
n

Identity Manager 3.5 User Application: Design Guide
Novell

ovdocx (E
N

U
) 29 January 2007
w w w . n o v e l l . c o m

Designer for Identity Manager
2 . 0
F e b r u a r y 2 0 , 2 0 0 7

I D E N T I T Y M A N A G E R U S E R
A P P L I C A T I O N : D E S I G N G U I D E

novdocx (E
N

U
) 29 January 2007
Legal Notices

Novell, Inc. makes no representations or warranties with respect to the contents or use of this documentation, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
Further, Novell, Inc. reserves the right to revise this publication and to make changes to its content, at any time,
without obligation to notify any person or entity of such revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any software, and specifically disclaims
any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc.
reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to
notify any person or entity of such changes.

Any products or technical information provided under this Agreement may be subject to U.S. export controls and the
trade laws of other countries. You agree to comply with all export control regulations and to obtain any required
licenses or classification to export, re-export or import deliverables. You agree not to export or re-export to entities on
the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export laws.
You agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses. Please
refer to www.novell.com/info/exports/ for more information on exporting Novell software. Novell assumes no
responsibility for your failure to obtain any necessary export approvals.

Copyright © 2006 Novell, Inc. All rights reserved. No part of this publication may be reproduced, photocopied,
stored on a retrieval system, or transmitted without the express written consent of the publisher.

Novell, Inc. has intellectual property rights relating to technology embodied in the product that is described in this
document. In particular, and without limitation, these intellectual property rights may include one or more of the U.S.
patents listed at http://www.novell.com/company/legal/patents/ and one or more additional patents or pending patent
applications in the U.S. and in other countries.

Novell, Inc.
404 Wyman Street, Suite 500
Waltham, MA 02451
U.S.A.
www.novell.com

Online Documentation: To access the online documentation for this and other Novell products, and to get
updates, see www.novell.com/documentation.

novdocx (E
N

U
) 29 January 2007
Novell Trademarks

Novell is a registered trademark of Novell, Inc., in the United States and other countries.
SUSE is a registered trademark of Novell, Inc., in the United States and other countries.

Third-Party Materials

All third-party trademarks are the property of their respective owners.

novdocx (E
N

U
) 29 January 2007

Contents

novdocx (E
N

U
) 29 January 2007
About This Guide 11

1 Introduction to the User Application Design Tools 13
1.1 About the Provisioning View . 13
1.2 About the Directory Abstraction Layer Editor. 13
1.3 About the Provisioning Request Definition Editor . 14
1.4 About the ECMA Expression Builder . 14
1.5 Documenting a Project . 14

2 Working with the Provisioning View 17
2.1 Setting Up a Provisioning Project . 17

2.1.1 Creating a User Application Driver . 17
2.1.2 About E-Mail Notification Templates . 21

2.2 Accessing the Provisioning View . 22
2.3 Setting Provisioning View Preferences . 24
2.4 Importing Provisioning Objects . 27

2.4.1 Importing from a Driver Configuration File. 27
2.4.2 Importing from an Identity Vault . 28

2.5 Exporting Provisioning Objects . 28
2.5.1 Exporting to a Driver Configuration File . 28

2.6 Validating Provisioning Objects . 28
2.7 Deploying Provisioning Objects . 29

2.7.1 Deploying Provisioning Objects. 30
2.7.2 Testing the Deployed Changes . 30

2.8 Comparing Provisioning Objects . 31
2.9 Localizing Display Labels . 31

2.9.1 Supported Languages . 32
2.9.2 Localizing Directory Abstraction Layer Display Labels . 33
2.9.3 Exporting and Importing Localized Labels . 33

3 Configuring the Directory Abstraction Layer 37
3.1 About the Directory Abstraction Layer . 37

3.1.1 Analyzing the User Application’s Data Needs . 37
3.1.2 About the Directory Abstraction Layer Editor . 38
3.1.3 About Directory Abstraction Layer Editor Files . 40

3.2 Working with Entities and Attributes . 41
3.2.1 About Entities and Attributes . 41
3.2.2 Adding Entities . 42
3.2.3 Adding Attributes . 47
3.2.4 Updating the Schema Elements List . 49

3.3 Working with Lists . 49
3.4 Working with Queries. 53
3.5 Working with Relationships . 56
3.6 Working with Configuration Settings . 59
3.7 Directory Abstraction Layer Property Reference . 60

3.7.1 Entity Properties . 60
Contents 5

6 Identity Man

novdocx (E
N

U
) 29 January 2007
3.7.2 Attribute Properties . 64
3.7.3 Queries Properties . 73
3.7.4 Relationship Properties . 74

4 Working with the Provisioning Request Definition Editor 77
4.1 About the Provisioning Request Definition Editor . 77

4.1.1 How the Provisioning Request Definition Editor Fits into the Identity Manager
Architecture . 77

4.1.2 Provisioning and Workflow Example . 78
4.2 Basic Steps for Creating a Provisioning Request Definition. 83
4.3 Guidelines for Creating Workflows . 84

4.3.1 Rules for Activities . 84
4.3.2 Rules for Flow Paths . 85
4.3.3 Understanding Workflow Data . 86

4.4 Working with the Installed Templates. 90
4.5 Debugging a Workflow . 92

5 Creating a Provisioning Request Definition 95
5.1 About the Wizard and the Overview Tab . 95
5.2 Using the Wizard to Create a Provisioning Request Definition. 97

5.2.1 Using a Template . 98
5.2.2 From Concept to Finished Product . 99

5.3 Using the Overview Tab to Modify Basic Settings . 100

6 Creating Forms for a Provisioning Request Definition 103
6.1 About Forms . 103

6.1.1 About Form Control Data Binding . 105
6.1.2 About Forms and Events . 105

6.2 About the Forms Tab . 107
6.2.1 About Form Selection. 108
6.2.2 About Form Controls . 109

6.3 Creating forms . 111
6.3.1 Creating New Forms . 111
6.3.2 Adding Form Controls and Actions . 112
6.3.3 Defining Events . 114
6.3.4 Using the Scripts Tab. 118

6.4 Action Reference . 120
6.5 Form Control Reference . 122

6.5.1 Controls for User-Entered Comments . 123
6.5.2 General Form Control Properties . 124
6.5.3 CheckBoxPickList . 124
6.5.4 DatePicker . 125
6.5.5 DateTimePicker . 126
6.5.6 DNContainer . 128
6.5.7 DNDisplay . 128
6.5.8 DNLookup . 129
6.5.9 DNMaker . 133
6.5.10 DNQuery . 134
6.5.11 Global List . 135
6.5.12 Html . 136
6.5.13 MVCheckbox . 136
6.5.14 MVEditor . 137
6.5.15 PickList . 143
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
6.5.16 Static List . 145
6.5.17 . Text146
6.5.18 Text Area. 146
6.5.19 Title . 147
6.5.20 TrueFalseRadioButtons. 147
6.5.21 TrueFalseSelectBox . 147

6.6 Working with Distinguished Names . 147
6.6.1 Formatting DNs . 148
6.6.2 Working with Object Selectors . 148

6.7 Using DAL Queries in Forms . 151

7 Creating the Workflow for a Provisioning Request Definition 157
7.1 About the Workflow Tab . 157

7.1.1 Canvas . 158
7.1.2 Palette . 159
7.1.3 Views. 160

7.2 Adding Activities to a Workflow . 161
7.2.1 Setting the General Properties of an Activity. 161
7.2.2 Defining the Data Item Mappings . 162
7.2.3 Defining the Email Notification Settings . 163

7.3 Adding the Flow Paths. 164
7.4 Configuring Flow Paths . 165
7.5 Addressing an Approval Activity . 167

7.5.1 Valid Addressee Expressions . 167
7.5.2 Relationship Between Addressee and Approver Type . 168

7.6 Provisioning Multiple Individuals with One Workflow Instance . 171
7.6.1 Basic Steps for using the Workflow. 171
7.6.2 Setting up the Workflow for a Team Manager to Use . 173

7.7 Working with Entity Activities . 173
7.7.1 Adding or Modifying an Entity . 173
7.7.2 Using an Entity Activity to Delete an Entity . 174
7.7.3 Using an Entity Activity to Delete an Attribute or Value. 174

7.8 Configuring Digital Signature Support . 175
7.8.1 Digital Signature Workflow Properties. 176
7.8.2 Creating a Signature Declaration . 176

8 Workflow Activity Reference 179
8.1 Start Activity . 179

8.1.1 Properties . 179
8.1.2 Data Item Mapping . 180
8.1.3 Email Notification. 180

8.2 Approval Activity . 181
8.2.1 Properties . 181
8.2.2 Data Item Mapping . 185
8.2.3 E-mail Notification . 186

8.3 Log Activity . 188
8.3.1 Properties . 188
8.3.2 Data Item Mapping . 188
8.3.3 E-mail Notification . 189

8.4 Branch Activity . 189
8.4.1 Properties . 189
8.4.2 Data Item Mapping . 189
8.4.3 E-mail Notification . 189

8.5 Mapping Activity. 189
Contents 7

8 Identity Man

novdocx (E
N

U
) 29 January 2007
8.5.1 Properties. 190
8.5.2 Data Item Mapping. 190
8.5.3 E-mail Notification . 190

8.6 Merge Activity . 190
8.6.1 Properties. 191
8.6.2 Data item mapping . 191
8.6.3 Email notification . 191

8.7 Condition Activity . 191
8.7.1 Properties. 191
8.7.2 Data Item Mapping. 192
8.7.3 Email Notification . 192

8.8 Workflow Status . 192
8.8.1 Properties. 192
8.8.2 Data Item Mapping. 192
8.8.3 E-mail Notification . 193

8.9 Finish Activity . 193
8.9.1 Properties. 193
8.9.2 Data Item Mapping. 193
8.9.3 E-mail Notification . 193

8.10 Integration Activity . 194
8.10.1 Properties. 195
8.10.2 Data Item Mapping. 195
8.10.3 E-Mail Notification . 196

8.11 Entitlement Activity . 196
8.11.1 Properties. 197
8.11.2 Data Item Mapping. 197
8.11.3 E-mail Notification . 198

8.12 Entity Activity . 198
8.12.1 Properties. 198
8.12.2 Data Item Mapping. 198
8.12.3 Email notification . 200

9 Working with Integration Activities 201
9.1 About the Integration Activity . 201
9.2 Adding an Integration Activity . 201
9.3 Moving Data to and from the Integration Activity . 203
9.4 Using the Integration Activity Editor Interface. 206

9.4.1 XML Views . 206
9.4.2 Action Model . 210
9.4.3 WSDL Editor . 217
9.4.4 Messages. 217
9.4.5 Regenerating Code for the Action Model . 217
9.4.6 Adding Actions to the Action Model . 217

9.5 Actions . 218
9.5.1 Advanced . 218
9.5.2 Data Exchange. 224
9.5.3 Repeat . 229
9.5.4 Comment . 236
9.5.5 Decision . 237
9.5.6 Function . 238
9.5.7 Log . 239
9.5.8 Map . 240

10 Working with ECMA Expressions 249
10.1 About the ECMA Expression Builder . 249
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
10.1.1 About ECMAScript . 249
10.1.2 ECMAScript Capabilities . 250
10.1.3 Using the ECMA Expression Builder . 250
10.1.4 About Java Integration . 256
10.1.5 About XPath Integration . 257
10.1.6 Performance Considerations. 258

10.2 ECMAScript Examples . 259
10.2.1 General Examples. 259
10.2.2 Flowdata Examples . 259
10.2.3 Form Control Examples. 260
10.2.4 Error Handling Examples . 261

10.3 ECMAScript API . 262
10.3.1 Form Action Script Methods . 262
10.3.2 DOM Methods . 269
10.3.3 ECMAScript Core . 293
10.3.4 Global Functions . 312
10.3.5 IDVault Functions . 312
Contents 9

10 Identity Man

novdocx (E
N

U
) 29 January 2007
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
About This Guide

This guide describes how to use the Designer to create User Application components. It explains
how to work with the provisioning view, the directory abstraction layer editor, and the provisioning
request definition editor.

Audience

This guide is intended for designers responsible for creating workflow-based provisioning
applications that run on Identity Manager.

Feedback

We want to hear your comments and suggestions about this manual and the other documentation
included with this product. Please use the User Comments feature at the bottom of each page of the
online documentation, or go to www.novell.com/documentation/feedback.html and enter your
comments there.

Additional Documentation

For documentation on other Identity Manager features, see the Identity Manager Documentation
Web site (http://www.novell.com/documentation/idm).

Documentation Conventions

In Novell documentation, a greater-than symbol (>) is used to separate actions within a step and
items in a cross-reference path.

A trademark symbol (®, TM, etc.) denotes a Novell trademark. An asterisk (*) denotes a third-party
trademark.

When a single pathname can be written with a backslash for some platforms or a forward slash for
other platforms, the pathname is presented with a backslash. Users of platforms that require a
forward slash, such as Linux or UNIX, should use forward slashes as required by your software.
About This Guide 11

http://www.novell.com/documentation/idm
http://www.novell.com/documentation/idm

12 Identity Man

novdocx (E
N

U
) 29 January 2007
ager 3.5 User Application: Design Guide

1
novdocx (E

N
U

) 29 January 2007
1Introduction to the User
Application Design Tools

This section provides an overview of the tools available for designing the User Application. Topics
include:

Section 1.1, “About the Provisioning View,” on page 13
Section 1.2, “About the Directory Abstraction Layer Editor,” on page 13
Section 1.3, “About the Provisioning Request Definition Editor,” on page 14
Section 1.4, “About the ECMA Expression Builder,” on page 14
Section 1.5, “Documenting a Project,” on page 14

1.1 About the Provisioning View
The Provisioning view provides persistent access to Designer’s provisioning features. Use the
Provisioning view to perform these actions on provisioning objects:

Import object definitions from the Identity Vault or the local file system.
Export object definitions to the local file system.
Validate local object definitions.
Deploy object definitions to the Identity Vault.
Compare the objects on the local file system with those in the Identity Vault.
Access the directory abstraction layer editor.
Access the provisioning request definitions editor.

Double-clicking an item from the Provisioning view opens the editor for that item.

1.2 About the Directory Abstraction Layer Editor
The directory abstraction layer editor allows you to define directory abstraction layer definitions.
Use the directory abstraction layer editor to modify the User Application’s behavior by:

Adding new entities (Identity Vault objects).
Defining the set of attributes for an entity.
Specifying the contents of lists.
Modeling relationships among entities.
Defining automatic lookups between entitites.
Defining LDAP searches as Queries that you can run from request and approval forms.
Introduction to the User Application Design Tools 13

14 Identity Man

novdocx (E
N

U
) 29 January 2007
1.3 About the Provisioning Request Definition
Editor
The provisioning request definition editor allows you to create custom provisioning request
definitions by using a rich set of Eclipse-based design tools. Use the provisioning request definition
editor to:

Define the basic characteristics of the provisioning request.
Design the associated workflow.
Define the request and approval forms.
Configure the activities and flow paths.

1.4 About the ECMA Expression Builder
Designer incorporates an EMCAScript interpreter and expression editor, which allows you create
script expressions that refer to and modify workflow data. For example, you can use scripting to:

Create new data items needed in a workflow under the flowdata element.
Perform basic string, date, math, relational, concatenation, and logical operations on data.
Call standard or custom Java* classes for more sophisticated data operations.
Use expressions for runtime control to:

Modify or override form field labels.
Initialize form field data.
Customize e-mail addresses and content.
Set entitlement grant/revoke rights and parameters.
Evaluate any past activity data to conditionally follow a workflow path using the
Condition Activity.
Write different log messages that are conditionally triggered using a single Log Activity.

1.5 Documenting a Project
Designer provides a document generator that helps you quickly generate customized documentation
for your Designer projects. You can define your own document style, but Designer ships with a
default provisioning style. The default provisioning style includes sections for the User Application,
such as the directory abstraction layer and the provisioning request definitions. The directory
abstraction layer documentation includes the following sections:

Entities: Including access properties, auxiliary classes, and LDAP classes.
Global lists: Including key and display label.
Queries: Including the query’s keys, parameters, and conditions.
Relationships: Including key, parent key, parent attribute, child key, and child attribute
Configuration: Including default entity key, default locale, and container classes.

The documentation for a provisioning request definition includes:

A table containing the definition’s category, status, and e-mail notification.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
An image of the workflow’s structure.
A section for each activity with a table that lists the data mappings for the activity or the
expression (if supported by the activity type).
A section for each form.
Introduction to the User Application Design Tools 15

16 Identity Man

novdocx (E
N

U
) 29 January 2007
ager 3.5 User Application: Design Guide

2
novdocx (E

N
U

) 29 January 2007
2Working with the Provisioning
View

This section provides details on using the Provisioning view. Topics include:

Section 2.1, “Setting Up a Provisioning Project,” on page 17
Section 2.2, “Accessing the Provisioning View,” on page 22
Section 2.3, “Setting Provisioning View Preferences,” on page 24
Section 2.4, “Importing Provisioning Objects,” on page 27
Section 2.5, “Exporting Provisioning Objects,” on page 28
Section 2.6, “Validating Provisioning Objects,” on page 28
Section 2.7, “Deploying Provisioning Objects,” on page 29
Section 2.8, “Comparing Provisioning Objects,” on page 31
Section 2.9, “Localizing Display Labels,” on page 31

2.1 Setting Up a Provisioning Project
The Provisioning view is only available for projects that contain a User Application driver. After
you set up an Identity Manager project (see “Creating a Project” in the Designer for Identity
Manager 3: Administration Guide) and configure an Identity Vault and driver set for the project,
you add and configure a User Application driver.

2.1.1 Creating a User Application Driver
1 Expand the project in Project view.

2 Double-click System Model.
Working with the Provisioning View 17

18 Identity Man

novdocx (E
N

U
) 29 January 2007
3 Access the driver configuration page for a new driver using one of these methods:
Right-click the driver set for your project and select New > Driver.

Click Provisioning in the Palette, then drag a User Application icon onto the canvas.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
Click the driver set for your project and select Model > Driver > New.

Designer displays the Driver Configuration Wizard.

4 Select one of these driver configurations.
Working with the Provisioning View 19

20 Identity Man

novdocx (E
N

U
) 29 January 2007
This procedure describes how to configure both versions and indicates where fields are specific
to one version or another.
Designer launches the following:

Driver Configuration Description

UserApplication_3_0_1.xml Creates a Version 3.0.1 User Application driver User
Application driver.

UserApplication_3_5_0.xml Creates a Version 3.5 User Application driver.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
5 Fill in the fields as follows:

6 Click Finish.

2.1.2 About E-Mail Notification Templates
Identity Manager includes a standard set of e-mail notification templates (see “Working with E-Mail
Templates” in the Identity Manager 3.5 User Application: Administration Guide). When you create
a User Application driver, any e-mail notification templates that are missing from the standard set

Property What to Specify

Driver Name The name of an existing User Application driver
(the driver specified during the User Application
installation), or the name of a new User
Application driver.

Authentication ID The DN of the User Application Administrator.

Application password/Reenter password The password for the User Application
Administrator (above).

Application context The name of the User Application context, for
example, IDM.

Host The host name or IP address of the application
server where the Identity Manager User
Application is deployed. This information is used:

To trigger workflows on the application
server to connect to access workflows
(terminate, retract, and so on).

To update cached data definitions.

Port The port for the Host (above).

Allow Override Initiator Applies to UserApplication_3_5_0.xml
only.

This property applies to workflows that are
started automatically. Typically workflows started
automatically are started under the Admin
identity. Selecting Yes for this property allows
those workflows to be started under another user
identity. For more information, see the Identity
Manager User Application: Administration Guide.
Working with the Provisioning View 21

22 Identity Man

novdocx (E
N

U
) 29 January 2007
are replaced. However, existing e-mail notification templates, which might come from an earlier
version of Identity Manager, are not updated. To replace existing templates with new templates:

1 Expand the Outline view.

2 In the Default Notification Collection, delete the e-mail notification templates that you want to
replace.

3 Right-click Default Notification Collection and select Update Templates.
You can also use this command at any time to update e-mail notification templates without
creating a new User Application driver.

4 To deploy the e-mail notification templates to the Identity Vault, right-click Default
Notification Collection and select Live > Deploy.

2.2 Accessing the Provisioning View
You can access the Provisioning view in the following ways:

Select Window > Show View > Provisioning View.
In the Modeler window, right-click User Application, then select Show View > Provisioning
View.
In the Outline view, right-click User Application, then select Show Provisioning View.
Select Provisioning View from the FastView toolbar.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
When it is open, the Provisioning view displays all of the provisioning projects located in the same
workspace.

Figure 2-1 Sample Provisioning View

The Provisioning view displays icons to indicate the object’s status. The icons are described in the
Table 2-1.

Table 2-1 Provisioning View Status Icons

Driver Information: The User Application driver icon includes a tooltip that provides the project's
Identity Vault name, the DriverSet, the driver name, and the version as shown in Figure 2-2.

Figure 2-2 User Application Driver Tooltip

TIP: If you do not see the User Applications that you expect, it might be because the project is
corrupt. If your project is corrupt, you must re-create it.

Icon Description

Indicates that the local object has changed.

Indicates that the local object contains a validation warning.

Indicates that the local object contains a validation error.
Working with the Provisioning View 23

24 Identity Man

novdocx (E
N

U
) 29 January 2007
2.3 Setting Provisioning View Preferences
You can customize some Provisioning view behaviors by setting preferences. You access the
preferences page through Windows > Preferences > Provisioning. The preferences include:

Table 2-2 Provisioning View Preferences

Preference
Category Setting Description

General Prompt for deletion of User Application
Configuration

When this is selected and you delete a User
Application from the Modeler, Designer asks
whether you want to delete the provisioning
objects on disk as part of the delete operation.
If you do not delete the provisioning objects,
they are left on disk, even though the User
Application is deleted.

Set delete from Identity Vault as default
for all “Confirm Delete” dialogs

When you delete an object in the Provisioning
view or the directory abstraction layer editor,
you are prompted to confirm the deletion. This
preference determines whether the check box
labeled Delete object in Identity Vault on
deploy in the confirmation dialog box is
selected by default.

Selecting this preference means that the
check box is selected and the default is to
delete the Identity Vault object. The local
object is always deleted.

Show Provisioning View when new User
Application is created or imported

Select this option if you want Designer to
launch the Provisioning view when you create
a new User Application driver or import an
existing one.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
Import/
Deploy

Import Delete local object on import when object has
been deleted in Identity Vault: Select this
option if you want Designer to delete local
objects if the corresponding Identity Vault
objects were deleted. This ensures that the
Identity Vault and local files are in sync.
Deselect this option if you want to leave the
local files alone.

Import Prompt whether to overwrite runtime
configuration on import from file: Select this
option if you are importing the driver from a
test environment and want to deploy to a
production environment. The User Application
driver runtime relies on objects stored in the
driver that you are not able to access in
Designer. If you deploy a driver that does not
contain these objects, it does not work
properly. Deselect this option if you are
importing the driver, modifying it, and
deploying it back to the same driver set
because the driver already has the runtime
configuration objects.

Import/
Deploy

Deploy Allow deployment of objects with validation
errors: Select this option if you want to deploy
objects that fail validation checks. At
deployment, Designer validates the
definitions being deployed following the
validation rules outlined in Section 2.6,
“Validating Provisioning Objects,” on page 28.
Deselect this option to prevent deployment of
definitions that fail validation.

WARNING: Deploying objects that fail
validation can result in errors in the User
Application runtime.

Preference
Category Setting Description
Working with the Provisioning View 25

26 Identity Man

novdocx (E
N

U
) 29 January 2007
Migration Show warning about Identity Vault
schema changes

 When you select the Migrate command,
Designer displays a dialog box that warns you
that schema changes (that are needed to
support new features) must have been made
before you can deploy the migrated driver. If
the updates have not been made, you should
cancel the migration until they are complete. If
you don't want to see this warning when you
select the Migrate command, deselect this
option.

Always deploy (un-deployed) User
Application Driver

This preference is only relevant for User
Application drivers that haven't been
deployed to the directory (for example, User
Application drivers that have been imported
from a driver configuration file). When a User
Application driver that has not been deployed
is migrated, an additional dialog box is
displayed that prompts you to deploy the
driver. Select the Always deploy (un-
deployed) User Application driver option if you
always want Designer to deploy the User
Application driver, and you don’t want this
dialog box displayed.

Show warning that editors will be closed When you select the Migrate command,
Designer displays a dialog box that warns you
that all editors will be closed. Select this
option if you don’t want this warning
displayed each time you choose the Migrate
command.

Validation
Mask

Validation Mask Table Use this dialog to define the validation masks
available to form controls such as the Text
control. The validation masks are regular
expressions and must follow regular
expression syntax.

Designer provides a default set of validation
masks. If they do not show up as validation
masks in the form controls property sheets,
you can enable them by clicking Restore
Defaults, then Apply.

Preference
Category Setting Description
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
2.4 Importing Provisioning Objects
The Provisioning view’s import feature lets you import provisioning objects from:

A driver configuration file
An Identity Vault

This feature is useful when you begin a new project based on one or more definitions from an
existing project, or when you want to share definitions with other developers working on the same
project.

NOTE: When you change the Identity Vault or driver set’s deploy context, you must save the
project before performing an import. If you do not save the change, Designer continues to use the
old deploy context for import operations.

2.4.1 Importing from a Driver Configuration File
To import objects from a driver configuration file:

1 Open the Provisioning view.
2 Select the root node representing the type of object you want to import.
3 Right-click the container and select Import from File. Confirm the import operation (which

might overwrite existing definitions of the same name) by clicking OK.

Workflows Form Templates Use this dialog box to remove or preview
existing form templates.

Diagram Preferences Show Activity ID: Select this preference when
you want the Workflow tab of the provisioning
request definition editor to display the Activity
IDs for each activity in the flow. Activity IDs
are used by the ECMA expression builder and
are written to the User Application’s error
logs.

Show Flow Path Types: Select this preference
when you want the Workflow tab of the
provisioning request definition editor to
display the Flow Path Types for each activity
in the flow. Flow Path Types are used by the
ECMA expression builder and are written to
the User Application’s error logs.

Connection This is the amount of time (in milliseconds) for
Designer to connect to the Identity Vault. If
this is set too low, you might encounter an
error when trying to set Trustee Rights on a
provisioning request definition or when trying
to access the Identity Vault via the ECMA
expression builder.

Preference
Category Setting Description
Working with the Provisioning View 27

28 Identity Man

novdocx (E
N

U
) 29 January 2007
4 Specify the name of the driver configuration file you want to import, then click OK.

2.4.2 Importing from an Identity Vault
1 Open the Provisioning view and select the container into which you want to import the

definitions.

To import a specific provisioning object, select that node in the Provisioning view. To import
all objects of a specific type, select the root node representing that type.

2 Right-click the container and select one of the following:
Import Object to import the specified object and its children.
Import All to import all of the objects of a selected container.

If prompted, provide the Identity Vault credentials and click OK.
3 Navigate to the Identity Vault container or object that you want to import and click OK.
4 Review the Import Summary page to determine how you want to proceed. To complete the

import, click Import, or click Cancel. If you click Import, Designer performs the operation and
displays a summary of the completed operation.

2.5 Exporting Provisioning Objects
The Provisioning view’s export feature allows you to move project components from one project to
another without re-creating the contents. It also allows you to clone a project. You can use it to
export provisioning objects (and their children) to an XML-based driver configuration file. You use
the resulting file as the input to the Import from File feature enabling you to easily share the contents
of your provisioning project with other developers.

2.5.1 Exporting to a Driver Configuration File
1 Open the Provisioning view and select the object containing the definitions to export.

To export a specific provisioning object, select that node in the Provisioning view. To export all
of the objects of a specific type, select the root node representing that type.

2 Right-click the container or object and select Export to File.
3 Provide the name and location of the file to generate, then click OK.

The default name for the file reflects the contents of the file. For example, if you export lists,
the default name for the file is lists.xml. You can change the name as needed.

2.6 Validating Provisioning Objects
The Validation feature allows you to validate provisioning objects on the local file system before
you deploy. The validation runs Designer’s project checker and displays the results in the Project
Checker view.

For directory abstraction layer objects, Designer does the following:

Verifies that the XML is well-formed and complies with the schema that defines the elements
needed for entities, attributes, lists, relationships, and so on.
Checks every entity to ensure that references to other entities and global lists are valid.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
For example, when validating an entity and its attributes, the validator checks that all
references to other entities via the Edit Entity, DNLookup, and Detail Entity references exist.
Ensures that every entity has at least one attribute defined.
Ensures that every local and global list contains at least one item.

For Provisioning Request Definitions, Designer does the following:

Validates that every Provisioning Request Definition has at least one request form and one
approval form.
Ensures that the Condition Activity has both an outbound true flow path and an outbound false
flow path.
Ensures that the Entitlement Activity Data Item Mapping of DirXML-Entitlement-DN is valid.
Ensures that the Final Timeout Action property (for User Activities) has a matching flow path
link leading from the activity. For example, if Final Timeout Action=denied, there must be a
denied link.
For Branch and Merge activities, ensures that a workflow has an equal number of Branch and
Merge activities. It also ensures that all paths descending from a Branch activity merge into one
Merge activity, that all merge activities have a branch activity, and that all Merge activities
have a branch-activity-id attribute.
Ensures that static list keys contain the correct data for the decimal data type.

To validate objects from the Provisioning view, right-click a node and click Validate.

To validate objects from the directory abstraction layer editor, click Validate Abstraction Layer from
the editor’s toolbar, or select DAL > Validate from Designer’s menu.

To validate objects from the provisioning request definition editor, select PRD > Validate from
Designer’s menu.

NOTE: Validation does not check the Identity Vault for the existence of any object.

2.7 Deploying Provisioning Objects
The Provisioning view’s Deploy feature deploys your provisioning objects to the specified User
Application driver. You must deploy any changes you’ve made to the provisioning objects in the
design environment before you see them reflected in the Identity Manager User Application. The
Provisioning view allows you to deploy a container and all its children (for example, all entities or
all lists), or to deploy just a single provisioning object (such as a single list element). When you
select an item to deploy, Designer compares it to the same item in the Identity Vault. If they are
equal, Designer prevents you from deploying. When there are differences, Designer displays them
and allows you to proceed or to cancel the deployment.

If you deploy a Version 3.5 User Application driver and the Identity Vault does not contain the
necessary 3.5 schema changes, the provisioning objects are not deployed and Designer displays an
error message in the Deploy Results dialog box. This is to prevent you from deploying a 3.5 driver
to a 3.0.1 Identity Vault.

NOTE: When you change the Identity Vault or driver set’s deploy context, you must save the
project before performing a deploy. If you do not save the change, Designer continues to use the old
deploy context for deploy operations.
Working with the Provisioning View 29

30 Identity Man

novdocx (E
N

U
) 29 January 2007
2.7.1 Deploying Provisioning Objects
1 Save any changes.

If the objects contain unsaved changes, Designer displays the unsaved definitions and prompts
you to save them. If you do not, Designer still deploys the objects but does not deploy the
unsaved changes. Choosing not to save the changes does not cancel the deployment.

2 Open the Provisioning view, right-click the object to deploy, then and select Deploy or Deploy
All.
To deploy a specific provisioning object, select that node in the Provisioning view. To deploy
all of the objects of a specific type, select the root node representing that type.
Designer prompts you for Identity Vault credentials (if necessary), validates the objects, and
writes any messages to the project checker view.

When you deploy a driver and it contains provisioning objects that fail validation, Designer deploys
the driver but not the invalid objects (regardless of the deployment preferences). The errors are
displayed in the deployment result dialog box. When you deploy a provisioning object that contains
validation errors, Designer performs the deployment based on the defined preferences and writes the
errors to the Project Checker view.

Some tips for deploying Provisioning Request Definitions:

If errors associated with activities are detected during deployment of a provisioning request
definition, Designer identifies the activity in which the error occurred by activity ID. However,
in the user interface, Designer by default displays activities by activity Name. To make it easier
to identify the activity in an error message, you should turn on the display of activity IDs before
you deploy the provisioning request definition. To turn on the display of activity IDs, right-
click the Workflow canvas and select Show Activity IDs.
A common error occurs when you fail to replace a placeholder expression in an entitlement
provisioning activity (see Section 8.11, “Entitlement Activity,” on page 196 for information
about entitlement provisioning activities). If this is the case, correct the error, then try
deploying the provisioning request definition again.
Designer cannot evaluate expressions at design time, so you might receive a warning if you’ve
used an expression for an entitlement that must be resolved at runtime. This is not a fatal error
and the deployment will succeed.
Make sure that the Status is Active (in the Overview tab).
If the provisioning request definition with the same CN already exists in the Identity Vault, the
Deployment Summary displays the differences, and allows you to examine the differences
before you decide to proceed.

2.7.2 Testing the Deployed Changes
You can access the User Application from within Designer to view or test what you deploy. To
access the User Application from Designer:

1 Select Tools>Access User Application.
2 Choose the project and User Application driver container associated with the User Application

you want to view, then click OK.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
Designer uses the driver configuration information, that you defined for the project, to make
the connection. Designer uses the browser settings specified in
Windows>Preferences>General>Web Browser

2.8 Comparing Provisioning Objects
The Provisioning view’s Compare feature allows you to see the differences between the
provisioning objects in the local file system and those that are running in the deployed User
Application driver. When Designer encounters a difference, it allows you to specify what action you
want to take on that difference. You can ignore or reconcile it.

NOTE: When you change the Identity Vault or DriverSet’s deploy context, you must save the
project before performing a compare. If you do not save the change, Designer continues to use the
old deploy context for compare operations.

To compare provisioning objects:

1 Right-click a container or object in the Provisioning view, then select Compare.
2 If prompted, provide Identity Vault credentials, then click OK.

Designer displays the results of the comparison. By default, only the differences are displayed,
but you can show the full comparison by deselecting Only show differences.

3 If there are differences, select one of the following actions:

2.9 Localizing Display Labels
Designer provides an easy way to localize the display labels defined in provisioning objects. You
can provide localized string values whenever you see the button in Figure 2-3.

Figure 2-3 Localize Strings Button

Reconcile Status Description

Do not reconcile Do not change any definitions.

Update Designer Import the definitions from the Identity Vault.

Update eDirectory Deploy the definition from Designer to the Identity Vault.

Reconciled by parent For informational purposes. Specifies whether one of the parent objects is
already being reconciled. It is always disabled and is only set if the parent
object is already being reconciled to Designer or the Identity Vault.
Working with the Provisioning View 31

32 Identity Man

novdocx (E
N

U
) 29 January 2007
When you click this button, Designer displays the Localization dialog box shown in Figure 2-4.

Figure 2-4 Localization Dialog Box

Table 2-3 Localizable Objects

You must provide a display label for the User Application Driver’s default language, or you will
encounter the following runtime error: The resource resolver
com.novell.soa.common.i18n.LocalizedMapResolver did not return a resource for the default locale
of <locale>. It is required that a resource exist for the default local.

The locale configuration is stored in the driver’s <default-locale> element in the
AppConfig.AppDefs.locale-configuration XMLData attribute.

2.9.1 Supported Languages
You can localize the display labels in any language displayed in the localization dialog box.

Designer tool Description

Directory Abstraction Layer Editor Entity and attribute display labels

Relationship names

Global and local list items

Query display labels and parameter display
labels.

Provisioning Request Definition Editor Activity properties that are displayed to the
user.

Form properties that are displayed to the user.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
2.9.2 Localizing Directory Abstraction Layer Display Labels
The directory abstraction layer editor provides multiple ways to localize abstraction layer
definitions. You can access the localization dialog boxes in these ways:

Table 2-4 Ways to Access the Localization Dialog Boxes

2.9.3 Exporting and Importing Localized Labels
Designer provides a wizard that lets you export all of the display labels in your User Application
project to an XML or properties file that you can localize and import back. You can export an entire
driver, all directory abstraction layer or provisioning request definitions, or a single object at a time.

To export display labels:

1 To launch the Export Localization Data Wizard, right-click on a container node or an object in
the Provisioning view.

To define the localization text for Action

Every localizable item in the directory
abstraction layer

Select DAL > Set Global Localization.

or

Click Set Global Localization (from the editor’s toolbar), then
select the Target Language before entering the localized
text in the Target field.

A specific entity, relationship or list From the tree view, right-click the object to localize, select
Localize, then select the Target Language before entering
the localized text in the Target field.

A single display label Select a specific entity or attribute, then click Localize
Display Label (beside the Display Label field in the Property
pane).
Working with the Provisioning View 33

34 Identity Man

novdocx (E
N

U
) 29 January 2007
2 Select Localize > Export Localization Data.

3 Fill in the fields as follows:

Field Description

Store in folder Specify the name of a local folder where the
exported files should be written.

Prefix for generated files Specify a prefix for the generated files.
Determine a naming strategy so you are able to
identity the files for projects.

File Type Select XML or Properties depending on the
encoding or format you prefer. XML files are
UTF-8 encoded. Properties use Unicode*.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
4 Click Finish. Designer displays a message describing the result of the export operation.

To import localized files:

1 To launch the Import Localization Data wizard, right-click on a container node or an object in
the Provisioning view.

2 Select Localize > Import Localization Data.

3 Fill in the fields as follows: .

Select the languages to export Select the languages you’ll want localizations for.
A file containing the display label key is
generated for that language. The localizations
need to be added to this file in the proper format
so you can import them to the proper User
Application driver objects.

Prompt before overwriting existing files If this option is selected, Designer prompts you
before it overwrites any existing files of the same
name in the target directory.

Field Description
Working with the Provisioning View 35

36 Identity Man

novdocx (E
N

U
) 29 January 2007
4 Click Finish to complete the import. Designer displays a status dialog box that describes the
results including any errors reading the files and any warnings about display label keys that are
unused because no match was found.

Field Description

Search in folder Specify the folder location where the files to
import are located.

File Type Select XML if the file you want to import is in
XML format.

Select Properties if the file you want to import is
in the properties format.

Preferences Select Suppress warnings about unused strings
if you want the wizard to suppress warning
messages.

Select Create backup of existing display label
strings if you want the wizard to create a backup
of the existing strings before the import. Useful in
case you need to revert.

Files Select the files to import. This table is populated
with the files from the folder location and File
Type specified above. If it is blank, no files of the
specified type are located in the target folder.
The wizard attempts to determine the language
by looking at the filename. If the name cannot be
determined, it defaults to English.

You can change the Language column if the
wizard assumes the wrong language. The wizard
will change the file name to reflect the language
you specify and import the display labels to the
corresponding language.
ager 3.5 User Application: Design Guide

3
novdocx (E

N
U

) 29 January 2007
3Configuring the Directory
Abstraction Layer

This section provides details on configuring the directory abstraction layer. Topics include:

Section 3.1, “About the Directory Abstraction Layer,” on page 37
Section 3.2, “Working with Entities and Attributes,” on page 41
Section 3.3, “Working with Lists,” on page 49
Section 3.4, “Working with Queries,” on page 53
Section 3.5, “Working with Relationships,” on page 56
Section 3.6, “Working with Configuration Settings,” on page 59
Section 3.7, “Directory Abstraction Layer Property Reference,” on page 60

3.1 About the Directory Abstraction Layer
The directory abstraction layer is a set of XML-based files that define a logical view of an Identity
Vault for the User Application. The User Application uses the directory abstraction layer definitions
to determine:

The Identity Vault objects and attributes that the User Application can display or modify.
How the User Application displays Identity Vault data.
The relationships the User Application can display.
The provisioning request categories, e-mail notification types, and delegate relationships the
User Application can display.

The User Application ships with a default set of entities, relationships, and lists that it needs to
function, but you can add new or modify existing directory abstraction layer objects to customize
the User Application for your own business needs. You use the directory abstraction layer editor
(described in Section 3.1.2, “About the Directory Abstraction Layer Editor,” on page 38) to define
the contents of the directory abstraction layer.

3.1.1 Analyzing the User Application’s Data Needs
Before you make changes to the directory abstraction layer objects, analyze how you want to display
your Identity Vault data in the User Application. Consider:

What parts of the Identity Vault you want to make available to the User Application.

For example, what objects do you want your users to be allowed to search and display? Check
this list against the base set of abstraction layer definitions to determine if you need to add any
new objects.

What is the structure of your Identity Vault schema? Have you added custom extensions and
auxiliary classes?
Configuring the Directory Abstraction Layer 37

38 Identity Man

novdocx (E
N

U
) 29 January 2007
What is the structure of your data?
What is required and what is optional?
What validation rules are in place?
What are the relationships between objects (DN references)?
How are the attributes defined? (For example, an attribute that represents a phone number
might be multi-valued for home, office, and cell phone numbers)

Who sees the data? Is the User Application available as a public or private site?

Use the information about your data needs to map your Identity Vault objects to abstraction layer
entities.

3.1.2 About the Directory Abstraction Layer Editor
The directory abstraction layer editor is a graphical tool for defining the directory abstraction layer
files. When you add a User Application driver to an Identity Manager project and run the
configuration wizard, Designer creates an initial set of directory abstraction layer files. If you do not
run the configuration wizard, the initial files are not created. These base files are displayed when
you start the directory abstraction layer editor.

To start the directory abstraction layer editor:

1 Open the Provisioning view and double-click the Directory Abstraction Layer node.

Designer displays the directory abstraction layer tree containing nodes for Entities, Lists,
Queries, Relationships, and Configuration.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
2 Use the left pane to navigate the directory abstraction layer nodes. When you select an item in
the left pane, the right pane displays the properties for the selection.

3 Use the right pane to define the properties for the selection. For more information about the
properties, see Section 3.7, “Directory Abstraction Layer Property Reference,” on page 60.

The following table describes the directory abstraction layer toolbar:

Node Description

Entities Entities represent the Identity Vault objects
available to the User Application. There are two
types of entities:

Entities mapped from the schema: Entities
that represent Identity Vault objects directly
exposed to users via the User Application.
Users can typically create, search, and
modify the attributes of these entities.

Entities representing LDAP relationships:
Called DN lookups, these entities represent
indexed searches and are used to support
particular types of attributes in the User
Application. DN lookup entities provide
information about relationships between
LDAP objects. DN lookup entities are:

Used by the Org Chart portlet to
determine relationships.

Used in the Search List, Create, and
Detail portlets to provide selection lists
and DN contexts.

Available to the workflow request and
approval flow forms you define using
the provisioning request definition
editor.

Lists Defines the contents of global lists. Global lists
are:

Associated with an attribute. The User
Application displays the attribute values as
a drop-down list in the User Application.

Used to display Resource Request
categories.

Queries Lets you define LDAP search criteria that can be
run from a workflow form.

Relationships Lets you map hierarchical relationships among
schema-based entities. Used by the
Organization Chart action of the Identity Self-
Service tab of the User Application and in
iManager when defining provisioning teams.

Configuration General configuration parameters.
Configuring the Directory Abstraction Layer 39

40 Identity Man

novdocx (E
N

U
) 29 January 2007
Table 3-1 Directory Abstraction Layer Toolbar

3.1.3 About Directory Abstraction Layer Editor Files
The directory abstraction layer files you work with are stored in the Designer project’s
Provisioning\AppConfig\DirectoryModel directory. The filenames are derived from
the object key.

Table 3-2 Local Directory Abstraction Layer Directories

Toolbar Button Description

Launches the Add Entity Wizard.

Launches the Add Attribute Wizard.

Launches the New List Wizard.

Launches the New Query Wizard

Launches the New Relationship Wizard.

Launches the Set Global Access Modifiers dialog box.

Launches the Set Global Localization dialog box.

Expands and collapses the directory abstraction layer tree.

Directory name Description

ChoiceDefs Contains the files that define global lists. Files have the choice extension.

EntityDefs Contains the files that define the entities and attributes. Files have the entity
extension.

QueryDefs Contains the files that define queries. Files have the
query extension.

RelationshipDefs Contains the files that define the relationships available to the Org Chart portlet
and iManager provisioning teams configuration. These files have the
relation extension.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
Designer creates the base set of directory abstraction layer files for each provisioning project. An
identical set is deployed to the User Application driver when the User Application is installed.

To customize the Identity Manager User Application, you change the directory abstraction layer
objects and deploy the changes to the User Application driver. Some entities, attributes, lists, and
relationships are required for the User Application to function properly. The editor displays a lock
next to the definitions that you should not delete. From the list below, you can see that you should
not delete the Group, User or User Lookup entities.

Figure 3-1 DAL User Application Default Entities, Lists, and Relationships

If you define multiple User Application drivers in a single project, Designer creates multiple
AppConfig folders and names them AppConfig, AppConfig1, AppConfig2, and so on.

3.2 Working with Entities and Attributes
You can customize your User Application by adding objects and their attributes based on the content
of your own Identity Vault. You do this by adding new entities and attributes to the directory
abstraction layer and deploying them to the User Application driver.

To modify the entity files installed by default, see Section 3.2.2, “Adding Entities,” on page 42 and
Section 3.2.3, “Adding Attributes,” on page 47. To modify the entity files of an already deployed
project or a set of files defined by another developer, you must first import the files to your design
environment. For information on importing files, see Section 2.4, “Importing Provisioning Objects,”
on page 27.

3.2.1 About Entities and Attributes
Any Identity Vault object that you want users to search, display, or edit in the Identity Manager User
Application must be defined as an entity in the directory abstraction layer. For example, to use the
Configuring the Directory Abstraction Layer 41

42 Identity Man

novdocx (E
N

U
) 29 January 2007
inetOrgPerson Identity Vault object in the User Application, you must create an entity definition for
it. There are two logical kinds of entities (but you create them the same way):

Entities that are mapped from schema: These entities represent objects that exist in the
Identity Vault that are directly exposed to users in the User Application. When defining this
type of entity, expose all of the attributes that you want your users to work with. Examples of
this entity type include User and Group. You can create more than one entity definition for the
same object to expose different sets of attributes to different kinds of users. For more
information, see “Creating Multiple Entity Definitions for a Single Object” on page 42.
Entities that represent LDAP relationships . This type of entity is known as a DNLookup
and it is used by the User Application to:

Populate a list with the results of a DN search among related entities
Maintain referential integrity across DN referenced attributes during updates and deletes

Entities that support DNLookups are used by the Org Chart portlet to determine relationships
and are also used by the Search, Create, and Detail portlets to provide pop-up selection lists and
DN contexts. The User Lookup entity is an example of this type of entity. For more
information, see “Attributes and DNLookup Properties” on page 68.

Creating Multiple Entity Definitions for a Single Object

You can create more than one entity definition that represents the same Identity Vault object but
provides a different view of the data. Within the entity definitions, you can define different attributes
for each entity definition, or you can define the same attributes but specify different access
properties that control how the attributes are searched, viewed, edited, or hidden

NOTE: You can optionally define a filter to hide certain entities from the result set.

You can then use these different entity definitions in different parts of the user interface. For
example, suppose that you wanted to create a directory of employees; one for a public site and one
for an internal site. On the public site you wanted to supply first and last names and a phone number,
but on the internal site, you wanted to list additional information like title, managers, and so on.
Here’s how you can accomplish this:

1 Create two entity definitions (with different keys).

Both entity definitions expose the same Identity Vault object, but one entity definition key is
public-staff-information, and the other is internal-staff-information.

2 Within each entity definition, define a different set of attributes: one for public-staff-
information, the other for internal-staff-information.

3 Use the Portal Administration tab of the Identity Manager User Application to create a portlet
instance for the public page, and another one for the internal page.
For more information about creating portlet instances, see “Create Portlet Reference” in the
Identity Manager 3.5 User Application: Administration Guide.

3.2.2 Adding Entities
You add entities through the Add Entity Wizard (described in the next procedure) or by clicking Add
Entity (from the toolbar).
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
NOTE: When using the Add Entity button, you are prompted to select the object class of the entity
to create, and the editor automatically adds the required attributes to the entity. Use the Add
Attribute dialog box to complete the entity definition.

To add an entity using the Add Entity Wizard:

1 Launch the Add Entity Wizard in one of these ways:

From Designer’s menus:
Select File > New > Provisioning. Choose Directory Abstraction Layer Entity, then click
Next.

From the Provisioning view:
Right-click the Entities node, then choose New.

From the directory abstraction layer editor:
Select DAL > New > Entity, or
Right-click the Entities node, then choose New Entity-Attributes Wizard.

The New Entity dialog box displays.

NOTE: If launched from the File menu, the dialog box contains the additional fields shown
below.
Configuring the Directory Abstraction Layer 43

44 Identity Man

novdocx (E
N

U
) 29 January 2007
2 Fill in the fields as follows:

Field Description

Identity Manager Project and
Provisioning Application

The Identity Manager project and the provisioning
application where you want to add the entity and
attributes.

NOTE: These fields display when you launch the wizard
from the File menu.

Entity Key A unique identifier for the entity.

Display Label The string displayed when the entity is displayed by the
User Application. You can localize this label. For more
information, see Section 2.9, “Localizing Display Labels,”
on page 31.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
3 Click Next. The New Entity dialog box displays:

4 Choose the entity’s object class and add the attributes you want by double-clicking them in the
Available Attributes for Entity list. Mandatory attributes are added when you select an Object
Class, and you cannot remove them from the Selected Attributes in Entity list.

TIP: If the entity’s object class is not shown in the Select Object Class list, you should update
Designer’s local schema file by following the steps described in “Updating the Schema
Elements List” on page 49.

