../samples/001-Command-
SetEmailByGivenNameAndSurname.xml).

SRV c ot email address: name@slartybartfast.com; name = (1 char of Given Name + Surname) <= 8 chars

. Z Condition Group 1

v 5 if class name equal "User"
v 5 if operation attribuke 'Given Mame' available
v 7 operation attribuke "Surname’ available

v 5 strip operation atbributed"Inkernet Email Address"

v £

set destination attribute value!"Internet Erail Address", Lowercase{Substringllength="8", Substringilength="1",
Operation AttributeFirstMame")+Cperation Attribute]"LastMame")+ " @slartybartfast, com"))

338 Policies in Designer 2.0

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/policydownloadable.html
../samples/001-Command-SetEmailByGivenNameAndSurname.xml
../samples/001-Command-SetEmailByGivenNameAndSurname.xml

= Lowercasel)
= Substring(length="3"
= substring(length="1"}
¢ Operation Attribute"FirstMarme")
it Operation Attribukel"LastMams")
&b "@slartybartfast,com"

The Substring token is used twice in the action Set Destination Attribute Value. It takes the first
character of the First Name attribute and adds eight characters of the Last Name attribute together to

form one substring.

Verb Tokens 339

Uppercase

Converts the characters in the enclosed tokens to uppercase.

Example

The example converts the first and last name attributes of the User object to uppercase. The policy
name is Policy: Convert First/Last Name to Uppercase and it is available for download at the Novell
Support Web site. For more information, see Downloading Identity Manager Policies (http://
www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/
policydownloadable.html). To view the policy in XML, see 002-Command-UppercaseNames.xml
(../samples/002-Command-UppercaseNames.xml).

B « 5 Convert First/Last name to uppercase

Conditions

. & Condition Group 1
v 5 if class name equal "User"
and
. & rCondition Group 2

v 5 if operation attribute 'Given Mame' chanaging
v 5’ if operation attribute 'Surname’ changing

v 5 reformat operation attributel"Given Mame", Uppercase{Operation Attribute!"Given Mame")))

o 5 reformat operation attributel"Surname”, Uppercase(Cperation Atkribute"Surnamea"in

= ./ Uppercased)
&5 Operstion Attribute!"Given Name")

340 Policies in Designer 2.0

http://www.novell.com/documentation/idm35/index.html?page=/documentation/idm35/policy/data/policydownloadable.html
../samples/002-Command-UppercaseNames.xml

XML Parse

Parses the result of the enclosed tokens as XML and returns the resulting document node in a node

set. If the result of the enclosed tokens is not well-formed XML or cannot be parsed for any reason,
an empty node set is returned.

Example

= #ML Parsel)
= Basetd Decodelcharset="LTF-3"}
&5 Operation Attribuke"data™

Verb Tokens 341

XML Serialize

Serializes the node set result of the enclosed tokens as XML. Depending on the content of the node

set, the resulting string is either a well-formed XML document or a well-formed parsed general
entity.

Example

= XML Serialized)
&b HPathi".")

342 Policies in Designer 2.0

Variable Expansion

Allows for the use of dynamic variables in the verb token.

Remark

Many verb tokens support dynamic variable expansion in their attributes or content. Where
supported, an embedded reference of the form $<variable-name>$ is replaced with the value of the
local or global variable with the given name. $<variable-name>$ must be a legal variable name. For
information on what is a legal XML name, see W3C Extensible Markup Language (XML) (http://
www.w3.0rg/TR/2004/REC-xml1-20040204/#NT-Name).

If the given variable does not exist, the reference is replaced with the empty string. Where it is
desirable to use a single $ and not have it interpreted as a variable reference, it should be escaped
with an additional $ (for example, You owe me $$100.00).

Verb Tokens 343

http://www.w3.org/TR/2004/REC-xml-20040204/#NT-Name

344 Policies in Designer 2.0

Documentation Update

The documentation was updated on the following dates:

¢ Section A.1, “June 29, 2007,” on page 345
¢ Section A.2, “May 21, 2007,” on page 346

A.1 June 29, 2007

Updates were made to the following sections. The changes are explained below.

