ZENworks 2017 Update 1

Endpoint Security
Scripting Reference

July 2017

Legal Notice

For information about legal notices, trademarks, disclaimers, warranties, export and other use restrictions, U.S. Government
rights, patent policy, and FIPS compliance, see https://www.novell.com/company/legall.

Copyright © 2017 Micro Focus Software, Inc. All Rights Reserved.

https://www.novell.com/company/legal/

Contents

About This Guide 5
Script Development 7
Supported SCripting LANQUAGES« . o ottt e e e e e e e 7
EXeCULION CONteXL.o e 7
Defining EVENt THQQEIS. oot e e e e 8
NaMESPACES . . . o ot 8
Storage INterface 9
Variables. . ..o 9
Temporary Storage Methods e 9
Persistent Storage Methods. 10
JScript EXample 11
VBSCrpt EXample 12
Script Management INterface 12
Script Information and Helper Methods 13
Version Methodso 14
Trigger Event Methods.o 15
Script RUN Methods e 17
Program Launch/Execute Methods 18
Display Methods.o 21
Prompt Methods. 23
S AT S. . o ottt 26
Object MatCh LiStSo 27
Effective Policy Interface. 28
Policylnformation OBJECEo 28
Effective Policies Methods 28
Location Interface 29
DefiNItiONS . . . e 29
DA TY PSS . . . vt e 30
Security Location Methods. e 31
Mobile (Unknown) Location Methods. i e e 34
Assigned Location Methods. e e 34
Network Location Methods. 35
JScript EXample 36
VBSCript EXample e 36
Communication Hardware Policy Interface. 36
DA TYPES . . . e e e 37
Enforced Policy Methods 37
Hardware Enforcement Methods 37
Adapter Connection Methods. 38
JSCript EXAmMPIE . . o 39
VBSCHipt EXample e 40
WIFi Policy Interface e 40
DA TYPES . . . et e 41
Adhoc WiFi Networks Methods e e 41
BIOCK WIFi CONNECHIONSttt e e e e e 42
Minimum Security Level Methods 43
Minimum Signal Strength Methods 44
Storage Device Control Policy Interface e 45
DA TY PO . . e e 45
AutoPlay Methods 45
Contents 3

4

2

Contents

VolumeEs MethOUs.o e 46

Script Testing 49
Enabling Script Testing in the Endpoint Security Agent e 49
Testing an Unpublished SCript e 49
Testing a Published Scripting POliCY e 51
Tracing a Script’'s EXECULIONo e e 52

About This Guide

This ZENworks Endpoint Security Scripting Reference provides information to help you create and
test scripts to be used in Scripting policies.

Audience

This guide is written for the ZENworks Endpoint Security Management administrators.

Feedback

We want to hear your comments and suggestions about this manual and the other documentation
included with this product. Please use the User Comments feature at the bottom of each page of the
online documentation.

Additional Documentation

ZENworks Endpoint Security Management is supported by other documentation (in both PDF and
HTML formats) that you can use to learn about and implement the product. For additional
documentation, see the ZENworks documentation website.

About This Guide 5

https://www.novell.com/documentation/zenworks2017/

6

About This Guide

Script Development

The following sections provide information to help you develop the script content for use in Scripting
policies (see “Scripting Policy” in the ZENworks Endpoint Security Policies Reference). For
information about testing a script, see Script Testing.

Supported Scripting Languages

The Endpoint Security Agent uses the Microsoft Windows Script Host (WSH) to run scripts on a
device. All scripts are subject to WSH restrictions. Script content can be authored in either JScript or
VBScript language; using multiple languages (JScript and VBScript together) in the same script is not
supported.

Standard WSH coding methods are supported, with the following exceptions:

1. WScript.Echo is not supported because return values cannot be sent back to a parent window
that is unavailable. Use the Action.DisplayMessage methods instead (see Display Methods).

2. Access Shell Objects. Use the following modified nomenclature/call:

[JScript]
Use:
var WshShel |
I nstead of:
var WshShel |

new Acti veXCbj ect ("W5cri pt. Shell");

WEcript. Createoj ect ("Wscript. Shell");

[VBScri pt]
Use:
D m WshShel |
Set WshShel |
I nstead of:
Di m WshShel |
Set WshShel |

Creat eQbj ect ("Wbcri pt. Shel | ")

WEcri pt. Creat eObj ect ("WBcri pt. Shel ")

Execution Context

Scripts execute in either the System context or the User context. The execution context is defined in
the Scripting policy through the Run As setting.

The script context, along with the operating system, determines the rights provided to the script and
the functions it can perform. For example:

+ On Windows Vista and newer Windows operating systems, a script running in the System
context (Session 0) cannot display messages on its own. To display messages, the script must
use the Action.DisplayMessage methods or another mechanism.

+ Scripts running in the User context execute with the right of the user session.
¢ Scripts running in the System context have the same rights as Windows services.

Script Development 7

Defining Event Triggers

Triggers are events that cause the Endpoint Security Agent to determine when and if a script should
be executed. These events can either be internal agent events or external events monitored by the
agent. A script is run when one of the triggers is fired, the script is not already running, and the
scripting context (system or user) is available.

Triggers are defined in the Scripting policy. You cannot use a script to change the triggers, but you
can use a script to discover the trigger that initiated a script. For information, see Trigger Event
Methods.

A brief description of each trigger is provided below. For more information, see “Scripting Policy” in
the ZENworks Endpoint Security Policies Reference.

*

*

Immediate: Executes the script immediately on load of the script.

Location Change: Executes the script when entering or leaving a location. Trigger can be
applied to all location changes or specific location changes only.

Network Change: Executes the script when a network environment that is used for location
determination changes, even if the network change does not cause a location change.

Network Connect: Executes the script when the wired adapter, wireless adapter, or modem
detects a new connection.

Network Disconnect: Executes the script with the wired adapter, wireless adapter, or modem
loses a connection.

Policy Change: Executes the script when the effective policy is updated.

Timer: Executes the script every n minutes after the initial enforcement of the policy. The interval
includes a one-minute boundary, meaning that the script is run within a minute (plus or minus) of
the end of the interval.

Namespaces

The Endpoint Security Agent provides three namespaces for a script to allow it to control or access
the agent. The namespaces are as follows:

*

Query: Provides methods to get the current state of the agent. For example, Query methods
could provide information about the device's network environment, security location, and
enforced policies.

Action: Provides methods to change the behavior of the agent or interact with the user. For
example, Action methods could display a message or message prompt, start or stop another
script, or change the security location.

Storage: Provides methods for the script to store variables for the current session (temporary)
or across sessions (persistent) For example, stored variables could be used to hold the last
execution time or to transfer data between script executions.

All methods begin with one of the three namespaces. For example:

+ string Query.ScriptName

+ int Action.TriggerScript(string script, string reason)

+ string Storage.GetNameValue(string name)

Script Development

Storage Interface

The Storage interface provides a way to save variable data. Variables can be saved in temporary
storage or persistent storage.

Variables

Scripting variables can be used to store information for use in the current Endpoint Security Agent
session (temporary variables) or for use across sessions (persistent variables).

As you use variables, be aware of the following naming conventions:

+ Variable names can contain any printable character.
+ Variable names are not explicitly limited in size.

+ Aglobal variable is defined by prepending a forward slash (/) to the variable name. Global
variables are available to other scripts. For example: Storage.NameValueExists(“/
boolWarnedOnPreviousLoop”).

+ Any variable that does not start with a forward slash (/) is a local variable. Local variables are
available only to the script that created them.

+ Variables are stored in either temporary storage or persistent storage (for details, see Storage
Interface). Variable names are unique to each storage system. If a script uses the same name
for a variable in both the temporary and persistent storage, the values are independent of each
other despite the name being the same.

Temporary Storage Methods

Temporary storage allows a variable to be retained for the current Endpoint Security Agent session
only. The variable is lost when the agent shuts down.

All variables are considered local to the script unless the variable name follows the naming
conventions for a global variable. Local variables use the script’s identifier to ensure unigueness. If
the script identifier is changed, the script no longer has access to its local variables.

bool Storage.NameValueExists(string name)

Description: Determines if a temporary variable already exists.
Parameters: name — variable name being requested
Returns: Tr ue if the variable is found in the store. Fal se if not.

string Storage.GetNameValue(string name)

Description: Gets the value associated with a temporary variable.
Parameters: name — variable name being requested
Returns: The value being stored. If the value does not exist, an empty string is returned.

Script Development

int Storage.SetNameValue(string name, string value)

Description: Sets the value for a temporary variable.
Parameters: name — variable name in which to store the value
value — value to store

Returns: 0 on success. Any other number on failure.

int Storage.ClearNameValue(string name)

Description: Clears the value for a temporary variable.
Parameters: name — name of variable to clear
Returns: 0 on success. Any other number on failure.

Persistent Storage Methods

Persistent storage allows a variable to be retained across Endpoint Security Agent restarts; the
variable can only be cleared by script or by using the Agent Status feature in the Endpoint Security

Agent’s About box.

All variables are considered local to the script unless the variable name follows the naming
conventions for a global variable. Local variables use the script's identifier to ensure uniqueness. If
the script identifier is changed, the script no longer has access to its local variables.

bool Storage.PersistValueExists(string name)

Description: Determines if a persistent variable already exists.
Parameters: name — variable name being requested
Returns: Tr ue if the variable is found in the store. Fal se if not.

string Storage.GetPersistValue(string name)

Description: Gets the value associated with a persistent variable.
Parameters: name — variable name being requested
Returns: The value being stored. If the value does not exist, an empty string is returned.

10 Script Development

int Storage.SetPersistValue(string name, string value)

Description: Sets the value for a persistent variable.
Parameters: name — variable name in which to store the value
value — value to store

Returns: 0 on success. Any other number on failure.

int Storage.ClearPersistValue(string name)

Description: Clears the value for a persistent variable.
Parameters: name — name of variable to clear
Returns: 0 on success. Any other number on failure.