5 Click Finish.
The property page displays for editing. For more information, see “Entity Properties” on
page 60. You must deploy the entity before it is available to the User Application.
Configuring the Directory Abstraction Layer 45

46 Identity Man

novdocx (E
N

U
) 29 January 2007
Filter the Object Class List

You can limit the object classes shown in the New Entity dialog by adding a filter. To add a filter:

1 Click Configure Filter to launch the Class List Filters dialog box.

By default, Designer does not apply any class filters. The Class Filter dialog box contains two
pre-defined filters (starts-with "DirXML" and starts-with "srvprv"). To activate them, click
Select All, then click OK. The filters are immediately applied to the object class list. Filters are
applied until you deselect them.

2 Use the buttons as follows:

Button Description

Choose one of the string comparison operators, such
as contains, starts-with, ends-with, then type the
string to compare against.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
Adding Entity Filters

You define an entity filter to limit the entries returned for the specified entity. You define the filter
based on attributes and their comparison to another value that you specify. For example, you can
create a filter so that the User entity includes only those entries whose Region attribute contains
Northeast.

1 Click Add Condition Grouping.

2 Use the drop-down list on the left to select an attribute.
3 Use the drop-down list in the middle to select a comparison operation.
4 Use the entry on the right to specify a value for comparison.
5 To specify multiple condition groupings, repeat this procedure. Within a condition grouping,

you specify each criterion that you want and connect them by using the logical operations: and,
or.

The conditions are evaluated in the order in which you define them.

3.2.3 Adding Attributes
1 Select an entity.
2 Do any of the following to add an attribute:

Right-click an entity, then select Add Attribute.

Adds a filter. Enabled when you define the filter
comparison value.

Removes the selected filter.

Click this option when you want to use all of the
filters. It selects all of the defined filters.

Click this option when you want to deselect all of the
defined filters. If you apply this change, no filters are
used.

Button Description
Configuring the Directory Abstraction Layer 47

48 Identity Man

novdocx (E
N

U
) 29 January 2007
or
Click the Add Attribute button.
or
Click DAL > New > Attribute.

You are prompted to choose the entity class that contains the attributes that you want to add to
the entity. You can also add (and remove) auxiliary classes if you need to add a class that
contains the attribute you are looking for.

3 Add attributes by double-clicking them in the Available Attributes for Entity Class list.
LDAP operational attributes are supported by the directory abstraction layer editor and User
Application; however, when you add an operational attribute, the Edit, Required, and Hidden
properties are set to false and are disabled so you cannot change these property values.

TIP: If the attribute you want to add is not displayed in the Available Attributes from Entity
Class list, you should update Designer’s local schema file by following the procedure in
“Updating the Schema Elements List” on page 49.

4 Click OK. The property page displays for editing.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
For more information, see “Attribute Properties” on page 64. To make an attribute available to
the User Application, you must deploy it.

Adding DAL Calculated Attributes

You can create an attribute that is derived from an expression. For example, you can concatenate two
or more attributes to produce a single calculated value. The expressions are ECMAScript compatible
and conform to the ECMA 262 Language specification.

Restrictions: Because this attribute type does not map to a specific attribute in the Identity Vault,
these attributes cannot be updated, removed, multivalued, required, or searched.

To create a calculated attribute:

1 Add an attribute as instructed in Section 3.2.3, “Adding Attributes,” on page 47 and make sure
to select DAL Calculated Attribute from the Available Attributes for Entity Class list.

Designer adds the Attribute with the following restrictions:

Table 3-3 Calculated Attribute Properties

3.2.4 Updating the Schema Elements List
1 With the Identity Manager project open, right-click your Identity Vault, then select Live >

Import Schema.
2 Choose Import from eDirectoryTM and provide the specifications for the eDirectory host.
3 Click Next.
4 Select the classes and attributes to import, then click Finish.

3.3 Working with Lists
The lists node lets you define the contents of global lists. You can then define an attribute control
type as a global list. When the User Application displays the attribute for editing, the contents of the
global list are displayed in a drop-down list for the user to make a selection. By default, the directory
abstraction layer includes the global lists described in Table 3-4.

Table 3-4 Directory Abstraction Layer Default Global Lists

Property Name Description

Expression Click Build ECMAScript Expression to launch the
ECMA Expression Builder. To learn more about
how to use the ECMA Expression Builder, see
Chapter 10, “Working with ECMA Expressions,” on
page 249.

List Name Description

Delegate Relationship Defines the relationships that can be selected when making a Delegate
Assignment by relationship. The contents of this list display in a drop-
down list box. The values can only be DN attributes from the User entity.
Configuring the Directory Abstraction Layer 49

50 Identity Man

novdocx (E
N

U
) 29 January 2007
NOTE: You cannot delete these lists or change the key values for the lists. Except for the Email
Notification types, you can add and remove items and change existing values and labels.

To create a new global list:

1 Launch the New List Wizard in one of these ways:

From Designer’s menus:
Select File > New > Provisioning, select Directory Abstraction Layer List, then click
Next.
When launched from the File menu, the dialog box contains fields not displayed when
launched in other ways.
Select DAL > New > List.

From the Provisioning view:
Right-click the Lists node, then select New.

From the directory abstraction layer editor:
Click New List.
Right-click the Lists node, then select Add List.

Email Notification Types Represents the type of e-mail notification that a user wants to receive
when involved in proxy/delegate processing of resource requests. Types
are locked.

WARNING: Do not edit these values.

This is used by the Preferred Notification attribute of the user entity.

Provisioning Category Defines the set of categories that organize provisioned resources
(entitlements) and provisioning requests. The categories in this list
display in:

Designer: Provisioning request definition editor plug-in

iManager: Provisioning Request Configuration plug-in

User Application: Requests and Approvals tab

List Name Description
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
The New List dialog box displays.

2 Fill in the fields as follows:

Field Description

Identity Manager Project and Provisioning
Application

Select the Identity Manager project and
provisioning application where you want to add
the list.

NOTE: These fields display when you launch the
wizard from the File menu.

List Key The unique identifier for the list.

Display Label The string used when the list is displayed in the
User Application. You can localize this label. For
more information, see Section 2.9, “Localizing
Display Labels,” on page 31.
Configuring the Directory Abstraction Layer 51

52 Identity Man

novdocx (E
N

U
) 29 January 2007
3 Click Finish.The Global Lists property page displays for editing.

4 Fill in the fields as follows:

The following table describes the wizard’s buttons:

5 Save the project.
6 Deploy to make it available to the User Application.

Field Description

Display Label The name of the list. This is the name displayed in Designer.

Labels The text for the list item to display in the User Application.

Values The list item value stored in the Identity Vault. Valid characters include
letters, numbers, and the underscore (_) character.

Button Description

Adds a new Value

Moves the row up or down in the list. This order specifies how the labels are
displayed in the User Application.

Displays the localization dialog box. For more information on using the dialog
box, see Section 2.9, “Localizing Display Labels,” on page 31.

Deletes the row.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
3.4 Working with Queries
The Queries node allows you to define commonly used LDAP searches that you can execute from a
request or approval form using the DNQuery control or by calling the globalQuery() method. To
define the query, you specify the directory abstraction layer entity, the search root, the number of
rows to retrieve, and the conditions for retrieving the source entity. You can hard-code the conditions
(for example, Where LastName contains s) or specify one or more parameters that are supplied by
the user on the request or approval form.

To create a query:

1 Launch the New Query Wizard in any of these ways:

From Designer’s menus:
Select File > New > Provisioning. Choose Directory Abstraction Layer Query, then click
Next.
Select DAL > New > Query.

From the Provisioning view:
Right-click Query, then select Add.

From the directory abstraction layer editor:
Click the Add Query button.
Right-click Query, then select Add Query.

The New Query dialog box displays.

NOTE: When launched from the File menu, the dialog box contains fields not displayed when
launched in other ways.

2 Fill in the fields as follows:
Configuring the Directory Abstraction Layer 53

54 Identity Man

novdocx (E
N

U
) 29 January 2007
3 Click Finish.
The editor creates the query and opens the property page for editing.

4 Select a Query Entity. If the entity you want to use is not displayed make sure it is defined in
the Entities node.

5 In the Parameters section, define one or more parameters for the query. To add parameters:

Field What to do

Identity Manager Project and
Provisioning Application

Select the correct Identity Manager project and Provisioning
Application.

NOTE: This field displays when you create queries from the
File menu.

Query Key Type a unique value for the query key. This value is used in
the Expression Builder to identify the query.

Display Label Type a string to display in the directory abstraction layer
editor and Provisioning view. This value is not visible in the
Expression Builder.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
5a Click Add Row.

5b Specify a unique key and a display label for the parameter. You pass this key when calling
the globalQuery() method on a form. For more information on globalQuery(), see
“globalQuery(fieldname, key, param)” on page 268.

5c Add additional parameters by repeating these steps.
6 To further refine the query, add Query Conditions.

6a Click Add Condition Grouping (a Query Entity must be selected to enable Add Condition
Grouping).

6b Use the drop-down list on the left to select an attribute. The attributes in this drop-down
are the attributes on the selected Query Entity.

6c Use the drop-down in the middle to select a comparison operation to perform against your
chosen attribute.
Configuring the Directory Abstraction Layer 55

56 Identity Man

novdocx (E
N

U
) 29 January 2007
6d Use the entry on the right to specify a value to compare against your chosen attribute. You
can select a variable name by clicking Predefined Parameters to launch the Predefined
Parameters dialog.

If the query needs to filter on more than one attribute or condition and you want to control
the order in which the conditions are evaluated, you can define multiple conditions or
condition groups. Within a condition grouping, you specify each criterion that you want
and connect them by using the logical operations: and, or.

7 To specify multiple condition groupings, click Add Condition Groupings and make your
selections from the drop-down list boxes.

8 Define the query’s LDAP Search properties if you want to narrow the search further than
already defined for the selected entity. The query’s Search Root, unlike the entity search root,
does not support the use of predefined parameters. For more information, see Section 3.7.3,
“Queries Properties,” on page 73.

9 Click Save.
10 Deploy the query to make it available to the User Application.

3.5 Working with Relationships
The Relationships node allows you to define relationships between entities defined in the directory
abstraction layer. The relationships you define are used in the User Application by the Organization
Chart and in iManager for defining the team members within a team.

The relationship you define can be between like entities (such as user/user) or unlike entities (such
as user/device). You can define conditions for the relationship to further refine it. For example, you
might want to create a condition that shows all Manager-Employee relationships and then refine it to
show only employees in one particular region, or show all the subordinates of a vice president
located in the eastern region.

The following relationships are defined, by default, for the User Application:

Group’s membership (Org Chart only)
Manager-Employee (Org Chart and Team Management)
User groups (Org Chart only)
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
A relationship can only be used by Team Management when the Source and Target entities are both
related to the InetOrgPerson object.

To successfully deploy a relationship, all of the components (entities and attributes) of the
relationship must already be deployed.

1 YCreate a new relationship in any of these ways:

From Designer’s menus:
Select File > New > Provisioning. Choose Directory Abstraction Layer Relationship, then
click Next.
Select DAL > New > Relationship.

From the Provisioning view:
Right-click Relationships, then select Add.

From the directory abstraction layer editor:
Click the Add Relationship button.
Right-click Relationships, then select Add Relationship.

The New Relationship dialog box displays.

NOTE: When launched from the File menu, the dialog box contains fields not displayed when
launched in other ways.

2 Fill in the fields as follows:
Configuring the Directory Abstraction Layer 57

58 Identity Man

novdocx (E
N

U
) 29 January 2007
3 Click Finish.
The editor creates the relationship and opens the property page for editing.

For property definitions, see Section 3.7.4, “Relationship Properties,” on page 74.

To delete a relationship:

1 Right-click the relationship you want to delete, then click Delete.

To add a relationship condition:

1 Click Add Row.
2 Use the drop-down list box (on the left) to select an attribute. The attributes in this drop-down

are attributes on the Target Object entity.
3 Select an operator from the middle drop-down list box.

Field What to do

Identity Manager Project and
Provisioning Application

Select the correct Identity Manager project and Provisioning
Application.

NOTE: This field displays when you create relationships from
the File menu.

Relationship Key Type a unique value for the relationship key.

Display Label Type the string to display when the relationship displays in
the User Application.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
4 Use the text field on the right to specify the comparison value to complete the condition. For
example:

You can create a condition that filters on more than one attribute or condition and connect the
attributes by using the logical operations: and, or. The conditions are evaluated in the order in which
you define them.

3.6 Working with Configuration Settings
The Configuration node allows you to set general configuration properties for the User Application.

Table 3-5 Configuration Settings

Property Description

Default ‘My Profile’ Entity Defines the entity to display when the user clicks My Profile in the
user interface.

This field is restricted to show only entities whose object class is
user (or LDAP inetOrgPerson).

Default LDAP Naming Attributes Defines the default LDAP naming attribute if the entity’s Create
Naming Attribute is not defined.
Configuring the Directory Abstraction Layer 59

60 Identity Man

novdocx (E
N

U
) 29 January 2007
3.7 Directory Abstraction Layer Property
Reference
The section provides definitions for the properties for the following abstraction layer nodes:

Section 3.7.1, “Entity Properties,” on page 60
Section 3.7.2, “Attribute Properties,” on page 64
Section 3.7.3, “Queries Properties,” on page 73
Section 3.7.4, “Relationship Properties,” on page 74

3.7.1 Entity Properties
You can set the following kinds of properties on entities:

“Entity Access Properties” on page 61
“Entity General Properties” on page 61
“Entity Auxiliary Properties” on page 61
“Entity Search Properties” on page 62

Default Team Management
Attributes

The attributes used to look up team members. In the My Team’s
Work and My Team’s Settings pages of the User Application, the
user is able to search for team members by clicking the search
icon. For example:

The search displays the attributes specified here, for example:

These settings only affect the lookups performed by Team
Managers. The User Application administrator will always only see
First Name and Last Name.

Container Classes This provides the Create User or Group action with the contents of
a selection list of container classes. The user selects a container
from the selection list as the location for the newly created object.

Property Description
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
“Entity Create Properties” on page 63
“Entity Password Management Properties” on page 63
“Using Predefined Parameters” on page 63

Entity Access Properties

Access Properties control how the User Application interacts with the entity.

NOTE: You can also access the access properties by selecting DAL > Set Global Access.

Table 3-6 Entity Access Properties

Entity General Properties

Table 3-7 Entity General Properties

Entity Auxiliary Properties

Property Name Description

Create When selected, this object can be created by the User Application.

Edit When deselected, this object cannot be changed by the User Application
regardless of the underlying ACLs.

When selected, this object editable, but the Identity Vault ACLs are used to
determine this.

View When selected, this object can be displayed by the User Application.

Remove When selected, this object can be deleted by the User Application.

Property Name Description

Key The unique identifier for this entity. It defines the way the User Application
references this object. It is defined when the entity is created and cannot be
modified after the entity is created.

Display Label Defines how the object is shown in the user interface.

Class Name The eDirectory object class name.

LDAP Name The LDAP object class name.

Include in Search When selected, this entity is searchable in the User Application. Entities used in
queries by identity portlets (such as Entity Search List or Entity Org Chart) must
be selected (true).
Configuring the Directory Abstraction Layer 61

62 Identity Man

novdocx (E
N

U
) 29 January 2007
Table 3-8 Entity Auxiliary Properties

Entity Search Properties

Table 3-9 Entity Search Properties

Property Name Description

Auxiliary Classes A list of zero or more auxiliary classes for this entity. If adding auxiliary
classes, you are prompted to define:

The auxiliary class by selecting from the list of those available

Whether it is searchable

Whether to Add Always. When True (selected), the object class is
automatically added when the entity is modified in the User
Application. Modification includes create or update operations. When
False, the object class is only added if an attribute associated with the
auxiliary class is modified.

Property Name Description

Search Container The distinguished name of the LDAP node or container where
searching starts (the search root). For example:
ou=sample,o=ourOrg

You can browse the Identity Vault to select the container, or you
can use one of the predefined parameters described in “Using
Predefined Parameters” on page 63.

Search Scope Specifies where the search occurs in relation to the search root.
Values are:

<Default>: This search scope is the same as selecting Containers
and subcontainers.

Container: The search occurs in the search root DN and all
entries at the search root level.

Container and subcontainers: The search occurs in the search root
DN and all subcontainers. This is the same as selecting
<Default>.

Object: Limits the search to the object specified. This search is
used to verify the existence of the specified object.

Search Time Limit [ms] Specify a value in milliseconds or specify 0 for no time limit.

Max Search Entries Specify the maximum number of search result entries you want
returned for a search. Specify 0 if you want to use the runtime
setting. Recommendations: Set it between 100 and 200 for
greatest efficiency. Do not set it over 1000.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
Entity Create Properties

Table 3-10 Entity Create Properties

Entity Password Management Properties

Table 3-11 Entity Password Management Properties

Using Predefined Parameters

The directory abstraction layer editor allows you to use predefined parameters for certain values.

Perform Automatic Query When selected, performs an automatic query of the entity and
presents the results in a selectable list. Do not choose this option
if the data returned will be a large number because it will force the
user to scroll through a large result set.

When not selected, allows the user to specify the search criteria
for the entity query, then presents the results in a selectable list.

Property Name Definition

Create Container The name of the container where a new entity of this type is created.

You can browse the Identity Vault to select the container, or you can use
one of the predefined parameters described in “Using Predefined
Parameters” on page 63.

If you do not specify this value, then the Create portlet prompts the user to
specify a container for the new object. The portlet uses the search root
specified in the entity definition as the base and allows the user to drill
down from there. If there is no search root specified in the entity definition
then it uses the root DN specified during the User Application installation.

Create Naming Attribute The naming attribute of the entity. It is the relative distinguished name
(RDN). This value is only necessary for entities where the access
parameter Create is selected.

LDAP attribute The LDAP attribute for the Create Naming Attribute.

Create Naming Label Display label displayed in the User Application for the Create Naming
Attribute.

Property Name Definition

Password required when entity is created If the password attribute is required, set this value
to True (selected) to ensure that one is required by
the Create portlet. If a password is required, then
you cannot create this entity in a workflow.

Property Name Description
Configuring the Directory Abstraction Layer 63

64 Identity Man

novdocx (E
N

U
) 29 January 2007
Table 3-12 Predefined Parameters

3.7.2 Attribute Properties
You can set the following kinds of properties on attributes:

“Attribute Access Properties” on page 64
“Attribute General Properties” on page 65
“Attribute Default Value Properties” on page 66
“Attribute UI Control Properties” on page 66
“Attributes and DNLookup Properties” on page 68

Attribute Access Properties

NOTE: You can set attribute access for all of an entity’s attributes by selecting DAL > Set Attribute
Access, right-clicking an entity and selecting Set Attribute Access.

Table 3-13 Attribute Access Properties

Predefined Parameter Description

%driver-root% Represents the Provisioning Driver DN. This value is specified during
the User Application configuration during installation or a later
configuration. It is stored in the User Application’s realm configuration.

%user-root% Represents the User Container DN. This value is specified during the
User Application configuration during installation or a later
configuration. It is stored in the User Application’s realm configuration.

%group-root% Represents the Group Container DN.This value is specified during the
User Application configuration during installation or a later
configuration. It is stored in the User Application’s realm configuration.

Name Description

Edit When selected, this attribute can be edited/modified by the User Application. Even if
it is selected (True), the attribute might still not be editable if the underlying Identity
Vault ACLs/effective rights prevent it.

Enable When deselected, this attribute cannot be used by the User Application. It is the
same as removing the entry from the file.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
Attribute General Properties

Table 3-14 Attribute General Properties

Hide Controls whether the Hide check box in the User Application is enabled or disabled.
The Hide check box allows users to control whether an attribute (such as a photo) is
displayed by the application.

When deselected, the Hide check box is disabled for this attribute, so the user
cannot choose to hide this attribute.

When selected, the Hide check box can be enabled in the User Application.
However, the following must also be true of the logged-in user.

He or she is either the owner of the attribute or a User Application
Administrator.

He or she has Trustee rights to update the srvprvHideAttributes attribute on the
Identity Vault.

If these requirements are not met, then the Hide check box is disabled in the
user interface even if this setting is selected (True).

TIP: When a user hides an attribute that contains an image, users who have viewed
the image might continue to see it until their browser cache is refreshed.

Multivalue Specifies whether this attribute can be multivalued, for example, a phone number.

When selected, the attribute can be multivalued.

Read When this option is selected, the User Application can query this attribute. For most
attributes this should be selected (true), but for some attributes, like password, it
should be deselected.

Require When this option is selected, the attribute must be supplied.

Search When this option is selected, the User Application can search on this attribute.
Attributes that are used in queries by identity portlets (such as Entity Search List or
Entity Org Chart) or request and approval forms must be selected.

TIP: If an attribute used in a search is also indexed in eDirectory, the search is faster.

View When this option is selected, the User Application can display this attribute. In most
cases this is selected, but for attributes like password, it should be deselected. If you
specify it in a request or approval form, view must be selected.

Property Name Description

Key The unique identifier for the attribute.

Display Label The label that is displayed in the User Application.

Attribute Name The eDirectory name for this attribute.

LDAP Name The LDAP name for this attribute.

Name Description
Configuring the Directory Abstraction Layer 65

66 Identity Man

novdocx (E
N

U
) 29 January 2007
Attribute Default Value Properties

This value is used when an object is created via the Create identity portlet or through a workflow.
You can express the default value as a literal or an ECMAScript expression. You cannot use a
default value as part of a calculated attribute. If defined as an ECMAScript expression, it is resolved
at runtime. If you define both the literal and an expression, the expression takes precedence.

TIP: If you want the default value to be displayed by the Create portlet, you must define the access
property viewable as true (selected). If you want the user to be able to change the value, you must set
the editable property to true.

Attribute UI Control Properties

Table 3-15 Attribute UI Control Properties

Property Name Description

Data Type Choose a data type from the following list:

Binary

Boolean

DN

Integer

LocalizedString

String

Time

Format Type Used by the User Application to format data. Format types include:

None

AOL IM

Email

Groupwise IM

Image

Phone Number

Yahoo IM

Image URL

Date

DateTime

The Format Types are dependent on the data type. For example, a Time data
type can only be associated with Date and DateTime formats.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
Control Type Types include:

DNLookup: Defines that this attribute contains a DN reference. Use when you
want to:

Populate a list with the results of a DN search among related entities.

Maintain referential integrity across DN referenced attributes during
updates and deletes.

Use the attribute in an object selector dialog box. Object selectors are used
by certain identity portlets, such as Detail, and are also available to the
form controls you can define for provisioning request and approval forms.

The User Application uses this information to generate special user interface
elements (such as an object selector), and to perform optimized searches based
on the DNLookup definition.

For more information on defining this property, see the “Attributes and
DNLookup Properties” on page 68. For more information on the object selector
dialog box for request and approval forms, see Section 6.6.2, “Working with
Object Selectors,” on page 148.

Global List: Display this attribute as a drop-down list whose contents are defined
in a file outside of this attribute definition. Click Go to list to access the Global
List editor for the selected list.

For more information, see Section 3.3, “Working with Lists,” on page 49.

Local List: Display this attribute as a drop-down list whose contents are defined
with this attribute. To define a local list:

1. With the attribute selected, set the control type to Local List.

2. Use the buttons to add or remove list items. Use the up-arrow and down-
arrow buttons to change the position of the item in the list.

In the Value column, type the value to write to the Identity Vault. It can
include letters, numbers, and underscore (_) character.

3. In the Labels column, type the text you want displayed in the user
interface.

Range: Use the Range control type with Integer data types to restrict user input
to a sequential range of values. Define the range’s start and end values.

Property Name Description
Configuring the Directory Abstraction Layer 67

68 Identity Man

novdocx (E
N

U
) 29 January 2007
Attributes and DNLookup Properties

When you define an attribute as a DNLookup control type, it means that:

This attribute can be used in an object selector dialog box which allows users to select from a
list of possible values when searching on this attribute.
When this attribute is created, populated, or deleted through the User Application, an attribute
on a related entity is updated appropriately depending on the user action (create, delete, update)
to maintain referential integrity.

DNLookups for Object Selectors

The DNLookup Display properties for a particular attribute define the contents of the object
selectors in the User Application. Object selectors are displayed by the Identity Self-Service portlets
and in workflow request and approval forms. They provide a convenient way for users for users to
search and select objects that represent DNs (such as users or groups). The object selector displays a
drop-down list of attributes; the user can select one of the attributes and then enter search criteria for
that attribute. In this example, the user searches for groups by group description.

Figure 3-2 Sample Object Selector
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
The result of the user’s selection looks like this:

Figure 3-3 Sample Object Selector Results

The DNLookup display properties control the contents of the object selector and the result set. The
object selector, shown above, displays this way because it was based on the group attribute of the
user entity. The group attribute is defined as a DNLookup control type as shown here:

Figure 3-4 Group DNLookup Definition

This definition also controls the way identity portlets provide a selection list of groups for a user. For
example, a user might choose to do a Directory Search to find a user in a group, but the group name
Configuring the Directory Abstraction Layer 69

70 Identity Man

novdocx (E
N

U
) 29 January 2007
is unknown. The user would select User as the object to search for and select group as the search
criteria, as follows:

Figure 3-5 Search Criteria
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
Because the members attribute is a DNLookup for the user entity, the Lookup icon displays. If the
user selects it, then a list of possible groups displays.

Figure 3-6 Object Lookup

When the user picks a group, then he or she can select a group from the list and all of the members
of that group are displayed.

NOTE: When the Perform Automatic Query property is not selected (False), the object selector is
not populated when first displayed to the user and the user must enter selection criteria. The example
above illustrates the object selector that displays when the Perform Automatic Query property is
selected (True).
Configuring the Directory Abstraction Layer 71

72 Identity Man

novdocx (E
N

U
) 29 January 2007
DNLookups for Referential Integrity

DNLookups for updates and synchronization are important because LDAP allows group
relationships to map in both directions. For example, your data might be set up so that:

The User object contains a group attribute. The group attribute is multi-valued and lists all of
the groups to which a user belongs.
The Group object contains a user attribute. The user attribute is multi-valued and lists all of the
users that belong to the group.

This means that you can have an attribute on the user object that shows all the groups a user belongs
to, and on the Group object you have a DN attribute that includes all the members of that group.

When the user requests an update, the User Application must honor the relationships and ensure that
the target and source attributes are synchronized. In the DNLookup, you specify both attributes that
must be synchronized. You can use this technique to provide synchronization between any objects
that are related not just group structural objects. Create this kind of DNLookup control type by
specifying the advanced DNLookup properties described in the DNLookup Relational Integrity
properties reference.

DNLookup Property Reference

Table 3-16 DNLookup Display Properties

Table 3-17 DNLookup Detail Properties

Property Name Description

Lookup Entity The name of the entity to search, for example, the User entity
contains an attribute for Manager. To populate that field, you’d
need to know which users are Managers.

Lookup Attributes Choose one or more attributes to display when a search is
performed.

Perform Automatic Query Defines how the Lookup Attributes are displayed.

When this option is selected, the form or portlet
performs an automatic query of the entity and presents
the results in a selectable list. This option is not
recommended if a large amount of data can be returned
because it forces the user to scroll through a large result
set.

When this option is deselected, allows the user to
specify the search criteria for the entity query, then
presents the results in a selectable list.

Property Name Description

Detail entity The key of the entity whose details you want displayed if the
user requests more information by clicking a hypertext link in
the User Application. When you define a DNLookup, the
identity portlets are able to provide a hypertext link that allows
users to display the details of the linked object.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
The DNLookup Relational Integrity properties are used for synchronizing data between two objects
such as groups and group members.

Table 3-18 DNLookup Relational Integrity Properties

3.7.3 Queries Properties
You can set the following kinds of Queries properties:

“Queries General Properties” on page 73
“Query Parameters Properties” on page 73
“Query Search Properties” on page 74

Queries General Properties

Table 3-19 Queries General Properties

Query Parameters Properties

Table 3-20 Queries Parameters Properties

Property Name Description

Source Attributes to Update Name of the attribute to update. The attribute must contain a DN
reference to the Target Attributes to Update. This is required to
synchronize attributes on two different objects.

Target Attributes to Update Name of the attribute that must be updated along with the Source
Attributes to Update. This is an LDAP attribute name. This is
required to synchronize attributes on two different objects. The
attribute must contain a DN reference.

Target Auxiliary Classes Needed, if
any

Name of the auxiliary class that contains the Target Attributes to
Update.

Property Name Description

Key A unique value for the query key. This value is used in the Expression Builder
to identify the query. The key is specified at the query creation time. It cannot
be modified after the query is created.

Query Entity Select an entity from the drop-down list box. The resulting LDAP search is on
this entity.

Display Label Type a string to display in the directory abstraction layer editor and
Provisioning view. This value is not visible in the Expression Builder.

Property Name Description

Parameter Keys A unique identifier for the key. You pass this key when calling the
globalQuery() method on a form.
Configuring the Directory Abstraction Layer 73

74 Identity Man

novdocx (E
N

U
) 29 January 2007
Query Search Properties

If left blank, the query search properties default to the search properties specified for the selected
entity. Specify the query search properties to further refine the search scope already defined for the
entity. You cannot specify predefined parameters (for example, %user-root%) in the query’s search
properties.

Table 3-21 Query Search Properties

3.7.4 Relationship Properties
Relationship properties include:

“Relationship Access Properties” on page 74
“Relationship Properties” on page 75

Relationship Access Properties

Table 3-22 Relationship Access Properties

Parameter Display Labels A label to identify the key.

Property Name Description

Search Root Specifies the location in the LDAP tree where the LDAP search defined by
the query begins. .

Search Scope Specifies where the search occurs in relation to the search root. Values
are:

<Default>: This search scope is the same as selecting Containers and
subcontainers.

Container: The search occurs in the search root DN and all entries at the
search root level.

Container and subcontainers: The search occurs in the search root DN and
all subcontainers. This is the same as selecting <Default>.

Object: Limits the search to the object specified. This search is used to
verify the existence of the specified object.

Max Search Entries Specify the maximum number of search result entries you want returned for
a search. Specify 0 if you want to use the runtime setting.
Recommendations: Set it between 100 and 200 for greatest efficiency. Do
not set it over 1000

Property Name Description

Used by Organizational Chart When selected, this relationship can be used by the Org Chart
portlet.

Property Name Description
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
Relationship Properties

Table 3-23 Relationship Properties

Used by Team Management When selected, this relationship can be used to define the
provisioning team members in iManager.

For example, if Used by Team Management is selected for the
manager-employee relationship, then the provisioning application
administrator can use this relationship to define the team members
as all users that report to the team manager.

If Enable Cascading Relationship is selected, then the team can
include several levels within the organization. You define the number
of levels via Maximum Levels to Cascade.

Property Name Description

Key The read-only unique identifier for the relationship.

TIP: You specify this value in the Org Chart Portlet preference sheet.

Display Label Specify a name to display when this relationship is displayed in the User
Application. For example, this value is displayed when users click
Choose Org Chart from the Detail portlet.

Click Localize to provide the translation for the display label text.

Source Entity Choose an entity from the drop-down list.

The entity that you choose becomes the parent or source object in the
organization chart hierarchy. In a Manager-Employee relationship, the
Source Entity is User. For a Group-Member relationship, the source entity
is Group.

Directory abstraction layer requirements: The entities in this list are a
subset of the entities defined in the directory abstraction layer. Source
entities must have the view access property selected (true).

Source Attribute Choose an attribute from the drop-down list.

This attribute is used to find matching target entities. When the value of
this attribute matches a corresponding value on an attribute of the target
entity (see Target Attribute below), then a relationship can be established.

Directory abstraction layer requirements: This list of attributes is
populated using the selected Source Entity’s attributes. It includes any
attributes that are searchable and readable.

Target Entity Choose an entity for the child object in the hierarchy. In a Manager-
Employee relationship, it is user.

This entity must contain the attribute that is related to the Source
attribute.

Property Name Description
Configuring the Directory Abstraction Layer 75

76 Identity Man

novdocx (E
N

U
) 29 January 2007
NOTE: The Org Chart portlet does not fully support dynamic groups; you cannot define a dynamic
group as the Source entity, but you can define a dynamic group as the target entity.

Target Attribute Choose the attribute that matches the Source Attribute.

This is the target entity’s attribute used to find matching source entities.
When the value of this attribute matches a corresponding value on the
source entity (see Target Attribute above), then a relationship can be
established.

Property Name Description
ager 3.5 User Application: Design Guide

4
novdocx (E

N
U

) 29 January 2007
4Working with the Provisioning
Request Definition Editor

This section provides general guidelines for using the provisioning request definition editor. Topics
include:

Section 4.1, “About the Provisioning Request Definition Editor,” on page 77
Section 4.2, “Basic Steps for Creating a Provisioning Request Definition,” on page 83
Section 4.3, “Guidelines for Creating Workflows,” on page 84
Section 4.4, “Working with the Installed Templates,” on page 90
Section 4.5, “Debugging a Workflow,” on page 92

4.1 About the Provisioning Request Definition
Editor
The provisioning request definition editor allows you to create custom provisioning request
definitions by using a rich set of Eclipse-based design tools. The provisioning request definition
editor lets you define the basic characteristics of the provisioning request, design the associated
workflow, and model the initial request and approval forms.

Identity Manager ships with a set of provisioning request templates that you can use to create your
definitions. The templates model some common workflow design patterns. However, if you want
complete control over the behavior of your workflows, you can create your provisioning request
definitions from scratch.

NOTE: For details on using the templates, see Section 4.4, “Working with the Installed Templates,”
on page 90.

4.1.1 How the Provisioning Request Definition Editor Fits into
the Identity Manager Architecture
A key feature of Identity Manager is workflow-based provisioning, which is the process of
managing user access to secure resources in an organization. These resources can include digital
entities such as user accounts, computers, and databases. Provisioned resources are mapped to
Identity Manager entitlements or to entities in the directory abstraction layer.

Identity Manager can service a wide range of provisioning requests. Provisioning requests are user
or system actions intended to grant or revoke access to organizational resources. They can be
initiated directly by the end user through the Identity Manager User Application, or indirectly in
response to events occurring in the Identity Vault (eDirectoryTM).

When a provisioning request requires permission from one or more individuals in an organization,
the request starts a workflow. The workflow coordinates the approvals needed to fulfill the request.
Some provisioning requests require approval from a single individual; others require approval from
several individuals. In some instances, a request can be fulfilled without any approvals.
Working with the Provisioning Request Definition Editor 77

78 Identity Man

novdocx (E
N

U
) 29 January 2007
Some workflows require that processing proceed in a sequential fashion, with each approval step
being performed sequentially. Other workflows provide support for parallel processing. When you
define a provisioning request, you specify whether you want the workflow to support sequential or
parallel processing.

To configure a provisioning request, you create a provisioning request definition, which binds a
resource to a workflow. Identity Manager provides the provisioning request definition editor to give
you complete control over the behavior of a provisioning request and its associated workflow.
Identity Manager also includes a set of iManager plug-ins that you can use to customize
provisioning request definitions that have already been deployed. The iManager tools let you make
minor changes to the behavior of a provisioning request definition and also manage workflows that
are in process.

The following figure shows how the provisioning request definition editor fits into the workflow-
based provisioning system included with Identity Manager:

Figure 4-1 Provisioning Request Definition Editor and the Workflow Architecture

4.1.2 Provisioning and Workflow Example
Suppose a user needs an account on an IT system. To set up the account, the user initiates a request
through the Identity Manager User Application. This request starts a workflow, which coordinates
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
an approval process. When the necessary approvals have been granted, the request is fulfilled. The
process includes four basic steps:

“Step 1: Initiating the Request” on page 79
“Step 2: Approving the Request” on page 79
“Step 3: Fulfilling the Request” on page 83
“Step 4: Completing the workflow” on page 83

Step 1: Initiating the Request

In the Identity Manager User Application, the user browses a list of resources by category and
selects one to provision. In the Identity Vault, the provisioned resource selected is associated with a
provisioning request definition. The provisioning request definition is the most prominent object in a
provisioning system. It binds a provisioned resource to a workflow and acts as the means by which
the workflow process is exposed to the end user. The provisioning request definition provides all the
information required to display the initial request form to the user and to start the flow that follows
the initial request.

In this example, the user selects the New Account resource. When the user initiates the request, the
Web application retrieves the initial request form and the description of the associated initial request
data from the Provisioning System, which gets these objects from the provisioning request
definition.

When a provisioning request is initiated, the Provisioning System tracks the initiator and the
recipient. The initiator is the person who made the request. The recipient is the person for whom the
request was made. In some situations, the initiator and the recipient can be the same individual.

Each provisioning request has an operation associated with it. The operation specifies whether the
user wants to grant or revoke the resource.

Step 2: Approving the Request

After the user has initiated the request, the Provisioning System starts the workflow process. The
workflow process coordinates the approvals. In this example, two levels of approvals are required,
one from the user’s manager and a second from the manager’s supervisor. If approval is denied by
any user in a workflow, the flow terminates and the request is denied.
Working with the Provisioning Request Definition Editor 79

80 Identity Man

novdocx (E
N

U
) 29 January 2007
Workflows can process approvals sequentially or in parallel. In a sequential workflow, as shown in
the following figure, each approval task must be processed before the next approval task begins.

Figure 4-2 Sequential Workflow with Two Approvals

In a parallel workflow, as shown in the following figure, users can work on the approval tasks
simultaneously.

Figure 4-3 Parallel Workflow with Two Approvals

NOTE: The display labels (First approval, Second approval, and so on) can easily be changed to
suit your application requirements. For parallel flows, you might want to specify labels that do not
imply sequential processing. For example, you might want to assign labels such as One of Three
Parallel Approvals, Two of Three Parallel Approvals, and so on.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
The workflow definition is made up of the components shown in the following table:

Table 4-1 Workflow Definition Components

Start activity: The workflow process begins with the execution of the Start activity. This activity
displays the initial request form to the user. Once the user has provided the initial request data, it
initializes a work document using this data. The Start activity also binds several system values, such
as the initiator and recipient, so that these can be used in script expressions.

Approval activities: After the Start activity finishes, the Workflow System forwards processing to
the first Approval activity in the flow. The Approval activity sends an e-mail to the approver,
notifying this user that their attention is needed. When the user claims the task, the Approval activity
displays an approval form, which gives the user the ability to act on the request. In the workflow
examples shown in “Step 2: Approving the Request” on page 79, “First approval” and “Second
approval” are examples of Approval activities. The display labels for Approval activities can be
localized to satisfy international requirements.

An Approval activity has five possible outcomes, each represented by a different flow path exiting
the activity:

Approved

Process Components Description

Activities An activity is an object that represents a task. An activity can present
information to the user and respond to user interactions. It can also perform
background functions that are not visible to the user.

In a workflow diagram, the activities are represented by boxes.

In the Identity Manager User Application, the activities that handle the
approval process are referred to as tasks. An end user can see the list of
tasks in his or her queue by clicking My Tasks in the My Work group of
actions. To see which workflow activities have been processed for a
particular task, the user can select the task and click the View Comment
History button on the Task Detail form.

To see which workflow activities have been processed for a particular
provisioning request, the user can click My Requests, select the request,
and click the View Comment and Flow History button on the Request Detail
form.

For more information on the My Tasks and My Requests actions, see the
Identity Manager User Application: User Guide (http://www.novell.com/
documentation/idm/index.html).

Flow paths Flow paths tie the activities in a workflow together. A flow path represents a
path to be followed between two activities.

An activity can have multiple incoming flow paths and multiple outgoing
flow paths. When an activity has more than one outgoing flow path, the flow
path selected often depends on the outcome of the activity. The outcome is
the end result of processing performed by the activity. For example, an
approval activity can have an outcome of approved or denied, depending
on the action taken by the user.

In a workflow diagram, the flow paths are represented by arrows.
Working with the Provisioning Request Definition Editor 81

http://www.novell.com/documentation/idm/index.html
http://www.novell.com/documentation/idm/index.html

82 Identity Man

novdocx (E
N

U
) 29 January 2007
Denied
Refused
Error
Timeout

NOTE: The Error and Timeout outcomes can occur without any action being taken by the user.

If the user approves the request, the workflow follows the approved flow path to the next activity in
the flow. If no further approvals are needed, the resource can be provisioned. If the user denies the
request, the workflow follows the denied flow path to the next activity in the flow. Alternatively, the
user can reassign the task (if he or she is an Organizational Manager or User Application
Administrator), which puts the task in another user’s queue.

The user to whom an Approval activity has been assigned is referred to as the addressee. The
addressee for an activity can be notified of the assigned task via e-mail. To perform the work
associated with the activity, the addressee can click the URL in the e-mail, find the task in the work
list (queue), and claim the task.

The addressee must respond to an Approval activity within a specified amount of time; otherwise,
the activity times out. Typically the timeout interval is expressed in hours or days to allow the user
sufficient time to respond.

When an activity times out, the workflow process might try to complete the activity again,
depending on the retry count specified for the activity. In some situations, the workflow process
might be configured to escalate an activity that has timed out to another user. In this case, the
activity is reassigned to a new addressee (the user’s manager, for example) to give this user an
opportunity to finish the work of the activity. If the last retry times out, the activity might be marked
as approved or denied, depending on how the workflow was configured.

Log activity: The Log activity is a system activity that writes messages to a log. To log information
about the state of a workflow process, the Workflow System interacts with Novell® Audit. During
the course of its processing, a workflow might log information about various events that have
occurred. Users can use the Novell Audit reporting tools to look at logging data.

Condition activity: During the course of execution, a workflow process might perform a test and
check the outcome to see what to do next. The Condition activity provides this capability. Condition
activities use a scripting expression to define the condition to evaluate. In the workflow examples
shown in “Step 2: Approving the Request” on page 79, “Approval Condition” is an example of a
Condition activity.

The Condition activity supports three possible outcomes or exit paths:

True
False
Error

Branch and Merge activities In a workflow that supports parallel processing, the Branch activity
allows two users to act on different areas of the work item in parallel. After the users have completed
their work, the Merge activity synchronizes the incoming branches in the flow.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
Step 3: Fulfilling the Request

When a provisioning request has been approved, the Workflow System can begin the provisioning
step. At this point, control passes back to the Provisioning System.

To fulfill the provisioning request, the Provisioning System can execute an Identity Manager
entitlement or directly manipulate an eDirectory object and its attributes. These actions are
performed by either the Entitlement activity or the Entity activity.

Entitlement activity: The Entitlement activity fulfills the provisioning request by granting or
revoking an entitlement. This activity is not usually executed unless all of the necessary approvals
are given.

Entity activity: The Entity activity fulfillls the provisioning request by directly manipulating an
eDirectory object and its attributes. This activity is not normally executed unless all of the necessary
approvals are given.

Step 4: Completing the workflow

When all other activities have terminated, the workflow executes the Finish activity.

Finish activity: The Finish activity is the final activity in a workflow. When all the activities in a
flow have been completed and the final result of the flow is available, the Finish activity is executed.
The Finish activity sends a final e-mail notification to inform participants of the completion of the
workflow.

4.2 Basic Steps for Creating a Provisioning
Request Definition
 The following table describes how to define a provisioning request.

Table 4-2 Basic Steps for Defining a Provisioning Request

Task Action For More Information

Step 1: Use the wizard to create
the provisioning request definition

Provide a name for the
provisioning request and define
its basic characteristics. Then,
specify whether you want to use a
template to create the request.

Provisioning request definitions
are stored locally in the
Provisioning\AppConfig\R
equestDefs directory within
your workspace.

See Chapter 5, “Creating a
Provisioning Request Definition,”
on page 95.
Working with the Provisioning Request Definition Editor 83

84 Identity Man

novdocx (E
N

U
) 29 January 2007
4.3 Guidelines for Creating Workflows
To create well-formed workflows, you need to understand the rules for adding activities and flow
paths. In addition, you need to understand how to manipulate workflow data. See the following
topics:

Section 4.3.1, “Rules for Activities,” on page 84
Section 4.3.2, “Rules for Flow Paths,” on page 85
Section 4.3.3, “Understanding Workflow Data,” on page 86

NOTE: You can validate a provisioning request definition before you deploy it. For more
information, see Section 2.6, “Validating Provisioning Objects,” on page 28.

4.3.1 Rules for Activities
When adding activities to a workflow, follow these rules:

A workflow must have only one Start activity and one Finish activity.
A workflow can have zero or more of the following activity types:

Approval activity
Branch activity
Condition activity
Log activity
Mapping activity
Merge activity
Each Branch activity must have a corresponding Merge activity.
To ensure that the provisioning step is performed, a workflow must have at least one
Entitlement activity or Entity activity.

Step 2: Create the forms Create the initial request and
approval forms for the workflow.
By creating the forms first, you
can ensure that the user interface
is correct before proceeding to
the implementation details. In
addition, you can greatly simplify
the process of mapping the form
fields to the application data.

See Chapter 6, “Creating Forms
for a Provisioning Request
Definition,” on page 103.

Step 3: Create the workflow
diagram

Add the activities to the workflow
diagram and connect them with
flow paths.

See Chapter 7, “Creating the
Workflow for a Provisioning
Request Definition,” on page 157

Step 4: Configure the activities
and flow paths

Specify the properties, data item
mappings, and e-mail notification
settings for the activities. Then,
define the semantics for the flow
paths.

See Chapter 8, “Workflow Activity
Reference,” on page 179

Task Action For More Information
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
4.3.2 Rules for Flow Paths
When adding flow paths to a workflow, follow these rules:

With the exception of the Start activity, all activities can have one or more incoming flow paths.
The Start activity cannot have any incoming flow paths.
The Finish activity cannot have any outgoing flow paths.
There can be only one flow path out of the Start activity. The flow path type must be forward.
There can be between one and five flow paths out of the Approval activity. The valid flow path
types are approved, denied, refused, timedout, and error. At runtime, only one of the flow paths
is executed.
There can be only one flow path out of the Entitlement, Entity, Log, and Merge activities. The
flow path type must be forward.
There can be two or three flow paths out of the Condition activity. The valid flow path types are
true, false, and error. The true and false flow paths are required; the error flow path is optional.
There can be one or more flow paths out of the Branch activity. The flow path type must be
forward for each path. At runtime, all of the flow paths execute.

The following table summarizes the rules for adding flow paths into and out of an activity:

Table 4-3 Number of Flow Paths Permitted for Each Activity

Activity Inbound Paths Outbound Paths

Start 0 1

Must always be forward.

Approval 1 to n 1 to 5

Approved, denied, refused,
timedout, or error.

Entitlement 1 to n 1

Must always be forward.

Entity 1 to n 1

Must always be forward.

Log 1 to n 1

Must always be forward.

Condition 1 to n 2 to 3

True and false are required; error
is optional.

Branch 1 to n 1 to n

Merge 1 to n 1

Must always be forward.

Finish 1 to n 0
Working with the Provisioning Request Definition Editor 85

86 Identity Man

novdocx (E
N

U
) 29 January 2007
The following table summarizes which activity types can be a source or target for each of the
available flow path types:

Table 4-4 Flow Path Types Allowed for Each Activity

4.3.3 Understanding Workflow Data
When you’re creating a workflow, you can manipulate workflow data to suit the needs of your
provisioning application.

The workflow uses a single process object to manage information about the process. A separate
activity object is created for each activity in the workflow and form data is maintained for each
activity that provides for user interaction.

The data objects associated with each user interface control on a form (text field, drop down list, and
so forth) can be modified immediately prior to the execution of the corresponding activity (Start
activity or Approval activity). In addition, this data can be retrieved immediately after execution of
the activity. Once control has been passed to the next activity, the form control data is no longer
available. For this reason, the workflow provides a special object called flowdata that allows you to
define your own data items. You can add your own variables to this object to keep track of
information that is important to your workflow, including form data that would otherwise be lost.

The following table summarizes the categories of workflow data:

Mapping 1 to n 1

Activity Forward Approved Denied Refused Timedout True False Error

Start Source

Approval Target Source/
Target

Source/
Target

Source/
Target

Source/
Target

Target Target Source/
Target

Entitlement Source/
Target

Target Target Target Target Target Target Target

Entity Source/
Target

Target Target Target Target Target Target Target

Log Source/
Target

Target Target Target Target Target Target Target

Condition Target Target Target Target Target Source/
Target

Source/
Target

Source/
Target

Branch Source/
Target

Target Target Target Target Target Target Target

Merge Source/
Target

Target Target Target Target Target Target Target

Finish Target Target Target Target Target Target Target Target

Mapping Source Target Target Target Target Target Target Target

Activity Inbound Paths Outbound Paths
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
Table 4-5 Categories of Workflow Data

NOTE: The workflow designer is the person who creates the workflow in Designer.

The following table describes the variables for each type of object:

Table 4-6 Data Variables in a Workflow

Data object Lifetime Editable Creator

process Workflow No System

activities Workflow No System

activity forms Activity Yes System and workflow designer

flowdata Workflow Yes Workflow designer

Object Variable Description

process approvalStatus The current status of the process.

category The provisioning category (for
example, Entitlements) selected
by the person who initiated the
request.

container dn The distinguished name of the
container defined for the user
application at install time.

description The description of the
provisioning request definition.

group container dn The distinguished name of the
group container defined for the
user application at install time.

id The unique IDVault id (CN) of the
provisioning request definition.

initiator The distinguished name of the
person who initiated the request.

locale The current locale.

name The workflow process name.

provisioning driver dn The distinguished name of the
provisioning driver defined for the
user application at install time.

recipient The distinguished name of the
intended target of the provisioned
resource.

user container dn The distinguished name of the
user container defined for the
user application at install time.
Working with the Provisioning Request Definition Editor 87

88 Identity Man

novdocx (E
N

U
) 29 January 2007
You can reference these objects in ECMAScript expressions. Script expressions in a workflow can
at any time refer to data items that are bound upstream in the flow. However, workflow expressions
cannot refer to data items that are created downstream (because these data items don’t exist yet) or
to data bound on other branches in a flow that supports parallel processing (because these branches
could be executing concurrently with the current activity).