A.1.1 Conditions

The following updates were made in this section:

Location Change

Conditions (page 163) Added a value field for each condition.

Variable Expansion Added this section.
(page 204)

A.1.2 Actions

The following updates were made in this section:

Location Change

Actions (page 205) Added information for each action that supports variable expansion.
Variable Expansion Added this section.

(page 282)

A.1.3 Nouns

The following updates were made in this section:

Location Change

Noun Tokens Added information for the noun tokens that supports variable expansion.
(page 283)

Variable Expansion Added this section.

(page 322)

A.1.4 Verbs

The following updates were made in this section:

Documentation Update 345

Location Change

Verb Tokens Added information for the verb tokens that supports variable expansion.
(page 323)

Variable Expansion Added this section.

(page 343)

A.2 May 21, 2007

Updates were made to the following sections. The changes are explained below.

A.2.1 Actions

The following updates were made in this section:

Location Change

Rename Operation Changed Reformat Opperation Attribute Value to Reformat Opperation
Attribute (page 247) Attribute.

346 Policies in Designer 2.0

	Policies in Designer 2.0
	About This Guide
	1 Overview
	1.1 Policies

	2 Managing Policies with the Policy Builder
	2.1 Accessing the Policy Builder
	2.1.1 Model Outline View
	2.1.2 Policy Flow View
	2.1.3 Policy Set

	2.2 Using the Policy Builder
	2.2.1 Tips

	2.3 Creating a Policy
	2.3.1 Accessing the Policy Set
	2.3.2 Using the Policy Set
	2.3.3 Using the Add Policy Wizard

	2.4 Creating a Rule
	2.4.1 Creating a New Rule
	2.4.2 Using Predefined Rules
	2.4.3 Including an Existing Rule
	2.4.4 Importing a Policy From an XML File

	2.5 Creating an Argument
	2.6 Editing a Policy
	2.6.1 Actions and Menu Items in the Policy Builder
	2.6.2 Keyboard Support
	2.6.3 Renaming a Policy
	2.6.4 Saving Your Work
	2.6.5 Policy Description

	2.7 Viewing the Policy in XML
	2.8 Identity Manager DTD Reference

	3 Using Additional Builders
	3.1 Action Builder
	3.1.1 Creating an Action
	3.1.2 Additional Options for the Action Builder

	3.2 Actions Builder
	3.3 Argument Builder
	3.3.1 Launching the Argument Builder
	3.3.2 Argument Builder Example

	3.4 Condition Builder
	3.4.1 Creating a Condition
	3.4.2 Additional Options for the Condition Builder

	3.5 Match Attribute Builder
	3.6 Action Argument Component Builder
	3.7 Argument Value List Builder
	3.8 Named String Builder
	3.9 Condition Argument Component Builder
	3.10 Pattern String Builder
	3.11 String Builder
	3.12 XPath Builder
	3.13 Namespace Editor
	3.13.1 Accessing Java Classes Using Namespaces

	4 Using the XPath Builder
	5 Defining Schema Mapping Policies
	5.1 Accessing the Schema Map Editor
	5.1.1 Outline View
	5.1.2 Policy Flow View
	5.1.3 Policy Set View
	5.1.4 Keyboard Support

	5.2 Editing a Schema Mapping Policy
	5.2.1 Removing or Adding Classes and Attributes
	5.2.2 Refreshing the Application Schema
	5.2.3 Editing Items
	5.2.4 Sorting Items
	5.2.5 Managing the Schema

	5.3 Testing Schema Mapping Policies
	5.4 Accessing the Schema Mapping Policy in XML
	5.5 Additional Schema Map Policy Options
	5.5.1 Outline View Additional Options
	5.5.2 Policy Flow View Additional Options
	5.5.3 Policy Set View Additional Options

	6 Controlling the Flow of Objects with the Filter
	6.1 Accessing the Filter Editor
	6.1.1 Model Outline View
	6.1.2 Policy Flow View
	6.1.3 Policy Set View
	6.1.4 Keyboard Support

