Configuring the DirXML
Manual Task Service Driver
(formerly Workflow Request)

Implementation Guide

Document revision 0.2

Copyright © 2002-2004 Novell, Inc.
Work of Novell, Inc. All Rights Reserved.

General Disclaimer

This document is not to be construed as a promise by any participating company to develop,
deliver, or market a product. Novell, Inc., makes no representations or warranties with respect to
the contents of this document, and specifically disclaims any express or implied warranties of
merchantability or fitness for any particular purpose. Further, Novell, Inc., reserves the right to

Copyright ©2002, Novell, Inc. Page 1 of 47

(017753 11 TR RRRRRRRR 4

MOAES OFf OPETALIONeuieiieiieiiett et etteete st et e et e stesteessee st esseesseeseesseesseenseensesssessaesseensesnsesnsesseenseenseenseans 4
How E-Mail Messages and Web Pages Are Created by the Manual Task Service Driver........c..cccoceuee.e. 5
B3 1010) ST 6
RePIacemMeEnt TOKENSeeiuiiiiiieiie ettt ettt ettt et e et et e e st e saee s st e seeeneeeseesneenseeneeans 8
RePIaCEMENT DALA........eiiiiiiiieiee ettt ettt ettt ettt b e bt et e te et e neeene e teeteens 8
Template ACtion EICMENTScoouiiiiiiiiieiiee ettt sttt ettt et e e tesseeseeesseesaeenseeneeens 8
Subscriber Channel E-mail.........c.cooiiriiiiniiiiniiinncneceneeesee ettt ettt 9
Publisher Channel Web SEIVET..........cccoiiiiriiiiniiiieenceeret ettt ettt sttt et 10
(07033 i Toa 11510 o FO OO OO OSSOSO 11
DITVET PATAIMELETSc.eveiinieiiiiiiciietent ettt ettt ettt et ettt ettt sa et et ese et steeenesaennenens 11
DIIVEE SEUNES . ..evietieiietieteett et et et eteeaesttesteesteesbeesseessesseesseasseessaassasssesssesseesseessesssesssesseesseenseensenns 11
SUDSCIIDET SELLINES ...vvieuteeiieiieiieteeieeie st et et et e ete et et ee st esteesaeesaesseesseeseenseensesseesseanseenseensenssenseensenn 13
PUDLISRET SEEHINES ...euvieuvieiiieiieeiieet ettt ettt ettt e et et e e enteesseessessaessaenseenseensesnsesseenseenseanseans 13
Subscriber Channel POLICIEScoceiiiiiiriiieiiceeereceeseee ettt 14
Subscriber Channel E-Mail TemPIatescoriirieiiriiiieieeeeeee ettt sttt seeas 15
Publisher Channel POIICIESc..ccueruiriiririinirieieicteesteste ettt st sttt ae e sae e ae e 16
Publisher Channel Web Page Templates...........coiiiiiiiiiiiie ettt 16
Publisher Channel XDS TeMPIALEScc.eccvieiiiiiirieitieie e eee sttt ettt steesreebeeebeeebestsesaeesseesseesseenneenns 17
TTACE SETHINES ..ottt ettt b et ettt st s ht e s bt e bt et e e st e saeeeb e e b e et e en b e eebesbeenbeenbeenbeenaeemeesae 18
Appendix A — Replacement DAtacceecvieiiiiiiiiiiiiitieie ettt ettt ste b e ees e e s e teesreesbeeseesaeenneenns 19
DIAtA SECUIIEY ...vveuvieirieiiieie e sttt et ettt e ett e bt ebeesseesbeessesseessaesseesseassesseesseesseesseasseesseassanssesssesseensensseessenses 19
XML EIBINENLSverveuiiiiieiiititeiietenteitetest ettt ettt ettt et st bt a st es et et ese bt s eatsb s eeuenneseebennennenen 20
Appendix B — Automatic Replacement Data ItemS.........ccceeoviviiiiiiiiiieiicicee e 24
Subscriber Channel Automatic Replacement Data............ccceecuieiiieierienienieeee e 24
Publisher Channel Automatic Replacement Data.............ccoocverieniieiiiiinienieeeeee e 24
Appendix C — Template Action Elements REference.........ccoveevevieiierienieiieieeieeeee e 26
Appendix D - <mail> Element REfErenceccooouiiiieiiiiiiieiiee e 29
APPENdix E — Data FLOW ...c..eoiiiiiiiieeeeeeee ettt ettt ettt ettt et e e st e s bt e b e e b e ae e e enes 32
Subscriber Channel Configurationc.ccoeierieiieiieiee ettt sneeseeeseeas 32
Publisher Channel COnfiUIAtionccocieieriiriiriiieeet ettt eee s e e 32
Step-by-Step EXaMINAtiONccooiiiiiiiiiiiiieicet ettt ettt sttt et beesbeenaean 32

Copyright ©2002, Novell, Inc. Page 2 of 46

Appendix F — Custom Element Handlers for the Subscriber Channelcccocevieviiininienienenenencen 43

Constructing URLSs for use with the Publisher Channel Web Server..........cccocvevveeiieciivieneeneeieee 43
Constructing Message Documents using Stylesheets and Template Documentscccveceeeeeennenne. 43
SampleCommandHaNAIEL.JAVAcueiiieieieiieii ettt et st se et nseenseesaesseenneas 44
Appendix G — Custom Servlets for the Publisher Channel...............ccoocoviiiiiiiniiniieeeeee e 45
Using the Publisher Channelcocooiiiiiiiie et ens 45
AULNENTICALION ...ttt sttt ettt s e et ebe et et e st na et sae e bt sae e e entenee 45
N E V1010 (SN 4 (S T A OSSR 45

Copyright ©2002, Novell, Inc. Page 3 of 46

Overview

This section provides an overview of the DirXML"™ Manual Task Service Driver including information
necessary to successfully configure the Manual Task Service Driver.

The Manual Task Service Driver is designed to notify one or more users that a data event has occurred and
in some cases that action is required on the users’ part. In an employee provisioning scenario, the data
event might be the creation of a new User object and the user action might include assigning a room
number by entering data into Novell” eDirectory™ or by entering data in an application. Other scenarios
include notifying an administrator that a new user object has been created, notifying an administrator that a
user has changed data on an object, etc.

Configuring the Manual Task Service Driver usually consists of configuring two separate but related
subsystems: the Subscriber channel policies and e-mail templates, and the Publisher channel Web server
templates (and possibly policies).

In addition, driver parameters such as SMTP server name, Web server port number, etc., must be
configured.

Modes of Operation

Two primary modes of operation are supported:

* Direct Request for Data: An e-mail message is sent requesting that a user enter data into
eDirectory (possibly for consumption by another application). The e-mail recipient responds to the
message by clicking a URL in the message. The URL points to the Web server running in the
Publisher channel of the Manual Task Service Driver. The user then interacts with dynamic Web
pages generated by the Web server to authenticate to eDirectory and to enter the requested data.

* Event Notification: An e-mail message is sent to a user without involving the Publisher channel.
The e-mail message might simply be notification that something occurred in eDirectory, or it
might be a request for data through a method other than the Publisher channel’s Web server, such
as Novell iManager, another application, or a custom interface.

Example: Subscriber Channel E-Mail, Publisher Channel Web Server Response

An employee provisioning example scenario in which a new employee’s manager assigns the employee a
room number is as follows:

1. A new User object is created in eDirectory (for example, by the DirXML driver for the company’s HR
system).

2. The Manual Task Service Driver Subscriber sends an SMTP message to the user’s manager and to the
manager’s assistant. The SMTP message contains a URL that refers to the Publisher channel Web
server. The URL also contains data items identifying the user and identifying those authorized to
submit the requested data.

Copyright ©2002, Novell, Inc. Page 4 of 46

3. The manager or the manager’s assistant clicks the URL in the e-mail message. An HTML form
appears in a Web browser. The manager or assistant then does the following:

* Selects the DN for his or her eDirectory User object as a means of identifying who is responding
to the e-mail message.

* Enters his or her eDirectory password.
* Enters the room number for the new employee.
* Clicks the Submit button.

4. The room number for the new employee is submitted to eDirectory via the Manual Task Service Driver
Publisher channel.

Example: Subscriber Channel E-Mail, No Publisher Channel Response

An example scenario in which a new employee’s manager assigns the employee a computer in an asset
management system:

1. A new User object is created in eDirectory (for example, by the DirXML driver for the company’s HR
system).

2. The Manual Task Service Driver Subscriber sends an SMTP message to the user’s manager and to the
manager’s assistant. The SMTP message contains instructions for entering data into the asset
management system.

3. The manager or assistant enters data into the asset management system.

4. (Optional) The computer identification data is brought into eDirectory via a DirXML driver for the
asset management system.

How E-Mail Messages and Web Pages Are Created by
the Manual Task Service Driver

E-mail messages, HTML Web pages, and XDS documents can all be considered documents. The Manual
Task Service Driver creates documents dynamically, based on information supplied to the driver.

Templates are XML documents that contain the boilerplate or fixed portions of a document together with
replacement tokens that indicate where the dynamic, or replacement, portions of the final, constructed
document appear.

Both the Subscriber channel and the Publisher channel of the Manual Task Service Driver use templates to
create documents. The Subscriber channel creates e-mail messages and the Publisher channel creates Web
pages and XDS documents.

The dynamic portion of a document is supplied via replacement data. Replacement data on the Subscriber
channel is supplied by the Subscriber channel policies (such as the Command Transformation policy).
Replacement data on the Publisher channel is supplied by HTTP data to the Web server (both URL data
and HTTP POST data). The Manual Task Service Driver may automatically supply certain data known to
the Manual Task Service Driver (such as the Web server address).

The templates are processed by XSLT style sheets. These template-processing style sheets are separate
from style sheets used as DirXML policies in the Subscriber or Publisher channels.

The replacement data is supplied as a parameter to the XSLT style sheet. The output of the style sheet
processing is an XML, HTML, or text document that is used as the body of an e-mail message, as a Web
page, or as a submission to DirXML on the Publisher channel.

Copyright ©2002, Novell, Inc. Page 5 of 46

Replacement data is passed from the Subscriber channel to the Publisher channel via a URL in the e-mail
message. The URL contains a query portion that contains the replacement data items.

The Manual Task Service Driver ships with predefined style sheets sufficient to process templates in order
to create e-mail documents, HTML documents, and XDS documents. Other custom style sheets can be
written to provide additional processing options if desired.

An advanced method of creating documents is also available. This method uses only an XSLT style sheet
and replacement data. No template is involved. However, this document assumes the template method is
used because the template method is easier to configure and maintain without XSLT programming
knowledge.

Templates

This section describes document creation templates as used in the Manual Task Service Driver.

Templates are XML documents that are processed by a style sheet in order to generate an output document.
The output document may be XML, HTML, or plain text (or anything else that can be generated using
XSLT).

Templates are used to generate e-mail message text on the Subscriber channel, and to generate dynamic
Web pages and XDS documents on the Publisher channel.

Templates contain text, elements, and replacement tokens. Replacement tokens are replaced in the output
document by data supplied to the style sheet processing the template.

Several examples of templates for various purposes follow. In the examples, the replacement tokens are the
character strings that are between two $ characters and appear in bold.

Templates may also contain action elements. Action elements are control elements interpreted by the
template-processing style sheet. Action elements are described in Appendix C. In the following examples
action elements also appear in bold.

The following example template is used to generate an HTML e-mail message body:

<htm xm ns:forme"http://ww. novel | . conldirxm /workflow forn>

<head></ head>

<body>

Dear $nmnager$, <p/ >

<p>

This message is to informyou that your new enpl oyee $gi ven- nanme$ $sur name$</ b> has
been hired.

<p>

You need to assign a roomnunber for this individual. Qick Here to
do this.

</ p>

<p>

Thank you,

HR Depart nent

</ p>

</ body>

</ htm >

Copyright ©2002, Novell, Inc. Page 6 of 46

The following example template is used to generate a plain text e-mail message body:

<formtext xmns:form="http://ww. novel |.com dirxm /workfl ow forn>

Dear $nmanager$,

This nmessage is to informyou that your new enpl oyee $gi ven-nane$ $surname$ has been
hi red

You need to assign a room nunber for this individual. Use the following link to do this
$url $
Thank you

The HR Depart ment

</formtext>

The <form:text> element is required because templates must be XML documents. The <form:text>
element is stripped as part of the template processing.