JScript Example

var ret;
var curVal ue = 0;
if (Storage. NameVal ueExi sts("testval"))
curVal ue = Storage. Get NaneVal ue("testval ");
cur Val ue++;
ret = Storage. Set NaneVal ue("testval", curVal ue);
Action. Trace("NameValue = " + curVal ue);
Action. Di spl ayMessage(" Storage", "Nanme Value: " + curValue, "Info", 3);
Acti on. Sl eep(3000);

curVal ue = 0;
i f (Storage. NaneVal uekxi sts("/testval "))

curVal ue = Storage. Get NaneVal ue("/testval");
cur Val ue++;
ret = Storage. Set NaneVal ue("/testval ", curVal ue);
Action. Trace(" Shared NameValue = " + curVal ue);
Action. Di spl ayMessage(" Shared Storage", "Name Val ue:
Acti on. Sl eep(3000);

+ curVal ue, "Info", 3);

curVal ue = 0;
if (Storage.PersistStringExists("testval"))
curVal ue = Storage. Get PersistString("testval");
cur Val ue++;
ret = Storage. SetPersistString("testval", curVal ue);
Action. Trace("Persist String =" + curVal ue);
Action. Di spl ayMessage(" Storage", "Persist String: " + curValue, "Info", 3);
Acti on. Sl eep(3000);

curVal ue = 0;
if (Storage.PersistStringExists("/testval"))

curVal ue = Storage. GetPersistString("/testval");
cur Val ue++;
ret = Storage. SetPersistString("/testval", curVal ue);
Action. Trace("Shared Prersist String =" + curValue);
Action. Di spl ayMessage(" Shared Storage", "Persist String:
Action. Sl eep(3000);

+ curValue, "Info", 3);

Script Development 11

VBScript Example

dimret
di m cur Val ue
curValue = 0

I f Storage. NaneVal ueExi sts("testval ") then
curVal ue = Storage. Get NaneVal ue("testval ")

End I f

curValue = curValue + 1

ret = Storage. Set NanmeVal ue("testval", curVal ue)

Action. Trace "NameValue =" & curVal ue

nsg = "Nanme Value: " & curVal ue

Action. Di spl ayMessage "Storage", msg, "Info", 3
Action. Sl eep 3000

curValue = 0
I f Storage. NaneVal uekxi sts("/testval") then
curVal ue = Storage. Get NaneVal ue("/testval ")

End |f

curValue = curValue + 1

ret = Storage. Set NaneVal ue("/testval ", curVal ue)
Action. Trace "Shared NaneValue = " & curVal ue

Action. Di spl ayMessage "Shared Storage", "Name Value: " & curValue, "Info", 3
Action. Sl eep 3000

curValue = 0
I f Storage. PersistStringExists("testval") then
curVal ue = Storage. GetPersistString("testval")

End If

curValue = curValue + 1

ret = Storage. SetPersistString("testval", curVal ue)
Action. Trace "Persist String =" & curVal ue

Action. Di spl ayMessage "Storage", "Persist String: " & curValue, "Info", 3
Action. Sl eep 3000

curValue = 0
I f Storage. PersistStringExists("/testval") then
curVal ue = Storage. GetPersistString("/testval")

End | f

curValue = curValue + 1

ret = Storage. SetPersistString("/testval", curVal ue)
Action. Trace "Shared Prersist String =" & curVal ue

Action. Di spl ayMessage "Shared Storage", "Persist String: " & curValue, "Info", 3
Action. Sl eep 3000

Script Management Interface

The Script Management interface provides methods for getting script information, launching other
scripts and programs, and displaying informational messages and prompts to users. The methods are
organized into the following sections:

12 Script Development

Script Information and Helper Methods

The Script Information and Helper methods get information about a script (name, ID, and execution
context) and provide general script helping functions such as creating a new unique ID for use in the
script, generating trace messages for the script, and pausing the script for a specified amount of time.

string Query.ScriptName

Description: Gets the name of the script. The name is derived from the Scripting policy name.

string Query.Scriptid

Description: Gets the script identifier. The identifier is derived from the Scripting policy ID.

string Query.ScriptContext

Description: Gets the context (user or system) in which the script is running.

string Query.UniquelD

Description: Generates a unique identifier for use by the script.

void Action.Trace(string msg)

Description: Sends trace messages to the user or service logs (depending on whether the script is
running in the user context or system context). Each trace message has its script id
concatenated to the message.

The trace messages can also be viewed in the Script Tracing dialog of the Endpoint
Security Agent About box.

Parameters: msg — The message string to log.

void Action.Sleep (int millisec)

Description: Causes the script to sleep for a specified period of time.

Parameters: millisec — The number of milliseconds the script sleeps before proceeding. The
implementation wakes up on a regular interval to check if the script needs to be
terminated early due to a policy change or agent restart. Control is returned only after
the number of milliseconds has expired.

Script Development 13

14

JScript Example

Action. Trace("");

Action. Trace(" ******** GSerjipt [nformation ***xxxxxx vy,
Action. Trace("UniquelD: " + Query. Uni quel D);

Action. Trace("Script Name: " + Query. Script Nane);
Action. Trace("Script ID " + Query.ScriptlD);

Action. Trace("Script Context: " + Query. ScriptContext);

VBScript Example

Action. Trace ""

Action. Trace " **x*xxx*x Gorjipt | nformation ****xxxxx v
Action. Trace "UniquelD: " & Query. Uni quel D

Action. Trace "Script Nanme: " & Query. Scri pt Nane
Action.Trace "Script ID. " & Query. ScriptlD
Action.Trace "Script Context: " & Query. Scri pt Cont ext

Version Methods

The Version methods get information about the version of a namespace (Query, Action, Storage) or of
the Endpoint Security Agent.

int Query.Version(string category, string component)

Description: Gets the version of the specified namespace or of the Endpoint Security Agent.
Parameters: category — One of the following four identifiers: query, act i on, st orage, cli ent.

component — The requested version component. The four identifiers are: naj or,
m nor, revi si on, bui | d.

Returns: An integer value for the requested component. If an invalid component is requested, -1
is returned.

JScript Example

Action. Trace("");
Action. Trace(" ******** Versjon |nformation ***x**xx*xx).
Action. Trace("");

Action.Trace("Cient: " + Query.Version("Cient", "Mgjor") + "." + Query. Version("
Cient", "Mnor") + "." + Query.Version("Cient", "Revision") + "." + Query.Versio
n("Cient", "Build"));

Action. Trace("Query: " + Query.Version("Qery", "Major") + "." + Query.Version("Q
ery", "Mnor") + "." + Query.Version("Query", "Revision") + "." + Query.Version("Q
uery", "Build"));

Action. Trace("Action: " + Query.Version("Action", "Mgjor") + "." + Query. Version("
Action", "Mmnor") + "." + Query.Version("Action", "Revision") + "." + Query.Versio
n("Action", "Build"));

Action. Trace("Storage: " + Query.Version("Storage", "Major") + "." + Query. Version
("Storage", "Mnor") + "." + Query.Version("Storage", "Revision") + "." + Query. Ve

rsion("Storage", "Build"));

Script Development

VBScript Example

Function Di spl ayVersi on (nane)
di m maj or
di m mi nor
di mrevision
dimbuild

nmaj or Query. Versi on(nane, "Mjor")

m nor Query. Version(nane, "M nor")

revi sion = Query. Version(nane, "Revision")

build = Query. Version(nane, "Build")

Action.Trace name & ": " & mgjor & "." & mnor &"." &revision &"." & build
End Functi on

Action. Trace
Action. Trace " *******x \fargion Infornation *******xx
Action. Trace ""

Di spl ayVersion("dient")

Di spl ayVer si on(" Query")

Di spl ayVersi on("Action")

Di spl ayVer si on(" St or age")

Trigger Event Methods

The Trigger Event methods get information about the event that caused the script to execute.

Trigger Reasons

The following table lists the reasons a script is triggered. Each trigger reason includes one or more
indexes that are available for the trigger. The indexes listed for each trigger are guaranteed to be
available. Other indexes, and even other reasons, might be available depending on the version of the
Endpoint Security Agent.

Trigger Reason Index Description

Location change reason The trigger reason value. For a location change, the value is
always | ocat i on.

switch_from_id The ID of the switched-from location.

switch_from The name of the switched-from location.

switch_to_id The ID of the switched-to location.

switch_to The name of the switched-to location

change_reason Reason for the location change that triggered the script; for

reasons, see Data Types

Network environment reason The trigger reason value. For a network environment change, the
change value is always net wor k_envi ronnent .
Network connect reason The trigger reason value. For a network connection, the value is

always net wor k_connect .

device_id The device ID of the adapter that detected the connection

Script Development 15

16

Trigger Reason

Index Description

Network disconnect

Immediate

Timer

reason The trigger reason value. For a network disconnection, the value

is always net wor k_di sconnect.

device_id The device ID of the adapter that detected the disconnect

reason The trigger reason value. For an immediate trigger, the value is

always i medi at e.

caller (Optional) The name of the script that initiated the trigger.

caller_ID (Optional) The ID of the script that initiated the trigger,

caller_reason (Optional) The reason the script initiated the trigger.

reason The trigger reason value. For a time trigger, the value is always
timer.

interval The time interval (in minutes) that triggered the script

string Query.TriggerParameter(string index)

Description:

Parameters:

Returns:

Gets the value of the requested index.

index — One of the index names listed in Trigger Reasons. For example, | ocat i on or
switch from

The value of the requested index value. For example, if r eason is the index, the value
might be | ocat i on or net wor k_connect . If swi t ch_f r omis the index, the value
might be wor k or of fi ce.

If an index is out of range or invalid, an empty string is returned.

int Query.TriggerParameterCount

Description:

Returns:

Gets the number of indexes for the trigger. For example, if Location change is the
trigger, 6 or more indexes can be available.