	6.2 Editing the Filter
	6.2.1 Removing or Adding Classes and Attributes
	6.2.2 Modifying Multiple Attributes
	6.2.3 Copying an Existing Filter
	6.2.4 Setting Default Values for Attributes
	6.2.5 Changing the Filter Settings

	6.3 Testing the Filter
	6.4 Viewing the Filter in XML
	6.5 Additional Filter Options
	6.5.1 Outline View Additional Options
	6.5.2 Policy Flow View Additional Options
	6.5.3 Policy Set View Additional Options

	7 Using Predefined Rules
	7.1 Command Transformation - Create Departmental Container - Part 1 and Part 2
	7.1.1 Creating a Policy
	7.1.2 Importing the Predefined Rule
	7.1.3 How the Rule Works

	7.2 Command Transformation - Publisher Delete to Disable
	7.2.1 Creating a Policy
	7.2.2 Importing the Predefined Rule
	7.2.3 How the Rule Works

	7.3 Creation - Require Attributes
	7.3.1 Creating a Policy
	7.3.2 Importing the Predefined Rule
	7.3.3 How the Rule Works

	7.4 Creation - Publisher - Use Template
	7.4.1 Creating a Policy
	7.4.2 Importing the Predefined Rule
	7.4.3 How the Rule Works

	7.5 Creation - Set Default Attribute Value
	7.5.1 Creating a Policy
	7.5.2 Importing the Predefined Rule
	7.5.3 How the Rule Works

	7.6 Creation - Set Default Password
	7.6.1 Creating a Policy
	7.6.2 Importing the Predefined Rule
	7.6.3 How the Rule Works

	7.7 Event Transformation - Scope Filtering - Include Subtrees
	7.7.1 Creating a Policy
	7.7.2 Importing the Predefined Rule
	7.7.3 How the Rule Works

	7.8 Event Transformation - Scope Filtering - Exclude Subtrees
	7.8.1 Creating a Policy
	7.8.2 Importing the Predefined Rule
	7.8.3 How the Rule Works

	7.9 Input or Output Transformation - Reformat Telephone Number from (nnn) nnn-nnnn to nnn- nnn-nnnn
	7.9.1 Creating a Policy
	7.9.2 Importing the Predefined Rule
	7.9.3 How the Rule Works

	7.10 Input or Output Transformation - Reformat Telephone Number from nnn-nnn-nnnn to (nnn) nnn-nnnn
	7.10.1 Creating a Policy
	7.10.2 Importing the Predefined Rule
	7.10.3 How the Rule Works

	7.11 Matching - Publisher Mirrored
	7.11.1 Creating a Policy
	7.11.2 Importing the Predefined Rule
	7.11.3 How the Rule Works

	7.12 Matching - Subscriber Mirrored - LDAP Format
	7.12.1 Creating a Policy
	7.12.2 Importing the Predefined Rule
	7.12.3 How the Rule Works

	7.13 Matching - By Attribute Value
	7.13.1 Creating a Policy
	7.13.2 Importing the Predefined Rule
	7.13.3 How the Rule Works

	7.14 Placement - Publisher Mirrored
	7.14.1 Creating a Policy
	7.14.2 Importing the Predefined Rule
	7.14.3 How the Rule Works

	7.15 Placement - Subscriber Mirrored - LDAP Format
	7.15.1 Creating a Policy
	7.15.2 Importing the Predefined Rule
	7.15.3 How the Rule Works

	7.16 Placement - Publisher Flat
	7.16.1 Creating a Policy
	7.16.2 Importing the Predefined Rule
	7.16.3 How the Rule Works

	7.17 Placement - Subscriber Flat - LDAP Format
	7.17.1 Creating a Policy
	7.17.2 Importing the Predefined Rule
	7.17.3 How the Rule Works

	7.18 Placement - Publisher By Dept
	7.18.1 Creating a Policy
	7.18.2 Importing the Predefined Rule
	7.18.3 How the Rule Works