The following template is used to generate an HTML form used as a Web page for entering data:

<htm xm ns:forme"http://ww. novel | . cont di rxm / wor kf | ow f or m' >
<head>
<title>Enter room nunber for $subject-name$</title>
</ head>
<body>
<link href="novdocmain.css" rel="style sheet" type="text/css"/>

<form cl ass="nyforni' METHOD="POST" ACTI ON="$ur| - base$/ process_t enpl ate. xsl ">
<t abl e cel | paddi ng="5" cel | spaci ng="10" border="1" align="center">
<tr><td>
<i nput TYPE="hi dden" nane="tenpl ate" val ue="post_form xm "/ >
<i nput TYPE="hi dden" nane="subj ect-nane" val ue="$subj ect - nane$"/ >
<i nput TYPE="hi dden" nane="associ ation" val ue="$associ ati on$"/>
<i nput TYPE="hi dden" nane="response-style sheet" val ue="process_tenplate.xsl"/>
<i nput TYPE="hi dden" nane="response-tenpl ate" val ue="post_response. xm "/ >
<i nput TYPE="hi dden" nanme="aut h-style sheet" val ue="process_tenpl ate. xsl"/>
<i nput TYPE="hi dden" nane="aut h-tenpl ate" val ue="auth_response. xm "/>
<i nput TYPE="hi dden" nane="protected-data" val ue="$prot ect ed- dat a$"/ >
You are:

<formif-single-item nane="responder-dn">
<i nput TYPE="hi dden" nane="responder-dn" val ue="$responder-dn$"/>
$responder - dn$
</formif-single-itenmr
<formif-nultiple-itenms nane="responder-dn">
<f orm menu nanme="r esponder-dn"/>
</formif-multiple-itens>
</td></tr>
<tr><td>
Enter your password:

<i nput nane="password" TYPE="password" S|ZE="20" MAXLENGTH="40"/>
</td></tr>
<tr><td>
Enter room nunber for $subject-nanes$:

<i nput TYPE="text" NAME="room number" S|ZE="20" MAXLENGTH="20"
val ue="$query: r oomNunber $"/ >
</td></tr>
<tr><td>
<i nput TYPE="subnmit" value="Submt"/> <input TYPE="reset" value="Clear"/>
</[td></tr>
</ tabl e>
</form
</ body>
</htm >

Copyright ©2002, Novell, Inc. Page 7 of 46

The following template is used to generate an XDS document:

<nds>
<i nput >
<nodi fy cl ass-nanme="User" src-dn="not-applicabl e">
<associ at i on>$associ ati on$</ associ ati on>
<nmodi fy-attr attr-name="roomN\unber" >
<renove-al | -val ues/ >
<add- val ue>
<val ue>%$r oom nunber $</ val ue>
</ add- val ue>
</nodify-attr>
</ modi fy>
</i nput >
</ nds>

Replacement Tokens

The items delimited by $ in the above example templates are replacement tokens. For example, $manager$
will be replaced by the replacement data named manager.

Replacement tokens can appear either in text or in XML attribute values (note the href value on the <a>
element in the first example above).

Replacement Data

Replacement data consists of strings that take the place of replacement tokens in the output document
generated from a template. Replacement data is either supplied by Subscriber channel data, Publisher
channel HTTP data, or it is supplied automatically by the driver. An additional type of replacement data is
data retrieved from eDirectory via DirXML (query data).

Replacement data is more fully described in Appendix A.

Subscriber channel data: Subscriber channel replacement data is of two types. The first type is used as
replacement values for replacement tokens in templates for creating e-mail messages. The second type is
placed in the query portion of a URL so that the data is available for use on the Publisher channel when the
URL is submitted to the Publisher’s Web server.

HTTP data: Replacement data is supplied to the Publisher channel Web server and is supplied either as
URL query string data, HTTP POST data, or both.

Automatic data: The Manual Task Service Driver supplies automatic data. Automatic data items are
described in Appendix B.

Query data: Replacement tokens that start with quer y: are considered requests to obtain current data from
eDirectory. The portion of the token that follows quer y: is the name of an eDirectory object attribute. The
object to query is specified by one of the replacement data items associ ati on, src-dn, or src-entry-

i d. The items are considered in the order presented in the preceding sentence.

Template Action Elements

Action elements are namespace-qualified elements in the template that are used for simple logic control or
that are used to create HTML elements for HTML forms. The namespace used to qualify the elements is
http://www.novell.com/dirxml/workflow/form. In this document and in the sample templates supplied with
the Manual Task Service driver, the prefix used is f or m

The elements appearing in bold in the above examples are action elements.

Action elements are described in detail in Appendix C.

Copyright ©2002, Novell, Inc. Page 8 of 46

Subscriber Channel E-mail

The Subscriber channel of the Manual Task Service Driver is designed to send e-mail messages. To
accomplish this, the driver supports a custom XML element named <mail>. Policies on the Subscriber
channel construct a <mail> element in response to some eDirectory event (such as the creation of a user).
An example <mail> element appears below:

<mai | src-dn="\PERI N- TAO\ novel I \ Provo\ Joe" >
<t 0>JSt anl ey@ovel | . conx/t 0>
<cc>car ol @ovel | . conx/cc>
<repl y-t o>HR@ovel | . conx/repl y-t o>
<subj ect >Room Assi gnment Needed for: Joe The | ntern</subject>
<message m ne-type="text/htm ">
<styl esheet >process_t enpl at e. xsl </ styl esheet >
<tenpl ate>ht Ml _nsg_t enpl at e. xn </ t enpl at e>
<r epl acenent - dat a>
<i tem name="manager " >JSt anl ey</iten>
<i tem name="gi ven- nane" >Joe</iten
<i tem name="sur nane" >The Intern</itenr
<url - dat a>
<itemname="fil e">process_tenplate. xsl</iten>
<url - query>
<item name="tenplate">formtenplate. xm </itenmr
<item name="responder-dn" protect="yes">\ PERI N- TAO bi g- or g\ phb</iten>
<i tem name="r esponder -dn" protect="yes" >\ PERI N- TAO bi g-org\carol </itenr
<i t em name="subj ect - nane">Joe The Intern</itenr
</url-query>
</url -data>
</ repl acenment - dat a>
<resource cid="css-1">novdocnai n. css</resource>
</ message>
<message m ne-type="text/plain">
<styl esheet >process_t ext _tenpl ate. xsl </ styl esheet >
<tenpl ate>t xt _nsg_tenpl ate. xm </t enpl at e>
<r epl acenent - dat a>
<i tem name="manager " >JSt anl ey</iten>
<i tem name="gi ven- nane" >Joe</iten>
<i tem nanme="surnanme">The Intern</itenr
<url - dat a>
<itemname="fil e">process_tenpl ate. xsl </itenm>
<url - query>
<item name="tenpl ate">formtenplate. xm </itenmr
<i tem nanme="r esponder - dn" protect="yes" >\ PERI N- TAO\ bi g- or g\ phb</iten»
<i tem name="r esponder -dn" protect="yes" >\ PERI N- TAO bi g-org\carol </itenr
<i t em name="subj ect - nane">Joe The Intern</itenr
</url-query>
</url - dat a>
</ repl acenent - dat a>
</ message>
<attachment >HR. gi f </ att achnment >
</ mai | >

The Subscriber of the Manual Task Service Driver uses the information contained in the <mail> element to
construct an SMTP e-mail message. A URL may be constructed and inserted into the e-mail message
through which the e-mail recipient can respond to the e-mail message. The URL may point to the Publisher
channel Web server or it may point to some other Web server.

The <mail> element and its content are described in detail in Appendix D.

Copyright ©2002, Novell, Inc. Page 9 of 46

Publisher Channel Web Server

The Publisher channel of the Manual Task Service Driver runs a Web server configured so that users can
enter data into eDirectory through a Web browser. The Web server is designed to work in conjunction with
e-mail messages sent from the Subscriber channel of the Manual Task Service Driver.

The Publisher channel Web server can serve static files and dynamic content. Examples of static files are
.css style sheets, images, etc. Examples of dynamic content are Web pages that change based on the
replacement data contained in the URL or HTTP POST data.

The Publisher channel Web server is normally configured to allow a user to enter data into eDirectory in
response to an e-mail that was sent by the Subscriber channel. A typical user interaction with the Web
server is as follows:

1.

The user submits the URL from the e-mail message to the Web server using a Web browser. The URL
specifies the style sheet, template, and replacement data used to create a dynamic Web page (typically
containing an HTML form).

The Web server creates an HTML page by processing the template with the style sheet and
replacement data. The HTML page is returned to the user’s Web browser as the resource referred to by
the URL.

The browser displays the HTML page and the user enters the requested information.

The browser sends an HTTP POST request containing the entered information as well as other
information that originated from the e-mail URL. The DN of the user responding to the e-mail and the
user’s password must be in the POST data.

The Web server authenticates the user using the user’s DN and password. If the authentication fails
then a Web page containing a failure message is returned as the result of the POST request. The failure
message may be constructed using a style sheet and template specified in the POST data. If
authentication succeeds then processing continues.

The Web server constructs an XDS document using a style sheet and template specified in the POST
data. The XDS document is submitted to DirXML on the Publisher channel.

The result of the XDS document submission, together with a style sheet and template specified in the
POST data, is used to construct a Web page indicating to the user the result of the data submission.
This result Web page is sent to the browser as the result of the POST request.

Copyright ©2002, Novell, Inc. Page 10 of 46

Configuration

This section describes configuring Manual Task Service Driver parameters and templates.

Driver Parameters

Driver Settings
This section describes parameters that appear in the “Driver Settings” section in the driver object user
interface.

Many of these parameters are actually for the Publisher channel Web server. They appear under the Driver
Settings area because the Manual Task Service Driver Subscriber also needs access to them.

DN of the Document Base

This parameter is an eDirectory DN of a container object. The Manual Task Service Driver can load XML
documents (including XSLT style sheets) from eDirectory as well as from disk. If XML documents should
be loaded from eDirectory, this parameter identifies the root container from which documents are loaded.

Documents loaded from eDirectory reside in the attribute value of an eDirectory object. If unspecified, the
attribute is XmlData. The attribute may be specified by appending a ‘#’ character followed by the attribute
name to the name of the object containing the document.

For example, suppose that the document base DN is specified to be “novell\Workflow Documents” and that
there is a container under “Workflow Documents” named templates.

If a DirXML-Style sheet object named “e-mail _template” resides under the “templates” directory, then the
following resource identifiers can be used to refer to the XML document: “templates/e-mail _template” or
“templates/e-mail _template#XmlData”.

The resource identifiers can be supplied as replacement data, URL data, or HTTP POST data. For example,
the following element might appear under a <message> element on the Subscriber channel:

<tenpl ate>tenpl ates/ e-mai | _t enpl at e#Xn Dat a</t enpl at e>

Document Directory

This parameter identifies a file system directory that is used as the base directory for locating resources
such as templates, XSLT style sheets, and other file resources served by the Publisher channel Web server.
Example values are:

c:\ Novel I\ Nds\wor kfl ow files Windows
SYS: \ SYSTEM wor kf | ow fil es NetWare

fusr/lib/dirxm/rul es/workfl ow workflow files Unix

Copyright ©2002, Novell, Inc. Page 11 of 46

Use HTTP Server (true|false)

This parameter indicates whether the Publisher channel should run a Web server or not. This parameter
should be set to true if the Web server should be run or false if the Web server should not be run.

If the Manual Task Service Driver is only to be used for sending e-mail with no response URL, or with a
URL that points to another application, then the HTTP server should not be run to save system resources.

HTTP IP Address or Host Name

This parameter allows you to specify on which of multiple, local IP addresses the Publisher channel Web
server will listen for HTTP requests.

Leaving the HTTP IP address or host name parameter value blank will cause the Publisher channel Web
server to listen on the default IP address. For servers with a single IP address this is sufficient. Placing a
dot-notation IP address as the parameter value will cause the Publisher channel Web server to listen for

HTTP requests on the address specified.

Note that the value specified for HTTP IP address or host name is used by the Subscriber channel mail
handler to construct URLSs if the host name or address is not specified in the mail command element. If the
parameter Use HTTP server (true|false) is set to false then HTTP IP address or host name can be used to
specify the address or name of a Web server to use in constructing URLs for mail messages.

HTTP Port

This parameter is an integer value indicating which TCP port the Publisher channel Web server should
listen on for incoming requests. If this value is not specified, the port number defaults to 80 or 443
depending on whether or not SSL is being used for the Web server connections.