Creating New Data Items

You can create a new data item on the flowdata object by specifying a post-activity target expression
on the Data Item Mapping tab for the Start or Approval activities. If you specify a name for a new
data item in the Target Expression column, this automatically creates the variable. Any activity
executed after this activity can then access the data item.

For example, you might want to map the form field called reason to the target expression
flowdata.myReason. The variable myReason then becomes a new data item that is available to all
activities executed later in the workflow.

requestID The ID for the provisioning
request.

timestamp The time the process was
initiated.

approval-activity-name action The action taken by the user.

addressee The current addressee for the
approval activity.

name The name of the activity.

timestamp The time that the activity was
queued on the work list.

user The user who is associated with
the current activity.

workId The system generated unique id
of the current workflow activity.

form-name custom-form-controls Any user interface control you
add to a form.

flowdata custom-variables Any custom variables you create
to hold data needed for the
workflow.

If you use one of the installed
templates to create your
workflow, the flowdata object can
have a variable called reason,
which contains text copied from
the reason field on the initial
request form.

Object Variable Description
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
Modifying Data Items

You can modify a data item by specifying a pre-activity expression on the Data Item Mapping tab
for the Start or Approval activities. For example, to prepend a dollar sign to a price, you might map
the following source expression to a target form field called Price:
"$" + flowdata.get(’cost’)

When the form displays to the user, the Price data appears as follows:
$xx.xx

Another example might be computing the total cost by adding the tax to the base cost. To do this,
you could map the following source expression to a target form field called TotalCost:
Number(flowdata.get('cost')) + Number(flowdata.get('tax'))

Working with Complex Data Item Mappings

All data in the flowdata object is maintained in XML, so you can create data items in a hierarchical
fashion as well. For example, suppose you have a workflow form that allows a user to ask for access
to two internal systems, one for accounts payable and one for receivables. Suppose the form has
(among other fields) two Yes/No fields named Acct_Pay and Acct_Rec. In the post-activity data item
mappings, you might create two mappings as follows:

Table 4-7 Complex Data Item Mapping Examples

This would create an XML element named SystemAccess with two child elements named
AcctPay and AcctRec. One reason to structure data in this way is for clearer organization and
management of data in complex work flows containing many forms and data items. To retrieve data
from these hierarchies, the following syntax would be used:
flowdata.get(’SystemAccess/AcctPay’).

For complete details on building ECMAScript expressions, see Chapter 10, “Working with ECMA
Expressions,” on page 249.

Moving Form Control Data to Flowdata

All form controls you create (except for DNDisplay) are automatically made available for use in
pre-activity and post-activity expressions on the Data Item Mapping tab for the activity that uses the
form. For example, suppose you want to make a user’s entry data in control ACONTROL on form
AFORM in AACTIVITY available for use in a subsequent activity. To do this, you would select
AACTIVITY in the workflow, select the Data Item Mapping tab, and click the Post Activity
Mapping radio button. Next to the source form field ACONTROL, you would then enter a target
expression in the following format:
flowdata.my_ACONTROL

Any subsequent activity in the workflow would then be able to access this data by using pre-activity
source expressions such as these:

Source Form Field Target Expression

Acct_Pay flowdata.SystemAccess/AcctPay

Acct_Rec flowdata.SystemAccess/AcctRec
Working with the Provisioning Request Definition Editor 89

90 Identity Man

novdocx (E
N

U
) 29 January 2007
flowdata.get(’my_ACONTROL’)
flowdata.getObject(’my_ACONTROL’)

Moving Flowdata to Form Controls

You can also move flowdata values into form controls. The simplest case is moving a single text
value into a form control. In the example above, suppose ACONTROL is a simple text entry field.
In this case, to move it into another text entry field in an activity called ZACTIVITY, you would
select ZACTIVITY in the workflow, select the Data Item Mapping tab, and click the Pre Activity
Mapping radio button. Next to the target form field, you would then enter this source expression:
flowdata.my_ACONTROL

To move more complex form control data (for example, a MultiValue DN control) into another form
control, you can use the getObject() expression syntax. For example, assuming ACONTROL is a
MultiValue DN control, you could use this source expression:
flowdata.getObject(’my_ACONTROL’)

To move data into a form control, you need to be aware of type constraints. For example, you should
not try to move text-based data into a numeric control, or a boolean value into a DN control.

4.4 Working with the Installed Templates
Identity Manager ships with a set of preconfigured provisioning request definitions and workflows.
You can use these as templates for building your own provisioning system.To set up your system,
you define new objects based on the installed templates and customize these objects to suit the needs
of your organization.

The installed templates let you determine the number of approval steps required for the request to be
fulfilled. You can configure a provisioning request to require from zero to five approval steps:

You can also specify whether you want to support sequential or parallel processing, and whether you
want to approve or deny the request in the event that the workflow times out during the course of
processing.

The following table lists the templates included with Identity Manager.

Table 4-8 Preconfigured Provisioning Request Definitions and Workflows

Template Description

Self Provision Approval Allows a provisioning request to be fulfilled without any
approvals.

One Step Approval (Timeout Approves) Requires a single approval for the provisioning request
to be fulfilled. If an activity times out, the activity
approves the request and the work item is forwarded
to the next activity.

Two Step Sequential Approval (Timeout
Approves)

Requires two approvals for the provisioning request to
be fulfilled. If an activity times out, the activity
approves the request and the work item is forwarded
to the next activity.

This template supports sequential processing.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
Three Step Sequential Approval (Timeout
Approves)

Requires three approvals for the provisioning request
to be fulfilled. If an activity times out, the activity
approves the request and the work item is forwarded
to the next activity.

This template supports sequential processing.

Four Step Sequential Approval (Timeout
Approves)

Requires four approvals for the provisioning request to
be fulfilled. If an activity times out, the activity
approves the request and the work item is forwarded
to the next activity.

This template supports sequential processing.

Five Step Sequential Approval (Timeout
Approves)

Requires five approvals for the provisioning request to
be fulfilled. If an activity times out, the activity
approves the request and the work item is forwarded
to the next activity.

This template supports sequential processing.

One Step Approval (Timeout Denies) Requires a single approval for the provisioning request
to be fulfilled. If an activity times out, the workflow
denies the request.

Two Step Sequential Approval (Timeout Denies) Requires two approvals for the provisioning request to
be fulfilled. If an activity times out, the workflow denies
the request.

This template supports sequential processing.

Three Step Sequential Approval (Timeout
Denies)

Requires three approvals for the provisioning request
to be fulfilled. If an activity times out, the workflow
denies the request.

This template supports sequential processing.

Four Step Sequential Approval (Timeout Denies) Requires four approvals for the provisioning request to
be fulfilled. If an activity times out, the workflow denies
the request.

This template supports sequential processing.

Five Step Sequential Approval (Timeout Denies) Requires five approvals for the provisioning request to
be fulfilled. If an activity times out, the workflow denies
the request.

This template supports sequential processing.

Two Step Parallel Approval (Timeout Approves) Requires two approvals for the provisioning request to
be fulfilled. If an activity times out, the activity
approves the request and the work item is forwarded
to the next activity.

This template supports parallel processing.

Template Description
Working with the Provisioning Request Definition Editor 91

92 Identity Man

novdocx (E
N

U
) 29 January 2007
4.5 Debugging a Workflow
When you’re testing a workflow, you might need to see the values of the variables you’re using in
the flow. There are several ways to do this. One approach is to use the Log activity to display
messages containing the variables you need to look at. After you’ve configured the Log activity, you
can then see the messages in the console. In the Log activity, you can use scripting expressions in the
Message property to retrieve the values you need. For example, you might use this expression to log
a message containing the value of a variable defined on the flowdata object:
flowdata.get(’my_variable’)

For details on using the Log activity, see Section 8.3, “Log Activity,” on page 188.

Three Step Parallel Approval (Timeout
Approves)

Requires three approvals for the provisioning request
to be fulfilled. If an activity times out, the activity
approves the request and the work item is forwarded
to the next activity.

This template supports parallel processing.

Four Step Parallel Approval (Timeout Approves) Requires four approvals for the provisioning request to
be fulfilled. If an activity times out, the activity
approves the request and the work item is forwarded
to the next activity.

This template supports parallel processing.

Five Step Parallel Approval (Timeout Approves) Requires five approvals for the provisioning request to
be fulfilled. If an activity times out, the activity
approves the request and the work item is forwarded
to the next activity.

This template supports parallel processing.

Two Step Parallel Approval (Timeout Denies) Requires two approvals for the provisioning request to
be fulfilled. If an activity times out, the workflow denies
the request.

This template supports parallel processing.

Three Step Parallel Approval (Timeout Denies) Requires three approvals for the provisioning request
to be fulfilled. If an activity times out, the workflow
denies the request.

This template supports parallel processing.

Four Step Parallel Approval (Timeout Denies) Requires four approvals for the provisioning request to
be fulfilled. If an activity times out, the workflow denies
the request.

This template supports parallel processing.

Five Step Parallel Approval (Timeout Denies) Requires five approvals for the provisioning request to
be fulfilled. If an activity times out, the workflow denies
the request.

This template supports parallel processing.

Template Description
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
Another approach is to look in the workflow database to see how the data associated with the
flowdata object changes as the workflow progresses from one activity to the next. To see this data,
you can look at the afdocument table.

A final approach you can use during the debugging process is to change the log levels associated
with the workflow system (com.novell.soa.af.impl), the provisioning requests component of the
User Application (com.novell.srpr.apwa), and the evaluation of server side scripts
(com.novell.soa.script). This approach might generate more information than you need, but
sometimes it can be helpful. To change logging levels, go to the Logging page within the
Administration tab of the User Application. For more information about logging, see “Setting Up
Logging” in the Identity Manager 3.5 User Application: Administration Guide.
Working with the Provisioning Request Definition Editor 93

94 Identity Man

novdocx (E
N

U
) 29 January 2007
ager 3.5 User Application: Design Guide

5
novdocx (E

N
U

) 29 January 2007
5Creating a Provisioning Request
Definition

This section provides details about creating a provisioning request definition. Topics include:

Section 5.1, “About the Wizard and the Overview Tab,” on page 95
Section 5.2, “Using the Wizard to Create a Provisioning Request Definition,” on page 97
Section 5.3, “Using the Overview Tab to Modify Basic Settings,” on page 100

5.1 About the Wizard and the Overview Tab
You create provisioning request definitions in three main steps:

Create the basic information about the provisioning request definition (for example, the name
of the provisioning request definition, the category to which it belongs, who can access it)
using the Create A New PRD Wizard. After you have created the basic provisioning request
definition, the basic information is displayed in the Overview tab.
Create the forms that interact with the workflow participants using the Forms tab.
Design the workflow using the Workflow tab.

To add a provisioning request definition:

1 Launch the Create A New PRD Wizard in one of these ways:
From the Provisioning view, right-click the Provisioning Request Definitions node and
choose New.
From the Provisioning view, click a User Application or provisioning request container,
then select Insert > Provisioning Request Definition.
Select File > New > Provisioning.
Choose Provisioning Request Definition, then click Next.
Creating a Provisioning Request Definition 95

96 Identity Man

novdocx (E
N

U
) 29 January 2007
The first page of the Create A New PRD Wizard is displayed.

2 Fill in the fields as follows:

3 Click Next. The next page of the wizard is displayed.

Field Description

Identifier (CN) The CN (common name) identifier for the provisioning request
definition.

Display Name The display name for the provisioning request definition. This is the
name that is displayed in the provisioning view.

Description A description of the provisioning request definition.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
You can create new provisioning request definitions based on a template, or you can build the
provisioning request definition from concept to finished product. Use the next panel of the
wizard to specify whether or not to base this provisioning request definition on a template.

4 Perform one of these steps:
To base this provisioning request definition on a template, select Create a provisioning
request definition using one of the templates, then select the desired template (for
example, TemplateSingleApproval_TA) from the Available Templates list, then click Next.
To build this provisioning request definition from concept to finished product, click Next.

You use the next panel of the wizard to specify the trustees (in other words, users) who can
access the provisioning request definition after it is deployed.

5 Click the plus (+) icon to add a trustee.
Designer displays a panel that allows you to browse the Identity Vault to select a trustee. You
can select an individual trustee or a group.
If you cannot connect to the Identity Vault, you can type trustee DNs directly in the Trustee DN
field.

6 Select the trustee, then click OK.
Designer returns you to the previous panel. If desired, add additional trustees by repeating the
previous step.

7 When you have finished adding trustees, click Finish.
Designer displays the Provisioning Request Definition Details panel on the Overview tab (see
Section 5.3, “Using the Overview Tab to Modify Basic Settings,” on page 100).

5.2 Using the Wizard to Create a Provisioning
Request Definition
You can create a provisioning request definition with a template or from concept to finished product.
We recommend that you use an existing template to create new provisioning request definitions.
This saves time and allows you to make targeted changes to an existing provisioning request
Creating a Provisioning Request Definition 97

98 Identity Man

novdocx (E
N

U
) 29 January 2007
definition. However, if no existing provisioning request definition resembles new work that you
want to do, you can create a new provisioning request from concept to finished product.

See the following topics:

Section 5.2.1, “Using a Template,” on page 98
Section 5.2.2, “From Concept to Finished Product,” on page 99

5.2.1 Using a Template
To create a provisioning request definition using a template:

1 Create the basic information for a new provisioning request definition (see Section 5.1, “About
the Wizard and the Overview Tab,” on page 95). In step Step 4 on page 97, select Create a
provisioning request definition using one of the templates, then select the desired template.
When you are finished, the Overview tab for the new provisioning request is displayed.

2 Click the Workflow tab. The Workflow view is displayed.

The provisioning request definition template includes some default values that you will want to
customize for your environment. For example, the Entitlement Provisioning Activity contains
placeholder values for several data item mapping properties. You need to replace the
placeholder values with the actual values for your provisioning request.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
3 Click the Entitlement Provisioning activity, then click the Data Item Mapping tab.

4 Double-click in the Source Expression field for the DirXML-Entitlement-DN target field, then
click the button that appears in the field to display the ECMA expression builder.
See Chapter 10, “Working with ECMA Expressions,” on page 249 for information about the
ECMA expression builder.

5 Use the ECMA expression builder to replace the placeholder expression with an expression
that specifies the entitlement that you would like to provision with this provisioning request.

6 Replace the placeholder expression in the Source Expression field for the DirXML-Entitlement-
Parameter.

7 Click the Forms tab and customize the forms for the provisioning request to your needs.
See Chapter 6, “Creating Forms for a Provisioning Request Definition,” on page 103.The
template includes predefined request and approval forms. You might want to add additional
forms, or add or remove form controls.

8 Click the Workflow tab and customize the properties of the workflow to your needs.
See Chapter 7, “Creating the Workflow for a Provisioning Request Definition,” on page 157
and Chapter 8, “Workflow Activity Reference,” on page 179.

5.2.2 From Concept to Finished Product
Whenever possible, use an existing template (or save an existing provisioning request definition
under a new name) to create new provisioning request definitions. This saves you time and allows
you to make targeted changes to an existing provisioning request definition. However, if no existing
provisioning request definition resembles the new work that you want to do, then you need to build
a provisioning request definition from concept to finished product. You can still save time and effort
by re-using forms from other workflows.

To create a provisioning request definition:

1 Create the basic information for a new provisioning request definition (see Section 5.1, “About
the Wizard and the Overview Tab,” on page 95). In step Step 4 on page 97, do not select Create
a provisioning request definition using one of the templates, and do not select a template. When
you are finished, the Overview tab for the new provisioning request is displayed.

2 Create the forms for the provisioning request definition. After you have created the basic
provisioning request definition, the next step is to create the forms that are presented to the
provisioning request users. It’s important to define forms before you create the workflow
topology. This ensures that data bindings can be set up automatically for each activity when
you create activities.
Creating a Provisioning Request Definition 99

100 Identity Man

novdocx (E
N

U
) 29 January 2007
There are two types of forms:
request: Used by the person requesting the resource to specify the item or capability that is
being requested. One request form can be defined for a workflow. The request form is always
associated with the Start Activity.
approval: Used by the person receiving the provisioning request to approve, refuse, or
comment on the provisioning request. One or more approval forms can be defined. You must
associate each form with an Approval activity. You associate an approval form with an
Approval activity by using the properties for the activity.
To create the forms, see Section 6.3, “Creating forms,” on page 111.

3 Click the Workflow tab and create the workflow topology.
You create the topology of a workflow by creating and linking activities into the desired
workflow pattern, and by assigning rules to the flowpaths between activities. For information
about creating a workflow topology, see Chapter 7, “Creating the Workflow for a Provisioning
Request Definition,” on page 157.

4 Specify the details (properties, data item mappings, e-mail notification) for each workflow
activity.
To specify workflow activity details, see Chapter 8, “Workflow Activity Reference,” on
page 179.

5 Configure the flowpaths between workflow activities.
To configure flowpaths, see Section 7.4, “Configuring Flow Paths,” on page 165.

5.3 Using the Overview Tab to Modify Basic
Settings
You use the Overview tab to define the basic information about the provisioning request definition
(for example, the name of the provisioning request definition, the category to which it belongs, who
can access it).

Figure 5-1 Overview Tab

The following table describes each property that you can configure on the Overview tab.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
Table 5-1 Overview Properties

Property Description

Identifier (CN) Displays the CN (common name) of the provisioning request definition. The CN
cannot be changed.

Display Name Specifies the display name of the provisioning request definition. This is the name
that is displayed to the user in Designer and Identity Manager.

Description Specifies the description of the provisioning request definition.

Category Specifies the category to which the provisioning request definition belongs from
the list of Provisioning Categories defined in the directory abstraction layer.

Status Specifies the status of the provisioning request definition:

Active: Select to make the provisioning request definition available for use in the
User Application.

Inactive: Select to make the provisioning request definition temporarily
unavailable for use in the User Application. You can use this option when you
want keep the roles of the person who develops and deploys the provisioning
request definition separate from the person who activates the provisioning
request definition. For example, a developer could deploy the provisioning
request definition as Inactive, and an administrator could be responsible for
changing the status to Active.

Template: Select if you want to use this provisioning request definition as the
basis for other provisioning request definitions. Templates are not available for
use in the User Application.

Retired: Select to mark the provisioning request definition as permanently
unavailable for use in the User Application (you can still change the status of the
provisioning request definition at any time). This status provides a way of keeping
a historical record of a provisioning request definition that is no longer in use.

Flow Strategy Specifies the flow strategy for the provisioning request definition:

Single Flow: This strategy allows one workflow with one recipient.

Flow per member: This strategy allows a single workflow to spawn multiple
workflows for each member of a group, in which each member is approved
individually.

Single Flow Provision Members: This strategy allows a single workflow to
approve all group members and spawn multiple provisioning steps (one for each
group member).

Notify participants by
email

Specifies whether approvers are notified by e-mail about pending approval tasks,
and whether initiators are notified by e-mail of workflow completion. If Notify
participants by email is not checked, then users must look at the Requests and
Approvals tab in the User Application for notifications about tasks.

For information about selecting an e-mail template and customizing e-mail
template parameters, see Section 8.9, “Finish Activity,” on page 193.

Restrict View Specifies that the list of tasks that can be viewed by the user in My Requests in
the User Application is restricted to tasks initiated by the user. The default
behavior (that is, Restrict View is not checked) is that the user can see any
requests that the user initiated or for which the user is the recipient.
Creating a Provisioning Request Definition 101

102 Identity Man

novdocx (E
N

U
) 29 January 2007
Generate Comments Specifies that the workflow engine should generate comments as the workflow
progresses. These comments can be displayed by clicking the following:

View Comment and Flow History in a Request Detail form in the User
Application

View Comment History on a Task Detail form in the User Application

Set Default
Completion Status to
Approved

Specifies that the default completion status of the provisioning request is
approved if checked, or denied if not checked. This feature can be useful for
provisioning requests that do not contain a provisioning activity (an Entitlement or
Entity). The value of this parameter can be overridden by explicitly setting the
completion status using a provisioning activity or Workflow Status activity.

Trustee Rights Specifies the users and groups that can use the provisioning request definition.

Property Description
ager 3.5 User Application: Design Guide

6
novdocx (E

N
U

) 29 January 2007
6Creating Forms for a Provisioning
Request Definition

This section provides details on creating and customizing the User Application’s request and
approval forms. Topics include:

Section 6.1, “About Forms,” on page 103
Section 6.2, “About the Forms Tab,” on page 107
Section 6.3, “Creating forms,” on page 111
Section 6.4, “Action Reference,” on page 120
Section 6.5, “Form Control Reference,” on page 122
Section 6.6, “Working with Distinguished Names,” on page 147
Section 6.7, “Using DAL Queries in Forms,” on page 151

6.1 About Forms
Forms allow the user to request a resource, approve a resource request, and work on a task. They are
available when the user chooses any of the actions in the My Work category of the User
Application’s Requests and Approvals tab. Figure 6-1 is an example of a resource request form. At
the top of the form is a read-only area that displays the details of the request (or approval for
approval forms). In the Form Detail section at the bottom, the user provides input to the resource
request (or approval) and takes some action on it.

Figure 6-1 Sample Form

You use the Forms tab of the provisioning request definition editor to define the appearance and
behavior of the Form Detail section of the User Application’s requests and approvals forms.
Creating Forms for a Provisioning Request Definition 103

104 Identity Man

novdocx (E
N

U
) 29 January 2007
About Request Forms

You can create one request form for a provisioning request definition.The request form is associated
with the workflow’s Start Activity.

Figure 6-2 Sample Resource Request Form

About Approval Forms

You can define multiple approval forms for a provisioning request definition, but only one form per
Approval Activity. You link an approval form to an approval activity in the properties for the
activity.

Figure 6-3 Sample Resource Approval Form
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
6.1.1 About Form Control Data Binding
All of the fields you define for a form are automatically available for data binding in the Data Item
Mapping property sheet. Two bindings, or mappings, are possible for each form field: a pre-activity
mapping to initialize or pre-load a form field with data, and a post-activity mapping to move
modified form data into the work flow document called flowdata. These data-item bindings and any
script expressions they utilize execute on the application server as preparation of the form before it
is sent to the client browser for display to the user. Common uses for pre-activity data-item
mappings and their expressions that operate against the flow-data document are for moving previous
approval data into the current approval or for setting default values for fields. For more information
on data item mappings, see Section 7.2.2, “Defining the Data Item Mappings,” on page 162.

Some form controls allow you to initialize their values from data sources other than workflow data.
For example, some list controls allow you to specify the initial value as a property of the control. For
more information about defining initial values, see Section 6.5, “Form Control Reference,” on
page 122.

6.1.2 About Forms and Events
Designer allows you to define action scripts that execute on the form control’s onLoad, onChange,
or custom events. Each form control supports an Events property where you supply the script for the
event. The scripts you define have an event-level scope and execute in the browser of the user’s
client machine.

The Events property provides access to Designer’s Event Action Expression Builder, which allows
you to create script expressions that refer to and modify form and data. Since Form Control Event
Creating Forms for a Provisioning Request Definition 105

106 Identity Man

novdocx (E
N

U
) 29 January 2007
Scripts execute in the client browser, they do not have access to the flow-data document. They do
have access to directory abstraction layer Queries.

Figure 6-4 Event Action Expression Builder

The Event Action Expression Builder also provides access to the Form Action methods (shown in
the left column). This column provides access to the form action script API along with directory
abstraction layer query objects. The form action script API is written in JavaScript so that you can
add conditions, loops, and user-defined functions. For more information about the Form Action API,
see Section 10.3.1, “Form Action Script Methods,” on page 262. To import or include a JavaScript
library, you use the Scripts tab of the Form Controls area. For more information, see Section 6.3.4,
“Using the Scripts Tab,” on page 118.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
6.2 About the Forms Tab
You use the Forms tab of the provisioning request definition editor to define the appearance and
behavior of your request and approval forms.

Figure 6-5 Forms Tab

The Forms tab contains a Form Selection section (described in About Form Selection) and a Form
Controls section (described in About Form Controls).
Creating Forms for a Provisioning Request Definition 107

108 Identity Man

novdocx (E
N

U
) 29 January 2007
6.2.1 About Form Selection
Use the Form Selection section to create, delete, or preview a form, or to create a form template.
Click the Request or Approval tab depending on the type of form you want to manipulate.

Figure 6-6 Form Selection

The Form Selection toolbar contains these options:

Table 6-1 Form Selection Toolbar Options

Button Description

Click to launch the New Form wizard.

Click to delete an existing form.

Click to save the form as a template. You can then base other forms on this template.
Forms are saved as XML documents in the project directory.

Templates are available only within the project in which you create them.

Click to preview the form.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
If you create a provisioning request definition from an existing template, and the template has forms
associated with it, the Form Controls section displays them. You can modify the form instance using
the Form Controls section.

6.2.2 About Form Controls
Use the Form Controls section to define or modify the form’s appearance and behavior.

Fields tab: Lets you add, delete, and change the data type, control type, and layout order of the
controls on the form.
Creating Forms for a Provisioning Request Definition 109

110 Identity Man

novdocx (E
N

U
) 29 January 2007
For information about adding controls, see Section 6.3, “Creating forms,” on page 111. For
more information about individual form controls, see Section 6.5, “Form Control Reference,”
on page 122.
Actions tab: Lets you define the actions the user can perform on the form. Use the Actions
toolbar to add, delete, and change the actions and layout order of the actions on the form.

For more information about the supported actions, see Section 6.4, “Action Reference,” on
page 120.
Scripts tab: Use the Scripts tab to define calls to external JavaScript files or to write JavaScript
scripts that are stored as part of the form definition. When you have created a script using this
tab, it becomes available in the Action Script Expression Builder and you can call it from any
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
form control event. These scripts have a page-scope rather than an event-scope. For more
information about using the script tab, see Section 6.3.4, “Using the Scripts Tab,” on page 118.

6.3 Creating forms
This section describes how to create new forms and add controls to it. It includes these topics:

Section 6.3.1, “Creating New Forms,” on page 111
Section 6.3.2, “Adding Form Controls and Actions,” on page 112
Section 6.3.3, “Defining Events,” on page 114
Section 6.3.4, “Using the Scripts Tab,” on page 118

6.3.1 Creating New Forms
1 With the provisioning request definition editor open, click the Forms tab.
Creating Forms for a Provisioning Request Definition 111

112 Identity Man

novdocx (E
N

U
) 29 January 2007
2 In the Form Selection section of the page, click Add to access the New Form wizard.

3 Fill in the fields as follows:

4 Click OK to save the form or Cancel to exit without saving.

6.3.2 Adding Form Controls and Actions
Use the Form Controls section to define the content and layout of the form.

Field Description

Form Name Type the name of the form as you want it to
appear in Designer.

Create a form using one of the templates If you want to base the new form on an existing
template, select this option and select one of the
forms from the Form templates list.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
To add a control to a form:

1 Click Add. Designer adds a control named Field to the bottom line of the form.

If you add more than one control of the same name to the form, Designer adds a unique number
to the end of the control name.

2 Define the following properties for the control:

NOTE: Form field controls do not have Data Item Mappings or E-mail notifications property
sheets.

3 For each control, specify its properties in the Properties tab (available via Window > Show
View > Properties). For more information, see Section 6.5, “Form Control Reference,” on
page 122.

4 Click the Actions tab to define what the user can do with the form. For example, you can add
actions that allow the user to submit a form or cancel it.

NOTE: A request form must have, at a minimum, a SubmitAction. Without a SubmitAction,
the request will not process. It is recommended that every form also have a CancelAction.
Each approval form must have at least one action defined.

5 In the Actions page, click Add to add a new Action. Fill in the fields as follows:

Field Description

Form Field Name A unique name for the field. The name is used in

The Workflow tab’s Data Item Mapping dialog box.

The ECMA expression builder dialog box.

An internal XML reference in the provisioning request definition file.

Consider the naming conventions you want to use for form fields to avoid
confusion in the Data Item Mapping and ECMA expression builder dialog
boxes. For example, the request and approval forms might both contain a
field called Reason. To make it clear which field you are working with while
performing data mappings, you can preface the field name with the name of
the form where it is used. You might name one reason field Req_Reason and
the other App_Reason.

Data Type The field’s data type. The data type determines the valid control types and the
type of validation performed.

Control Type The type of visual control used to display or edit the data. The selection list is
filtered based on the selected data type.

Linebreaks Defines the number of lines you want inserted after the control.
Creating Forms for a Provisioning Request Definition 113

114 Identity Man

novdocx (E
N

U
) 29 January 2007
Controlling Form Layout

The Designer places form controls on the form from top to bottom and left to right. Use Linebreaks
to force spacing between controls.

6.3.3 Defining Events
The scripts you attach to an event handler are scoped to the appropriate control, not the browser
window.

To define an event:

1 Select the form control where you want to define an event and open the property sheet.

Field Description

Actions Location Choose the location for the action buttons you
add to the form.

Bottom. Places the action buttons on the bottom
of the form. (Default.)

Top: Places the action buttons on the top of the
form.

Top and Bottom: Places the buttons at both the
top and bottom of the form.

Action Command Choose an action for the button. For more
information, see Section 6.4, “Action Reference,”
on page 120.

Linebreaks Defines the number of lines you want inserted
after the action button.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
2 Navigate to the Event property and add an event. Designer adds a row with the default event
name onEvent.

3 Click in the Event Name field and select the onchange or onload event. For more information
on adding other events, see “Creating Custom Events” on page 115.

4 Click in the Action Expression field. You can type the script directly in this field, or click the
button to access the Event Action Expression Builder.

5 Define the action script, check the syntax, then click OK. Repeat this procedure to add more
events to this control.

For more information on the onChange and onLoad events, see the events property description in
Section 6.5.2, “General Form Control Properties,” on page 124.

Creating Custom Events

You can create your own events to notify other controls of conditions or user actions on the form.
You create the event using the Events property. You can give the event any name. You must
explicitly fire the event using the fireEvent() method and passing in the name of the event.

You might want to perform a query on the Groups container that returns only the groups that match
the values entered by a user. In the example shown in Figure 6-7, the user types a value in the name
Creating Forms for a Provisioning Request Definition 115

116 Identity Man

novdocx (E
N

U
) 29 January 2007
field, When the user tabs to the next field, the contents of the dropdown are populated from a query
launched by the namechange custom event.

Figure 6-7 User Application Runtime Custom Event Sample
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
The Name field defines an Events property that fires the namechange event on an onchange event.
The definition is shown in Figure 6-8.

Figure 6-8 Sample field.FireEvent() Method
Creating Forms for a Provisioning Request Definition 117

118 Identity Man

novdocx (E
N

U
) 29 January 2007
The namechange event contains an expression that executes a query called groups.

Figure 6-9 Custom Event Definition Example

For more information on using queries, see Section 6.7, “Using DAL Queries in Forms,” on
page 151.

6.3.4 Using the Scripts Tab
Use the Scripts tab to define a script that has a page-level scope. A page-level scope means that the
script loads at page load time and is available through the life of the form. You can supply the script
in one of the ways described in Table 6-2.

Table 6-2 Script types

Because these scripts are loaded at page load, the form controls and any of their associated event
handler scripts are not in scope when the page is loaded. Avoid coding dependencies between page-
level scripts and event-level scripts; however, you can call page-level scripts from within an event-
level script.

To add a link to an external JavaScript file:

1 With the Scripts tab open, click Add .

Script type Description

external The script is incorporated into the page by reference using the supplied URL. The script
block will look something like this: <<script type=”test/javascript” scr=”http://some.server/
custom.js”>. The custom.js file is imported at form load.

inline The script is inserted directly into the form in a <script> block.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
2 Complete the fields as follows:

To create an inline script:

1 With the Scripts tab open, click Add .
2 Complete the fields as follows:

Field Description

ID Specify a meaningful name. This value displays in the
Event Action Expression Builder.

Type Leave the default value of external.

URL/Inline Script Click within the field so that the Script URL Editor button
displays to the right, then click the button to display the
editor.

Type the URL to the .js file and click OK to return to the
Scripts tab. Adding an an external link generates this line
in the page that displays the form:

 <script src="someURL.com/script.js"/>

Field Description

ID Specify a meaningful name. This value displays in the
Event Action Expression Builder.

Type Set the value to inline.

URL/Inline Script You edit your JavaScript using the ECMAScript Editor.
You can access the editor by clicking the tab of the same
name as the ID you specified above. This tab is located
next to the Signatures Declarations tab.

For inline scripts, the following is inserted in the page:

<script>whatever you type</script>
Creating Forms for a Provisioning Request Definition 119

120 Identity Man

novdocx (E
N

U
) 29 January 2007
Both inline and external scripts are executed at page load but before the page loads the controls. In
addition, they are also executed when specifically called on a form control event.

6.4 Action Reference
This section describes the actions you can add to forms. The actions are implemented as buttons.
You can specify a custom display label for each button.

Table 6-3 Valid Actions

Action Name Form Type Description

ApprovalAction Approval Causes the Approval activity to complete and follow the
approved flow path to the next activity. When you use this action,
you must set the Hide If Read Only form property to True;
otherwise the form fails validation when you deploy it.

TIP: An ApprovalAction requires the Approval Activity
associated with the form to have an approved flow path exiting
the activity.

CancelAction Request and
Approval

For request forms, Cancel returns the user to the Request
Resource Search Criteria form. For approval forms, Cancel
returns the user to the My Tasks list.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
CommentAction Approval forms Generates a button with the default label set to View Comment
History. The button launches a Comments dialog box displaying
the processing history for each activity from the workflow start to
the present time. Data displayed includes Date, Activity Name,
User, and Comment as shown in the following example.

Comments are updated and persisted to the workflow database
through the UpdateAction (described below).

NOTE: Any forms containing this action must also contain a field
named apwaComment.

DenyAction Approval Causes the Approval activity to complete and follow the denied
flow path. When you use this action, you must set the Hide If
Read Only form property to True; othewise, the form fails
validation when you deploy it.

TIP: A DenyAction requires the Approval Activity associated with
the form to have a deny flow path exiting the activity.

RefusalAction Approval Causes the Approval activity to complete and follow the refused
flow path. When you use this action, you must set the Hide If
Read Only form property to True; otherwise, the form fails
validation on deploy.

TIP: A RefusalAction requires the Approval Activity associated
with the form to have a refusal flow path exiting the activity.

SubmitAction Request and
Approval

Initiates the workflow and causes the workflow to execute the
forward flow type. The workflow passes any user-entered data to
the next activity in the workflow.

Action Name Form Type Description
Creating Forms for a Provisioning Request Definition 121

122 Identity Man

novdocx (E
N

U
) 29 January 2007
The following table describes the properties you can set on actions.

Table 6-4 Action Properties

6.5 Form Control Reference
This section describes the controls you can add to a form.

UpdateAction Approval Causes the Approval activity to write a user comment to the
workflow database. There is typically a text area associated with
an apwaComment form field. If the user enters text in this field
and clicks this action, it is persisted to the afcomment table in the
workflow database. The comment can be retrieved and viewed
through the CommentAction (described above). The following
example shows a text area and an update action button (labeled
UpdateAction):

NOTE: The form must contain a field named apwaComment;
otherwise, the provisioning request definition fails validation.

For more information about apwaComment, see “Controls for
User-Entered Comments” on page 123.

Property Name Description

Display Label Specifies the text to display on the button.

Visible If true, specifies whether the action is visible at runtime.

Block On Error If true, specifies that the action is blocked if any of the form’s controls fail validation.
This is recommended for the SubmitAction.

Do not set to false if the action button submits data; otherwise, invalid data can be
submitted causing unexpected results.

Hide If Read Only If true, specifies that the action is hidden when the form is read-only. A form can be
read-only when the user opens a task without claiming it first. If your form contains
the ApprovalAction, DenyAction, or RefusalAction, this property must be set to true.
If it is set to false, you will encounter a validation error and will not be able to deploy
the form.

Action Name Form Type Description
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
Table 6-5 Control Types and Supported Data Types

6.5.1 Controls for User-Entered Comments
Designer supports a special internal control you can add to a form to allow users to add comments to
a workflow or to view previously entered comments. Comments are required on forms that use
CommentAction or UpdateAction. The comments are not part of the workflow data so you cannot
access them via the flowdata object. The comments are special data items stored in the afcomment
table of the workflow database. The comments are persisted as long as the row for the requestid in
the afprocess table exists.

To create a form that supports user comments:

1 Add a control to your form. Select Comment as the data type. The Form Field name is
automatically defined as apwaComment and the Control Type is TextArea. A single form can
contain only one comment field.

2 Add a CommentAction or UpdateAction to the form.
For more information, see Section 6.4, “Action Reference,” on page 120.

Control Type
Data Types

Boolean Date Decimal DN Integer String Time

CheckBoxPickList x x x x x

DatePicker x

DateTimePicker x

DNContainer x

DNDisplay x

DNLookup x

DNMaker x

DNQuery x

Global List x

Html x

MVCheckbox x x x x

MVEditor x x x x

PickList x x x x

Static List x x x x

Text x x x x

Text Area x

Title x

TrueFalseRadioButtons x

TrueFalseSelectBox x
Creating Forms for a Provisioning Request Definition 123

124 Identity Man

novdocx (E
N

U
) 29 January 2007
6.5.2 General Form Control Properties
The properties in the following table are available for each control.

Table 6-6 General Properties

Sort Order

List-based controls sort content alphabetically. For DN-based lists, the sort order is alphabetical
based on the Display expression property result. For all other types, the sort order is based on the
display label.

6.5.3 CheckBoxPickList
Use the CheckBoxPickList control to allow users to view and choose one or more values from a
dynamically generated list of choices displayed as checkboxes.

Property Name Description

Display label Specifies the label to display to identify the control. It is localizable.

Editable Specifies if the control is editable (true). Otherwise, it displays as read-only.

Events Specifies an event for the control. Possible values include the following:

OnChange: Fires when one of the following occurs:

Immediately after onload.

Another script changes the value of the control.

The user commits a change to the data value associated with the
control. This occurs when the user has tabbed out of the control
or otherwise caused it to lose focus. For example, this can
happen when the user tabs away from the control (for text entry
based controls like Text, TextArea, DatePicker), or when the user
selects a different entry choice for choice based controls)like
PickList, MVCheckbox, and StaticList).

onLoad: The onload event for a control fires just once, when the control
is loaded into the page for the first time. It can be used to set initial
values or preselect entries; however, there is no guarantee that
controls load in a particular order.

Multivalued This is a read-only property. It specifies if the control supports multivalue
attributes (true).

Required Specifies whether the control requires user input (true).

Tooltip Specifies the text for the control’s tooltip. It is localizable.

Visible Specifies whether the control is displayed in the user interface (true).
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
When the associated data type is a DN retrieved from the Identity Vault, you can display the
checkbox label as the fully qualified DN or use the Display expression property to specify the
attributes to display instead.

Figure 6-10 Sample CheckBoxPickList Control

Table 6-7 CheckboxPickList Properties

6.5.4 DatePicker
Use this control for display and entry of a date and time. This allows users to choose a date from a
pop-up calendar or type a date in a text field. At runtime, the form automatically validates the date
using the format for the user’s locale and time zone. If the user enters an incorrect format, the form
displays an error message. The DatePicker control’s tooltip displays the valid date format. The
default DatePicker control looks like this:

Figure 6-11 Sample DatePicker Control

Property Name Description

Entity Key for DN expression lookup When you populate this control with a DN retrieved from the
Identity Vault and you want that value to display in a user-
friendly fashion, you should choose an entity from the drop-
down list and specify a set of attributes in the Display
expression property.

Leave this value blank if you want to display the full DN or CN
value retrieved from the Identity Vault.

The entity you choose must have the directory abstraction layer
View property set to true and be the entity whose DN you are
retrieving from the Identity Vault.

Display expression Required when you specify an Entity Key for DN expression
Lookup. Choose the attributes to display as the checkbox
labels. For example, to display the user entity’s first and last
name attributes, construct an expression like this: FirstName
LastName.

The attribute’s directory abstraction layer properties for View,
Read, Search, and Required must be set to true.

Allow multiple selections When set to true, users can select more than one entry.

Sort entries When set to true, sorts results in ascending order. For details,
see “Sort Order” on page 124.
Creating Forms for a Provisioning Request Definition 125

126 Identity Man

novdocx (E
N

U
) 29 January 2007
When the Show date picker property is true, the form displays the date field along with a button.
When the user clicks the button, the form launches a calendar for the user to select the date. The
calendar pop-up is shown here:

Figure 6-12 Sample Calendar Control

Table 6-8 DatePicker Control Properties

6.5.5 DateTimePicker
Use this control for display and entry of a date and time for a Time data type. This allows users to
choose a date and time from a pop-up calendar or type a the value in a text field. At runtime, the
form automatically validates the date and time using the format for the user’s locale and time zone.

Property name Description

Datetime indicator When set to false, the Calendar pop-up does not display the time.

Day headers A comma-separated, single-quoted list of values displayed by the Calendar pop-
up to indicate the day of the week. This value is localizable.

Field Width in pixels Use this field to configure the field’s visible width on the form. The default is 200
pixels.

Month names A comma-separated, single-quoted list of values displayed by the Calendar pop-
up to indicate the month name. This value is localizable.

Show date picker When set to true displays the calendar pop-up. If set to false, the calendar pop-up
does not display. The user must type the date in the text field using the proper
format for their locale.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
If the user enters an incorrect format, the form displays an error message. The DateTimePicker
tooltip displays the valid date format. The default control looks like this:

Figure 6-13 Sample DateTimePicker Control

When the Show date picker property is set to true, the form displays a text field followed by a
calendar button. When the user clicks the calendar button, the form launches a calendar control for
the user to select the date and time values. The calendar pop-up is shown here:

Figure 6-14 DateTimePicker Calendar Control

Table 6-9 DateTimePicker Control Properties

Property name Description

Day headers A comma-separated, single-quoted list of values displayed by the Calendar pop-
up to indicate the day of the week. This value is localizable.

Field width in pixels Use this field to configure the field’s visible width on the form. The default is 200
pixels.

isDateTime When set to false, the Calendar pop-up does not display the time.

Month names A comma-separated, single-quoted list of values displayed by the Calendar pop-
up to indicate the month name. This value is localizable.

Show date picker When set to true, displays the calendar pop-up. If set to false, the calendar pop-up
does not display. The user must type the date in the text field using the proper
format for their locale.
Creating Forms for a Provisioning Request Definition 127

128 Identity Man

novdocx (E
N

U
) 29 January 2007
6.5.6 DNContainer
Use this control to allow users to select a container object from within the root container that you
specify. You can use this control to limit the user to a subtree of a container. This is a specialized
version of the DNLookup control.

Figure 6-15 DNContainer Control With Root Container Specified

Table 6-10 DNContainer Control Properties

6.5.7 DNDisplay
Use this control to display a read-only DN. You populate the control from flowdata. The control can
display the full DN or a set of attributes associated with the DN depending on the properties you set.

Figure 6-16 Sample DNDisplay

Figure 6-17 Sample DNDisplay with Display Expression Specified

Property name Description

Entity key used for object lookup Choose an entity from the dropdown. The entity that you choose
limits the users ability to look up objects within the specified entity’s
container. If you specify an entity key and a root container, the entity
key takes precedence.

Field width in pixels Use this field to configure the field’s visible width on the form. The
default is 200 pixels.

Root container Specify a root container for lookups when users click the Object
Selector button.

Show clear button If set to true, the form displays the Reset field button

Show object history button If set to true, the form displays the Show history button.

Show object selector button If set to true, the form displays the Object Selector button.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
Table 6-11 DNDisplay Control Properties

6.5.8 DNLookup
Use this control to allow users to search and retrieve DNs from the Identity Vault. You can initialize
the control with a DN from the flowdata. You set properties to control the entities and containers that
the user can search and the format of the DN.

Figure 6-18 Sample DNLookup Control

The buttons associated with the DNLookup control are described in Table 6-12.

Property name Description

Display expression Leave this value blank if you want to display the full DN or CN
value.

If you want to mask the DN by displaying attributes instead,
launch the expression builder and select the desired attributes
from the list. (You must first specify an Entity key for DN
expression lookup.)

For example, to show the user entity’s first and last name
attributes, construct an expression like this: FirstName
LastName.

Make sure the attribute’s View, Read, Search, and Required
properties are set to true in the directory abstraction layer. See
Section 3.7.2, “Attribute Properties,” on page 64.

Entity key for DN expression lookup Leave this value blank if you want to display the full DN or CN
value retrieved from the Identity Vault.

If you want to mask the DN or CN by displaying attributes
instead, choose the entity from the drop-down list and specify a
set of attributes in the Display expression property.

The entity you choose must

Have the directory abstraction layer View property set to
true.

Be the entity of the DN you are working with.

For more information, see Section 6.6, “Working with
Distinguished Names,” on page 147.
Creating Forms for a Provisioning Request Definition 129

130 Identity Man

novdocx (E
N

U
) 29 January 2007
Table 6-12 DNLookup Control Buttons

Button Description

Launches an object lookup dialog box. You define whether the dialog box
displays containers or objects via the Object Selector type property. The following
is an example of an object lookup.

The attributes shown in the drop-down list (Description in the above example) are
specified in the directory abstraction layer. The availability of this button is
controlled by the Show object selector property.

Show history. Allows users to view the history of objects that they have searched.
They can select from this list or clear its contents. The availability of this button is
controlled by the Show object history button property.

Reset field. Deletes the field contents. The availability of this button is controlled
by the Show clear button property.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
Table 6-13 DNLookup Control Properties

Property Name Description

Display expression This property only applies when you initialize the control from
flowdata. Leave this value blank if you want to display the full DN
or CN value.

If you want to mask the DN by displaying attributes instead,
launch the expression builder and select the desired attributes
from the list. (You must first specify an Entity key for DN
expression lookup.)

For example, to show the user entity’s first and last name
attributes, construct an expression like this: FirstName
LastName.

Make sure the attribute’s View, Read, Search, and Required
properties are set to true in the directory abstraction layer. See
Section 3.7.2, “Attribute Properties,” on page 64.

Entity key for DN expression lookup This property only applies when you initialize the control from
flowdata. Leave this value blank if you want to display the full DN
or CN value retrieved from the Identity Vault.

If you want to mask the DN or CN by displaying attributes
instead, choose the entity from the drop-down list, then specify a
set of attributes in the Display expression property.

The entity you choose must

Have the directory abstraction layer View property set to
true.

Be the entity of the DN you are working with.

For more information, Section 6.6, “Working with Distinguished
Names,” on page 147.
Creating Forms for a Provisioning Request Definition 131

132 Identity Man

novdocx (E
N

U
) 29 January 2007
Object Selector type Determines whether the object selector dialog box performs an
Object Lookup or a Container Lookup. The following is an
example of an Object Lookup:

paramlist: Causes the object selector dialog to perform an object
lookup. You specify the lookup criteria via the Entity key used for
object lookup property.

container: Causes the object selector dialog to display one or
more containers for selection. The containers for searching are
determined by the Search container property, which is specified
in the directory abstraction layer for the entity named in the Entity
key used for object lookup property. For example, if the Entity
key used for object lookup property is Group, the search
container is set to %group-root% by default. If no search
container is used, the search root specified during the User
Application installation is used.

Field width in pixels Use this field to configure the field’s visible width on the form.
The default is 200 pixels.

Show clear button If set to true, the form displays the Reset field button.

Show object history button If set to true, the form displays the Show history button.

Property Name Description
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
6.5.9 DNMaker
Use this control to allow users to construct a DN value by specifying a naming value and choosing a
container.

Figure 6-19 Sample DNMaker Control

Table 6-14 DNMaker Control Buttons

Show object selector button If set to true, the form displays the object selector button.

Button Description

Launches an object selector for container searches like the one shown below.

The container search root is defined for the entity specified in the Entity used for
object lookup property. The availability of this button is controlled by the Show
object selector property.

Show history. Allows users to view the history of objects that they have searched.
They can select from this list or clear its contents. The availability of this button is
controlled by the Show object history button property.

Reset field. Deletes the field contents. The availability of this button is controlled
by the Show clear button property.

Property Name Description
Creating Forms for a Provisioning Request Definition 133

134 Identity Man

novdocx (E
N

U
) 29 January 2007
Table 6-15 DNMaker Control Properties

6.5.10 DNQuery
DNQuery is a specialized version of the DNLookup control. Like DNLookup, DNQuery allows
users to search and retrieve DNs from the Identity Vault; however, with the DNQuery, the object
selector content can be driven by the result of a directory abstraction layer Queries object rather than
from properties.

Table 6-16 DNQuery Control Properties

Property Description

Entity key used for object lookup A required field. Choose an entity from the drop-down. This will
determine the search that is launched when the user clicks the object
selector button.

If you specify an entity key and a root container, the entity key takes
precedence

Naming attribute The naming attribute used to construct the final DN. This value
displays next to the control’s display label as an extra hint to the user.

Root container Specify a root container for lookups when users click the object
selector button. If you do not specify a Root container, the User
Application uses the container for the entity in the directory
abstraction layer property called Search Container. If a search
container is not specified for the specified entity, then the Root
Container DN specified during the User Application installation is
used. If you specify an entity key and a root container, the entity key
takes precedence.

Show clear button If set to true, the form displays the Reset field button.

Show object history button If set to true, the form displays the Show history button.

Show object selector button If set to true, the form displays the object selector button.

Property name Description

DAL global query key Specifies the key of the DAL Queries object you want
executed. You can select it from the Event Action Expression
Builder. For more information about using DAL queries, see
Section 6.7, “Using DAL Queries in Forms,” on page 151. For
more information about defining DAL queries, see
Section 3.4, “Working with Queries,” on page 53.