	7.19 Placement - Subscriber By Dept - LDAP Format
	7.19.1 Creating a Policy
	7.19.2 Importing the Predefined Rule
	7.19.3 How the Rule Works

	8 Testing Policies with the Policy Simulator
	8.1 Accessing the Policy Simulator
	8.1.1 Outline View
	8.1.2 Policy Flow View
	8.1.3 Editors

	8.2 Using the Policy Simulator
	8.3 Simulating Policies with Java Extensions

	9 Storing Information in Resource Objects
	9.1 Generic Resource Objects
	9.1.1 Creating a Resource Object
	9.1.2 Using a Generic Resource Object

	9.2 Mapping Table Objects
	9.2.1 Creating a Mapping Table Object
	9.2.2 Adding a Mapping Table Object to a Policy
	9.2.3 Editing a Mapping Table Object
	9.2.4 Testing a Mapping Table Object

	9.3 ECMAScript Objects
	9.4 Application Objects
	9.5 Repository Objects
	9.6 Library Objects
	9.6.1 Creating Library Objects
	9.6.2 Adding Policies to the Library Objects
	9.6.3 Using Policies in the Library Objects

	10 Using ECMAScript in Policies
	10.1 Creating an ECMAScript Object
	10.2 Using the ECMAScript Editor
	10.2.1 Main Scripting Area
	10.2.2 Expression Builder
	10.2.3 Functions and Variables
	10.2.4 Error Display
	10.2.5 Shell Area

	10.3 Examples of ECMAScripts with Policies
	10.3.1 DirXML Script Policy Calling an ECMAScript Function
	10.3.2 XSLT Policy Calling an ECMAScript Function at the Driver Level
	10.3.3 XSLT Policy Calling an ECMAScript Function in the Style Sheet

	10.4 Changing JavaScript Files Preferences
	10.4.1 JavaScript Files Preferences

	11 Conditions
	If AssociationPerforms a test on the association value of the current operation or the current object. The type of test performed depends on the operator specified by the operation attribute.
	If AttributePerforms a test on attribute values of the current object in either the current operation or the source data store. It can be lo...
	If Class NamePerforms a test on the object class name in the current operation.
	If Destination AttributePerforms a test on attribute values of the current object in the destination data store. The test performed depends on the specified operator.
	If Destination DNPerforms a test on the destination DN in the current operation. The test performed depends on the specified operator.
	If EntitlementPerforms a test on entitlements of the current object, in either the current operation or the Identity Vault. The test performed depends on the specified operator.
	If Global Configuration ValuePerforms a test on a global configuration value. The test performed depends on the specified operator.
	If Local VariablePerforms a test on a local variable. The test performed depends on the specified operator.
	If Named PasswordPerforms a test on a named password from the driver in the current operation with the specified name. The test performed depends on the selected operator.
	If Operation AttributePerforms a test on attribute values in the current operation. The test performed depends on the specified operator.
	If Operation Property
	If OperationPerforms a test on the name of the current operation. The type of test performed depends on the specified operator.
	If PasswordPerforms a test on a password in the current operation. The test performed depends on the specified operator.
	If Source AttributePerforms a test on attribute values of the current object in the source data store. The test performed depends on the specified operator.
	If Source DNPerforms a test on the source DN in the current operation. The test performed depends on the specified operator.
	If XML AttributePerforms a test on an XML attribute of the current operation. The type of test performed depends on the operator specified by the operation attribute.
	If XPath ExpressionPerforms a test on the results of evaluating an XPath 1.0 expression.
	Variable ExpansionAllows for the use of dynamic variables in the condition.