If the Manual Task Service Driver is running on the DirXML server (that is, it is not being run under the
DirXML Remote Loader on a remote machine) then the HTTP port should be set to something other than
80 or 443. This is because iMonitor or another process will typically be using ports 80 and 443.

Name of KMO

If it is not blank, this parameter is the name of an eDirectory Key Material Object that contains the server
certificate and key used for SSL by the Publisher channel Web server.

Setting this parameter causes the Publisher channel Web server to use SSL for servicing HTTP requests.
This parameter takes precedence over any Java keystore parameters (see below).

Using SSL is recommended for security reasons because eDirectory passwords are passed in HTTP POST
data when using the Publisher channel Web server.

Name of Keystore File

This parameter, together with Keyst or e password, Name of certificate(key alias),and
Certificate password (key password) are used to specify a Java keystore file that contains a
certificate and key used for SSL by the Publisher channel Web server.

Setting this parameter causes the Publisher channel Web server to use SSL for servicing HTTP requests.
If Name of KMOis set, then this parameter and its associated parameters are ignored.

Using SSL is recommended for security reasons because eDirectory passwords are passed in HTTP POST
data when using the Publisher channel Web server.

Copyright ©2002, Novell, Inc. Page 12 of 46

Keystore Password

This parameter specifies the password for the Java keystore file specified with Nane of keystore file.

Name of Certificate (key alias)

This parameter specifies the name of the certificate to use in the Java keystore file specified with Nane of
keystore file.

Certificate Password (key password)

This parameter specifies the password for the certificate specified using Name of certificate (key
alias).

Subscriber Settings

SMTP Server

This parameter specifies the name of the SMTP server that the Subscriber channel will use to send e-mail
messages.

SMTP Account Name

If the SMTP server specified using “SMTP server” requires authentication then this parameter specifies the
account name to use for authentication. The password used is the “Application password” associated with
the driver Authentication parameters.

Default “From” Address

If specified, this is an e-mail address used in the SMTP from field for e-mail messages sent by the
Subscriber channel. If this is not specified, then the <mail> elements sent to the Subscriber must contain a
<from> element.

A <from> element under <mail> elements sent to the Subscriber overrides this parameter.

Additional Handlers

If specified, then this is a whitespace-separated list of Java class names. Each class name is a custom class
that implements the interface com novel | . nds. di rxni . dri ver. wor kf | ow. CommandHand| er and
handles a custom XDS element. (The handler for <mail> is a built-in handler).

Additional information about custom handlers is available in Appendix F.

Publisher Settings

Additional Servlets

If non-blank, this is a whitespace-separated list of Java class names. Each class name is a custom class that
extends j avax. servl et. http. H t pSer ver . Custom servlets may be used to extend the functionality of
the Publisher channel Web server.

Additional information about custom servlets is available in Appendix G.

Copyright ©2002, Novell, Inc. Page 13 of 46

Subscriber Channel Policies

The configuration of the Subscriber channel policies depends on what a particular installation wants to
accomplish with the Manual Task Service Driver. However, there are certain guidelines that may be
helpful.

In general, the best place to construct a <mail> element to send to the Subscriber is in the Command
Transformation policy. The reason for this is that most DirXML engine processing has been completed by
the time commands reach the Command Transformation policy. This means that Create Policies have been
processed for add events (allowing vetoing of add events for objects that don’t have all the attributes
necessary for constructing the e-mail, for example). This also means that modify events for objects without
associations have already been converted to add events.

The XSLT style sheet that constructs the e-mail message may or may not need to query eDirectory for
additional information.

For example, if the e-mail message is simply a welcome message to a new employee, then the add
command can contain all the information necessary: Given Name, Surname, and Internet E-mail Address.
This is accomplished by specifying in the Create policy that Given Name, Surname, and Internet E-mail
Address are required attributes. This ensures that only add commands that contain the necessary
information will reach the Command Transformation.

If, however, the e-mail message is a message to the manager of an employee, then the style sheet will need
to query eDirectory. The manager DN can be obtained from the add event for the employee’s User object,
but a query must be made to obtain the manager’s e-mail address because that information will be an
attribute of the manager’s User object.

In addition, if e-mail notifications are being generated as the result of modify commands for objects that are
associated with the driver, then queries must be made to obtain information not contained in the modify
command.

Blocking Commands from Reaching the Subscriber

If e-mail messages are to be generated from events other than add events, then add events must be allowed
to reach the Subscriber for those objects that are to be monitored. Allowing add events to reach the
Subscriber will result in a generated association value being returned to DirXML from the Subscriber.

It is important that eDirectory objects to be monitored by the Manual Task Service Driver policies have an
association for the Manual Task Service Driver. Only objects that have an association will have delete,
rename, and move events reported to the driver. In addition, modify events on objects that do not have an
association are converted to add events after the Subscriber channel event transformation.

All other commands (modify, move, rename, and delete) should be blocked by the Command
Transformation policy and prevented from reaching the Subscriber. The Subscriber only handles <add>
commands and <mail> commands. Other commands will result in the Subscriber returning an error.

Copyright ©2002, Novell, Inc. Page 14 of 46

Generating E-Mail Messages

E-mail messages are sent by the Subscriber in response to receiving a <mail> element that describes the e-
mail message to be sent. See Appendix D for a description of the <mail> element and its content.

E-mail messages can be generated in response to any DirXML event (add, modify, rename, move, delete).

The replacement data that is supplied with the <message> element children of a <mail> element will
depend on two primary factors:

e The template used to generate the message body. Replacement items to be used by the e-mail
template appear as children of the <replacement-data> element.

¢ The information needed by the Web page templates on the Publisher channel if the e-mail is to result
in a response on the Publisher channel. Replacement items to be used by the Web page templates
appear as children of the <url-query> element, which is a child of <url-data>, which in turn is a child
of <replacement-data>.

If the e-mail message should contain a URL that points to the Publisher channel Web server and is used to
solicit information from a user, then the replacement data must contain at least one r esponder - dn item.
The values of the responder-dn items must be the DNs of the User objects of the users to which the
message is being sent.

If a query replacement token (see Replacement Data under Overview) is used in the template, then the
replacement data for the <message> element must contain an item named sr c- dn, src-entry-id, or
associ at i on with the appropriate value. An association item can only be used if the eDirectory object to
be queried already has an association for the Manual Task Service Driver. The association generated by the
Subscriber for unassociated objects cannot be used because it will not yet have been written to the
eDirectory object when the query takes place.

The <message> element may specify the MIME type of the message body. If the MIME type is specified
but a style sheet is not specified (that is, there is no <stylesheet> element child of <message>) then one of
two default style sheet names is used. If the MIME type is text/plain then the default style sheet name is
process_text template.xsl. If the MIME type is anything other than text/plain then the default style sheet
name is process_template.xsl.

Subscriber Channel E-Mail Templates

E-mail templates are XML documents containing boilerplate and replacement tokens. E-mail templates are
used to generate e-mail message body text. See Templates under the Overview section for general
information about templates.

The replacement tokens used in an e-mail template dictate the <item> elements that must be supplied as
children of the <replacement-data> element that is constructed by the Subscriber channel policy that
constructs the <mail> element. For example, if the e-mail template has the replacement token $employee-
name$ then there must be an <item name="employee-name”> element in the replacement data for the
<message™> element. If the employee name item is not present, then the resulting e-mail message body will
have no text in the location occupied by the replacement token in the template.

E-mail templates can be used to generate message bodies that are plain text, HTML, or XML.

If an e-mail template generates a plain text message, then it must be processed by a style sheet that
specifies plain text as its output type. If the style sheet does not specify plain text as its output type, then
undesirable XML escaping will occur. The default Manual Task Service Driver style sheet named
process_text template.xsl is normally used for processing templates that result in plain text.

Copyright ©2002, Novell, Inc. Page 15 of 46

Publisher Channel Policies

In most implementations of the Manual Task Service Driver, no Publisher channel policies are needed. This
is because is it possible to construct the Web page and XDS templates so that they result in exactly the
XDS required and the XDS need not be further processed by policies.

If policies are required they will be very specific to an installation.

Publisher Channel Web Page Templates

Web page templates are XML documents containing boilerplate and replacement tokens. Web page
templates are used to generate Web page documents (typically HTML documents). See Templates under
the Overview section for general information about templates.

Replacement tokens in Web page templates dictate what replacement data is supplied to as URL query data
on the Subscriber channel. Replacement data on the Publisher channel is obtained from the URL query
string for HTTP GET requests and from the URL query string and the POST data for HTTP POST
requests.

As an example of the flow of replacement data from the Subscriber channel, to the e-mail message, and
then to the Publisher channel Web server, consider the following:

The Manual Task Service Driver is configured so that a new employee’s manager is asked to
assign a room number to the new employee. The trigger for the e-mail to the manager is the <add>
command for a new User object that is processed by the Subscriber channel Command
Transformation policy.

When the manager clicks a URL in the e-mail message, a Web page is displayed in the manager’s
Web browser. The Web page must indicate for whom the manager is entering a room number.

To accomplish this, the <url-query> element on the Subscriber channel contains a replacement
data item that identifies the new user by name:

<i t em nanme="subj ect - name” >Joe the Intern</itenr

This causes the URL query string to contain (among other things) “subject-
name=Joe%20the%20Intern”. (The “%20” is a URL-encoded space).

The manager’s Web browser submits the URL to the Publisher channel Web server when the
manager clicks the URL in the e-mail message. The Web server constructs a replacement data
item named subject-name with the value Joe the Intern.

The Web page template also specified by the URL contains a replacement token $subject-name$.
When the Web page template is processed by the style sheet to construct the Web page, the
replacement token is replaced by Joe the Intern, which customizes the Web page for the employee
whose User object creation caused the e-mail to be sent.

For additional information on a complete Subscriber channel to Publisher channel transaction, see
Appendix E.

Copyright ©2002, Novell, Inc. Page 16 of 46

Publisher Channel XDS Templates

XDS templates are XML documents containing boilerplate and replacement tokens. XDS templates are
used to generate XDS documents that are submitted to DirXML on the Manual Task Service Driver’s
Publisher channel. See Templates under the Overview section for general information about templates.

Replacement tokens in XDS templates dictate some of the replacement data that is supplied to the Web
server as data in an HTTP POST request.

For example, consider the following XDS template:

<nds>
<i nput >
<nmodi fy cl ass-nane="User" src-dn="not-applicabl e">
<associ ati on>$associ ati on$</ associ ati on>
<nmodi fy-attr attr-name="roonmN\unber" >
<renove-al | -val ues/ >
<add- val ue>
<val ue>%$r oom nunber $</ val ue>
</ add- val ue>
</nmodify-attr>
</ modi fy>
</ i nput >
</ nds>

The replacement tokens in the template dictate that the HTTP POST data must supply an association value
and a room-number value.

Normally the association value would originate in the Subscriber channel. The Subscriber channel e-mail
would place association=some value in the query string of the URL that is placed in the e-mail message.
The Web page template used to generate the Web page when the URL is submitted to the Web server
would typically place the association value in a hidden INPUT element:

<I NPUT TYPE="hi dden" NAME="associ ati on" VALUE="$associ ation$"/>

Placing the association value as a hidden INPUT element will cause the “association=some value” pair to
be submitted as part of the HTTP POST data.

The room-number value is entered in the Web page using an INPUT element similar to the following:
<input TYPE="text" NAME="room nunber" SIZE="20" MAXLENGIH="20"/>

If the manager enters 1234 and clicks Submit, the Web browser sends “room-number=1234" as part of the
HTTP POST data.

The Web server then generates an <item name="‘association”> replacement data item and an <item
name="room-number”’> replacement data item which are used when processing the XDS template.

The XDS document is generated by processing the XDS template with the style sheet specified in the
POST data. Then the XDS document is submitted to DirXML on the Manual Task Service Driver’s
Publisher channel.

Copyright ©2002, Novell, Inc. Page 17 of 46

Trace Settings

The Manual Task Service Driver outputs more verbose messages with various trace levels:

Level | Trace Message Description
0 No trace messages
1 Single line messages tracing basic operation
2 No additional messages (DirXML Engine traces XML documents at this level and above)
3 No additional messages
4 Messages relating to document construction from templates and style sheets
5 Replacement data documents traced

Copyright ©2002, Novell, Inc. Page 18 of 46

Appendix A — Replacement Data

Replacement data is used with XML documents used as templates to construct e-mail messages, Web
pages, and XDS documents. The actual replacement is accomplished by processing the template document
with an XSLT style sheet that performs the replacement as part of constructing the output document.