The number of indexes.

string Query.TriggerParameterName(int index)

Description:

Parameters:

Returns:

Script Development

Gets the name of the requested index.

index — The number of the index being requested. Index names are listed in Trigger
Reasons. Index numbers are not listed because they can change from one script run to
another. For example, the r eason index might be O during one run and 4 during
another.

The name of the requested index. For example, swi t ch_from | D, devi cel D, or
reason.

string Query.TriggerParameterValue(int index)

Description Gets the value of the requested index.

Parameters: index — The number of the index being requested. Index names are listed in Trigger
Reasons. Index numbers are not listed because they can change from one script run to
another. For example, the r eason index might be 0 during one run and 4 during
another.

Returns: The value of the requested index. For example, if swi t ch_f r omis the requested index
(based on its index number, not name), the value might be wor k or of f i ce.

JScript Example

Action. Trace("");

Action. Trace(" ******** Trjgger Reasons *****xxxx u).

Action. Trace("");

Action. Trace("Reason = " + Query. TriggerParaneter("reason"));

Action. Trace("Parameter Count = " + Query. Tri gger Par anet er Count);
for(var idx = 0; idx < Query.TriggerParaneterCount; idx++)

{
Action. Trace("Paranmeter: " + Query. TriggerParaneterNane(idx) + " -
> " + Query. TriggerParaneterVal ue(idx));

Action. Trace("Invalid trigger parmreturn: + Query. TriggerParaneter("-1"));

VBScript Example

Action. Trace ""
Action. Trace " ****xxxx Trjgger Reasons ***xxxxxx v
Action. Trace ""
Action. Trace "Reason = " & Query. Tri gger Paraneter("reason")
Action. Trace "Parameter Count =" & Query. Tri gger Par amet er Count
For idx = 0 to (Query. TriggerParaneterCount - 1)
Action. Trace "Paraneter: " & Query. TriggerParaneterNane(idx) & " -
> " & Query. Trigger Par anet er Val ue(i dx)
Next

Action.Trace "Invalid trigger parmreturn: & Query. TriggerParaneter("-1")

Script Run Methods

The Script Run methods trigger or terminate another script in the system.

Script Development

int Action.TriggerScript(string script, string reason)

Description: Triggers another script in the system.
Parameters: script — The name or ID of the script being requested to run.

reason — Passed along as part of the trigger parameter. The script that is called has
the value stored as the caller_reason trigger parameter.

Returns: The following are common return values. Other values are also possible:

* 0 — The script was found and the trigger will be attempted.

+ 50 — The action is not supported; could be returned because the script is
attempting to trigger itself.

+ 1168 — The script was not found in the system.

¢ Other non-zero val ues — The script failed to run.

int Action.TerminateScript(string script, string reason)

Description: Terminates another script in the system by name or id. This does not unload the script.
Parameters: script — The name or ID of the script being requested to run.

reason — Passed along as part of the trigger parameter. The script that is called has
the value stored as the caller_reason trigger parameter.

Returns: The following are common return values. Other values are also possible:

* 0 — The script was found and the trigger will be attempted.

* 50 — The action is not supported; could be returned because the script is
attempting to terminate itself.

+ 1168 — The script was not found in the system.

¢ Other non-zero val ues — The script failed to run.

Program Launch/Execute Methods

The Launch/Execute methods provide ways to launch and execute programs. A launch method runs
the program but does not wait for the program to finish and return an exit code. An execute method
runs the program and waits for it to finish and return an exit code, or for the execution timeout to
expire.

A launched or executed program runs in the same context (user or system) as the script, unless the
script overrides the context by passing a new context.

Be aware that some Windows operating systems may not allow GUI applications to display in the
system context.

18 Script Development

int Action.Launch(string context, bool hide, string command, string

parameters)

Description:

Parameters:

Returns:

Starts a program in the requested context. The script continues without waiting for the
program to return an exit code.

context — Valid inputs are user or system. Leave the parameter empty to run the
program in the same context as the script. If the user context is requested and the
primary user context is unavailable, an error code is returned and the request is
dropped.

hide — If t r ue, the command shell used to launch the program is not displayed. If
f al se, the command shell is displayed.

command — The command to execute. If the command starts with ht t p: or ww. , the
link is launched using the default web browser.

parameters — Parameters to be passed to the command.
The following are common return values. Other values are also possible:

¢ 0 — Success

+ 31 — General failure. The launching of the program failed due to a file not found,
the command failing, or other similar reason.

+ 1359 — The launch context (user or system) is not available.

int Action.Execute(string context, bool hide, string command, string

parameters)

Description:

Parameters:

Returns:

Starts a program in the requested context. The script pauses until the program returns
an exit code.

context — Valid inputs are user or system. Leave the parameter empty to run the
program in the same context as the script. If the user context is requested and the
primary user context is unavailable, an error code is returned and the request is
dropped.

hide — If true, the command shell used to execute the program is not displayed. If
false, the command shell is displayed.

command — The command to execute. If the command starts with ht t p: or ww. , the
link is launched using the default web browser.

parameters — Parameters to be passed to the command.

In addition to the exit code of the executed program, the following errors can be
returned:

¢ 31 — General failure. Execution failed due to a file not found, the command
failing, or other similar reasons.

+ 1359 — The execute context (user or system) is not available.

Script Development

19

20

int Action.ExecuteWithTimeout(string context, bool hide, string
command, string parameters int timeout)

Description: Starts a program in the requested context. The script pauses until the program returns
an exit code or until the timeout is reached.

Parameters: context — Valid inputs are user or system. Leave the parameter empty to run the
program in the same context as the script. If the user context is requested and the
primary user context is unavailable, an error code is returned and the request is
dropped.

hide — If true, the command shell used to execute the program is not displayed. If
false, the command shell is displayed.

command — The command to execute. If the command starts with ht t p: or ww. , the
link is launched using the default web browser.

parameters — Parameters to be passed to the command.
timeout — Number of seconds to wait for an exit code from the program.

Returns: In addition to the exit code of the executed program, the following errors can be
returned:

¢ 31 — General failure. Execution failed due to a file not found, the command
failing, or other similar reasons.

+ 121 — The command was successfully executed but did not complete before the
timeout was reached.

+ 1359 — The execute context (user or system) is not available.

JScript Example

var ret;

ret = Action.Launch("user", false, "notepad", "");

Action. Trace("User: Launch notepad: " + ret);

ret = Action. Execute("user", false, "notepad", "");

Action. Trace("User: Execute notepad: " + ret);

ret = Action. ExecuteWthTi neout ("user", false, "notepad", "", 5);
Action. Trace("User: Execute with Timeout, notepad: " + ret);
VBScript Example

dimret

ret = Action.Launch("user", false, "notepad", "")

Action. Trace("User: Launch notepad: " & ret)

ret = Action. Execute("user", false, "notepad", "")

Action. Trace("User: Execute notepad: " & ret)

ret = Action. ExecuteWthTi neout ("user", false, "notepad", "", 5)
Action. Trace("User: Execute with Timeout, notepad: " & ret)

Script Development

Display Methods

The Display methods enable a message to be displayed to a user. The methods are valid only if the

script is running in a user session.

The displayed message includes an OK button to dismiss the message. You can also set a timeout to
automatically dismiss the message. The message does not pause the script; it continues to run while
the message displays.

Display messages are intended for providing information to the user. If you need to display a
message that requires the user to make a choice (such as OK or Cancel), you should use a message
prompt. See Prompt Methods.

void Action.DisplayMessage(string title, string message, string icon,

int timeout)

Description:

Parameters:

If a primary user process is running, displays a custom message to the user. If no
primary user process is available, the message is dropped.

title — String displayed in the title bar.
message — The main message.

icon — The icon to display with the message. You can specify any of the following
system icons or leave the string empty for no icon: err or, app, hand, i nf o, quest

war n, excl anmati on (or!), st op, ast eri sk (or *), default. Be aware that it is possible

for no default system icon to exist.

timeout — The number of seconds for the message to display. Use 0 to display the
message until the user closes the dialog box.

void Action.DisplayMessageWithLink(string title, string message,
string icon, int timeout, string linkName, string linkCommand, string
linkParameters)

Description:

Parameters:

If a primary user process is running, displays a custom message to the user. If no
primary user process is available, the message is dropped.

title — String displayed in the title bar.
message — The main message.

icon — The icon to display with the message. You can specify any of the following
system icons or leave the string empty for no icon: er r or, app, hand, i nf o, quest
war n, excl amation (or!), st op, asteri sk (or *), def aul t . Be aware that it is
possible for no default system icon to exist.

timeout — The number of seconds for the message to display. Use 0 to display the
message until the user closes the dialog box.

linkName — The name of the link to be display on the dialog box.
linkCommand — The command to be executed when the link is clicked.

linkParameters — Parameters to be passed as part of the execution command.

Script Development

21

22

void Action.DisplayMessageByld(string id, string title, string
message, string icon, int timeout)

Description:

Parameters:

If a primary user process is running, displays a custom message to the user. If no
primary user process is available, the message is dropped.

id — Provides that ability for message suppression. If a message with the same id is
already being displayed to the user, this message is dropped.

title — String displayed in the title bar.
message — The main message.

icon — The icon to display with the message. You can specify any of the following
system icons or leave the string empty for no icon: er r or, app, hand, i nf o, quest ,
war n, excl amation (or!), st op, asteri sk (or *), def aul t . Be aware that it is
possible for no default system icon to exist.

timeout — The number of seconds for the message to display. Use 0 to display the
message until the user closes the dialog box.

void Action.DisplayMessageByldWithLink(string id, string title,
string message, string icon, int timeout, string linkName, string
linkCommand, string linkParameters)

Description:

Parameters:

Script Development

If a primary user process is running, displays a custom message to the user. If no
primary user process is available, the message is dropped.

id — Provides that ability for message suppression. If a message with the same id is
already being displayed to the user, this message is dropped.

title — String displayed in the title bar.
message — The main message.

icon — The icon to display with the message. You can specify any of the following
system icons or leave the string empty for no icon: err or, app, hand, i nf o, quest
war n, excl amation (or!), st op, asteri sk (or *), def aul t . Be aware that it is
possible for no default system icon to exist.

timeout — The number of seconds for the message to display. Use 0 to display the
message until the user closes the dialog box.

linkName — The name of the link to be display on the dialog box.
linkCommand — The command to be executed when the link is clicked.

linkParameters — Parameters to be passed as part of the execution command.