DAL global query parameter(s) Specifies the value for the query parameters. For example,
this passes the String Sales to the Queries parameter called
groupname:

 (function (){return
{"groupname":"Sales"}})();

Display expression When you populate the control with initial data from a Data
Item Mapping value, use this property to specify the attributes
to display.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
6.5.11 Global List
Use this control to allow users to select a single entry from a drop-down list. The contents of the list
are defined in a directory abstraction layer global list element.

Figure 6-20 Sample Global List Control

Table 6-17 Global List Properties

For more information about global lists, see Section 3.3, “Working with Lists,” on page 49.

Entity key for DN expression lookup This property only applies when you initialize the control from
flowdata. Leave this value blank if you want to display the full
DN or CN value retrieved from the Identity Vault.

If you want to mask the DN or CN by displaying attributes
instead, choose the entity from the drop-down list, then
specify a set of attributes in the Display expression property.

The entity you choose must

Have the directory abstraction layer View property set to
true.

Be the entity of the DN you are working with.

For more information, Section 6.6, “Working with
Distinguished Names,” on page 147.

Field width in pixels Use this field to configure the field’s visible width on the form.
The default is 200 pixels.

Show clear button If set to true, the form displays the Reset field button

Show object history button If set to true, the form displays the Show history button.
When a DAL global query is specified, the object history
button is not shown.

Show object selector button If set to true, the form displays the Object Selector button.

Property Name Description

DAL global list key Specifies the unique identifier of the global list. This
must correspond to the key specified in the
directory abstraction layer.

Property name Description
Creating Forms for a Provisioning Request Definition 135

136 Identity Man

novdocx (E
N

U
) 29 January 2007
6.5.12 Html
Use this control to add HTML fragments to the Form Detail. You can do this by specifying the
HTML fragments in the HTML content property. In addition, you can conditionally add the HTML
fragment via an event on the form control. In either case, specify the HTML through the use of an
anonymous function, such as: (function() { return "<yourTag yourAttr='your
attr value' />"; }) ();

For example:

(function(){ return "<table bgcolor='#C0C0C0'><th colspan='3'
align='center'>Table Header Goes Here</th><tr><td>Value 1.1</
td><td>Value 1.2</td></tr><tr><td>Value 2.1</td><td>Value 2.2</
td></tr></table>"; })()

6.5.13 MVCheckbox
Use this control to display a set of labelled check boxes. You specify the label and its associated
values through the List item property. A sample MVCheckbox control is shown below.

Figure 6-21 Sample MVCheckbox Control

Table 6-18 MVCheckbox Control Properties

TIP: To retrieve user-entered values for this control, use flowdata.getObject() and not
flowdata.get(). If you use flowdata.get(), you get only the first value.

For more information on preselecting values, see the Section 10.2.3, “Form Control Examples,” on
page 260.

Property Name Description

List item Allows you to define a set of static values that comprise the check
box labels and values. Click the List property button to launch the
list value dialog box shown here:
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
6.5.14 MVEditor
Use this control to allow users to display, edit, or add multiple values in a drop-down list box. You
can load the data dynamically from the Identity Vault, or allow users to enter the values.

The control’s appearance varies depending on the data type of the control and the properties that you
specify. For example, if the data type is a DN, you can set properties that displays specific attributes
related to the DN. You can also enable an object selector button that allows users to search and select
values by setting the Entity key used for object lookup property.

There are also properties that let you specify a DAL Global Query to execute or specify a root DN to
drive the object picker.

Figure 6-22 Sample MVEditor with Object Lookup Properties Set
Creating Forms for a Provisioning Request Definition 137

138 Identity Man

novdocx (E
N

U
) 29 January 2007
Table 6-19 MVEditor with Object Selector Properties Set Control Buttons

If you do not set the object lookup properties, the MVEditor displays a simple edit control.

Figure 6-23 Sample MVEditor without Object Lookup Properties Set

Button Description

Launches a search dialog box called an object
selector. The object selector dialog box looks like
this:

The user can select a value from the list to populate
the control. The attribute displayed in the drop-
down list (Description in the above example) is
specified in the directory abstraction layer. You
specify it in the attribute’s UIControl property. See
“Attribute UI Control Properties” on page 66. The
availability of this button is controlled by the Show
object selector property.

Show history. Allows users to view the history of
objects that they have searched. They can select
from this list or clear its contents. The availability of
this button is controlled by the Show object history
button property.

Reset field. Deletes the field contents. The
availability of this button is controlled by the Show
clear button property.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
Table 6-20 MVEditor Control Buttons

TIP: When the MVEditor control’s Editable property is set to false, this control is read-only and the
form does not display any MVEditor control buttons.

Table 6-21 MVEditor Control Properties

Button Description

Adds an item to the end of the list.

Deletes the selected list item.

Edits the selected list item.

Property Name Description

Add data entry text field When set to true and there is a single row of data (and the
data is not a DN), the control displays a data entry text
field. The text field is displayed when the field is empty or
contains only one value. Otherwise, the drop-down is
displayed. If more than one row of data exists, then the
drop-down always displays.

DAL Global Query Specify this value if you want the control populated by the
results of the Global Query that you specify. You specify
the key name. You can select it from the Event Action
Expression Builder. For more information about using
queries in forms, see Section 6.7, “Using DAL Queries in
Forms,” on page 151. For information about defining
queries, see Section 3.4, “Working with Queries,” on
page 53.

DAL Global Query Parameter(s) Specifies the value for the query parameters. For example,
this passes the String Sales to the queries parameter
called groupname.

 (function (){return
{"groupname":"Sales"}})();
Creating Forms for a Provisioning Request Definition 139

140 Identity Man

novdocx (E
N

U
) 29 January 2007
Display expression Leave this value blank if you want to display the full DN or
CN value.

If you want to mask the DN or CN by displaying attributes
instead, launch the expression builder and select the
desired attributes from the list. (You must first specify an
Entity key for DN expression lookup.)

For example, to show the user entity’s first and last name
attributes, construct an expression like this: FirstName
LastName.

Make sure the attribute’s View, Read, Search, and
Required properties are set to true in the directory
abstraction layer. See Section 3.7.2, “Attribute Properties,”
on page 64.

Enforce uniqueness Forces user-entered list items to be unique.

Entity key for DN expression lookup Leave this value blank if you want to display the full DN or
CN value retrieved from the Identity Vault.

If you want to mask the DN or CN by displaying attributes
instead, choose the entity from the drop-down list and
specify a set of attributes in the Display expression
property.

The entity you choose must

Have the directory abstraction layer View property set
to true.

Be the entity whose DN you are retrieving from the
Identity Vault.

See Section 6.6, “Working with Distinguished Names,” on
page 147 for more information.

Field width in pixels Use this field to configure the field’s visible width on the
form. The default is 200 pixels.

Ignore case If set to true, ignore case when enforcing uniqueness.

Lower bound (for numbers only) Minimum integer or decimal value.

Maximum length Maximum number of characters for string values. The
control blocks input when this value is reached.

Minimum length Minimum number of characters for string values. The
control validates that the user enters at least this number
of characters.

Property Name Description
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
Number of lines displayed The number of lines displayed by the control. This is not
the number of records retrieved or displayed, but the
vertical size of the control. If you set this number to 10 and
there are only 5 records to display, the control size is still
10 lines.

You can set the number of lines to 1 or to 3 or greater. You
cannot set it to 2 because it does not leave enough space
for the browser to display scrollbars. If you set it to 2,
Designer generates a warning in the Project Checker view
and resets it to 3.

Numbers only If set to true, only numbers can be entered.

Property Name Description
Creating Forms for a Provisioning Request Definition 141

142 Identity Man

novdocx (E
N

U
) 29 January 2007
Object Selector type Determines whether the object selector dialog box
performs an Object Lookup or a Container Lookup. The
following is an example of an Object Lookup:

paramlist: Causes the object selector dialog to perform an
object lookup. You specify the lookup criteria via the Entity
key used for object lookup property.

container: Causes the object selector to display one or
more containers for selection. The containers for searching
are determined by the Search container property, which is
specified in the directory abstraction layer for the entity
named in the Entity key used for object lookup property.
For example, if the Entity key used for object lookup
property is Group, the search container is set to %group-
root% by default. If no search container is used, the search
root specified during the User Application installation is
used.

Resolve DN When set to false, the DN is displayed rather than the
Display expression. Consider using this when you expect a
large number of DNs to be returned, and you are
concerned about performance.

Property Name Description
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
TIP: To retrieve user-entered values for this control, use flowdata.getObject() and not
flowdata.get(). If you use flowdata.get(), you get only the first value.

For more information about preselecting items, see Chapter 10, “Working with ECMA
Expressions,” on page 249.

6.5.15 PickList
Use the PickList control to allow users to view and choose one or more values from a dynamically
generated list of choices. The list items are DN or CN values retrieved from the Identity Vault. You
can display the full DN or CN or use the PickList properties to specify the attributes to display
instead.

Figure 6-24 Sample PickList Control without DN Masking

Figure 6-25 Sample PickList Control with DN Masking

Table 6-22 PickList Control Properties

Root Container Specify a root container for lookups when users click the
object selector button. If you specify an entity key and a
root container, the entity key takes precedence.

Show object history button When set to true, displays the Object History button next to
the control.

Show object selector button When set to true displays the Object Selector button next
to the control.

Sort entries When set to true, sorts the results in ascending order. For
details, see “Sort Order” on page 124.

Upper bound (for Numbers only) The maximum numeric value users can enter.

Property Name Description

Allow multiple selections When set to true, the user can select more than
one list value using their platform-specific multi-
select keys.

When set to true, the control displays a minimum of
three lines regardless of the value specified in the
Number of lines displayed property. If this value is
false, the Number of lines displayed property is
used.

Property Name Description
Creating Forms for a Provisioning Request Definition 143

144 Identity Man

novdocx (E
N

U
) 29 January 2007
Display expression Leave this value blank if you want to display the full
DN or CN value.

If you want to format the DN or CN by displaying
attributes instead, launch the expression builder
and select the desired attributes from the list. (You
must first specify an Entity key for DN expression
lookup.)

For example, to show the user entity’s first and last
name attributes, construct an expression like this:
FirstName LastName.

Make sure the attribute’s View, Read, Search, and
Required properties are set to true in the directory
abstraction layer. See Section 3.7.2, “Attribute
Properties,” on page 64.

Entity key for DN expression lookup Leave this value blank if you want to display the full
DN or CN value retrieved from the Identity Vault.

If you want to mask the DN or CN by displaying
attributes instead, choose the entity from the drop-
down list and specify a set of attributes in the
Display expression property.

The entity you choose must

Have the directory abstraction layer View
property set to true.

Be the entity whose DN you are retrieving
from the Identity Vault.

Field width in pixels Use this field to configure the field’s visible width on
the form. The default is 200 pixels.

Number of lines displayed The number of lines displayed by the control. This
is not the number of records retrieved or displayed,
but the vertical size of the control. If you set this
number to 10 and there are only 5 records to
display, the control size is still 10 lines.

The number of lines displayed is related to the
Allow multiple selections setting. When Allow
multiple selections is set to true, the number of
lines displayed is always 3 (or more). When Allow
multiple selections if set to false, you can set the
number of lines to 1 or to 3 or greater. You cannot
set it to 2 because it does not leave enough space
for the browser to display scrollbars. If you set it to
2, Designer generates a warning in the Project
Checker view and resets it to 3.

Sort Entries When set to true, sorts results in ascending order.
For details, see “Sort Order” on page 124.

Property Name Description
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
TIP: To retrieve user-entered values for this control, use flowdata.getObject() and not
flowdata.get(). If you use flowdata.get(), you get only the first value.

For more information on displaying the control with a preselected option, see Section 10.2.3, “Form
Control Examples,” on page 260.

6.5.16 Static List
Use this control to display a list of items in a drop-down list from which users can select a single
item. The list items are static and are stored with the provisioning request definition. The text “Click
here to select” only appears if the field is not set to Required.

Figure 6-26 Sample Static List Control

Table 6-23 Static List Properties

Property Name Description

Field width in pixels Use this field to configure the field’s visible width on the form. The
default is 200 pixels.

List item Allows you to define a set of labels and values that comprise the
static list. Click the List property button to launch the list value
dialog box shown here:

Click Add to add list items. Each list item must have a unique key.
The dialog automatically generates a unique key when you insert
a new list item. You can click the key name and change it. A blank
key (null) is valid, so it is possible to have a list item with a blank
key and a blank label. The displayed label is the one defined for
the default language.
Creating Forms for a Provisioning Request Definition 145

146 Identity Man

novdocx (E
N

U
) 29 January 2007
6.5.17 Text
Use the Text control for data display or user input. User input is validated depending on the control’s
data type.

Figure 6-27 Sample Text Control

Table 6-24 Text Control Properties

6.5.18 Text Area
Use this control to display or accept input of multi-line data. Users can select multiple lines of data
using the multi-select key combination for their platform.

Figure 6-28 Sample Text Area Control

Table 6-25 Text Area Control Properties

Property Name Description

Field width in pixels Use this field to configure the field’s visible width on the form. The
default is 200 pixels.

Lower bounds (for numbers only) The lowest number allowed for decimal or integer values.

Maximum length The maximum length for string values. Blocks input once this
length is reached.

Minimum length The minimum length for string values. Validates that the user
enters a string at least this long.

Number of characters allowed Specifies the number of characters a user is allowed to enter. This
is related to Field width in pixels.

Upper bound (for numbers only) The highest number allowed for decimal or integer values.

Validation Mask (regular expression) An expression used for validating the field’s data. Designer
provides a default set of validation masks by default. You must
enable them through Windows > Preferences > Provisioning >
Validation Mask. For more information, see Section 2.3, “Setting
Provisioning View Preferences,” on page 24.

Property Name Description

Number of columns displayed The visible width of the control; the number of
characters wide.

Number of lines displayed The number of lines to display at one time.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
6.5.19 Title
Use this read-only control to label your form or provide instructions.

Table 6-26 Title Control Properties

6.5.20 TrueFalseRadioButtons
Use this control to display a choice of True or False as a set of radio buttons.

Figure 6-29 Sample TrueFalseRadioButtons Control

This control has no custom properties.

6.5.21 TrueFalseSelectBox
Use this control to display a choice of True or False in a drop-down. The text “Click here to select a
value” displays only when the field is not required.

Figure 6-30 Sample TrueFalseSelectBox Control

Table 6-27 TrueFalsSelectBox Properties

6.6 Working with Distinguished Names
The following controls provide specialized support for Distinguished Names (DNs):

DNDisplay

Property Name Description

Display title in signed
form document

When set to false and the form is a signed form (using digital signatures), the
title control is not displayed.

Font-size Specify small, medium, or large.

Style class Choose font style (such as bold) and colors from a palette.

Property Name Description

Field width in pixels Use this field to configure the field’s visible width on
the form. The default is 200 pixels.
Creating Forms for a Provisioning Request Definition 147

148 Identity Man

novdocx (E
N

U
) 29 January 2007
DNLookup
DNMaker
MVEditor
PickList

This section describes the specialized support, including the following:

Section 6.6.1, “Formatting DNs,” on page 148.
Section 6.6.2, “Working with Object Selectors,” on page 148.

6.6.1 Formatting DNs
If you have a DN value, you can display either the DN or a set of attributes related to that DN. For
example, if the control displays the DN of a user entity, you could display the user entity's First
Name and Last Name attributes instead. The control's that support this feature are: DNDisplay,
DNLookup, MVEditor, and Picklist.

You define the attributes to display in the control’s Display Expression property. This display
expression resolves at runtime by replacing the attribute keys with the attribute values.

6.6.2 Working with Object Selectors
In some cases, you might want the user to search for and select a DN from a list of possible values.
The object selector dialog (also called the object lookup dialog) provides this functionality. The
contents of the object selector dialog box are controlled by the form control’s properties (see Table
6-28), and by how DAL properties are defined (see “DNLookup Control Type Definitions and
Object Selector Contents” on page 149).

Table 6-28 Properties for Defining the Object Selector Dialog Box

Property Description

Entity key used for object lookup This is the key to the directory abstraction layer entity whose
DN you want to search for or display. This is a required field.

Object selector type paramlist: Causes the object selector dialog to perform an
object lookup. You specify the lookup criteria via the Entity key
used for object lookup property.

container: Causes the object selector dialog to display one or
more containers for selection. The containers for searching
are determined by the Search container property which is
specified in the directory abstraction layer for the entity named
in the Entity key used for object lookup property. For example,
if the Entity key used for object lookup property is Group, the
search container is set to %group-root% by default. If no
search container is used, the search root specified during the
User Application installation is used.

Show object selector button If set to true, the object selector button shows up on the
control. Otherwise, it does not.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
DNLookup Control Type Definitions and Object Selector Contents

When you specify an Entity key used for object lookup, the object selector’s contents are defined by
the attribute’s DNLookup control type definition (in the directory abstraction layer). For example, if
you specified the User entity as the object lookup and the manager as the attribute, the object
selector would allow the user to search on the First Name and Last Name attributes because The
object selector uses the manager’s DNLookup control type definition to determine the lookup
criteria.The DNLookup definition for the manager entity is shown in Figure 6-31.

Figure 6-31 Manager Attribute on User DNLookup Property Definition
Creating Forms for a Provisioning Request Definition 149

150 Identity Man

novdocx (E
N

U
) 29 January 2007
The resulting object selector is shown in Figure 6-32.

Figure 6-32 Sample Object Selector

You can change the attributes that are used by the object selector by changing the Lookup attributes.
To allow other attributes in the object selector:

1 Determine if the desired attribute is defined for the entity specified as the Lookup Entity. (In
this example it is Manager Lookup.)

2 If the attribute you want is available on the lookup entity, you can just add it to the Lookup
Attributes. Make sure that it has the Search and Read properties set to true; otherwise, they
won’t appear in the object selector dialog box.

3 If the attribute does not already exist for the Lookup Entity, you must do the following:
Add the attribute to the Lookup Entity. For example, to display another attribute in a
manager lookup like the one above, add the attribute to the Manager Lookup entity. For
more information, see Section 3.2.3, “Adding Attributes,” on page 47.
Add the attribute to the DNLookup definition.
Deploy the changed definitions. In this example, you’d redeploy the Manager Lookup
entity (if you added a new attribute to its definition) and the User entity because you
changed the definition of the manager attribute.
Refresh the application server’s DirectoryAbstractionLayerDefinitions cache.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
6.7 Using DAL Queries in Forms
The Query objects defined in the directory abstraction layer let you predefine LDAP searches that
you can then execute from a workflow form. The information in thise illustrates how you can define
a query and use it in a form.

Suppose that you want to distribute calling cards to certain employees, but you only want to
distribute calling cards to employees who work at home, and whose homes are located outside of the
local office’s area code. You create a workflow form that allows the employee to

Verify that they qualify to receive a card.
Submit a request for a card if they do qualify.

On your form, you allow the user to enter the area code of their own local office and based on that
area code, review a list of users that qualify for a card. The runtime form is shown in Figure 6-33.

Figure 6-33 Sample Calling Card Request Form
Creating Forms for a Provisioning Request Definition 151

152 Identity Man

novdocx (E
N

U
) 29 January 2007
The data in the Candidates Picklist control is populated from the results of a query that is defined as
shown in Figure 6-34.

Figure 6-34 Calling Card Queries Definition

The query takes a single input parameter, AreaCodeParam, for the user-entered area code. The
query then searches the User entity (in the idmsample-alh container) and returns the users whose
telephone numbers do not start with the same value entered in the AreaCodeParam.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
The form has an input field called OfficeAreaCode. It is the text field where the user enters the area
code of the local office. The properties for OfficeAreaCode are show in Figure 6-35.

Figure 6-35 OfficeAreaCode Properties
Creating Forms for a Provisioning Request Definition 153

154 Identity Man

novdocx (E
N

U
) 29 January 2007
Notice that the Text control defines an onchange event. The onchange event fires when the user tabs
from the Text control. The onchange event fires the getCandidates custom event as shown in Figure
6-36.

Figure 6-36 OnChange Event Properties

The getCandidates event is defined as a property on the Candidates Picklist control.

Figure 6-37 Candidates PickList Properties

When the event is fired, the getCandidates event performs an action expression that calls the
globalQuery() method (as shown in Figure 6-38). This method populates the value of the
Candidates PickList control with the results of the query called EEOutsideLocalAreaCode (defined
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
in Figure 6-34 on page 152). It passes the value of the OfficeAreaCode text field as the query’s input
parameter AreaCodeParam.

Figure 6-38 GetCandidates Event
Creating Forms for a Provisioning Request Definition 155

156 Identity Man

novdocx (E
N

U
) 29 January 2007
ager 3.5 User Application: Design Guide

7
novdocx (E

N
U

) 29 January 2007
7Creating the Workflow for a
Provisioning Request Definition

This section provides details on creating the workflow for a provisioning request definition. Topics
include:

Section 7.1, “About the Workflow Tab,” on page 157
Section 7.2, “Adding Activities to a Workflow,” on page 161
Section 7.3, “Adding the Flow Paths,” on page 164
Section 7.4, “Configuring Flow Paths,” on page 165
Section 7.5, “Addressing an Approval Activity,” on page 167
Section 7.6, “Provisioning Multiple Individuals with One Workflow Instance,” on page 171
Section 7.7, “Working with Entity Activities,” on page 173
Section 7.8, “Configuring Digital Signature Support,” on page 175

7.1 About the Workflow Tab
You use the Workflow tab to display the Workflow page. You use the Workflow page to define the
behavior of the workflow for the provisioning request definition. The Workflow page consists of a
canvas, a palette, and associated views.

Figure 7-1 Workflow Page
Creating the Workflow for a Provisioning Request Definition 157

158 Identity Man

novdocx (E
N

U
) 29 January 2007
7.1.1 Canvas
The canvas provides a graphical view of the activities in the workflow. When you create a new
provisioning request definition that is not based on a template, the canvas is blank except for a Start
and Finish activity.

If you right-click anywhere on the canvas, a menu is displayed. The menu includes the following
commands:

Table 7-1 Workflow Menu

The canvas provides two controls that make it easier to view the workflow:

Zoom: Use the Zoom control to increase or decrease the magnification of the workflow display. You
can make portions of the workflow display larger, to view more detail, or make the workflow
display smaller, to view more of the workflow. Click the rectangle to the right of the Zoom control to
return to 100% magnification.

Scale: Use the Scale control to increase or decrease the spacing between items in the workflow
display. For example, if your workflow has items with many flowpaths between them, you can
increase the scale to make it easier to see individual flow paths. Click the rectangle to the right of the
Scale control to return to 100% scale.

Figure 7-2 Zoom and Scale Controls

Item Description

Delete Deletes the selected activity or flow path.

 Show Activity IDs Switches the workflow editor between displaying activity names
and activity IDs. Activity IDs are system defined and are not
editable. However, if errors associated with activities are detected
during validation, Designer identifies the activity in which the error
occurred by activity ID. When this is the case, turn on the display
of activity IDs in order to locate the activity on the canvas. You can
specify whether activity names or activity IDs are displayed by
default by choosing Window > Preferences > Provisioning >
Workflows > Diagram Preferences > Show Activity IDs.

Show Flow Path Types Turns the display of flow path types (for example, forward,
approved, denied) on and off. When Show Flow Path Types is
turned on, a label is displayed on each flow path indicating the
flow path type.

Show Properties Displays the Properties view for the selected activity.

 Show Data Item Mapping Displays the Data Item Mapping view for the selected activity.

 Show Email Notification Displays the Email Notification view for the selected activity.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
7.1.2 Palette
The palette provides icons for activities that can be dragged onto the canvas to create the workflow.
It also provides tools for manipulating the icons and for linking activities:

Figure 7-3 Workflow Palette

The palette includes the following tools:

Table 7-2 Workflow Palette

Tool Description

Select Selects individual nodes or flow paths. To select a node, click the Select
tool, then click a node.

Marquee Selects multiple nodes or flow paths. Use this tool to move items as a
group. To select multiple items, click the Marquee tool, then click in an area
outside of the items that you want to select. Hold down the mouse button
and drag over the items that you want to select, then release the mouse
button.

When multiple items are selected, only the properties for the first item
selected are displayed in the Properties view (see Section 7.1.3, “Views,”
on page 160 for information about Views).

Flow Path Creates flow paths between nodes. Flow paths provide connection logic for
connecting nodes. For information about connecting nodes, see
Section 7.3, “Adding the Flow Paths,” on page 164.
Creating the Workflow for a Provisioning Request Definition 159

160 Identity Man

novdocx (E
N

U
) 29 January 2007
7.1.3 Views

The Workflow page also includes the Properties, Data Item Mapping, and Email Notification views:

Figure 7-4 Workflow Views

You can right-click the icon for an activity to select a view from a context menu. Not all activities
utilize all views. The following table identifies the views and the activities that use them:

Table 7-3 Views for Activities

Activities (for example,
Start, Approval, Log)

Inserts the selected activity into the workflow. For information about adding
activities, see Section 7.2, “Adding Activities to a Workflow,” on page 161.
For detailed descriptions of the activities, see Chapter 8, “Workflow Activity
Reference,” on page 179.

Activity Properties Email Notification Data Item Mapping

Start X X

Approval X X X

Log X

Branch X

Merge X

Condition X

Mapping X X

Workflow Status X X

Finish X X

Integration X X

Entitlement X X

Entity X X

Tool Description
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
7.2 Adding Activities to a Workflow
1 Click the Workflow tab. A graphical representation of the workflow for the provisioning request

definition is displayed:

Because every workflow must have a Start and Finish activity, these activities are added to the
canvas automatically. The Start Activity is connected to the Finish Activity with a forward link.

2 To add an activity to the workflow, click the icon for the desired activity in the palette and drag
the icon onto the workspace.
You can insert an activity between activities that are linked by a flow path by dropping the
activity onto the flow path. For information about defining flow paths between activities, see
Section 7.3, “Adding the Flow Paths,” on page 164. After you have added an activity to the
workflow, you should set the properties of the activity (see Section 7.2.1, “Setting the General
Properties of an Activity,” on page 161). For detailed information about configuring the
different types of activities, see Chapter 8, “Workflow Activity Reference,” on page 179 and
Chapter 9, “Working with Integration Activities,” on page 201.

7.2.1 Setting the General Properties of an Activity
1 Right-click the activity icon for which you want to set properties and select Show Properties

from the menu.

TIP: You can also display the Properties tab by selecting Show Properties from the PRD
menu.

The Properties view is displayed:

2 Click in the column for a property to set the property. For information about the properties for
each activity, see Chapter 8, “Workflow Activity Reference,” on page 179.
Creating the Workflow for a Provisioning Request Definition 161

162 Identity Man

novdocx (E
N

U
) 29 January 2007
Each activity has a default name. We strongly recommend that you replace the default names of
activities with names that describe the specific purpose of the activity in the workflow. This
makes it easier to understand the workflow when you look at the graphical display of the
workflow. It also makes comments displayed in the User Application easier to understand. For
example, the following figures show comments in the User Application using default IDs and
descriptive IDs.

Figure 7-5 Activities in User Comments Using Default Names

Figure 7-6 Activities in User Comments Using Descriptive Names

7.2.2 Defining the Data Item Mappings
You use the Data Item Mapping view to map data from the data flow into fields in a form (pre-
activity mapping) and to map data from the form back to the data flow (post-activity mapping).

1 Right-click the activity icon for which you want to set properties and select Show Data Item
Mapping from the menu.

TIP: You can also display the Data Item Mappings tab by selecting Show Data Item Mapping
from the PRD menu.

The Data Item Mapping view is displayed:
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
2 For pre-activity mapping, click in the Source Expression field for the item that you want to
map, then specify an expression. For post-activity mapping, click in the Target Expression field
for the item that you want to map, then specify an expression.
Pre-activity maps can be used for

Initializing form control values.
Setting default values for form controls.
Populating complex form controls with data lists derived from LDAP Queries.
Passing data from form controls of a previous activity to a form control in the current
activity.
Calling external Java* classes to process data.

Post-activity maps can be used for
Creating new data items in flowdata.
Moving form control data from an activity into flowdata.
Calling external Java* classes to process data.

For detailed information about data item mapping for the different types of activities, see
Chapter 8, “Workflow Activity Reference,” on page 179.
The Start Activity can have hard-coded strings, system variables like process locale and
recipient, and Identity Vault expressions (created using the ECMA expression builder VDX
Expr Panel) in pre-activity maps.
Leave the Source Expression blank in pre-activity maps for form fields that the user is expected
to fill in. Alternatively, create a source expression to supply a default value for form fields that
the user is expected to fill in. In either case the form field needs to be defined as editable. See
Section 6.5.2, “General Form Control Properties,” on page 124 for information about setting
the properties of form fields.

7.2.3 Defining the Email Notification Settings
You use the Email Notification view to select an e-mail template, and to specify expressions to
provide values for named parameters included in the e-mail template. E-mails are sent when a new
Approval activity starts (to notify the approver that they have work to do) and when the Finish
activity completes (to notify the initiator that the workflow is done).

1 Right-click the activity icon for which you want to set properties and select Show Email
Notification from the menu.

TIP: You can also display the Email Notification tab by selecting Show Email Notification
from the PRD menu.
Creating the Workflow for a Provisioning Request Definition 163

164 Identity Man

novdocx (E
N

U
) 29 January 2007
The Email Notification view is displayed:

2 Click the Email Template field, then select an e-mail template from the list of defined
templates.
Editing an e-mail template: You can edit an e-mail template in Designer. To do this, select an
Identity Vault in the Modeler, then scroll to Default Notification Collection in the Outline View.
Right-click a template, then select Edit Template.

3 Click in the Source field for a Target token and specify an ECMAScript expression that assigns
a value to the token.
See Chapter 8, “Workflow Activity Reference,” on page 179 for information about e-mail
notification settings.

7.3 Adding the Flow Paths
1 Click the Flow Path tool in the palette:

The mouse pointer turns into a flow path pointer:

2 Click the activity from which you want the flow path to begin, then click the activity on which
you want the flow path to end:
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
The activities are connected.
3 To configure the flow path, click the Select tool in the palette, right-click the flow path, then

select Show Properties.
For information about configuring flow paths, see Section 7.4, “Configuring Flow Paths,” on
page 165.

7.4 Configuring Flow Paths
After you have added a flow path to a workflow diagram, you can specify the path type. For details
on adding flow paths to a workflow, see Section 7.3, “Adding the Flow Paths,” on page 164.

To configure a flow path:

1 Click the flow path in the workflow diagram.
Creating the Workflow for a Provisioning Request Definition 165

166 Identity Man

novdocx (E
N

U
) 29 January 2007
2 Set the flow type on the Properties tab by selecting one of the options in the Type drop-down
list.

The flow path types are described in the following table:

If the Properties tab is not displayed, right-click the flow path in the workflow diagram and
select Show Properties.

Flow Type Description

forward Forwards control to the next activity in a workflow.

The forward flow path is available after all activities except:

Approval

Condition

Finish

approved Determines what happens when a user approves a request.

The approved flow path is valid only after the Approval activity.

denied Determines what happens when a user denies a request.

The denied flow path is valid only after the Approval activity.

refused Determines what happens when a user refuses a request.

The refused flow path is valid only after the Approval activity.

timedout Determines what happens when an Approval activity times out because
the user did not respond.

The timedout flow path is valid only after the Approval activity.

error Determines what happens when an Approval or Condition activity
terminates with an error.

The error flow path is valid only after the Approval and Condition
activities.

true Determines what happens when a conditional expression evaluates to
true.

The true flow path is valid only after the Condition activity.

false Determines what happens when a conditional expression evaluates to
false.

The false flow path is valid only after the Condition activity.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
7.5 Addressing an Approval Activity
To address an Approval activity, you must enter a valid expression for the Addressee property. In
addition, the final number of approvals that are required to approve the activity is determined by the
relationship between the Addressee property and the Approver Type property.

NOTE: If the expression specified in the Addressee property of an Approval activity evaluates to a
non-existent DN (for example, if the expression was hard-coded incorrectly, calculated incorrectly,
or submitted incorrectly by a user selection), no indication is given that the workflow is not
processing normally, when it is in fact orphaned. The application server console displays a normal
forward message, and the Comment and Flow history shows a normal “assigned” message. To avoid
this problem, we recommend that you follow these best practices:

1. Use a Condition activity before the Approval activity and validate the addressee in the
Condition activity.

2. Since the addressee could still be deleted after the addressee is validated in the Condition
activity, you should specify, for the Approval activity, a timeout interval and a link that
performs the desired action in case the workflow times out.

7.5.1 Valid Addressee Expressions
An Addressee expression (including expressions that return data abstraction layer Entities) must
resolve to one of the following at runtime:

A valid individual addressee that can be a user DN or a group DN.
A valid list of addressees (for example, created using a Java vector object) that can contain
multiple User DNs, or multiple group DNs, or a mixture of both.

The maximum number of approvals possible equals the number of Addressees (the number of User
DNs plus the number of Group DNs) and does not include or count the individual members of a
Group.

NOTE: A Group DN is always processed to contribute a single vote (that is, when one member of a
group claims an activity, the rest of the members of the group can no longer see or claim the
activity), regardless of the Approver Type.

The following table provides examples of valid addressee expressions that you can create using the
ECMA expression builder.

Table 7-4 Examples of Addressee Expressions

Type of Expression Example

Individual user DN 'cn=jdoe,ou=users,ou=mysample,o=myorg'

Individual group DN 'cn=Accounting,ou=groups,ou=mysample,o=myorg'
Creating the Workflow for a Provisioning Request Definition 167

168 Identity Man

novdocx (E
N

U
) 29 January 2007
7.5.2 Relationship Between Addressee and Approver Type
The behavior of the workflow and the total number of affirmative approvals needed varies
depending on the type of Addressee that is specified by the Addressee expression, and the Approver
Type that is selected.

Normal Approver Type

The following table describes the workflow behavior when different types of addressee are used
with the Normal Approver Type.

Table 7-5 Workflow Behavior with Normal Approver Type

Group Approver Type

The following table describes the workflow behavior when different types of addressee are used
with the Group Approver Type.

A vector of DNs (can
include user or group
DNs

function DNVector() { v=new java.util.Vector();
v.add('CN=jdoe,' + USER_CONTAINER);
v.add('CN=Accounting,' + GROUP_CONTAINER);
v.add('CN=jsmith,' + USER_CONTAINER);
v.add('CN=bsmith,' + USER_CONTAINER); return v; };
DNVector();

In this example, the total number of addressees is four (three individuals and
one user from the Accounting group).

Addressee Value Description

Individual User DN or Entity Only the user can see the Approval activity in their Task List.

Only one approval is needed to complete the activity as Approved.

Individual Group DN or
Group Entity

Each member of Group can see the activity in task list.

When one member claims the activity, it is removed from the task lists
of others.

Only one approval is needed to complete the activity as Approved.

Multiple User DNs or User
Entities (Virtual Group of
Users)

Not allowed.

Multiple Group DNs or
Group Entities (Virtual
Group of Groups)

Not allowed.

Mixture of Users and
Groups (Virtual Group
Mixture)

Not allowed.

Type of Expression Example
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
Table 7-6 Workflow Behavior with Group Approver Type

Multiple Approver Type

The following table describes the workflow behavior when different types of addressee are used
with the Multiple Approver Type.

Table 7-7 Workflow Behavior with Multiple Approver Type

Addressee Value Description

Individual User DN or Entity Only the user can see the Approval activity in their task list.

Only one approval is needed to complete the activity as Approved.

Individual Group DN or
Group Entity

Each member of Group can see the the activity in their task list.

When one member claims the activity, it is removed from task lists of
others.

Only one approval is needed to complete the activity as Approved.

Multiple User DNs or User
Entities (Virtual Group of
Users)

Each user in the virtual group can see the activity in their task list.

When one user from the virtual group claims the activity, the activity
is removed from the task lists of others.

Only one approval is needed to complete the activity as Approved.

Multiple Group DNs or
Group Entities (Virtual
Group of Groups)

Each member in each of the groups can see the activity in their task
list.

When one user from the virtual group claims the activity, the activity
is removed from the task lists of others in all of the groups.

Only one approval is needed to complete the activity as Approved.

Mixture of Users and
Groups (Virtual Group
Mixture)

Each user and member of each Group of the mixed virtual group can
see the activity in their task list.

When one member from the virtual group claims the activity, the
activity is removed from the task lists of others.

Only one approval is needed to complete the activity as Approved.

Addressee Value Description

Individual User DN or Entity Only the user can see the activity in their task list.

Only one approval is needed to complete the activity as Approved.

Individual Group DN or
Group Entity

Each member of the group can see the activity in their task list.

When one member claims the activity, the activity is removed from
the task lists of others.

Only one approval is needed to complete the activity as Approved.

Multiple User DNs or User
Entities (Virtual Group of
Users)

Each user in the virtual group can see the activity in their task list.

Each user can claim the activity.

Approval of each user is needed to complete the activity as
Approved.

Any single denial completes the activity as Denied.
Creating the Workflow for a Provisioning Request Definition 169

170 Identity Man

novdocx (E
N

U
) 29 January 2007
Quorum Approver Type

The following table describes the workflow behavior when different types of addressee are used
with the Quorum Approver Type.

Table 7-8 Workflow Behavior with Quorum Approver Type

Multiple Group DNs or
Group Entities (Virtual
Group of Groups)

Each member in each of the groups can see the activity in their task
list.

When one member from a group claims the activity, the activity is
removed from the task list of others in that Group.

Each group must supply one approval to complete the activity as
Approved.

Any single denial completes the activity as Denied.

Mixture of Users and
Groups (Virtual Group
Mixture)

Each user and each member of each group of the mixed virtual group
can see the activity in their task list.

Each user can claim the activity, and one member of each group can
claim the activity (others in group will then not see the task).

Each user and one member of each group must approve to complete
the activity as Approved.

Any single denial completes the activity as Denied.

Addressee Value Description

Individual User DN or Entity Only the user can see the activity in their task list.

Only one approval is needed to complete the activity as Approved.

Individual Group DN or
Group Entity

Each member of the group can see the activity in their task list.

When one member claims the activity, the activity is removed from the
task lists of others.

Only one approval is needed to complete the activity as Approved.

Multiple User DNs or User
Entities (Virtual Group of
Users)

Each user in the virtual group can see the activity in their task list.

All users in the virtual group can claim the activity simultaneously.

An absolute number or specified percentage of Addressees must
approve to complete the activity as Approved.

Multiple Group DNs or
Group Entities (Virtual
Group of Groups)

Each member in each group can see the activity in their task list.

One member of each group can claim the task (others in group will
then not see the task).

An absolute number or specified percentage of Addressees must
approve to complete the activity as Approved.

Addressee Value Description
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
7.6 Provisioning Multiple Individuals with One
Workflow Instance
You can configure a provisioning request definition so that one individual (for example, a team
manager) can provision multiple individuals (for example, members of a team, or a group) with one
workflow. The provisioning request definition can be configured to provision any one of the
following:

multiple individual users from the default user container
all members of a group from the default group container (for example, Sales, Marketing, HR,
IT)
all members of any arbitrary Identity Vault container

To create this type of workflow, create the provisioning request definition as you normally would.
On the Overview tab, select Single Flow Provision Members from the Flow Strategy list.

7.6.1 Basic Steps for using the Workflow
This section describes the basic steps for using a workflow that utilizes the Single Flow Provision
Members flow strategy.

1 Log in to the user application as a user application administrator.
2 Click Requests and Approvals.

Mixture of Users and
Groups (Virtual Group
Mixture)

Each user and each member of each Group of the mixed virtual group
can see the activity in their task list.

Each user can claim the activity, and one member of each group can
claim the activity (others in group will then not see task).

An absolute number or specified percentage of Addressees must
approve to complete the activity as Approved.

Addressee Value Description
Creating the Workflow for a Provisioning Request Definition 171

172 Identity Man

novdocx (E
N

U
) 29 January 2007
3 Click Request Team Resources.

4 Select the provisioning category to which the provisioning request belongs, then click OK.

You should see a workflow that is marked with an icon that contains a cluster of people:

5 Click the name of the workflow.
A form is displayed that provides three methods of 3 methods of selecting multiple users to
provision:

Specify one or more recipients
Specify a group
Specify a container
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
6 Specify the recipients, then click Continue.

7.6.2 Setting up the Workflow for a Team Manager to Use
To enable a Team Manager to use a work flow that uses the Single Flow Provision Members flow
strategy, you need to perform these additional setup steps.

1 Login to iManager as an administrator.
2 In Roles and Tasks, select Provisioning Configuration.
3 Select Provisioning Teams.
4 Setup the team if it is not already setup.
5 Bind the workflow to the team by defining a Provisioning Team Request using the Provisioning

Configuration Role and Task.
For information about defining a provisioning team request, see “Managing Provisioning Team
Request Rights” in the Identity Manager 3.5 User Application: Administration Guide.

7.7 Working with Entity Activities
You use Entity activities to update entities in the Identity Vault. The procedures for working with
Entity activities differ slightly from the procedures for working with other activity types.

The section includes the following topics:

Section 7.7.1, “Adding or Modifying an Entity,” on page 173
Section 7.7.2, “Using an Entity Activity to Delete an Entity,” on page 174
Section 7.7.3, “Using an Entity Activity to Delete an Attribute or Value,” on page 174

7.7.1 Adding or Modifying an Entity
1 From the Workflow page, click the Entity activity icon in the palette, then click the canvas to

insert the Entity activity into the workflow.
2 Click the Properties tab.
Creating the Workflow for a Provisioning Request Definition 173

174 Identity Man

novdocx (E
N

U
) 29 January 2007
3 Click in the Value column of the Entity Type field, then select the Entity Type (for example,
User, Group) that you want to create or modify. If the target object that you specify in Step 6
already exists, the target object is modified; if the target object doesn't exist, it is created.

4 Click in the Value column of the Operation field, then select Create/Modify.
5 Click the Data Item Mapping tab.
6 Click the button next to the Entity dn field to display the ECMA expression builder, then

specify an expression that identifies the target of the operation (for example, “recipient”).
7 Click OK to return to the Data Item Mapping view.
8 Specify expressions for other attributes as required to create the Entity.

See Section 3.2, “Working with Entities and Attributes,” on page 41 for information about
adding entities. If you are adding an entity, you must enter expressions for all required
attributes.

7.7.2 Using an Entity Activity to Delete an Entity
1 From the Workflow page, click the Entity activity icon in the palette, then click the canvas to

insert the Entity Activity into the workflow.
2 Click the Properties tab.
3 Click in the Value column of the Entity Type field, then select the Entity Type (for example,

User, Group) to which the entity that you want to delete belongs.
4 Click in the Value column of the Operation field, then select Delete entity.
5 Click the Data Item Mapping tab.
6 Click the button next to the Entity dn field to display the ECMA expression builder, then

specify an expression that identifies the Entity that you want to delete.
7 Click OK to return to the Data Item Mapping view.

7.7.3 Using an Entity Activity to Delete an Attribute or Value
1 From the Workflow page, click the Entity activity icon in the palette, then click the canvas to

insert the Entity Activity into the workflow.
2 Click the Properties tab.
3 Click in the Value column of the Entity Type field, and select the Entity Type (for example,

User, Group) of the entity to which the attribute or value that you want to delete belongs.
4 Click in the Value column of the Operation field, and select Delete attribute/value.
5 Click the Data Item Mapping tab.
6 Click the button next to the Entity dn field to display the ECMA expression builder, then

specify an expression that identifies the entity that contains the attribute or value that you want
to delete.

7 Click OK to return to the Data Item Mapping view.
8 Click in the Delete Type field for the attribute to which you want the operation to apply, then

select the operation from the list:
Select Delete Attribute for single-value attributes
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
Select either Delete Attribute or Delete Value for multi-value attributes. Selecting Delete
Value for multi-value attributes also requires that you to enter an expression to identify the
value that you want to delete.

9 To delete a value, click in the Delete Value Expression field for the attribute to which you want
the operation to apply, then specify an expression that resolves to the value of the attribute that
you want to delete.

7.8 Configuring Digital Signature Support
This section describes how to use Designer to configure provisioning request definitions to support
digital signatures. To configure a provisioning request definition to support digital signatures, follow
the steps outlined in the following table.

Table 7-9 Steps for Specifying Digital Signature Support in Workflows

Step Task Description

1 Create one or more digital signature
declarations.

See Section 7.8.2, “Creating a Signature
Declaration,” on page 176.

2 Specify whether a digital signature is required
to initiate a provisioning request.

In the Workflow tab, click the Start Activity
and set the following properties:

Digital Signature Required: See
Section 7.8.1, “Digital Signature
Workflow Properties,” on page 176.

Signature Declaration: Choose a
signature declaration from the
dropdown. The list is only populated if
you completed Step 1 (above).

3 Specify whether a digital signature is required
for each approval step within the workflow.

Each approval step can have more than one
outgoing link. You must specify the Digital
Signature Required property and the
Signature Declaration properties for each
approval step and each outgoing flow path.
For a description of the property settings, see
Section 7.8.1, “Digital Signature Workflow
Properties,” on page 176.

4 Determine for the request and each approval
form whether it contains a title control.

Title controls have a property called Display
title in signed form document. Determine for
your application and use of digital signatures
whether this property should be set to true of
false. For more information on this property,
see Section 6.5.19, “Title,” on page 147.
Creating the Workflow for a Provisioning Request Definition 175

176 Identity Man

novdocx (E
N

U
) 29 January 2007
7.8.1 Digital Signature Workflow Properties

Table 7-10 Digital Signature Settings

7.8.2 Creating a Signature Declaration
To create a signature declaration:

1 Open the Signature Declarations tab.

Setting Description

Digital Signature Type Specifies whether the digital signature will use data or form as its type:

Data specifies that the XML signature serves as the user
agreement. When Data is selected, the XML data is written to the
audit log.

Form specifies that a PDF document that includes the digital
signature declaration be generated. This document serves as the
user agreement. The user can preview the generated PDF
document before submitting a request or approval. When Form is
selected, the PDF document (encapsulated in XML) is written to
the audit log.

Digital Signature Declaration Specifies a digital signature confirmation string that certifies the user’s
signature. See Section 7.8.2, “Creating a Signature Declaration,” on
page 176.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
2 Click to add a row, then fill in the fields as follows:

3 Click Save.

Field Description

Signature Declaration ID A unique identifier for the signature declaration. This ID is displayed in
the drop-down for the “Digital Signature Declaration” on page 176.

Language Choose a language and specify the signature declaration translation for
that language. The signature declaration string is also exported as part
of the Provisioning view’s Export > Export Localization Data so that you
can send the declaration to be localized as part of the rest of the User
Application display labels and strings.

Signature Declaration The string to display in a form as the signature declaration.
Creating the Workflow for a Provisioning Request Definition 177

178 Identity Man

novdocx (E
N

U
) 29 January 2007
ager 3.5 User Application: Design Guide

8
novdocx (E

N
U

) 29 January 2007
8Workflow Activity Reference

This section provides details on configuring the different types of workflow activities. The display
names for all activities can be localized by clicking the localization button (see Section 2.9,
“Localizing Display Labels,” on page 31) for the activity name property. Activity display names are
also exported as part of the Provisioning view’s Export > Export Localization Data (see
Section 2.9.3, “Exporting and Importing Localized Labels,” on page 33) so that you can send the
activity names to be localized as part of the rest of the User Application display labels and strings.

Topics in this section include:

Section 8.1, “Start Activity,” on page 179
Section 8.2, “Approval Activity,” on page 181
Section 8.3, “Log Activity,” on page 188
Section 8.4, “Branch Activity,” on page 189
Section 8.5, “Mapping Activity,” on page 189
Section 8.6, “Merge Activity,” on page 190
Section 8.7, “Condition Activity,” on page 191
Section 8.8, “Workflow Status,” on page 192
Section 8.9, “Finish Activity,” on page 193
Section 8.10, “Integration Activity,” on page 194
Section 8.11, “Entitlement Activity,” on page 196
Section 8.12, “Entity Activity,” on page 198

8.1 Start Activity
The Start activity is the first activity to execute in a workflow. It begins execution when the user
makes a request to provision a resource. After the user makes the request, the Start activity displays
the initial request form to the user. On the initial request form, the user can be asked to specify a
comment that indicates the reason for the request.

You can customize the initial request form to suit your application requirements. For details on
customizing forms, see Chapter 6, “Creating Forms for a Provisioning Request Definition,” on
page 103.

Before displaying the form to the user, the Start activity performs any pre-activity data mappings
specified for the activity.

After the user submits the form, the Start activity performs any post-activity data mappings specified
for the activity. These mappings typically include copying data from form fields into the flowdata
object.

8.1.1 Properties
The Start activity has the following property:
Workflow Activity Reference 179

180 Identity Man

novdocx (E
N

U
) 29 January 2007
Table 8-1 Start Activity Property

8.1.2 Data Item Mapping
To bind the data items associated with the Start activity, you define pre-activity and post-activity
mappings. The pre-activity mappings initialize data in the request form with constants or values
retrieved from the flowdata object. The post-activity mappings move form data back into the
flowdata object.

Table 8-2 Start Activity Data Item Mappings

For details on building ECMA expressions, see Chapter 10, “Working with ECMA Expressions,” on
page 249.

8.1.3 Email Notification
Not supported with this activity.

Property Name Description

Name Provides a name for the activity.

Digital Signature Type See Digital Signature Type in Table 7-10 on
page 176.

Setting Description

Pre-Activity Allows you to specify one or more pre-activity mappings. When
this option is selected, you can double-click a cell in the Source
Expression column to specify where the initial request form gets
data for a particular target form field.

NOTE: When the Pre-Activity option is selected, the cells in the
Target Form Field column are not editable.

Post-Activity Allows you to specify one or more post-activity mappings. When
this radio button is selected, you can double-click a cell in the
Target Expression column to specify where data from a form
field should be copied after the form has been processed.