Replacement data is supplied to the Manual Task Service Driver through different mechanisms on the
Subscriber and Publisher channels.

Subscriber Channel
e Replacement data is supplied as part of the <mail> element.

e Part of the supplied replacement data may be URL data. If URL data is supplied, it is processed and
completed and replaced by automatic data items (see Appendix B).

e Ifthe <mail> element specifies that an association value should be constructed (that is the <mail>
element has a src-dn attribute) then an automatic data item named “association” is added to the
replacement data.

Publisher Channel
* Replacement data is supplied in the HTTP URL data and HTTP POST data.

* Automatic URL replacement data items are added to the replacement data before it is used in template
processing.

Replacement data is presented during template processing as an XML document. The replacement data
document is passed to the style sheet processing the template as a parameter named replacement-data. If no
template is used, the XML document is processed directly by the style sheet.

Data Security

Data items are passed from the Subscriber channel to the Publisher channel via a URL contained in the e-
mail sent by the Subscriber channel. Changing certain data items in the URL represents a security threat.
For example, if the responder-dn values in the URL supplied by the Subscriber channel in the URL are
replaced by another user’s DN in the URL submitted to the Publisher channel Web server, it would allow
an unauthorized user to change data in eDirectory.

To ensure that the data in the submitted URL is the same as the data originally supplied by the Subscriber
channel, protected data is provided. Protected data is data that cannot be changed for security reasons.
These will vary by configuration but will always include the responder-dn data items, and data items
corresponding to any eDirectory objects whose values are to be changed.

Data items are protected by encrypting the original values and placing the encrypted values into a URL
query string. When the Publisher Web server receives the encrypted values, the Publisher decrypts the
values and uses them to compare the unencrypted data items that are supplied by an HTTP GET or POST
request.

If an instance of a data item appears in the encrypted data, then an unencrypted data item value must match
one of the encrypted data item values. If the unencrypted data item value does not match one of the
encrypted data item values, then the HTTP request is rejected by the Publisher channel Web server.

In addition, any HTTP POST request that does not contain protected data is rejected.

Copyright ©2002, Novell, Inc. Page 19 of 46

Example

In an HTTP POST request, the Publisher channel Web server uses the unencrypted POST data named
responder-dn to check the password supplied by the POST data. This is done to authenticate the responding
user against the user’s eDirectory object.

Suppose the Subscriber channel <url-query> element content specifies two data items as follows:
<i t em name="r esponder -dn" protect="yes">\ PERI N- TAO novel | \ phb</iten>

<i tem name="r esponder - dn" protect="yes">\ PERI N- TAO novel I \carol </iten>
The URL generated by the Subscriber channel will contain both responder-dn values in the protected data.

Suppose a malicious user obtains the URL that is generated and sent in an e-mail message. The malicious
user uses the URL to obtain the HTML form that allows users to change data for an eDirectory object.

In the HTTP POST request that is submitted to the Web server, the malicious user uses his eDirectory DN
(responder-dn=\PERIN-TAO\novell\wally) as the unencrypted responder-dn value. The malicious user also
submits his own password in the POST data so that the authentication that the Web server performs will
succeed.

However, when the Publisher channel Web server receives the HTTP POST data it will fail to find
“\PERIN-TAO\novell\wally” in the encrypted protected data and will reject the POST request.

XML Elements

The elements that make up a replacement data document are described below. If no XML attributes are
described for an element, then none are allowed.

<replacement-data>

The <replacement-data> element can appear in the following locations:

1) As achild of the <message> element under a Subscriber channel <mail> element. The Manual Task
Service Driver processes the supplied <replacement-data> element into a standalone <replacement-
data> element for use in template processing. The following processing occurs:

a) If an association value is created for the enclosing <mail> element an <item name="association”>
element is added to the replacement data. The value of the created element is the association value
that will be returned to DirXML.

b) If the <replacement-data> element has a <url-data> element child, then the <url-data> element is
replaced by several <item> elements that contain constructed URL data. See <url-data> and <url-
query>.

2) As the standalone, top-level element of a replacement data document used when constructing a
document using a style sheet on either the Subscriber or the Publisher channels.

Copyright ©2002, Novell, Inc. Page 20 of 46

<item>

The <item> element can be a child of the <replacement-data> element, the <url-data> element, or the <url-
query> element. The content of the <item> element is the text used in the substitution of replacement
tokens in templates. <item> elements are always named using the name attribute.

<item> attributes

name: The value of the name attribute specifies the name by which this data item is referenced by
replacement tokens. For example, if the value of the name attribute is manager, then the
replacement token $manager$ will be replaced by the value contained by <item
name="manager’> element. The name attribute is required.

protect: For <item> elements that are children of <url-query> elements, the protect attribute
specifies whether the item will be added to the protected data section of the URL query string (see
<url-query>. If the protect attribute is present, it must have the value yes.

Predefined <item> names

Certain <item> elements have predefined meanings to either the Subscriber channel, the Publisher
channel, or both channels. These are described here:

template: The Publisher channel treats the value of the template item as the name of the template
document to use in generating the response to an HTTP GET request.

When <item name="template’> appears as a child of the <url-query> element on the Subscriber
channel, the value is placed into the URL query data to specify to the Publisher channel Web
server the name of the template document to use when responding to the HTTP GET request.

responder-dn: The Publisher channel uses the value of the responder-dn item in HTTP POST
data as the DN of the eDirectory object against which the password supplied in the HTTP POST
data is validated.

The Web server will reject any HTTP POST request that does not contain a responder-dn value
and a password value. In addition, if the HTTP POST data does not contain a protected-data item,
then the request will be rejected.

The Subscriber channel supplies one or more <item name="responder-dn” protect="yes”>
elements under the <url-query> element. Because the responder-dn items are used for user
authentication, the items must be protected.

password: Supplied to the Publisher channel Web server via HTTP POST data. The item content
is the password which is validated against the eDirectory object specified by the responder-dn item
in the POST data. The password item is normally entered in the HTML form used to generate the
HTTP POST request.

Example:

<| NPUT TYPE="password” NAME="password"” S| ZE="20" MAXLENGTH="40"/>
response-template: Supplied to the Web server via HTTP POST data. Used to generate the Web
page used as the response to the POST. The response-template item is normally specified using a
hidden INPUT element in the HTML form used to generate the HTTP POST request.

Example:

<I NPUT TYPE="hi dden” NAME="r esponse-tenpl ate” VALUE="post_form xm "/>
response-stylesheet: Supplied to the Web server via HTTP POST data. Used to generate the Web

page used as the response to the POST. The response-stylesheet item is normally specified using a
hidden INPUT element in the HTML form used to generate the HTTP POST request.

Copyright ©2002, Novell, Inc. Page 21 of 46

Example:

<I NPUT TYPE="hi dden” NAME="r esponse-styl esheet" VALUE="process_tenpl ate. xsl "/ >
auth-template: Supplied to the Web server via HTTP POST data. Used to generate the Web page
that is used as the response to the POST if authentication of the user fails. The auth-template item
is normally specified using a hidden INPUT element in the HTML form used to generate the
HTTP POST request.

Example:

<I NPUT TYPE="hi dden” NAME="aut h-tenpl ate” VALUE="aut h_response. xm "/ >
auth-stylesheet: Supplied to the Web server via HTTP POST data. Used to generate the Web
page that is used as the response to the POST if authentication of the user fails. The auth-template
item is normally specified using a hidden INPUT element in the HTML form used to generate the
HTTP POST request.

Example:

<I NPUT TYPE="hi dden” NAME="aut h-styl esheet” VALUE="process_tenpl ate. xsl "/ >
protected-data: The protected-data item contains the encrypted data constructed by the

Subscriber channel. On the Subscriber channel, the protected data item is an automatically-
supplied item.

On the Publisher channel, the protected-data item is obtained from the URL query string for an
HTTP GET request and is obtained from the POST data for an HTTP POST request.

The protected data item is typically passed from the HTTP GET request into the Web page used to
generate the HTTP POST via a replacement token in the template used to construct the response to
the HTTP GET.

Example:

<I NPUT TYPE="hi dden” NAME="pr ot ect ed-data” VALUE="$pr ot ect ed-dat a$"/ >

<url-data>

The <url-data> element is a child of the <replacement-data> element found under the <message> element
on the Subscriber channel. It contains <item> elements used to construct the URL and related data items
that are supplied to the template used in constructing the e-mail message. It also contains the <url-query>

element.

For the purposes of the Manual Task Service driver, URLs consist of five parts:

1.

2
3.
4

A scheme such as http, https, ftp, etc.
A host such as www.novell.com or 192.168.0.1.
A port number. This is a colon followed by a decimal integer. For example, :80 or :8180.

A file or resource specifier. This is typically a filename and may include path information. For
example, stylesheets/process_template.xsl.

A query string. This is a collection of name-value pairs, separated by & characters. For example,
template=form_template.xml&protected-data=AabABJKEL=

Predefined <item> Names Under <url-data>

<item> elements under the <url-data> element are ignored unless they are one of the following.
All of them are optional.

file: Specifies the file portion of the URL. If used with the Publisher channel Web server, then the
file item specifies the style sheet to use to construct the initial HTML page returned in response to

Copyright ©2002, Novell, Inc. Page 22 of 46

the URL. If used with a server other than the Publisher channel Web server, then the file item
specifies the name of the resource that the URL will refer to.

If the file item does not appear, the URL file portion defaults to process_template.xsl.

scheme: Optional item found under the <url-data> element. If present, specifies the scheme
portion of the URL (such as http or ftp). The scheme item would typically be used only if the URL
were to point at a server other than the Publisher’s Web server.

If the scheme item does not appear, the URL scheme defaults to either http or https, depending on
the configuration of the Publisher channel Web server.

host: Optional item found under the <url-data> element. If present, specifies the host portion of
the URL. The host item would typically be used only if the URL were to point at a server other
than the Publisher’s Web server.

If the host item does not appear, the URL host defaults to the IP address of the server on which the
Manual Task Service Driver is running (that is the IP address of the Publisher channel Web
server).

port: Optional item found under the <url-data> element. If present, specifies the port portion of
the URL. The port item would typically be used only if the URL were to point at a server other
than the Publisher’s Web server.

If the port item does not appear, the URL port defaults to the port on which the Publisher channel
Web server is running.

<url-query>

The <url-query> element is a child of the <url-data> element. It contains <item> elements that are used to
construct the query portion of the URL used in the e-mail message.

Each item that appears as a child of the <url-query> element is placed in the query string in the form
name="value” where name is the value of the <item> element’s name attribute and value is the string
content of the <item> element.

Item elements that appear under <url-query> may have a protect attribute with the value “yes.” If this is
the case, then the item names and values will be encrypted and placed within a generated name-value pair
in the URL query string. The name of the generated value is protected-data. The value is the Base64
encoded and encrypted name-value pair or pairs for multivalued attributes.

Protecting data ensures that the data cannot be changed when the URL is submitted to the Publisher
channel Web server. For example, the responder-dn data items need to be protected to ensure that only
those users authorized to respond to the e-mail message are able to change eDirectory data.

If the URL generated is to be used with the Publisher channel Web server, the <url-query> element must
contain at least one <item name="responder-dn” protect="yes”> element or the Web server will reject the
eventual HTTP POST request.

Copyright ©2002, Novell, Inc. Page 23 of 46

Appendix B — Automatic Replacement Data Items

The Manual Task Service Driver automatically supplies certain replacement data item elements. This
section describes those data items.

Subscriber Channel Automatic Replacement Data

The following data items are added automatically to replacement-data documents during processing by the
Subscriber channel:

association: An <item name="association”> element is added to the replacement-data document if the
<mail> element has an <association> element child, or if the Subscriber will return an <add-association>
element. The content of the <item> element is the association value for the eDirectory object that is
associated with the e-mail message being processed. The association value may not yet be written to the
eDirectory object; therefore, the association value cannot be used in queries.

url: The content of the <item> element is the complete URL to be used in the e-mail message. On the
Subscriber channel, the url item is created from the following items found under the <url-data> element:
scheme, host, port, file, and the items underneath the <url-query> element. If scheme, host, or port are not
found, then default values are used. The default values are determined from the configuration of the
Publisher channel Web server.

url-base: The content of the <item> element is the portion of the generated URL not including the resource
identifier (file) and not including the query string.

url-query: The content of the <item> element is a URL query string generated from <item> elements
underneath the <url-query> element.

url-file: The content of the <item> element is the resource identifier for the URL.

protected-data: The content of the <item> element is an encrypted form of name-value pairs obtained
from <item> elements under the <url-query> element. Only <item> elements whose protect attribute is set
to “yes” are added to the protected data value. See Data Security in Appendix A for more information
about protected-data.