JScript Example

Action. Di spl ayMessage("Di spl ay Message", "Error icon", "Error", 2);
Acti on. Sl eep(2000);

Action. Di spl ayMessageW t hLi nk("Di spl ay Message Wth Link", "Error icon", "Error",
2, "novell", "ww.novell.cont, "");
Acti on. Sl eep(2000);

Action. Di spl ayMessageByl d("2", "Display Message By Id", "Should See", "app", 5);

Acti on. Sl eep(2000);

Action. Di spl ayMessageByl d("2", "D splay Message By Id", "Should not see", "error"”,
2);

Acti on. Sl eep(3000);

Action. Di spl ayMessageByl dW t hLi nk("8", "Di splay Message By Id Wth Link", "Should
See", "app", 5, "novell", "ww. novell.conl, "");

Acti on. Sl eep(2000);

Acti on. Di spl ayMessageByl dW t hLi nk("8", "Di splay Message By Id Wth Link", "Should
not see", "error", 2, "novell", "ww. novell.conl, "");

VBScript Example

Action. Di spl ayMessage "Di spl ay Message", "Error icon", "Error", 2
Action. Sl eep 2000

Action. Di spl ayMessageW t hLi nk "Di spl ay Message Wth Link", "Error icon", "Error",
2, "novell", "ww.novell.conl, ""
Action. Sl eep 2000

Action. Di spl ayMessageByld "2", "Display Message By 1d", "Should See", "app", 5

Action. Sl eep 2000

Action. Di spl ayMessageByld "2", "D splay Message By Id", "Should not see", "error",
2

Action. Sl eep 3000

Action. Di spl ayMessageByl dW t hLink "8", "Display Message By Id Wth Link", "Should
See", "app", 5, "novell", "ww. novell.conf,
Action. Sl eep 2000

Action. Di spl ayMessageByl dW t hLi nk "8", "Display Message By Id Wth Link", "Should
not see", "error", 2, "novell", "ww. novell.cont, ""

Prompt Methods

The Prompt methods enable a message prompt to be displayed to a user. The methods are valid only
if the script is running in a user session.

The prompt can include different response buttons, such as OK/Cancel or Abort/Retry/Ignore. You
can also set a timeout to automatically close the prompt if the user doesn’t respond.

Message prompts are intended for prompting the user to make a choice. If you only need to display
information to the user, you should use a display message. See Display Methods.

Script Development 23

string Action.Prompt(string title, string message, string icon, int
timeout, string buttons)

Description: If a primary user process is running, displays a custom message prompt to the user. If
no primary user process is available, the message prompt is dropped.

Parameters: title — String displayed in the title bar.
message — The main message.

icon — The icon to display with the message. You can specify any of the following
system icons or leave the string empty for no icon: er r or, app, hand, i nf o, quest
war n, excl amation (or!), st op, asteri sk (or *), def aul t . Be aware that it is
possible for no default system icon to exist.

timeout — The number of seconds for the message to display. Use 0 to display the
message until the user closes the dialog box.

buttons — The buttons to display. Valid inputs are: ok, okCancel , abort Retryl gnor e,
yesNoCancel , yesNo, r et ryCancel . Inputs are not case-sensitive.

Returns: One of the following:

+ “— Empty string. The primary process is unavailable, no input received.
+ cl osed — Dialog box closed without input.

* timeout — Dialog box timed out.

+ ok — OK button selected.

+ cancel — Cancel button selected.

+ abort — Abort button selected.

* retry — Retry button selected.

+ ignore — Ignore button selected.

+ yes — Yes button selected.

* no — No button selected.

¢ cancel — Cancel button selected.

string Action.PromptWithLink(string title, string message, string
icon, int timeout, string buttons, string linkName, string
linkCommand, string linkParameters)

Description: If a primary user process is running, displays a custom message prompt to the user. If
no primary user process is available, the message prompt is dropped.

24 Script Development

Parameters: title — String displayed in the title bar.
message — The main message.

icon — The icon to display with the message. You can specify any of the following

system icons or leave the string empty for no icon: er r or, app, hand, i nf o, quest

war n, excl amation (or!), st op, asteri sk (or *), def aul t . Be aware that it is
possible for no default system icon to exist.

timeout — The number of seconds for the message to display. Use 0 to display the
message until the user closes the dialog box.

buttons — The buttons to display. Valid inputs are: ok, okCancel , abort Retryl gnor e,

yesNoCancel , yesNo, r et ryCancel . Inputs are not case-sensitive.

linkName — The name of the link to be display on the dialog box.
linkCommand — The command to be executed when the link is clicked.
linkParameters — Parameters to be passed as part of the execution command.

Returns: One of the following:

+ " — Empty string. The primary process is unavailable, no input received.
+ cl osed — Dialog box closed without input.

+ timeout — Dialog box timed out.

+ ok — OK button selected.

+ cancel — Cancel button selected.

+ abort — Abort button selected.

* retry — Retry button selected.

* ignore — Ignore button selected.

+ yes — Yes button selected.

* no — No button selected.

+ cancel — Cancel button selected.

JScript Example

var ret;

ret = Action.Pronpt("Pronpt - Ck", "Ht ok", "Error", 0, "ok");
Action.Trace("Ck Result: " + ret);

ret = Action.Pronmpt("Prompt - CkCancel", "Hit ok", "", 0, "okCancel");
Action.Trace("Ck Result: " + ret);

ret = Action.Pronpt("Pronpt - Retry/

Cancel ", "Allowto tineout", "", 5, "retryCancel");

Action. Trace("timeout Result: " + ret);

ret = Action.PronptWthLink("Pronpt - Retry/

Cancel ", "Wth link", "", 3, "retryCancel", "Novell", "ww. novell.con, "");
Action.Trace("with link results: " + ret);

Script Development

25

26

VBScript Example

di mret

ret = Action.Pronpt("Pronpt - Ck", "Ht ok", "Error", 0, "ok")
Action. Trace("Ck Result: " & ret)

ret = Action.Pronpt("Prompt - CkCancel", "Hit ok", "", 0, "okCancel")
Action.Trace("Ck Result: " & ret)

ret = Action.Pronpt("Pronpt - Retry/

Cancel ", "Allowto tinmeout", "", 5, "retryCancel")

Action. Trace("timeout Result: " & ret)

ret = Action.Pronpt WthLink("Pronpt - Retry/

Cancel ", "Wth link", "", 3, "retryCancel", "Novell", "ww. novell.conl, "")
Action.Trace("with link results: " & ret)
Safe Arrays

A safe array indexes a list of objects. Safe arrays are native to VBScript and provide a way to
enumerate all elements in the array. Safe arrays are not native to JScript; they must be converted
using the native VBArray function provided by WScript.

Functions that return a safe array value end in Array (for example, EffectivePolicyArray). The
followng VBScript and JScript examples use EffectivePolicyArray as a safe array.

JScript Example

Action. Trace(" ****xxx*x Arpgy Access **xxxx).
var a = new VBArray(Query. EffectivePolicyArray());
ret = a.toArray();
for (var i =0; i <ret.length; i++) {
var pol =ret[i];
Action. Trace(" ******** Po|jcy Information ***xxxxxx u).
Action.Trace("ID " + pol.ld);
Action. Trace("Version: " + pol.Version);
Action. Trace("Name: " + pol.Nane);
Action. Trace("Type: " + pol.PolicyType);
Action. Trace("Session: " + pol. Session);

VBScript Example

Di m obj, idx, nmax, pol

obj = Query. EffectivePolicyArray

Action. Trace Var Type(obj)

Action. Trace |sArray(obj)

For Each pol in obj
Action. Trace " **x*xxx*x Po|jcy Information ****xxxxxx v
Action.Trace "ID " & pol.ld
Action. Trace "Version: " & pol. Version
Action. Trace "Name: " & pol. Nane
Action. Trace "Type: " & pol.PolicyType
Action. Trace "Session: " & pol. Session

Next

Script Development

Object Match Lists

Because JScript does not support the native importing of safe arrays, and does not support an array
enumerator, ZENworks Endpoint Security Management provides an object called Object Match List to
allow for index enumeration of a list to both VBScript and JScript. Functions that return this type of
object end in List (for example, EffectivePolicyList). The object provides the following functions and
properties for access to the objects in the container.

int Count

Description: Returns the number of objects in the container.
object Item(int idx)

Description: Returns a particular object from the container based on the index given. If the index is
outside the count of container, a null/lempty object is returned. The order of objects in
the container is not guaranteed.

object Find(string value)

Description: Returns an object that matches the value provided. If no matches are found in the
container, a null/empty object is returned.

JScript Example

Action. Trace(" ******** |jgt Access ****** ")
var ret = Query. EffectivePolicyList;
for(var i =0; i <ret.Count; i++)
{
var pol =ret.ltemi);
Action. Trace(" ******** Po|jcy Information *****xxxx vy
Action. Trace("ID " + pol.ld);
Action. Trace("Version: " + pol.Version);
Action. Trace("Name: " + pol.Nane);
Action. Trace("Type: " + pol.PolicyType);
Action. Trace("Session: " + pol. Session);

VBScript Example

set obj = Query. EffectivePolicyLi st

max = obj . Count

For idx =0 to (max - 1)
Action. Trace " **x*xxx*x Po|jcy Information *****xxxxx v
set pol = obj.Ilten(idx)
Action.Trace "ID " & pol.Ild
Action. Trace "Version: " & pol. Version
Action. Trace "Nanme: " & pol. Nane
Action. Trace "Type: " & pol.PolicyType
Action. Trace "Session: " & pol. Session

Next

Script Development 27

Effective Policy Interface

The Endpoint Security Agent evaluates many policies and types to determine which ones will be
enforced by a device. Policies that are currently being enforced make up the Effective Policy List.