NOTE: When the Post-Activity option is selected, the cells in
the Source Form Field column are not editable.

Source Expression Specifies a source expression for a pre-activity mapping. When
you click a cell in the Source Expression column, the ECMA
expression builder displays to help you define your expression.

Target Expression Specifies a target expression for a post-activity mapping. When
you click a cell in the Target Expression column, the ECMA
expression builder displays to help you define your expression.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
8.2 Approval Activity
The Approval activity is a user-facing activity that displays an approval form to the user. On the
approval form, the user can approve, deny, or refuse a provisioning request. The Approval activity
can have multiple outgoing flow paths, but only one of the paths is executed at runtime.

You can customize the approval form to suit your application requirements. For details on
customizing forms, see Chapter 6, “Creating Forms for a Provisioning Request Definition,” on
page 103.

Before displaying the form to the user, the Approval activity performs any pre-activity data
mappings specified for the activity.

After the user submits the form, the Approval activity performs any post-activity mappings specified
for the activity. These mappings typically include copying data from form fields into the flowdata
object.

8.2.1 Properties
The Approval activity has the following properties:

Table 8-3 Approval Activity Properties

Property Name Description

Name Provides a name for the activity.

Addressee Specifies a dynamic expression that identifies the addressee for the
activity. The addressee is determined at runtime, based on how the
expression is evaluated.

For more information about developing valid Addressee
expressions, and about how Addressee interacts with the Approver
Type property, see Section 7.5, “Addressing an Approval Activity,”
on page 167.

TIP: To simplify the process of testing a new workflow, you can set
the addressee to be the recipient. This removes the need to log out
of the User Application and log in again as a manager each time
you want to test your forms. This technique is particularly useful
when the workflow involves multiple levels of approval. After the
testing phase is complete, you can change the addressee to the
correct value.

For details on building ECMA expressions, see Chapter 10,
“Working with ECMA Expressions,” on page 249. For descriptions
of the system variables available in a workflow, see Section 4.3.3,
“Understanding Workflow Data,” on page 86.
Workflow Activity Reference 181

182 Identity Man

novdocx (E
N

U
) 29 January 2007
Reminder Start Specifies a dynamic expression that defines, in milliseconds, the
time at which the first reminder e-mail should be sent. The start
value is an offset from the time of the first assignment associated
with the activity. You can pick pre-defined expressions that
represent common intervals (for example, hour, day, week) in the
ECMAScript Variables pane of the ECMA expression builder.

This is part of the reminder e-mail function. If this activity is
considered important and needs to be acted on quickly, you can
configure the activity to send a reminder e-mail to the activity
addressee. For example, you can set the reminder settings to send
a reminder e-mail 5 days before the activity times out, and on a daily
basis until the activity times out. To do this, specify a Reminder Start
time, a Reminder Interval, and the e-mail to be sent (see
Section 8.2.3, “E-mail Notification,” on page 186).

For details on building ECMA expressions, see Chapter 10,
“Working with ECMA Expressions,” on page 249. For descriptions
of the system variables available in a workflow, see Section 4.3.3,
“Understanding Workflow Data,” on page 86.

Reminder Interval Specifies a dynamic expression that defines the interval between
which reminder e-mails are sent. You can pick pre-defined
expressions that represent common intervals (for example, hour,
day, week) in the ECMAScript Variables pane of the ECMA
expression builder.

Escalation Addressee Specifies a dynamic expression that identifies the user who should
get this task if the timeout limit has been reached.

The escalation addressee is determined at runtime, based on how
the expression is evaluated.

For details on building ECMA expressions, see Chapter 10,
“Working with ECMA Expressions,” on page 249. For descriptions
of the system variables available in a workflow, see Section 4.3.3,
“Understanding Workflow Data,” on page 86.

Property Name Description
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
Escalation Count Specifies the number of times to retry the activity in the event of a
timeout.

When an activity times out, the workflow process can try to
complete the activity again, depending on the escalation count
specified for the activity. With each retry, the workflow process can
escalate the activity to another user. In this case, the activity is
reassigned to another user (the user’s manager, for example) to
give this user an opportunity to finish the work of the activity. If the
last retry times out, the activity can be marked as approved, denied,
refused, timedout, or in error, depending on the final timeout action
specified for the activity.

The Timeout interval (see Timeout in this table) takes precedence
over the Escalation Interval. For example, if you set the timeout to
10 minutes, and specify an Escalation Count of 3 and Escalation
Interval of 5 minutes, the activity will finish after 10 minutes without
attempting all of the retries. In this example, the second retry would
be canceled, and the workflow would finish processing for the
activity. At the conclusion of the activity, the workflow engine would
follow the link defined by the final timeout action.

Escalation Interval Specifies a dynamic expression that defines the period of time
allotted for the addressee to complete the task. The escalation
interval applies each time the activity is executed by the addressee.

The Timeout interval (see Timeout in this table) takes precedence
over the Escalation Interval. For example, if you set the timeout to
10 minutes, and specify an Escalation Count of 3 and Escalation
Interval of 5 minutes, the activity will finish after 10 minutes without
attempting all of the retries. In this example, the second retry would
be canceled, and the workflow would finish processing for the
activity. At the conclusion of the activity, the workflow engine would
follow the link defined by the final timeout action.

For details on building ECMA expressions, see Chapter 10,
“Working with ECMA Expressions,” on page 249. For descriptions
of the system variables available in a workflow, see Section 4.3.3,
“Understanding Workflow Data,” on page 86.

Escalation Reminder Start Specifies a dynamic expression that defines the time at which the
first reminder e-mail (see Reminder Start in this table) should be
sent to the Escalation Addressee. The start value is an offset from
the time of the escalation assignment. You can pick pre-defined
expressions that represent common intervals (for example, hour,
day, week) in the ECMAScript Variables pane of the ECMA
expression builder.

Escalation Reminder Interval Specifies a dynamic expression that defines how often messages
are sent to the Escalation Addressee after the first escalation
reminder is sent. You can pick pre-defined expressions that
represent common intervals (for example, hour, day, week) in the
ECMAScript Variables pane of the ECMA expression builder.

Property Name Description
Workflow Activity Reference 183

184 Identity Man

novdocx (E
N

U
) 29 January 2007
Final Timeout Action Determines the final state of the request in the event that the
workflow times out. The choices are

approved

denied

refused

timedout

error

Timeout Specifies a dynamic expression that defines the period of time
allotted for the addressee to complete the task. The timeout interval
applies each time the activity is executed by the addressee.

The Timeout setting takes precedence over the Escalation Count
and Escalation Interval values. If the Timeout setting for the activity
is reached before one or more of the escalation attempts have been
tried, the activity finishes processing without executing these
escalation attempts. For example, if you set the timeout to 10
minutes, and specify an Escalation Count of 3 and Escalation
Interval of 5 minutes, the activity will finish after 10 minutes without
attempting all of the escalation attempts. In this example, the
second escalation attempt would be canceled, and the workflow
would finish processing for the activity. At the conclusion of the
activity, the workflow engine would follow the link defined by the
final timeout action.

For details on building ECMA expressions, see Chapter 10,
“Working with ECMA Expressions,” on page 249. For descriptions
of the system variables available in a workflow, see Section 4.3.3,
“Understanding Workflow Data,” on page 86.

Time Units Determines the unit of measure used for the timeout interval. The
choices are

Milliseconds

Days

Hours

Minutes

Seconds

Form Specifies the name of the approval form to display to the user.

An Approval activity must have a form associated with it. If no form
is specified, an error message is displayed at runtime.

Exclude Requestor Specifies whether a requestor can approve their own provisioning
requests. Select true to allow a requestor to approve their own
provisioning requests; otherwise, select false.

Property Name Description
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
8.2.2 Data Item Mapping
To bind the data items associated with the Approval activity, you define pre-activity and post-
activity mappings. The pre-activity mappings initialize data in the approval form with constants,
values retrieved from the flowdata object, system process variables, system activity variables, and
data retrieved via expression calls to the directory abstraction layer. The post-activity mappings
move form data back into the flowdata object.

Approver Type Specifies the number of addresses that are allowed and the
approval pattern that is enforced for this activity. The choices are

Normal - Action by the addressee is required to complete the
approval.

Group - Action by one addressee in the group is required to
complete the approval.

Multiple - Action by all of the addressees is required to
complete the approval.

You cannot use post activity data item mapping with the
Mulitple Approver Type.

Quorum - Action by a percentage of addressees or an
absolute number of addressees (see Quorum property in this
table) is required to complete the approval.

You cannot use post activity data item mapping with the
Quorum Approver Type.

For information about how the Approver Type property interacts with
the Addressee property, see Section 7.5, “Addressing an Approval
Activity,” on page 167.

Notify by Email Specifies whether this activity should send e-mail notifications. Set
to true to notify by e-mail; otherwise, set to false.

You specify the e-mail to send using the E-Mail Notification tab (see
Section 8.2.3, “E-mail Notification,” on page 186).

To use this feature, the Notify participants by Email parameter for
the provisioning request definition must be set to true (see Table 5-
1, “Overview Properties,” on page 101).

Quorum Creates an expression that specifies a percentage (for example,
’75%’) of approvals that is required before a quorum is achieved, or
an absolute number (for example, ’3’) of approvals that are required
before a quorum is achieved.

Digital Signature Type See Digital Signature Type in Table 7-10 on page 176.

Priority Specifies a dynamic expression that defines the priority of the
approval activity. Valid priority values are 1, 2, or 3. You can also
define an expression to determine the priority from workflow data.
For example, flowdata.get("Priority").

In the User Application, the user can sort their list of tasks by the
priority values of the tasks.

Property Name Description
Workflow Activity Reference 185

186 Identity Man

novdocx (E
N

U
) 29 January 2007
Table 8-4 Approval Activity Data Item Mappings

For details on building ECMA expressions, see Chapter 10, “Working with ECMA Expressions,” on
page 249.

8.2.3 E-mail Notification
To enable e-mail notification for the Approval activity, you need to specify the e-mail template to
use, as well as source expressions for target tokens in the e-mail body.

Table 8-5 E-mail Notification Settings for the Approval Activity

Setting Description

Pre Activity Allows you to specify one or more pre-activity mappings. When this option
is selected, you can double-click a cell in the Source Expression column to
specify where the approval form gets data for a particular target form field.

NOTE: When the Pre-Activity choice is selected, the cells in the Target
Form Field column are not editable.

Post Activity Allows you to specify one or more Post Activity mappings. When this option
is selected, you can double-click a cell in the Target Expression column to
specify where data from a form field should be copied after the form has
been processed.

You cannot use Post Activity mapping with the Multiple and Quorum
approver types (see Section 8.2.1, “Properties,” on page 181).

The form for an Approval activity includes a special internal control called
apwaComment. This control causes user comments to be written to the
workflow database. It should not have a post-activity mapping. For more
information on this control, see Section 6.5.9, “DNMaker,” on page 133.

NOTE: When the Post-Activity option is selected, the cells in the Source
Form Field column are not editable.

Source Expression Specifies a source expression for a pre-activity mapping. When you click a
cell in the Source Expression column, the ECMA expression builder
displays to help you define your expression.

Target Expression Specifies a target expression for a post-activity mapping. When you click a
cell in the Target Expression column, the ECMA expression builder
displays to help you define your expression.

Setting Description

Notify Specifies that this e-mail notification is a notification e-
mail.

Reminder Specifies that this e-mail notification is a reminder e-mail.

Retry Reminder Specifies that this e-mail notification is a retry reminder e-
mail.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
NOTE: E-mail notification is only supported when the Notify participants by email check box is
selected on the Overview tab, and the Notify by Email property for the Approval activity is set to
true.

Show System Tokens Displays system tokens (for example, TO, CC, BCC) in the
Target column.

Email Template Specifies the name of the e-mail template to use. By
default, the Approval activity uses the Provisioning
Notification template.

You can edit an e-mail template in Designer. For more
information, see “Editing an e-mail template:” on
page 164.

Source/Target Specifies the source expressions for target tokens in the e-
mail body.

The list of target tokens is determined by the selected e-
mail template. You cannot add new tokens, but you can
assign values to the tokens by building your own source
expressions. At runtime, source expressions are
evaluated to determine the value of each token.

The available target tokens are listed below:

TO

CC

BCC

recipientFullName

initiatorFullName

requestTitle

userFirstName

If you use a provisioning request definition template to
create your workflow, each token has a default source
expression. The default expressions retrieve values from
the workflow process (the process object) or from the data
abstraction layer (IDVault object). You can modify these
expressions to suit your application requirements.

NOTE: When you create a workflow for use with the
Resource Request portlet (see “Resource Request
Portlet” in the Identity Manager User Application:
Administration Guide) and you use _default_ as the
expression for the TO token as _default_, the addressee
expression must be an IDVault expression.

For details on building ECMA expressions, see
Chapter 10, “Working with ECMA Expressions,” on
page 249.

Setting Description
Workflow Activity Reference 187

188 Identity Man

novdocx (E
N

U
) 29 January 2007
8.3 Log Activity
The Log activity is a system activity that writes messages to a log. To log information about the state
of a workflow process, the Workflow System interacts with Novell® Audit.

NOTE: Novell Audit can be configured to send its information to Novell® Sentinel for additional
logging and reporting features (see “Logging to a Novell Audit or Sentinel server ” in the Identity
Manager 3.5 User Application: Administration Guide).

During the course of its processing, a workflow can log information about various events that have
occurred. Users can then use the Novell reporting tools to look at logged data.

Before you can use logging, you must enable logging in the user application. For more information
see “Enabling Audit Logging” in the Identity Manager 3.5 User Application: Administration Guide.

NOTE: During the course of workflow execution, many system events are logged that are not
controlled by the Log Activity. For example, the Workflow System writes a message to the log
whenever a workflow is started or stopped, or when it is approved, denied, or refused. For a
complete list of the system events logged during workflow execution, see “Setting Up Logging” in
the Identity Manager 3.5 User Application: Administration Guide.

8.3.1 Properties
The Log activity has the following properties:

Table 8-6 Log Activity Properties

8.3.2 Data Item Mapping
Not supported with this activity.

Property Name Description

Name Provides a name for the activity.

Audit Specifies whether log messages should be sent. When this
property is set to true, messages are sent to all log4j channels,
including Novell Audit. When this property is set to false, no log
messages are sent.

Author Defines the author for the message. By default, the author is the
initiator of the provisioning request.

Message Specifies an ECMA expression that defines text for the log
message. Typically, this text indicates where this Log activity is
being executed within the process and provides other
information that makes the log easy to understand.

For details on building ECMA expressions, see Chapter 10,
“Working with ECMA Expressions,” on page 249. For
descriptions of the system variables available in a workflow, see
Section 4.3.3, “Understanding Workflow Data,” on page 86.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
8.3.3 E-mail Notification
Not supported with this activity.

8.4 Branch Activity
In a workflow that supports parallel processing, the Branch activity allows multiple users to act on
different areas of the work item in parallel. After the users have completed their work, the Merge
activity synchronizes the incoming branches in the flow.

A workflow can have multiple Branch activities, but each Branch activity must have an associated
Merge activity. All flow paths leading out of a Branch activity will execute.

The Branch activity does not support synchronization between the branches while they are
executing. Each branch must not depend on data being updated in another branch. The data
synchronization is enforced by the Merge activity. After the Merge activity completes, all of the data
set in the branches is available.

8.4.1 Properties
The Branch activity has the following property:

Table 8-7 Branch Activity Properties

8.4.2 Data Item Mapping
Not supported with this activity.

8.4.3 E-mail Notification
Not supported with this activity.

8.5 Mapping Activity
The Mapping activity allows you to add or manipulate data in a workflow. It evaluates the source
expression and saves the result in the target expression of the associated data items. You can use it as
a way to combine data from parallel-processed approval forms after their data is moved to flowdata.

For example, in a parallel approval context you might need to collect data from more than one
approval form that is dependent on each other or needs to be calculated with each other. To
accomplish this, place a Mapping activity after a Merge activity and before any activities that
consume the results (for example, Condition, Entity, Provisioning or another Approval activity).

You can also use the Mapping activity to isolate calls to external Java routines that might manipulate
data and be resource intensive, thereby not slowing down user-based Approval activities in either
their pre-activity or post-activity mapping phase.

Property Name Description

Name Provides a name for the activity.
Workflow Activity Reference 189

190 Identity Man

novdocx (E
N

U
) 29 January 2007
8.5.1 Properties
The Mapping activity has the following property:

Table 8-8 Mapping Activity Properties

8.5.2 Data Item Mapping
To bind the data items associated with the Mapping activity, you define pre-activity and post-activity
mappings. The pre-activity mappings initialize data in flowdata with constants, values retrieved
from the flowdata object, system process variables, system activity variables, or data retrieved via
expression calls to the directory abstraction layer. The post-activity mappings move data into the
flowdata object.

Table 8-9 Mapping Activity Data Item Mappings

8.5.3 E-mail Notification
Not supported with this activity

8.6 Merge Activity
In a workflow that supports parallel processing, the Merge activity synchronizes the incoming
branches in the flow. The Merge activity is used in conjunction with the Branch activity, which
allows two users to act on different areas of the work item in parallel. After the users have completed
their work, the Merge activity synchronizes the incoming branches.

A workflow can have multiple Branch activities, but each Branch activity must have an associated
Merge activity.

Property Name Description

Name Provides a name for the activity.

Setting Description

Source Expression Specifies a source expression. When you click a cell in the
Source Expression column, the ECMA expression builder
displays to help you define your expression. For example,

function list() { s=new java.lang.String();
if (wi.XPath('count(flow-data/groups)') >
0) s="There was a group selected"; return
s;}; list();

Target Expression Specifies a target expression. When you click a cell in the
Target Expression column, the ECMA expression builder
displays to help you define your expression or you can click
the Map All button. An example of a target expression is:

flowdata.testexpression
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
8.6.1 Properties
The Merge activity has the following property:

Table 8-10 Merge Activity Properties

8.6.2 Data item mapping
Not supported with this activity.

8.6.3 Email notification
Not supported with this activity.

8.7 Condition Activity
The Condition activity lets you add conditional logic to a workflow. This logic can be used to
control what happens when the workflow executes. In the Condition activity, you define logic as an
ECMA expression that evaluates to a boolean value.

Each Condition activity must have two outgoing flow paths, one that handles conditions that
evaluate to true and another that handles conditions that evaluate to false. Optionally, a third flow
path can be added to handle error conditions that occur if the ECMA expression evaluation fails.

8.7.1 Properties
The Condition activity has the following properties:

Table 8-11 Condition Activity Properties

Property Name Description

Name Provides a name for the activity.

Property Name Description

Name Provides a name for the activity.
Workflow Activity Reference 191

192 Identity Man

novdocx (E
N

U
) 29 January 2007
8.7.2 Data Item Mapping
Not supported with this activity.

8.7.3 Email Notification
Not supported with this activity.

8.8 Workflow Status
The Workflow Status activity lets you specify the approval status (approved or denied) for
workflows that do not contain a provisioning activity (an Entitlement or Entity).

8.8.1 Properties
The Workflow Status activity has the following properties:

Table 8-12 Workflow Status Activity Properties

8.8.2 Data Item Mapping
Not supported with this activity.

Condition Expression Specifies an ECMA expression that returns true or false. The
value returned determines which flow path is followed after the
activity has finished executing.

TIP: If you need to test whether two objects are equal in a
conditional expression, you should use the == operator, rather
than the equals() method, unless you are certain that the
objects being compared are Java objects of the same type.
For instance, use this expression:
(approval_A.getAction() == "DENIED")

instead of this one:
(approval_A.getAction()).equals("DENIED")

For details on building ECMA expressions, see Chapter 10,
“Working with ECMA Expressions,” on page 249. For
descriptions of the system variables available in a workflow,
see Section 4.3.3, “Understanding Workflow Data,” on
page 86.

Property Description

Name Specifies the name of the activity.

Workflow Status Specifies the approval status as an expression: either
‘approved’ or ‘denied’.

Property Name Description
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
8.8.3 E-mail Notification
Not supported with this activity.

8.9 Finish Activity
The Finish activity marks the completion of a workflow. When the Finish activity executes, an e-
mail message is sent to notify participants that the workflow has finished.

8.9.1 Properties
The Finish activity has the following properties:

Table 8-13 Finish Activity Properties

8.9.2 Data Item Mapping
Not supported with this activity.

8.9.3 E-mail Notification
To enable e-mail notification for the Finish activity, you need to specify the e-mail template to use,
as well as source expressions for target tokens in the e-mail body.

Table 8-14 Email Notification Settings for the Finish Activity

Property Description

Name Provides a name for the activity.

Notify by Email Provides a method of triggering an e-mail notification when the
Finish activitiy is executed. When this property is set to true, an
e-mail notification is sent. When this property is set to false, no
e-mail notification is sent.

See Section 8.9.3, “E-mail Notification,” on page 193 for
information about setting up the e-mail notification.

Setting Description

Email Template Specifies the name of the e-mail template to use. By default,
the Finish activity uses the Provisioning Approval Completed
Notification template.

You can edit an e-mail template in Designer . See “Editing an
e-mail template:” on page 164 for more information.
Workflow Activity Reference 193

194 Identity Man

novdocx (E
N

U
) 29 January 2007
NOTE: E-mail notification is only supported when the Notify participants by email check box is
selected on the Overview tab.

8.10 Integration Activity
The Integration activity provides a way to use a Web service to process workflow data. For detailed
information about using the Integration activity, see Chapter 9, “Working with Integration
Activities,” on page 201.

Source

Target

Specifies the source expressions for target tokens in the e-
mail body.

The list of target tokens is determined by the selected e-mail
template. You cannot add new tokens, but you can assign
values to the predefined tokens by building your own source
expressions. At runtime, the source expressions are evaluated
to determine the value of each token.

The available target tokens for the Provisioning Approval
Completed Notification e-mail template are listed below:

TO

CC

BCC

requestStatus

requestSubmissionTime

requestID

recipientFullName

initiatorFullName

requestTitle

If you use a provisioning request definition template to create
your workflow, each token has a default source expression.
The default expressions retrieve values from the workflow
process (the process object) or from the data abstraction layer
(IDVault object). You can modify these expressions to suit your
application requirements.

NOTE: When you create a workflow for use with the Resource
Request portlet (see “Resource Request Portlet” in the Identity
Manager 3.5 User Application: Administration Guide) and you
use _default_ as the expression for the TO token as
default, the addressee expression must be an IDVault
expression.

For details on building ECMA expressions, see Chapter 10,
“Working with ECMA Expressions,” on page 249.

Setting Description
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
8.10.1 Properties
The Integration activity has the following properties.

Table 8-15 Integration Activity Properties

8.10.2 Data Item Mapping
To bind the data items associated with the Integration activity, you define pre-activity and post-
activity mappings. The pre-activity mappings map values retrieved from the flowdata object to
attributes in the Input message for the Web service that will be accessed by the Integration Activity.
The post-activity mappings map the response from the Web service back into the flowdata object.
For more information about data item mapping for Integration activities, see Section 9.3, “Moving
Data to and from the Integration Activity,” on page 203.

Property Name Description

Name Provides a name for the activity.

WSDL Resource Specifies a WSDL file for the Web service to be used in the
Integration activity. Once specified, the WSDL is incorporated
into the provisioning request definition file.

When you select a WSDL file, a dialog box is displayed that
you use to select the Web service port type and operation that
you want to use in the Integration activity.

Timeout Specifies a dynamic expression that defines the period of time
allotted for the Integration activity to complete. The timeout
interval applies each time the activity is executed by the
addressee.

For details on building ECMA expressions, see Chapter 10,
“Working with ECMA Expressions,” on page 249. For
descriptions of the system variables available in a workflow,
see Section 4.3.3, “Understanding Workflow Data,” on
page 86.

Retry Count Specifies the number of times to retry the activity in the event
of a timeout.

When an activity times out, the workflow process can try to
complete the activity again, depending on the retry count
specified for the activity. If the last retry times out, the activity
can be marked as success, fault, error, or timed out,
depending on the final timeout action specified for the activity.

Final Timeout Action Determines the final state of the request in the event that the
Integration activity times out. The choices are

success

fault

error

timedout
Workflow Activity Reference 195

196 Identity Man

novdocx (E
N

U
) 29 January 2007
Table 8-16 Integration Activity Data Item Mappings

8.10.3 E-Mail Notification
Not supported with this activity.

8.11 Entitlement Activity
The Entitlement activity grants or revokes an entitlement for a user or other entity type.

A workflow must have at least one Entitlement or Entity activity.

Setting Description

Pre-Activity Allows you to specify one or more pre-activity mappings.
When this option is selected, you can double-click a cell in the
Source Expression column to specify where the Integration
activity gets data for a particular Web service input field.

NOTE: When the Pre-Activity option is selected, the cells in
the Web Service Input Field column are not editable.

Post-Activity Allows you to specify one or more post-activity mappings.
When this radio button is selected, you can double-click a cell
in the Target Expression column to specify where data from a
Web service output field should be copied after the form has
been processed.

NOTE: When the Post-Activity option is selected, the cells in
the Web Service Output Field column are not editable.

Source Expression Specifies a source expression. When you click a cell in the
Source Expression column, the ECMA expression builder
displays to help you define your expression. For example,
flowdata.get('Start/RequestRate/Country1') for
a Web service input, or flowdata.Start/RequestRate/
Country1 for a Web service output field.

Web Service Input Field This column displays all of the input fields for the port type and
operation specified when the WSDL file was selected. The
fields in this column are automatically populated. If you want
to remove an input field, click Mapping, expand the nodes of
the sample document and de-select any input fields that you
want to remove.

Web Service Output Field This column displays all of the output fields for the port type
and operation specified when the WSDL file was selected.
The fields in this column are automatically populated. If you
want to remove an output field, click Mapping, expand the
nodes of the sample document and de-select any output fields
that you want to remove.

Mapping Displays a hierarchical view of the sample document for the
inputs to or outputs from the Web service. You can use this
feature to deselect input or output fields (by default, all Web
service input and output fields are selected).
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
8.11.1 Properties
The Entitlement activity has the following properties:

Table 8-17 Entitlement Activity Properties

8.11.2 Data Item Mapping
To bind the data items associated with the Entitlement activity, you define mappings for several
DirXML® attributes.

Table 8-18 Entitlement Activity Data Item Mappings

For details on building ECMA expressions, see Chapter 10, “Working with ECMA Expressions,” on
page 249.

Property Name Description

Name Provides a name for the activity.

Set Workflow Status Specifies the approval status of the provisioning request. Set to true for
approved; otherwise, set to false. This method of setting workflow status
overrides other methods (for example, the Set Default Completion Status to
Approved parameter (see Table 5-1, “Overview Properties,” on page 101) or the
Approval Status activity (see Section 8.8, “Workflow Status,” on page 192).

Setting Description

Source Expression Specifies a source expression for a DirXML mapping. When you click a cell in
the Source Expression column, the ECMA expression builder displays to help
you define your expression.

The DirXML mappings for the Entitlement are described below:

dn is the distinguished name for the recipient of the entitlement.

DirXML-Entitlement-DN is the distinguished name of the entitlement to
execute. For example, the entitlement might be identified as follows:
'CN=Groups,CN=GroupEntitlementLoopback,CN=TestDr
ivers,O=novell'

You can use the ECMA expression builder’s ECMAScript Variable panel to
see a list of all the entitlements in the driver. To select an entitlement,
double-click the full distinguished name of the entitlement.

DirXML-Entitlement-Action indicates whether the entitlement is granted or
revoked. If the operation grants the entitlement, the value must be 1; if it
revokes the entitlement, the value must be 0.

DirXML-Entitlement-Parameter specifies a parameter required by the
entitlement driver. For example, if the entitlement operation grants access
to the Sales group, the parameter might specify the group as follows:
'\\MYTREE\\novell\\idmsample-doc\\groups\\Sales'

DirXML-Entitlement-MultiValueAllowed indicates whether the entitlement
supports multiple values. If it supports multiple values, the value must be
true; otherwise, it must be false.
Workflow Activity Reference 197

198 Identity Man

novdocx (E
N

U
) 29 January 2007
8.11.3 E-mail Notification
Not supported with this activity.

8.12 Entity Activity
The Entity activity updates an entity in the Identity Vault. You can use this activity to create, modify,
or delete attributes on an entity. You can also use this activity to create or delete an entity (see
Section 7.7, “Working with Entity Activities,” on page 173).

A workflow must have at least one Entitlement or Entity activity.

8.12.1 Properties
The Entity activity has the following properties:

Table 8-19 Entity Activity Properties

8.12.2 Data Item Mapping
To bind the data items associated with the Entity activity, you define mappings for the attributes
associated with the target entity type.

Property Name Description

Name Provides a name for the activity.

Entity Type Specifies the target entity type: User or Group.

Operation Indicates what kind of operation will be performed on the target
entity:

Create/Modify

Delete attributes/values

Delete entity

To create or modify attributes of an entity or to create a new
entity, select create/modify. To delete attributes of an entity,
select delete.

To delete an entity, select delete object.

Set Workflow Status Specifies the approval status of the provisioning request. Set to
true for approved; otherwise, set to false. This method of setting
workflow status overrides other methods. For example, the Set
Default Completion Status to Approved parameter (see Table 5-
1, “Overview Properties,” on page 101) or the Approval Status
activity (see Section 8.8, “Workflow Status,” on page 192).
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
Table 8-20 Entity Activity Data Item Mappings

Setting Description

Entity dn Identifies the entity that is the target of the operation. The
default value is recipient.

To create a new object, specify a distinguished name that
does not yet exist.

TIP: The output of the DNMaker control can be used as input
for the Entity dn value. The DNMaker control constructs the
DN by allowing the user to enter the naming attribute in a text
field and presenting an interface for picking a container. Once
this data has been captured in a request form, the output can
be mapped to a variable in the flowdata object. In the
definition for the Entity activity, this flowdata variable can be
accessed in the Entity dn setting with an expression such as
flowdata.get(’groupdn’);

For details on using the DNMaker control, see Section 6.5.9,
“DNMaker,” on page 133.

Modify Type Indicates how the mapping should be performed for an
attribute. The choices are

Append Value

Replace Value

Replace All Values

For many attributes, Replace Value is the only option that
makes sense; therefore, this option is selected automatically
and cannot be changed.

You must specify the Modify Type setting before specifying
the Modify Value Expression setting.
Workflow Activity Reference 199

200 Identity Man

novdocx (E
N

U
) 29 January 2007
8.12.3 Email notification
Not supported with this activity.

Modify Value Expression Specifies a source expression for an attribute. When you click
a cell in the Modify Value Expression column, the ECMA
expression builder displays to help you define your
expression. The list of attributes available varies depending
on which entity type was selected on the Properties tab.

Designer automatically inserts a sample ECMAScript
expression into this field. The code provided varies depending
on the Operation property specified in Properties and the
Modify Type selected in Data Item Mapping. For example, if
you have specified Create/Modify for Operation, and Replace
All Values for Modfiy Type, Designer inserts an expression
that helps you to create a vector:
function list() { v=new
java.util.Vector(); v.add('{Enter Item
1}'); v.add('{Enter Item 2}'); return v;
}; list();

In some cases you might be able to create expressions that
work as well or better than the sample expression. For
example, instead of creating a vector for multiple attribute
values, you can create a flowdata variable (see Section 4.3.3,
“Understanding Workflow Data,” on page 86) to store multiple
attribute values, and use the getObject function to retrieve the
values of the flowdata variable (see “ECMAScript Variables”
on page 252).

NOTE: The cells in the Target Attribute column are not
editable.

Setting Description
ager 3.5 User Application: Design Guide

9
novdocx (E

N
U

) 29 January 2007
9Working with Integration Activities

This section provides details about working with Integration activities. Topics include:

Section 9.1, “About the Integration Activity,” on page 201.
Section 9.2, “Adding an Integration Activity,” on page 201
Section 9.3, “Moving Data to and from the Integration Activity,” on page 203
Section 9.4, “Using the Integration Activity Editor Interface,” on page 206
Section 9.5, “Actions,” on page 218

9.1 About the Integration Activity
The Integration activity is an activity that allows workflows to exchange data with arbitrary Web
services. Data sent to a Web service can integrate an individual workflow with other systems, inside
and outside the organization. Data received from a Web service can provide decision support
information on approval forms.

You create flowdata variables to move data from the workflow to the Web service for processing.
The Integration activity automatically creates an action model for working with a Web service based
on a WSDL document that you specify.

NOTE: The action model is a subset of the features available in the Novell Integration Manager
product (formerly known as Novell exteNd Composer).

An action model is a visual representation of a set of instructions for processing XML documents
and communicating with XML data sources. An action model performs all data mapping, data
transformation, and data transfer within an Integration activity. You can edit the action model to
manipulate data before and after the data is submitted to the Web service. You then map the data
from the Integration activity back to flowdata variables for use in the workflow.

9.2 Adding an Integration Activity
1 Create a provisioning request definition (see Chapter 5, “Creating a Provisioning Request

Definition,” on page 95).
2 Create a workflow for the provisioning request definition (see Chapter 7, “Creating the

Workflow for a Provisioning Request Definition,” on page 157).
3 Click the Workflow tab.
Working with Integration Activities 201

202 Identity Man

novdocx (E
N

U
) 29 January 2007
4 Drag an Integration activity from the palette and place it in the desired location in the
workflow.

5 Click the Properties tab.

6 Type a name for the activity in the Name field.
7 Click the Value field for the WSDL Resource property, then click the browse button to display a

dialog box that you use to locate the WSDL file for the Web service that you want to access
with the Integration activity.

8 Use the dialog box to browse your file system to locate the WSDL file for the Web service that
you want to use. Click the name of the WSDL file, then click Open to return to the Properties
tab.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
A dialog box that you use to select a port type and operation for the Web service is displayed.

The Select Port Type list includes a set of port types supported by the Web service. Each port
type supports operations that include the input and output messages of the operation.

9 Select a port type from the list.
10 Select an operation from the Select Operation list.
11 Click OK.

The Integration activity creates an action model based on the WSDL document.You use the
action model at design time to test the input to the Web service, test the response from the Web
service, and map and transform data, if necessary, before returning the data to the workflow.
For many Web services, you won’t need to concern yourself with the action model. You will
simply create data item mappings for the Integration activity. After the action model is created,
a new tab, Integration, is added to the provisioning request definition editor. You use this tab to
access the action model.

12 Specify the Timeout Interval, Retries, and Final Timeout Action properties (see Section 8.10,
“Integration Activity,” on page 194).

13 If you want to view or edit the action model, click the Integration tab.

9.3 Moving Data to and from the Integration
Activity

1 Create form fields to allow users to provide input to the Web service accessed by the
Integration activity (see Chapter 6, “Creating Forms for a Provisioning Request Definition,” on
page 103). For example, if you are working with a Web service that provides stock quotes, you
will need a field for the user to specify a stock symbol.

2 To move user input from the form to the workflow, create a flowdata variable in an activity that
precedes the Integration activity in the workflow.
See Section 4.3.3, “Understanding Workflow Data,” on page 86 for information about creating
flowdata variables.
For example, if you have created a form field called “symbol” to accept a stock symbol for
input to the Web service, you would go to the post-activity data item mapping for the activity
associated with the form that contains the symbol field, then you would map the symbol field to
a flowdata variable (for example, flowdata.symbol).

3 In the Workflow tab, right-click the icon for the Integration activity, then choose Show Data
Item Mapping.
Working with Integration Activities 203

204 Identity Man

novdocx (E
N

U
) 29 January 2007
The Data Item Mapping tab is displayed.
4 In the Data Item Mapping view, click Pre-Activity.

In the Web Service Input Field grid, you should see fields that match all of the input fields
associated with the port type and operation specified in Step 9 and Step 10 on page 203.

5 The Integration activity automatically selects all of the input fields associated with the port type
and operation. If you would like to remove some of the input fields, follow these steps:
5a Click Mapping.

The Sample Document dialog box is displayed.

5b Expand the nodes of the sample document and de-select any input fields that you want to
remove.

5c Click OK to return to the Data Item Mapping view.
6 For each Web Service Input Field, click in the Source Expression field, then click the ECMA

expression builder button.

The ECMA expression builder is displayed.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
7 Expand the flowdata node in the Ecmascript Variables pane of the ECMA expression builder,
then double-click the flowdata variable for the user input to the Web service.

8 Click OK to return to the Data Item Mapping view.
9 Click Post Activity.

In the Web Service Output Field grid, you should see fields that match all of the output fields
associated with the port type and operation specified in Step 9 and Step 10 on page 203.

10 The Integration activity automatically selects all of the output fields associated with the port
type and operation. If you would like to remove some of the output fields, follow these steps:
10a Click Mapping.

The Sample Document dialog box is displayed.
10b Expand the nodes of the sample document and de-select any attributes that you want to

remove.
10c Click OK to return to the Data Item Mapping view.

11 Click Map All to automatically create flowdata variables for each Web Service Output Field.
Alternatively, for each Web Service Output Field, click in the Source Expression field, then
click the ECMA expression builder button.

12 Expand the flowdata node in the Ecmascript Variables pane of the ECMA expression builder,
then double-click the flowdata variable that will receive data from the Web service.

13 Click OK to close the ECMA expression builder.
The next step is to work in the Integration view to test and refine the interaction with the Web
service.
Working with Integration Activities 205

206 Identity Man

novdocx (E
N

U
) 29 January 2007
9.4 Using the Integration Activity Editor Interface
The Integration activity editor provides a working environment for the input, output, and actions of
the Integration activity. The Integration activity editor is composed of three views: Action Model,
WSDL Editor, and Messages.

Figure 9-1 Integration Activity Interface

9.4.1 XML Views
The Integration activity provides a number of XML views (for example, Input and Output messages,
WSDL Editor, Messages) derived from the WSDL document. These views use a common interface.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
Tree View

You use the Tree view to work with a hierarchical view of an XML document. You display the Tree
view by clicking the Tree tab.

Figure 9-2 Tree View

Tree View Editing Features

The Tree view provides the following editing features:

You can edit attribute values, attribute names and values, namespace names and values, text,
and comments.
You can insert new nodes using the menu that is displayed when you right-click within the Tree
view. The menu allows you to insert nodes as children before or after the selected node. If the
node is an element, you can insert attributes. The submenus for Add Child, Add After, and Add
Before contain the node that can be legally added. If no schema or DTD is associated with the
document, the submenus contain New Attribute or New Element.
You can delete a node by right-clicking a node and selecting Remove.
You can drag and drop items between Tree views (for example, between views of the Input and
Output messages) to create Map actions (see Section 9.5.8, “Map,” on page 240 for
information about Map actions).
You can undo, redo, cut, copy, and paste.

Tree View Menu

When you right-click an item in the Tree view, a menu is displayed that you use to perform
operations on the XML document.The menu is context-sensitive and only displays the commands
that are appropriate for the item on which you clicked.

Table 9-1 Tree View Menu

Item Description

Remove Removes the selected item.

Add DTD Information Displays a dialog box that you use to add DTD information. You can edit the
Root Element Name, Public ID, and System ID.

Edit Namespaces Displays a dialog box that you use to add namespace declarations.
Working with Integration Activities 207

208 Identity Man

novdocx (E
N

U
) 29 January 2007
Tree View Toolbar

Tree view toolbars provide the following features:

Table 9-2 Enter Table Title Here

Attaching a Schema or DTD

You can attach a schema or DTD to the current XML document when you are using the Tree view.

1 Click in the Tree view toolbar. The Attach Schemas or DTD dialog box is displayed.

2 To choose from a list of entries in the XML catalog, choose an entry from XML Catalog Entry
list.

Add Attribute Displays a dialog box that you use to define a new attribute.

Add Child

Add Before

Add After

Displays a submenu with the following options:

Comment
Add Processing Instruction
#PCDATA
CDATA Section
New Element

Replace with Replaces the selected item with an item selected from the menu.

Button Description

Expands all nodes in the document.

Collapses all nodes in the document.

Attaches a schema or DTD (see “Attaching a Schema or DTD” on page 208).

Displays online help.

Item Description
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
3 To specify an XML schema on disk, click XML Schema.

4 Type a Namespace URI, then use the browse button in the File field to select an XML schema
on disk.

5 To specify a DTD on disk, click DTD.

6 Type a Public ID and System ID, then use the browse button in the File field to select the DTD
file on disk.

Source View

You use the Source view to view the XML source of the document. You display the Source view by
clicking the Source tab.

Figure 9-3 Source View

Source View Features

The source view supports the following features:

Syntax highlighting.
Working with Integration Activities 209

210 Identity Man

novdocx (E
N

U
) 29 January 2007
Context-sensitive code-completion based on DTD or XML Schema.
Validation as you type. If the XML is invalid (for example, the closing bracket is omitted from
a tag), the editor indicates the error.
General text editing operations such as undo, redo, cut, copy, paste, and select all.

Source View Menu

When you right-click an item in the Source view, a menu is displayed that you use to perform
operations on the XML document.

Table 9-3 Source View Menu

9.4.2 Action Model
The action model includes the Action Model view and views for displaying message parts. The
Action Model view displays actions that operate on the contents of the message parts. The message
parts display the XML for the Web service Input and Output messages.

About the Action Model Views

The action model views are used at design time to test the interaction with the Web service. You edit
actions in the Action Model view. You can enter test data to be input to the Web service in the Input
view, examine the response from the Web service in the Output view, and see any error messages
returned from the Web service in the _SystemFault view. The Integration activity has the following
message panes:

 Input view
Output view
 _SystemFault view
Action Model view

About the Input View

The Input view displays the input message derived from the WSDL document for the Web service.
You can resize the view by dragging the right-hand border.You can resize columns within the view

Item Description

Undo Reverse the last action.

Redo Reverse an undo operation.

Cut Cut the selected text to the clipboard.

Copy Copy the selected text to the clipboard.

Paste Paste the clipboard contents at the insertion point.

Delete Deletes the selected text.

Select All Selects all of the text in the document.

Find Displays a dialog box that you use to find and replace text within the document.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
by dragging the column border. You can specify a value to use in testing the action model directly in
the Input part, in which case the value is discarded after executing the action model. You can also
specify a value using the Messages tab (see Section 9.4.4, “Messages,” on page 217), in which case
the value persists until you delete the value or you regenerate the action model (see Section 9.4.5,
“Regenerating Code for the Action Model,” on page 217).

Figure 9-4 Input View

About the Output View

The Output view displays the output message derived from the WSDL document for the Web
service. When you execute the action model, you use the Output view to view the values returned
from the Web service.

You can resize the view by dragging the left-hand border.You can resize columns within the view by
dragging the column border. You can specify a value directly in the Output part for modeling
purposes, in which case the value is discarded after executing the action model. You can also specify
a value using the Messages tab (see Section 9.4.4, “Messages,” on page 217), in which case the
value persists until you delete the value.

Figure 9-5 Output View
Working with Integration Activities 211

212 Identity Man

novdocx (E
N

U
) 29 January 2007
About the _SystemFault View

The _SystemFault view displays any error messages produced when you execute the action model.
The XML information contained in _SystemFault also gets written to a global object called
ERROR.

Figure 9-6 _SystemFault View

Beneath the FaultInfo root are the following elements:

DateTime contains the Date and Time at which the fault occurred.
ComponentName contains the name of the component that threw the fault.
MainCode contains the main code number for the error.
SubCode contains a sub-code number for the error.
Message contains the error message defined when you set up a Throw Fault action (see “Throw
Fault” on page 220). If you do not specify an error message in your Throw Fault action, the
following message is displayed, “A user-defined Fault occurred!”. If the error occurred within a
Try/On Fault action, and you did not specify a Fault, this element is populated with an
Exception message.

About the Action Model Pane

The Integration activity has a single action model. The action model represents the mappings,
transformations, and other actions that will be performed on the Web service input and output
messages. The Action Model view is resizable. Most of your activity that takes place in the Action
Model view involves adding and editing actions.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
Action Model Context Menu

If you right-click in the action model, a menu is displayed.

Figure 9-7 Action Model Menu

From this menu, you can add or edit actions (see Section 9.5, “Actions,” on page 218), toggle
breakpoints in the action model (see “Animation” on page 214) and perform other tasks.

Finding and Replacing Text in the Action Model

You can replace a word or string using the Replace command on the action model menu.

1 Right-click in the action model, then select Replace.

2 Enter the search text.
3 If you want to replace the search text, click Replace with, then type a string to replace the

search string.
4 If you want to find the search text regardless of the capitalization of the text, click Ignore case.
5 If you want to find the search text in whole words only, click Whole word.
6 Click OK
Working with Integration Activities 213

214 Identity Man

novdocx (E
N

U
) 29 January 2007
The Integration activity finds the first occurrence of the search text. If the operation is a find
and replace operation, the Integration activity asks you to confirm the replacement. You can
then replace the next or all occurrences of the search text.

Animation

The action model provides animation tools that you can use to test and troubleshoot actions
interactively within the Integration activity. You can execute the action model step by step and
watch the result of each action. Not only will you see any errors as they happen, but you can verify,
in real time, that connections and data behaved as you planned.

The animation tools allow you to toggle one or more breakpoints. You can use this feature to
concentrate on a particular section of an action model. When used in conjunction with the run-to-
breakpoint tool, breakpoints allow you to quickly run through action model sections that work
properly, coming to a stop at a particular action. From there, you can step through each action in
sequence. You can also step over loops and other code blocks that would otherwise be tedious to
execute step-by-step.

The Basic Animation Tools

The animation tools are available on the Designer toolbar.

Figure 9-8 Animation Toolbar

Table 9-4 Animation Tools

Animation Toolbar
Button Name Description

Execute Executes the action model.

Execute Current
Action

Executes the currently selected action.

Start Animation Starts the animation process. Enables Step Into, Step Over, and
Run to Breakpoint/End.

End Animation Stops the animation process.

Step Into Executes the currently selected action and highlights the next
sequential action.

For a Repeat Loop action, pressing Step Into executes each action
in the loop and iterates through each loop.

For a Decision Action, Step Into processes the next action in the
True or False branch.

For the Try/On Fault action, Step Into processes the next action
inside the execute branch, and possibly the On Fault branch.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
Starting Animation

When you first open an Integration activity, Start Animation and Toggle Breakpoint are the only
enabled buttons. When you click Start Animation, the rest of the animation buttons are enabled. If
you want to halt the animation temporarily, you can use the Pause Animation button. If you want to
abort the animation, you can do so at any time by clicking End Animation.

Although Copy, Paste, and action editing operations (including adding new actions) are all available
at animation time, we recommend that you do not edit the action model during animation. If you do,
exceptions or unpredictable behavior may occur. If you need to edit the action model, use End
Animation to stop the animation first. Then apply your edits and begin the animation again.

1 Open an Integration activity.
2 Click Start Animation button in the Designer toolbar. All of the animation buttons become

active except the Start Animation button, which is now dimmed.
3 Follow the instructions in the following sections to perform the desired Animation activity.

Toggling a Breakpoint

You use the Toggle Breakpoint tool to set a breakpoint in the action model where you want the
animation process to stop. This is helpful if you have a lengthy action model with long sections that
work properly. You can set the breakpoints for each action that is causing a problem and then step
through the action to troubleshoot it.

1 In the Action pane, select the action for which you want to set a breakpoint. This is where the
animation will stop.

2 Click Toggle Breakpoint on the Designer tool bar, or right-click the action and select Toggle
Breakpoint. A dot appears in the left-hand border of the action model to indicate the breakpoint.

3 If desired, repeat the previous steps to select additional Breakpoints.

Stepping Into an Action

Step Into runs the highlighted action in the action model and then moves to the next action in the
sequence. You can use the Step Into tool to step through each action in the entire action model, or

Step Over Executes the currently selected action and highlights the next
sequential action. Unlike the Step Into button, clicking this button
does not highlight and execute the details of Repeat, Decision, or
Try/On Fault actions.

Run To
Breakpoint/End

Runs the animation to the next breakpoint or to the end of the
action model if there are no breakpoints.

Toggle
Breakpoint

Sets the highlighted action in the action model as a breakpoint. You
may set more than one breakpoint. Another way to toggle a
breakpoint is to right-click the desired action and select Toggle
Breakpoint from the menu.

Pause
Animation

Pauses the animation.

Animation Toolbar
Button Name Description
Working with Integration Activities 215

216 Identity Man

novdocx (E
N

U
) 29 January 2007
you can use it in conjunction with the Run to Breakpoint tool. Execution stops at the next breakpoint
or when the action model ends, whichever comes first.

A possible scenario for using a breakpoint would be if you have ten actions that you know work
properly but have doubts about the eleventh. You could set the eleventh action as a breakpoint,
execute the Run to Breakpoint tool, and then step through the eleventh (and subsequent) actions by
executing the Step Into tool.

1 Start the animation (see “Starting Animation” on page 215).
2 Click Step Into. The first action in the action model is highlighted.
3 Click Step Into again. The highlighted action executes and the next action becomes highlighted.
4 Continue to work through the action model by clicking Step Into after each action executes and

the subsequent action becomes highlighted.

Stepping Over an Action

You use Step Over when you don’t want to step into the details of the Repeat, Decision, or Try/On
Fault actions. You can execute an entire block of code without stepping individually through each
action.

You can use Step Over in conjunction with Run to Breakpoint. For example, you can toggle a
Breakpoint, execute Run to Breakpoint, and then use Step Over to execute the action designated as
the breakpoint. Step Over can save a great deal of time when testing lengthy action models, since
you can avoid tediously stepping through individual actions.

1 Start the animation (see “Starting Animation” on page 215).
2 Step through the action model with Step Into until you reach a loop or other line of code that

precedes an indented code block.
3 Click Step Over. The first action after the block of indented code becomes highlighted. All of

the indented code executes normally and you are taken straight to the next block of actions,
without stepping through the indented actions.