	12 Actions
	Add AssociationSends an add association command with the specified association to the Identity Vault.
	Add Destination Attribute ValueAdds a value to an attribute on an object in the destination data store.
	Add Destination Object
	Add Source Attribute ValueAdds the specified attribute on an object in the source data store.
	Add Source Object
	Append XML Element
	Append XML Text
	BreakEnds processing of the current operation by the current policy.
	Clear Destination Attribute ValueRemoves all values for the named attribute from an object in the destination data store.
	Clear Operation Property
	Clear Source Attribute ValueRemoves all values of an attribute from an object in the source data store.
	Clear SSO Credential
	Clone By XPath Expression
	Clone Operation AttributeCopies all occurrences of an attribute within the current operation to a different attribute within the current operation.
	Delete Destination ObjectDeletes an object in the destination data store.
	Delete Source ObjectDeletes an object in the source data store.
	Find Matching Object
	For EachRepeats a set of actions for each node in a node set.
	Generate EventSends a user-defined event to Novell Audit or Sentinel.
	IfConditionally performs a set of actions.
	Implement EntitlementDesignates actions that implement an entitlement so that the status of those entitlements can be reported to the agent that granted or revoked the entitlement.
	Move Destination ObjectMoves an object into the destination data store.
	Move Source ObjectMoves an object in the source data store.
	Reformat Operation AttributeReformats all values of an attribute within the current operation by using a pattern.
	Remove AssociationSends a remove association command to the Identity Vault.
	Remove Destination Attribute ValueRemoves an attribute value from an object in the destination data store.
	Remove Source Attribute ValueRemoves the specified value from the named attribute on an object in the source data store.
	Rename Destination ObjectRenames an object in the destination data store.
	Rename Operation AttributeRenames all occurrences of an attribute within the current operation.
	Rename Source ObjectRenames an object in the source data store.
	Send EmailSends an e-mail notification.
	Send Email from TemplateGenerates an e-mail notification using a template.
	Set Default Attribute ValueAdds default values to the current operation (and optionally to the current object in the source data store) if no values for that attribute already exist. It is only valid when the current operation is Add.
	Set Destination Attribute ValueAdds a value to an attribute on an object in the destination data store, and removes all other values for that attribute.
	Set Destination PasswordSets the password for an object in the destination data store.
	Set Local VariableSets a local variable.
	Set Operation AssociationSets the association value for the current operation.
	Set Operation Class NameSets the object class name for the current operation.
	Set Operation Destination DNSets the destination DN for the current operation.
	Set Operation PropertySets an operation property. An operation property is a named value that is stored within an operation. It is typically used to supply additional context that might be needed by the policy that handles the results of an operation.
	Set Operation Source DNSets the source DN for the current operation.
	Set Operation Template DNSets the template DN for the current operation to the specified value. This action is only valid when the current operation is add.
	Set Source Attribute ValueAdds a value to an attribute on an object in the source data store, and removes all other values for that attribute.
	Set Source PasswordSets the password for an object in the source data store.
	Set SSO Credential
	Set SSO Passphrase
	Set XML AttributeSets an XML attribute on a set of elements selected by an XPath expression.
	StatusGenerates a status notification.
	Start WorkflowStarts the workflow specified by workflow-id for the recipient DN on the User Application server specified by a URL and using cr...
	Strip Operation AttributeStrips all occurrences of an attribute from the current operation.
	Strip XPathStrips nodes selected by an XPath 1.0 expression.
	Trace MessageSends a message to DSTRACE.
	VetoVetoes the current operation.
	Veto If Operation Attribute Not AvailableConditionally cancels the current operation and ends processing of the current policy, based on the availability of an attribute in the current operation.
	WhileCauses the specified actions to be repeated while the specified conditions evaluate to True.
	Variable ExpansionAllows for the use of dynamic variables in the action.