Policylnformation Object

The Policylnformation object provides information about an individual policy in the system. It can be
returned by the EffectivePolicyList and EffectivePolicyArray functions.

Data Types: string Id — A unique identifier for the policy in the system.
string Version — The version of the policy being used.
string Name — The name of the policy.

string PolicyType — One of the following policy types. Available policy types vary
depending on the Endpoint Security Agent version.

¢ script
¢ applicationControl
¢ hardware
¢ firewall
+ | ocati onAssi gnrent
+ |ocationRel ation
* net wor KEnvi r onnment
¢ security
+ storageEncryption
+ storageDevi ceControl
¢ usb
¢ vpn
* wifi
+ fde
string Session — The session (user, devi ce, zone) that provided the policy.

Functions: bool Match(string val ue)

Returns t r ue if the value provided matches the ID or Name value for the policy.

Effective Policies Methods

The Effective Policies methods get information about a device’s currently effective policies.

SafeArray Query.EffectivePolicyArray()

Description: Returns an array of Policylnformation objects, one for each effective policy being
enforced. The list can be empty when there are no published policies. See the example
in Safe Arrays.

28 Script Development

ObjectMatchList Query.EffectivePolicyList

Description: Returns an array of Policylnformation objects, one for each effective policy being
enforced. The list can be empty when there are no published policies. See the example
in Object Match Lists.

JScript Example

Action. Trace(" *****xxx |jgt Access ****x* ")
var ret = Query. EffectivePolicylist;
for(var i =0; i < ret.Count; i++)
{
var pol =ret.ltem(i);
Action. Trace(" ******** Po|jcy Information ***xxxxxx u).
Action. Trace("ID. " + pol.ld);
Action. Trace("Version: " + pol.Version);
Action. Trace("Name: " + pol.Nane);
Action. Trace(" Type: + pol . Pol i cyType);
Action. Trace("Session: " + pol.Session);

VBScript Example

set obj = Query.EffectivePolicyli st

max = obj . Count

For idx =0 to (max - 1)
Action. Trace " **x*xxxx Po|jcy |Information ****xxxxx
set pol = obj.Ilten(idx)
Action.Trace "ID. " & pol.ld
Action. Trace "Version: " + pol.Version
Action. Trace "Nanme: " + pol. Nane
Action. Trace "Type: " + pol.PolicyType
Action. Trace "Session: " + pol. Session

Next

Location Interface

The Location interface provides methods for getting information about a device’s location and for
manipulating the location.

Definitions

ZENworks Endpoint Security Management provides two different lists of locations: a Network
Location List and an Assigned Location List. Using these two lists, information about four types of
locations is tracked: a Network location, an Assigned location, a Mobile location, and a Security
location. A brief description is provided for both of the lists and each location:

+ Network Location List: Contains all locations defined in the ZENworks Management Zone.

These locations may be associated with a set of network environments. The list always contains

at least one location that is marked as the Mobile (Unknown) location that is used when the
current environment does not match any defined network environments.

Script Development

29

30

+ Assigned Location List: Contains only the locations that the device is allowed to apply as
Security locations. Normally, this list is provided via the Location Assignment policy. This list
always contains at least one location that is marked as the Mobile (Unknown) location. The

Mobile location is used when the current environment does not match any locations included in

the Assigned Location List.

+ Network Location: The location, taken from the Network Location List, that the current network

environment best matches.

+ Assigned Location: The location, taken from the Assigned Location List, that the current
network environment best matches.

¢ Security Location: The location, from the Assigned Location List, that determine which of the

security policies are being enforced. Normally, this is the same as the Assigned location.
However, scripting or other rules (such as the VPN policy) can force the Security location to
change.

+ Mobile Location: The location, from the Assigned Location List, that has been designated as
the default Assigned location if the current network environment does not match any location
definitions. This is frequently referred to as the Unknown location.

Data Types

LocationAssignment

The LocationAssignment object provides information about the current location. It is returned when
working with a location from the Assigned Location List.
Data Types: string Id — A unique identifier for the location in the system.
string Name — The name of the location.
DateTime DateModified — The last time the location definition was modified.

int Order — The order of precedence between two locations being compared for
network environment match.

bool Mobile — True if the location is the Unknown location.

bool AllowsManualChange — True if the user is allowed to change into or out of this
location.

bool ShowInMenu — True if the user should see this location listed in the choice of
locations menus.

Functions: bool Match(string val ue)

Returns t r ue if the value provided matches the ID or Name value for the location.

LocationNetwork

The LocationNetwork object provides information about the current location. It is returned when
working with a location from the Network Location List.

Script Development

Data Types: string Id — A unique identifier for the location in the system.
string Name — The name of the location.
DateTime DateModified — The last time the location definition was modified.

int Order — The order of precedence between two locations being compared for
network environment match.

bool Mobile — Tr ue if the location is the Unknown location.
Functions: bool Match(string val ue)

Returns t r ue if the value provided matches the ID or Name value for the location.

LocationChange

The LocationChange object provides information about the last location change and why the current
location change is being enforced. It is returned when changing the current Security location or can
be asked for directly.

Data Types: string Reason — One of the following:

* none — No change has occurred yet.
+ pol i cy — A policy update caused the location change.
+ manual — The location change was manually initiated (for example, by the user).

+ net wor k — A network environment change caused a match with the new
location.

+ rul e —Arule, such as a VPN rule or a script, requested the location change.

+ permanent — Arule requested a permanent location change. The location
change remains in effect until another permanent change is requested or the
current request is cancelled.

string Producer — The Endpoint Security Agent component that requested the location
change. This value can be empty.

string Ruleld — The ID of the rule that made the location change request. This value an
be empty.

string RuleName — The name of the rule that made the location change request. This
value an be empty.

int Level — The level that the request was made.

LocationAssignment SecurityLocation — Information about the current Security
location resulting from the location change.

Security Location Methods

The Security Location methods deal with the security location, retrieving the current security location,
and setting a new location from the script. The Manual location change methods perform the same
functions as if the user initiated a request for the location change and follow the same restriction as
those put on the user. When the current security location does not allow manual changes, the script

Script Development 31

32

or the user is not able to switch into or out of the location. If the destination location does not allow
manual changes, the request is ignored because the location change cannot be switched into by a

manual change.

The Rule location change methods allow the script to change from any location to another without
restrictions. When a user initiates a manual change, it fails if a location is involved that does not allow
manual changes. However, when a script uses the Rule location change (or an internal VPN/Network
Environment rule), the location change is allowed regardless of the manual change settings.

The Permanent location change methods allow the script to block changes by internal rules (VPN/
Network Environments) and other scripts running in the system. This is done by disabling the location
decider code in the Endpoint Security Agent and requiring other scripts/rules to provide the equivalent
or higher level before the location can be changed. The internal “VPN” rule in the system uses this
method to control location changes when the internet is present. The level it sets is 100.

The final component is the ability to re-enable the location decider. This is controlled by the level
setting of the request.

LocationAssignment Query.SecurityLocation

Description:

Gets the current Security location.

LocationChange Action.ManualLocationChange(string toLocation)

Description:

Parameters:

Returns:

Switches to the toLocation if a permanent location has not been set and policy permits.

toLocation — The name or ID of the location being switched to. The request is ignored
if the toLocation is not in the Location Assignment policy or if policy does not allow
manual location changes.

Returns the LocationChange object so the caller can see if the request was honored.

LocationChange Action.ManualLocationChangeWithSource(string
fromLocation, string toLocation)

Description:

Parameters:

Returns:

Script Development

If the current location is the fromLocation, switches to the toLocation if a permanent
location has not been set and policy permits.

fromLocation — The name or ID of the location being switched from. The request is
ignored if the fromLocation is not the current location, or if policy does not allow manual
location changes.

toLocation — The name or ID of the location being switched to. The request is ignored
if the toLocation is not in the Location Assignment policy or if policy does not allow
manual location changes.

Returns the LocationChange object so the caller can see if the request was honored.

LocationChange Action.RuleLocationChange(string toLocation)

Description:

Parameters:

Returns:

Switches to the toLocation if a permanent location has not been set.

toLocation — The name or ID of the location being switched to. The request is ignored
if the toLocation is not in the Location Assignment policy or if policy does not allow
manual location changes.

Returns the LocationChange object so the caller can see if the request was honored.

LocationChange Action.RuleLocationChangeWithSource(string
fromLocation, string toLocation)

Description:

Parameters:

Returns:

If the current location is the fromLocation, switches to the toLocation if a permanent
location has not been set.

fromLocation — The name or ID of the location being switched from. The request is
ignored if the fromLocation is not the current location, or if policy does not allow manual
location changes.

toLocation — The name or ID of the location being switched to. The request is ignored
if the toLocation is not in the Location Assignment policy or if policy does not allow
manual location changes.

Returns the LocationChange object so the caller can see if the request was honored.

LocationChange Action.PermanentLocationChange(string
toLocation, int level)

Description:

Parameters:

Returns:

Switches to the toLocation and turns off the location decider.

toLocation — The name or ID of the location being switched to. The request is ignored
if the toLocation is not in the Location Assignment policy.

level — The request is permitted only if the current change level is less than or equal to
this level.

Returns the LocationChange object so the caller can see if the request was honored.

Script Development

33

34

LocationChange
Action.PermanentLocationChangeWithSource(string fromLocation,
string toLocation, int level)

Description: If the current location is the fromLocation, switches to the toLocation and turns off the
location decider.

Parameters: fromLocation — The name or ID of the location being switched from. The request is
ignored if the fromLocation is not the current location.

toLocation — The name or ID of the location being switched to. The request is ignored
if the toLocation is not in the Location Assignment policy.

level — The request is permitted only if the current change level is less than or equal to
this level.

Returns: Returns the LocationChange object so the caller can see if the request was honored.