4 Continue to work through the action model by clicking Step Over as needed.
5 Continue to click Step Into and StepOver to execute all of the actions in the action model.

Pausing Animation

You use Pause Animation to pause the execution of an action in the action model. This is especially
helpful in cases in which the action model contains lengthy loops.

1 During the execution of an action, click Pause Animation.
2 To resume the animation process, click Step Into, Step Over, or Run to Breakpoint (if a

breakpoint has been set).

Aborting Animation

You use Stop Animation to stop the animation process. Once you stop the animation, you cannot
restart from the place where you left off. You must restart from the beginning of the action model.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
9.4.3 WSDL Editor
The WSDL Editor displays the WSDL document for the Web service. You can edit the WSDL using
the Tree view and Source view editing features (see “Tree View” on page 207and “Source View” on
page 209).

9.4.4 Messages
The Messages view displays the messages derived from the WSDL document for the Web
service.You can edit the messages using the Tree view and Source view editing features (see “Tree
View” on page 207 and “Source View” on page 209). You can use this feature for entering test data
that will be used when you execute the action model at design time. Data that you enter in the
Messages view persists across executions of the action model.

9.4.5 Regenerating Code for the Action Model
When working in the WSDL Editor view, you can regenerate all code for the action model and
regenerate messages by clicking the regenerate button. When working in the Messages view, you
can regenerate all actions in the action model. The regenerate button is located in the Designer
toolbar:

Figure 9-9 Regenerate Button

9.4.6 Adding Actions to the Action Model
Actions are the processing steps that take place within the Integration activity. A collection of
actions is referred to as an action model. An action in the action model is displayed as a line and
contains an icon for the action type along with an abbreviated definition of the action. Some actions
are subordinate to other actions. For example, you can create a Repeat action that controls loop
processing, then add actions inside the loop. The actions inside the loop are subordinate to the
Repeat action and appear indented beneath the Repeat action. Subordinate actions process as long as
the Repeat action is true.

To add an action to the action model, click the line in the action model that is one line above the
position in which you want to insert an action. Add an action using any of following methods. The
new action is inserted below the line you highlighted.

Drag and drop. You can add Map actions by dragging and dropping elements from the Input
view to the Output view.
Copy and Paste. You can copy an action in the Action Model view and paste it somewhere else
in the view.
Right-click the line in the action model that is one line above the position in which you want to
add the action, then select the desired action from the menu.

NOTE: You can reorder actions in the action model by dragging actions to a new position within the
action model.
Working with Integration Activities 217

218 Identity Man

novdocx (E
N

U
) 29 January 2007
After you have created the action model, and before you deploy, you should test the action model.
Perform testing by using the Animation tools. With the Animation tools, you can set breakpoints,
start an animation, step into and over actions, and pause the animation. See “Animation” on
page 214.

9.5 Actions
This section describes the actions that are available for use within an action model. An action is
similar to a programming statement in that it takes input in the form of parameters and performs
specific tasks. An action model is a set of instructions for processing XML documents and
communicating with XML data sources. An action model performs all data mapping, data
transformation, and data transfer within an Integration activity. All actions within an action model
work together.

At runtime, every action is converted to an executable form of ECMAScript and processed. At
design time, many actions accept ECMAScript expressions as parameters, adding great flexibility
and control to the action model. The Function action provides you with the most flexibility and
control by giving you access to the full functionality of the ECMAScript language.

This section contains the following topics:

Section 9.5.1, “Advanced,” on page 218
Section 9.5.2, “Data Exchange,” on page 224
Section 9.5.3, “Repeat,” on page 229
Section 9.5.4, “Comment,” on page 236
Section 9.5.5, “Decision,” on page 237
Section 9.5.6, “Function,” on page 238
Section 9.5.7, “Log,” on page 239
Section 9.5.8, “Map,” on page 240

9.5.1 Advanced
This section includes descriptions of the following actions:

“Apply Namespaces” on page 218
“Throw Fault” on page 220
“Try/On Fault” on page 222

Apply Namespaces

This section includes the following topics:

“About the Apply Namespaces Action” on page 218
“Creating an Apply Namespaces Action” on page 219

About the Apply Namespaces Action

Ideally, an Integration activity will always receive valid XML documents (that is, the documents
validate against their schema, map and transform data appropriately, and send valid XML
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
documents). However, this might not always the case. In other cases you might want to ignore
namespaces altogether. It is important to have some means of validating XML documents. These
and many other XML processing cases require a method of modifying or overriding the prefix and
namespace handling provided by the Integration activity.

The Apply Namespaces action provides a mechanism for managing namespaces and namespace
prefixes in effect for input and output messages within an action model. The action allows you to
consolidate namespace and prefix declarations for a Web service in one place, to override those
declared in the input and output messages, or to ignore namespaces altogether.

The Apply Namespaces action can be applied to input and output messages. You can also have
multiple Apply Namespaces actions for an individual message part, effectively changing
namespaces based on conditions specified in the action model. The namespaces declared are in
effect until the end of the action model is reached or another Apply Namespaces action is executed.
In other words, only the most recent Apply Namespaces action is in effect.

When creating a new Integration activity, an Apply Namespaces action is created automatically for
the Output message if the WSDL declares any namespaces. After component creation, you can
manually create additional Apply Namespaces actions.

Creating an Apply Namespaces Action

1 Right-click the line in the action model that is one line above the position in which you want to
place the Apply Namespaces action (the new action will be inserted below the line that you
selected).

2 Select New Action > Advanced > Apply Namespaces.

3 Select the message (Input, Output, _SystemFault, or Project) to which you want to apply the
namespace from the Apply the following namespaces for Part list.
Working with Integration Activities 219

220 Identity Man

novdocx (E
N

U
) 29 January 2007
4 Click the plus (+) icon to add a new row, then click the Namespace column and type a
namespace URI.
The table displays all the Namespace declarations for the selected message part. After creating
a new Apply Namespaces action, the table might or might not contain a list of declarations for
a selected part. The list of declarations is initially constructed from the declarations defined in
the WSDL.
Within the declaration list for a message part, prefixes must be unique. However, you can have
duplicate namespace URIs provided that the URIs have unique prefixes. This allows you to
declare multiple prefixes that are associated with the same namespace URI.

5 If desired, click Ignore Namespaces when document is used in an XPath expression.
Use this option when you want Map action source XPaths to find elements by their XML local
name only.
This provides for a less restrictive method of specifying Map actions (see Section 9.5.8, “Map,”
on page 240) and is useful when Map actions contain the wrong prefix or no prefix in their
Source specifications. This allows you to place the Apply Namespaces action inside a Decision
action (see Section 9.5.5, “Decision,” on page 237) that tests whether the Input message
contains prefixes or not, yet still have one set of Map actions to map the input to another part.
In other words, the Integration activity normally expects the input to contain prefixes, so you
design all your Map actions with prefix names. For the occasional input that has no prefixes,
the Decision action activates the Apply Namespaces action defined to ignore namespaces for
input, allowing the Map actions to work in either case.

6 When you want to declare a set of namespaces in the root element of an output message built
by your action model, click Declare these namespaces in the part.
This option is almost always checked for output to ensure that prefixed elements created in the
output, as a result of Map actions, will resolve to the proper namespaces.
This allows a recipient of the output to validate the document properly. The Apply Namespaces
action with this option checked could also be used to add new declarations to an existing
document that already contains declarations.
The Target document Root Element Name is used to specify the name of the root element to
contain the Namespace declaration attributes. The Integration Activity automatically fills in
this value based on the information in the WSDL document and the message part specified in
the Apply the following namespaces for Part list.

7 Click OK. The new action is added to the action model.

Throw Fault

This section includes the following topics:

“About the Throw Fault Action” on page 220
“Adding a Throw Fault Action” on page 221

About the Throw Fault Action

You use the Throw Fault action to do the following:

Write information to an XML message on failure of an action
Perform any number of actions before throwing the fault
Halt execution of a component
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
Throw Fault is only executed when a condition that you specify is true. The message part that is
written when a Throw Fault action is executed is called a Fault document, and the XML within this
message is contained in a global object called ERROR.

Throw Fault actions can be used in a number of ways:

Using a Throw Fault Action by itself. You can specify a Fault Condition and an error message
within the Throw Fault Action dialog. When the action is executed, the Fault Condition is
evaluated. If the condition evaluates as true, the following occurs:

Any Before Throw actions that you specify are executed. This can be very useful as a way
to leave your application in a particular state before halting execution. For example, you
can send a mail message stating that the execution did not complete.
The contents of the error message are written to the Fault document in a node that you
specify, as well as to the global object ERROR.
The action model execution is halted.

Using a Throw Fault Action within a decision expression in the Decision action. You can
specify a fault condition by entering it in the decision expression of a Decision action. Then put
a Throw Fault statement in the true branch of the Decision action. Here you can either specify
additional conditions in the Throw Fault fault condition or leave it blank and simply specify the
fault document to which the fault information should be written. When the action is executed
and all your conditions are true, the Throw Fault action is executed. If the fault condition in the
Decision action or Throw Fault action is false, the next action in the action model is executed.
Using a Throw Fault inside a Try /On Fault action (see “Try/On Fault” on page 222. By putting
either of the above methods inside the execute branch of a Try /On Fault action, you prevent the
Integration activity from halting execution and have an opportunity to respond or recover from
the fault. You create your fault condition using one of the previous two methods inside the
execute branch of a Try/On Fault action after other actions the output of which you want to test
have worked correctly. You can specify any number of unique faults so that the Integration
activity can branch into several different directions, depending on which fault occurs. When the
Throw Fault action for the given fault is triggered, instead of halting execution of the
component, control passes into the appropriate branch of the Try/On Fault action. Here you can
specify other actions to remedy or respond to the error.

Adding a Throw Fault Action

1 Right-click the line in the action model that is one line above the position in which you want to
place the Throw Fault action (the new action will be inserted below the line that you selected).
Working with Integration Activities 221

222 Identity Man

novdocx (E
N

U
) 29 January 2007
2 Select New Action > Advanced > Throw Fault.

3 In the Fault Condition field, type a valid ECMAScript expression that, when true, causes the
action to throw a fault.
You can also click the ECMA expression builder button and build an expression (see
Chapter 10, “Working with ECMA Expressions,” on page 249).

4 Select Throw {System}{Fault} to write your error message to the _SystemFault document.
By default, the message that you type in the Error Message field will be placed in the Fault/
FaultInfo/Message node of that document. Specify a different node if desired. You can also
click the ECMA expression builder button and build an expression.

5 Select Throw Defined Fault to select a fault document that is one of the message parts
associated with the Integration activity.

6 Click OK.
The new action is added to the action model. Place any actions that you wish to execute before
the application stops in the Before Throw Actions branch.

Try/On Fault

The section includes the following topics:

“About the Try/On Fault Action” on page 222
“Adding a Try/On Fault Action” on page 223

About the Try/On Fault Action

The Try/On Fault action executes a set of actions when a fault occurs within the Execute branch of
the Try/On Fault action. Any number of defined faults can be specified within the Execute branch.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
You can use the Try/On Fault action to trap anticipated errors and run other actions to remedy or
report on the fault. For instance, you can use Try/On Fault to respond to an XML Interchange action
that fails to find a file.

When you add a Try/On Fault action, several lines are added to the action model:

The beginning of the Try action
The Execute branch
A branch for each Fault that you specified
An All other Faults branch

When you are aware of potential faults an action can produce, you put those actions in the Execute
branch. You then put error handling actions under each On Fault branch to handle unique situations.
If a fault does occur, the actions in the On Fault branch execute.

Following the example given previously, if you anticipate a fault with the XML Interchange action,
you put the action under the Execute branch. In one On Fault branch, you might add another XML
Interchange action that attempts to read the file from an alternate location. In another On Fault
branch, you might add another XML Interchange action that looks for a file with a different
extension.

Adding a Try/On Fault Action

1 Right-click the line in the action model that is one line above the position in which you want to
place the Try/On Fault action (the new action will be inserted below the line that you selected).

2 Select New Action > Advanced > Try/On Fault.

Use the + icon to add a new fault part to the Fault Part Name list. Use the red - icon to remove
fault parts from the list. Use the up and down arrow icons to change the order of the faults.
If you don’t specify a fault part, corrective actions can be placed in the default “All Other
Faults” branch of the Try/On Fault action.

3 Click OK. The following appears in the Action Model Viewer: the Try On Fault action icon,
with an Execute, one or more On Fault branches, and an All Other Faults branch.
Working with Integration Activities 223

224 Identity Man

novdocx (E
N

U
) 29 January 2007
4 Add any actions that might cause errors to the Execute branch.
5 In the On Fault branch, add actions that resolve the errors specified in the Execute branch.

The following illustration shows a complete Try/On Fault action in the action model.

Figure 9-10 Try/on Fault Action Example

9.5.2 Data Exchange
This section includes descriptions of the following actions:

“WS Interchange” on page 224
“XML Interchange” on page 226

WS Interchange

This section includes the following topics:

“About the WS Interchange Action” on page 224
“Adding a WS Interchange Action” on page 224

About the WS Interchange Action

The WS (Web Service) Interchange action is the most important action in the Integration activity
and allows the Integration activity to invoke a Web service according to calling conventions
specified in a WSDL file. The Integration activity creates a WS Interchange action automatically
when it creates the action model.

In most cases there will be no need to add another WS Interchange action to the action model.
However, there might be situations in which you need to do so. The following procedure describes
how to add a WS Interchange action.

Adding a WS Interchange Action

1 Right-click the line in the action model that is one line above the position in which you want to
place the WS Interchange action (the new action will be inserted below the line that you
selected).
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
2 Select New Action > Data Exchange > WS Interchange.

The WSDL Resource, Service Name, Port, and Operation fields are filled in automatically
based on the information in the WSDL specified for the Integration activity.

3 If desired, modify the information in the Endpoint Location field (usually a URL pointing at a
servlet) for the Web service that you wish to use, wrapped in quotation marks. Alternatively,
enter an ECMAScript expression that will evaluate to an Endpoint Location at runtime.

4 Click the Messages tab.

The Message, Part, and Type/Element fields are filled in automatically based on the
information in the WSDL specified for the Integration activity.

5 If desired, click the Expression column for a message, then use the ECMA expression builder
to create an ECMAScript expression that describes the source and target for the message.
Working with Integration Activities 225

226 Identity Man

novdocx (E
N

U
) 29 January 2007
Usually, this will be an expression that specifies an XPath location in an Input part or Output
part.

6 Click the Connection tab.
You use this tab to specify connection parameters for HTTP servers that require authentication.

7 Type a user ID to use for the connection in the User ID field, and a password for the user in the
Password field. The user ID and password are not actually submitted during the establishment
of a connection. They are simply defined here. The password is encrypted. You will have
access to UserID and Password variables in ECMAScript, allowing you to map the user ID and
password as values into the screen. This way, no one ever sees the passwords.

8 If the connection requires a client certificate, choose a client certificate by clicking on the
browse button in the Client Certificate field and selecting the certificate file you want to use for
this connection.

9 If the connection requires a client private key, choose a client private key by clicking on the
browse button in the Client Private Key field and selecting the client private key file.

10 Type the password for the client private key in the Private Key Password field.
11 Specify a connection timeout value, in seconds, in the Connection Timeout field.
12 Click Apply to test the WS Interchange action in real time, or click OK to close.

XML Interchange

This section includes the following topics:

“About the XML Interchange Action” on page 226
“Adding an XML Interchange Action” on page 227

About the XML Interchange Action

The XML Interchange action reads external XML documents into a DOM and writes data from the
DOM as XML files. There are four types of XML Interchange actions:

GET
PUT
POST
POST with Response

When using the Get interchange, fill in the Interchange URL Expression field with a URL that points
to the XML document that you want to bring into the Integration activity. In the Response Part field,
you select the DOM (Input, Output, _SystemFault, or Project) that is to receive the XML.

When using the Put interchange, enter a URL that points to the location to which you want to write
the XML document in the Interchange URL Expression. In the Request Part field, you select the
name of the DOM from which you want to send data as XML.

When using the Post interchange, enter a URL that points to the location to which you want to write
the XML document in the Interchange URL Expression field. In the Request Part field, you select
the name of the DOM from which you want to send data as XML.

When using the Post with Response interchange, you supply the same parameters as for Post, with
one additional parameter. You must also specify a Response Part DOM to receive the Response
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
XML document from the Post with Response interchange. The difference between the two
interchanges is that Post with Response expects a response XML object back from the origin server.

Adding an XML Interchange Action

1 Right-click the line in the action model that is one line above the position in which you want to
place the XML Interchange action (the new action will be inserted below the line that you
selected).

2 Select New Action > Data Exchange > XML Interchange.

3 Select an Interchange Type (Get, Put, Post, or Post with Response).
4 In the Interchange URL Expression field, type an expression that defines a fully qualified URL

for an XML document, using any of the following supported protocols:
file
ftp
http
https

Depending on the Interchange Type selected, this URL is the source or the destination of the
XML file for the XML Interchange action. For example:
file:///g:/xmldata/invoicebatch1.xml
ftp://accounting:password@123.456.789.987:21/invoices/inv1.xml

Since this is an ECMAScript expression, the URL string must be enclosed in quotation marks.
Working with Integration Activities 227

228 Identity Man

novdocx (E
N

U
) 29 January 2007
5 If you need to specify HTTP header parameters, click HTTP Header Parameters.

6 Click the plus (+) icon to add new header parameters, then type a Parameter name and a
corresponding Value. Common HTTP header parameters include “Content-Type,” “Content-
Length,” and “Keep-Alive.” You can add any number of Parameter-Value pairs.

7 Click OK to return to the XML Interchange dialog box.
8 In the Request Part field (which is enabled if the Interchange Type is Put, Post, or Post with

Response), select the name of the DOM from which you want to send data as XML.
9 In the Response Part field (which is enabled if the Interchange Type is Get or Post with

Response), select the name of the DOM tree that will receive the XML.
10 If you would like to filter the incoming XML document to improve performance, select the

check box next to the Filter Document button, then select the Filter Document button.

The document displayed is the document selected in the Response Part in the XML Interchange
dialog box.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
You use this dialog box to specify the individual nodes to retain (rather than discard) from the
incoming XML document in real time to improve performance and reduce RAM overhead.

11 Check the nodes that you want to keep in the document.
Unchecked nodes are discarded before parsing the DOM.

12 When you have selected nodes that you want to keep, click OK to return to the XML
Interchange dialog box.

13 Click OK.
Alternatively, you can click Apply to see the affect of the XML Interchange action without
closing the dialog box. This allows you to make repetitive edits to an XML Interchange action
and quickly see the results.

9.5.3 Repeat
This section includes descriptions of the following actions:

“Break” on page 229
“Continue” on page 230
“Declare Group” on page 230
“Repeat for Element” on page 232
“Repeat for Group” on page 233
“Repeat While” on page 235

Break

This section includes the following topics:

“About the Break Action” on page 229
“Adding a Break Action” on page 229

About the Break Action

The Break Action stops the execution of a Repeat for Element, Repeat for Group, or Repeat While
loop. The action model continues execution with the next action outside the loop.

The use of Break is appropriate when, for example, you are using a loop to search a node list for one
particular item. When the target item is found, there is no need to continue iterating. A Break can be
used to terminate the loop immediately.

NOTE: A Break action is usually used in one branch of a Decision action (within a loop). You place
the Break action in either the True or False branch of the Decision action.

Adding a Break Action

1 Within a Repeat action that you want to modify to include a Break action, select a position
inside the loop where you want to place the Break action.

Generally, this will be in one leg or the other of a Decision action.
2 Select New Action > Repeat > Break.
Working with Integration Activities 229

230 Identity Man

novdocx (E
N

U
) 29 January 2007
The Break action is inserted into the action model.

Continue

This section includes the following topics:

“About the Continue Action” on page 230
“Adding a Continue Action” on page 230

About the Continue Action

The Continue action causes execution of the current iteration of a Repeat for Element, Repeat for
Group, or Repeat While loop to stop and execution to begin at the top of the loop, with the next
iteration. The Continue action provides a way to pass over downstream actions inside the loop while
allowing the loop to continue on to the next iteration.

A Continue action is appropriate in a situation where, for example, one item in a list should be
skipped for some reason, yet execution of the loop must continue.

NOTE: A Continue action usually occurs in one branch of a Decision action within a loop. You
place the Continue action in either the True or False branch of the Decision action, as appropriate.

Adding a Continue Action

1 Within a Repeat action that you want to modify to include a Continue action, select a position
inside the Loop actions where you want to place the Continue action.

This is usually inside one fork or the other of a Decision action.
2 From the Action menu, select New Action > Repeat > Continue.

A Continue action appears in the action model.

Declare Group

This section includes the following topics:

“About the Declare Group Action” on page 230
“Adding a Declare Group Action” on page 231

About the Declare Group Action

You use the Declare Group action to create two special lists, each in reference to a DOM. These
group lists can then be used as the basis for a loop in the Repeat for Group action. To create the lists,
you supply a Group Name and specify an XPath. The Integration activity then creates the lists as
follows:

A Group list is created that contains one entry for each unique value found in all the elements
that match the XPath. The Group list is referred to by the Group Name that you supply.
A Detail list is created for each unique entry in the Group list that contains as many entries as
there are members in the Group. The Detail list is referred to by the group name that you
supply, post-fixed with the label “(Detail).”
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
Using Groups allows you to select a repeating element in your Input DOM and create fewer
elements based on the unique values across all siblings of that repeating element. Instead of having
multiple elements, you have one element for each unique element value in your Output DOM.

Adding a Declare Group Action

1 Right-click the line in the action model that is one line above the position in which you want to
place the Declare Group action (the new action will be inserted below the line that you
selected).

2 Select New Action > Repeat > Declare Group.

3 Type a name for the group in the Group Name field.
4 If you would like to create multiple group levels, select a group from the Parent Group list,

which lists groups that you have previously defined.
5 Click Add. The Add Element dialog box is displayed.

6 Select a part name and an element.
7 Click OK.
8 Repeat Step 5 through Step 7 to add more elements to the group.
9 When you have all the elements that you want in the group, click OK.
Working with Integration Activities 231

232 Identity Man

novdocx (E
N

U
) 29 January 2007
Repeat for Element

This section includes the following topics:

“About the Repeat for Element Action” on page 232
“Adding a Repeat for Element Action” on page 232

About the Repeat for Element Action

The Repeat action creates looping structures within an action model. Loops give you the ability to
repeat a set of one or more actions. There are three types of loops: Repeat for Element, Repeat for
Group, and Repeat While.

XML allows multiple instances of an element in a document (analogous to multiple records in a
database table). The number of instances can vary from document to document and is defined in the
document schema (DTD or XML Schema). For example, you might receive an XML document
containing line items for an invoice on a daily basis. Each day the XML document has a different
number of line items. Not knowing how many instances of “line item” are in the XML document
poses a problem if you want to transfer these item numbers from the input XML document to an
output XML document programatically. The Repeat for Element action solves this problem.

The Repeat for Element action allows you to mark an element that occurs multiple times. The action
then sets up a processing loop that executes one or more actions for each instance of the marked
element until no more instances exist. In the previous example, the processing loop would contain a
single Map action to transfer the line item number and this action would be repeated until all line
items had been mapped.

The Repeat for Element action also uses the concept of an alias. An alias performs two functions. It
is an alternate name or shorthand for the marked repeating element, which saves you the work of re-
specifying long XPath expressions. In some cases, the repeating element might be several levels
down in the document hierarchy. When you create Map actions in the Repeat loop that transfers
child elements of the marked element, using the alias is quicker than re-typing a long XPath
expression. An alias is also an indicator to Map actions within the Repeat loop to use the next
instance of the repeating element each time the loop processes. A Map action within a Repeat for
Element loop that does not use the alias always refers to the first instance of the element in the
source message.

The Repeat for Element action allows you to process more than one action within the loop. In the
simplest case, the repeat loop might only contain one Map action that transfers the value of the
current element instance from the input Part to the output Part. You can also define multiple actions
in the processing loop. For example, a Map action to transfer the current value, and a Log action that
writes to a file, creating an audit of each transfer.

Adding a Repeat for Element Action

1 Right-click the line in the action model that is one line above the position in which you want to
place the Repeat for Element action (the new action will be inserted below the line that you
selected).
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
2 Select New Action > Repeat > Repeat for Element.

3 Specify the Source information.
3a Type an alias name in the Source Alias field.

A good naming convention for an alias is to use the element name with a prefix indicating
source or target and the type of repeat action, such as “S1Lineitem.”

3b Type an XPath expression, or click the ECMA expression builder button and build an
XPath expression for the repeating element.

4 Specify the Target information.
4a Type an alias name in the Target Alias field.
4b Check Always create new output elements if you have repeating actions that should add

new elements rather than updating existing elements.
4c Enter an XPath expression, or click the ECMA expression builder button and build an

XPath expression for the repeating element.
5 Click OK. The Repeat for Element loop is added to the action model.
6 Click Loop Actions in the action model to begin adding actions to be performed within the

loop.

Repeat for Group

This section includes the following topics:

“About the Repeat for Group Action” on page 234
“Adding a Repeat for Group Action” on page 234
Working with Integration Activities 233

234 Identity Man

novdocx (E
N

U
) 29 January 2007
About the Repeat for Group Action

The format of an XML document that you receive is not always the format that meets the
requirements of your business process. A Repeat for Group action allows you to restructure data and
establish a framework to calculate aggregates on your data. Grouping allows you to select a
repeating element in your input part and create fewer elements based on the unique values across all
siblings of that repeating element.

The Repeat for Group action sets up a processing loop based on one of two lists created by the
Declare Group action. The loop executes as many times as there are entries in the list you use (either
the Group list or Detail list). By combining a Repeat for Group with Map commands, you can create
a new XML document that has different structure and data from the original.

Similar to the Repeat for Element action, a Repeat for Group action also uses the concept of an alias.
The values for source group used in the Repeat for Group dialog are the list names created by the
Declare Group action. The list names perform two functions. They are an alternate name or short-
hand for the XPath source of any Map actions within the loop. This saves you the work of re-
specifying long XPath expressions. The group list name, when used in place of a DOM name in a
Map action source, is also an indicator to the Map action within the Repeat loop to use the next
instance in the group list each time the loop processes. A Map action within a Repeat for Group loop
that does not use the group name always refers to the first instance of the element in the source part.

The target aliases created in the Repeat for Group action also serve two functions. They are an
alternate name or short-hand for the XPath target of any Map actions within the loop. This saves you
the work of re-specifying long XPath expressions. The target alias, when used in place of a part
name, is also an indicator to Map actions within the Repeat loop to create a new instance of the
Source in the target message part. A Map action within a Repeat for Group loop that does not use a
target alias always overwrites the first instance created in the target message part with subsequent
instances from the source group list.

Creating a Repeat for Group action consists of three tasks:

Create a Declare Group action to create the group lists.
Create a Repeat for Group action specifying which group list to use.
Create Map actions inside the loop.

Adding a Repeat for Group Action

1 Right-click the line in the action model that is one line above the position in which you want to
place the Repeat for Group action (the new action will be inserted below the line that you
selected).
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
2 Select Action > New Action > Repeat > Repeat for Group.

3 In the Source section, select a Group name from the Where list on which to base the Repeat for
Group action loop.

4 Optionally, type a Where clause in the Where field to filter the group list, or click the ECMA
expression builder icon and create a Where expression.

5 If you know the alias for the Target element, type the name in the Alias field.
6 If you do not know the alias, select either the XPath button and select an element from the list,

or select the Expression button and type an expression (or click the ECMA expression builder
button and build an expression).

7 Click OK.

Repeat While

This section includes the following topics:

“About the Repeat While Action” on page 235
“Adding a Repeat While Action” on page 236

About the Repeat While Action

The Repeat While action repeats one or more actions as long as a condition that you specify remains
true. The target alias that you create in the Repeat While action serves two functions. It is an
alternate name or short-hand for the XPath target of any Map actions within the loop. This saves you
the work of re-specifying long XPath expressions. The target alias, when used in place of a DOM
name in a Map action, is also an indicator to Map actions within the Repeat loop to create a new
instance of the source in the target DOM. A Map action within a Repeat for Group loop that does not
use a target alias always overwrites the first instance created in the target DOM with subsequent
instances from the source.

NOTE: Unlike the Repeat for Element and Repeat for Group, the Repeat While does not have to be
based on data in a DOM tree. The loop can operate independently of data in the DOM tree.
Working with Integration Activities 235

236 Identity Man

novdocx (E
N

U
) 29 January 2007
Adding a Repeat While Action

1 Right-click the line in the action model that is one line above the position in which you want to
place the Repeat While action (the new action will be inserted below the line that you selected).

2 Select New Action > Repeat > Repeat While.

3 In the While field, type an expression that tests the While loop, or click the ECMA expression
builder button and build an expression.

4 In the Index Variable field, type a name for a variable that will keep track of the condition of
the loop.

5 If you know the alias for the Target element, type the name in the Alias field.
6 If you do not know the alias, select either the XPath button and select an element from the list,

or select the Expression button and type an expression (or click the ECMA expression builder
button and build an expression).

7 Click OK.

9.5.4 Comment
This section includes the following topics:

“About the Comment action” on page 236
“Adding a Comment action” on page 237

About the Comment action

You can use the Comment action to document the action model and clarify the processing that takes
place. You can add comments anywhere within an action model. Comments perform no processing
of their own.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
Adding a Comment action

1 Right-click the line in the action model that is one line above the position in which you want to
place the comment (the new action will be inserted below the line that you selected).

2 Select New Action > Comment.

3 Type your comment.
4 Click OK.

9.5.5 Decision
This section includes the following topics:

“About the Decision action” on page 237
“Adding a Decision action” on page 237

About the Decision action

The Decision action creates an if. . . then construct between actions or a group of actions. You use a
Decision action to select a branch, based on a condition that you supply. The condition must use an
ECMAScript comparison operator, such as = =, <, >, !, >=, <=, (&), OR (||), or <>. The expression
must resolve to a Boolean true or false statement.

Adding a Decision action

1 Right-click the line in the action model that is one line above the position in which you want to
place the Decision action (the new action will be inserted below the line that you selected).

2 Select New Action > Decision.

3 Type an ECMAScript expression, or click the ECMA expression builder button and create a
Decision script that will evaluate to true or false at runtime.

4 Click OK.
Working with Integration Activities 237

238 Identity Man

novdocx (E
N

U
) 29 January 2007
A Decision action similar to the following is displayed.

5 In the action model pane, select the TRUE branch.
6 Add one or more actions that will execute if the expression is true.
7 Select the FALSE branch.
8 Add one or more actions that will execute if the expression is false.

You can nest other Decision actions inside the TRUE or FALSE branches of the Decision
action.

9.5.6 Function
“About the Function Action” on page 238
“Adding a Function Action” on page 238

About the Function Action

The Function action executes an ECMAScript function. To manipulate a DOM element, the script
that you call in the Function action must reference a fully qualified DOM element name in the
current Integration activity.

Custom Script functions that you create and add to an action model can act upon any XML tree
element. For example, you can create a function that changes the format of a date element. You can
create a function that performs a math function on the contents of an element. You can also perform
file system, database, or URL functions that have no interaction with a message part.

Adding a Function Action

1 Right-click the line in the action model that is one line above the position in which you want to
place the Function action (the new action will be inserted below the line that you selected).

2 Select New Action > Function.

3 Type the function in the Function Expression field or click the ECMA expression builder
button to build an ECMAScript expression.

4 Click OK.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
9.5.7 Log
“About the Log action” on page 239
“Adding a Log action” on page 239

About the Log action

Log actions provide customizable reporting capabilities (design-time as well as runtime) for
Integration activities. You can specify log level settings to control the degree of reporting.

Some Log usage examples include the following:

Writing certain error information to the operator console when a Try On Fault condition is
reached.
Using ECMAScript expressions to aid in debugging by logging information about variables or
DOM contents, the values of which are known only at runtime.
Capturing specific information from each cycle of a Repeat for Element loop.

Adding a Log action

1 Right-click the line in the action model that is one line above the position in which you want to
place the Log action (the new action will be inserted below the line that you selected).

2 Select New Action > Log.

3 Select the type of log that you would like to produce from the Log to group.
The Log action writes information to locations specified in the action. There are three locations
for log output: System Output, System Log, and User Log.
Working with Integration Activities 239

240 Identity Man

novdocx (E
N

U
) 29 January 2007
4 Use Log Level to select a priority level (1 to 10) for this Log action.
The default priority level is 5. You should assign a number from 5 to 10 to messages that you
want to appear in the log file. The priority you assign here will be compared to the threshold
number (which is set to 5 internally and cannot be changed). If the priority is equal to or greater
than the threshold, the message is logged; otherwise it is not.

5 Check Clear the Log File if you want the data in the log file to be cleared each time the
component is executed.

6 If User Log is selected in the Log to group, type the path to the log file in the User Log File
field, or use Browse to specify a log file.
If you specify a file that doesn’t exist, the file will be created. On Windows* systems, if you
type the path, you must add an extra backslash character wherever a backslash character occurs
in a path (for example, C:\Windows becomes C:\\Windows).

7 Create the message that you want to record to the log in the Log Expression field.
You can type a message in the field or use the ECMA expression builder to build an expression.

9.5.8 Map
This section includes the following topics:

“About the Map Action” on page 241
“Adding a Map Action” on page 242
“Advanced Mapping Options” on page 243
“Transforming Elements with the Content Editor” on page 245

Log Location Description

System Output Select System Output to write messages that
you specify in the Log Expression field to the
operating system console at design time, or the
application server console at runtime.

NOTE: To view messages on the operating
system console, start Designer using the Eclipse
-debug and -consoleLog startup parameters.

System Log Select System Log to write messages that you
specify in the Log Expression field to the
application server log file.

User Log Select User Log to write messages that you
specify in the Log Expression field to a file that
you specify in the User Log File field.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
About the Map Action

The Map action performs DOM-node input and output mapping. It can transfer and transform data
from one document context to another document context. A context has two parts. The first part
usually identifies a DOM and the second part identifies a location within the DOM. The basic
document context in an Integration activity is expressed as a DOM name combined with an element
location identified through an XPath expression. The DOM name is usually Input, Output, _System
Fault, or Project. The XPath expression identifying a location in a DOM has the path elements
delimited by “/”.

NOTE: A context in an Integration activity can also be a Group name that itself is simply an alias or
short-hand for an XPath expression.

Default Mapping Behavior

When you use the Map action to map elements and attributes within XML documents, certain
default behaviors occur. The following table lists those default behaviors.

Table 9-5 Default Mapping Behavior

Many of these behaviors can be altered, on an action-by-action basis, through the use of the
Advanced mapping dialog (see “Advanced Mapping Options” on page 243).

Leaf Elements that Contain Markup

A problem can occur when an element is populated at runtime by a Java or ECMAScript operation.
The element might receive data that contains markup (strings with illegal characters, such as < and
>). If the Integration activity were to map the contents of such an element to a node in the Output
DOM, the output document would be malformed. The Integration activity resolves this issue by
mapping any data that contains markup to a new CDATA section in the target document.

Map Type Default Behavior

Leaf Element to Leaf Element Transfers the element data only.

Leaf Element to Branch Element Transfers the element data only.

Branch Element to Leaf Element Transfers the entire branch, including all child elements
and attribute data under the branch.

Branch Element to Branch Element Transfers the entire branch, including all child elements
and attribute data under the branch after removing the
target’s current branch.

A particular Leaf Element in a list of Leaf
Elements, to Element

Transfers the element data from the selected leaf (or
element instance) to the target element.

Attribute to Attribute Transfers the attribute data only.

Element to Attribute Transfers element data to attribute data.

Attribute to Element Transfers the attribute data only.
Working with Integration Activities 241

242 Identity Man

novdocx (E
N

U
) 29 January 2007
NOTE: When markup is entered at design time, the behavior is different. If you type markup into a
node, and you examine the raw XML in Source view, you’ll see that markup characters typed into a
node are converted to entities. For example, a “<” character is converted to <.

Adding a Map Action

1 Right-click the line in the action model that is one line above the position in which you want to
place the Map action (the new action will be inserted below the line that you selected).

2 Select New Action > Map.

3 In the Source section, select XPath.
4 Select a part (Input, Output, _SystemFault, or Project) from the list, then type the appropriate

XPath expression, or use the ECMA expression builder to locate the element that you want.
Together, the part name and XPath specify the Source context for the Map action.

5 Repeat Step 3 and Step 4 for the Target section.
6 If you want more control over mapping, select the Advanced (see “Advanced Mapping

Options” on page 243) or Content Editor (see “Transforming Elements with the Content
Editor” on page 245) options.
You can click Apply to see the effect of the Map action without closing the dialog box. This
allows you to make repetitive edits to a Map action and quickly see the results.

7 Click OK.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
Advanced Mapping Options

When you select the Advanced option in the Map dialog box, the Advanced dialog box is displayed.
Options that you set in the Advanced dialog box only affect the current Map action.

Figure 9-11 Advanced

The options in this dialog box give you fine control over how input part nodes are mapped to the
output part.

This section includes the following topics:

“Copy Attributes” on page 243
“Deep Copy” on page 244
“Create Target” on page 244
“Create Target as CDATA Section” on page 245

Copy Attributes

You use Copy Attributes to specify how attributes are mapped. Copy Attributes has the following
options:
Working with Integration Activities 243

244 Identity Man

novdocx (E
N

U
) 29 January 2007
Table 9-6 Copy Attributes Options

Deep Copy

The default Integration activity behavior is to map whole branches at a time (the target node plus all
of its children). This is referred to as a deep copy. In some cases, you might want to turn off this
behavior so that you can copy just the parent element without its children. Deselect Map the
Dependents if you want to disable deep copy.

Create Target

You use Create Target to create the destination node that you specified in the Target group in the
Map action (see “Adding a Map Action” on page 242), based on whether or not the source node is
present in the source DOM. By default the Integration activity always creates the target, whether or
not the runtime source DOM contains the nodes specified in the Source XPath for mapping.

For example, in the Map action, you might have specified a Source XPath that looks like
$Input/Root/MySourceElement

In the Target XPath, you may have specified
$Output/Root/MyParentNode/SomeOtherElement

If the incoming Input document does not have a node corresponding to Root/
MySourceElement, the Integration activity will by default create an empty Root/
MyParentNode/SomeOtherElement node in the output DOM. In some cases, this might not
be what you want. Using Create Target mapping, you can change the default behavior.

Table 9-7 Create Target

Option Description

For Non-leaf Root Nodes and
Dependents

Specifies that when a non-terminal (non-leaf) element is mapped to
output, the element (minus its attributes) and its children are mapped to
output. Attribute data for the children is included, but not for the original
(parent) element.

Never Specifies that no attribute data (whether for parent or leaf nodes) will be
carried over during mapping.

Always Specifies that all attribute data, for all nodes, will be mapped to output.

Option Description

Only if Source exists Specifies that the Map Action will be skipped (no target nodes are created
in the output DOM) if the node specified in the Source XPath doesn’t exist
in the input message.

Raise Error Specifies that if the input document doesn’t contain the node specified in
the Source XPath, it will be considered an error at runtime. You should
plan accordingly by wrapping your Map action in a Try/OnError block so
that you can handle the error.

Always Specifies that the target node should always be created (the default
behavior). When Always is selected, you can use the Default Value field to
specify a default data value for the target element.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
Create Target as CDATA Section

You use Create Target as CDATA to control the way element data gets mapped into CDATA
sections.

Table 9-8 Create Target as CDATA Section

Transforming Elements with the Content Editor

You use the Content Editor to change the format and content of the input element to match that
required by the output element. Using the Content Editor, you can slice the input data into small
parts, move the parts to different locations relative to one another, add new parts, omit some parts,
and apply functions to individual parts.

1 In the Action model, select two elements from different parts (for example, from the Input and
Output parts) to map.

2 Select New Action > Map.
3 In the Map action dialog box (see “Adding a Map Action” on page 242), select the Content

Editor check box, then select the Content Editor button.

Option Description

Only if source contains
markup

Specifies that if the source data contains XML, HTML, or other types of
markup in which illegal (in this context) characters are used, the data will
be placed, unmodified, in a CDATA section in the target DOM. This is the
default behavior.

Never Specifies that source data will not be wrapped in a CDATA section for
output. Illegal characters that occur in the source data are converted to
escaped entities, such as > for >, on the output side.

Always Specifies that whatever form the source data takes, it will get wrapped in a
CDATA section on output.
Working with Integration Activities 245

246 Identity Man

novdocx (E
N

U
) 29 January 2007
4 If desired, click New Sample and type a sample string.

5 Click OK to return to the Content Editor dialog box.
6 In the Sample section, move the slider that is above the sample to the position where you want

the first cut to take place, then move the slider that is below the sample to the position where
you want the end cut to take place.
The sliders determine how to take a substring from the input data.

7 Click Apply.
The substring is copied to the Result field as a separate object.

8 Repeat Step 6 and Step 7 for each part of the sample in the order that you want.
Using this method, you can build a new string out of substrings of the original input.

9 To change the format of an object in the Result field:
9a Select an object.
9b Click Modify.

The Start Cut at Characters field displays the character in the string where the first cut
will take place. The first Occurrence field displays when the cut will take place. In the
previous illustration, the first cut will take place at the first occurrence of the letter l. The
End Cut at Characters field displays that character in the string where the last cut will take
place. The second Occurrence field displays when the cut will take place. The Offset field
displays the number of characters from the beginning of the original string where the
object will start. The Length field displays the length of the object.

9c If desired, you can write an ECMAScript expression in the Script Expression field to
modify the content region.
The %r shown in the Script Expression field is a local variable representing the content
region to which you would like to apply a function. For example, to apply the
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
.toUpperCase() function to the content region, you would write the Script
Expression: var test='%r'; test.toUpperCase().

9d To assign a constant to an object, select Constant, then type a constant string.
9e When you are finished mapping string formats with the Content Editor, click OK to save

the changes and close the Content Editor.
10 Click OK to return to the action model.
Working with Integration Activities 247

248 Identity Man

novdocx (E
N

U
) 29 January 2007
ager 3.5 User Application: Design Guide

10
novdocx (E

N
U

) 29 January 2007
10Working with ECMA Expressions

This section provides details on using the ECMA expression builder. Topics include:

Section 10.1, “About the ECMA Expression Builder,” on page 249
Section 10.2, “ECMAScript Examples,” on page 259
Section 10.3, “ECMAScript API,” on page 262

10.1 About the ECMA Expression Builder
Designer incorporates an ECMAScript interpreter and expression editor, which allows you create
script expressions that refer to and modify workflow data. For example, you can use scripting to:

Create new data items needed in a workflow under the flowdata element.
Perform basic string, date, math, relational, concatenation, and logical operations on data.
Call standard or custom Java classes for more sophisticated data operations.
Use expressions for runtime control to

Modify or override form field labels.
Initialize form field data.
Customize e-mail addresses and content.
Set entitlement grant/revoke rights and parameters.
Evaluate any past activity data to conditionally follow a work flow path using the
Condition activity.
Write different log messages that are conditionally triggered using a single Log activity.

This section describes some of the techniques and capabilities applicable to the use of scripting.

NOTE: To define expressions for a workflow, you need to understand how workflow activities are
configured. In addition, you need to understand the various types of data that are available within a
workflow. For details on configuring workflow activities, see Chapter 8, “Workflow Activity
Reference,” on page 179 . For descriptions of the system variables available in a workflow, see
Section 4.3.3, “Understanding Workflow Data,” on page 86.

10.1.1 About ECMAScript
ECMAScript is an object-oriented scripting language for manipulating objects in a host environment
(in this case, Designer). ECMAScript (ECMA-262 and ISO/IEC 16262) is the standards-based
scripting language underpinning both JavaScript* (Netscape*) and JScript* (Microsoft*). It is
designed to complement and extend existing functionality in a host environment such as Designer’s
graphical user interface. As a host environment, Designer provides ECMAScript access to various
objects for processing. ECMAScript in turn provides a Java-like language that can operate on those
objects.

The extensibility of ECMAScript, and its powerful string-handling tools (including regular
expressions), make it an ideal language to extend the functionality of Designer.
Working with ECMA Expressions 249

250 Identity Man

novdocx (E
N

U
) 29 January 2007
NOTE: You can find detailed information about ECMAScript at the European Computer
Manufacturers Association (ECMA) Web site (http://www.ecma-international.org).

10.1.2 ECMAScript Capabilities
In addition to enabling you to incorporate finely-tuned custom logic into your workflow, scripting
gives you a great deal of flexibility in manipulating data because of the various DOM- and XPath-
related objects and methods available in the ECMAScript extensions incorporated into the
Expression Builder.

The usefulness of ECMAScript is especially apparent when dealing with in-memory DOMs. The
ECMA expression builder constructs XML documents as in-memory objects according to the W3C
DOM Level 2 specification. The DOM-2 specification, in turn, defines an ECMAScript binding (see
the W3C Recommendation ECMAScript Language Binding (http://www.w3.org/TR/DOM-Level-2-
Core/ecma-script-binding.html), with numerous methods and properties that provide ready access to
DOM-tree contents. The flowdata DOM is recognized by the ECMA expression builder, and any of
the W3C-defined ECMAScript extensions that apply to DOMs can be used.

ECMAScript also provides bridges to other expression languages such as XPath. This allows you to
use XPath syntax on a DOM to address various elements within its document structure.

10.1.3 Using the ECMA Expression Builder
Designer provides access to ECMAScript in various places in the User Application design tools. The
most common form of access is through the Expression Builder, which can be displayed whenever
you see this button:
ager 3.5 User Application: Design Guide

http://www.ecma-international.org
http://www.ecma-international.org
http://www.w3.org/TR/DOM-Level-2-Core/ecma-script-binding.html

novdocx (E
N

U
) 29 January 2007
The button can be found in Designer displays, such as the Properties for a Condition activity or the
Data Item Mapping view for an Entitlement Provisioning activity. Click the button to display the
ECMA expression builder.

Figure 10-1 ECMA Expression Builder

The ECMA expression builder provides pick lists of available objects, methods, and properties in
the top panes (all of which are resizable), with rollover tool tips to help you build ECMAScript
statements. Double-clicking any item in any pick list causes a corresponding ECMAScript statement
to appear in the edit pane in the lower portion of the window. In the figure, the process pick list has
been selected in the ECMAScript Variables pane, and the name variable has been double-clicked.
The ECMAScript expression that can access the contents of this workflow variable is inserted
automatically in the edit pane.

This section includes the following topics:

“Checking Syntax” on page 252
“Selecting a DN” on page 252
“ECMAScript Variables” on page 252
“Functions/Methods” on page 253
“ECMAScript Operators” on page 253
“VDX Expr” on page 255
“Using Special Characters” on page 255
Working with ECMA Expressions 251

252 Identity Man

novdocx (E
N

U
) 29 January 2007
Checking Syntax

The ECMA expression builder includes a Check Syntax button. Clicking the button causes the
ECMAScript interpreter to check the syntax of the expression. If there are problems involving
ECMAScript syntax, an error message is displayed. You can then edit the expression and validate
again as needed. Validation is optional.

NOTE: The syntax checking process does not execute your expression. It just checks syntax.
Because ECMAScript is an interpreted language, syntax checking doesn’t check any runtime-
dependent expressions, other than to see if they conform to valid ECMAScript syntax.

Selecting a DN

The ECMA expression builder also includes an Identity Vault button that is displayed when you are
working with activities that might require selecting a DN from the Identity Vault (for example, Start,
Approval, and Entitlement activities).

Figure 10-2 Identity Vault Button

The Identity Vault button displays a dialog box that you use to navigate the Identity Vault to select a
DN. The Identity Vault button is grayed (to indicate that it is unavailable) if you are not connected to
the Identity Vault.

ECMAScript Variables

This pane displays the names of variables that are relevant in the current context. For example, if
you are working in the provisioning request definition editor, you see system variables for the
current workflow process, system variables for the current activity, and flowdata variables created in
the current workflow. Double-click the name of a variable to insert that variable into your script. For
descriptions of the system variables available in a workflow, see Section 4.3.3, “Understanding
Workflow Data,” on page 86.

The ECMA expression builder provides two methods for reading flowdata variables.

Table 10-1 Methods for Reading Flowdata Variables

Method Description

flowdata.get(variable-name) Returns a string as the node value for a variable
(representing an XPath expression) in the workflow
document.

flowdata.getObject(variable-name) Returns an object as a node value for a variable
(representing an XPath expression) in the workflow
document. Use this method to retrieve the values of
multivalued controls.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
Functions/Methods

For a description of the functions and methods available in the ECMA expression builder, see
Section 10.3, “ECMAScript API,” on page 262.

ECMAScript Operators

The following tables provide descriptions of the operators supported by the ECMA expression
builder.

Table 10-2 Math

Table 10-3 Assignment

Operator Description

+ Add Returns the sum of two numerical values (either literals or
variables).

- Subtract Subtracts one number from another .

 * Multiply Returns the product of two numerical values (either literals or
variables).

/ Divide Divides one number by another.

Operator Description

 = Assignment Assigns the value of the right operand to the left operand.

+= Add to this Adds the left and right operands and assigns the result to the
left operand. For example, a += b is the same as a = a + b.

-= Subtract from this Subtracts the right operand from the left operand and assigns
the result to the left operand. For example, a -= b is the same
as a = a - b.

 *= Multiply to this Multiplies the two operands and assigns the result to the left
operand. For example, a *= b is the same as a = a * b.

/= Divide this to Divides the left operand by the right operand and assigns the
result to the left operand. For example, a /= b is the same as a
= a / b.

%= Modulus Divides the left operand by the right operand and assigns the
remainder to the left operand. For example, a %= b is the same
as a = a % b.