	13 Noun Tokens
	Added EntitlementExpands to the values of an entitlement granted in the current operation.
	AssociationExpands to the association value from the current operation.
	AttributeExpands to the value of an attribute from the current object in the current operation and in the source data store. It can be lo...
	CharacterExpands to a character specified by a Unicode* code point.
	Class NameExpands to the object class name from the current operation.
	Destination AttributeExpands to the specified attribute value an object.
	Destination DNExpands to the destination DN specified in the current operation.
	Destination NameExpands to the unqualified Relative Distinguished Name (RDN) of the destination DN specified in the current operation.
	DocumentReads the XML document pointed to by the URI and returns the document node in a node set. The URI can be relative to the URI of the including policy. With any error, the result is an empty node set.
	EntitlementExpands to the values of a granted entitlement from the current object.
	Generate PasswordGenerates a random password that conforms to the specified password policy.
	Global Configuration ValueExpands to the value of a global configuration variable.
	Local VariableExpands to the value of a local variable.
	Named PasswordExpands to the named password from the driver.
	OperationExpands to the name of the current operation.
	Operation AttributeExpands to the value of an attribute from the current operation. It does not include the removed values from a modify operation.
	Operation PropertyExpands to the value of the specified operation property on the current operation.
	PasswordExpands to the password specified in the current operation.
	QueryCauses a query to be performed in the source or destination data store and returns the resulting instances.
	Removed AttributeExpands to the specified attribute value being removed in the current operation. It applies only to a modify operation.
	Removed EntitlementsExpands to the values of the an entitlement revoked in the current operation.
	ResolveResolves the DN to an association key, or the association key to a DN in the specified data store.
	Source AttributeExpands to the values of an attribute from an object in the source data store.
	Source DNExpands to the source DN from the current operation.
	Source NameExpands to the unqualified relative distinguished name (RDN) of the source DN specified in the current operation.
	TimeExpands to the current date/time into the format, language, and time zone specified.
	TextExpands to the text.
	Unique NameExpands to a pattern-based name that is unique in the destination data store according to the criteria specified.
	Unmatched Source DNExpands to the part of the source DN in the current operation that corresponds to the part of the DN that was not matched by the most recent match of an If Source DN condition.
	XPathExpands to results of evaluating an XPath 1.0 expression.
	Variable ExpansionAllows for the use of dynamic variables in the noun token.

	14 Verb Tokens
	Base64 DecodeDecodes the result of the enclosed tokens from Base64-encoded data to bytes and then converts the bytes into a string using the specified character set.
	Base64 EncodeConverts the result of the enclosed tokens to bytes using the specified character set, and then Base64-encodes the bytes.
	Convert TimeConverts the date and time represented by the result of the enclosed tokens from the source format, language, and time zone to the destination format, language, and time zone.
	Escape Destination DNEscapes the enclosed tokens according to the rules of the DN format of the destination data store.
	Escape Source DNEscapes the enclosed tokens according to the rules of the DN format of the source data store.
	JoinJoins the values of the nodes in the node set result of the enclosed tokens, separating the values by the characters specified by delimiter. If the comma-separated values (CSV) are true, then CSV quoting rules are applied to the values.
	LowercaseConverts the characters in the enclosed tokens to lowercase.
	MapMaps the result of the enclosed tokens from the values specified by the source column to the destination column in the specified mapping table.
	Parse DNConverts the enclosed token’s DN to an alternate format.
	Replace AllReplaces all occurrences of a regular expression in the enclosed tokens.
	Replace FirstReplaces the first occurrence of a regular expression in the enclosed tokens.
	SplitSplits the result of the enclosed tokens into a node set consisting of text nodes based on the pattern specified by delimiter. If comma-separated values (CSV) are true, then CSV quoting rules are honored during the parsing of the string.
	SubstringExtracts a portion of the enclosed tokens.
	UppercaseConverts the characters in the enclosed tokens to uppercase.
	XML ParseParses the result of the enclosed tokens as XML and returns the resulting document node in a node set. If the result of the enclosed tokens is not well-formed XML or cannot be parsed for any reason, an empty node set is returned.
	XML SerializeSerializes the node set result of the enclosed tokens as XML. Depending on the content of the node set, the resulting string is either a well-formed XML document or a well-formed parsed general entity.
	Variable ExpansionAllows for the use of dynamic variables in the verb token.

	A Documentation Update
	A.1 June 29, 2007
	A.1.1 Conditions
	A.1.2 Actions
	A.1.3 Nouns
	A.1.4 Verbs

	A.2 May 21, 2007
	A.2.1 Actions