Publisher Channel Automatic Replacement Data

The following data items are added automatically to replacement-data documents during processing by the
Publisher channel Web server:

post-status: An <item name="post-status”> element is created and added to the replacement-data
document by the Publisher channel Web server during the processing of an HTTP POST request. An HTTP
POST request to the Web server is a request to submit an XDS document to DirXML. DirXML returns a
status document as the result of the XDS submission. The content of the <item name="post-
status”>element is the value of the /evel attribute of the <status> element that is returned by DirXML as the
result of the submission to DirXML.

The post-status item is typically used in the construction of the Web page that is returned as the result of
the HTTP POST request.

post-status-message An <item name="post-status-message”> element is created and added to the
replacement-data document by the Publisher channel Web server during the processing of an HTTP POST
request. An HTTP POST request to the Web server is a request to submit an XDS document to DirXML.
DirXML returns a status document as the result of the XDS submission. The content of the <item
name="post-status-message’>element is the content of the <status> element that is returned by DirXML as

Copyright ©2002, Novell, Inc. Page 24 of 46

the result of the submission to DirXML. The post-status-message item will only be created if the <status>
element returned by DirXML has content.

The post-status-message item is typically used in the construction of the Web page that is returned as the
result of the HTTP POST request.

url An <item name="url”> element is created and added to the replacement-data document by the
Publisher channel Web server during processing of HTTP GET and HTTP POST requests . The <item>
element is added before using the replacement-data document to construct any documents. The URL
scheme, host, and port are determined by the Web server configuration.

url-base An <item name="url-base”> is created and added to the replacement data document by the
Publisher channel Web server during processing of HTTP GET and HTTP POST request. The <item>
element is added before using the replacement-data document to construct any documents. The content of
the url-base <item> element on the Publisher channel is the same as the url <item> element.

Copyright ©2002, Novell, Inc. Page 25 of 46

Appendix C — Template Action Elements
Reference

Action elements are namespace-qualified elements in a template document that are used for simple logic
control or are used to create HTML elements for HTML forms. The namespace used to qualify the
elements is http://www.novell.com/dirxml/workflow/form. In this document and in the sample templates
supplied with the Manual Task Service driver the prefix used is form.

Any action element not specifically covered in this appendix is stripped from the output document by the
template-processing style sheet (unless the style sheet is customized). This behavior allows, for example,
the use of a form:text element to enclose the data for a plain text e-mail message, thereby making the
template valid XML.

<form:input>

The form:input element is used to generate one or more HTML INPUT elements based on the presence of
one or more replacement data items. The number of INPUT elements created corresponds with the number
of replacement data items with the name specified by the form:input element’s “name” attribute.

Attributes

Name: Specifies the name of the replacement data items that are used to create the INPUT
elements. The attribute value is used as the value of the name attribute of the created INPUT
elements.

type or TYPE: Specifies the value of the #ype attribute of the created INPUT elements.

value: If the value attribute’s value is equal to “yes,” then a value attribute is added to the created
INPUT elements whose value is the string value of the replacement data item. If the value
attribute’s value is other than “yes,” then the content of the created INPUT elements is set to the
string value of the replacement data item.

Example

<form i nput name="responder-dn"” TYPE="hi dden" val ue="yes"/ >

will create one or more INPUT elements similar to

<I NPUT nane="r esponder-dn" TYPE="hi dden” val ue="\ PERI N- TAO\ novel | \ phb"/ >

Copyright ©2002, Novell, Inc. Page 26 of 46

<form:if-item-exists>

The form:if-item-exists element is used to conditionally insert data into the output document. The content
of form:if-item-exists is processed only if the specified item appears in the replacement data.

Attributes

Name: Specifies the name of the replacement data item. If one or more examples of the
replacement data item exist, then the contents of the form:if-item-exists element are processed.

Example
<formif-itemexists nane="post - st at us- nessage">
<tr>
<t d>
St atus message was: $post-stat us- message$
</td>
</tr>

</formif-itemexists>

The above example inserts a row into an HTML table only if there is a replacement data item
named post-status-message.

<form:if-multiple-items>

The form:if-multiple-items element is used to conditionally insert data into the output document. The
content of form:if-multiple-items is processed only if the specified item appears more than once in the
replacement data.

Attributes
name: Specifies the name of the replacement data item. If more than one example of the
replacement data item exists, then the content of the form:if-multiple-items is processed.

Example

<formif-multiple-itens name="responder-dn">
<f orm nenu nanme="r esponder-dn"/>
</[formif-multiple-itenms>

The above example will build an HTML SELECT element (see <form:menu>) if there are more
than one replacement data items with the name responder-dn.

<form:if-single-item>

The form:if-single-item element is used to conditionally insert data into the output document. The content
of form:if- single -item is processed only if the specified item appears exactly once in the replacement data.

Attributes

name: Specifies the name of the replacement data item. If the named item appears exactly once in
the replacement data, then the content of the form:if-single-item is processed.

Example

<formif-single-itemname="responder-dn">
<i nput TYPE="hi dden" nane="responder-dn" val ue="$responder-dn$"/>

$responder - dn$
</formif-single-itenr
The above example inserts an HTML INPUT element and some replacement text into the output
document if there is exactly one replacement data item named “responder-dn” in the replacement
data.

Copyright ©2002, Novell, Inc. Page 27 of 46

<form:menu>

The form:menu element is used to generate an HTML SELECT element with one or more OPTION
element children. The first OPTION element child will be marked as selected.

Attributes

name: Specifies the name of the replacement data item. If the named item appears in the
replacement data, then an HTML SELECT element is created in the output document. An HTML
OPTION element is created as a child of the SELECT element for each instance of the
replacement data item in the replacement data.
Example
<f orm menu name="r esponder-dn"/>
The above example will result in HTML elements similar to the following:
<SELECT nane="r esponder-dn">
<OPTI ON sel ect ed>\ PERI N- TAQ\ bi g- or g\ php</ OPTI O\>
<OPTI ON>\ PERI N- TAO\ bi g- or g\ car ol </ OPTI O\>
</ SELECT>

Copyright ©2002, Novell, Inc. Page 28 of 46

Appendix D - <mail> Element Reference

The <mail> element and its content are described in detail in this section. If no attributes are listed for an
element, then that element has no attributes defined.

<mail>
The <mail> element and its content describe the data necessary to construct an SMTP message.
<mail> attributes

src-dn: Contains the DN value of the eDirectory object that is triggering the e-mail . Required if
the object’s data is to be modified via the Publisher channel’s Web server in response to the e-mail

<to>

The <to> element is a child of the <mail> element. One or more <to> elements contain the e-mail addresses
of the primary recipients of the SMTP message. At least one <to> element is required. Each <to> element
must contain only a single e-mail address.

<cc>

The <cc> element is a child of the <mail> element. Zero or more <cc> elements contain the e-mail
addresses of the CC recipients of the SMTP message. No <cc> element is required. Each <cc> element
must contain only a single e-mail address.

<bcc>

The <bcc> element is a child of the <mail> element. Zero or more <bcc> elements contain the e-mail
addresses of BCC recipients of the SMTP message. No <bcc> element is required. Each <bcc> element
must contain only a single e-mail address.

<from>

The <from> element is a child of the <mail> element. The <from> element contains the e-mail address of
the sender of the e-mail . The <from> element is not required. If the <from> element is not present, then the
default from address supplied as part of the Manual Task Service Driver parameters is used.

<reply-to>

The <reply-to> element is a child of the <mail> element. The <reply-to> element contains the e-mail
address of the entity to which replies to the SMTP message will be addressed. The <reply-to> element is
not required.

<subject>

The <subject> element is a child of the <mail> element. Its string content is used to set the SMPT subject
field. The <subject> element is not required but is recommended, for obvious reasons.

Copyright ©2002, Novell, Inc. Page 29 of 46

<message>

The <message> element is a child of the <mail> element. Its content is used to construct a message body
for the SMTP message. At least one <message> element is required. Multiple <message> elements can be
supplied when constructed an SMTP message with alternative representations of the message body (such as
plain text and HTML, or English and another language).

<message> attributes

mime-type: Optionally specifies the MIME type of the message body constructed by the
<message> element (such as text/plain or text/html). If the mime-type attribute is not present, the
driver will attempt to automatically discover the mime-type.

E-mail clients can use the MIME type when an SMTP message has alternative representations in
order to choose the best representation to display.

language: Optionally specifies the language of the message body constructed by the <message>
element. The value should follow the SMTP specification. If the language attribute is not present
no default is supplied.

E-mail clients can use the language specification when an SMTP message has alternative
representations in order to choose the best representation to display.

<stylesheet>

The <stylesheet> element is a child of the <message> element. The content of the <stylesheet> element is
the name of an XSLT style sheet used to construct the message body. If the <stylesheet> element is not
present then process_template.xsl is used as the style sheet.

<template>

The <template> element is a child of the <message> element. The content of the <template> element is the
name of an XML document used to construct the message body. If the <template> element is not present,
then the replacement data document is processed by the message style sheet to construct the message body.

<filename>

The <filename> element is a child of the <attachment> element. The content of the <filename> element is a
filename. The filename value is used to assign a filename to a constructed attachment.

<replacement-data>

The <replacement-data> element is a child of the <message> element. Its content is used either as a
parameter to the style sheet processing the message template, or in the absence of a template, it is processed
directly by the message style sheet. The contents of the <replacement-data> element are described fully
elsewhere in Appendixes A and B.

<resource>

The <resource> element is a child of the <message> element. Its content is treated as the name of a file to
be incorporated into the SMTP message a resource for the message body. For example, a .css style sheet
for an HTML message body could be supplied as a resource.

<resource> attributes

cid: Specifies the content ID used to refer to the resource in URLSs in the message body. For
example, if a .css style sheet is the resource, then the cid value might be css-1. In the HTML

message body the following element can be used to refer to the .css style sheet:
<link href="cid:css-1" rel ="style sheet" type="text/css">.

Copyright ©2002, Novell, Inc. Page 30 of 46

<attachment>

The <attachment> element is a child of the <mail> element. It can have the same content as <message>, or
it may have a filename as content. Zero or more <attachment> elements can appear as children of the
<mail> element.

<attachment> attributes

mime-type: Optionally specifies the MIME type of the attachment. If the mime-type attribute is
not present, the driver will attempt to automatically discover the MIME type.

language: Optionally specifies the language of the attachment. If the language attribute is not present, no
default is supplied.

Copyright ©2002, Novell, Inc. Page 31 of 46

Appendix E — Data Flow

This section gives a step-by-step examination of the data flow in an example situation when hiring a new
employee causes an e-mail message to be sent to the employee’s manager. The e-mail message requests
that the manager use a URL in the message to enter a room number value for the employee.

The configuration of the Manual Task Service Driver is as follows for the example scenario:

Subscriber Channel Configuration

Filter

Class: User
Attributes:

e Given Name
* manager

e Surname

Policies
Create policy:
Requires Given Name, manager, and Surname attributes.

Command Transformation policy

Converts <add> into <mail> element.

Publisher Channel Configuration

Filter
Class: User
Attributes:

e roomNumber

Policies

None

Step-by-Step Examination

In the following list, the most important data items that flow through the process are responder-dn and
association. The responder-dn item is used to authenticate the user entering data through the Web server.
The association item identifies the eDirectory object whose data is to be changed.

1) The company hires a new employee. The new employee’s data is entered into the company’s Human
Resource (HR) system.

2) The DirXML driver for the HR system creates a new User object in eDirectory. User attributes include
Given Name, Surname, and manager.