LocationChange Action.ReenableLocationDecider(int level)

Description: Re-enables the location decider.The location decider waits for a location change event
(network environment change, manual change, script, etc.) to occur before making any
changes. If you want to change to the current location immediately, you should get the
current Assigned location (LocationAssignment Query.AssignedLocation) and assign it
as the current Security location (LocationChange
Action.PermanentLocationChange(string toLocation, int level) before re-enabling the
location decider.

Parameters: level — The request is permitted only if the current change level is less than or equal to
this level.
Returns: Returns the LocationChange object so the caller can see if the request was honored.

Mobile (Unknown) Location Methods
The Mobile location is often referred to as the Default location or Unknown location. This location is

used when no other assigned location matches the current network environment and no rule has
overridden the location decider’s decisions.

LocationAssignment Query.MobileLocation

Description: Gets the current Mobile location.

Returns: The LocationAssignment object with the current Mobile location information.

Assigned Location Methods

The Endpoint Security Agent is provided a list of locations that it is allowed to use as Security
locations. This list is passed to the agent via the Location Assignment policy. The location decider
uses this list to determine the best matching location based on the current network environment. That

Script Development

location is called the Assigned location. Scripts cannot change Assigned Locations list or the
Assigned location, but they can use it for determining actions and deciding which locations the script
may wish to set as the current Security location.

LocationAssignment Query.AssignedLocation

Description: Gets the current Assigned location.

Returns: The LocationAssignment object with the current Assigned location information.

ObjectMatchList Query.AssignedLocationList

Description: Gets the list of Assigned locations available to the device.

Returns: An ObjectMatchList that contains the Assigned locations.

SafeArray Query.AssignedLocationArray()

Description: Gets the list of Assigned locations available to the device.

Returns: A VB SafeArray that contains the Assigned locations.

Network Location Methods

The Endpoint Security Agent receives the list of all locations defined in the ZENworks Management
Zone. From this Network Location List, the location decider determines the best location based on the
network environment. This is referred to as the Network location. Currently, the ZENworks Agent can
use this location to determine closest servers and to determine whether or not certain actions (such
as bundle downloads) are allowed. A script cannot change the Network location, but it can use the
Network location to determine actions, just like the ZENworks Agent.

LocationAssignment Query.NetworkLocation

Description: Gets the current Network location.

ObjectMatchList Query.NetworkLocationList

Description: Gets the list of Network locations available to the device.

Returns: An ObjectMatchList that contains the Network locations.

Script Development 35

SafeArray Query.NetworkLocationArray()

Description: Returns the list of Network locations available to the device; returned as a Visual Basic
SafeArray.
Returns: A VB SafeArray that contains the Network locations.

JScript Example

function D spl ayAssi gnedLocati on(| oc)

{
Action. Trace("Location =" + | oc. Nane);
Action.Trace("Id =" + loc.ld);
Action. Trace("Date Mddified =" + | oc. Datehodified);
Action. Trace("Order: " + loc.Order);
Action. Trace("Mbile: " + loc.Mbile);
Action. Trace("A | ow Manual Change: " + | oc. Al |l owsManual Change) ;
Action. Trace("Show in menu: " + | oc. Show nMenu) ;
}

Action. Trace("");

Action. Trace(" ******** Security Location ***x**xxxx).
Action. Trace("");

Di spl ayAssi gnedLocat i on(Query. SecurityLocation);

VBScript Example

Function Di spl ayAssi gnedLocation (I oc)

Action. Trace "Location =" & | oc. Nane
Action. Trace "Id =" & loc.ld
Action. Trace "Date Mddified = " & | oc. Dat eModi fi ed

Action. Trace "Order: " & | oc. Order

Action. Trace "Mbile: " & loc. Mobile

Action. Trace "A | ow Manual Change: " & |oc. Al |l owsManual Change
Action. Trace "Show in nenu: " & | oc. Show nMenu

End Function

Action. Trace ""
Action. Trace " ******x* Gecurity Location ***x**xxxx =&

Action. Trace ""
Di spl ayAssi gnedLocati on Query. SecurityLocation

Communication Hardware Policy Interface

The Communication Hardware Policy interface provides methods for getting and setting the
enforcement for the policy-supported hardware types.

36 Script Development

Data Types

Hardware firewire — IEEE1394 attached devices
Types:
irda — infrared attached devices
bluetooth — bluetooth attached devices
ports — serial or com ports
modem — modem and dialup adapters
wireless — wireless network adapters
wired — wired network adapters
bridge — network adapter bridges
any — any of the hardware types
Enforcement disable — Disable the setting and enforce immediately.
Types:

enable — Enable the setting and enforce immediately.

blockConnections — Block connections made by the device; typically applies to
wireless network adapters and modems.

blockConnectionsWhenWired — Block connections made by the device only if there is
a wired connection.

disableWhenWired — Disable the device when a wired connection is detected.

inherit — Immediately apply enforcement as defined by the current policy/location.
Used to clear the script setting.

Enforced Policy Methods

The Enforced Policy methods provide information about whether or not the enforced policy has
disabled a specific hardware type.

bool Query.IsHardwareDisabled(string hardwareType)

Description: Determines if the enforcement for the specified hardware type is set to di sabl ed.
Parameters: hardwareType — One of the hardware types listed in Data Types.
Returns: Tr ue if the hardware type is disabled by the Endpoint Security Agent. Fal se if the

agent will allow the hardware type to be enabled and any hardware disabled by the
agent should be re-enabled.

Hardware Enforcement Methods

The Hardware Enforcement methods get and set the enforcment for a specific hardware type.

Script Development 37

38

string Query.GetHardwareEnforcement(string hardwareType)

Description: Gets the effective enforcement for the specified hardware type.The effective
enforcement is determined by resolving any conflicts between the policy enforcement
type and the script enforcement type. The script enforcement type overrides the policy
enforcement type; if the script enforcement type is i nheri t, the policy enforcement

type is used.
Parameters: hardwareType — One of the hardware types listed in Data Types.
Returns: One of the enforcement types listed in Data Types.

string Query.GetHardwarePolicyEnforcement(string hardwareType)

Description: Gets the enforcement, as set by the policy, for the specified hardware type.
Parameters: hardwareType — One of the hardware types listed in Data Types.
Returns: One of the enforcement types listed in Data Types.

string Query.GetHardwareScriptEnforcement(string hardwareType)

Description: Gets the enforcement, as set by script, for the specified hardware type.
Parameters: hardwareType — One of the hardware types listed in Data Types.
Returns: One of the enforcement types listed in Data Types.

int Action.SetHardwareEnforcement(string hardwareType, string

enforcement)
Description: Sets the enforcement for a specific hardware type.
Parameters: hardwareType — One of the hardware types listed in Data Types.

enforcement — One of the enforcement types listed in Data Types. These values
override the effective policy for the hardware type. If the hardware type does not
support the enforcement type (such as bl ock, bl ock_when_wi r ed, or

di sabl e_when_wi r ed), enforcement is set to di sabl e.

Adapter Connection Methods

The Adaptor Connection methods provide information about whether a specific adapter type has any
connections.

Script Development

bool Query.IsAdapterTypeConnected(string adapterType)

Description: Determines if a specific adapter has any connections.
Parameters: adapterType — One of the following: wi r ed, wi r el ess, rodem any.
Returns: Tr ue if an adapter of the requested type currently has a connection. Fal se if there are

no adapters of the requested type with a connection.

JScript Example

functi on D spl ayHar dwar eEnf or cerent ()

{
Action. Trace("firewire: " + Query. GetHardwareEnforcement("firewire"));
Action. Trace("wireless: " + Query. Get Har dwar eEnf or cenent (" bri dge"));
}
function Set Har dwar eEnf or cenent (enf)
{
Action. Trace("firewire: " + Action. SetHardwareEnforcement("firewire", enf));
Action. Trace("wireless: " + Action. Set Har dwar eEnf orcenent ("wirel ess", enf));
}
function | sHar dwar eDi sabl ed()
{
Action. Trace("firewire: " + Query.|sHardwareD sabled("firewire"));
Action. Trace("wireless: " + Query.|sHardwareDi sabl ed("wi rel ess"));
}

Action. Trace("");
Action. Trace("Adapter Type Connected:");
Action. Trace("\twireless: " + Query.|sAdapterTypeConnected("w rel ess"));
Action. Trace("\tany: " + Query.|sAdapter TypeConnected("any"));
Action. Trace("");
Acti on. Trace(" Get Har dwar eEnf or cenment : ") ;
Di spl ayHar dwar eEnf or cenent () ;
Action. Trace("");
Action. Trace(" Get Har dwar ePol i cyEnf orcement: ") ;
Action. Trace("firewire: " + Query. Get Hardwar ePol i cyEnforcement ("firewire"));
Action. Trace("wireless: " + Query. Get Har dwar ePol i cyEnf orcement ("wi rel ess"));
Action. Trace("");
Action. Trace(" Get Har dwar eScri pt Enf orcenment: ") ;
Action. Trace("firewire: " + Query. GetHardwareScriptEnforcement("firewire"));
Action. Trace("wireless: " + Query. GetHardwareScript Enforcement ("w rel ess"));
Action. Trace("");
Action. Trace(" Get Har dwar eEnf or cement: D sabl eWhenWred");
Di spl ayHar dwar eEnf or cenent () ;
Action. Trace("");
Acti on. Sl eep(1000);
Action. Trace("I| sHar dwar eDi sabl ed: D sabl eWenWred");
| sHar dwar eDi sabl ed() ;
ret = Action.Pronpt("Pronmpt", "Check for hardware di sable when wired", "?", 0, "ok
")
Action. Trace("");
Acti on. Trace(" Set Har dwar eEnf orcement: I nherit");
Set Har dwar eEnf or cenment ("i nherit");

Script Development 39

VBScript Example

Functi on Di spl ayHar dwar eEnf or cenent ()
Action. Trace("firewire: " & Query. Get Har dwar eEnforcenment ("firewire"))
Action. Trace("wireless: " & Query. Get Har dwar eEnf or cement ("wi rel ess"))
End Function