&= Apply bitwise AND to this Performs bitwise AND on operands and assigns the result to
the left operand. For example, a &= b is the same as a = a & b.

|= Apply bitwise OR to this Performs bitwise OR on operands and assigns the result to the
left operand. For example, a |= b is the same as a = a | b.

 <<= Apply bitwise left shift to this Performs bitwise left shift on operands and assigns the result to
the left operand. For example, a <<= b is the same as a = a <<
b.
Working with ECMA Expressions 253

254 Identity Man

novdocx (E
N

U
) 29 January 2007
Table 10-4 Other

Table 10-5 Relational

 >>= Apply bitwise signed right shift to
this

 Performs bitwise right shift on operands and assigns the result
to the left operand. For example, a >>= b is the same as a = a
>> b.

 >>>= Apply bitwise unsigned right shift
to this

Performs bitwise unsigned right shift on operands and assigns
the result to the left operand. For example, a >>>= b is the
same as a = a> >> b.

Operator Description

% Modulus Divides the left operand by the right operand and returns the
integer remainder.

++ Autoincrement Increments the operand by one (can be used before or after the
operand).

-- Autodecrement Decrements the operand by one (can be used before or after
the operand).

~ Bitwise NOT Inverts the bits of its operand.

& Bitwise AND Returns a 1 in each bit position for which the corresponding bits
of both operands are ones.

| Bitwise OR Returns a 1 in each bit position for which the corresponding bits
of either or both operands are ones.

^ Bitwise XOR Returns a 1 in each bit position for which the corresponding bits
of either but not both operands are ones.

<< Bitwise left shift Shifts the digits of the binary representation of the first operand
to the left by the number of places specified by the second
operand. The spaces created to the right are filled in by zeros,
and any digits shifted to the left are discarded.

>> Signed bitwise right shift Shifts the digits of the binary representation of the first operand
to the right by the number of places specified by the second
operand, discarding any digits shifted to the right. The copies of
the leftmost bit are added on from the left, preserving the sign
of the number.

>>> Unsigned bitwise right shift Shifts the binary representation of the first operand to the right
by the number of places specified by the second operand. Bits
shifted to the right are discarded and zeroes are added to the
left.

 Operator Description

== Equal Assigns the value of the right operand to the left operand.

!= Not Equal Returns a Boolean true if the operands are not equal.

Operator Description
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
Table 10-6 Logical

Table 10-7 String

VDX Expr

This pane allows you to insert Entity definitions (see Section 3.2, “Working with Entities and
Attributes,” on page 41) that are defined in the Identity Vault into your scripts. Both system and
user-defined entities are available. The format of an expression to retrieve data from the Identity
Vault is
IDVault.get(dn, object-type, attribute)

For example if you want the recipient's manager for a data item, you would open the User node in
the VDX Expr Panel and double-click the Manager item, which inserts IDVault.get({ enter
dn expression here }, 'user', 'manager'). This expression evaluates to the string
for the manager’s DN (LDAP distinguished name).

Using Special Characters

You can use special characters in literal strings in the ECMA expression builder by using escape
sequences. Escape sequences begin with a backslash character (\). The following table contains
some commonly-used escape sequences:

< Less than Returns true if the left operand is less than the right operand.

> Greater than Returns true if the left operand is greater than the right
operand.

<= Less than or equal Returns true if the left operand is less than or equal to the right
operand.

>= Greater than or equal Returns true if the left operand is greater than or equal to the
right operand.

 Operator Description

&& AND Returns a Boolean true if both operands are true; otherwise,
returns false.

|| OR Returns true if either operand is true. Returns false when both
operands are false.

! NOT Returns false if its single operand can be converted to true (or
if it is a non-Boolean value). Returns true if its operand can be
converted to false.

Operator Description

 + Concatenate Concatenates two string operands, returning a string that is the
union of the two operand strings.

 Operator Description
Working with ECMA Expressions 255

256 Identity Man

novdocx (E
N

U
) 29 January 2007
Table 10-8 Escape Sequences

You also can specify any Unicode character by using ' \u ' followed immediately by four
hexadecimal digits. Here are some examples:

Table 10-9 Escape Sequence Examples for Unicode Characters

10.1.4 About Java Integration
Java is integrated into the workflow process through the ECMA expression builder, which provides
a bridge to external Java objects. To access a Java class through the ECMA expression builder, the
class must be in the classpath of the workflow engine. To accomplish this, you must add the Java
class to the WEB-INF\lib directory in the User Application WAR file (IDM.war).

NOTE: Unlike ECMAScript that is avaiable in other parts of the provisioning request definition
editor, form action scripts are executed on the browser, not the server. All directory access from
within a form action script is handled by AJAX calls from the browser to the server. See
Section 10.3.1, “Form Action Script Methods,” on page 262.

Adding the Java Class to the User Application WAR

1 Use a WAR file utility to open the IDM.war file. The IDM.war file is located in the
application server \server\IDM\deploy directory.

2 Copy the Java class into the WEB-INF\lib directory.

Escape Sequence Character

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Horizontal tab

\” Double quote

\\ Backslash (\)

\’ Apostrophe

Escape Sequence Character

\u00A3 Pound symbol (£)

\u20AC Euro symbol (€)
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
Accessing Java from ECMAScript

To access a Java class, create a function inline in the ECMA expression builder. Instantiate the
function, then within the function, using ECMAScript syntax, call your Java methods. The
following example creates a vector:
function list() { v=new java.util.Vector(); v.add('{Enter Item 1}');
v.add('{Enter Item 2}'); return v; }; list();

To access a custom Java class, you must preface the class name with “Packages”. For example:
v = new Packages.com.novell.myClass("value");

The ECMA expression builder is built on Mozilla* Rhino. Rhino is an open-source implementation
of JavaScript written entirely in Java. For more information about accessing Java from
ECMAScript, see Scripting Java (http://www.mozilla.org/rhino/ScriptingJava.html).

10.1.5 About XPath Integration
This section includes the following topics:

“XPath in Workflows” on page 257
“XPath in Integration Activities” on page 257

XPath in Workflows

A provisioning request definition workflow supports a special object called flowdata (see
Section 4.3.3, “Understanding Workflow Data,” on page 86). The flowdata object is a DOM (an
XML document constructed as an object in memory). You can use XPath syntax to navigate the
structure of the flowdata DOM, and add, modify or delete elements and contents.

To add an object to flowdata:

To get an object from flowdata:

For information about the flowdata.get() and flowdata.getObject() methods, see Table 10-1 on
page 252.

XPath in Integration Activities

When you are working with an Integration activity, the ECMAScript interpreter recognizes a custom
method called XPath(). This method allows expressions such as:

Syntax Examples

flowdata.parent/child[1]
flowdata.reason

Syntax Examples

flowdata.getObject('parent/
child[1]')
flowdata.get('reason')
Working with ECMA Expressions 257

http://www.mozilla.org/rhino/ScriptingJava.html

258 Identity Man

novdocx (E
N

U
) 29 January 2007
Input.XPath("GetBNQuoteSoapIn/GetBNQuote/sISBN")

Using the ECMA expression builder, this type of expression is built for you automatically when you
select nodes in ECMA expression builder pick lists.

The Integration activity uses the XPath addressing syntax adopted by W3C. The XPath syntax is
similar to URI address syntax but includes many subtle and powerful features for addressing and
manipulating XML. Some of the more common syntax rules are listed in the following table.

Table 10-10 XPath Syntax

You can find the complete list of operators in the W3 Recommendation XML Path Language
(XPath) (http://www.w3.org/TR/xpath.html).

10.1.6 Performance Considerations
ECMAScript is an interpreted language, which means that every line of script in an expression must
be parsed and translated to the Java equivalent before it can be executed. This adds considerable
overhead to the code and results in overall slower execution of scripts than pure Java. Before using
ECMAScript, you should think about the possible performance ramifications.

XPath Syntax Description

/ The single forward slash represents an absolute path to an element. For
example, /ABC selects the root element ABC.

// Double slashes represent all elements in a path. //ABC selects all
occurrences of ABC. For example, //ABC//DEF selects all DEF elements
that are children of ABC.

* The asterisk selects all elements located by the preceding path. For example,
ABC/DEF selects all elements enclosed by elements ABC/DEF. // selects
all elements.

[] Square brackets specifies a particular element. For example /ABC[3]
selects the third element in ABC. This can also be used as a filter (similar to a
Where clause in SQL). //ABC[“Table”] selects all elements that have the
content “Table.”

@ The At sign selects elements with a specified attribute. For example, /
ABC@name selects all elements in ABC that have an attribute called name.

| The vertical bar allows you to specify multiple paths. For example, //ACB|//
DEF selects all elements in ACB and in DEF.

$ The dollar sign allows you to reference other documents besides the current
one: INVOICEBATCH/INVOICE[SELLER/NAME=
$PROJECT/USERCONFIG/COMPANYNAME]

function() XPath has numerous functions that you can add to your XPath addresses.
For example, //*[count(*)=2] selects all elements that have two
children.

math operator() XPath has numerous math operators that you can add to your XPath
addresses. For example, /ABC|position() mod 2 = 0] selects all even
elements in ABC.
ager 3.5 User Application: Design Guide

http://www.w3.org/TR/xpath.html
http://www.w3.org/TR/xpath.html

novdocx (E
N

U
) 29 January 2007
The following guidelines will help you to achieve optimal performance in your components and
services:

Consider whether a task can be accomplished using a custom Java class (which you can call
from ECMAScript).
When you need the fine control offered by scripting, use ECMAScript.

Bear in mind that the key to good performance is always a good implementation (for example,
choosing the correct algorithm and attention to reuse of variables). Good code written in a slow
language often outperforms bad code written in a fast language. Writing something in Java does not
guarantee that it will be faster than the equivalent logic written in ECMAScript because Java has its
own overhead constraints, for example, constructor call-chains (when you call a constructor for a
Java object that inherits from other objects, the constructors for all ancestral objects are also called).

ECMAScript’s core objects (String, Array, Date, etc.) have many built-in convenience methods for
data manipulation, formatting, parsing, sorting, and conversion of strings and arrays. These methods
are implemented in highly optimized Java code inside the interpreter. It is to your advantage to use
these methods whenever possible, rather than create customized data-parsing or formatting
functions. For example, suppose you want to break a long string into substrings, based on the
occurrence of a delimiter. You could create a loop that uses the String methods indexOf() and
substring() to parse out the substrings and assign them to slots in an array. But this would be a very
inefficient technique when you could simply do the following:
var myArrayOfSubstrings = bigString.split(delimiter);

The ECMAScript String method split() breaks a string into an array of substrings based on whatever
delimiter value you supply. It executes in native Java and requires the interpreter to interpret only
one line of script. Trying to do the same thing with a loop that iteratively calls indexOf() and
substring() would involve a great deal of needless interpreter and function-call overhead, with the
accompanying performance hit.

Skillful use of built-in ECMAScript methods pays worthwhile performance dividends. If you use
scripts extensively, take time to learn about the fine points of the ECMAScript language because this
can help you eliminate performance bottlenecks.

10.2 ECMAScript Examples
This section provides examples of common operations that you can perform using ECMAScript.

10.2.1 General Examples
This section presents examples that illustrate basic scripting techniques.

Using a Function

To create a function in the ECMA expression builder, create the function inline:
function abc() { var v1 = "" ; for (i = 0; i < 9 ; i++) v1 += "$";
return v1; } ; abc();

10.2.2 Flowdata Examples
This section presents scripting examples that show the use of the flowdata object.
Working with ECMA Expressions 259

260 Identity Man

novdocx (E
N

U
) 29 January 2007
Getting the Value of a Flowdata Variable

In the previous example, you entered information about an approval status into the flowdata by
creating an XML element named start_reason with a child element named approval_reason and an
attribute named ApprovalStatus. Use the following expression, in a pre-activity map, to retrieve the
value of the ApprovalStatus attribute:
flowdata.get('start_reason/approval_reason/@ApprovalStatus')

You can enter this expression by expanding the flowdata nodes in the ECMAScript Variables pane
of the ECMA expression builder and double-clicking the ApprovalStatus attribute.

Figure 10-3 Selecting an Attribute

Creating an XML Element with Child Element and Adding it to the Flowdata

In the previous example, you retrieved user input to the form field ApprovalStatus. Now we want to
add this information to the flowdata so that it can be used by a downstream activity. Use the
following expression in a post-activity map:
flowdata.start_reason/approval_reason/@ApprovalStatus

10.2.3 Form Control Examples
This section presents several examples of scripting with form controls.

Retrieving the Value of a Form Field

Suppose you have a form field named ApprovalStatus. To get the value of this field, use the
following expression in a pre-activity map:
process.get('ApprovalStatus')

You can enter this expression by opening the Process node in the ECMAScript Variables pane of the
ECMA expression builder and double-clicking ApprovalStatus.

Getting an Individual Value from a Multivalued Control

To get an individual value from a multivalued control (for example, a check box named colors), you
first need to get the control into the flowdata. In the post-activity mapping for an upstream activity,
use the following:
flowdata.colors

To get a value from colors (for example, the first value), use the following expression on a
downstream activity:
flowdata.getObject(‘colors[1]’)
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
Populating a List or Checkbox Item

To populate list controls (for example, PickList or MVEditor) or the MVCheckbox control using
script, use an expression like this in the pre-activity mapping:
function list() {var l=new
java.util.Vector();l.add(‘Blue’);l.add(‘Red’); l.add(‘Green’); return
l;} list();

Comparing DNs

To compare DNs to find out if they are equal, use an expression like this:
if (IDVault.DNcompare(flowdata.get('Activity3/CardRequest/
Candidate'),recipient)) true; else false ;

This comparison is case-insensitive. For example, the following DNs, when compared with
DNCompare, would return true:
CN=jdoe,ou=users,ou=idmsample,o=acme
cn=JDOE,ou=users,ou=idmsample,o=acme

10.2.4 Error Handling Examples
This section presents scripting examples that show how to deal with errors during runtime
execution.

Handling Errors

The approach to handling errors differs between pre-activity and post-activity maps. For post-
activity maps, you can use an error flow path from an Approval or Condition activity to catch errors
that occur during post-activity mapping. This approach doesn’t work for pre-activity maps because
any errors that occur in the process of getting data happen before the form is displayed to the user.
When this occurs, an error message similar to the following appears in place of form controls in the
bottom portion of forms displayed to the user:
XXXX FAILED to generate form due to: No data items are available!

In this scenario, you can use a try-catch statement in a source expression for a field in a pre-activity
map:
function getTheData()
{
 var theData;
 try {
 theData = IDVault.get('cn=jsmith,ou=users,ou=idmsample1,o=acme'
, 'user', 'FirstName') + ' ' + IDVault.get (
'cn=jsmith,ou=users,ou=idmsample1,o=acme' , 'user', 'LastName');
 }
 catch (error) { theData = 'Error retrieving data.'; }
 return theData;
};
getTheData();
Working with ECMA Expressions 261

262 Identity Man

novdocx (E
N

U
) 29 January 2007
10.3 ECMAScript API
This section includes the following topics:

Section 10.3.1, “Form Action Script Methods,” on page 262
Section 10.3.2, “DOM Methods,” on page 269
Section 10.3.3, “ECMAScript Core,” on page 293
Section 10.3.4, “Global Functions,” on page 312
Section 10.3.5, “IDVault Functions,” on page 312

10.3.1 Form Action Script Methods
Unlike the ECMAScript that runs in other components of the workflow, form script executes on the
Web browser, not the server. All directory access from within form script is handled by AJAX* calls
from the browser to the server.

This section lists all form action methods and properties supported by the ECMA expression builder.
This section includes the following topics:

“Form” on page 262
“Field” on page 265
“Event” on page 267
“Lists” on page 267
“Queries” on page 268
“Container” on page 268

Form

Lets you work with Form methods. This section includes the following methods:

“alert(string)” on page 262
“showMsg(string)” on page 263
“showWarning(string)” on page 263
“showError(string)” on page 263
“showFatal(string)” on page 264
“enable(fieldname)” on page 264
“disable(fieldname)” on page 264
“getValue(fieldname)” on page 264
“getValues(fieldname)” on page 265
“setValues(fieldname)” on page 265

alert(string)
form.alert("msg")

Displays a message in an alert box.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
showMsg(string)
form.showMsg(msg, param, bId)

Adds a message to the status portion of the form. The msg string parameter can either contain the
text of the message itself or it can contain a key pointing to an entry in the resource bundle bId.
This method always tries to find an entry with the key msg in the resource bundle with the id
bId.The param parameter can be used to pass in replacements for stakeholders ({0}, {1}, etc) in
msg.

NOTE: If you want to add debugging messages to your script, it is better practice to use
form.showDebugMsg() .

Example:
form.showMsg("my message" {0},{1}", ["value0","value1"]);

showWarning(string)
form.showWarning(msg, param, bId)

Adds a warning to the status portion of the form.

The msg string parameter can either contain the text of the warning itself or it can contain a key
pointing to an entry in the resource bundle bId. This method always tries to find an entry with the
key msg in the resource bundle with the id bId. The param parameter can be used to pass in
replacements for stakeholders ({0}, {1}, etc) in msg.

NOTE: If you want to add debugging messages to your script, it is better practice to use
form.showDebugMsg() .

Example:
form.showWarning("my warning" {0},{1}", ["value0","value1"]);

showError(string)

showError(msg, param, bId);

Adds an error message to the status portion of the form.

The msg string parameter can either contain the text of the error itself or it can contain a key
pointing to an entry in the resource bundle bId. This method always tries to find an entry with the
key msg in the resource bundle with the id bId. The param parameter can be used to pass in
replacements for stakeholders ({0}, {1}, etc) in msg.

NOTE: If you want to add debugging messages to your script, it is better practice to use
form.showDebugMsg() .

Both normal and fatal errors block form submission. The distinction between a normal error and a
fatal error is that normal errors get reset just before form validation occurs (due to a form
submission). Fatal errors are remembered and therefore block the form submission unless you
restart. A normal error only blocks submission if it is generated during the validation phase. If you
add normal errors during onload or custom events, they will be lost when the form is submitted.
Working with ECMA Expressions 263

264 Identity Man

novdocx (E
N

U
) 29 January 2007
NOTE: If you want to add debugging messages to your script, it is better practice to use
form.showDebugMsg() .

Example:
form.showError("my error" {0},{1}", ["value0","value1"]);

showFatal(string)

form.showFatal("my fatal" {0},{1}", ["value0","value1"]);

Adds an fatal error message to the status portion of the form.

The msg string parameter can either contain the text of the fatal error itself or it can contain a key
pointing to an entry in the resource bundle bId. This method always tries to find an entry with the
key msg in the resource bundle with the id bId. The param parameter can be used to pass in
replacements for stakeholders ({0}, {1}, etc) in msg.

Both normal and fatal errors block form submission. The distinction between a normal error and a
fatal error is that normal errors get reset just before form validation occurs (due to a form
submission). Fatal errors are remembered and therefore block the form submission unless you
restart. A normal error only blocks submission if it is generated during the validation phase. If you
add normal errors during onload or custom events, they will be lost when the form is submitted.

NOTE: If you want to add debugging messages to your script, it is better practice to use
form.showDebugMsg() .

Example:
form.showFatal("my fatal" {0},{1}", ["value0","value1"]);

enable(fieldname)
form.enable("fieldname")

Enables a field on a form.

disable(fieldname)
form.disable("fieldname")

Disables a field on a form.

NOTE: A disabled field still sends data back to the workflow engine. The content of a disabled field
is validated when submitting the form or when calling the field.validate() method .

getValue(fieldname)
form.getValue("fieldname")

Returns the first value for the field. The type returned is always string, independent of the data type
of the field. If the field does not have a value, the method returns an empty string if text can be
entered into the field (like Text, TextArea, DatePicker, DNLookup) or it returns “undefined” if the
control is choice-based (for example, StaticList, radio buttons, check boxes). For DN type controls,
this method always returns the DN and never the display expression.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
getValues(fieldname)
form.getValues("fieldname")

Returns a string array containing the values. If no values are found, the array is empty (size = 0). For
DN type controls, this method always returns the DN and never the display expression.

setValues(fieldname)
form.setValues("fieldname", data-values, display values,
KeepOldValues)

Sets a value. Supports multiple values. This method allows changing the available entries for list-
based controls (for example, StaticList, MVCheckbox, PickList). By default, existing values are
deleted unless the KeepOldValues parameter equals true. For non-list-based controls, the
display values parameter is ignored.

If you want to set or change the initial value of a field, you should do so in an “onload” event.

NOTE: This method triggers the onchange event for the field.

Examples:
field.setValues("cn=jdoe,ou=users,ou=mysample,o=novell"); // for a
DNLookup
field.setValues(["jdoe@novell.com", "test@novell.com"]) // for an
MVEditor
field.setValues(["W","B"],["White","Black"],true); // for a StaticList

Field

Lets you work with Field methods. This section includes the following methods:

“getLabel()” on page 265
“fireEvent()” on page 265
“getValue()” on page 266
“getValues()” on page 266
“setValues(fieldname)” on page 266
“enable()” on page 266
“disable()” on page 266

getLabel()
field.getLabel()

Gets the label associated with the field. If no label is found, this method returns the name of the
field.

fireEvent()
field.fireEvent("eventname")

Fires a custom event. Passes the name of the custom event that is fired. To get the values of the event
that is fired, use form.getValues(event.getOrigin()).
Working with ECMA Expressions 265

266 Identity Man

novdocx (E
N

U
) 29 January 2007
getValue()
field.getValue()

Returns the first value for the field. The type returned is always a string, independent of the data type
of the field. If the field does not have a value, the method returns an empty string if text can be
entered into the field (like Text, TextArea, DatePicker, DNLookup) or it returns “undefined” if the
control is choice-based (for example, StaticList, radio buttons, check boxes). For DN type controls,
this method always returns the DN and never the display expression.

getValues()
form.getValues()

Returns a string array containing the requested values. If no values are found, the array is empty
(size = 0). For DN type controls this method always returns the DN and never the display
expression.

setValues(fieldname)
field.setValues(data-values, display-values, KeepOldValues)

Sets a value. Supports multiple values. This method allows changing the available entries for list-
based controls (for example, StaticList, MVCheckbox, PickList). By default, existing values are
deleted unless the KeepOldValues parameter equals true. For non-list-based controls, the
display values parameter is ignored.

If you want to set or change the initial value of a field, you should do so in “onload” event.

NOTE: This method triggers the onchange event for the field.

Examples:
field.setValues("cn=jdoe,ou=users,ou=mysample,o=novell"); // for a
DNLookup
field.setValues(["jdoe@novell.com", "test@novell.com"]) // for an
MVEditor
field.setValues(["W","B"],["White","Black"],true); // for a StaticList

enable()
field.enable()

Enable the field.

disable()
field.disable()

Disable the field.

NOTE: A disabled field still sends data back to the workflow engine. The content of a disabled field
is validated when submitting the form or when calling the field.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
Event

Lets you work with events. This section includes the following methods:

“getOrigin()” on page 267
“getValue()” on page 267
“getValues()” on page 267

getOrigin()
event.getOrigin()

Returns the name of the field from which the event was triggered.

getValue()
event.getValue()

Returns a string that contains the first value in the event.

You should not use the value that is returned by this method, since it is possible that a user might
have modified the data in the field since the event was triggered. Instead, you should use the value
returned by the form.getValue method. For example,
form.getValue(event.GetOrigin()). This ensures that you get the current value of the
field. If you select event.getValue() from the pick list in the ECMA expression builder,
form.getValue(event.GetOrigin()) is inserted.

getValues()
event.getValues()

Returns an array of strings that contains all values in the event.

You should not use the value that is returned by this method, since it is possible that a user might
have modified the data in the field since the event was triggered. Instead, you should use the value
returned by the form.getValues method. For example,
form.getValue(event.GetOrigin()). This ensures that you get the current value of the
field. If you select event.getValues() from the pick list in the ECMA expression builder,
form.getValues(event.GetOrigin()) is inserted.

Lists

Lets you work with lists.

globalList(fieldname, key, locale)
IDVault.globalList("fieldname", "key", "locale")

Retrieves a global list from the directory abstraction layer, identified by the key of the global list. If
the field name is specified, the result of the query is used to refresh the content of the field. To
retrieve a list without storing the result in a field, use a null value for the fieldname parameter.

The locale is optional. If locale is not specified, the locale in the HTTP request is used.

Example:
IDVault.globalList("dallist", "departments", "en");
Working with ECMA Expressions 267

268 Identity Man

novdocx (E
N

U
) 29 January 2007
Queries

Lets you work with queries.

globalQuery(fieldname, key, param)
globalQuery(fieldname, key, param)

Executes the predefined directory abstraction layer query key (see “Queries General Properties” on
page 73). If the field name is specified, the result of the query is used to refresh the content of the
field. To retrieve a list without storing the result in a field, use a null value for the fieldname
parameter.

The param parameter is used as input to the query. The parameter has the form
{parname1:value,parname2:value}, in which the value can be an individual value or an
array. The first column of the result list (always a DN) is used for the data value, the second column
is used for the display label.

Example:
IDVault.globalQuery("canchangepwd", "getsites"); // query without a
parameter
IDVault.globalQuery("building", "getbuildings",
{site:form.getValue("site")}); // query with one parameter
IDVault.globalQuery("room", "getrooms", {site:form.getValue("site"),
building:form.getValue("building")}); // query with two parameters

Container

Lets you work with containers.

containers(fieldname, rootdn, Search scope, Show DN)
IDVault.containers("test", rootdn, SearchScope, ShowDN)

Gets a list of containers, with the scope equal to “subtree” or the same level. The method returns an
array with 2 entries, the first an array with the resulting DNs; the second entry an array with the
display labels.

Table 10-11 Container Parameters

Example:

Parameter Description

fieldname If the field name is specified, the result of the query is used to refresh the content of
the field. To retrieve a list without storing the result in a field, use a null value for the
fieldname parameter.

rootdn If the rootdn parameter is empty, the root container for the default entity is used.

scope If the scope parameter is empty, one-level is used. Valid choices for scope are “o”
(nelevel) and “s” (ubtree).

showdn If the parameter showDN is true, the full DN is used for the display label. Otherwise
the naming part (for example, ou, dc) is displayed.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
IDVault.containers("assetProp2", null, "o", true); // set the entries
in a StaticList to all containers directly under the root DN of the
default entity

10.3.2 DOM Methods
This section lists all DOM-related methods and properties supported by the ECMA expression
builder, including not only DOM-1 and DOM-2 extensions (defined by the relevant W3C
standards), but also Designer’s own ECMAScript extensions. Extension methods are specifically
noted as such in the text. DOM methods are displayed in the
ECMA expression builder when you are working with expressions in the Integration activity.

This section includes the following topics:

“Node” on page 269
“Document” on page 273
“Element” on page 278
“Attribute” on page 284
“CharacterData” on page 285
“NodeList” on page 286
“NamedNodeMap” on page 288
“Text” on page 290
“DocumentType” on page 290
“DOMImplementation” on page 291
“Notation” on page 292
“Entity” on page 292
“ProcessingInstruction” on page 293

Node

Lets you work with nodes. This section includes the following topics:

“attributes” on page 270
“childNodes” on page 270
“firstChild” on page 270
“lastChild” on page 270
“nextSibling” on page 270
“nodeName” on page 270
“nodeType” on page 270
“nodeValue” on page 271
“ownerDocument” on page 271
“parentNode” on page 271
“previousSibling” on page 271
“XML” on page 271
Working with ECMA Expressions 269

270 Identity Man

novdocx (E
N

U
) 29 January 2007
“appendChild(newChild)” on page 271
“cloneNode(deep)” on page 271
“createXPath(XPathType asPattern)” on page 271
“hasChildNodes()” on page 271
“insertBefore(newChild, refChild)” on page 272
“removeChild(oldChild)” on page 272
“replaceChild(newChild, oldChild)” on page 272
“getXML()” on page 272
“ownerDocument” on page 272
“namespaceURI” on page 272
“prefix” on page 272
“localName” on page 272
“normalize()” on page 273
“hasAttributes()” on page 273
“isSupported(feature, version)” on page 273

attributes

W3C DOM Level 1 Node property. This property returns a NamedNodeMap object of the attributes
for the Node.

childNodes

W3C DOM Level 1 Node property. This property returns a NodeList object consisting of the
immediate children of the Node.

firstChild

W3C DOM Level 1 Node property. This property returns the first child node of a Node object.

lastChild

W3C DOM Level 1 Node property. This property returns the last child node of a Node object.

nextSibling

W3C DOM Level 1 Node property. This property returns the next sibling node for a Node object.

nodeName

W3C DOM Level 1 Node property. This property returns the node name as a String object.

nodeType

W3C DOM Level 1 Node property. This property returns the node type as a short in which

1 = Element
2 = Attribute
3 = Text
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
4 = CDATASection
5 = EntityReference,
6 = Entity,
7 = ProcessingInstruction
8 = Comment
9 = Document
10 = DocumentType
11 = DocumentFragment
12 = Notation

nodeValue

W3C DOM Level 1 Node property. This property returns the node text data as a String.

ownerDocument

W3C DOM Level 1 Node property. This property returns a Document object.

parentNode

W3C DOM Level 1 Node property. This property returns the parent node object for a Node object.

previousSibling

W3C DOM Level 1 Node property. This property returns the previous sibling node for a Node
object.

XML

Designer extension property. This property returns a string representing the DOM. Useful in Log
actions for debugging components (for example, Input.XML).

appendChild(newChild)
Node appendChild(newChild)

W3C DOM Level 1 Node method. This method appends a node as the last child for a Node. The
newChild parameter is of type Node.

cloneNode(deep)
Node cloneNode(deep)

W3C DOM Level 1 Node method. This method creates an unattached Node object. The deep
parameter is of type boolean.

createXPath(XPathType asPattern)
Object createXPath(XPathType asPattern)

ECMAScript extension method.Creates the XPath pattern. The XPath Type asPattern
parameter only supports abbreviated XPath notation and explicit ordinals. XPath functions are not
supported.

hasChildNodes()
boolean hasChildNodes()
Working with ECMA Expressions 271

272 Identity Man

novdocx (E
N

U
) 29 January 2007
W3C DOM Level 1 Node method. This method returns a boolean indicating whether the node has
children.

insertBefore(newChild, refChild)
Node insertBefore(newChild, refChild)

W3C DOM Level 1 Node method. This method inserts a node object into the parent node before the
refChild node. The newChild parameter is of type Node. The refChild parameter is of type
Node.

removeChild(oldChild)
Node removeChild(oldChild)

W3C DOM Level 1 Node method. This method removes a node from a parent and returns an
unattached node. The oldChild parameter is of type Node.

replaceChild(newChild, oldChild)
Node replaceChild(newChild, oldChild)

W3C DOM Level 1 Node method. This method replaces one node with another node. The
newChild parameter is of type Node. The oldChild parameter is of type Node.

getXML()
String getXML()

ECMAScript extension method. This property returns a string representing the DOM. Useful in Log
actions for debugging components. Example:
Input.XPath("root/child").getXML()

ownerDocument

W3C DOM Level 2 modified Node property. Returns the Document object associated with this
node. This is also the Document object used to create new nodes. Example:
someNodeObject.ownerDocument

namespaceURI

W3C DOM Level 2 Node property. Returns the namespace URI of this node, or null if the
namespace URI is not specified. Example:
someNodeObject.namespaceURI

prefix

W3C DOM Level 2 Node property. Returns the namespace prefix of this node, or null if the
namespace prefix is not specified. Example:
someNodeObject.prefix

localName

W3C DOM Level 2 Node property. Returns the local part of the qualified name of this node.
Example:
someNodeObject.localName
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
normalize()
void normalize()

W3C DOM Level 2 modified Node method. Puts all Text nodes in the full depth of the sub-tree
underneath this Node, including attribute nodes, into a “normal” form in which only structure
separates Text nodes, (for example, elements, comments, processing instructions, CDATA sections,
and entity references). In other words, there are neither adjacent Text nodes nor empty Text nodes.

hasAttributes()
boolean hasAttributes()

W3C DOM Level 2 Node method. Returns true if the node has any attributes; otherwise, returns
false. Example:
Temp.XPath("A/B/C").item(0).hasAttributes()

isSupported(feature, version)
boolean isSupported(feature, version)

W3C DOM Level 2 Node method. Returns true if the specified feature is supported on this node;
otherwise, returns false.

Table 10-12 Parameters of IsSupported Method

Example:
 aNodeObject.isSupported("Core","2.0")

Document

Lets you work with documents. This section includes the following topics:

“doctype” on page 274

Parameter Features

feature Core
XML
HTML
Views
Stylesheets
CSS
CSS2
Events
UIEvents
MouseEvents
MutationEvents
HTMLEvents
Range
Transversal

version Specifies the version number of the feature to test. In Level 2, version 1,
this is the string “2.0”. If the version is not specified, supporting any version
of the feature causes the method to return true.
Working with ECMA Expressions 273

274 Identity Man

novdocx (E
N

U
) 29 January 2007
“documentElement” on page 274
“implementation” on page 274
“text” on page 274
“createAttribute(name)” on page 275
“createCDATASection(data)” on page 275
“createComment(data)” on page 275
“createDocumentFragment()” on page 275
“createElement(tagName)” on page 275
“createEntityReference(name)” on page 275
“createProcessingInstruction(target,data)” on page 275
“createTextNode(data)” on page 275
“getElementsByTagName(tagName)” on page 275
“reset()” on page 276
“setDTD(Node RootElementName, Object PublicName, Object URL)” on page 276
“setValue(Object aValue)” on page 276
“toString()” on page 276
“XPath(String asPattern)” on page 276
“importNode(sourceNode, deep)” on page 276
“createElementNS(namespaceURI, qualifiedName)” on page 277
“createAttributeNS(namespaceURI, qualifiedName)” on page 277
“getElementsByTagNameNS(namespaceURI, localName)” on page 277
“getElementById(elementId)” on page 278
“setSkipNameSpaces(abFlag)” on page 278
“setEncoding(encoding)” on page 278

doctype

W3C DOM Level 1 Document property. This property returns a DocumentType object reflecting the
DTD for the document. A Document also has all the properties and methods of Node.

documentElement

W3C DOM Level 1 Document property. This property returns an Element object (the root element).
A Document also has all the properties and methods of Node.

implementation

W3C DOM Level 1 Document property. This property returns a DOMImplementation object. A
Document also has all the properties and methods of Node.

text

Designer extension property. This property returns a concatenated string of all the text nodes
(content) under it.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
createAttribute(name)
Attr createAttribute(name)

W3C DOM Level 1 Document method. This method returns an unattached Attr object. The name
parameter is of type String. A Document also has all the properties and methods of Node.

createCDATASection(data)
CDATASection createCDATASection(data)

W3C DOM Level 1 Document method. This method returns an unattached CDATASection object.
The data parameter is of type String. A Document also has all the properties and methods of Node.

createComment(data)
Comment createComment(data)

W3C DOM Level 1 Document method. This method returns an unattached Comment object. The
data parameter is of type String. A Document also has all the properties and methods of Node.

createDocumentFragment()
DocumentFragment createDocumentFragment()

W3C DOM Level 1 Document method. This method returns an unattached DocumentFragment. A
Document also has all the properties and methods of Node.

createElement(tagName)
Element createElement(tagName)

W3C DOM Level 1 Document method. This method creates an unattached Element. The tagName
parameter is of type String. A Document also has all the properties and methods of Node.

createEntityReference(name)
EntityReference createEntityReference(name)

W3C DOM Level 1 Document method. Creates an unattached EntityReference. The name
parameter is of type String. A Document also has all the properties and methods of Node.

createProcessingInstruction(target,data)
ProcessingInstruction createProcessingInstruction(target,data)

W3C DOM Level 1 Document method. This method returns an unattached ProcessingInstruction
object. The target and data parameters are of type String. A Document also has all the
properties and methods of Node.

createTextNode(data)
Text createTextNode(data)

W3C DOM Level 1 Document method. This method creates an unattached Text object. The data
parameter is of type String. A Document also has all the properties and methods of Node.

getElementsByTagName(tagName)
NodeList getElementsByTagName(tagName)
Working with ECMA Expressions 275

276 Identity Man

novdocx (E
N

U
) 29 January 2007
W3C DOM Level 1 Document method. This method returns a NodeList object consisting of the
tagname element nodes. The tagName parameter is of type String. A Document also has all the
properties and methods of Node.

reset()
void reset()

W3C DOM Level 1 Document method. Clears the document.

setDTD(Node RootElementName, Object PublicName, Object URL)
setDTD(Node RootElementName, Object PublicName, Object URL)

ECMAScript extension method. Sets DTD file for the document.

setValue(Object aValue)
setValue(Object aValue)

ECMAScript extension method. Sets the Value of a document from the passed objects. If the passed
object is another document, then this method copies child nodes (elements and attributes). If the
passed object is text, the text is parsed to create a DOM.

toString()
String toString()

ECMAScript extension method. Converts a DOM document to an XML formatted string.

Example:
Input.XPath("root/child").item(0).toString()

XPath(String asPattern)
NodeList XPath(XPathType asPattern)

ECMAScript extension method. XPathTypes can be of type NodeList, String, Number, or Boolean.
Usually used to return a Nodelist matching the XPath pattern. Use brackets to select a particular
node from the list. For example, Input.XPath("INVOICE/LINEITEM[1]") or
Input.XPath("INVOICE/LINEITEM[last()]"). Use the @ symbol to select a node by
attribute. For example, Input.XPath("INVOICE/LINEITEM[@myattr]") To select by
attribute value: Input.XPath("INVOICE/LINEITEM[@myattr='abc']").

importNode(sourceNode, deep)
Node importNode(sourceNode, deep)

W3C DOM Level 2 Document method. Imports a node from a document to the current document.
This method creates a new copy of the sourceNode. The sourceNode is not altered. A Document
also has all the properties and methods of Node.

Table 10-13 Parameters for ImportNode Method

Parameter Description

sourceNode The node to import.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
Example:
Temp.importNode(Input.XPath("A/B[2]"), false)

createElementNS(namespaceURI, qualifiedName)
Element createElementNS(namespaceURI, qualifiedName)

W3C DOM Level 2 Document method. Creates an Element of the given qualifiedName and
namespaceURI. A Document also has all the properties and methods of Node.

Table 10-14 Parameters for createElementNS Method

Example:
Temp.createElementNS("someURI","nsprefix:PRICE")

createAttributeNS(namespaceURI, qualifiedName)
Attr createAttributeNS(namespaceURI, qualifiedName)

W3C DOM Level 2 Document method. Creates an Attribute of the given qualifiedName and
namespaceURI. A Document also has all the properties and methods of Node.

Table 10-15 Parameters for createAttributeNS Method

Example:
Temp.createAttributeNS("someURI","nsprefix:PRICE")

getElementsByTagNameNS(namespaceURI, localName)
NodeList getElementsByTagNameNS(namespaceURI, localName)

W3C DOM Level 2 Document method. Returns a NodeList of all the Elements with a given
localName and namespace URI, in the order in which they are encountered in a preorder traversal of
the Document tree. A Document also has all the properties and methods of Node.

deep A boolean. If true, recursively import the subtree under the specified node. If false,
import only the node itself.

Parameter Description

namespaceURI A string representing the namespace URI that you want to create for the element.

qualifiedName A string representing the name to create for the element. Note: qualifiedName =
namespaceprefix + : + localName

Parameter Description

namespaceURI A string representing the namespace URI that you want to create for the attribute.

qualifiedName A string representing the name to create for the attribute. Note: qualifiedName =
namespaceprefix + : + localName

Parameter Description
Working with ECMA Expressions 277

278 Identity Man

novdocx (E
N

U
) 29 January 2007
Table 10-16 Parameters for getElementsByTagnameNS Method

Example:
Temp.getElementsByTagNameNS("someURI", "someName")

getElementById(elementId)
Element getElementById(elementId)

W3C DOM Level 2 Document method. Returns the Element the ID of which is given by
elementId. If no such element exists, returns null. Behavior is not defined if more than one
element has this ID. A Document also has all the properties and methods of Node.

Example;
Temp.getElementById("someId")

setSkipNameSpaces(abFlag)
void setSkipNameSpaces(boolean flag)

This method can be used to turn off usage of namespaces and match nodes without any prefixes,
behaving like a wildcard match.

setEncoding(encoding)
void setEncoding(String encoding)

This method sets the character set encoding for the document.

Element

Lets you work with elements. This section includes the following topics:

“tagName” on page 279
“text” on page 279
“booleanValue()” on page 279
“countOfElement(String propertyName)” on page 279
“doubleValue()” on page 279
“exists(String propertyName)” on page 280
“getAttribute(name)” on page 280
“getAttributeNode(name)” on page 280
“getElementsByTagName(name)” on page 280
“getIndex()” on page 280
“getParent()” on page 280

Parameter Description

namespaceURI A string of the elements on which to match. The special value “*” matches all
namespaces.

qualifiedName A string of the elements on which to match. The special value “*” matches all local
names.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
“normalize()” on page 280
“removeAttribute(name)” on page 280
“removeAttributeNode(oldAttr)” on page 280
“setAttribute(name,value)” on page 280
“setAttributeNode(newAttr)” on page 281
“setIndex(int aiIndex)” on page 281
“setText(String asText)” on page 281
“setValue(Object aValue)” on page 281
“toNumber()” on page 281
“toString()” on page 281
“XPath(XPathType asPattern)” on page 281
“getAttributeNS(namespaceURI, localName)” on page 281
“setAttributeNS(namespaceURI, qualifiedName, value)” on page 282
“removeAttributeNS(namespaceURI, localName)” on page 282
“getAttributeNodeNS(namespaceURI, localName)” on page 283
“setAttributeNodeNS(newAttr)” on page 283
“getElementsByTagNameNS(namespaceURI, localName)” on page 283
“hasAttribute(name)” on page 284
“hasAttributeNS(namespaceURI, localName)” on page 284

tagName

W3C DOM Level 1 Element property. This property returns a String object containing the element
name. An Element also has all the properties and methods of Node.

text

Designer extension property. This property returns the concatenated text of all the text nodes under
it.

booleanValue()
boolean booleanValue()

ECMAScript extension method. Returns the boolean value (true or false) of this object, if possible.

countOfElement(String propertyName)
Number countOfElement(String propertyName)

ECMAScript extension method. Returns a count of the named child.

doubleValue()
double doubleValue()

ECMAScript extension method. Returns a double value for this object if possible.
Working with ECMA Expressions 279

280 Identity Man

novdocx (E
N

U
) 29 January 2007
exists(String propertyName)
Boolean exists(String propertyName)

ECMAScript extension method. Checks for the existence of the named child.

getAttribute(name)
String getAttribute(name)

W3C DOM Level 1 Element method. This method returns a String consisting of the attribute value.
The name parameter is of type String. An Element also has all the properties and methods of Node.

getAttributeNode(name)
Attr getAttributeNode(name)

W3C DOM Level 1 Element method. This method returns an Attr. The name parameter is of type
String. An Element also has all the properties and methods of Node.

getElementsByTagName(name)
NodeList getElementsByTagName(name)

W3C DOM Level 1 Element method. Returns a NodeList of all elements with a specified name. The
name parameter is of type String. An Element also has all the properties and methods of Node.

getIndex()
int getIndex()

ECMAScript extension method. Returns the current index.

getParent()
Node getParent()

ECMAScript extension method. Returns the parent element.

normalize()
void normalize()

W3C DOM Level 1 Element method. This method returns a void. An Element also has all the
properties and methods of Node.

removeAttribute(name)
void removeAttribute(name)

W3C DOM Level 1 Element method. This method removes an attribute from an element. The name
parameter is of type String. An Element also has all the properties and methods of Node.

removeAttributeNode(oldAttr)
Attr removeAttributeNode(oldAttr)

W3C DOM Level 1 Element method. This method removes an attribute from an element and returns
an unattached Attr. The oldAttr parameter is of type Attr. An Element also has all the properties
and methods of Node.

setAttribute(name,value)
void setAttribute(name, value)
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
W3C DOM Level 1 Element method. This method sets the value of an attribute node for an element.
The name parameter is of type String. The value parameter is of type String. An Element also has
all the properties and methods of Node.

setAttributeNode(newAttr)
Attr setAttributeNode(newAttr)

W3C DOM Level 1 Element method. This method attaches an attribute node to an element. The
newAttr parameter is of type Attr. An Element also has all the properties and methods of Node.

setIndex(int aiIndex)
setIndex(int aiIndex)

ECMAScript extension method. Sets the iterator index value for this element.

setText(String asText)
setText(String asText)

ECMAScript extension method. Sets the text node associated with this element.

setValue(Object aValue)
setValue(Object aValue)

ECMAScript extension method. Sets the value of an element from the passed object. If the passed
object is another element, then this method also copies child nodes (elements and attributes).

toNumber()
Number toNumber()

ECMAScript extension method. Gets the text node and converts it to a number.

toString()
String toString()

ECMAScript extension method. Gets the text node associated with this element.

XPath(XPathType asPattern)
NodeList XPath(XPathType asPattern)

ECMAScript extension method. The XPathType parameter can be of type NodeList, String,
Number, or Boolean. Usually used to return a Nodelist matching the XPath pattern. Use brackets to
select a particular node from the list. For example, Input.XPath("INVOICE/
LINEITEM[1]") or Input.XPath("INVOICE/LINEITEM[last()]"). Use the @ symbol
to select a node by attribute. For example, Input.XPath("INVOICE/
LINEITEM[@myattr]"). To select by attribute value: Input.XPath("INVOICE/
LINEITEM[@myattr='abc']").

getAttributeNS(namespaceURI, localName)
string getAttributeNS(namespaceURI, localName)

W3C DOM Level 2 Element method. Returns the Attr value as a string. An Element also has all the
properties and methods of Node.
Working with ECMA Expressions 281

282 Identity Man

novdocx (E
N

U
) 29 January 2007
Table 10-17 Parameters for getAttributeNS Method

Example:
Temp.XPath("A/B[0]").getAttributeNS("someURI", "someAttr")

setAttributeNS(namespaceURI, qualifiedName, value)
void setAttributeNS(namespaceURI, qualifiedName, value)

W3C DOM Level 2 Element method. Adds a new attribute. If an attribute with the same
namespaceURI and localName is already present in the element, its prefix is changed to be the
prefix part of the qualifiedName parameter, and its value is changed to be the value
parameter. An Element also has all the properties and methods of Node.

Table 10-18 Parameters for setAttributeNS Method

Example:
Temp.XPath("A/B[0]").setAttributeNS("someURI", "someAttrName",
"someAttrvalue")

removeAttributeNS(namespaceURI, localName)
void removeAttributeNS(namespaceURI,localName)

W3C DOM Level 2 Element method. Removes an attribute by local name and namespace URI. If
the removed attribute has a default value, it is immediately replaced. The replacing attribute has the
same namespace URI and local name, as well as the original prefix. An Element also has all the
properties and methods of Node.

Table 10-19 Parameters for removeAttributeNS Method

Example:

Parameter Description

namespaceURI Specifies a string representing the namespace URI of the target Attr.

localName Specifies a string of the localName of the target Attr.

Parameter Description

namespaceURI The namespace URI of tthe attribute to create or alter.

qualifiedName Specifies the qualified name of the attribute to create or alter.

TIP: qualifiedName = namespaceprefix + : + localName

value Specifies the value to set in string form.

Parameter Description

namespaceURI Specifies the namespaceURI of the attribute to remove.

localName Specifies the name of the attribute to remove.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
Temp.XPath("A/B[0]").removeAttributeNS("someURI", "someAttrName")

getAttributeNodeNS(namespaceURI, localName)
Attr getAttributeNodeNS(namespaceURI, localName)

W3C DOM Level 2 Element method. Retrieves an attribute node by local name and namespace
URI. An Element also has all the properties and methods of Node.

Table 10-20 Parameters for getAttributeNodeNS Method

Example:
Temp.XPath("A/B[0]").getAttributeNodeNS("someURI", "someAttr"

setAttributeNodeNS(newAttr)
Attr setAttributeNodeNS(newAttr)

W3C DOM Level 2 Element method. Adds a new attribute. If an attribute with the same local name
and namespace URI is already present in the element, it is replaced by the new attribute. If the
newAttr attribute replaces an existing attribute with the same local name and namespace URI, the
replaced Attr node is returned, otherwise null is returned. The newAttr parameter is a new
attribute object. An Element also has all the properties and methods of Node.

Example:
Temp.XPath("A/B[0]").setAttributeNodeNS(newAttr)

getElementsByTagNameNS(namespaceURI, localName)
NodeList getElementsByTagNameNS(namespaceURI, localName)

W3C DOM Level 2 Element method. Returns a NodeList of all the descendant Elements with a
given local name and namespace URI in the order in which they are encountered in a preorder
traversal of this Element tree. An Element also has all the properties and methods of Node.

Table 10-21 Parameters for getElementsByTagNameNS Method

Example:
Temp.XPath("A/B[0]").getElementsByTagNameNS("someURI", "someName")

Parameter Description

namespaceURI Specifies the namespaceURI of the attribute to retrieve.

localName Specifies the name of the attribute to retrieve.

Parameter Description

namespaceURI Specifies the namespaceURI of the elements on which to match.
The special value “*” matches all namespaces.

localName Specifies the localName of the elements on which to match. The
special value “*” matches all local names.
Working with ECMA Expressions 283

284 Identity Man

novdocx (E
N

U
) 29 January 2007
hasAttribute(name)
boolean hasAttribute()

W3C DOM Level 2 Element method. Returns true when an attribute with a given name is specified
for this element or has a default value. Otherwise, returns false. The parameter name is a string that
specifies the attribute name for which to look. An Element also has all the properties and methods of
Node.