Copyright ©2002, Novell, Inc. Page 32 of 46

3) The following <add> event for the new User object is submitted to the Manual Task Service Driver
Subscriber channel:

<nds dtdversion="1.1" ndsversion="8.6">
<i nput >
<add cl ass-nanme="User" src-dn="\PERI N- TAQ novel | \ Provo\ Joe" src-entry-id="281002"
ti mest anp="1023314433#2" >
<add-attr attr-name="Surnanme">
<val ue type="string">the |ntern</val ue>
<add-attr>
<add-attr attr-name="G ven Nane">
<val ue type="string">Joe</val ue>
<add-attr>
<add-attr attr-name="nanager">
<val ue type="dn">\ PERI N- TAO novel |\ Provo\ phb</val ue>
<add-attr>
</ add>
</i nput >
</ nds>

a) The Subscriber Command Transformation policy uses the manager DN value to issue a query to
eDirectory for the manager’s e-mail address and the manager’s assistant’s DN.

b) If the manager has an assistant the Subscriber Command Transformation issues a query to
eDirectory for the assistant’s e-mail address.

¢) The Subscriber Command Transformation constructs a <mail> element and replaces the <add>
command element with the <mail> element. Replacement data items are in bold.

<nds dtdversion="1.1" ndsversion="8.6">
<i nput >
<mai | src-dn="\PERI N- TAO\ novel I \ Provo\ Joe" >
<t o>phb@onpany. conk/ t 0>
<cc>car ol @onpany. conx/ cc>
<bcc>HR@onpany. conx/ bcc>
<repl y-t o>HR@onpany. conx/ r epl y-t 0>
<subj ect >Room Assi gnnment Needed for: Joe the |ntern</subject>
<message m ne-type="text/htm ">
<styl esheet >process_t enpl at e. xsl </ styl esheet >
<tenpl ate>ht M _nsg_t enpl at e. xm </ t enpl at e>
<r epl acenent - dat a>
<i tem name="manager " >JSt anl ey</iten>
<i tem name="gi ven- nane" >Joe</itenr
<i tem name="surnane">the Intern</itenr
<url - dat a>
<item nanme="fil e">process_tenplate. xsl</itenr
<url - query>
<item name="tenpl ate">formtenplate. xm </itenm>
<i tem name="r esponder - dn" protect="yes" >\ PERI N- TAO\ novel | \ Provo\ phb</itenm>
<i tem name="r esponder -dn" protect="yes" >\ PERI N- TAO\ novel | \ Provo\carol </itenr
<i tem name="subj ect - nane">Joe the Intern</itenr
</url-query>
</url -data>
</ repl acenent - dat a>
<resource cid="css-1">novdocmai n. css</resource>
</ message>
</ mail >
</i nput >
</ nds>

d) The Manual Task Service Driver Subscriber receives the <mail> element from DirXML.

e) The Subscriber generates an association value because the <mail> element has a src-dn attribute.

Copyright ©2002, Novell, Inc. Page 33 of 46

f) The Subscriber constructs a replacement data document from the data in the <mail> element for
use in constructing the e-mail message. The URL has various data items in the query portion (that
portion of the URL that follows the ‘?” character and is in bold). The Publisher channel Web
server will use these data items when the URL is submitted to the Web server as an HTTP GET
request.

<r epl acenent - dat a>

<i tem name="manager " >JSt anl ey</iten

<i tem name="gi ven- nane" >Joe</iten>

<i tem name="surnane">the Intern</itenr

<item name="tenplate">formtenplate. xm </itenmr

<i tem name="r esponder - dn" >\ PERI N- TAQ\ novel | \ Provo\ phb</iten>

<i tem name="r esponder - dn" >\ PERI N- TAO\ novel | \ Provo\ carol </itenm>

<i t em name="subj ect - nane">Joe the Intern</itenr

<i tem name="associ ati on">1671b2: ee4246a561: - 7fff:192. 168. 0. 1</i ten

<i tem name="url - base">https://192. 168. 0. 1: 8180</itenr

<item name="url -file">process_tenplate.xsl</itenm>

<i tem nanme="pr ot ect ed- dat a" >
r COABXNy ABl qYXZheC5j cnl wdGBuU2VhbGVvk T2JqZWNOPj Y9ps OBVHACAARDAA
11 bm\vZGVk UGFy YWLz dAACWD I bABBI by e XBOZWRDb250Z\W50c QB+AAFMAAI w
YXJIhbXNBbGd0OABIMantF2YS9s YWsnL1NOcm uZzt MAAdz ZWFs Qknc QB+AAJ4cH
VyAAJbQuzzF/ gGCFTgAgAAe HAAAAAPMAOECEI BRohGPj x EAgEKdXEAf g AEAAAA
uMsFqz HXwt Mk8Dk RCzkK1O46sEz1u5103MDvHN+3+f E6SphHr 3Hgj | i 4Jp3r Uk
H7y6dXvcu7i q21Vs+906i ZVzl j TI IX/ j j Rr VZI R5JOQuRNhk8JHFZ8Fhgsmi | AH
| Fs61k4Whry Ecmyf Wif qf BVeThr 3Avwei nbr anS5vh2Usi 92/ DBR13pl AobMpWY
kMaz4+@e6oovBsi Pdp6j SPzbFxcgALl 2AMBh4hf 9] nx7zOU9Uvd9gXt aE2r RO

AANQRK VOABBQK VXaXRoTUQLQWEKREVT</ i t en®

<i tem name="url - query" >t enpl at e=f or m_t enpl at e. xm &anp; r esponder - dn=%CPERI N-
TAOYGCnovel | %65Cpr ovo%b Cphb&anp; r esponder - dn=%6CPERI N-
TAOY6Cnovel | %5Cpr ovo%bCcar ol &np; subj ect -
name=Joe+t he+l nt er n&anp; associ ati on=1671b2%3Aee4246a561%3A-
7fff ¥%8A192. 168. 0. 1&anp; pr ot ect ed-
dat a=r COABXNy ABl qYXZheC5j cnl wdGBuU2VhbGvk T2JqZWNOPj Y9ps GBVHACAARDAALI bmi\v ZGvk UGFY YW1z dAAC
WDJbABBI by e XBOZWRDb250ZW50c QBY2 BAAFMAAI wYXJIhbXNBbGdOABIManF2YS9s YWsnL1NOcm uZzt MAADz ZWF
sQMNc BY2BAAJ4c HVY AAJbQqz z FY2 Fg GCFTgAg AAe HAAAAAPMAOECEI BRohGPj x EAgEKdXEAf g AEAAAAUMSgz HX
wt Mk8DkRCzkK10O46sEz1u5103MDvHN92B3%2Bf E6SphHr 3Hgj | i 4Jp3r UkH7y6dXvcu7i q21Vs%2B906i ZVzl j Tl J
X%2Fj j Rr VZI R5JouRNnk8JHFZ8Fhgsmi | AHY2 FFs 61k 4Whry EcmYf Wit gf BVeThr 3Avwei nbr anS5M2USi 9Z2%2FDB
R13pl AobMpWrkMaz492B3e6oovBsi Pdp6j SPzbFxcgALl 2AMBh4hf 9 nx7zOU9Uvd9gXt aE2r ROAANQRK VOABBQQ
kVXaXRoTUQLQWBKREVT</ i t e

<i tem nanme="url ">
https://192. 168. 0. 1: 8180/ process_t enpl at e. xsl ?t enpl at e=f or m_t enpl at e. xn &anp; r esponder -
dn=% CPERI N- TAOY®Cnovel | ¥%6CPr ovo% Cphb&anp; r esponder - dn=%%CPERI N-
TAOYGCnovel | %65Cpr ovo%bCcar ol &np; subj ect -
name=Joe+t he+l nt er n&anp; associ ati on=1671b2%3Aee4246a561%3A-
7fff %8A192. 168. 0. 1&anp; pr ot ect ed-
dat a=r COABXNy ABI qYXZheC5j cnl wdGBulU2VhbGvkT2JqZWNOPj Y9ps OBVHACAARLAALI bmi\v ZGvk UGFy YWLz dAAC
W)JIbABBI brm\y e XBOZWRDb250Z\W50c QBY2 BAAFMAAI wYXJhbXNBbGdO0ABIManF2YS9s YWsnL1NOcm uZzt MAAdz ZWF
sQMNc BY2BAAJ4c HVY AAJbQqz z FY2 Fg GCFTgAg AAe HAAAAAPMAOECEI BRohGPj x EAgEKdXEAf g AEAAAAUMSgz HX
wt Mk8DKRCzkK1046sEz1u5103MDvHN92B3%2Bf E6SphHr 3Hgj | i 4Jp3r UKH7y6dXvcu7i q21Vs¥2B906i ZVzl j TI J
X9%2Fj j Rr VZI R5JouRNhk8JHFZ8Fhgsmi | AHY2 FFs61k4Wry EcmYf Wif gf BVeThr 3Avwei nbr anS5M2USi 9292 FDB
R13pl AobMpWrkMaz492B3e6oovBsi Pdp6j SPzbFxcgALl 2AMBh4hf 9j nx7z0OU9Uvd9gXt aE2r ROAANQQK VOABBQQ
kVXaXRoTUQLQWBKREVT</ i t e
</ repl acenment - dat a>

Copyright ©2002, Novell, Inc. Page 34 of 46

g) The Subscriber processes html_msg_template.xml with process_template.xsl. The replacement
data document is passed as a parameter to the style sheet. The html_msg_template.xml document
follows. Note the replacement tokens in bold. The replacement tokens will be replaced by the
value of the corresponding <item> elements in the replacement data document.

<htm xm ns:form="http://ww. novel | .conml di rxm /workfl ow forn>
<head>
</ head>
<body>
<link href="cid:css-1" rel ="style sheet" type="text/css"/>
<p>
Dear $manager $
</ p>
<p>
This nmessage is to informyou that your new enpl oyee $gi ven-nanme$ $surnanme$</ b> has
been hired
</ p>
<p>
Pl ease assign a room nunber for this individual. dick Here to do
this.
</ p>
<p>
Thank you,

HR<br / >
HR Depart ment
</ p>
</ body>
</htm >

The generated e-mail document follows. Note the replacement tokens have been replaced with the
values of the corresponding <item> elements from the replacement data document.

<htm >
<head>
<META htt p-equi v="Cont ent - Type" content="text/htnml; charset=UTF-8">
</ head>
<body>
<link href="cid:css-1" rel ="style sheet" type="text/css">
<p>
Dear J Stanl ey,
</ p>
<p>
This nmessage is to informyou that your new enpl oyee Joe the |ntern has been
hi red.
</ p>
<p>
Pl ease assign a room nunber for this individual. dick <a
href="https://192. 168. 0. 1: 8180/ process_t enpl at e. xsl ?t enpl at e=f or m_t enpl at e. xn & esponder -
dn=%CPERI N- TAOY6Cnovel | ¥%6CPr ovo% Cphb&r esponder - dn=%6CPERI N-
TAOYGCnovel | %6CPr ovo%Ccar ol &subj ect -
name=Joe+t he+l nt er n&associ at i on=45f 0e3%8Aee45e077099%BA- 7f f f ¥8A192. 168. 0. 1&pr ot ect ed-
dat a=r COABXNyABI qYXZheC5j cnl wdGBulU2VhbGvk T2JqZWNOPj Y9ps GBVHACAARDAALI bmi\v ZGvk UGFy YW1z dAAC
W)JIbABBI by e XBOZWRDb250Z\W50c QBY2 BAAFMAAI wYXJhbXNBbGdOABI Mant2YS9s YWsnL1NOcm uZzt MAAdz ZWF
sQWNc BY2BAAJ4cHVY AAJbQqz z F¥@2 Fg GCFTgAgAAe HAAAAAPMAOECI r 9Z1i G¥2 BCBBAgEKdAXEAT gAEAAAAUMUIYR F
SoFRkebvh2d5Sqgal F91tt | RY51 yyWs%@2BYR2FFI f QuDdYi kYi DbQIb6607S0dPH QzeVgu6pt | vGgaEQOE] Bj Dk Y92
Bi 4VoVj USXS3a8f i XB8noMiPt LIY2FGyE8Q whT4xbkQy48i 02k99F2vGm enRpSP6dD31kZI 3dpJOn3gq2yLy%@2Fe
FaynKyqnj kHLMexcgD8W VooaRl 1k2RPk5vDYvC802bn220KKbOnSRMb Yl PS0i W x00JVenVVyt 0AANQRk VOABBQQ
kVXaXRoTUQLOWNBKREVT" >Here</ a> to do this.
</ p>
<p>
Thank you,

HR

HR Depart nent
</ p>
</ body>
</ htm >

h) The SMTP e-mail message is sent to the manager and to the manager’s assistant.