Functi on Set Har dwar eEnf or cenent (enf)
Action. Trace("firewire: " & Action. Set Hardwar eEnforcerment ("firewire", enf))
Action. Trace("wirel ess: " & Action. Set Har dwar eEnf orcerment ("wi rel ess", enf))
End Functi on

Functi on | sHar dwar eDi sabl ed()
Action. Trace("firewire: " & Query.|sHardwareDi sabl ed("firewire"))
Action. Trace("wireless: " & Query.|sHardwareD sabl ed("w rel ess"))
End Function

Action. Trace("")
Action. Trace(" Adapter Type Connected:")
Action. Trace("wireless: " & Query.|sAdapterTypeConnected("w rel ess"))
Action. Trace("any: " & Query.|sAdapter TypeConnected("any"))
Action. Trace("")
Acti on. Trace(" Get Har dwar eEnf or cenment : ")
Di spl ayHar dwar eEnf or cenent ()
Action. Trace("")
Acti on. Trace(" Get Har dwar ePol i cyEnf or cenent : ")
Action. Trace("firewire: " & Query. Get Hardwar ePol i cyEnforcenent ("firewire"))
Action. Trace("wireless: " & Query. Get Har dwar ePol i cyEnf orcement ("wi rel ess"))
Action. Trace("")
Action. Trace(" Get Har dwar eScri pt Enf orcenment : ")
Action. Trace("firewire: " & Query. GetHardwareScript Enforcement("firewire"))
Action. Trace("wireless: " & Query. Get Hardwar eScri pt Enf orcement ("wi rel ess"))
Action. Trace("")
Acti on. Trace(" Set Har dwar eEnf or cenent ;: Di sabl eWwhenW red")
Set Har dwar eEnf or cenent (" di sabl e_when_wi red")
Action. Trace("")
Action. Trace(" Get Har dwar eEnf or cement: Di sabl eWhenWred")
Di spl ayHar dwar eEnf or cenent ()
Action. Trace("")
Acti on. Sl eep(1000)
Action. Trace("| sHar dwar eDi sabl ed: D sabl eWenWred")
| sHar dwar eDi sabl ed() ;
ret = Action.Pronmpt("Pronmpt", "Check for hardware disable when wired", "?", 0, "ok
")
Action. Trace(" Set Har dwar eEnf or cement: I nherit")
Set Har dwar eEnf or cenent ("i nherit")

WiFi Policy Interface

The WiFi Policy interface provides methods for getting and setting the enforcement for adhoc
networks, WiFi connections, and wireless access point security level.

40 Script Development

Data Types

Enforcement
Types:

Signal Strength:

Security Level:

disable — Disable the setting and enforce immediately.
enable — Enable the setting and enforce immediately.

inherit — Immediately apply enforcement as defined by the current policy. Used to clear
the script setting.

not_set — No policy is set; filter is ignored.
very_low

low

good

very_good

excellent

inherit — Immediately apply setting as defined by the current policy. Used to clear the
script setting.

inherit — Immediately apply setting as defined by the current policy. Used to clear the
script setting.

unsecured

secure — Any security level.
wep

wpa

wpa2

Adhoc WiFi Networks Methods

The Adhoc WiFi Networks methods get and set the enforcement for adhoc wireless networks.

string Query.GetAdHoc

Description:

Returns:

Gets the effective enforcement for adhoc WiFi networks.The effective enforcement is
determined by resolving any conflicts between the policy enforcement type and the
script enforcement type. The script enforcement type overrides the policy enforcement
type; if the script enforcement type is i nheri t, the policy enforcement type is used.

Enabl ed if the device can connect to an adhoc wireless network or can be an adhoc
network provider. Di sabl ed if the device cannot connect to an adhoc network or
cannot be a provider.

Script Development

41

42

string Query.GetAdHocPolicy

Description: Gets the enforcement, as set by policy, for adhoc wireless networks.

Returns: Enabl ed if the device can connect to an adhoc wireless network or be an adhoc
network provider. Di sabl ed if the device cannot connect or be a provider.

string Query.GetAdHocScript

Description: Gets the enforcement, as set by script, for adhoc wireless networks.

Returns: Enabl ed if the device can connect to an adhoc wireless network or be an adhoc
network provider. Di sabl ed if the device cannot connect or be a provider.

int Action.SetAdHoc(string enforcement)

Description: Sets the enforcement for adhoc wireless networks.

Parameters: enforcement — One of the enforcement types listed in Data Types.

Block WiFi Connections

The Block WiFi Connections methods get and set the enforcement for WiFi connections.

string Query.GetBlockWiFiConnection

Description: Gets the effective enforcement for blocking connections to a WiFi network.The effective
enforcement is determined by resolving any conflicts between the policy enforcement
type and the script enforcement type. The script enforcement type overrides the policy
enforcement type; if the script enforcement type is i nheri t, the policy enforcement
type is used.

Returns: Enabl ed if WiFi connections are blocked. Di sabl ed if WiFi connections are allowed. If
disabled, connections are based on availability and filter restrictions.

string Query.GetBlockWiFiConnectionPolicy

Description: Gets the enforcement, as set by policy, for blocking connections to a WiFi network. If
disabled, connections are based on availability and filter restrictions.

Returns: Enabl ed if WiFi connections are blocked. Di sabl ed if WiFi connections are allowed.If
di sabl ed, connections are based on availability and filter restrictions.

Script Development

string Query.GetBlockWiFiConnectionScript

Description: Gets the enforcement, as set by script, for blocking connections to a WiFi network.

Returns: Enabl ed if WiFi connections are blocked. Di sabl ed if WiFi connections are allowed. If
di sabl ed, connections are based on availability and filter restrictions.

int Action.SetBlockWiFiConnection(string enforcement)

Description: Sets the enforcement for blocking WiFi connections.

Parameters: enforcement — One of the enforcement types listed in Data Types.

Minimum Security Level Methods

Minimum security level is used to filter out wireless networks that do not meet the minimum level.

Devices cannot see or connect to the removed wireless networks. The security level is inclusive from
inherit to wpa2, as listed in Data Types. For example if wpa is chosen, networks that support wpa and

wpa2 security pass the filter, but unsecured networks and wep networks are filtered out.

The Minimum Security Level methods get and set the minimum security level requirement for a
wireless network.

string Query.GetMinWiFiSecurityLevel

Description: Gets the effective enforcement for the minimum security level. The effective
enforcement is determined by resolving any conflicts between the policy enforcement
type and the script enforcement type. The script enforcement type overrides the policy
enforcement type; if the script enforcement type is i nheri t, the policy enforcement
type is used.

Returns: One of the security levels listed in Data Types.

string Query.GetMinWiFiSecurityLevelPolicy

Description: Gets the minimum security level, as set by policy.

Returns: One of the security levels listed in Data Types.

string Query.GetMinWiFiSecurityLevelScript

Description: Gets the minimum security level, as set by script.

Returns: One of the security levels listed in Data Types.

Script Development

43

int Action.SetMinWiFiSecurityLevelEnforcement(string

enforcement)
Description: Sets the enforcement for minimum security level.
Parameters: enforcement — One of the enforcement types listed in Data Types.

Minimum Signal Strength Methods

Minimum signal strength level is used to filter out wireless access points that do not meet the
minimum signal strength. Devices cannot see or connect to the removed access point. The signal
strength is inclusive from i nherit to not_set, as listed in Data Types. For example if very_good is
chosen, access points that have very_good and excel | ent signal strength pass the filter, but access
points with very_I ow, | ow, and good signal strengths are filtered out.

The Minimum Signal Strength methods get and set the minimum signal strength requirement for
wireless access points.

string Query.GetMinWiFiSignalStrength

Description: Gets the effective enforcement for the minimum signal strength. The effective
enforcement is determined by resolving any conflicts between the policy enforcement
type and the script enforcement type. The script enforcement type overrides the policy
enforcement type; if the script enforcement type is i nheri t, the policy enforcement
type is used.

Returns: One of the signal strengths listed in Data Types.

string Query.GetMinWiFiSignalStrengthPolicy

Description: Gets the minimum security level, as set by policy.

Returns: One of the signal strengths listed in Data Types.

string Query.GetMinWiFiSignalStrengthScript

Description: Gets the minimum security level, as set by script.

Returns: One of the signal strengths listed in Data Types.

int Action.SetMinWiFiSignalStrengthEnforcement(string

enforcement)
Description: Sets the enforcement for minimum security level.
Parameters: enforcement — One of the enforcement types listed in Data Types.

44 Script Development

Storage Device Control Policy Interface

The Storage Device Control Policy interface provides methods for getting and setting the
enforcement for different volume types (fixed, optical, removable, and floppy), and for getting and
setting the enforcement for the AutoPlay and AutoRun features.

Data Types

Volume Types:

Volume Access:

Auto-Play
Access:

Enforcement
Type:

unknown — Volume drive type cannot be determined.
fixed — Local hard drive located on a removable system bus.
optical — CD-ROM and DVD drives.

removable — Volumes on a removable bus or volumes marked as removable by the
system.

floppy — Floppy disk drives.

inherit — Immediately apply setting as defined by the current policy. Used to clear the
script setting.

disable — Block all access to the volume. Disable in Device Manager.

deny — Block read and write access to the volume, but leave volume enabled in Device
Manager.

read_only — Allow the volume to be read from, but block write operations.
read_write — Allow full access to the volume.

inherit — Immediately apply setting as defined by the current policy. Used to clear the
script setting.

allow — Allow Windows to initiate an auto-play (or auto-run) request when mounting a
volume.

block_auto_play — Do not allow Windows to initiate an auto-play (or auto-run) request
when mounting a volume.

block_auto_run — Do not allow Windows to initiate an auto-run request when mounting
a volume; auto-play requests are allowed.

disable — Disable the setting and enforce immediately.
enable — Enable the setting and enforce immediately.

inherit — Immediately apply enforcement as defined by the current policy. Used to clear
the script setting.