Example:
Temp.XPath("A/B[0]").hasAttribute("someName")

hasAttributeNS(namespaceURI, localName)
boolean hasAttributeNS(namespaceURI, localName)

W3C DOM Level 2 Element method. Returns true when an attribute with a given local name and
namespace URI is specified on this element or has a default value. Otherwise, returns false. An
Element also has all the properties and methods of Node.

Table 10-22 Parameters for hasAttributeNS Method

Example:
Temp.XPath("A/B[0]").hasAttributeNS("someURI", "someName")

Attribute

Lets you work with attributes. This section includes the following topics:

“name” on page 284
“specified” on page 284
“text” on page 285
“value” on page 285
“setValue(Object aValue)” on page 285
“toString()” on page 285
“ownerElement” on page 285

name

W3C DOM Level 1 attribute property. This property returns a String object indicating the tag name
of the attribute. An attribute also has all the properties and methods of Node.

specified

W3C DOM Level 1 Attr property. This property returns a boolean. An attribute also has all the
properties and methods of Node.

Parameter Description

namespaceURI Specifies the namespaceURI of the attribute for which to look.

localName Specifies the localName of the attribute for which to look.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
text

Designer extension property. This property returns the text value of the attribute.

value

W3C DOM Level 1 Attr property. This property returns a String object representing the text value of
the attribute. An attribute also has all the properties and methods of Node.

setValue(Object aValue)
setValue(Object aValue)

Designer extension method. Sets the value of an Attribute from the passed object.

toString()
String toString()

ECMAScript extension method. Gets the text node associated with the attribute.

ownerElement

W3C DOM Level 2 Attr property. Returns the Element node to which this attribute is attached.
Returns null if this attribute is not in use. An Attr also has all the properties and methods of Node.

Example:
attributeObject.ownerElement

CharacterData

Lets you work with character data. This section includes the following topics:

“data” on page 285
“length” on page 285
“appendData(arg)” on page 285
“insertData(offset, arg)” on page 286
“deleteData(offset, count)” on page 286
“replaceData(offset, count, arg)” on page 286
“substringData(offset, count)” on page 286

data

W3C DOM Level 1 CharacterData property. This property is of type String and represents the
contents of the CharacterData object. CharacterData also has all the properties and methods of
Node.

length

W3C DOM Level 1 CharacterData property. This property represents the length of the
CharacterData object. CharacterData also has all the properties and methods of Node.

appendData(arg)
void appendData(arg)
Working with ECMA Expressions 285

286 Identity Man

novdocx (E
N

U
) 29 January 2007
W3C DOM Level 1 CharacterData method. This method appends text to the CharacterData object.
The arg parameter is of type String. CharacterData also has all the properties and methods of Node.

insertData(offset, arg)
void insertData(offset, arg)

W3C DOM Level 1 CharacterData method. This method inserts text in the CharacterData object.
The offset parameter is of type unsigned long. The arg parameter is of type String.
CharacterData also has all the properties and methods of Node.

deleteData(offset, count)
void deleteData(offset, count)

W3C DOM Level 1 CharacterData method. This method deletes text in the CharacterData object.
The offset and count parameters are of type unsigned long. CharacterData also has all the
properties and methods of Node.

replaceData(offset, count, arg)
void replaceData(offset, count, arg)

W3C DOM Level 1 CharacterData method. This method replaces text in the CharacterData object.
The offset and count parameters are of type unsigned long. The arg parameter is of type
String. CharacterData also has all the properties and methods of Node.

substringData(offset, count)
String substringData(offset, count)

W3C DOM Level 1 CharacterData method. This method returns a substring of the CharacterData
object. The offset and count parameters are of type unsigned long. CharacterData also has all the
properties and methods of Node.

NodeList

Lets you work with node lists. This section includes the following topics:

“length” on page 286
“avg('[NodeList]')” on page 287
“count('[NodeList]')” on page 287
“item(index)” on page 287
“min('[NodeList]')” on page 287
“max(['NodeList]')” on page 287
“sum('[NodeList]')” on page 288
“where(XPathType asPattern)” on page 288
“toNumber()” on page 288

length

W3C DOM Level 1 NodeList property. This property returns the number of nodes in a NodeList
object.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
avg('[NodeList]')
Number avg('[NodeList]')

ECMAScript aggregate extension method. Returns a number equal to the average value in the
NodeList. The NodeList parameter of type XPath. If no parameter is supplied, then the current
NodeList/GroupName is used. The function argument should be in single quotes, and must be
escaped in the case of nested calls.

Example:
Input.XPath("rootElem/childElem").avg()

count('[NodeList]')
Number count('[NodeList]')

ECMAScript aggregate extension method. Returns a number equal to a count of the nodes in the
NodeList that have data. Nodes without data, or nodes with only child elements will not be counted.
To count all nodes, use the .length property on a nodeList object. The optional NodeList parameter is
of type XPath. If no parameter is supplied (the usual case), then the current NodeList/GroupName is
used. The function argument should be in single quotes, and must be escaped in the case of nested
calls.

Example:
Input.XPath("rootElem/childElem").count()

item(index)
Node item(index)

W3C DOM Level 1 NodeList method. This method returns the indicated Node from the NodeList.
The index parameter is of type unsigned long. The Index is 0-based.

min('[NodeList]')
Number min('[NodeList]')

ECMAScript aggregate extension method. Returns a number equal to the lowest value in the
NodeList. The NodeList parameter of type XPath. If no parameter is supplied, then the current
NodeList/GroupName is used. The function argument should be in single quotes, and must be
escaped in the case of nested calls.

Example:
Input.XPath("rootElem/childElem").min()

max(['NodeList]')
Number max('[NodeList]')

ECMAScript aggregate extension method. Returns a number equal to the highest value in the
NodeList. The NodeList parameter of type XPath. If no parameter is supplied, then the current
NodeList/GroupName is used. The function argument should be in single quotes, and must be
escaped in the case of nested calls.

Example:
Input.XPath("rootElem/childElem").max()
Working with ECMA Expressions 287

288 Identity Man

novdocx (E
N

U
) 29 January 2007
sum('[NodeList]')
Number sum('[NodeList]')

ECMAScript aggregate extension method. Returns a number equal to the sum of the values in
NodeList. The NodeList parameter of type XPath. If no parameter is supplied, then the current
NodeList/GroupName is used. The function argument should be in single quotes, and must be
escaped in the case of nested calls.

Example:
Input.XPath("rootElem/childElem").sum()

where(XPathType asPattern)
NodeList where(String asPattern)

ECMAScript extension method. Gets a NodeList of nodes matching the XPath pattern.

toNumber()
toNumber()

Converts the data of the first instance in the NodeList to an ECMAScript Number object. Any
alphabetic characters or embedded spaces in data returns NaN. Leading and trailing spaces are
permitted.

Example:
var myNum = Input.XPath("Invoice/Amount").toNumber()

NamedNodeMap

Lets you work with named node maps. This section includes the following topics:

“length” on page 288
“getNamedItem(name)” on page 288
“getNamedItemNS(namespaceURI, localName)” on page 289
“item(index)” on page 289
“removeNamedItem(name)” on page 289
“removeNamedItemNS(namespaceURI, localName)” on page 289
“setNamedItem(arg)” on page 289
“setNamedItemNS(Node arg)” on page 290

length

length W3C DOM Level 1 NamedNodeMap property. This property returns the number of nodes in
a NamedNodeMap.

getNamedItem(name)
Node getNamedItem(name)

W3C DOM Level 1 NamedNodeMap method. This method returns all selected Nodes of the
indicated name. The name parameter is of type String.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
getNamedItemNS(namespaceURI, localName)
Node getNamedItemNS(namespaceURI, localName)

W3C DOM Level 2 NamedNodeMap method. Returns a node specified by local name and
namespace URI.

Table 10-23 Parameters for NamedNodeMap Method

Example:
Temp.XPath("A/B").item(0).getAttributes() .getNamedItemNS("someURI",
"anAttrName")

item(index)
Node item(index)

W3C DOM Level 1 NamedNodeMap method. This method returns the indicated Node from the
NamedNodeMap. The index parameter is of type unsigned long. The index is 0-based.

removeNamedItem(name)
Node removeNamedItem(name)

W3C DOM Level 1 NamedNodeMap method. This method removes the indicated node from the
NamedNodeMap and returns an unattached node. The name parameter is of type String.

removeNamedItemNS(namespaceURI, localName)
Node removeNamedItemNS(namespaceURI, localName)

W3C DOM Level 2 NamedNodeMap method. Removes and returns the node specified by
namespace URI and local name.

Table 10-24 Parameters for removeNamedItemNS Method

Example:
Temp.XPath("A/B").item(0).getAttributes()
.removeNamedItemNS("someURI", "anAttrName")

setNamedItem(arg)
Node setNamedItem(arg)

Parameter Description

namespaceURI Specifies the namespaceURI of the node to retrieve.

localName Specifies the localName of the node to retrieve.

Parameter Description

namespaceURI Specifies the namespaceURI of the node to remove.

localName Specifies the localName of the node to remove.
Working with ECMA Expressions 289

290 Identity Man

novdocx (E
N

U
) 29 January 2007
W3C DOM Level 1 NamedNodeMap method. This method returns a Node. The arg parameter is of
type Node.

setNamedItemNS(Node arg)
Node setNamedItemNS(arg)

W3C DOM Level 2 NamedNodeMap method. If the new Node replaces an existing node, the
replaced Node is returned, otherwise null is returned.

Example:
var item = Temp.XPath("A/B").item(0);
item.getAttributes().setNamedItemNS(aNodeObject)

Text

Lets you work with text.

splitText(offset)
Text splitText(offset)

W3C DOM Level 1 Element method. This method removes the text up to the offset and creates an
unattached text node with the removed text. The offset parameter is of type unsigned long. A
Text also has all the properties and methods of CharacterData.

DocumentType

Lets you work with document types. This section includes the following topics:

“name” on page 290
“entities” on page 290
“internalSubset” on page 290
“notations” on page 291
“publicId” on page 291
“systemId” on page 291

name

W3C DOM Level 1 DocumentType property. This property returns a String representing the
document type name.

entities

W3C DOM Level 1 DocumentType property. This property returns a NamedNodeMap of the
entities defined in the document.

internalSubset

W3C DOM Level 2 DocumentType property. This property returns a String representing the internal
subset as a string.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
notations

W3C DOM Level 1 DocumentType property. This property returns a NamedNodeMap of the
notations defined in the document.

publicId

W3C DOM Level 2 DocumentType property. This property returns a String representing the public
identifier of the external subset.

systemId

W3C DOM Level 2 DocumentType property. This property returns a String representing the system
identifier of the external subset.

DOMImplementation

Lets you work with DOM implementations. This section includes the following topics:

“createDocument(namespaceURI, qualifiedName, doctype)” on page 291
“createDocumentType(qualifiedName, publicID, systemID)” on page 291
“hasFeature(feature, version)” on page 292

createDocument(namespaceURI, qualifiedName, doctype)
Document createDocument(namespaceURI, qualifiedName, doctype)

W3C DOM Level 2 DOMImplementation method. Creates an XML Document object of the
specified type with its document element.

Table 10-25 Parameters for DOMImplementation Method

createDocumentType(qualifiedName, publicID, systemID)
DocumentType createDocumentType(qualifiedName, publicID, systemID)

W3C DOM Level 2 DOMImplementation method. Creates an empty DocumentType node.
Parameters: qualifiedName—is a string of the name of the document type to create. publicID is the
external subset public identifier. systemID is the external subset system identifier. Note:
qualifiedName = namespaceprefix + : + localName

Parameter Description

namespaceURI Specifies the namespaceURI of the document element to create.

qualifiedName Specifies the qualified name of the document element to create.
qualifiedName = namespaceprefix + : + localName

doctypei Specifies the type of document to create, or null.
Working with ECMA Expressions 291

292 Identity Man

novdocx (E
N

U
) 29 January 2007
Table 10-26 Parameters for createDocumentType Method

hasFeature(feature, version)
boolean hasFeature(feature, version)

W3C DOM Level 1 DOMImplementation method. This method returns a boolean. The feature
parameter is of type String. The version parameter is of type String.

Notation

Lets you work with notation. This section includes the following topics:

“publicId” on page 292
“systemId” on page 292

publicId

W3C DOM Level 2 This property returns a String representing the public identifier of the external
subset.

systemId

W3C DOM Level 2 property. This property returns a String representing the system identifier of the
external subset.

Entity

Lets you work with entities. This section includes the following topics:

“publicId” on page 292
“systemId” on page 292
“notationName” on page 293

publicId

W3C DOM Level 2 property. This property returns a String representing the public identifier of the
external subset.

systemId

W3C DOM Level 2 property. This property returns a String representing the system identifier of the
external subset.

Parameter Description

qualifiedName Specifies the qualified name of the document element to create.
qualifiedName = namespaceprefix + : + localName

publicID Specifies the external subset public identifier.

systemID Specifies the external subset system identifier.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
notationName

W3C DOM Level 1 Entity property. This property is of type String. An Entity also has all the
properties and methods of Node.

ProcessingInstruction

Lets you work with processing instructions. This section includes the following topics:

“target” on page 293
“data” on page 293

target

W3C DOM Level 1 ProcessingInstruction property. This property is a String representation of the
target part of a Processing Instruction.

data

W3C DOM Level 1 ProcessingInstruction property. This property is a String representation of the
data part of a Processing Instruction.

10.3.3 ECMAScript Core
This section lists all ECMAScript core methods and properties supported by the ECMA expression
builder. This section includes the following topics:

“Array Object” on page 293
“Boolean Object” on page 294
“Date Object” on page 295
“Function Object” on page 300
“Global” on page 301
“Math Object” on page 302
“Number Object” on page 307
“Object” on page 308
“String Object” on page 309

Array Object

Lets you work with arrays. This section includes the following topics:

“Array(item0, item1, . . .)” on page 294
“join(separator)” on page 294
“length” on page 294
“reverse()” on page 294
“sort(comparefn)” on page 294
“toString()” on page 294
Working with ECMA Expressions 293

294 Identity Man

novdocx (E
N

U
) 29 January 2007
Array(item0, item1, . . .)
Array()

Constructor

join(separator)
Array join(separator)

The elements of the array are converted to strings, and these strings are then concatenated, separated
by occurrences of the separator. If no separator is provided, a single comma is used as the separator.

length

Array length. The length property of this Array object

reverse()
reverse()

The elements of the array are rearranged so as to reverse their order. The operation is done in-place,
meaning that the original array is modified.

sort(comparefn)
Array sort()

The elements of this array are sorted. The sort is not necessarily stable. If comparefn is supplied, it
should be a function that accepts two arguments x and y and returns a negative value if x < y, zero if
x = y, or a positive value if x > y.

toString()
Array toString()

The elements of this object are converted to strings, and these strings are then concatenated,
separated by comma characters. The result is the same as if the built-in join method were invoked
for this object with no argument.

Boolean Object

There is seldom a need to use the object version of Boolean in place of true/false literal values. This
object is provided for completeness. It is specified in ECMA-262.

 This section includes the following topics:

“Boolean()” on page 294
“toString()” on page 294
“valueOf()” on page 295

Boolean()
Boolean([true/false])

Constructor. Optionally takes one of true or false as an argument.

toString()
Boolean toString()
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
If this Boolean value is true, then the string “true” is returned. Otherwise, this Boolean value must
be false, and the string “false” is returned.

valueOf()
Boolean valueOf()

Returns this Boolean value.

Date Object

Lets you work with dates and times. This section includes the following topics:

“Date()” on page 296
“getDate()” on page 296
“getDay()” on page 296
“getFullYear()” on page 296
“getHours()” on page 296
“getMilliseconds()” on page 296
“getMinutes()” on page 296
“getMonth()” on page 297
“getSeconds()” on page 297
“getTime()” on page 297
“getTimezoneOffset()” on page 297
“getUTCDate()” on page 297
“getUTCDay()” on page 297
“getUTCFullYear()” on page 297
“getUTCHours()” on page 297
“getUTCMilliseconds()” on page 297
“getUTCMinutes()” on page 297
“getUTCSeconds()” on page 298
“getYear()” on page 298
“parse(string)” on page 298
“setDate(date)” on page 298
“setFullYear(year[,mon[,date]])” on page 298
“setHours(hour[,min[,sec[,ms]]])” on page 298
“setMilliseconds(ms)” on page 298
“setMinutes(min[,sec[,ms]])” on page 298
“setMonth(mon[,date])” on page 298
“setSeconds(sec [, ms])” on page 299
“setTime(time)” on page 299
“setUTCDate(date)” on page 299
“setUTCFullYear(year[,mon[,date]])” on page 299
Working with ECMA Expressions 295

296 Identity Man

novdocx (E
N

U
) 29 January 2007
“setUTCHours(min[,sec[,ms]])” on page 299
“setUTCMilliseconds(ms)” on page 299
“setUTCMinutes(min[,sec[,ms]])” on page 299
“setUTCMonth(mon[,date])” on page 299
“setUTCSeconds(sec [, ms])” on page 300
“setYear(year)” on page 300
“toLocaleString()” on page 300
“toString()” on page 300
“toUTCString()” on page 300
“UTC()” on page 300
“valueOf()” on page 300

Date()
Date()

The constructor of the Date can have various signatures. The date constructor format can accept up
to 7 parameters. Here is the format: new Date(year,month,date,hrs,mins,secs,ms)

getDate()
getDate()

Returns DateFromTime(LocalTime(t)).

getDay()
getDay()

Returns WeekDay(LocalTime(t)). The days of week are numbered from 0-6. The number 0
represents Sunday and 6 represents Saturday.

getFullYear()
getFullYear()

Returns YearFromTime(LocalTime(t)).

getHours()
getHours()

Returns HourFromTime(LocalTime(t)).

getMilliseconds()
getMilliseconds()

Returns msFromTime(LocalTime(t)).

getMinutes()
getMinutes()

Returns MinFromTime(LocalTime(t)).
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
getMonth()
getMonth()

Returns MonthFromTime(LocalTime(t)). The months are returned as an integer value from 0-11.
The number 0 represents January and 11 represents December.

getSeconds()
getSeconds()

Returns SecFromTime(LocalTime(t)).

getTime()
getTime()

Returns a number, which is this time value. The number value is a millisecond representation of the
specified Date object.

getTimezoneOffset()
getTimezoneOffset()

Returns (t * LocalTime(t)) / msPerMinute. The difference is in minutes between (GMT) and local
time.

getUTCDate()
getUTCDate()

Returns DateFromTime(t).

getUTCDay()
getUTCDay()

Returns WeekDay(t). The days of week are numbered from 0-6. The number 0 represents Sunday
and 6 represents Saturday.

getUTCFullYear()
getUTCFullYear()

Returns YearFromTime(t). There is no getYearUTC method, so this method must be used to obtain a
year from an UTC Date object.

getUTCHours()
getUTCHours()

Returns HourFromTime(t).

getUTCMilliseconds()
getUTCMilliseconds()

Returns msFromTime(t).

getUTCMinutes()
getUTCMinutes()

Returns MinFromTime(t).
Working with ECMA Expressions 297

298 Identity Man

novdocx (E
N

U
) 29 January 2007
getUTCSeconds()
getUTCSeconds()

Returns SecFromTime(t).

getYear()
getYear()

Returns YearFromTime(LocalTime(t))—1900. \The function getFullYear() is preferred for nearly all
purposes because it avoids the year 2000 problem.

parse(string)
parse(string)

Applies the ToString operator to its argument and interprets the resulting string as a date; it returns a
number, the UTC time value corresponding to the date. The string is interpreted as a local time, a
UTC time, or a time in some other time zone, depending on the contents of the string.

setDate(date)
setDate(date)

Sets the day of the month, using an integer from 1 to 31, for the supplied date according to local
time.

setFullYear(year[,mon[,date]])
setFullYear(year[,mon[,date]])

Sets the [Value] property of this value to UTC ECMAScript.Date. Returns the value of the [Value]
property of this value.

setHours(hour[,min[,sec[,ms]]])
setHours(hour[,min[,sec[,ms]]])

Sets the [Value] property of this value to UTC time. Returns the value of the [Value] property of this
value. When entering a value for hours, an hour value greater than 23 is added to the exisitng hour
value, not set.

setMilliseconds(ms)
setMilliseconds(ms)

Computes UTC from argument and sets the [Value] property of this value to
TimeClip(calculatedUTCtime). Returns the value of the [Value] property of this value.

setMinutes(min[,sec[,ms]])
setMinutes(min[,sec[,ms]])

Sets the [Value] property of this value to UTC time. Returns the value of the [Value] property of this
value.

setMonth(mon[,date])
setMonth(mon[,date])
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
Sets the [Value] property of this value to UTC ECMAScript.Date. Returns the value of the [Value]
property of this value. If the [Value] property of this exceeds 11, the [Value] property for this is
added to the existing month, not set.

setSeconds(sec [, ms])
setSeconds(sec [, ms])

Sets the [Value] property of this value to UTC time. Returns the value of the [Value] property of this
value.

setTime(time)
setTime(time)

Sets the [Value] property of this value to TimeClip(time). Returns the value of the [Value] property
of this value. The [Value] property of this is a millisecond value that is converted by the
TimeClip(time) method.

setUTCDate(date)
setUTCDate(date)

Sets the [Value] property of this value to ECMAScript.Date. Returns the value of the [Value]
property of this value. If the [Value] property of this exceeds 30 or 31, the [Value] of this is added to
the existing date value, not set.

setUTCFullYear(year[,mon[,date]])
setUTCFullYear(year[,mon[,date]])

Sets the [Value] property of this value to ECMAScript.Date. Returns the value of the [Value]
property of this value.

setUTCHours(min[,sec[,ms]])
setUTCHours(min[,sec[,ms]])

Sets the [Value] property of this value to time. Returns the value of the [Value] property of this
value. When entering a value for hours, an hour value greater than 23 is added to the exisitng hour
value, not set.

setUTCMilliseconds(ms)
setUTCMilliseconds(ms)

Sets the [Value] property of this value to time and returns the value of the [Value] property of this
value.

setUTCMinutes(min[,sec[,ms]])
setUTCMinutes(min[,sec[,ms]])

Sets the [Value] property of this value to time. Returns the value of the [Value] property of this
value.

setUTCMonth(mon[,date])
setUTCMonth(mon[,date])
Working with ECMA Expressions 299

300 Identity Man

novdocx (E
N

U
) 29 January 2007
Sets the [Value] property of this value to ECMAScript.Date. Returns the value of the [Value]
property of this value. If the [Value] property of this exceeds 11, the [Value] property for this is
added to the existing month, not set.

setUTCSeconds(sec [, ms])
setUTCSeconds(sec [, ms])

Sets the [Value] property of this value to time. Returns the value of the [Value] property of this
value.

setYear(year)
setYear(year)

Sets the [Value] property of this value to UTC ECMAScript.Date. Returns the value of the [Value]
property of this value.

toLocaleString()
toLocaleString()

Returns a string value. The contents of the string are implementation-dependent, but are intended to
represent the Date in a convenient, human-readable form appropriate to the geographic or cultural
locale.

toString()
toString()

Returns this string value. The contents of the string are implementation-dependent, but are intended
to represent the Date in a convenient, human-readable form in the current time zone.

toUTCString()
toUTCString()

Returns a string value. The contents of the string are implementation-dependent, but are intended to
represent the Date in a convenient, human-readable form in UTC.

UTC()
UTC()

This method can accept a number of different arguments. The UTC function differs from the Date
constructor in two ways: it returns a time value as a number, rather than creating a Date object, and
it interprets the arguments in UTC rather than as local time.

valueOf()
valueOf()

Returns a number, which is this time value. The valueOf() function is not generic, so it generates a
runtime error if the object is not a Date object.

Function Object

Used to work with the Function Object. This section includes the following topics:

“Function(p1, p2, . . . , pn, body)” on page 301
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
“length” on page 301
“toString()” on page 301

Function(p1, p2, . . . , pn, body)

Function Constructor. The last argument specifies the body (executable code) of a function; any
preceding arguments specify formal parameter.

length

The value of the length property is usually an integer that indicates the “typical” number of
arguments expected by the function. However, the language permits the function to be invoked with
some other number of arguments. The behavior of a function when invoked on a number of
arguments other than the number specified by its length property depends on the function.

toString()
String toString()

An implementation-dependent representation of the function is returned. This representation has the
syntax of a FunctionDeclaration. The use and placement of whitespace, line terminators, and
semicolons within the representation string is implementation-dependent.

Global

ECMAScript provides certain “top-level” methods and properties, so-called because they are
available from any context: They are not parented by any particular object.

 This section includes the following topics:

“escape(string)” on page 301
“eval(x)” on page 301
“Infinity” on page 302
“isFinite(number)” on page 302
“isNaN(value)” on page 302
“NaN” on page 302
“parseFloat(string)” on page 302
“parseInt(string, radix)” on page 302
“unescape(string)” on page 302

escape(string)
String escape()

The escape function computes a new, URL-legal version of a string in which certain URL-illegal
characters have been replaced by hexadecimal escape sequences.

eval(x)
eval()

When the eval function is called with one argument x, the following steps are taken:

1. If x is not a string value, return x.
Working with ECMA Expressions 301

302 Identity Man

novdocx (E
N

U
) 29 January 2007
2. Parse x as an ECMAScript Program. If the parse fails, generate a runtime error.
3. Evaluate the program from Step 2.
4. If Result(3) is “normal” completion after value “V”, return the value V.
5. Return undefined.

Infinity

A special primitive value representing positive infinity.

isFinite(number)
isFinite()

Applies Number() to its argument, then returns false if the result is NaN, +*, or **; otherwise,
returns true.

isNaN(value)
isNan()

Returns true if the argument evaluates to NaN (“not a number”); otherwise, returns false.

NOTE: Any form of logical comparison of NaN against anything else, including itself, returns
false. Use isNaN() to determine whether a variable (or a return value, etc.) is equal to NaN.

NaN

The primitive value NaN represents the set of IEEE standard “Not-a-Number” values.

parseFloat(string)
number parseFloat()

Produces a floating-point number by interpretation of the contents of the string argument. If the
string cannot be converted to a number, the special value NaN (see “NaN” on page 302) is returned.

parseInt(string, radix)
number parseInt()

Produces an integer value dictated by interpretation of the contents of the string argument, according
to the specified radix.

unescape(string)
String unescape()

Computes a new version of a string value in which escape sequences that might be introduced by the
escape function are replaced with the character they represent.

Math Object

All of the Math object’s properties and methods are static, which means you should prepend “Math”
to the property or method name in your code. For example, use “Math.PI,” not simply “PI.”

 This section includes the following topics:

“E” on page 303
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
“LN10” on page 303
“LN2” on page 303
“LOG2E” on page 303
“LOG10E” on page 304
“PI” on page 304
“SQRT1.2” on page 304
“SQRT2” on page 304
“abs(x)” on page 304
“acos(x)” on page 304
“asin(x)” on page 304
“atan(x)” on page 304
“atan2(x,y)” on page 305
“ceil(x)” on page 305
“cos(x)” on page 305
“exp(x)” on page 305
“floor(x)” on page 305
“log(x)” on page 306
“max(x,y)” on page 306
“min(x,y)” on page 306
“pow(x,y)” on page 306
“random()” on page 306
“round(x)” on page 306
“sin(x)” on page 307
“sqrt(x)” on page 307
“tan(x)” on page 307

E

The number value for e, the base of the natural logarithms, which is approximately
2.7182818284590452354.

LN10

The number value for the natural logarithm of 10, which is approximately 2.302585092994046.

LN2

The number value for the natural logarithm of 2, which is approximately 0.6931471805599453.

LOG2E

The number value for the base-2 logarithm of e, the base of the natural logarithms; this value is
approximately 1.4426950408889634. The value of Math.LOG2E is approximately the reciprocal of
the value of Math.LN2.
Working with ECMA Expressions 303

304 Identity Man

novdocx (E
N

U
) 29 January 2007
LOG10E

The number value for the base-10 logarithm of e, the base of the natural logarithms; this value is
approximately 0.4342944819032518. The value of Math.LOG10E is approximately the reciprocal
of the value of Math.LN10.

PI

The number value for *, the ratio of the circumference of a circle to its diameter, which is
approximately 3.14159265358979323846.

SQRT1.2

The number value for the square root of 1/2, which is approximately 0.7071067811865476. The
value of Math.SQRT1_2 is approximately the reciprocal of the value of Math.SQRT2.

SQRT2

The number value for the square root of 2, which is approximately 1.4142135623730951.

abs(x)
Number abs(x)

Returns the absolute value of the argument x; in general, the result has the same magnitude as the
argument but has positive sign. The input value x can be any number value.

Example:
Math.abs(-123.23940) = 123.23940

acos(x)
Number acos(x)

This function returns an implementation-dependent approximation to the arc cosine of the argument.
The result is expressed in radians and ranges from +0 to +PI(3.14159...) radians. The input value x
must be a number between -1.0 and 1.0.

Example:
PI/4 = 0.785 Math.acos(0.785) = 0.6681001997570769

asin(x)
Number asin(x)

This function returns an implementation-dependent approximation to the arc sine of the argument.
The result is expressed in radians and ranges from -PI/2 to +PI/2. The input value x must be a
number between -1.0 and 1.0.

Example:
PI/4 = 0.785 Math.asin(0.785) = 0.9026961270378197

atan(x)
Number atan(x)

This function returns an implementation-dependent approximation to the arc tangent of the
argument. The result is expressed in radians and ranges from -PI/2 to +PI/2. The input value x can be
any number.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
Example:
3PI/4 = 2.355 Math.atan(2.355) = 1.169240427545485

atan2(x,y)
Number atan2(x,y)

This function returns an implementation-dependent approximation to the arc tangent of the quotient
y/x of the arguments y and x, where the signs of the arguments are used to determine the quadrant of
the result. It is intentional and traditional for the two-argument arc tangent function that the
argument named y be first and the argument named x be second. The result is expressed in radians
and ranges from -PI to +PI. The input value x is the x-coordinate of the point. The input value y is
the y-coordinate of the point.

Example:
PI/2 = 1.57 Math.atan2(1.57,-1.57) = 2.356194490192345

ceil(x)
Number ceil(x)

This function returns the smallest (closest to -infinity) number value that is not less than the
argument and is equal to a mathematical integer. If the argument is already an integer, the result is
the argument itself. The input value x can be any numeric value or expression. The Math.ceil(x)
function property is the same as -Math.floor(-x). Example:

Example:
Math.ceil(123.78457) = 123

cos(x)
Number cos(x)

This function returns an implementation-dependent approximation to the cosine of the argument.
The argument must be expressed in radians.

exp(x)
Number exp(x)

This function returns an implementation-dependent approximation to the exponential function of the
argument (e raised to the power of the argument, where e is the base of the natural logarithms). The
input value x can be any numeric value or expression greater than 0.

Example:
Math.exp(10) = 22026.465794806718

floor(x)
Number floor(x)

This function returns the greatest (closest to +infinity) number value that is not greater than the
argument and is equal to a mathematical integer. If the argument is already an integer, the result is
the argument itself. The input value x can be any numeric value or expression.

Example:
Math.floor(654.895869)=654
Working with ECMA Expressions 305

306 Identity Man

novdocx (E
N

U
) 29 January 2007
log(x)
Number log(x)

This function returns an implementation-dependent approximation to the natural logarithm of the
argument. The input value x can be any numeric value or expression greater than 0.

Example:
Math.log(2) = 0.6931471805599453

max(x,y)
Number max(x,y)

This function returns the larger of the two arguments. The input values x and y can be any numeric
values or expressions.

Example:
Math.max(12.345,12.3456)= 12.3456

min(x,y)
Number min(x,y)

This function returns the smaller of the two arguments. The input values x and y can be any numeric
values or expressions.

Example:
Math.min(-12.457,-12.567)= -12.567

pow(x,y)
Number pow(x,y)

This function returns an implementation-dependent approximation to the result of raising x to the
power of y. The input value x must be the number raised to a power. The input value y must be the
power to which x is raised.

Example:
Math.pow(2,4) = 16

random()
Number random()

This method takes no arguments and returns a pseudo-random number between 0 and 1. The number
value has approximately uniform distribution over that range, using an implementation-dependent
algorithm or strategy. This function takes no arguments.

Example:
Math.random()=0.9545176397178535

round(x)
Number round(x)

This function returns the number value that is closest to the argument and is equal to a mathematical
integer. If two integer number values are equally close to the argument, then the result is the number
value that is closer to +infinity. If the argument is already an integer, the result is the argument itself.
The input value x can be any number.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
Example:
Math.round(13.53) = 14

sin(x)
Number sin(x)

This function returns an implementation-dependent approximation to the sine of the argument. The
argument is expressed in radians. The input value x must be an angle measured in radians.

sqrt(x)
Number sqrt(x)

This function returns an implementation-dependent approximation to the square root of the
argument. The input value x must be any numeric value or expression greater than or equal to 0. If
the input value x is less than zero, the string “NaN” is returned. (NaN stands for “Not a Number”.)

Example:
Math.sqrt(25) = 5

tan(x)
Number tan(x)

This function returns an implementation-dependent approximation to the tangent of the argument.
The argument is expressed in radians. The input value x must be an angle measured in radians.

Number Object

Lets you work with numeric values. The Number object is an object wrapper for primitive numeric
values.

 This section includes the following topics:

“MAX_VALUE” on page 307
“MIN_VALUE” on page 307
“NaN” on page 308
“NEGATIVE_INFINITY” on page 308
“Number()” on page 308
“POSITIVE_INFINITY” on page 308
“toString(radix)” on page 308
“valueOf()” on page 308

MAX_VALUE

The largest positive finite value of the number type (approximately 1.7976931348623157e308).

Example:
Number.MAX_VALUE

MIN_VALUE

The smallest positive nonzero value of the number type (approximately 5e-324).
Working with ECMA Expressions 307

308 Identity Man

novdocx (E
N

U
) 29 January 2007
Example:
Number.MIN_VALUE

NaN

The primitive value NaN represents the set of IEEE Standard “Not-a-Number” values.

Example:
Number.NaN

NEGATIVE_INFINITY

The value of negative infinity.

Example:
Number.NEGATIVE_INFINITY

Number()
Number()

The constructor of Number has two forms: Number(value) and Number().

POSITIVE_INFINITY

The value of positive infinity.

Example:
Number.POSITIVE_INFINITY

toString(radix)
toString()

If the radix is the number 10 or is not supplied, then this number value is given as an argument to the
ToString operator; the resulting string value is returned. If the radix is supplied and is an integer
from 2 to 36, but not 10, the result is a string, the choice of which is implementation-dependent. The
toString function is not generic; it generates a runtime error if this value is not a Number object.
Therefore, it cannot be transferred to other kinds of objects for use as a method.

valueOf()
valueOf()

Returns this number value. The valueOf function is not generic; it generates a runtime error if its
value is not a Number object. Therefore, it cannot be transferred to other kinds of objects for use as
a method.

Object

Used to work with objects. Object is the primitive JavaScript object type. All ECMAScript objects
are descended from object. That is, all ECMAScript objects have the methods defined for object.

 This section includes the following topics:

“Object()” on page 309
“toString()” on page 309
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
“valueOf()” on page 309

Object()

Constructor for object.

toString()
Object toString()

When the toString method is called on an arbitrary object, the following steps are taken:

1. Get the [[Class]] property of this object.
2. Compute a string value by concatenating the three strings “[object “, Result(1), and “]”.
3. Return Result(2).

valueOf()
Object valueOf()

The valueOf method for an object usually returns the object; however, if the object is a “wrapper”

for a host object, as might be created by the Object constructor, the contained host object should be
returned.

String Object

Used to work with String Objects. This section includes the following topics:

“String(x)” on page 309
“charAt(pos)” on page 310
“charCodeAt(pos)” on page 310
“fromCharCode(char0, char1, . . .)” on page 310
“indexOf(searchString, pos)” on page 310
“lastIndexOf(searchString, pos)” on page 310
“length” on page 310
“match(RegExp)” on page 310
“replace(RegExp, String)” on page 310
“search(RegExp)” on page 311
“split(separator)” on page 311
“substring(start, end)” on page 311
“toLowerCase()” on page 311
“toString()” on page 311
“toUpperCase()” on page 311
“valueOf()” on page 311

String(x)
String(x)

The constructor of the string.
Working with ECMA Expressions 309

310 Identity Man

novdocx (E
N

U
) 29 January 2007
charAt(pos)
charAt(pos)

Returns a string containing the character at position pos in the string resulting from converting this
object to a string. If there is no character at that position, the result is the empty string. The result is
a string value, not a string object.

charCodeAt(pos)
charCodeAt(pos)

Returns a number (a nonnegative integer less than 2^16) representing the Unicode* code point
encoding of the character at position pos in the string resulting from converting this object to a
string. If there is no character at that position, the result is NaN.

fromCharCode(char0, char1, . . .)
fromCharCode(char0, char1, . . .)

Returns a string value containing as many characters as the number of arguments. Each argument
specifies one character of the resulting string, with the first argument specifying the first character,
and so on, from left to right. An argument is converted to a character by applying the operation
ToUint16 and regarding the resulting 16-bit integer as the Unicode code point encoding of a
character. If no arguments are supplied, the result is the empty string.

indexOf(searchString, pos)
indexOf(searchString, pos)

If the given searchString appears as a substring of the result of converting this object to a string, at
one or more positions that are at or to the right of the specified position, then the index of the
leftmost such position is returned; otherwise, -1 is returned. If position is undefined or not supplied,
0 is assumed, in order to search all of the string.

lastIndexOf(searchString, pos)
lastIndexOf(searchString, pos)

If the given searchString appears as a substring of the result of converting this object to a string, at
one or more positions that are at or to the left of the specified position, then the index of the
rightmost such position is returned; otherwise, -1 is returned. If position is undefined or not
supplied, the length of the string value is assumed, in order to search all of the string.

length

Returns the length of the String.

match(RegExp)
String match(RegExp)

Takes a regular expression object as argument. It returns an array of matches; otherwise, returns
null.

replace(RegExp, String)
String replace(RegExp, String)

Takes a regular expression and a replacement string. It returns the original string with replacements
accomplished.
ager 3.5 User Application: Design Guide

novdocx (E
N

U
) 29 January 2007
search(RegExp)
String search(RegExp)

Takes a regular expression as the sole arg and returns the offset of the first substring that matches, or
-1 on no match.

split(separator)
split(separator)

Returns an Array object, into which substrings of the result of converting this object to a string have
been stored. The substrings are determined by searching from left to right for occurrences of the
given separator; these occurrences are not part of any substring in the returned array, but serve to
divide the string value. The separator may be a string of any length.

substring(start, end)
substring(start, end)

Returns a substring of the result of converting this object to a string, starting from character position
start and running to the position end of the string. If the second parameter is not present, the end
position is considered the end of the string. The result is a string value, not a string object.

toLowerCase()
toLowerCase()

Returns a string equal in length to the length of the result of converting this object to a string. The
result is a string value, not a string object. Every character of the result is equal to the corresponding
character of the string, unless that character has a Unicode 2.0 lowercase equivalent, in which case
the lowercase equivalent is used instead. The canonical Unicode 2.0 case mapping must be used,
which does not depend on implementation or locale.

toString()
toString()

Returns this string value. When concerned with the placement and use of whitespace line
terminators and semicolons within the representation, the string value is implementation-dependent.

toUpperCase()
toUpperCase()

Returns a string equal in length to the length of the result of converting this object to a string. The
result is a string value, not a string object. Every character of the result is equal to the corresponding
character of the string, unless that character has a Unicode 2.0 uppercase equivalent, in which case
the uppercase equivalent is used instead. The canonical Unicode 2.0 case mapping must be used,
which does not depend on implementation or locale.

valueOf()
valueOf()

Returns this string value. The valueOf() function is not generic, so it generates a runtime error if the
object is not a String object.
Working with ECMA Expressions 311

312 Identity Man

novdocx (E
N

U
) 29 January 2007
10.3.4 Global Functions
Global functions in ECMAScript are functions that are independent of any particular object.

The Expression Builder supports the following Global functions:

getEnvironmentCountry
getEnvironmentCountry()

Function returns a 2-character string (for example, US) that represents the location that is currently
selected on the user’s computer.

getEnvironmentLanguage
getEnvironmentLanguage()

Function returns a 2-character string (for example, EN) that represents the input language that is
currently selected on the user’s computer.

10.3.5 IDVault Functions
This section lists functions that are used with IDVault data.

DNCompare
DNcompare(String dn1, String dn2)

Performs a case-insensitive comparison of DNs from the Identity Vault. Returns true if the DNs are
the same.

A DN encapsulates a Distinguished Name (an LDAP name with context). The syntax of the DNs
must conform to that specified in RFC 2253, which describes the String representation of DNs. The
following DNs are all valid for use with DNCompare (and would return true if compared):
cn=jdoe,ou=users,ou=idmsample,o=acme
CN=jdoe,ou=users,ou=idmsample,o=acme
cn=JDOE,ou=users,ou=idmsample,o=acme

For more information about RFC 2253, see RFC 2353 (http://www.ietf.org/rfc/rfc2253.txt).

Example:
if (IDVault.DNcompare(flowdata.get('Activity3/CardRequest/
Candidate'),recipient)) true; else false ;
ager 3.5 User Application: Design Guide

http://www.ietf.org/rfc/rfc2253.txt

	Identity Manager 3.5 User Application: Design Guide
	About This Guide
	1 Introduction to the User Application Design Tools
	1.1 About the Provisioning View
	1.2 About the Directory Abstraction Layer Editor
	1.3 About the Provisioning Request Definition Editor
	1.4 About the ECMA Expression Builder
	1.5 Documenting a Project

	2 Working with the Provisioning View
	2.1 Setting Up a Provisioning Project
	2.1.1 Creating a User Application Driver
	2.1.2 About E-Mail Notification Templates

	2.2 Accessing the Provisioning View
	2.3 Setting Provisioning View Preferences
	2.4 Importing Provisioning Objects
	2.4.1 Importing from a Driver Configuration File
	2.4.2 Importing from an Identity Vault

	2.5 Exporting Provisioning Objects
	2.5.1 Exporting to a Driver Configuration File

	2.6 Validating Provisioning Objects
	2.7 Deploying Provisioning Objects
	2.7.1 Deploying Provisioning Objects
	2.7.2 Testing the Deployed Changes

	2.8 Comparing Provisioning Objects
	2.9 Localizing Display Labels
	2.9.1 Supported Languages
	2.9.2 Localizing Directory Abstraction Layer Display Labels
	2.9.3 Exporting and Importing Localized Labels

	3 Configuring the Directory Abstraction Layer
	3.1 About the Directory Abstraction Layer
	3.1.1 Analyzing the User Application’s Data Needs
	3.1.2 About the Directory Abstraction Layer Editor
	3.1.3 About Directory Abstraction Layer Editor Files

	3.2 Working with Entities and Attributes
	3.2.1 About Entities and Attributes
	3.2.2 Adding Entities
	3.2.3 Adding Attributes
	3.2.4 Updating the Schema Elements List

	3.3 Working with Lists
	3.4 Working with Queries
	3.5 Working with Relationships
	3.6 Working with Configuration Settings
	3.7 Directory Abstraction Layer Property Reference
	3.7.1 Entity Properties
	3.7.2 Attribute Properties
	3.7.3 Queries Properties
	3.7.4 Relationship Properties

	4 Working with the Provisioning Request Definition Editor
	4.1 About the Provisioning Request Definition Editor
	4.1.1 How the Provisioning Request Definition Editor Fits into the Identity Manager Architecture
	4.1.2 Provisioning and Workflow Example

	4.2 Basic Steps for Creating a Provisioning Request Definition
	4.3 Guidelines for Creating Workflows
	4.3.1 Rules for Activities
	4.3.2 Rules for Flow Paths
	4.3.3 Understanding Workflow Data

	4.4 Working with the Installed Templates
	4.5 Debugging a Workflow

	5 Creating a Provisioning Request Definition
	5.1 About the Wizard and the Overview Tab
	5.2 Using the Wizard to Create a Provisioning Request Definition
	5.2.1 Using a Template
	5.2.2 From Concept to Finished Product

	5.3 Using the Overview Tab to Modify Basic Settings

	6 Creating Forms for a Provisioning Request Definition
	6.1 About Forms
	6.1.1 About Form Control Data Binding
	6.1.2 About Forms and Events

	6.2 About the Forms Tab
	6.2.1 About Form Selection
	6.2.2 About Form Controls

	6.3 Creating forms
	6.3.1 Creating New Forms
	6.3.2 Adding Form Controls and Actions
	6.3.3 Defining Events
	6.3.4 Using the Scripts Tab

	6.4 Action Reference
	6.5 Form Control Reference
	6.5.1 Controls for User-Entered Comments
	6.5.2 General Form Control Properties
	6.5.3 CheckBoxPickList
	6.5.4 DatePicker
	6.5.5 DateTimePicker
	6.5.6 DNContainer
	6.5.7 DNDisplay
	6.5.8 DNLookup
	6.5.9 DNMaker
	6.5.10 DNQuery
	6.5.11 Global List
	6.5.12 Html
	6.5.13 MVCheckbox
	6.5.14 MVEditor
	6.5.15 PickList
	6.5.16 Static List
	6.5.17 Text
	6.5.18 Text Area
	6.5.19 Title
	6.5.20 TrueFalseRadioButtons
	6.5.21 TrueFalseSelectBox

	6.6 Working with Distinguished Names
	6.6.1 Formatting DNs
	6.6.2 Working with Object Selectors

	6.7 Using DAL Queries in Forms

	7 Creating the Workflow for a Provisioning Request Definition
	7.1 About the Workflow Tab
	7.1.1 Canvas
	7.1.2 Palette
	7.1.3 Views

	7.2 Adding Activities to a Workflow
	7.2.1 Setting the General Properties of an Activity
	7.2.2 Defining the Data Item Mappings
	7.2.3 Defining the Email Notification Settings

	7.3 Adding the Flow Paths
	7.4 Configuring Flow Paths
	7.5 Addressing an Approval Activity
	7.5.1 Valid Addressee Expressions
	7.5.2 Relationship Between Addressee and Approver Type

	7.6 Provisioning Multiple Individuals with One Workflow Instance
	7.6.1 Basic Steps for using the Workflow
	7.6.2 Setting up the Workflow for a Team Manager to Use

	7.7 Working with Entity Activities
	7.7.1 Adding or Modifying an Entity
	7.7.2 Using an Entity Activity to Delete an Entity
	7.7.3 Using an Entity Activity to Delete an Attribute or Value

	7.8 Configuring Digital Signature Support
	7.8.1 Digital Signature Workflow Properties
	7.8.2 Creating a Signature Declaration

	8 Workflow Activity Reference
	8.1 Start Activity
	8.1.1 Properties
	8.1.2 Data Item Mapping
	8.1.3 Email Notification

	8.2 Approval Activity
	8.2.1 Properties
	8.2.2 Data Item Mapping
	8.2.3 E-mail Notification

	8.3 Log Activity
	8.3.1 Properties
	8.3.2 Data Item Mapping
	8.3.3 E-mail Notification

	8.4 Branch Activity
	8.4.1 Properties
	8.4.2 Data Item Mapping
	8.4.3 E-mail Notification

	8.5 Mapping Activity
	8.5.1 Properties
	8.5.2 Data Item Mapping
	8.5.3 E-mail Notification

	8.6 Merge Activity
	8.6.1 Properties
	8.6.2 Data item mapping
	8.6.3 Email notification

	8.7 Condition Activity
	8.7.1 Properties
	8.7.2 Data Item Mapping
	8.7.3 Email Notification

	8.8 Workflow Status
	8.8.1 Properties
	8.8.2 Data Item Mapping
	8.8.3 E-mail Notification

	8.9 Finish Activity
	8.9.1 Properties
	8.9.2 Data Item Mapping
	8.9.3 E-mail Notification

	8.10 Integration Activity
	8.10.1 Properties
	8.10.2 Data Item Mapping
	8.10.3 E-Mail Notification

	8.11 Entitlement Activity
	8.11.1 Properties
	8.11.2 Data Item Mapping
	8.11.3 E-mail Notification

	8.12 Entity Activity
	8.12.1 Properties
	8.12.2 Data Item Mapping
	8.12.3 Email notification

	9 Working with Integration Activities
	9.1 About the Integration Activity
	9.2 Adding an Integration Activity
	9.3 Moving Data to and from the Integration Activity
	9.4 Using the Integration Activity Editor Interface
	9.4.1 XML Views
	9.4.2 Action Model
	9.4.3 WSDL Editor
	9.4.4 Messages
	9.4.5 Regenerating Code for the Action Model
	9.4.6 Adding Actions to the Action Model

	9.5 Actions
	9.5.1 Advanced
	9.5.2 Data Exchange
	9.5.3 Repeat
	9.5.4 Comment
	9.5.5 Decision
	9.5.6 Function
	9.5.7 Log
	9.5.8 Map

	10 Working with ECMA Expressions
	10.1 About the ECMA Expression Builder
	10.1.1 About ECMAScript
	10.1.2 ECMAScript Capabilities
	10.1.3 Using the ECMA Expression Builder
	10.1.4 About Java Integration
	10.1.5 About XPath Integration
	10.1.6 Performance Considerations

	10.2 ECMAScript Examples
	10.2.1 General Examples
	10.2.2 Flowdata Examples
	10.2.3 Form Control Examples
	10.2.4 Error Handling Examples

	10.3 ECMAScript API
	10.3.1 Form Action Script Methods
	10.3.2 DOM Methods
	10.3.3 ECMAScript Core
	10.3.4 Global Functions
	10.3.5 IDVault Functions