Copyright ©2002, Novell, Inc. Page 35 of 46

i) The Subscriber returns an XML document containing a <status> element and an <add-
association> element to DirXML.

4) The manager opens the e-mail message and clicks the “Click here” link.

5) The manager’s Web browser submits the URL to the Publisher channel Web server as an HTTP GET
request.

a) The Web server constructs the following replacement data document. Most of the data items
come from the query portion of the URL. The exceptions are the automatically generated items url
and url-base.

<r epl acenent - dat a>

<i tem nanme="associ ati on" >45f 0e3: ee45e07709: - 7fff:192. 168. 0. 1</i tenp

<i t em name="pr ot ect ed-
dat a" >r COABXNy ABI gYXZheC5j cnl wdGBuU2VhbGvkT2JgZWNOPj Y9ps GBVHACAARDAALI brm\vZGVk UGy YWLz dAA
CWDJIbABBI by e XBOZWRDb250ZW50c QB+AAFMAAI wYXJhbXNBbGdOABI Mant2YS9s YWsnL1NOcm uZzt MAAdz ZWFs
QM NcB+AAJ4cHVY AAIbQqzzF/ gGCFTgAgAAe HAAAAAPMAOECI r 9711 G+C3BAgEKdXEAf gAEAAAAUMY SoFRkebvh
2d5Sqgal FO1t tj RY5l yyWs+/ Fi f QuDdYi kYi DbQIb6607S0dPH QzeVgu6pt | vGgaEQOEj Bj Dk Y+i 4VoVj USXS3as8f
i XB8noMIPt LI/ GyE8Q whT4xbkQy48i 02k99F2vGTM enRpSP6dD31kZl 3dpJ0Om&gqg2yL/ eFaynKyqgnj kHLMexcqD8
W VooaRl 1k2RPk5vDYvC802bn22OKKbOnSRMbYI PS0i W x00JVenVVyt 0AANQOk VOABBQK VXaXRo TUQLQWNEK REVT
<litemr

<item name="tenplate">formtenplate. xm </itenm>

<i tem name="r esponder - dn" >\ PERI N- TAO\ novel | \ Provo\ phb</iten

<i t em name="r esponder - dn" >\ PERI N- TAO\ novel | \ Provo\ carol </iten>

<i t em name="subj ect - nane">Joe the Intern</itenr

<i tem name="url - base">https://192. 168. 0. 1: 8180</i tenr

<i tem name="ur| ">https://192. 168. 0. 1: 8180</i tenw
</ repl acenent - dat a>

Copyright ©2002, Novell, Inc. Page 36 of 46

The Web server processes the form_templates.xml document with the process_template.xsl style sheet.
Replacement tokens and action elements are in bold. Note that various data items are placed in hidden
INPUT elements so that the data items are passed to the Web server as part of the HTML POST data.

In addition, there is a $query:roomNumber$ replacement token, which will retrieve the current value of the
employee’s roomNumber attribute (if any).

<htm xm ns:fornme"http://ww. novel | . cont di rxm / wor kf | ow/ f or mi' >
<head>
<title>Enter room nunber for $subject-name$</title>
</ head>
<body>
<link href="novdocnain.css" rel="style sheet" type="text/css"/>

<form cl ass="nyfornm' METHOD="POST" ACTI ON="$ur| - base$/ process_tenpl ate. xsl ">
<tabl e cel | paddi ng="5" cel | spaci ng="10" border="1" align="center">
<tr><td>
<i nput TYPE="hi dden" nane="tenpl ate" val ue="post_formxm "/ >
<i nput TYPE="hi dden" name="subj ect-nane" val ue="$subj ect - name$"/ >
<i nput TYPE="hi dden" nanme="associ ati on" val ue="$associ ati on$"/>
<i nput TYPE="hi dden" nane="response-style sheet" val ue="process_tenplate.xsl"/>
<i nput TYPE="hi dden" nane="response-tenpl ate" val ue="post_response. xm "/ >
<i nput TYPE="hi dden" nane="auth-style sheet" val ue="process_tenplate.xsl"/>
<i nput TYPE="hi dden" nane="aut h-tenpl ate" val ue="auth_response. xm "/>
<i nput TYPE="hi dden" nane="protected-data" val ue="$protected-data$"/>
<formif-single-item name="responder-dn">
You are:

<i nput TYPE="hi dden" nane="responder-dn" val ue="$responder-dn$"/>
$responder - dn$
</formif-single-iten>
<formif-nultiple-itenms nanme="responder-dn">
I ndi cate your identity:

<f orm menu name="r esponder-dn"/>
</formif-multiple-itens>
</td></tr>
<tr><td>
Enter your password:
<input nanme="password" TYPE="password" SIZE="20"
MAXLENGTH=" 40"/ >
</td></tr>
<tr><td>
Enter room nunber for $subject-nanes$:

<i nput TYPE="text" NAME="room nunber" S|ZE="20" MAXLENGTH="20"
val ue="$query: r oomNunber $"/ >
</td></tr>
<tr><td>
<i nput TYPE="submit" value="Submt"/> <input TYPE="reset" value="Clear"/>
</td></tr>
</ tabl e>
</form
</ body>
</htm >

Copyright ©2002, Novell, Inc. Page 37 of 46

The following HTML page results:

<htm >
<head>
<META htt p-equi v="Cont ent - Type" content="text/htnml; charset=UTF-8">
<title>Enter room nunber for Joe the Intern</title>
</ head>
<body>
<link href="novdocnain.css" rel="style sheet" type="text/css">

<form cl ass="nyforni' METHOD="POST"
ACTI ON="https://192. 168. 0. 1: 8180/ process_t enpl ate. xsl ">
<tabl e cel | paddi ng="5" cel | spaci ng="10" border="1" align="center">
<tr>
<t d>
<i nput TYPE="hi dden" nane="tenpl ate" val ue="post_form xm ">
<i nput TYPE="hi dden" nane="subj ect-nane" val ue="Joe the Intern">
<i nput TYPE="hi dden" nane="associ ati on" val ue="45f 0e3: ee45e07709: - 7fff: 192. 168. 0. 1" >
<i nput TYPE="hi dden" nane="response-style sheet" val ue="process_tenpl ate. xsl">
<i nput TYPE="hi dden" nane="response-tenpl ate" val ue="post_response. xm ">
<i nput TYPE="hi dden" nane="auth-style sheet" val ue="process_tenpl ate. xsl">
<i nput TYPE="hi dden" nane="auth-tenpl ate" val ue="aut h_response. xm ">
<i nput TYPE="hi dden" nane="prot ect ed-dat a"
val ue="r COABXNy ABl qYXZheC5j cnl wdGBuU2VhbGvkT2JqZWNOPj Y9ps O3VHACAARDAALI brm\vZGvk UGFy YWLzdA
ACWJIbABBI by e XBOZWRDb250Z\W60c QB+AAFMAAI wYXJhbXNBbGdOABIManF2YS9s YWsnL1NOcm uZzt MAAdz ZWF
sQMNc B+AAJ4cHVWYAAIbQqz zF/ gGCFTgAgAAe HAAAAAPMAOEC! r 9711 G+C3BAgEKdXEAf gAEAAAAUMY SoFRkebv
h2d5Sqgal F91ttj RY5l yyWs+/ FI f QuDdYi kYi DbQIb6607S0dPH] QzeVgu6pt | vGgaEQOE] Bj Dk Y+i 4VoVj USXS3a8
fi XB8nmoMIPt LI/ GyE8Q wbT4xbkQy48i 02k99F2vGm enRpSP6dD31kZI 3dpJOngq2yL/ eFaynKyqgnj kHLMexcqD
8W VooaR 1k2RPk5vDYvC802bn22OKKbOnSRVB Yl PSOi W x00JVenVWyt 0 AANQRk VOABBQK VXaXRo TUQLQNBk REV
T >
I ndi cate your identity:

<SELECT nane="r esponder-dn">
<OPTI ON sel ect ed>\ PERI N- TAO\ novel |\ Provo\ phb</ OPTI ON>
<OPTI ON>\ PERI N- TAO\ novel |\ Provo\ car ol </ OPTI ON>
</ SELECT>
</td>
</[tr>
<tr>
<t d>
Enter your password:

<i nput name="password" TYPE="password" S| ZE="20" MAXLENGTH="40">
</td>
</tr>
<tr>
<td>
Enter room nunber for Joe the Intern:

<input TYPE="text" NAME="room nunber" S|ZE="20" MAXLENGTH="20" val ue="">
</td>
</tr>
<tr>
<t d>
<input TYPE="submit" val ue="Submt"> <input TYPE="reset" val ue="C ear">
</td>
</tr>
</t abl e>
</form
</ body>
</htm >

Copyright ©2002, Novell, Inc. Page 38 of 46

b) The manager selects his eDirectory DN from the Web page menu, enters his password, enters the
room number for the new employee, and clicks the Submit.

c¢) The Web browser submits an HTTP POST request to the Web server.

d) The Web server constructs the following replacement data document from the POST data. Note
the data that was in the various hidden <INPUT> elements. The data entered by the manager in the
form is in bold.

<r epl acenent - dat a>

<i tem name="room nunber " >cubi cl e 1234</iten

<i tem name="t enpl at e" >post _form xm </itenm>

<i tem name="r esponse-t enpl at e" >post _response. xm </ i tenm>

<i tem name="aut h-t enpl at " >aut h_r esponse. xm </ i ten»

<i tem nanme="associ ati on" >45f 0e3: ee45e07709: - 7fff:192. 168. 0. 1</i tenp

<i tem nane="password" is-sensitive="true”><!—ontent suppressed 2></itenpr

<i t em name="pr ot ect ed-
dat a" >r COABXNy ABI gYXZheC5j cnl wdGBuU2VhbGvkT2JgZWNOPj Y9ps GBVHACAARDAALI brm\vZGVk UGy YWLz dAA
CWJbABBI by e XBOZWRDb250ZWs0c QB+AAFMAAI wYXJhbXNBbGA0ABI ManF2YS9s YWsnL1NOcm uZzt MAAdz ZWFs
QM nc @B+AAJ4cHVY AAIbQuzz F/ gGCFTgAgAAe HAAAAAPMAOECI r 9Z1i GrOBBAgEKdXEAf gAEAAAAUMY/ SoFRkebvh
2d5Sqgal F91ttj RY51 yyWs+/ Fi f QuDdYi kYi DbQIb6607S0dPH QzeVgu6pt | vGgaEQOE] Bj Dk Y+i 4VoVj USXS3a8f
i XB8noMIPt LI/ GyE8Q whT4xbkQy48i 02k99F2vGM enRpSP6dD31kZl 3dpJ0Om3gq2yL/ eFaynKyqgnj kHLMexcqD8
W VooaRl 1k2RPk5vDYvC802bn220KKbOnSRMbY! PS0i W x00JVenVVyt 0AANQRk VOABBQK VXaXRo TUQLQNBK REVT
</itemr

<i tem name="r esponder - dn" >\ PERI N- TAOQ\ novel | \ Provo\ phb</iten>

<i tem name="aut h-styl e sheet">process_tenpl ate. xsl </itenr

<i tem name="r esponse-styl e sheet">process_tenpl ate. xsl </iten>

<i tem name="subj ect - nane">Joe the Intern</itenmr

<i tem name="url - base">https://192. 168. 0. 1: 8180</itenr

<i tem name="url ">https://192. 168. 0. 1: 8180</iten>
</ repl acenment - dat a>

e) The Web server verifies that the value of item responder-dn matches a responder-dn value
contained in the protected data. If the value does not match, the Web server aborts the request. If
the value does match, processing continues.

f) The Web server submits a <check-object-password> XDS request to DirXML on the Publisher
channel to authenticate the user submitting the HTTP POST request.

<nds dtdversion="1.0" ndsversion="8.6">
<sour ce>
<product buil d="20020606_0824" i nstance="Workfl ow Request Service Driver"
versi on="1.1a">Di r XML Wor kf | ow Request Service Driver</product>

<cont act >Novel |, Inc. </contact>

</ sour ce>

<i nput >
<check- obj ect - password dest - dn="\ PERI N- TAO\ novel | \ Provo\ phb" event-i d="chkpwd" >

<passwor d><!-- content suppressed --></password>

</ check- obj ect - passwor d>

</input>

</ nds>

g) DirXML returns <status level="success>. If DirXML returns other than success, then the
templates specified by the data item auth_template and the style sheet specified by the data item
auth_stylesheet are used to construct a Web page that is returned as the result of the POST.