AutoPlay Methods

The AutoPlay methods get and set the enforcement for the AutoPlay and AutoRun features.

Script Development

45

46

string Query.GetAutoPlayEnforcement

Description: Gets the enforcement for auto-play.

Returns: One of the enforcement types listed in Data Types.

string Query.GetAutoPlayPolicyEnforcement

Description: Gets the auto-play enforcement type, as set by policy.

Returns: One of the enforcement types listed in Data Types.

string Query.GetAutoPlayScriptEnforcement

Description: Gets the auto-play enforcement type, as set by script.

Returns: One of the enforcement types listed in Data Types.

int Action.SetAutoPlayEnforcement(string enforcement)

Description: Sets the enforcement for auto-play.

Parameters: enforcement — One of the enforcement types listed in Data Types.

Volumes Methods

The Volumes methods get and set the enforcement for fixed, optical, removable, and floppy volumes.

string Query.GetVolumeEnforcement(string volumeType)

Description: Gets the effective enforcement for volumes of the specified type. The effective
enforcement is determined by resolving any conflicts between the policy enforcement
type and the script enforcement type. The script enforcement type overrides the policy
enforcement type; if the script enforcement type is i nheri t, the policy enforcement

type is used.
Parameters: volumeType — One of the volume types listed in Data Types.
Returns: One of the enforcement types listed in Data Types.

string Query.GetVolumePolicyEnforcement(string volumeType)

Description: Gets the enforcement for volumes of the specified type, as set by policy.
Parameters: volumeType — One of the volume types listed in Data Types.
Returns: One of the enforcement types listed in Data Types.

Script Development

string Query.GetVolumeSciptEnforcement(string volumeType)

Description: Gets the enforcement for volumes of the specified type, as set by script.
Parameters: volumeType — One of the volume types listed in Data Types.
Returns: One of the enforcement types listed in Data Types.

int
Action.SetVolumeEnforcement(string volumeType, string enforcem
ent)

Description: Sets the enforcement for volumes of the specified type.

Parameters: volumeType — One of the volume types listed in Data Types except for f i xed. You
cannot set an enforcement type for a fixed volume.

enforcement — One of the enforcement types listed in Data Types.

Script Development

a7

48 Script Development

Script Testing

You can use the Endpoint Security Agent to test scripts. You can test an unpublished script as part of
the script development process, or you can test a published Scripting policy in order to troubleshoot
problems.

The following sections provide information to help you test scripts. The sections do not include
information about creating scripts; for that information, see Appendix 1, “Script Development,” on
page 7.

Enabling Script Testing in the Endpoint Security
Agent

To access the script testing features in the Endpoint Security Agent, you must provide an override
password. The override password is configured in ZENworks Control Center as one of the ZENworks
Agent configuration settings (ZENworks Control Center > Configuration > Management Zone
Settings > Device Management > ZENworks Agent). For information about setting the override
password, see “ZENworks Agent Settings”in the ZENworks Agent Reference.

Testing an Unpublished Script

The following steps explain how to test a script that is not yet published in a Scripting policy. If you
want to test a script that has already been published to a device as a Scripting policy, see Testing a
Published Scripting Policy.

1 Make sure that the script testing features of the Endpoint Security Agent are enabled for the
device where you plan to test the script. For details, see Enabling Script Testing in the Endpoint
Security Agent.

2 On the device, right-click the ZENworks icon in the notification area, and select Technician
Application.

Click Endpoint Security in the ZENworks Agent navigation menu.

In the Endpoint Security Agent Actions section, click About to display the About dialog box.
Click Diagnostics.

Click Scripting to display the override password prompt.

~N o 01 AW

Specify the override password, then click OK to display the ZENworks Endpoint Security Agent
Scripting Development Environment dialog box.

Script Testing 49

50

8

10

11

12

) ZEMwvorks Endpoint Security Scripting Developrment Environment EI@

Script
Source: || Browse ...

Language: JawaScript [JSeript] -

M arne:
|dentifier:
Context: System -
Triggers

Location Change Metwork Dizconnect Timer |5 “| Minutes
Metwork Change Palicy Change

Metwork Connect Run Mow

Status: Mot Loaded

In the Source field, click Browse, select the script you want to test, then click Open.
The script source, language, name, and identifier are displayed.

In the Context field, select the context in which you want the script to run.

In the Triggers section, select the execution triggers to test.

Location Change: Triggers script when any location change occurs.

Network Change: Triggers script when any network environment change occurs.

Network Connect: Triggers script when any network (wireless, wired, modem/dialup)
connection occurs.

Network Disconnect: Triggers script when any network (wireless, wired, modem/dialup)
disconnect occurs.

Policy Change: Triggers script when any Security policy change is received.
Run Now: Triggers script immediately upon loading of the script.

Timer: Triggers script at the specified interval.

Click Load to load the script and the triggers.

If the Run Now trigger is selected, the script is executed immediately. Otherwise, it is executed
as designated by the selected triggers.

When you are done testing the script, click Unload to remove the script from memory and keep it
from executing anymore.

Script Testing

Testing a Published Scripting Policy

The following steps explain how to test a Scripting policy that is already published to a device. This is

useful if you need to diagnose problems with the script. To test an unpublished script that you are

developing, see Testing an Unpublished Script.

1 Make sure that the script testing features of the Endpoint Security Agent are enabled for the

device where you plan to test the Scripting policy. For details, see Enabling Script Testing in the

Endpoint Security Agent.

2 On the device, right-click the ZENworks icon @ in the notification area, and select Technician

Application.

o 01~ W

Status dialog box.

Click Endpoint Security in the ZENworks Agent navigation menu.

Click Agent Status to display the override password prompt.

In the Endpoint Security Agent Actions section, click About to display the About dialog box.

Specify the override password, then click OK to display the ZENworks Endpoint Security Agent

) ZEMwiarks Endpoint Security Status - 12/14/2016 14:55:36,151

[=][o s

| Enwironment I Ewvent Bus I Firewall Activity I Firewwall Enforcement I Firewall Policy I Hardware I Location I Metwork Environment b atches I 05 Adapter List|

Palicy Enforcement I Reparting I Scripting I USE Devices I Wolume Management I WPMN Enforcement I Wwi-Fi Management|

Adapter Enviranments |Agent Self Defense I Configuration Location Relations I Configuration Netwark Ervirahments I Device Enforcer I DNS Cache |

Connection

Status

Connection

True

‘Wired Connection

True

Wireless Connection

Falze

hodem Connection

Falze

m

{B0691969-7324-4516-9348-FOFCDE3CIATCY

Mame

Local Area Connection

Description

Intel(R) PROMDOD MT Metw ork Connection

Operational Status

Up

Connection Status

connected

Adapter Type

wired

Permanent Physical Address

00:50:56:ab:09:d5

IPVE Address 2620:112:8044:801c:8556:493a:1015:cd5a
IPVE Address 2620:113:3044:801c 40ee:0003:64f3:b5cE
IPVE Address fedD: 8556:483a: 1015 cdSa% 11

IP Address (DHCP)

10.204.106.41 Subnet: 255.255.252.0

DNS Suffix (Static)

steve test

o

Riefresh] [Cloze

7 Click the Scripting tab.
8 In the Scripts table, locate the Scripting policy you want to test, then use the following links

located in the Commands column to test the script:

+ Trigger: Runs the script.

+ Terminate: Stops the script.

+ Trace: Opens the ZENworks Endpoint Security Agent Script Tracing dialog so that you can

trigger the script and view the trace messages that are generated.

Script Testing

51

52

+ View: Opens the ZENworks Endpoint Security Agent Scripting Development Environment
dialog box so that you can see the script triggers and execution context. You can use the
options in the Development Environment dialog box to trigger and trace the script.

Tracing a Script’s Execution

To help you diagnose the problems with scripts that are not doing what you expect them to do, you
can view trace messages during the execution of the script.
1 Follow the steps in Testing an Unpublished Script to load an unpublished script.
or
Follow the steps in Testing a Published Scripting Policy to load a published Scripting policy.
2 Click Trace to display the ZENworks Endpoint Security Agent Script Tracing dialog box.
3 Select Include System Messages if you want to include output for all actions.

If you do not include system messages, only messages generated by Acti on. Trace commands
in the script are output. For more information about using Act i on. Trace commands, see void
Action.Trace(string msg).

4 Click Trigger to execute the script.

Script Testing

	ZENworks Endpoint Security Scripting Reference
	About This Guide
	1 Script Development
	Supported Scripting Languages
	Execution Context
	Defining Event Triggers
	Namespaces
	Storage Interface
	Variables
	Temporary Storage Methods
	Persistent Storage Methods
	JScript Example
	VBScript Example

	Script Management Interface
	Script Information and Helper Methods
	Version Methods
	Trigger Event Methods
	Script Run Methods
	Program Launch/Execute Methods
	Display Methods
	Prompt Methods
	Safe Arrays
	Object Match Lists

	Effective Policy Interface
	PolicyInformation Object
	Effective Policies Methods

	Location Interface
	Definitions
	Data Types
	Security Location Methods
	Mobile (Unknown) Location Methods
	Assigned Location Methods
	Network Location Methods
	JScript Example
	VBScript Example

	Communication Hardware Policy Interface
	Data Types
	Enforced Policy Methods
	Hardware Enforcement Methods
	Adapter Connection Methods
	JScript Example
	VBScript Example

	WiFi Policy Interface
	Data Types
	Adhoc WiFi Networks Methods
	Block WiFi Connections
	Minimum Security Level Methods
	Minimum Signal Strength Methods

	Storage Device Control Policy Interface
	Data Types
	AutoPlay Methods
	Volumes Methods

	2 Script Testing
	Enabling Script Testing in the Endpoint Security Agent
	Testing an Unpublished Script
	Testing a Published Scripting Policy
	Tracing a Script’s Execution