Copyright ©2002, Novell, Inc. Page 39 of 46

h) The Web server processes the post_form.xml template with the process_template.xsl style sheet to
generate an XDS document. Replacement tokens are in bold.

<nds>
<i nput >
<nodi fy cl ass-nane="User" src-dn="not-applicable" event-id="wf nod”>
<associ ati on>$associ ati on$</ associ ati on>
<nmodi fy-attr attr-name="roonmNunber" >
<renove-al | -val ues/ >
<add-val ue>
<val ue>%$r oom nunber $</ val ue>
</ add- val ue>
</nmodify-attr>
</ modi fy>
</i nput >
</ nds>

i) The Publisher submits the created XDS document to DirXML.

<nds>
<i nput >
<nodi fy cl ass-nane="User" src-dn="not-applicable" event-id="w nod”>
<associ at i on>45f 0e3: ee45e07709: - 7f ff: 192. 168. 0. 1</ associ ati on>
<nmodi fy-attr attr-nanme="roonmNunber" >
<renove-al | -val ues/ >
<add-val ue>
<val ue>cubi cl e 1234</val ue>
</ add- val ue>
</nodify-attr>
</ modi fy>
</ i nput >
</ nds>

j) DirXML returns a result document

<nds dtdversion="1.1" ndsversion="8.6">
<sour ce>
<product version="1.1a">Di r XM_</ pr oduct >
<cont act >Novel |, Inc.</contact>
</ sour ce>
<out put >
<status event-id="wfnod" |evel ="success"></status>
</ out put >
</ nds>

Copyright ©2002, Novell, Inc. Page 40 of 46

k) The Web server adds the replacement data item post-status (and possibly the replacement data
item post-status-message) to the replacement data document. The added data item is in bold:

<r epl acenent - dat a>

<i tem name="room numnber " >cubi cl e 1234</itenr

<i tem name="t enpl ate">post_form xm </iten>

<i tem name="r esponse-t enpl at e" >post _response. xn </ i ten>

<i tem name="aut h-t enpl at e" >aut h_r esponse. xm </ i tenr

<i tem name="associ ati on">45f 0e3: ee45e07709: - 7fff:192. 168. 0. 1</i ten

<i tem name="password" is-sensitive="true”><!—ontent suppressed ></itenr

<i t em name="pr ot ect ed-
dat a" >r COABXNy ABl qYXZheC5j cnl wdGBuU2VhbGvk T2JqZWNOPj Y9ps GBVHACAARDAALI bi\v ZGvk UGFY YWLz dAA
CWDJbABBI by e XBOZWRDb250Z\W50c QB+AAFMAAI wYXJhbXNBbGdOABI MantF2YS9s YWsnL1NOcm uZzt MAAdz ZWFs
QM nc @B+AAJ4cHVY AAIbQuzz F/ g GCFTgAgAAe HAAAAAPMAOECI r 9711 G+C3BAgEKdXEAf gAEAAAAUMU/ SoFRkebvh
2d5Sqgal F91ttj RY5l yyWs+/ Fi f QuDdYi kYi DbQIb6607S0dPH] QzeVgu6pt | vGgaEQOE] Bj Dk Y+i 4VoVj USXS3a8f
i XB8nmoMiPt LI/ GyE8Q whT4xbkQy48i 02k99F2vGr enRpSP6dD31kZI 3dpJ0nGgq2yL/ eFaynKygnj kHLMexcqD8
W VooaRl 1k2RPk5vDYvC802bn22OKKbOnSRMBY!I PSOi W x00JVenVVyt 0AANQQRk VOABBQQK VXaXRo TUQLQWEK REVT
<litenpr

<i tem name="r esponder - dn" >\ PERI N- TAQ\ novel | \ Provo\ phb</itenm>

<i tem name="aut h-styl e sheet">process_tenplate. xsl</itenr

<i tem name="r esponse-styl e sheet">process_tenpl ate. xsl </iten>

<i tem name="subj ect - nane">Joe the Intern</iten

<i tem name="url - base">https://192. 168. 0. 1: 8180</itenr

<item name="url">https://192. 168. 0. 1: 8180</i tenw

<status event-id="" |evel ="success"></status>

<i tem name="post - st at us" >success</itenpr
</ repl acenent - dat a>

1) The Web server processes the post_response.xml template with the process template.xsl style
sheet. Replacement tokens and action elements are in bold.

<htm xm ns: form="htt p: // ww. novel | . com di r xm / wor kf | ow f or ni' >
<head>
<title>Result of post for $subject-name$</title>
</ head>
<body>
<link href="novdocnain.css" rel="style sheet" type="text/css"/>

<tabl e cl ass="forntabl e" cell paddi ng="5" cel | spaci ng="20" border="1" align="center">
<tr>
<t d>
DirXM. reported status = $post-status$
</td>
</tr>
<formif-itemexists nanme="post-status-nmessage" >
<tr>
<t d>
Status nessage was: $post-status-nmessage$
</td>
</tr>
</formif-itemexists>
</ tabl e>
</ body>
</htm >

Copyright ©2002, Novell, Inc. Page 41 of 46

m) The resulting Web page is returned as the result of the HTTP POST. Note that the second row of
the table is not present because the post-status-message referred to by the <form:if-item-exists>
element is not present in the replacement data document.

<htm >
<head>
<META htt p-equi v="Cont ent - Type" content="text/htnml; charset=UTF-8">
<title>Result of post for Joe the Intern</title>
</ head>
<body>
<link href="novdocnai n.css" rel="style sheet" type="text/css">

<tabl e class="forntabl e" cell paddi ng="5" cel | spaci ng="20" border="1" align="center">
<tr>
<t d>
Dir XML reported status = success
</td>
</tr>
</ tabl e>
</ body>
</htm >

Copyright ©2002, Novell, Inc. Page 42 of 46

Appendix F — Custom Element Handlers for the
Subscriber Channel

The Workflow driver provides an extension mechanism for sending user notifications using methods other
than the Simplified Mail Transport Protocol (SMTP). For example, a customer might have a need to send
notifications using the Messaging Application Programming Interface (MAPI) rather than using SMTP.

To use a mechanism other than SMTP for sending notifications it is necessary to write a Java class that
handles a custom XML element that is submitted on the Workflow driver’s Subscriber channel.

The Java custom element handler must implement the Java interface
com.novell.nds.dirxml.driver.workflow.CommandHandler. The name of the custom element class is
specified in the Additional Handlers item found in the Subscriber configuration parameters.

When the workflow driver Subscriber encounters a command element it looks in its table of handlers.
When it finds a handler that reports that it handles the command element the command element is passed to
the handler. The handler then performs any processing required.

There are two built-in command element handlers in the Workflow driver: a handler for <mail> elements
and a handler for <add> elements.

The custom command element definition is up to the author of the custom handler. A reasonable place to
start in designing the custom command element is the design of the <mail> element.

The custom elements are created by policies on the subscriber channel in the same fashion that the <mail>
element is created.

The documentation for com.novell.nds.dirxml.driver.workflow.CommandHandler and the documentation
for many utility and support classes are found in the javadocs that ship with the Workflow driver. The
javadocs may be found in the file named workflow_driver docs.zip in the distribution image.

Constructing URLs for use with the Publisher Channel Web
Server

To securely use the Workflow driver’s Publisher channel web server it is necessary to use utility classes to
construct the URL that is to be included with a notification message. The
com.novell.nds.dirxml.driver.workflow.URLData is designed for this task.

The sample code found in SampleCommandHandler.java illustrates this process.

Constructing Message Documents using Stylesheets and
Template Documents

It is convenient to use the same method to construct documents that the SMTP handler uses, namely, a
combination of stylesheets, template documents, and replacement data. In order to accomplish this it is

necessary to obtain the stylesheets and template documents, and to invoke the stylesheet processor
programmatically.

The sample code found in SampleCommandHandler.java illustrates this process.

Copyright ©2002, Novell, Inc. Page 43 of 46

SampleCommandHandler.java

Source code for a sample custom command handler is included with the Workflow driver distribution. The
source code may be found in the file workflow_driver docs.zip which is found in the distribution image.

The handler is implemented in the class
com.novell.nds.dirxml.driver.workflow.samples.SampleCommandHandler.

The sample handler simply generates a document using stylesheets and templates and writes the resulting
document in a file.

Compiling the SampleCommandHandler Class

To compile the SampleCommandHandler class you can use any Java 2 compiler. It is necessary to place
nxsl.jar, dirxml jar, collections.jar, and WorkflowRequestServiceBase.jar in the java compiler classpath.

Trying the SampleCommandHandler Class

Start by importing the Room Number sample configuration for the Workflow driver.

Compile the SampleCommandHandler class and place the resulting class file in a .jar file. Place the jar file
in the DirXML jar file directory appropriate to the platform on which you are running the driver.

Add the following XML element under the <subscriber-options> element found in the Driver Parameters
XML section of the driver properties:

<output-path display-name="Sample Output Path”></output-path>

Edit the Driver Parameters. In the item labeled Sample Output Path place a path to a directory in which the
SampleCommandHandler will write its created documents. In the item labeled Additional handlers add the
string com.novell.nds.dirxml.driver.workflow.samples.SampleCommandHandler.

Replace the Subscriber channel command transformation policy with CommandXform.xsl which may be
found in the same directory as the SampleCommandHandler.java file.

Create a User object and add a manager reference to the User object. If the manager has an e-mail address
value then a <sample> command element will be sent to the Subscriber and the SampleCommandHandler
will write a file in the location you specified above.

Copyright ©2002, Novell, Inc. Page 44 of 46

Appendix G — Custom Servlets for the Publisher
Channel

The Workflow driver provides an extension mechanism through which additional functionality can be
added to the Publisher channel web server. Custom servlets can be loaded by the Publisher by specifying
the name of the servlet class(es) in the Driver configuration item labeled Additional serviets.

Using the Publisher Channel

Ifa custom servlet needs to submit data to DirXML the servlet will need to use the Workflow driver’s
Publisher channel. The classes com.novell.nds.dirxml.driver.workflow.ServletRegistrar and
com.novell.nds.dirxml.driver.workflow.PublisherData are supplied to facilitate this. The sample code found
in SampleServlet.java illustrates this process.

Authentication

A custom servlet must authenticate users that are submitting information. The sample code found in
SampleServlet.java illustrates this process. Note, however, the type of authentication performed using the
<check-object-password> element does not check NDS rights. Changes submitted on the Publisher channel
will be allowed if the Driver object has rights to perform the changes regardless of whether the user
submitting the changes has rights or not.

If using a URL generated by a command handler on the Subscriber channel it is necessary to use the
com.novell.nds.dirxml.driver.workflow.URLData class to validate the URL to ensure that the responder-dn
data item has not been tampered with. See the javadocs for information on accomplishing this.

SampleServiet.java

Source code for a sample servlet is included with the Workflow driver distribution. The source code may
be found in the file workflow_driver docs.zip which is found in the distribution image.

The servlet is implemented in the class com.novell.nds.dirxml.driver.workflow.samples.SampleServlet.

The sample servlet accepts an HTTP GET request for any resource ending in .sample. The query string of
the HTTP URL must contain a dest-dn item, an attr-name item, and a value item.

The servlet authenticates the user and then submits a modify request to DirXML via the Workflow driver’s
Publisher channel.

Compiling the SampleServlet Class

To compile the SampleServlet class you can use any Java 2 compiler. It is necessary to place nxsl.jar,
dirxml.jar, collections.jar, and WorkflowRequestServiceBase.jar in the java compiler classpath.

Trying the SampleServlet Class

Start by importing the Room Number sample configuration for the Workflow driver.

Compile the SampleServlet class and place the resulting class file in a .jar file. Place the .jar file in the
DirXML jar file directory appropriate to the platform on which you are running the driver.

Edit the Driver Parameters. In the item labeled Additional servlets add the string
com.novell.nds.dirxml.driver.workflow.samples.SampleServlet.

Add Telephone Number to the Publisher channel filter.

Copyright ©2002, Novell, Inc. Page 45 of 46

Submit the following URL in a browser (assuming the browser is running on the same machine as the
Workflow driver):

https:localhost:8180/1.sample?dest-dn=username.container&attr-
name=Telephone%20Number&value=555-1212

Replace username.container with the DN of a user in your tree.

Copyright ©2002, Novell, Inc. Page 46 of 46

